
Optimal Link Adaptation for Multicarrier
Communication Systems

by
c©Ebrahim E. Bedeer-Mohamed

A dissertation submitted to the School of Graduate Studies
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

October 2014

St. John’s, Newfoundland



Abstract

Link adaptation is the terminology used to describe techniques that improve multicarrier

communication systems performance by dynamically adapting the transmission parame-

ters, i.e., transmit power and number of bits per subcarrier, to the changing quality of

the wireless link. The research literature has focused on single objective optimization

techniques to optimize the multicarrier communication systems performance, e.g., max-

imizing the throughput/capacity or minimizing the transmit power subject to a set of

constraints. In this dissertation, we adopt a novel optimization concept, namely multi-

objective optimization, where our objective is to simultaneously optimize the conflicting

and incommensurable throughput and power objectives.

More specifically, in Chapters 2 and 3, we propose novel algorithms that jointly max-

imize the multicarrier system throughput and minimize its total transmit power subject

to quality-of-service, total transmit power, and maximum allocated bits per subcarrier

constraints. The proposed algorithms require prior knowledge about the importance of

the competing objective functions in terms of pre-determined weighting coefficients, or

they can adapt the weighting coefficients during the solution process while meeting the

constraints, in order to reduce the computational complexity. Simulation results show sig-

nificant performance gains in terms of the achieved throughput and transmit power when

compared to single optimization approaches, at the cost of no additional complexity.

Motivated by the obtained results, in Chapter 4 the problem is extended to the cog-
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nitive radio environment where the multicarrier unlicensed/secondary user, with limited

sensing capabilities, needs to satisfy additional constraints for the leaked interference to

existing licensed/primary users. In Chapter 5, a multiobjective optimization problem is

formulated to balance between the SU capacity and the leaked interference to existing pri-

mary users, where the effect of the imperfect channel-state-information on the links from

the secondary user transmitter to the primary users receivers is considered. Simulation

results show improvements of the energy efficiency of the secondary user when compared

to its counterparts of the works in the literature, with reduced computational complexity.

In Chapter 6 we investigate the optimal link adaptation problem to optimize the

energy efficiency of secondary users while considering the effect of imperfect channel-

state-information on the links between the secondary user transmitter and receiver pairs

and the limited sensing capabilities of the secondary user. The proposed link adapta-

tion algorithm guarantees minimum required rate for the secondary user and statistical

interference constraints to the existing primary users.

Finally, conclusions and possible extensions to the optimal link adaptation problem is

discussed in Chapter 7.
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Chapter 1

Introduction and Overview

1.1 Background

“See if you can hear anything, Mr. Kemp.” Guglielmo Marconi asked his assistant at noon

on Thursday December 12, 1901, heralding the success of the first transatlantic wireless

communication at the Signal Hill in St. John’s, Newfoundland. This was preceded by the

first ever wireless transmission when Marconi was able to ring a wireless alarm across his

room in the summer of 1894. Since that time, the realm of wireless communication is one

of the fastest expanding in the world.

Unlike wired channels that are stationary and predictable, wireless channels are ex-

tremely random and the transmission path between the transmitter and the receiver can

vary from simple line-of-sight to one that is severely obstructed by buildings, mountains,

and foliage. Due to multiple reflections from these objects, the electromagnetic waves

travel along different paths of varying lengths. The interaction between these waves

causes multipath fading which yields drastic problems for single carrier communication

systems [1].

Multicarrier communication systems (MCM) provide numerous advantages over single
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carrier systems due to their ability to cope with the severe idiosyncrasies of the wire-

less channel [2, 3]. For example, frequency-selective fading that occurs due to multipath

propagation, is a major performance-limiting challenge for single carrier communication

systems. It arises when the channel coherence bandwidth is smaller than the signal band-

width; therefore, different frequency components of the signal experience independent

fading, and, thus, the received signal spectrum is distorted. MCM systems overcome

this problem by dividing the wideband signal into a number of narrowband subcarriers

of equal bandwidth. Each subcarrier bandwidth is smaller than the channel coherence

bandwidth; hence, it experiences frequency-flat fading and avoids the need of complex

equalizers.

Due to their efficient digital implementations, MCM spurred widespread interest in

various single user and multiple access communication standards. MCM systems, such

as Discrete Multi-tone (DMT) has been applied to high speed asynchronous digital sub-

scriber line (ADSL) modems, while orthogonal frequency division multiplexing (OFDM),

its wireless counterpart, has been adopted in various wireless standards, such as digi-

tal cable television systems, IEEE 802.11 wireless LAN standard, IEEE 802.15 personal

area network standard, IEEE 802.16 WiMAX standard, IEEE 802.20 mobile broadband

wireless access standard, and the downlink of the 3GPP LTE and LTE-A fourth genera-

tion mobile broadband standard [4]. Recently, it is also considered as the physical layer

modulation of interest for CR systems due to its flexibility in adjusting its transmission

parameters to meet surrounding environment constraints, adaptivity in allocating vacant

radio resources, and underlying sensing and spectrum shaping capabilities [5].

In wireless communication, the radio spectrum is the most scarce resource due to the

ceaselessly demands of spectrum by new applications and services. However, this spectrum

scarcity happens while most of the allocated spectrum is underutilized as reported by

many jurisdictions [6]. This paradox occurs only due to the inefficiency of traditional
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static spectrum allocation policies. CR [7] provides a solution to the spectrum utilization

inefficiency problem by allowing unlicensed/secondary users (SUs) to underlay, overlay, or

interweave their signals with licensed/primary users (PUs) [8–10]. The underlay approach

allows concurrent transmission of PUs and SUs as in ultra-wide band systems. SUs spread

their transmission over a wide bandwidth; hence, their interference is below an acceptable

noise floor to PUs. The overlay approach also allows concurrent transmission of PUs and

SUs with a premise that SUs use part of their power to assist/relay PUs transmission.

The interweave approach allows SUs to opportunistically access voids in PUs frequency

bands/time slots under the condition that no harmful interference occurs to PUs. In our

research, we consider the interweave CR systems.

In the past few years, the concept of energy aware communications has spurred the

interest of the research community due to various environmental and economical reasons

[11]. It becomes indispensable for wireless communication systems to shift their resource

allocation problems from optimizing traditional metrics such as throughput and transmit

power to environmental-friendly energy metric. Considering an adequate energy efficiency

metric—that considers the transmit power consumption, circuitry power, and signaling

overhead—is of momentous importance such that optimal resource allocations in cognitive

radio systems reduce the energy consumption of SUs.

1.2 Link Adaptation Algorithms

In conventional MCM systems, all subcarriers employ the same signal constellation and

transmit power; hence, the overall performance is dominated by subcarriers with worst

channel conditions (i.e., deep fade). The performance of MCM systems can be signifi-

cantly improved by dynamically loading/allocating different bits and/or powers per each

subcarrier according to the channel quality or the wireless standard specifications [12–20].
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Broadly speaking, the link adaptation problem for MCM systems in non-CR environment

focuses on optimizing the transmit power and constellation size. Consequently, the opti-

mal link adaptation can be categorized into two main classes: rate maximization (RM)

and margin maximization (MM) [12–20]. For the former, the objective is to maximize the

achievable data rate [17–20], while for the latter the objective is to maximize the achiev-

able system margin [12–16] (i.e., minimizing the total transmit power given a target data

rate or a target bit error rate (BER)).

Most of the algorithms for loading bits and power are variant of two main types:

greedy algorithms [12–15, 18, 20, 21] and water-filling based algorithms [16, 17, 19, 22].

Greedy algorithms seek to find the global optimum by repeatedly determining the local

optimum at each stage [23], i.e., decisions at each stage are based on local conditions only

with no considerations of any future states. Hence, greedy algorithms are not guaranteed

to find global optimum. In MCM systems, greedy algorithms incrementally load an

integer number of bits to subcarriers, initially nulled, that requires the least amount of

transmit power until the power constraint or the average BER is reached; or unload

an integer number of bits from subcarriers, initially loaded with the maximum allowed

constellation size, until the average BER is reached. Greedy algorithms in MCM systems

provide near optimal allocation at the cost of high complexity. On the other hand,

water-filling based algorithms formulate the loading problem as a constrained optimization

problem that can be solved by classical optimization methods [24]. The water-filling based

algorithms maximize the capacity on all subcarriers by loading power on each subcarrier

in proportional to the subcarrier channel gain, while the total transmit power is kept

within a fixed constraint. The capacity on each subcarrier is related to its power through

the Shannon’s capacity formula. Typically, water-filling based algorithms allocate a non-

integer number of bits per each subcarrier; hence, it is generally followed by a rounding-off

step to allocate an integer number of bits to the transmitted symbols across all subcarriers,
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which compromises performance for lower complexity.

The foregoing research in [12–16] pored on maximizing the margin. In [12], Hughes-

Hartog proposed a greedy algorithm to maximize the margin by successively allocating

bits to subcarriers requiring the minimum incremental power until the total target date

rate is reached. The algorithm converges very slowly as it requires extensive sorting;

hence, it is very complex and not suitable for practical implementations. Chow et al. [13]

proposed a practical iterative bit loading algorithm to maximize the margin that offers

significant implementation advantages over Hughes-Hartog algorithm. The algorithm uses

the channel capacity approximation to compute the initial bit allocation across all sub-

carriers assuming uniform power loading. Then, it iteratively changes the allocated bits

to achieve the optimal margin and the target data rate. Papandreou and Antonakopou-

los [15] presented an efficient bit loading algorithm to minimize the transmit power that

achieves the same bit allocation as the discrete optimal bit-filling and bit-removal tech-

niques1, but with faster convergence. The algorithm exploits the differences between the

subchannel gain-to-noise ratios in order to determine an initial bit allocation and then

performs a multiple bit insertion or removal loading procedure to achieve the requested

target rate. In [16], Liu et al. proposed a low complexity power loading algorithm that

aims to minimize the transmit power while guaranteeing a target BER. Closed-form ex-

pressions for the optimal BER and power distributions were derived. Noteworthy, the

reduced complexity of the proposed algorithm comes as a result of assuming uniform bit

allocation across all subcarriers.

On the other hand, in [17–20] the authors focused on maximizing the rate. Leke and

Cioffi [17] proposed a finite granularity algorithm that maximizes the data rate for a given

margin. Subcarriers with signal-to-noise ratios (SNR) below a predefined threshold are
1In the bit-removal allocation techniques, all subcarriers are initially loaded with the maximum

allowed constellation size that is decrementally decreased to meet the constraints. On the contrary, in the
bit-filling allocation techniques, all subcarriers are initially nulled and constellation size is incrementally
increased until meeting the constraints.
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nulled, and then remaining subcarriers are identified and the available power is distributed

either optimally using a water-filling approach or suboptimally by assuming equal power

to maximize the data rate. Krongold et al. [19] presented a computationally efficient

algorithm to maximize the throughput using a look-up table search and the Lagrange

multiplier bisection method [25]. The algorithm converges faster to the optimal solution

when compared to other allocation schemes. In [18], Wyglinski et al. proposed an in-

cremental bit loading algorithm to maximize the throughput while guaranteeing a target

mean BER. The algorithm loads all subcarriers with the highest possible constellation

size, and then calculate the BER per subcarrier depending on the channel state condi-

tion. The average BER is calculated and checked against the target BER. If the average

BER meets the target BER, the final bit allocation is reached; otherwise, the signal con-

stellation on the worst performance subcarrier is decreased and the process repeats. The

algorithm nearly achieves the optimal solution given in [26] but with lower complexity,

which is the result of assuming uniform power allocations across all subcarriers.

Song et al. [21] proposed an iterative joint bit loading and power allocation algorithm

based on statistical channel conditions to meet a target BER, i.e., the algorithm loads

bits and power per subcarrier based on long-term frequency domain channel conditions,

rather than instantaneous channel conditions as in [12–20]. The algorithm marginally

improves the performance when compared to conventional MCM systems. The authors

conclude that their algorithm is not meant to compete with its counterparts that adapt

according to the instantaneous channel conditions. In [27], Fischer and Huber proposed a

low complexity loading algorithm to minimize the BER given a maximum allowed power

and minimum throughput constraints. The authors claimed that in order to minimize

the average BER, all subcarriers should experience the same BER so that the average

BER is not dominated by the worst subcarrier. Goldfeld et al. [22] formulated an opti-

mization problem to minimize the aggregate BER with a constraint on the total transmit
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power. Unfortunately, the problem was too complex to solve; hence, they resorted to a

sub-optimal power loading algorithm that assumes uniform constellation size across all

subcarriers.

1.3 Link Adaptation Algorithms in the CR Environ-

ment

The water-filling algorithms, which have been proven to be optimal for the link adaptation

problem in non-CR environment, are no longer considered as optimal solutions in the CR

environment. This is due to the fact that several new parameters need to be considered.

For example, the interference from the PU to the SU, the interference from the SU to

the PU, and the predefined threshold on the interference from the SU to the PU. The

water-filling solutions for optimal link adaptation in the CR environment are found to

load power to each subcarrier inversely proportional to the spectral distance between the

subcarrier and the PU location, while still proportional to the SU subcarrier channel

gain [28–39].

In [28], Wang et al. proposed a novel iterative partitioned water-filling power allocation

algorithm to maximize the SU capacity, where the SU power budget (constraints on the

interference to the PUs are converted to constraints on the SU transmitted power) and

the peak transmission power per SU subcarrier are considered as constraints. The authors

considered only the effect of co-channel interference. The work in [28] was generalized

in [29], where the effect of adjacent channel interference is further considered. Bansal et al.

in [30] investigated the optimal power allocation problem in CR networks to maximize the

SU downlink transmission capacity under a constraint on the instantaneous interference

to PUs. The proposed algorithm was complex and several suboptimal algorithms were

developed to decrease the computational complexity. In [31], Zhang optimized the SU
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transmit power to maximize its ergodic capacity with constraints on the PU average

capacity loss and the SU average transmit power. The authors assumed perfect channel-

state-information (CSI) between the PU and the SU receivers, as well as between the PU

transmitter and receiver. Zhang and Leung [32] proposed a low complexity suboptimal

algorithm for an OFDM-based CR system in which SUs may access both nonactive and

active PU frequency bands, as long as the total co-channel interference (CCI) and adjacent

channel interference (ACI) are within acceptable limits. The complexity reduction is the

results of two validated approximations: 1) adjacent channel interference from SU to PUs

is mainly limited to a few subcarriers adjacent to the PUs frequency bands and 2) the

bandwidth of the PUs is typically much larger than that of a SU subcarrier. The proposed

suboptimal algorithm shows significant improvement over its counterparts that use only

nonactive PU frequency bands. Kang et al., in [33], studied the problem of optimal

power allocation to achieve the ergodic, delay-sensitive, and outage capacities of a SU

under a constrained average/peak SU transmit power and interference to the PUs, with

no interference from the PUs to the SU taken into consideration. The ergodic capacity

is defined as the maximum achievable rate averaged over all fading blocks. The delay-

limited capacity is defined as the maximum constant transmission rate achievable over

each fading block, which can be zero for severe fading scenarios. Thus, for such scenarios,

the outage capacity, defined as the maximum constant rate that can be maintained over

fading blocks with a given outage probability, is a good choice. It was shown that under

the same threshold value, average interference constraints are more flexible over peak

interference constraints to maximize the SU capacities. Attar et al. in [34] maximized the

total throughput (of both the SU and PU) under a constraint of threshold interference to

each user. In [35], Zhao and Kwak maximized the throughput of the SU while keeping the

interference to PUs below a certain threshold. The mutual interference between the SU

and the PUs were comprehensively modeled into constraints on the transmit power of the
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SU. A low-complexity iterative power loading algorithm and a suboptimal iterative bit

loading algorithm were proposed to solve the modeled optimization problem. Ngo et al.,

in [37], proposed a practically optimal joint subcarrier assignment and power allocation

algorithm to maximize the weighted sum rate of all secondary users of an OFDM-based CR

network, while satisfying tolerable interference levels to PUs. The optimization problem

was solved in the dual domain, where the duality gap tends to zero as the number of

subcarriers goes to infinity. In [38], Bansal et al. developed an optimal power allocation

algorithm for OFDM-based CR systems with different statistical interference constraints

imposed by different PUs. Since the interference constraints are met in a statistical

manner, the SU transmitter does not require instantaneous CSI feedback from the PU

receivers. Hasan et al. [39] presented a novel solution to maximize the SU capacity while

taking into account the availability of subcarriers, i.e., the activity of PUs in the licensed

bands, and limiting the interference leaked to PUs.

1.4 Energy Efficient Link Adaptation Algorithms

As discussed earlier, the existing research has focused on optimizing the transmission

rate of SUs while limiting the interference introduced to PUs to predefined thresholds.

Recently, optimizing the energy-efficiency (EE)—defined as the total energy consumed to

deliver one bit, or the number of bits per unit energy [40–42] —has received increasing

attention due to steadily rising energy costs and environmental concerns [40–46].

Wang et al. in [41] optimized the EE of an OFDM-based CR network subject to power

budget and interference constraints; however, this comes at the expense of deteriorating

the rate of the SU. Mao et al. in [46] optimized the EE of OFDM-based CR systems

subject to controlled interference leakage to PUs. The authors proposed a so called

waterfilling factors aided search to solve the non-convex EE optimization problem. In [47],
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Han et al. proposed a novel channel management scheme that switches between different

operations modes in order to maximize the EE of a CR sensor network. Oto and Akan

in [42] found the optimal packet size that maximizes the EE of a CR sensor networks

while maintaining acceptable interference levels to the licensed PUs. In [43], Xie et al.

investigated the problem of maximizing the EE of heterogeneous macrocells and femtocells

cognitive networks. The resource allocation problem is formulated as a Stackelberg game

where the solution is obtained using a gradient-based iterative algorithm. Wang et al.

in [44] optimized the EE of an OFDM-based CR system subject to PUs interference

constraints and different SUs rates. In [45], Mao et al. optimized the EE of CR MIMO

broadcast channels while guaranteeing certain interference threshold at the PUs receivers.

The authors transformed the non-convex optimization problem into an equivalent one-

dimensional problem with a quasi-concave objective function that was solved using a

golden search. The same authors optimized the EE of an OFDM-based CR systems

subject to controlled interference leakage to PUs in [46].

1.5 Motivation and Outline

As discussed earlier, the link adaptation algorithms in the literature focused on a sin-

gle objective optimization, i.e., maximizing the throughput/capacity or minimizing the

transmit power. However, in emerging wireless communication systems including CR

systems, different requirements are needed. For example, minimizing the transmit power

is prioritized when operating in interference-prone shared spectrum environments or in

the proximity to other frequency-adjacent users. On the other hand, maximizing the

throughput is favoured if sufficient guard bands exist to separate users. So, instead of

solving different optimization problems for different applications, we adopt a multiobjec-

tive optimization (MOOP) approach that formulate a general optimization problem to
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balance between competing objectives. In Chapter 2, we consider the MOOP problem

that jointly maximizes the throughput and minimizes the transmit power of multicar-

rier systems subject to the quality-of-service (QoS), total transmit power, and maximum

allowed bits per subcarrier constraints. The competing objective functions are linearly

combined through weighting coefficients that represent the prior information about the

preferences/importance of each objective. Novel algorithms are proposed to solve the

MOOP problem and simulation results show significant performance improvements in

terms of the achieved throughput and transmit power when compared to single opti-

mization approaches, at the cost of no additional complexity. Chapter 3 proposes an

evolutionary algorithm that adapts the preferences during the solution process in order

to reduce the computational complexity.

Most of the optimal link adaptation algorithms in the CR-environment tend to assume

practically unrealistic assumptions such as perfect sensing capabilities of the SU and

perfect CSI on the links between the SU transmitter and the PUs receiver. In Chapter 4,

we consider the coexistence between an SU and multiple PUs and investigate the MOOP

problem that simultaneously maximizes the SU throughput and minimizes its transmit

power while considering the following: 1) total transmit power constraint, 2) maximum

allowed CCI to the co-channel PUs constraint, 3) maximum allowed ACI to frequency

adjacent PUs constraints, 4) QoS for the SU constraint, 5) maximum allocated bits per

subcarrier constraint, and 6) imperfect sensing capabilities of the SU. Chapter 5 extends

the MOOP formulation to balance between the SU transmission rate, CCI to co-channel

PU, and ACI to adjacent PUs while assuming imperfect CSI on the links between the

SU transmitter and the PUs receivers. Simulation results show that the MOOP approach

provides improvements in the energy efficiency of the SU when compared to the works in

the literature, with reduced computational effort.

Finally, Chapter 6 proposes an energy-efficient power loading algorithm that considers
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the imperfect CSI on the links between the SU transmitter and receiver pairs subject

to statistical constraints on the leaked interference to the PUs receivers and minimum

supported rate for the SU.

1.6 Contributions

This dissertation presents the following novel contributions to the optimal link adaptation

problem for MCM systems.

• We propose a novel optimization framework for the optimal link adaptation prob-

lem for MCM systems. More specifically, we adopt a MOOP approach that jointly

optimizes conflicting and incommensurable throughput/capacity, power, and inter-

ference objectives.

• Wemodel the MOOP problems to guarantee certain QoS, maximum transmit power,

maximum allocated bits per subcarrier, and certain interference thresholds to the

PUs receivers. Some of the formulated MOOP problems are non-convex and we

introduce approximate convex optimization problems, where the global optimal so-

lution is guaranteed.

• We formulate the interference leaked to the PUs receivers with different degree of

channel knowledge of the links between the SU transmitter and the PUs receivers.

• We consider the effect of imperfect spectrum sensing of the SU while formulating

the MOOP problem in the CR environment.

• We optimize the EE of the SU while considering the channel sensing errors on the

links between the SU transmitter and receiver pair and a minimum SU supported

rate.
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• We propose low complexity algorithms to solve the formulated optimization prob-

lems.

• We setup various simulation scenarios to investigate the performance of the proposed

algorithms.

• We show that the adopted MOOP approach achieves significant performance im-

provements in terms of the achieved throughput and transmit power, when com-

pared with other works in the literature that separately maximized the throughput

(while constraining the transmit power) or minimized the transmit power (while

constraining the throughput), at the cost of no additional complexity. Additionally,

the MOOP improves the EE of the multicarrier systems.

• We illustrate that the interference constraints at the PUs receivers can be severely

violated due to 1) assuming that the SU has perfect spectrum sensing capabilities

and 2) imperfect CSI knowledge on the links between the SU transmitter and the

PUs receivers. We additionally quantify the performance loss associated with the

imperfect CSI knowledge on the links between the SU transmitter and the PUs

receivers.
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Chapter 2

A Novel Multiobjective Optimization

Approach to Bit and Power

Allocation for OFDM Systems

2.1 Abstract

This paper investigates the problem of bit and power allocation for orthogonal frequency

division multiplexing (OFDM) systems. Unlike all the proposed works in the literature

that have focused on single objective optimizations, in this paper we adopt the concept

of multiobjective optimization to approach the bit and power allocation problem in order

to meet the requirements of emerging wireless systems, i.e., achieving higher throughput

without considerably increasing the transmit power. More specifically, we propose to si-

multaneously maximize the throughput and minimize the transmit power of an OFDM

system subject to a set of constraints. The formulated optimization problem is not con-

vex and we use an evolutionary algorithm, i.e., genetic algorithm, in order to obtain the

solution. To obtain closed-form expressions for the solution and reduce the complexity,
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we propose an approximate convex optimization problem where the global optimality of

the Pareto solutions is guaranteed. Simulation results show that the proposed multiob-

jective optimization approach provides significant performance improvements over single

objective optimization techniques presented in the literature, without incurring additional

complexity.

2.2 Introduction

Orthogonal frequency division multiplexing (OFDM) is recognized as a robust and effi-

cient transmission technique, as evidenced by its consideration for diverse communication

systems and adoption by several wireless standards [1–3]. The performance of OFDM

systems can be improved by dynamically adapting various transmission parameters, i.e.,

transmit power and number of bits per subcarrier, to the changing quality of the wireless

link [4–17]. The bit and power allocation problems can be categorized into two main

classes: rate maximization (RM) and margin maximization (MM) [4–12]. For the for-

mer, the objective is to maximize the achievable data rate [4–7], while for the latter the

objective is to maximize the achievable system margin [8–14] (i.e., minimizing the total

transmit power given a target data rate or a target bit error rate (BER)). Modern wireless

communication systems are required to satisfy conflicting objectives (e.g., increasing the

OFDM system throughput without considerably increasing the transmit power) that do

not optimize the RM and MM, separately.

To date, most of the research literature has focused on the single objective function of

maximizing either the RM or MM problems separately. For example, Leke and Cioffi [4]

proposed a finite granularity optimal algorithm that maximizes the throughput for a

given power budget. The algorithm identifies and nulls subcarriers with signal-to-noise

ratios (SNRs) below a predefined threshold, and optimally distributes the available power
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over the remaining subcarriers using a water-filling approach. In order to reduce the

complexity of the proposed algorithm, the authors proposed a suboptimal algorithm that

allocates equal power per subcarrier. In [5], Wyglinski et al. proposed an incremental

bit loading algorithm to maximize the throughput while guaranteeing a target mean

BER. The algorithm nearly achieves the optimal solution given in [18] but with lower

complexity, which is a result of employing uniform power allocations across all subcarriers.

On the other hand, Hughes-Hartog [8] proposed a greedy algorithm to maximize the

margin by successively allocating bits to subcarriers requiring the minimum incremental

power until the total target data rate is reached. The algorithm converges very slowly

as it requires extensive subcarrier sorting; hence, it is very complex and not suitable

for practical implementations. In [9], Chow et al. proposed a suboptimal iterative bit

loading algorithm that minimizes the transmit power subject to a target throughput. The

algorithm calculates the initial bit allocations using the channel capacity approximation.

Then, it iteratively adjusts the allocated bits to meet the target throughput. Liu et al. [10]

proposed a low complexity power loading algorithm that aims to minimize the transmit

power while guaranteeing a target BER. Closed-form expressions for the optimal power

distributions were derived. The reduced complexity of the proposed algorithm comes

as a result of assuming uniform bit allocation across all subcarriers. Song et al. [17]

proposed a statistical loading algorithm for multicarrier modulation (MCM) systems, i.e.,

the algorithm jointly loads bits and powers per subcarrier based on the fading statistics

rather than the instantaneous channel conditions as in [4–16]. The algorithm attains a

marginal performance improvement when compared to conventional MCM systems. The

authors conclude that their algorithm is not meant to compete with algorithms that adapt

according to the instantaneous channel conditions.

In emerging wireless communication systems, different and flexible requirements are

needed. For example, minimizing the transmit power is prioritized for battery oper-
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ated devices, when operating in interference-limited shared spectrum environments, or

in the proximity of other frequency-adjacent users. On the other hand, maximizing the

throughput is favoured if high date rate is required and/or if sufficient guard bands exist

to separate users. This motivates us to formulate a multiobjective optimization (MOOP)

problem that optimizes the conflicting and incommensurable throughput and power ob-

jectives. Recently, MOOP has attracted researchers’ attention due to its flexible and

superior performance [19–23]. Jointly maximizing the throughput and minimizing the

transmit power provides significant performance improvements in terms of the achieved

throughput and transmit power, when compared with other works in the literature that

separately maximize the throughput (while constraining the transmit power) or mini-

mize the transmit power (while constraining the throughput); this is verified through the

results presented in Section 2.4.

In this paper, we adopt a MOOP approach that simultaneously minimizes the OFDM

system transmit power and maximizes its throughput subject to constraints on the quality-

of-service (QoS), total transmit power, and maximum allocated bits per subcarrier. The

QoS constraint is set to limit the average BER to a certain threshold. This constraint is

not convex, and, hence, the formulated MOOP is not convex and the global optimality

of the Pareto solutions is not guaranteed. The solution of this problem is found using

an evolutionary algorithm, i.e., genetic algorithm. We noticed that the constraint on the

average BER can be transformed to a constraint on the BER per subcarrier. This helps us

to formulate an approximate convex MOOP problem where the global optimality of the

Pareto solutions is guaranteed and closed-form expressions for the optimal bit and power

allocations can be reached. Simulation results illustrate that the proposed algorithms are

suprior to existing allocation algorithms in the literature, without incurring additional

complexity.

The remainder of the paper is organized as follows. Section 2.3 formulates and solves
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the optimization problems. Simulation results are presented in Section 2.4, while conclu-

sions are drawn in Section 2.5.

Throughout this paper we use bold-faced lower case letters for vectors, e.g., x, and

light-faced letters for scalar quantities, e.g., x. [.]T denotes the transpose operation, ∇

represents the gradient, bxc is the largest integer not greater than x, bxe is the nearest

integer to x, [x, y]− represents min(x, y), and ¯̄X is the cardinality of the set X.

2.3 Optimization Problems: Formulation and Solu-

tion

2.3.1 MOOP Principles

The bit and power allocation problems in the literature are usually formulated as single

objective optimization problems (minimizing cost function or maximizing utility function)

and other functions are treated as constraint. Examples are minimizing the total transmit

power subject to QoS and total transmit power, and maximizing the throughput/capacity

subject to total transmit power and QoS constraints. Hence, the general form of the single

objective bit and power allocation optimization problems can be written as

min
x

f(x)

subject to x ∈ S, (2.1)

where we have a single objective function f(x): Rn → R and the decision variable

x = {x1, x2, ..., xn}T belongs to the non-empty feasible set S, which is a subset of the

decision variable space Rn. We assume that the feasible region is formed by a set of

inequality constraints, i.e., S = {x ∈ Rn| g(x) = {g1(x), g2(x), ..., gC(x)}T ≤ 0} and C is
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the number of the inequality constraints.

In this paper, we propose a new formulation to the bit and power allocation problem,

which is based on MOOP concepts, and prove that this new formulation provides superior

performance over traditional formulations, i.e., single objective optimization. The MOOP

formulation to the bit and power resource allocation problem can be written as

min
x

{f1(x), f2(x), ..., fO(x)}

subject to x ∈ S, (2.2)

where we have O (≥ 2) objective functions. We denote the vector of the objective func-

tions f(x) = {f1(x), f2(x), ..., fO(x)}T and we need to minimize all the objectives in f(x)

simultaneously1. If there is no conflict between the objective functions, then an optimal

solution can be found where every objective function attains its optimum. However, such

a case is not common in practice, as the objective functions are conflicting, i.e., there is

no single optimal solution for all objective functions in f(x). Also, the objective func-

tions in f(x) are usually incommensurable, i.e., of different units. The MOOP approach

tries to search for non-dominant solutions x∗, called Pareto optimal solutions, that can

best compromise between different conflicting objectives. Mathematically, a decision vec-

tor x∗ ∈ S is Pareto optimal if there is not any other decision vector x ∈ S such that

fo(x) ≤ fo(x∗),∀o = 1, ..., O, and fo′(x) < fo′(x∗) for at least one index ∀o′ = 1, ..., O [24].

If the objective functions f(x) and the feasible region S are convex, then the obtained

Pareto optimal solution is referred to as a global Pareto optimal solution; otherwise, it is

referred to as a local Pareto optimal solution [24]. Furthermore, a decision vector x∗ ∈ S

is weak Pareto optimal if there does not exist another decision vector x ∈ S such that

fo(x) < fo(x∗),∀ o = 1, ..., O. In other words, a weak Pareto optimal solution is the
1If a function fo(x), o = 1, ..., O, is to be maximized, i.e., max

x
fo(x), we transform it into an equivalent

minimization problem, i.e., min
x
{−fo(x)}.
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solution for which there are no possible alternative solutions that cause every objective

function to gain/improve. Note that the Pareto optimal set is a subset of the weakly

Pareto optimal set [24]. Moving from a Pareto optimal solution to another one necessi-

tates trading off; this is a basic concept in MOOP. Different methods exist to approach

the MOOP tradeoff and they may produce worse/better results for the competing objec-

tive functions. Choosing the most efficient method is out of the scope of this work and

we adopt the simple weighting sum method to explore the tradeoff and to show the effec-

tiveness of the MOOP approach when compared to single objective approaches. In the

weighting sum method, the competing objective functions are linearly combined through

weighting coefficients that represent the preference/importance of each objective [24].

Accordingly, the MOOP is formulated as

min
x

α1 f1(x) + α2 f2(x) + ...+ αO fO(x)

subject to x ∈ S, (2.3)

where αo ≥ 0, o = 1, ..., O, are the tradeoff factors (weighting coefficients) that satisfy∑O
o=1 αo = 1. By changing the weighting parameters, the Pareto optimal set can be

obtained through solving the MOOP problem in (2.3).

2.3.2 Optimization Problem Formulation and Solution

—Optimization problem: The new proposed formulation of the bit and power allocation

problem that jointly minimizes the transmit power and maximizes the throughput can be
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written as

min
b,p

{
N∑
i=1

pi, −
N∑
i=1

bi

}
subject to BERav(b,p) ≤ BERth,

N∑
i=1

pi ≤ Pth,

bi ≤ bi,max, (2.4)

where the decision variables b = [b1, b2, ..., bN ]T and p = [p1, p2, ..., pN ]T are the allocated

bits and powers per each subcarrier, respectively. BERav and BERth are the average (over

the total number of subcarriers) and the threshold values of the BER, respectively. Pth

and bi,max are the threshold value of the total transmit power and the maximum allocated

bits per subcarrier, respectively. The minus sign associated with∑N
i=1 bi is added to reflect

the throughput maximization. The constraint on the total transmit power is considered

to meet the transmit power amplifier limitations and the constraint on the maximum

allocated bit per subcarrier is added as it is not practical for some wireless applications

to load a very high number of bits per subcarrier. BERav(b,p) is calculated as

BERav(b,p) =
∑N
i=1 bi BERi(b,p)∑N

i=1 bi
, (2.5)

where BERi is the BER per subcarrier i, i = 1, ..., N . An approximate expression for

the BER per subcarrier i in the case of M -ary quadrature amplitude modulation (QAM)

is given by2 [10, 16]

BERi ≈ 0.2 exp
(
−1.6 γi

pi
2bi − 1

)
, (2.6)

2This expression is tight within 1 dB for BER ≤ 10−3 [16].
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where γi is the channel-to-noise ratio for subcarrier i. As mentioned earlier, we adopt

the weighting sum method to solve the MOOP problem. Accordingly, the MOOP is

formulated as

OP1 : min
b,p

fMOOP(b,p) = α

up

N∑
i=1

pi −
1− α
ub

N∑
i=1

bi,

subject to
0.2 ∑N

i=1 bi exp
(
−1.6 γipi

2bi−1

)
∑N
i=1 bi

≤ BERth,

N∑
i=1

pi ≤ Pth,

bi ≤ bi,max, (2.7)

where α (0 < α < 1) is a constant whose value indicates the relative importance of one

objective function relative to the other (i.e., a higher value of α favors minimizing the

transmit power, whereas a lower value of α favors maximizing the throughput) and up

and ub are normalization factors used such that the two objectives are approximately

within the same range. As such, α and 1 − α reflect the true preferences about each

objective. We assume that the resource allocation entity of the OFDM system chooses

the proper value of α depending on the application and/or the surrounding environment.

Further, as the minimum value of each objective is zero, we choose up and ub to be equal

to the maximum value of each objective, i.e., Pth and Nbi,max, respectively, such that both

objectives are in the range of [0,1].

The MOOP problem in (2.7) is non-convex as the constraint on the average BER is

not convex for both p and b. Hence, solving the problem using any gradient-based or

numerical method can lead to a local optimum and not necessary to the global optimum

with very large computational complexity, depending on the initial starting point. One

way to overcome this difficulty is to use a gradient-based method and try many initial

starting points; then, we select the solution that achieves the lowest objective function
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value. However, this is complex and may not be of interest especially in practical appli-

cations. Another possible way to approach the problem in (2.7) is to adopt gradient-free

algorithms, e.g., genetic algorithms (GAs) where we start with an initial set of points

(population) and not with a single starting point, and, hence, it is less likely that GAs

get trapped in a local optimum [25].

—GA solution to the formulated problem: In GAs, a population of potential solutions,

termed as chromosomes/individuals, is evolved over successive generations using a set of

genetic operators called selection, crossover, and mutation. The selection operator selects

the relatively fit individuals, based on their fitness value, to be part of the reproduction

process of the new generation. In the reproduction process, new generations (children) are

created using crossover and mutation operators. In the crossover operator, new children

are created by blending genetic information between current individuals (i.e., parents) in

order to explore the search space. On the other hand, the mutation operator changes one

of more genes of the parents in order to maintain diversity and avoid premature conver-

gence. The reproduction process repeats until meeting a certain stopping/convergence

criteria [25]. It is worthy to mention that beside crossover and mutation operators, some

individuals from the current generation with best fitness function values (i.e., lowest as

the optimization problem in (2.7) is a minimization problem) are passed to the next

generation and they are called elite children [25].

In this paper, we adopt the real-coded GA proposed by Deep et al. in [26] in order to

solve the MOOP problem in (2.7). Most of the real-coded GAs round off the real value

of the decision variables to the nearest integer in order to meet the integer restriction of

the integer variables. The real-coded GA in [26] uses a truncation methods that ensures

randomness in the generated solutions and avoids the possibility that the same integer

value is generated when a real value lies between the same two consecutive integers.

The truncation method works as follows. If the decision variable bi is integer, then it is
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accepted. Otherwise, it is equal to either bbic or bbic + 1 with equal probability. This

truncation method increases the possibility to find the optimal solution [26].

We choose a tournament selection as it converges faster to the optimal solution even

with lower complexity when compared to other selection schemes [26,27]. In the tourna-

ment selection, a number of individuals are chosen randomly from a given population, the

best individual from this group is selected for further processing, and then the process

repeats. The selection of the best individual is done as follows: 1) a feasible solution with

the lowest objective function value is chosen when compared to other feasible solutions,

2) a feasible solution is chosen when compared to infeasible solutions, and 3) an infeasible

solution with the lowest constraint violation is chosen when compared to other infeasible

solutions. This can be defined mathematically as [27]

ffitness(b,p) =


fMOOP(b,p), for feasible (b,p),

fworst +∑C=N+2
c=1 |φc(b,p)|, for infeasible (b,p),

(2.8)

where ffitness(b,p) is the fitness function value, fworst is the objective function value of the

worst feasible solution in a given population, and φc(b,p) is the left hand side of the

inequality constraints in (2.7). As can be seen, the fitness function of feasible solutions

equals to their objective function value. On the other hand, for infeasible solutions, the

fitness function depends on the constraints violations as well as the current population,

i.e., the value of fworst. In case there were no feasible solutions for a given population,

fworst is set to 0.

We use the Laplace crossover operator due to its superiority over other crossover

techniques [26,28]. Laplace crossover generates two offsprings w(1)
k and w(2)

k from a pair of

parents z(1)
k and z(2)

k , k = 1, ..., K, where K is the size of the decision variables, as follows.

First, uniform random numbers νk and rk between 0 and 1 are generated. Based on the

Laplace inverse cumulative distribution function, a random number βk, k = 1, ..., K, that
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satisfies the Laplace distribution is generated as:

βk =


a− ξ loge(νk), rk ≤ 1

2 ,

a+ ξ loge(νk), rk >
1
2 ,

(2.9)

where a and ξ > 0 are the location and the scale parameters for the Laplace distribution

function [29]; these are chosen adaptively to distribute the children based on the spread

of the parents [28]. Finally, the children are generated as

w
(1)
k = z

(1)
k + βk|z(1)

k − z
(2)
k |,

w
(2)
k = z

(2)
k + βk|z(1)

k − z
(2)
k |. (2.10)

We use the power mutation operator that is superior when compared to the mutation

operators [26, 30]. A child is created in the vicinity of a parent solution through the

following steps. First, a random number s that follows the power-law distribution is

generated [29]. Then, the muted solution is calculated as

wk =


zk − s(zk − z(l)), t < r,

zk + s(z(u) − zk), t ≥ r,
(2.11)

where z(l) and z(u) are the lower and upper bounds on the decision variable zk, respectively,

r is uniformly distributed random number between 0 and 1, and t = zk−z(l)

z(u)−zk
.

The proposed GA algorithm to solve OP1 in (2.7) is outlined as follows:

Proposed Algorithm to Solve OP1
1: INPUT γi, BERth, up, ub, α, Pth, bi,max, population size, number of generations.
2: Create random population.
3: Check the stopping criteria (i.e., change in objective function value is less than a certain

threshold or maximum number of generations is reached). If satisfied, stop; otherwise,
proceed to next step.
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Proposed Algorithm to Solve OP1 (continued)
4: Create new population.

• Compute the fitness value for each member in the current population and select indi-
viduals, based on their fitness value, using a tournament selection.

• Select the elite individuals (i.e., members of lower fitness value) with a certain probability
and pass them to the next population.

• Apply the crossover operator to the selected parents from the old population in order
to produce children.

• Apply the power mutation operator to the selected parents from the old population in
order to produce muted children.

• Replace the current population with the produced children in order to form the next
generation.

5: Go to step 3.
6: OUTPUT b∗i and p∗i , i = 1, ..., N .

2.3.3 Approximate MOOP Problem

According to results in [31] and numerical results presented in Section 2.4, the constraint

on the BER per subcarrier is an acceptable substitute to the constraint on the average

BER. To avoid the computational complexity of the proposed algorithm to solve OP1 and

in order to obtain closed-form solutions, we consider the approximate problem of OP1,

where the constraint on the average BER is replaced with a constraint on the BER per

subcarrier. The new optimization problem is formulated as3

3The optimization problem with discrete constraints for the number of the allocated bits per subcarrier
is a mixed integer nonlinear programming problem that can be solved by the branch and bound algorithm
[32]. However, this will be significantly complex and not tractable for large number of subcarriers. In the
rest of the paper, we assume continuous values for the number of bits per subcarrier in order to obtain
a low complexity solution, and then discretize the number of allocated bits per subcarrier.
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min
b,p

{
N∑
i=1

pi, −
N∑
i=1

bi

}

subject to BERi(b,p) = 0.2 exp
(−1.6 γipi

2bi − 1

)
≤ BERth,i ,

N∑
i=1

pi ≤ Pth,

bi ≤ bi,max, i = 1, ..., N. (2.12)

The optimization problem in (2.12) is not convex due to the constraint on the BER

per subcarrier, and hence, the global optimality of the Pareto set of solutions is not guar-

anteed. An important remark that helps to resolve the non-convexity issue is that the

constraint on the BER per subcarrier, i.e., BERi(b,p) ≤ BERth,i , which is the source

of the non-convexity, is always active4 and it can be relaxed in order to obtain a convex

problem equivalent to the optimization problem in (2.12). We can prove that the con-

straint on the BER per subcarrier is always active by contradiction, as follows. Let us

assume that the optimal bit and power allocations (b∗i , p∗i ) exist at a value for the BER

per subcarrier that is not at the boundary, i.e., at BER∗th,i < BERth,i. In this case, a new

solution could be obtained at BERnew
th,i , BER∗th,i < BERnew

th,i ≤ BERth,i, where the power

could be decreased, i.e., pnew
i < p∗i or the rate can be increased, i.e., bnew

i > b∗i without

violating the BER constraint. Clearly, this results in a lower objective function value in

(2.12), and hence, the allocation of the bit and power (b∗i , p∗i ) that is at BER∗th,i < BERth,i

cannot be an optimal solution. This can be mathematically proved by applying the

Karush-Khun-Tucker (KKT) conditions to the problem in (2.12).

Since the constraint on the BER per subcarrier (the source of the non-convexity of
4An inequality constraints gc, c = 1, ..., C, is said to be active at a point x∗ if gc(x∗) = 0, and it is

said to be inactive at a point x∗ if gc(x∗) < 0.
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the problem in (2.12)) is always active, we can relate pi and bi from (2.6) as follows

pi = Γi
γi

(2bi − 1), (2.13)

where Γi = − ln(5BERth,i)
1.6 is the signal-to-noise ratio (SNR) gap that represents the dif-

ference between the maximum achieved rate and the practical achievable transmission

rate [15]. The BER constraint can be removed from the optimization problem in (2.12)

after substituting pi, i = 1, ..., N , from (2.13). Hence, we formulate a new optimization

problem OP2 as follows

OP2 : fMOOPapprox(b) = α

up

N∑
i=1

Γi
γi

(2bi − 1)− 1− α
ub

N∑
i=1

bi,

subject to G%(b) =


bi − bi,max ≤ 0, % = i = 1, ..., N,∑N
i=1

Γi
γi

(2bi − 1)− Pth ≤ 0, % = N + 1.
(2.14)

One can easily show that OP2 is a convex optimization problem, and hence, the

obtained Pareto optimal solution is guaranteed to be a global optimum. Applying the

method of Lagrangian multipliers, the inequality constraints in (2.14) are transformed

to equality constraints by adding non-negative slack variables, y2
%, % = 1, ..., N + 1 [33].

Hence, the constraints are rewritten as

G%(b,y) = G%(b) + y2
% = 0, % = 1, ..., N + 1, (2.15)

where y = [y2
1, ..., y

2
N+1]T is the vector of slack variables. The Lagrange function L is
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expressed as

L(b,y,λ) = fMOOPapprox(b) +
N+1∑
%=1

λ% G%(b,y),

= α

up

N∑
i=1

Γi
γi

(2bi − 1)− 1− α
ub

N∑
i=1

bi

+
N∑
i=1

λi [bi − bi,max + y2
i ],

+ λN+1
[ N∑
i=1

Γi
γi

(2bi − 1)− Pth + y2
N+1

]
, (2.16)

where λ = [λ1, ..., λN+1]T is the vector of the Lagrange multipliers. A stationary point

can be found when ∇L(b,y,λ) = 0, which yields

∂L
∂bi

= α

up
ln(2)Γi

γi
2bi − 1− α

ub
+ λi + ln(2)λN+1

Γi
γi

2bi = 0 (2.17a)

∂L
∂λi

= bi − bi,max + y2
i = 0, (2.17b)

∂L
∂λN+1

=
N∑
i=1

Γi
γi

(2bi − 1)− Pth + y2
N+1 = 0, (2.17c)

∂L
∂yi

= 2λiyi = 0, (2.17d)

∂L
∂yN+1

= 2λN+1yN+1 = 0. (2.17e)

It can be seen that (2.17a)–(2.17e) represent 3N + 2 equations in the 3N + 2 unknown

elements of the vectors b,y, and λ. Equation (2.17d) implies that either λi = 0 or yi = 0,

while (2.17e) implies that either λN+1 = 0 or yN+1 = 0. Accordingly, four possible cases

exist, as follows:

— Case I : Choosing λN+1 = 0 (yN+1 6= 0, i.e., inactive power constraint) and λi = 0
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(yi 6= 0, i.e., inactive maximum bit constraint) gives the optimal values of b∗i as

b∗i =
⌊

log2

( 1−α
ub

α
up

ln(2)
γi
Γi

)⌉
, (2.18)

and from (2.13), the optimal power allocation p∗i is given by

p∗i = Γi
γi

(
2

⌊
log2

( 1−α
ub

α
up ln(2)

γi
Γi

)⌉
− 1

)
. (2.19)

Since we consider M -ary QAM, bi should be greater than 2. From (2.18), to have bi ≥ 2,

the channel-to-noise ratio per subcarrier, γi, must satisfy the condition

γi ≥ γmin
th,i =

α
up

ln(2)
1−α
ub

Γi 22, i = 1, ..., N. (2.20)

— Case II : Choosing λN+1 = 0 (yN+1 6= 0, i.e., inactive power constraint) and yi = 0

(i.e., active maximum bit constraint) leads to the optimal bit allocation b∗i = bi,max if and

only if γi ≥ γmax
th,i =

α
up

ln(2)
1−α
ub

Γi 2bi,max , i = 1, ..., N (the proof is provided in Appendix A) and

p∗i is calculated according to (2.13). It is worthy to mention that limiting the allocated

bits to the maximum value bi,max, when γi ≥ γmax
th,i , reduces the transmit power on the

corresponding subcarriers, and, hence, the total transmit power decreases (i.e., the power

constraint is still inactive).

Given that γmax
th,i ≥ γmin

th,i , the optimal solution of cases I and II, in case of γi ≥ γmin
th,i , is

joined as

b∗i =
[⌊

log2

( 1−α
ub

α
up

ln(2)
γi
Γi

)⌉
, bi,max

]−
, (2.21)
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p∗i = Γi
γi

2

[⌊
log2

( 1−α
ub

α
up ln(2)

γi
Γi

)⌉
,bi,max

]−
− 1

 . (2.22)

— Case III : Choosing yN+1 = 0 (i.e., active power constraint) and λi = 0 (yi 6= 0, i.e.,

inactive maximum bit constraint) gives the optimal values of b∗i as

b∗i =

log2

( 1−α
ub

( α
up

+ λN+1) ln(2)
γi
Γi

) , (2.23)

where λN+1 is calculated to satisfy the active power constraint in (2.17c) (yN+1 = 0).

Hence, the value of λN+1 is found to be

λN+1 = ¯̄Na

1−α
ub

ln 2
1

pth +∑
i∈Na

Γi
γi

− α

up
, (2.24)

where ¯̄Na is the cardinality of the set of active subcarriers Na. Finally, the optimal bit b∗i

and power p∗i allocations in case of active power constraint is given as

b∗i =
⌊

log2

(Pth +∑
i∈Na

Γi
γi

¯̄Na

γi
Γi

)⌉
. (2.25)

p∗i = Γi
γi

2
⌊

log2

(
Pth+

∑
i∈Na

Γi
γi

¯̄Na

γi
Γi

)⌉
− 1

 . (2.26)

— Case IV : Choosing yN+1 = 0 (i.e., active power constraint) and yi = 0 (i.e., active

maximum bit constraint) leads to the optimal bit allocation b∗i = bi,max if and only if

γi ≥ γmax
th,i and p∗i is calculated according to (2.13). To find the bit and power allocation for

the rest of subcarriers, the set of active subcarriers Na is updated to exclude subcarriers

with b∗i = bi,max, and the Lagrangian multiplier λN+1 is calculated based on the new
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power budget Pth−
∑
imax p

∗
imax , where imax denotes subcarriers loaded with the maximum

allocated bits per subcarrier bi,max.

The optimal solution of case IV, in case of γmax
th,i ≥ γi ≥ γmin

th,i , is expressed as

b∗i =
⌊

log2

(Pth −
∑
imax p

∗
imax +∑

i∈Na
Γi
γi

¯̄Na

γi
Γi

)⌉
(2.27)

p∗i = Γi
γi

2
⌊

log2

(
Pth−

∑
imax

p∗
imax+

∑
im∈Na

Γi
γi

¯̄Na

γi
Γi

)⌉
− 1

 . (2.28)

The optimal solution of cases III and IV is joined as

b∗i =
⌊

log2

(Pth −
∑
imax p

∗
imax +∑

i∈Na
Γi
γi

¯̄Na

γi
Γi

)⌉
(2.29)

p∗i = Γi
γi

2
⌊

log2

(
Pth−

∑
imax

p∗
imax+

∑
im∈Na

Γi
γi

¯̄Na

γi
Γi

)⌉
− 1

 . (2.30)

where for γi ≥ γmin
th,i , imax denotes the subcarriers loaded with bi,max; otherwise, imax

includes no subcarriers.

The obtained solution (p∗,b∗) represents a global minimum as the KKT conditions [33]

are satisfied (see Appendix A for proof), and OP2 is convex.

The proposed algorithm to solve OP2 can be stated as follows:

Proposed Algorithm to Solve OP2
1: INPUT γi, BERth, up, ub, α, Pth, bi,max
2: for i = 1, ..., N do
3: if γi ≥ γmin

th,i then
4: b∗i and p∗i are given by (2.21) and (2.22), respectively.
5: else
6: Null the corresponding subcarrier i.
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Proposed Algorithm to solve OP2 (continued)
7: end if
8: end for
9: if

∑N
i=1 pi ≥ Pth then

10: For subcarriers with γi ≥ γmax
th,i , b∗i = bi,max and p∗i is calculated from (2.13).

11: For subcarriers with γi < γmax
th,i , b∗i and p∗i are given by (2.29) and (2.30), respectively.

12: end if
13: If the condition on the total transmit power is violated due to rounding, decrement the

number of bits on the subcarrier that has the largest ∆pi(bi) = pi(bi) − pi(bi − 1) until
satisfied.

14: OUTPUT b∗i and p∗i , i = 1, ..., N .

According to the MOOP problem analysis, the optimal solution belongs to one of the

four cases, case I to case IV. So, the proposed algorithm starts by assuming that the

optimal solution belongs to either case I or case II, where the optimal bit and power

allocations for both cases are given by (2.21) and (2.22), respectively. Based on this

assumption and if the power constraint is violated, the optimal bit allocation is given by

b∗i = bi,max and the optimal power is calculated according to (2.13) for subcarriers with

γi ≥ γmin
th,i . Otherwise, the optimal bit and power allocations are given by (2.29) and

(2.30), respectively. The purpose of step 13 is to guarantee that the total transmit power

constraint will not be violated due to rounding the allocated bits to the nearest integer.

If violated, the subcarrier corresponding to the largest power reduction when the number

of bits is decremented by 1 bit is chosen, and the number of bits is decreased by 1 bit on

that subcarrier. The process repeats until the total transmit power constraint is satisfied.

The computational complexity of the proposed algorithm to solve OP2 can be ana-

lyzed as follows. Steps 2 to 8 requires a complexity of O(N); steps 9 to 11 requires a

complexity of O(N2); and step 13 requires a computational complexity of O(N2). This

can be explained as follows: First, step 13 finds the subcarrier i with the maximum

∆pi(bi) = pi(bi) − pi(bi − 1) due to rounding, which is of complexity of O(N). Second,

step 13 decrements the allocated bits on i′ until the power constraint is satisfied. In the

worst case, this process will be repeated N times and hence, the computational complex-
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ity is of O(N) if all allocated bits are rounded up to the nearest integer. Hence, the worst

case computational complexity of the proposed algorithm to solve OP2 is calculated as

O(N) +O(N2) +O(N2) = O(N2).

2.4 Numerical Results

This section investigates the performance of the proposed algorithms, and compares their

performance with bit and power loading algorithms presented in the literature. The com-

putational complexity of the proposed algorithms is also compared to the other schemes.

2.4.1 Simulation Setup

We consider an OFDM system with N = 64 subcarriers and bandwidth of 1.25 MHz [34].

The average BER threshold BERth is set to 10−4 and the BER threshold per subcarrier,

BERth,i, i = 1, ..., N , is additionally set to 10−4. A Rayleigh fading channel with average

channel power gain of 1 is considered. Representative results are presented in this section,

which were obtained through Monte Carlo trials for 104 channel realizations. Unless

otherwise mentioned, bi,max = 6 and equal importance is considered for the transmit

power and the throughput objectives, i.e., α = 0.5. For GA, the population size is

set to 100 individuals, the maximum number of generations is 1500, and the change

in the objective function threshold is 10−12. The number of the elite children is set to

0.05 × min(max(10(2N), 40), 100) = 5 children [26], the crossover probability is set to

0.8, i.e., the number of crossover children is 0.8× (100− 5) = 76, and the number of the

mutation children is 100− 5− 76 = 19 children.
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Fig. 2.1: BER per subcarrier allocation of OP1 for random channel realizations at α = 0.5
and γav = 30 dB.

2.4.2 Performance of the Proposed Algorithms

Fig. 2.1 illustrates the BER per subcarrier resulting from the proposed algorithm to

solve OP1 using GA for different channel realizations for γav = 30 dB5 and α = 0.5.

As can be seen, the resulting BER per subcarrier fluctuates around 10−4, and hence, the

approximation optimization problem OP2 is an acceptable reformulation for OP1.

Fig. 2.2 depicts the average throughput of OP1 and OP2 as a function of γav, for

different values of Pth, bi,max and α = 0.5. As expected, for bothOP1 andOP2, increasing

the value of γav increases the average throughput. Additionally, the achieved throughput

is higher at Pth = 100 mW when compared to the throughput achieved at Pth = 40 mW.

For both bi,max = 6 and ∞, the same throughput is achieved for lower γav values; this is

because for lower γav, the proposed algorithms tend to allocate a number of bits lower than

bi,max = 6. However, for high γav, i.e., when the proposed algorithms allocate a higher
5The average channel gain γav is calculated by averaging the instantaneous channel gain values per

subcarrier over the total number of subcarriers and the total number of channel realizations, respectively.
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Fig. 2.2: Average throughput of OP1 and OP2 as a function of γav at α = 0.5.

number of bits, the throughput reduces for the constraint of bi,max = 6. The slightly

reduced throughput of OP1 compared to OP2 is due to the fact that the average value

of the BER for OP1 is less than 10−4 (the average BER is 10−4, 9.96× 10−5, 9.01× 10−5,

8.46×10−5, 8.96×10−5, and 9.42×10−5 for γav = 5, 10, 15, 20, 25, and 30 dB, respectively)

while the average value of the BER for OP2 is always equal to 10−4. The improvements

of the average BER come at the expense of reduced throughput and increased transmit

power (as shown in Fig. 2.3).

In Fig. 2.3, the average power of OP1 and OP2 is plotted as a function of γav, for

different values of Pth, bi,max and α = 0.5. Similar to the discussion of Fig. 2.2, the

average power increases with γav. Additionally, the average power of OP1 is slightly

higher when compared to OP2; this is because the average BER of OP1 is less than 10−4

and the average BER of OP2 is equal to 10−4. For both OP1 and OP2 at bi,max = 6,

it is worthy to mention that the average power drops at higher values of γav. This can

be explained as follows: while higher average channel gains γav imply an increase in the
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Fig. 2.3: Average power of OP1 and OP2 as a function of γav at α = 0.5.

throughput, this is actually limited by the constraint of bi,max = 6 and it will not increase

beyond certain values. Hence, the improvements of the channel gain γav translate into a

reduction in the transmit power. As the performance of the proposed algorithm to solve

OP1 is comparable to its counterpart of OP2, in the rest of this section we focus our

discussion on the performance of OP2.

Figs. 2.4 and 2.5 show the average throughput and power of OP2, respectively, as

a function of the power threshold Pth, for different values of γav and bi,max, and with

α = 0.5. As can be seen, the average throughput and power increase as Pth increases, and

saturates for higher values of Pth. This can be explained as follows. For lower values of

Pth, the total transmit power, and hence, the throughput are restricted by this threshold

value, while increasing Pth results in a corresponding increase in both the throughput and

total transmit power. For higher values of Pth, the total transmit power is always less

than the threshold value, and thus, it is as if the constraint on the total transmit power

is actually inactive/relaxed. In this case, the proposed algorithm essentially minimizes
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Fig. 2.5: Average power of OP2 as a function of Pth at α = 0.5.

the transmit power by keeping it constant; consequently, the average throughput remains

constant. At γav = 10 and 20 dB, the average throughput and power exhibit the same

performance for both bi,max = 6 and ∞. This is as at low γav, the allocated bits are lower
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Fig. 2.6: Average throughput of OP2 as a function of γav at Pth = 100 mW.

than the maximum value bi,max = 6, and hence, it is as if the maximum bit constraint is

relaxed. However, for γav = 30 dB the maximum allocated bits are limited by bi,max = 6

and the improvement in the average channel gain γav translates into a reduction in the

average transmit power, and, thus, throughput.

The effect of α on the average throughput and power of OP2 is depicted in Figs.

2.6 and 2.7, respectively, for Pth = 100 mW. One can see that increasing the value of

α, decreases the average throughput and power. This can be explained as follows. By

increasing α, more weight is given to the transmit power minimization, whereas less weight

is given to the throughput maximization according to the problem formulation in (2.14).

As discussed earlier, the throughput is limited by the constraints on the maximum allowed

bits per subcarrier, and hence, the power drops at higher values of γav. It is worthy to

mention that for lower values of α = 0.25 and for bi,max =∞, the average power is limited

by Pth = 100 mW.

Figs. 2.8 and 2.9 characterize the gap between the performance of the proposed
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Fig. 2.8: Effect of perfect coding on the average throughput of OP2.

algorithm to solve OP2 and its counterpart of the coded OFDM system at γav = 30

dB. We assume ideal coding scheme, i.e., we set Γi = 1 (i.e., maximum possible rate is

achieved), and the obtained performance in this case represents an upper bound of the
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Fig. 2.9: Effect of perfect coding on the average power of OP2.

performance when using any other practical coding scheme. For bi,max =∞, introducing

coding improves the achievable rate considerably at the same power levels. However, for

bi,max = 6 the throughput cannot increase beyond this constraint (see Fig. 2.8), and

hence, the transmit power reduces considerably in the coded case (see Fig. 2.9).

2.4.3 Performance and Complexity Comparison

In Fig. 2.10, the throughput achieved by the proposed algorithms to solve OP1 and

OP2 is compared to that obtained by Wyglinski’s algorithm [5] for the same operating

conditions. To make a fair comparison, the uniform power loading used by the loading

scheme in [5] is computed by dividing the average transmit power allocated by the pro-

posed algorithms to the total number of subcarriers. As can be seen from Fig. 2.10, the

proposed algorithms provide a higher throughput than the scheme in [5] within the low

to average SNR range. This result demonstrates that optimal loading of transmit power

is crucial for low power budgets.
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Fig. 2.10: Average throughput as a function of γav for the proposed algorithms andWyglin-
ski’s algorithm [5], at Pth = 100 mW and bi,max = 6.
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Fig. 2.11: Average power as a function of γav for the proposed algorithms and Liu’s
algorithm [10], at bi,max =∞.
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Fig. 2.11 compares the average transmit power obtained by the proposed algorithms

to solve OP1 and OP2 with the optimum power allocation of Liu et al. [10]. To ensure

that the same operating conditions are considered, the fixed bit allocation per subcarrier

for Liu’s algorithm is set by dividing the average throughput of the proposed algorithms to

the total number of subcarriers. As can be seen from Fig. 2.11, the proposed algorithms

assign significantly less average power than both schemes in [10] to achieve the same

average BER and average throughput.

Based on the algorithm description in Section 2.3, the computational complexity of

the proposed algorithm to solve OP2 is of O(N) for inactive power constraint (which is

similar to that of Liu’s algorithm) and of O(N2) for active power constraint (which is

similar to that of Wyglinski’s algorithm).

2.5 Conclusion

In this paper, we proposed a new formulation for the bit and power allocation prob-

lem for OFDM systems. This is a MOOP formulation that simultaneously maximizes

the throughput and minimizes the transmit power subject to QoS, total transmit power,

and maximum allocated bits per subcarrier constraints. The formulated MOOP was

non-convex and solved by using a GA. An approximate convex optimization problem is

additionally introduced, with the global optimality guaranteed for the Pareto optimal

set. Simulation results showed that the proposed algorithms outperform various alloca-

tion schemes in the literature, that separately maximize the throughput or minimize the

transmit power, with similar computational effort.
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Appendix A

Proof of the Optimality of (b∗,p∗) of OP2

The KKT conditions are written as [33]

∂FOP2

∂bi
+

N+1∑
%=1

λ%
∂G%

∂bi
= 0, (2.31a)

G%λ% = 0, (2.31b)

G% ≤ 0, (2.31c)

λ% ≥ 0, (2.31d)

i = 1, ..., N and % = 1, ..., N + 1. One can show that these conditions are satisfied, as

sketched in the proof below.

• Proof of (2.31a): one can find that (2.31a) are satisfied from (2.17a) directly.

• Proof of (2.31b):

1. Either λ% = 0, % = 1, ..., N + 1 (as in case I ); hence, G%λ% = 0.

2. Either y% = 0, % = 1, ..., N + 1, so G% = G% = 0 from (2.15) (as in case IV );

hence, G%λ% = 0.

3. Either: λ%x = 0, %x ∈ {% = 1, ..., N + 1} and y%y = 0, %y ∈ {% = 1, ..., N + 1},

%x 6= %y (as in cases II—III ), hence, G%y = G%y from (2.15)). Thus, G%λ% = 0,

% = 1, ..., N + 1.

• Proof of (2.31c): adding non-negative slack variables in (2.15) guarantees that G% ≤

0; hence, (2.31c) is always satisfied.

• Proof of (2.31d):
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1. In case II, from (2.17b) bi = bi,max and from (2.17a) λi = 1−α
ub
− α
up

ln(2)− ln(5BERth,i)
1.6 γi 2bi,max .

To satisfy (2.31d), λi should be greater than or equal to 0, i.e., 1−α
ub
− α

up
ln(2)

− ln(5BERth,i)
1.6 γi 2bi,max ≥ 0 which leads to γi ≥ γmax

th,i = 1
1.6

α
up

ln(2)
1−α
ub

(− ln(5BERth,i))2bi,max ,

i = 1, ..., N . It is worthy to note that λN+1 = 0 by definition of case II, and,

hence, (2.31d) is always satisfied.

2. In case IV, from (2.17b) bi = bi,max and λi = 1−α
ub
−( α

up
+λN+1) ln(2)− ln(5BERth,i)

1.6 γi 2bi,max

from (2.17a). In order to satisfy (2.31d), λi should be greater than or equal

to 0, i.e., 1−α
ub
− ( α

up
+ λN+1) ln(2)− ln(5BERth,i)

1.6 γi 2bi,max ≥ 0. Hence, λN+1 can be

found as λN+1 ≤
1−α
ub

ln(2)
1.6 γi

(− ln(5BERth,i))
2−bi,max − α

up
. From (2.31d) λN+1 ≥ 0, and,

thus,
1−α
ub

ln(2)
1.6 γi

(− ln(5BERth,i))
2−bi,max − α

up
≥ λN+1 ≥ 0 which leads to γi ≥ γmax

th,i =
1

1.6
( α
up

) ln(2)
1−α
ub

(− ln(5BERth,i)) 2bi,max , i = 1, ..., N , and, hence, (2.31d) is always

satisfied.

As can be seen, the KKT conditions are satisfied; thus, based on this result and the

convexity of OP2, the solution (b∗,p∗) represents a global optimum point. �
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Chapter 3

Joint Optimization of Bit and Power

Loading for Multicarrier Systems

3.1 Abstract

In this letter, a novel low complexity bit and power loading algorithm is formulated

for multicarrier communication systems. The proposed algorithm jointly maximizes the

throughput and minimizes the transmit power through a weighting coefficient α, while

meeting constraints on the target bit error rate (BER) per subcarrier and on the total

transmit power. The optimization problem is solved by the Lagrangian multiplier method

if the initial α causes the transmit power not to violate the power constraint; otherwise, a

bisection search is used to find the appropriate α. Closed-form expressions are derived for

the close-to-optimal bit and power allocations per subcarrier, average throughput, and

average transmit power. Simulation results illustrate the performance of the proposed

algorithm and demonstrate its superiority with respect to existing allocation algorithms.

Furthermore, the results show that the performance of the proposed algorithm approaches

that of the exhaustive search for the discrete optimal allocations.
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3.2 Introduction

Multicarrier modulation is recognized as a robust and efficient transmission technique,

as evidenced by its consideration for diverse communication systems and adoption by

several wireless standards [1]. The performance of multicarrier communication systems

can be significantly improved by dynamically adapting the transmission parameters, such

as power, constellation size, symbol rate, coding rate/scheme, or any combination of these,

according to the channel quality or the wireless standard specifications [2–5].

To date, most of the research literature has focused on the single objective of either

maximizing the throughput or minimizing the transmit power separately (see, e.g., [2–5]

and references therein). In [2], Wyglinski et al. proposed an incremental bit loading al-

gorithm with uniform power in order to maximize the throughput while guaranteeing a

target BER. Liu et al. [3] proposed a power loading algorithm with uniform bit loading

that aims to minimize the transmit power while guaranteeing a target BER. In [4], Mah-

mood and Belfiore proposed an efficient greedy bit allocation algorithm that minimizes

the transmit power subject to fixed throughput and BER per subcarrier constraints.

In emerging wireless communication systems, various requirements are needed. For

example, maximizing the throughput is favoured if sufficient guard bands exist to separate

users, while minimizing the transmit power is prioritized when operating in interference-

prone shared spectrum environments, to prolong the battery life time of battery-operated

nodes, as well as to support environmentally-friendly transmission behaviors. This mo-

tivates us to formulate a multiobjective optimization (MOOP) problem that optimizes

the conflicting and incommensurable throughput and power objectives. According to the

MOOP principle, there is no solution that improves one of the objectives without de-

teriorating others. Therefore, MOOP produces a set of optimal solutions and it is the

responsibility of the resource allocation entity to choose the most preferred optimal so-

lution depending on its preference [6]. A well known approach to solve MOOP problems
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is to linearly combine the competing objective functions into a single objective function,

through weighting coefficients that reflect the required preferences [6]. These preferences

can be prescribed and fixed during the solution process (as in posteriori and priori meth-

ods) or can be changed during the solution process (interactive methods) [6]. In this

paper, we adopt an interactive approach in order to obtain a low complexity solution.

We propose a low complexity algorithm that jointly maximizes the throughput and

minimizes the total transmit power, subject to constraints on the BER per subcarrier

and the total transmit power. Limiting the total transmit power is crucial for a variety of

reasons, e.g., to reflect the transmitter’s power amplifier limitations, to satisfy regulatory

maximum power limits, and to limit interference/ encourage frequency reuse. Moreover,

including the total subcarrier power in the objective function is especially desirable, as it

minimizes the transmit power when the power constraint is inactive. Closed-form expres-

sions are derived for the close-to-optimal bit and power allocations, average throughput,

and average transmit power. Simulation results show that the proposed algorithm out-

performs existing bit and power loading schemes in the literature, while requiring similar

or reduced computational effort. The results also indicate that the proposed algorithm’s

performance approaches that of the exhaustive search for the optimal discrete allocations,

with significantly reduced computational effort.

3.3 Proposed Link Adaptation Scheme

3.3.1 Optimization Problem Formulation

A multicarrier communication system decomposes the signal bandwidth into a set of N

orthogonal narrowband subcarriers of equal bandwidth. Each subcarrier i transmits bi

bits using power pi, i = 1, ..., N . Following the common practice in the literature, a delay-

and error-free feedback channel is assumed to exist between the transmitter and receiver
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for reporting the channel state information [3–5].

In order to maximize the throughput and minimize the transmit power subject to

BER and total transmit power constraints, the optimization problem is formulated as

Maximize
bi

N∑
i=1

bi and Minimize
pi

N∑
i=1

pi,

subject to BERi ≤ BERth,i,
N∑
i=1

pi ≤ Pth, i = 1, ..., N, (3.1)

where BERi and BERth,i are the BER and threshold value of BER per subcarrier1 i, i

= 1, ..., N , respectively, and Pth is the total transmit power threshold. An approximate

expression for the BER per subcarrier i for M -ary QAM is given by [3]

BERi ≈ 0.2 exp
(
−1.6 pi γi

2bi − 1

)
, (3.2)

where γi = |Hi|2
σ2
n

is the channel-to-noise ratio for subcarrier i, Hi is the channel gain of

subcarrier i, and σ2
n is the variance of the additive white Gaussian noise (AWGN). The

multi-objective optimization function in (3.1) can be rewritten as a linear combination of

multiple objective functions as follows

Minimize
pi,bi

f(p,b) = α
N∑
i=1

pi − (1− α)
N∑
i=1

bi,

subject to g%(pi, bi) =


0.2 exp

(
−1.6 γipi

2bi−1

)
− BERth,i ≤ 0, % = 1, ..., N,∑N

i=1 pi ≤ Pth, % = N + 1,
(3.3)

where α (0 < α < 1) is a weighting coefficient which indicates the rate at which the

multicarrier system is willing to trade off the values of the objective functions in order
1The constraint on the BER per subcarrier is a suitable formulation that results in similar BER char-

acteristics compared to an average BER constraint, especially at high signal-to-noise ratios (SNRs) [5].
Further, it significantly reduces the computational complexity by yielding closed-form expressions.
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to obtain a low complexity solution [6] (i.e., a higher value of α favors minimizing the

transmit power, whereas a lower value of α favors maximizing the throughput). p =

[p1, ..., pN ]T and b = [b1, ..., bN ]T are the N -dimensional power and bit distribution vectors,

respectively, with [.]T denoting the transpose operation.

3.3.2 Bit and Power Allocations

The optimization problem in (3.3) can be solved numerically; however, this is compu-

tationally complex. A low complexity solution can be obtained by relaxing the power

constraint in (3.3), i.e., % 6= N + 1, and then applying the method of Lagrange multi-

pliers. Accordingly, the inequality constraints are transformed to equality constraints by

adding non-negative slack variables, y2
i , % = i = 1, ..., N [7]. Hence, the constraints are

given as

Gi(p,b,y) = gi(p,b) + y2
i = 0, i = 1, ..., N, (3.4)

where y = [y2
1, ..., y

2
N ]T is the vector of slack variables, and the Lagrange function L is

expressed as

L(p,b,y,λ) = f(p,b) +
N∑
i=1

λi Gi(p,b,y),

= α
N∑
i=1

pi − (1− α)
N∑
i=1

bi

+
N∑
i=1

λi

0.2 exp
(−1.6 γipi

2bi − 1

)
− BERth,i + y2

i

, (3.5)
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where λ = [λ1, ..., λN ]T is the vector of Lagrange multipliers. A stationary point is found

when ∇L(p,b,y,λ) = 0 (∇ denotes the gradient), which yields

∂L
∂pi

= α− 0.2 λi
1.6 γi

2bi − 1 exp
(−1.6 γipi

2bi − 1

)
= 0, (3.6)

∂L
∂bi

= − (1− α) + 0.2 ln(2) λi
1.6 γipi2bi
(2bi − 1)2 exp

(−1.6 γipi
2bi − 1

)
= 0, (3.7)

∂L
∂λi

= 0.2 exp
(−1.6 γipi

2bi − 1

)
− BERth,i + y2

i = 0, (3.8)

∂L
∂yi

= 2λiyi = 0. (3.9)

It can be seen that (3.6) to (3.9) represent 4N equations in the 4N unknown components

of the vectors p,b,y, and λ. By solving (3.6) to (3.9), one obtains the solution p∗,b∗.

Equation (3.9) implies that either λi = 0 or yi = 0; hence, two possible cases exist and

we are going to investigate each case independently.

— Case 1 : Setting λi = 0 in (3.6) to (3.9) results in an underdetermined system of N

equations in 3N unknowns, and, hence, no unique solution can be reached.

— Case 2 : Setting yi = 0 in (3.6) to (3.9), we can relate pi and bi from (3.6) and (3.7)

as follows

pi = 1− α
α ln(2)(1− 2−bi), (3.10)

with pi ≥ 0 if and only if bi ≥ 0. By substituting (3.10) into (3.8), one obtains the

solution

b∗i = 1
log(2) log

− 1− α
α ln(2)

1.6 γi
ln(5 BERth,i)

. (3.11)
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Consequently, from (3.10) one gets

p∗i = 1− α
α ln(2)

1−
(
− 1− α
α ln(2)

1.6 γi
ln(5 BERth,i)

)−1
. (3.12)

Since we consider M -ary QAM, bi should be greater than 2. From (3.11), to have bi ≥ 2,

γi must satisfy the condition

γi ≥ γmin
th,i = 4

1.6
α ln(2)
1− α (− ln(5BERth,i)), i = 1, ..., N. (3.13)

The relaxed optimization problem is not convex and, hence, the Karush-Kuhn-Tucker

(KKT) conditions do not guarantee that (p∗,b∗) represents a global optimum [7]; the

proof of the KKT conditions is not provided due to the space limitations. To characterize

the gap to the global optimum solution, we compare the obtained local optimum results

to the global optimum results obtained through the exhaustive search in the next section.

If the total transmit power∑N
i=1 pi is below Pth, then the final bit and power allocations

are reached. On the other hand, if the transmit power exceeds Pth, the algorithm adopts

the interactive approach and overrides the initial value of α to meet the power constraint.

This is achieved by giving more weight to the transmit power minimization in (3.3), i.e.,

by increasing α. The lowest α∗ that satisfies the constraint, i.e., α∗ that results in the

highest total power which is lower than Pth, is found through the bisection search2 (please

note that lower values of α produce lower values of the objective function in (3.3)). The

proposed algorithm can be formally stated as follows:
2This is true as the total transmit power calculated from (3.12) is a decreasing function of α. The

proof is not provided due to the space limitations.
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Proposed Algorithm
1: INPUT The AWGN variance (σ2

n), channel gain per subcarrier i (Hi), target BER per
subcarrier i (BERth,i), initial weighting parameter α, and tolerance ε.

2: for i = 1, ..., N do
3: if γi ≥ γmin

th,i = − 4
1.6

α ln(2)
1−α ln(5 BERth,i) then

4: - b∗i and p∗i are given by (3.11) and (3.12), respectively.
5: - b∗i,final ← Round b∗i to the nearest integer.
6: - p∗i,final ← Recalculate p∗i according to (3.2).
7: else
8: Null the corresponding subcarrier i.
9: end if
10: end for
11: while

∑N
i=1 p

∗
i,final − Pth > ε do

12: - Set αL = α and αU = 1.
13: - Set α∗ = (αL + αU )/2.
14: - Repeat steps: 2 to 10.
15: if

∑N
i=1 p

∗
i,final < Pth then

16: - Set αU = α∗, then α∗ = (αL + αU )/2.
17: - Repeat steps: 2 to 10.
18: else
19: - Set αL = α∗, then α∗ = (αL + αU )/2.
20: - Repeat steps: 2 to 10.
21: end if
22: end while
23: OUTPUT b∗i,final and p∗i,final, i = 1, ..., N .
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3.3.3 Analytical Expressions of Average Throughput and Trans-

mit Power

When the initial value of α results in an inactive power constraint, the closed-form ex-

pressions for the average throughput and transmit power can be found by averaging the

bit and power allocations given by (3.11) and (3.12), respectively, over γi. In such a case,

the average throughput is expressed as

Throughputav =
N∑
i=1

E{bi(γi)}

=
N∑
i=1

∫ ∞
γmin
th,i

bi(γi)
[
νexp(−νγi)

]
dγi, (3.14)

where νexp(−νγi) is the exponential distribution of γi with mean 1
ν
, given that the channel

gain Hi has a Rayleigh distribution. The integration in (3.14) is solved by parts yielding

Throughputav =
N∑
i=1

1
log(2)

log(4) exp(−νγmin
th,i )−

Ei(−νγmin
th,i )

ln(10)

, (3.15)

where Ei(−z) = −
∫∞
z

e−t
t
dt, z > 0 is the exponential integral function. Similarly, the

average transmit power is given by

Powerav =
N∑
i=1

1− α
α ln(2)

exp(−νγmin
th,i ) +

ν γmin
th,i

4 Ei(−νγmin
th,i )

. (3.16)

3.4 Simulation Results

This section investigates the performance of the proposed algorithm, and compares its

performance with bit and power loading algorithms presented in the literature, as well as

with the exhaustive search for the discrete global optimal allocations. The computational

complexity of the proposed algorithm is also compared to the other schemes.
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3.4.1 Simulation Setup

As an example of a multicarrier system, we consider orthogonal frequency division multi-

plexing (OFDM) withN = 128 subcarriers. Without loss of generality, the BER constraint

per subcarrier, BERth,i, is assumed to be the same for all subcarriers and set to 10−4. A

Rayleigh fading environment with average channel power gain E{|Hi|2} = 1 is considered.

Representative results are presented, which were obtained through Monte Carlo trials for

104 channel realizations with ε = 10−9 mW and initial α = 0.5. The transmit power ob-

jective function is scaled during simulations so that it is approximately within the same

range as the throughput [6]. For convenience, presented numerical results are displayed

in the original scales.

3.4.2 Performance of the Proposed Algorithm

Fig. 3.1 depicts the average throughput and transmit power as a function of the average

SNR3, with and without considering the total power constraint. In the latter case, the

average throughput and transmit power, obtained by averaging (3.11) and (3.12), respec-

tively, over the total number of channel realizations through Monte Carlo simulations,

show an excellent match to their counterparts in (3.15) and (3.16), respectively. Further,

for an average SNR ≤ 24 dB, one finds that both the average throughput and transmit

power increase as the SNR increases, whereas for an average SNR ≥ 24 dB, the transmit

power saturates while the throughput continues to increase. This observation can be ex-

plained as follows. The relation between bi and pi in (3.10) implies that increasing the

number of bits at the low range of bi (that exists at low average SNR values) occurs at

the expense of additional transmit power, while increasing the number of bits at the high

range of bi (that exists at high average SNR values) occurs at negligible increase in the
3The average SNR is calculated by averaging the instantaneous SNR values per subcarrier over the

total number of subcarriers and the total number of channel realizations, respectively.
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Fig. 3.1: Average throughput and average transmit power as a function of average SNR,
with and without a power constraint.

transmit power. Accordingly, for lower values of the average SNR, increasing the average

throughput is accompanied by a corresponding increase in the transmit power. On the

other hand, for higher values of the average SNR, the average transmit power saturates

and the average throughput is increased. By considering a total power constraint, Pth =

0.1 mW, at lower SNRs, when the total transmit power is below the threshold, the aver-

age transmit power and throughput are similar to their respective values for the no power

constraint case. As the SNR increases, the transmit power reaches the power threshold

and the average throughput is reduced accordingly.

Fig. 3.2 compares the objective function achieved with the proposed algorithm and

the exhaustive search that finds the discretized global optimal allocation for the problem

in (3.3). Results are presented for Pth = 5 µW and N = 4, 6, and 8; a small number

of subcarriers is chosen, such that the exhaustive search is feasible. As can be seen, the

proposed algorithm approaches the optimal results of the exhaustive search, and, hence,
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Fig. 3.2: Objective function for the proposed algorithm and the exhaustive search when
N = 4, 6, and 8.

provides a close-to-optimal solution.

3.4.3 Performance Comparison with Algorithms in the Litera-

ture

In Fig. 3.3, the throughput achieved by the proposed algorithm is compared to that ob-

tained by Wyglinski’s algorithm [2] for the same operating conditions, with and without

considering the total power constraint. For a fair comparison, the uniform power alloca-

tion used by the allocation scheme in [2] is computed by dividing the average transmit

power allocated by our algorithm by the total number of subcarriers. As shown in Fig. 3.3,

the proposed algorithm provides a significantly higher throughput than the scheme in [2]

for low average SNRs. This result demonstrates that optimal allocation of transmit power

is crucial for low power budgets.

Fig. 3.4 compares the average transmit power obtained by the proposed algorithm,
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Fig. 3.3: Average throughput as a function of average SNR for the proposed algorithm
and Wyglinski’s algorithm in [2].

in the case of no power constraint, with the optimum power allocation of Liu et al. [3]

that assumes unequal BER (U-BER) per subcarrier, a variation called E-BER [3] that

assumes an equal BER per subcarrier, and the algorithm of Mahmood and Belfiore [4].

After matching the operating conditions, one can see that the proposed allocation scheme

assigns less average power than the schemes in [3] and [4] to achieve the same average

BER and throughput. The different results between [3] and [4] (while both guarantee

the same fixed throughput) are mainly because the algorithms in [3] allocate the same

number of bits per subcarrier, while the algorithm in [4] allocates a different number of

bits per subcarrier, which is intuitively more efficient.

The improved performance of the proposed joint bit and power allocation algorithm

does not come at the cost of additional complexity. Its computational complexity is of

O(N) when the initial value of α results in an inactive power constraint, which is similar

to that of Liu’s algorithm. Otherwise, it is of O(N log(N)), which is lower than that of
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Fig. 3.4: Average transmit power as a function of average throughput for the proposed
algorithm and the algorithms in [3] and [4].

Wyglinski’s O(N2) algorithm and significantly lower than O(N !) of the exhaustive search.

3.5 Conclusion

In this letter, we proposed a novel algorithm that jointly maximizes the throughput and

minimizes the transmit power given constraints on the BER per subcarrier and the total

transmit power. Closed-form expressions were derived for the close-to-optimal bit and

power allocations per subcarrier, average throughput, and average transmit power. Simu-

lation results demonstrated that the proposed algorithm outperforms different allocation

schemes that separately maximizes the throughput or minimizes the transmit power, un-

der the same operating conditions, while requiring similar or reduced computational effort.

Additionally, it was shown that its performance approaches that of the exhaustive search

with significantly lower complexity.
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Chapter 4

A Multiobjective Optimization

Approach for Optimal Link

Adaptation of OFDM-based

Cognitive Radio Systems with

Imperfect Spectrum Sensing

4.1 Abstract

This paper adopts a multiobjective optimization (MOOP) approach to investigate the

optimal link adaptation problem of orthogonal frequency division multiplexing (OFDM)-

based cognitive radio (CR) systems, where secondary users (SUs) can opportunistically

access the spectrum of primary users (PUs). For such a scenario, we solve the problem

of jointly maximizing the CR system throughput and minimizing its transmit power,

subject to constraints on both SU and PUs. The optimization problem imposes predefined
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interference thresholds for the PUs, guarantees the SU quality of service in terms of a

maximum bit-error-rate (BER), and satisfies a transmit power budget and a maximum

number of allocated bits per subcarrier. Unlike most of the work in the literature that

considers perfect SU spectrum sensing capabilities, the problem formulation takes into

account errors due to imperfect sensing of the PUs bands. Closed-form expressions are

obtained for the optimal bit and power allocations per SU subcarrier. Simulation results

illustrate the performance of the proposed algorithm and demonstrate the superiority of

the MOOP approach when compared to single optimization approaches presented in the

literature, without additional complexity. Furthermore, results show that the interference

thresholds at the PUs receivers can be severely exceeded due to the perfect spectrum

sensing assumption or due to partial channel information on links between the SU and

the PUs receivers. Additionally, the results show that the performance of the proposed

algorithm approaches that of an exhaustive search for the discrete optimal allocations

with a significantly reduced computational effort.

4.2 Introduction

The wireless radio spectrum has become a scarce resource due to the ceaseless demands

for spectrum by new applications and services. However, this spectrum scarcity happens

while most of the allocated spectrum is under-utilized, as reported by many jurisdic-

tions [1]. This paradox occurs due to the inefficiency of the traditional static spectrum

allocation policies. Cognitive radio (CR) [2] provides a solution to the spectrum utiliza-

tion inefficiency by allowing unlicensed/secondary users (SUs) to opportunistically access

spectrum holes in licensed/primary users (PUs) frequency bands/time slots under the

condition that no harmful interference occurs to PUs. Orthogonal frequency division

multiplexing (OFDM) is recognized as an attractive modulation technique for CR due
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to its spectrum shaping flexibility, adaptivity in allocating vacant radio resources, and

capability in monitoring the spectral activities of PUs [3–5]. Link adaptation for OFDM-

based CR systems is the terminology used to describe techniques that improve the system

performance by dynamically changing various transmission parameters, e.g., the number

of allocated bits and power per subcarrier, based on the quality of the wireless link and

the imposed PU interference constraints [6–18].

Generally speaking, the interference introduced to the PUs bands in OFDM-based CR

networks can be classified as: 1) mutual interference (co-channel interference (CCI) and

adjacent channel interference (ACI)) between the SU and PUs due to non-orthogonality

of their respective transmissions [6–13] and 2) interference due to the SU’s imperfect

spectrum sensing capabilities [13–18]. Spectrum sensing is not fully reliable due to the SU

hardware limitations and the variable channel conditions. Therefore, the SU may identify

certain PUs bands as occupied when they are truly vacant. This results in the sensing

error known as a false-alarm. On the other hand, if the SU identifies certain PUs bands

to be vacant while they are truly occupied, this leads to the sensing error known as a mis-

detection. The probability of mis-detection increases the interference to the undetected

PUs, while the probability of false-alarm reduces the transmission opportunities of SUs.

To date, most of the research literature has focused on the single objective function

of maximizing the SU capacity/throughput with constraints on the SU total transmit

power and the interference introduced to existing PUs, while less attention has been

given to the effects of the SU’s imperfect sensing capabilities or to guarantee a certain

SU bit error rate (BER) [6–18]. For example, Kang et al., in [6], studied the problem

of optimal power allocation to achieve the ergodic, delay-sensitive, and outage capacities

of a SU under a constrained average/peak SU transmit power and interference to the

PUs, with no interference from the PUs to the SU taken into consideration. In [7],

Zhang and Leung proposed a low complexity suboptimal algorithm for an OFDM-based
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CR system in which SUs may access both nonactive and active PU frequency bands, as

long as the total CCI and ACI are within acceptable limits. Attar et al. [8] proposed

an algorithm that maximizes the throughput of both SUs and PUs under constraints

on the experienced interference by each user. Bansal et al. [9] investigated the optimal

power allocation problem in CR networks to maximize the SU downlink transmission

capacity under a constraint on the instantaneous interference to PUs. The proposed

algorithm was complex and several suboptimal algorithms were developed to reduce the

computational complexity. In [10], Hasan et al. presented a solution to maximize the

SU capacity while taking into account the availability of subcarriers, i.e., the activity

of PUs in the licensed bands, and the interference leakage to PUs. Zhao and Kwak [11]

maximized the throughput of the SU while keeping the interference to PUs below a certain

threshold. A low-complexity iterative power loading algorithm and a suboptimal iterative

bit loading algorithm were proposed to solve the optimization problem. Almalfouh and

Stüber [18] maximized the overall rate of the SU OFDMA-based CR network subject to

maximum power constraint and average interference constraints to the PUs due to the

mis-detection and false-alarm probabilities. The resource allocation problem was classified

as a mixed-integer nonlinear programming that is NP-hard to obtain the optimal solution.

An iterative algorithm based on the multiple-choice knapsack problem was proposed to

find a sub-optimal solution.

CR systems will have different requirements than those listed above. For example,

if only partial channel information is known on the links between the SU and the PUs

receivers or the sensing is not fully reliable, then minimizing the transmit power is priori-

tized in order not to violate the interference constraints. On the other hand, maximizing

the CR system throughput is of interest to improve the overall network performance. This

motivates us to adopt a multiobjective optimization (MOOP) approach that optimizes

the conflicting and incommensurable throughput and power objectives. For most of the
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MOOP problems, it is not possible to find a single solution that optimizes all the conflict-

ing objectives simultaneously, i.e., there is no solution that improves one of the objective

functions without deteriorating other objectives. However, a set of non-dominated, weak

Pareto optimal solutions exists and it is the decision maker’s (the SU in our case) respon-

sibility to choose its preferred optimal solution [19]. Various methods for solving MOOP

problems exist and are classified according to the level of preferences of the competing

objective functions as posteriori methods and priori methods [19]. For the former, the

(whole, if possible) set of the Pareto optimal solutions are generated and presented to

the decision maker who selects the preferred one. On the other hand, for the latter, the

decision maker must specify the preferences before the optimization process starts. In

this paper, we adopt the priori method, with the SU linearly combining the compet-

ing throughput and power objectives into a single objective function. For that, positive

weighting coefficients are used [19], which reflects the SU preferences according to the sur-

rounding environment, the application, and/or the target performance. Recently, MOOP

has attracted researchers’ attention due to its flexible and superior performance over single

objective optimization approaches [20–25]. In a non-CR environment, jointly maximizing

the throughput and minimizing the transmit power provides significant performance im-

provements when compared with other works in the literature that separately maximize

the throughput (with a constraint on the transmit power) or minimize the transmit power

(with a constraint on the throughput), respectively [20].

In this paper, we formulate a multiobjective optimization problem OP1 that jointly

maximizes the OFDM SU throughput and minimizes its total transmit power subject to

constraints on the BER, the total transmit power, the CCI and ACI to existing PUs, and

the maximum allocated bits per subcarrier for the SU. Furthermore, OP1 considers the

spectrum sensing errors; this is achieved by formulating the CCI and ACI constraints as a

function of the mis-detection and false-alarm probabilities. We transform the non-convex
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OP1 to an equivalent convex problem OP2 where closed-form expressions are derived for

the bit and power allocations per each SU subcarrier. Unlike the works in [6–9, 14–16]

that assume full channel state information (CSI), we adopt the more practical assump-

tion of only knowing the path loss on the links between the SU transmitter and the PUs

receivers [10, 11]. Additionally, we run simulations to quantify the violation of both the

CCI and ACI constraints that results at the PUs receivers due to the incomplete link

information between the SU transmitter and the PUs receivers. The effect of adding a

fading margin to compensate for this violation is studied. Also, simulation results show

that the interference constraints are violated in practice at the PUs receivers if perfect

spectrum sensing is assumed. The results illustrate the performance of the proposed algo-

rithm and show its closeness to the global optimal allocations obtained by an exhaustive

search for the equivalent discrete problem. Furthermore, the results show the performance

improvements of the proposed algorithm when compared to other works in the literature

at the cost of no additional complexity.

The remainder of the paper is organized as follows. Section 4.3 introduces the sys-

tem model and Section 4.4 formulates and analyzes the optimization problems. Section

4.5 summarizes the proposed algorithm and provides a complexity analysis. Simulation

results are presented in Section 4.6, while conclusions are drawn in Section 4.7.

Throughout the paper we use bold-faced upper case letters to denote matrices, e.g.,

X, bold-faced lower case letters for vectors, e.g., x, and light-faced letters for scalar

quantities, e.g., x. [.]T denotes the transpose operation, ∇ represents the gradient, bxc is

the largest integer not greater than x, bxe is the nearest integer to x, [x, y]− represents

min(x, y), IX is the X ×X identity matrix, and ¯̄X is the cardinality of the set X.
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Fig. 4.1: Cognitive radio system model.

4.3 System Model

Fig. 4.1 depicts the CR system model under consideration, where the available spectrum

is assumed to be divided into L subchannels that are licensed to L PUs. We assume that

the SU periodically senses the PUs spectrum in order to identify vacant bands for its

transmission. Without loss of generality, we consider that the SU senses that subchannel

m, of bandwidth B, is vacant and decides to access it with N subcarriers and i denotes

the ith subcarrier in the subchannel m, i = 1, ..., N . However, due to the varying channel

conditions between the SU and PUs, the mth PU signal may drop below the SU sensing

threshold. This means that the SU identifies the mth PU band as vacant when it is truly

occupied. This is referred to as a mis-detection error and it occurs with probability ρ(m)
md .

On the other hand, the SU may identify the `th PU band as occupied when it is truly

vacant. This is referred to as a false-alarm error and it occurs with probability ρ(`)
fa . Mis-

detection errors lead to severe co-channel interference to the mth PU, while false-alarm

errors result in the SU losing transmission opportunities. Using the Bayes’ theorem and

the law of total probability, the probability that subchannel m is truly occupied under

the condition that the SU identified it to be vacant can be defined as [18]

β(m)
ov = ρ

(m)
md ρ

(m)

ρ
(m)
md ρ

(m) + (1− ρ(m)
fa )(1− ρ(m))

, (4.1)
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where ρ(m) is the probability that the PU transmits on subchannel m. Furthermore, the

probability that subchannel ` is truly occupied by the PU under the condition that the

SU identified it to be occupied can be written as

β(`)
oo = (1− ρ(`)

md)ρ(`)

(1− ρ(`)
md)ρ(`) + ρ

(`)
fa(1− ρ(`))

. (4.2)

The conditional probability β(m)
ov represents the probability that the interference due to

mis-detection errors will be present in suchannel m, which is determined to be vacant by

the SU, and, hence, 1− β(m)
ov represents the confidence level of the SU that subchannel m

is truly vacant [15]. It is worthy to mention that for perfect sensing β(m)
ov = 0 and β(`)

oo = 1.

While it is possible to estimate the instantaneous channel gains between the SU trans-

mitter and receiver pairs, it is more challenging to estimate the instantaneous channel

gains from the SU transmitter to the PUs receivers without the PUs cooperation. That

being said, we assume perfect CSI between the SU transmitter and receiver pairs, while

only the path loss is assumed to be known between the SU transmitter and PUs receivers.

In practical scenarios, using only partial information on the links between the SU trans-

mitter and PU receivers may result in the violation of the CCI and ACI constraints at

the PU receivers. This problem is discussed in Section 4.6.

The CCI to subchannel m that the SU decides to be vacant, but may or may not be

truly vacant needs to be less than a certain threshold P (m)
th as

β(m)
ov 10−0.1PL(dm)10−0.1 FM

N∑
i=1

pi ≤ P
(m)
th , (4.3)

where PL(dm) is the path loss in dB at distance dm from the SU, FM is the fading

margin1 in dB, and pi is the allocated power per subcarrier i, i = 1, ..., N . On the other
1The fading margin is added to compensate for the possible violation of the interference constraints

at the PUs receivers due to the imperfect CSI on the links between the SU transmitter and the PUs
receivers.
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hand, if spectrum sensing is perfect (i.e., the mth PU does not truly exist), then the SU

transmit power in the mth subchannel should reflect the SU transmitter’s power amplifier

limitations or/and satisfy regulatory maximum power limits as

N∑
i=1

pi ≤ Pth. (4.4)

Hence, for either perfect or imperfect spectrum sensing, the condition on the CCI/total

transmit power is generalized as2

N∑
i=1

pi ≤
[
Pth,

1
β

(m)
ov

100.1PL(dm)100.1 FM P
(m)
th

]−
. (4.5)

The ACI to subchannel ` that the SU decides to be occupied, but may or may not be

truly occupied should be kept below a certain threshold P (`)
th as follows [6–13,26]

β(`)
oo 10−0.1PL(d`)10−0.1 FM

N∑
i=1

pi$
(`)
i ≤ P

(`)
th , ` = 1, ..., L, (4.6)

where $(`)
i = Ts,m

∫ fi,`+B`
2

fi,`−
B`
2

sinc2(Ts,mf) df , Ts,m is the duration of the OFDM symbol of

the SU, fi,` is the spectral distance between the SU subcarrier i and the `th PU frequency

band, B` is the bandwidth of the `th PU subchannel, and sinc(x) = sin(πx)
πx

.

2For the perfect sensing assumption, β(m)
ov = 0 and

∑N
i=1 pi ≤

[
Pth,∞

]−
= Pth; otherwise, for

the case of imperfect sensing, we consider 1
β

(m)
ov

100.1PL(dm)100.1 FM P
(m)
th < Pth, and, hence,

∑N
i=1 pi ≤

1
β

(m)
ov

100.1PL(dm)100.1 FM P
(m)
th . This is a reasonable assumption as Pth represents the maximum power

the SU can transmit.
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4.4 Optimization Problems: Formulation and Anal-

ysis

In MOOP principle, if the objective functions and constraints are convex, then the ob-

tained Pareto optimal solution is referred to as a global Pareto optimal solution; otherwise,

it is refereed to as a local Pareto optimal solution [19]. Furthermore, the obtained solution

is a weak Pareto optimal solution if there is no other solution that causes every objective

to improve; otherwise, it is refereed to as a strong Pareto optimal solution [19].

Our target is to jointly maximize the SU throughput and minimize its transmit power

while satisfying target quality-of-service QoS (in terms of BER), certain levels of CCI/total

transmit power and ACI to the PUs receivers, and a maximum number of bits per each

subcarrier while considering the errors due to imperfect sensing. We assume that the SU

accesses the spectrum if the QoS is achievable. For an average BER constraint, this cor-

responds to a non-convex optimization problem where the obtained numerical solution is

not guaranteed to be a global Pareto optimal solution. According to the results in [27], the

constraint on the average BER can be relaxed to a constraint on the BER per subcarrier,

especially for high SNRs. The benefit of this relaxation is that the resultant optimization

problem can be convex after some mathematical manipulations, in which case the global

optimality of the Pareto set of solutions is guaranteed. Also, such relaxation allows us to

obtain closed-form expressions for the optimal bit and power allocations, and, hence, the

obtained solution will be of significantly lower complexity when compared to the solution

of the problem with the constraint on the average BER. Therefore, the obtained solution

of the problem in hand will be a globally (as the MOOP problem is convex) weak (as the

objective functions are conflicting) Pareto optimal solution.

The multiobjective optimization problem is formulated as3

3The optimization problem with discrete constraints for the number of the allocated bits per subcarrier
is a mixed integer nonlinear programming problem that can be solved by the branch and bound algorithm
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Maximize
bi

N∑
i=1

bi and Minimize
pi

N∑
i=1

pi,

s.t. C1 : bi ≤ bi,max, i = 1, ..., N,

C2 : BERi ≤ BERth,i, i = 1, ..., N,

C3 :
N∑
i=1

pi ≤
[
Pth,

1
β

(m)
ov

100.1PL(dm)100.1 FM P
(m)
th

]−
,

C4 :
N∑
i=1

pi$
(`)
i ≤

1
β

(`)
oo

100.1PL(d`)100.1 FMP
(`)
th , ` = 1, ..., L, (4.7)

where bi and bi,max are the number of bits and the maximum number of bits per subcarrier

i, i = 1, ..., N , respectively, and BERi and BERth,i are the BER and the threshold value

of the BER per subcarrier i, i = 1, ..., N , respectively. An approximate expression for

the BER per subcarrier i in case of M -ary QAM [29], while taking the interference from

the PUs into account, is given by4

BERi ≈ 0.2 exp
(
−1.6 γi pi

2bi − 1

)
, (4.8)

where γi = |Hi|2
(σ2
n+Ji) is the channel-to-noise-plus-interference ratio for subcarrier i, Hi is

the channel gain of subcarrier i between the SU transmitter and receiver pair, σ2
n is the

variance of the additive white Gaussian noise (AWGN), and Ji is the interference from the

PUs to subcarrier i of the SU. We solve the MOOP problem in (4.7) by linearly combining

the normalized competing throughput and power objectives into a single objective function

[28]. However, this will be significantly complex and not tractable for large number of subcarriers. In the
rest of the paper and according to the common practice in the literature, we assume continuous values
for the number of bits per subcarrier in order to obtain a low complexity solution, and then discretize
the number of allocated bits per subcarrier. To address the gap to the discrete global optimal solution,
the obtained results are compared with an exhaustive search in Section 4.6. It is worthy to mention that
the exhaustive search is based on continues (and not discrete) values of the power that is calculated from
the discrete values of the bit allocation according to (4.10).

4This expression is tight within 1 dB for BER ≤ 10−3 [29].
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(note that in the solution, the throughput and power objectives are normalized to their

maximum values Nbi,max and Pth, respectively, so they are approximately within the

same range [0,1]; for convenience of notation, the normalization factors are not presented

in the problem formulation/solution). For that, positive weighting coefficients are used

[19], which reflects the SU preferences according to the surrounding environment, the

application, and/or the target performance. As the power and throughput objectives are

conflicting, the obtained solution represents a weak Pareto optimal solution. The MOOP

problem in (4.7) can be rewritten as

OP1 : Minimize
bi,pi

α
N∑
i=1

pi − (1− α)
N∑
i=1

bi,

subject to C1—C4, (4.9)

where α (0 ≤ α ≤ 1) is the weighting coefficient that represents the relative importance

of the competing objectives, i.e., higher values of α favors minimizing the transmit power,

while lower values of α favors maximizing the throughput. We assume that the SU

chooses the proper value of α depending on the mode of operation. For example, if

the transmission rate, and, hence, the transmission time is crucial, then the SU chooses

lower values of α. On the other hand, if minimizing the transmit power/protecting the

environment, and, hence, the energy efficiency is more important, then higher values of

α are selected.

OP1 is not convex as the constraint on the BER is not convex in both pi and bi,

and, hence, the global optimality of the Pareto set of solutions is not guaranteed. An

important remark that helps to resolve the non convexity issue is that the constraint on

the BER per subcarrier, i.e., C2 in OP1 which is the source of the non convexity, is

always active5 and it can be relaxed in order to obtain a convex problem equivalent to
5A constraint on the form G(x) ≤ 0 is said to be active if it holds with equality sign, i.e., G(x) = 0;

otherwise, it is inactive, i.e., G(x) < 0 [30].
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OP1. We can prove that C2 in OP1 is always active by contradiction, as follows. Let us

assume that the optimal bit and power allocations (b∗i , p∗i ) exist at a value for the BER

per subcarrier that is not at the boundary, i.e., at BER∗th,i < BERth,i. In this case, a new

solution could be obtained at BERnew
th,i , BER∗th,i < BERnew

th,i ≤ BERth,i, where the power

could be decreased, i.e., pi,new < p∗i or the rate can be increased, i.e., bi,new > b∗i without

violating the BER constraint. Clearly, this results in a lower objective function value in

(4.9), and, hence, the allocation of the bit and power (b∗i , p∗i ) that is at BER∗th,i < BERth,i

cannot be an optimal solution. This can be mathematically proved by applying the

Karush-Khun-Tucker (KKT) conditions to OP1; the proof is not provided due to space

limitations.

As such, the power per subcarrier i can be related to the number of bits per subcarrier

i through the active BER constraint as

pi = − ln(5BERth,i)
1.6 γi

(2bi − 1), (4.10)

and OP1 can be reformulated as

OP2 : Minimize
bi

fOP2(b) = α
N∑
i=1

− ln(5BERth,i)
1.6 γi

(2bi − 1)− (1− α)
N∑
i=1

bi,

s.t. g%OP2(b) =



bi − bi,max ≤ 0, %OP2 = i = 1, ..., N,

∑N
i=1

− ln(5BERth,i)
1.6 γi (2bi − 1)−

[
Pth,

1
β

(m)
ov

100.1PL(dm)100.1 FM P
(m)
th

]−
≤ 0,

%OP2 = N + 1,∑N
i=1

− ln(5BERth,i)
1.6 γi $

(`)
i (2bi − 1)− 1

β
(`)
oo

100.1PL(d`)100.1 FMP
(`)
th ≤ 0,

%OP2 = N + 2, ..., N + L+ 2,

(4.11)

where ` = 1, ..., L. OP2 is a convex optimization problem, and, hence, the global op-
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timality of the Pareto set of solutions is guaranteed (the proof is provided in Appendix

A). OP2 can be solved by applying the KKT conditions (i.e., transforming the inequal-

ities constraints to equality constraints by adding non-negative slack variables, y2
%OP2

,

%OP2 = 1, ..., N + L+ 1) [30]. Hence, the constraints are rewritten as

G%OP2(b,yOP2) = g%OP2(b) + y2
%OP2

= 0, %OP2 = 1, ..., N + L+ 1, (4.12)

where yOP2 = [y2
1, ..., y

2
N+1, y

2,(`)
N+2]T is the vector of slack variables. The Lagrange function

LOP2 is expressed as

LOP2(b,yOP2,λOP2) = fOP2(b) +
N+L+1∑
%OP2=1

λ%OP2 G%OP2(b,yOP2)

= α
N∑
i=1

− ln(5BERth,i)
1.6 γi

(2bi − 1)− (1− α)
N∑
i=1

bi

+
N∑
i=1

λi

bi − bi,max + y2
i

+ λN+1

 N∑
i=1

− ln(5BERth,i)
1.6 γi

(2bi − 1)

−
[
Pth,

1
β

(m)
ov

100.1PL(dm)100.1 FM P
(m)
th

]−
+ y2

N+1


+

L∑
`=1

λ
(`)
N+2

 N∑
i=1

− ln(5BERth,i)
1.6 γi

$
(`)
i (2bi − 1)

− 1
β

(`)
oo

100.1PL(d`)100.1 FMP
(`)
th + y

2,(`)
N+2

,
(4.13)

where λOP2 = [λ1, ..., λN+1, λ
(`)
N+2]T is the vector of Lagrange multipliers. A stationary

point can be found when ∇LOP2(b,yOP2,λOP2) = 0, which yields
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∂LOP2

∂bi
= α ln(2)− ln(5BERth,i)

1.6 γi
2bi − (1− α) + λi + ln(2)λN+1

− ln(5BERth,i)
1.6 γi

2bi

+ ln(2)
L∑
`=1

λ
(`)
N+2
− ln(5BERth,i)

1.6 γi
$

(`)
i 2bi = 0, (4.14a)

∂LOP2

∂λi
= bi − bi,max + y2

i = 0, (4.14b)

∂LOP2

∂λN+1
=

N∑
i=1

− ln(5BERth,i)
1.6 γi

(2bi − 1)−
[
Pth,

1
β

(m)
ov

100.1PL(dm)100.1 FM P
(m)
th

]−
+ y2

N+1 = 0, (4.14c)
∂LOP2

∂λ
(`)
N+2

=
N∑
i=1

− ln(5BERth,i)
1.6 γi

$
(`)
i (2bi − 1)− 1

β
(`)
oo

100.1PL(d`)100.1 FMP
(`)
th

+ y
2,(`)
N+2 = 0, (4.14d)

∂LOP2

∂yi
= 2λiyi = 0, (4.14e)

∂LOP2

∂yN+1
= 2λN+1yN+1 = 0, (4.14f)

∂LOP2

∂y
(`)
N+2

= 2λ(`)
N+2y

(`)
N+2 = 0. (4.14g)

It can be seen that (4.14a)-(4.14g) represent 3N + 2L + 2 equations in the 3N + 2L + 2

unknown components of the vectors b,yOP2, and λOP2. Equation (4.14e) implies that

either λi = 0 or yi = 0, (4.14f) implies that either λN+1 = 0 or yN+1 = 0, while (4.14g)

implies that either λ(`)
N+2 = 0 or y(`)

N+2 = 0. Accordingly, eight possible cases exist, as

follows:

— Case 1 : Setting λi = 0 (yi 6= 0, i.e., inactive maximum allocated bits per subcarrier

constraint), λN+1 = 0 (yN+1 6= 0, i.e., inactive CCI/total transmit power constraint), and

λ
(`)
N+2 = 0 (y(`)

N+2 6= 0, i.e., inactive ACI constraint) results in the bit allocation given by

b∗i =

 log2

[ 1− α
α ln(2)

1.6 γi
(− ln(5 BERth,i))

], (4.15)
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and the power allocation as in (4.10). Since M -ary QAM is considered, b∗i should be

greater than 2. From (4.15), to have b∗i ≥ 2, γi must satisfy the condition

γi ≥
1

1.6
α ln(2)
1− α (− ln(5BERth,im)) 22, i = 1, ..., N, (4.16)

otherwise b∗i = p∗i = 0.

— Case 2 : Setting yi = 0 (active maximum allocated bits per subcarrier constraint),

λN+1 = 0 (yN+1 6= 0, i.e., inactive CCI/total transmit power constraint), and λ(`)
N+2 = 0

(y(`)
N+2 6= 0, i.e., inactive ACI constraint) results in the bit allocation b∗i = bi,max if and

only if γi ≥ 1
1.6

α ln(2)
1−α (− ln(5BERth,i))2bi,max , i = 1, ..., N . This is proved as follows. From

(4.14b) bi = bi,max and from (4.14a) λi = (1− α)− α ln(2)− ln(5BERth,i)
1.6 γi 2bi,max . In order to

have a non-negative Lagrange multipliers, λi should be greater than or equal to 0, i.e.,

(1−α)−α ln(2) − ln(5BERth,i)
1.6 γi 2bi,max ≥ 0 which leads to γi ≥ 1

1.6
α ln(2)
1−α (− ln(5BERth,i))2bi,max ,

i = 1, ..., N .

— Case 3 : Setting λi = 0 (yi 6= 0, i.e., inactive maximum allocated bits per subcarrier

constraint), yN+1 = 0 (i.e., active CCI/total transmit power constraint), and λ
(`)
N+2 = 0

(y(`)
N+2 6= 0, i.e., inactive ACI constraint) results in the bit allocation is given by

b∗i =

 log2

[ 1− α
ln(2)(α + λN+1)

1.6 γi
(− ln(5 BERth,i))

], (4.17)

and p∗i is obtained from (4.10). λN+1 is calculated to satisfy the active CCI/total transmit

power constraint in (4.14c); if non-negative then the optimal solution is reached, otherwise,

b∗i = p∗i = 0. The value of λN+1 is found to be

λN+1 = ¯̄Na
1− α
ln 2

1[
Pth,

1
β

(m)
ov

100.1 PL(dm)100.1 FM P
(m)
th

]−
+∑

i∈Na
− ln(5 BERth,i)

1.6 γi

− α, (4.18)
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where ¯̄Na is the cardinality of the set of active subcarriers Na.

— Case 4 : Setting yi = 0 (i.e., active maximum allocated bits per subcarrier con-

straint), yN+1 = 0 (i.e., active CCI/total transmit power constraint), and λ
(`)
N+2 = 0

(y(`)
N+2 6= 0, i.e., inactive ACI constraint) results in the bit allocation b∗i = bi,max if and

only if γi ≥ 1
1.6

ln(2)(α+λN+1)
1−α (− ln(5BERth,i))2bi,max , i = 1, ..., N and λN+1 is non-negative.

— Case 5 : Setting λi = 0 (yi 6= 0, i.e., inactive maximum allocated bits per subcarrier

constraint), λN+1 = 0 (yN+1 6= 0, i.e., inactive CCI/total transmit power constraint), and

y
(`)
N+2 = 0 (i.e., active ACI constraint) results in the bit allocation given by

b∗i =

 log2

[ 1− α
ln(2)(α +∑L

`=1$
(`)
i λ

(`)
N+2)

1.6 γi
(− ln(5BERth,i))

], (4.19)

and p∗i is obtained from (4.10). λ(`)
N+2 is calculated numerically using the Newton’s method

[31] to satisfy the active ACI constraint in (4.14d); if non-negative then the optimal

solution is reached, otherwise, b∗i = p∗i = 0.

— Case 6 : Setting yi = 0 (i.e., active maximum allocated bits per subcarrier con-

straint), λN+1 = 0 (yN+1 6= 0, i.e., inactive CCI/total transmit power constraint), and

y
(`)
N+2 = 0 (i.e., active ACI constraint) results in the bit allocation b∗i = bi,max if and only if

γi ≥ 1
1.6

ln(2)(α+
∑L

`=1$
(`)
i λ

(`)
2 )

1−α (− ln(5BERth,i))2bi,max , i = 1, ..., N and λ(`)
N+2 is non-negative,

` = 1, ..., L.

— Case 7 : Setting λi = 0 (yi 6= 0, i.e., inactive maximum allocated bits per subcarrier

constraint), yN+1 = 0 (i.e., active CCI/total transmit power constraint), and y
(`)
N+2 = 0

(active ACI constraint) results in the bit allocation given by

b∗i =

 log2

[ 1− α
ln(2)(α + λN+1 +∑L

`=1$
(`)
i λ

(`)
N+2)

1.6 γi
(− ln(5BERth,i))

], (4.20)

and p∗i is obtained from (4.10). λN+1 and λ(`)
N+2 are calculated numerically to satisfy the
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active CCI/total transmit power and ACI constraints in (4.14c) and (4.14d), respectively;

if non-negative then the optimal solution is reached, otherwise, b∗i = p∗i = 0.

— Case 8 : Setting yi = 0 (i.e., active maximum allocated bits per subcarrier con-

straint), yN+1 = 0 (i.e., active CCI/total transmit power constraint), and y
(`)
N+2 = 0

(active ACI constraint) results in the bit allocation b∗i = bi,max if and only if γi ≥
1

1.6
ln(2)(α+λN+1+

∑L

`=1$
(`)
i λ

(`)
N+2)

1−α (− ln(5BERth,i))2bi,max , i = 1, ..., N and λN+1 and λ(`)
N+2 are

non-negative, ` = 1, ..., L.

The solution (p∗,b∗) represents a global minimum of fOP2(p,b) as the problem is

convex and the KKT conditions [30] are satisfied, as given in Appendix A and Appendix

B, respectively.

4.5 Proposed Algorithm and Complexity Analysis

4.5.1 Proposed Algorithm

The proposed algorithms to solve OP2 can be formally stated as follows:

Proposed Algorithm
1: INPUT γi, BERth,i, α, Pth, P (m)

th , P (`)
th , dm, d` β

(m)
ov , β(`)

oo , and bi,max.
2: for i = 1, ..., N do
3: if γi < 1

1.6
α ln(2)
1−α (− ln(5 BERth,i))22 then

4: Null subcarrier i.
5: else if 1

1.6
α ln(2)
1−α (− ln(5 BERth,i))22 ≤ γi < 1

1.6
α ln(2)
1−α (− ln(5 BERth,i))2bi,max then

6: b∗i and p∗i are given by (4.15) and (4.10), respectively.
7: else
8: b∗i = bi,max and p∗i is given by (4.10).
9: end if
10: end for
11: if

∑N
i=1 p

∗
i ≥

[
Pth,

1
β

(m)
ov

100.1PL(dm)100.1 FMP
(m)
th

]−
and

∑N
i=1 p

∗
i$

(`)
i <

1
β

(`)
oo

100.1PL(d`)100.1 FMP
(`)
th then

12: b∗i and p∗i are given by (4.17) and (4.10), respectively.
13: λN+1 is non-negative value given by (4.18) (otherwise, b∗i = p∗i = 0) and λ(`)

N+2 = 0.
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Proposed Algorithm (continued)
14: if γi ≥ 1

1.6
ln(2)(α+λN+1)

1−α (− ln(5BERth,i))2bi,max then
15: b∗i = bi,max and p∗i is given by (4.10) for non-negative values of λN+1; otherwise,
b∗i = p∗i = 0.

16: end if
17: else if

∑N
i=1 p

∗
i <

[
Pth,

1
β

(m)
ov

100.1PL(dm)100.1 FMP
(m)
th

]−
and

∑N
i=1 p

∗
i$

(`)
i ≥

1
β

(`)
oo

100.1PL(d`)100.1 FMP
(`)
th then

18: b∗i and p∗i are given by (4.19) and (4.10), respectively.
19: λN+1 = 0 and λ(`)

N+2 is non-negative value calculated numerically to satisfy
∑N
i=1 p

∗
i$

(`)
i =

1
β

(`)
oo

100.1PL(d`)100.1 FMP
(`)
th (otherwise, b∗i = p∗i = 0).

20: if γi ≥ 1
1.6

ln(2)(α+
∑L

`=1 $
(`)
i λ

(`)
N+2)

1−α (− ln(5BERth,i))2bi,max then
21: b∗i = bi,max and p∗i is given by (4.10) for non-negative values of λ(`)

N+2; otherwise,
b∗i = p∗i = 0.

22: end if
23: else if

∑N
i=1 p

∗
i ≥

[
Pth,

1
β

(m)
ov

100.1PL(d)100.1 FMP
(m)
th

]−
and

∑N
i=1 p

∗
i$

(`)
i ≥

1
β

(`)
oo

100.1PL(d`)100.1 FMP
(`)
th then

24: b∗i and p∗i are given by (4.20) and (4.10), respectively.
25: λN+1 and λ

(`)
N+2 are non-negative values calculated numerically to satisfy

∑N
i=1 p

∗
i =[

Pth,
1

β
(m)
ov

100.1PL(dm)100.1 FM P
(m)
th

]−
and

∑N
i=1 p

∗
i$

(`)
i = 1

β
(`)
oo

100.1PL(d`)100.1 FMP
(`)
th , respec-

tively (otherwise, b∗i = p∗i = 0).

26: if γi ≥ 1
1.6

ln(2)(α+λN+1+
∑L

`=1$
(`)
i λ

(`)
N+2)

1−α (− ln(5BERth,i))2bi,max then
27: b∗i = bi,max and p∗i is given by (4.10) for non-negative values of λN+1 and λ

(`)
N+2;

otherwise, b∗i = p∗i = 0.
28: end if
29: end if
30: If the conditions on the CCI/total transmit power and the ACI are violated due to rounding,

decrement the number of bits on the subcarrier that has the largest ∆pi(bi) = pi(bi)−pi(bi−1)
until satisfied.

31: OUTPUT b∗i and p∗i , i = 1, ..., N .
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According to the MOOP problem analysis in Section 4.4, the optimal solution belongs

to one of the following four scenarios: 1) both the CCI/total transmit power and ACI

constraints are inactive, 2) the CCI/total transmit power constraint is active and the ACI

constraint is inactive, 3) the CCI/total transmit power constraint is inactive and the ACI

constraint is active, and 4) both the CCI/total transmit power and ACI constraints are

active. For each of the four scenarios, the constraint on the maximum allocated bits per

subcarrier can be either inactive or active.

• Steps 2 to 10: the proposed algorithm starts by assuming that both the CCI/total

transmit power and ACI constraints are inactive. Then, based on the the value of γi,

the proposed algorithm finds the optimal solution per subcarrier for inactive/active

maximum allocated bit constraint or nulls the corresponding subcarrier if γi is below

a certain threshold. If both the CCI/total transmit power and the ACI constraints

are inactive, then the optimal solution is reached.

• Steps 11 to 16: based on the assumption that the optimal solution belongs to sce-

nario 1 (i.e., inactive CCI/total transmit power and ACI constraints), the CCI/total

transmit power constraint may be not inactive while the ACI is inactive. This means

that the initial solution (from steps 2 to 10) is infeasible and the proposed algorithm

finds the Lagrangian multipliers that enforce the solution to be in the feasible region.

More specifically, the proposed algorithm finds the Lagrangian multiplier λN+1 that

makes the CCI/total transmit power active (i.e., satisfied with equal sign)–scenario

2; if λN+1 is non-negative then the optimal solution is reached, otherwise b∗i = p∗i = 0

(for inactive/active maximum allocated bit constraint).

• Steps 17 to 22: based on the assumption that the optimal solution belongs to

scenario 1 (i.e., inactive CCI/total transmit power and ACI constraints), the ACI

constraint may be not inactive while the CCI/total transmit power is inactive. This
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means that the initial solution (from steps 2 to 10) is infeasible and the proposed

algorithm finds the Lagrangian multipliers that enforce the solution to be in the

feasible region. More specifically, the proposed algorithm finds the Lagrangian mul-

tiplier λ(`)
N+2 that makes the ACI constraint active–scenario 3; if λ(`)

N+2 is non-negative

then the optimal solution is reached, otherwise b∗i = p∗i = 0 (for inactive/active max-

imum allocated bit constraint).

• Steps 23 to 28: based on the assumption that the optimal solution belongs to sce-

nario 1 (i.e., inactive CCI/total transmit power and ACI constraints), the CCI/total

transmit power may be not inactive and the ACI constraint may be not inactive.

This means that the initial solution (from steps 2 to 10) is infeasible and the pro-

posed algorithm finds the Lagrangian multipliers that enforce the solution to be in

the feasible region. More specifically, the proposed algorithm finds the Lagrangian

multipliers λN+1 and λ(`)
N+2 that make the CCI/total transmit power and ACI con-

straints, respectively, active–scenario 4; if λN+1 or λ(`)
N+2 are non-negative then the

optimal solution is reached, otherwise b∗i = p∗i = 0 (for inactive/active maximum

allocated bit constraint).

• Step 30: The purpose of step 30 is to guarantee that neither the CCI/total trans-

mit power nor the ACI constraints are violated due to rounding the continuous

allocated bits to the nearest integer. As the common practice in the literature, the

MOOP problem in (4.9) assumes continuous number of allocated bits per each SU

subcarrier. This is to avoid the significantly complex and intractable solution of

the equivalent problem with discrete constraints on the number of bits per subcar-

rier [28]. Therefore, the CCI/transmit power and ACI constraints are checked. If

violated, the subcarrier corresponding to the largest power reduction when the num-

ber of bits is decremented by 1 bit is chosen, and the number of bits is decreased by
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1 bit on that subcarrier. The process repeats until the CCI/transmit power and/or

the ACI constraints are satisfied. The obtained solution is shown in Section 4.6 to

be near the discrete optimal solution obtained through an exhaustive search.

4.5.2 Complexity Analysis

The worst case computational complexity of the proposed algorithms to solve OP2 can

be analyzed as follows. Steps 2 to 10 require a complexity of O(N); steps 11 to 16 require

a complexity of O(N); steps 17 to 22 require a complexity of O(UN), where O(U) is the

complexity of finding λ(`)
N+2; and steps 23 to 28 require a complexity of O(VN), where

O(V) is the complexity of finding λN+1 and λ
(`)
N+2. As the computational requirement

of the Newton’s method to solve a system of N equations in N unknowns is O(NK),

where K is the number of required iterations [32], O(U) and O(V) equal O(LK1) and

O((L+ 1)K2), respectively. Step 30 requires a computational complexity of O(N2). This

can be explained as follows: First, step 30 finds the subcarrier i′ with the maximum

∆pi′(bi′) = pi′(bi′) − pi′(bi′ − 1) due to rounding, this is of complexity of O(N). Then,

step 30 decrements the allocated bits on i′ until the CCI/total transmit power and ACI

constraints are satisfied. In the worst case, this process will be repeated N times and,

hence, the computational complexity is of O(N) if all the allocated bits are rounded up

to the nearest integer. Thus, the worst case computational complexity of the proposed

algorithms to solve OP2 is calculated as O(N) +O(N) +O(LK1N) +O((L+ 1)K2N) +

O(N) O(N) = O(N2). Note that the asymptotic complexity of O(N) O(N) dominates

the complexities of O(LK1N) and O((L+ 1)K2N) given that the number of iterations K1

and K2 are found to be around 6–7 iterations, which is significantly less than N , and the

number of PUs L is assumed to be less than N .
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4.6 Numerical Results

This section investigates the performance of the proposed algorithm and compares it with

other techniques in the literature, as well as with an exhaustive search for the discrete

global optimal allocations. The computational complexity of the proposed algorithm is

also compared to that of other schemes.

4.6.1 Simulation Setup

Without loss of generality, we assume that the OFDM SU coexists with one adjacent

channel PU ` and one co-channel PU m. The SU parameters are as follows: number of

subcarriers N = 128 and subcarrier spacing ∆f = 9.7656 kHz. The propagation path loss

parameters are: exponent = 4, wavelength = 3×108

900×106 = 0.33 meters, distance to the `th

PU d` = 1.5 km, distance to the mth PU dm = 1 km, and reference distance d0 = 100 m.

The BER constraint per subcarrier, BERth,i, is set to 10−4. Unless otherwise mentioned,

the fading margin FM is set to 0 dB. A Rayleigh fading environment is considered and

representative results are presented in this section, which were obtained through Monte

Carlo trials for 104 channel realizations. The value of the AWGN noise variance σ2
n is

assumed to be 10−16 W and the PU signal is assumed to be an elliptically-filtered white

random process [9–12, 26]. Unless otherwise mentioned, imperfect spectrum sensing is

assumed, with the mis-detection probability ρ(m)
md uniformly distributed over the interval

[0.01, 0.05], the false-alarm probability ρ(m)
fa uniformly distributed over the interval [0.01,

0.2], and the probability of the PU activity ρ(m) and ρ(`) uniformly distributed between

[0, 1]. According to the common practice in the MOOP problem solving techniques, the

throughput and transmit power objective functions are scaled during simulations so that

they are approximately within the same range [19]. For convenience, presented numerical

results are displayed in the original scales.
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Fig. 4.2: Effect of α on the SU performance for different values of Pth, PCCI, PACI, and
bi,max.

4.6.2 Performance of the Proposed Algorithm

Fig. 4.2 shows the average throughput and average transmit power as a function of the

weighting coefficient α, for different values of Pth, P (m)
th , P (`)

th , and bi,max. In order to

understand the effect of the weighting coefficient α on the MOOP problem formulation,

we set Pth = P
(m)
th = P

(`)
th = ∞ and bi,max = ∞; in this scenario, one can notice that an

increase of the weighting coefficient α yields a decrease of both the average throughput

and average transmit power. This can be explained as follows. By increasing α, more

weight is given to the transmit power minimization (the minimum transmit power is

further reduced), whereas less weight is given to the throughput maximization (the max-

imum throughput is reduced), according to the MOOP problem formulations in (4.9).

For another scenario we set Pth = 10−3 W and P
(m)
th = P

(`)
th = 10−8 µW, the average

transmit power and throughput are similar to their respective values if the total transmit

power is less than
[
Pth,

1
βov

100.1PL(dm)100.1 FMP
(m)
th

]−
and ∑N

i=1 pi$
(`)
i ≤ P

(`)
th , while the av-
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10−8 µW, α = 0.5, and bi,max = 6.

erage throughput and power decrease if the total transmit power and ∑N
i=1 pi$

(`)
i exceed[

Pth,
1
βov

100.1PL(dm)100.1 FM P
(m)
th

]−
and P (`)

th , respectively. If we have a further constraint

on bi,max = 6, then the average throughput and transmit power are reduced accordingly.

Fig. 4.2 illustrates the flexibility of the proposed algorithm to achieve different levels of

the average throughput and transmit power by changing the weighting coefficient α.

In Fig. 4.3, the interference introduced into the mth PU band is depicted as a function

of Pth for α = 0.5 and the cases of perfect and imperfect spectrum sensing. For the case of

perfect sensing, the system designer assumes that the SU has perfect sensing capabilities

(which is not true in practice) and the values of β(m)
ov and β(`)

oo are 0 and 1, respectively.

On the other hand, for the case of imperfect sensing, the system designer considers the

limited sensing capabilities of the SU and the values of β(m)
ov and β(`)

oo are given as in (4.1)

and (4.2), respectively. As can be seen, if the sensing errors are not taken into account,

then the interference leaked in the mth PU band exceeds the threshold. On the other

95



10−2 10−1 100 101 102
400

500

600

700

800

900

1000

1100

1200

A
ve

ra
g
e

th
ro

u
gh

p
u
t

(b
it

s/
O

F
D

M
sy

m
b
ol

)

 

 

10−2 10−1 100 101 102
10−2

10−1

100

Interference threshold to mth PU (×10−8 µW)

A
ve

ra
g
e

tr
a
n
sm

it
p
ow

er
(m

W
)

Throughput, bi,max=∞
Transmit power, bi,max=∞
Throughput, bi,max=6

Transmit power, bi,max=6

Fig. 4.4: Effect of P (m)
th on the SU performance for Pth = 10−3 W, P (`)
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hand, if the sensing errors are considered, the interference to the mth PU band is below

the threshold. In other words, if perfect sensing is assumed, then the SU transmits higher

power that leads to higher interference levels at the mth PU.

Fig. 4.4 depicts the average throughput and average transmit power as a function of

the CCI threshold P
(m)
th for Pth = 10−3 W, P (`)

th = 10−8 µW, α = 0.5, and bi,max = ∞

and 6. As can be seen for bi,max =∞, both the average throughput and average transmit

power increase as P (m)
th increases, and saturates for higher values of P (m)

th . This can be

explained, as for lower values of P (m)
th the CCI/total transmit power constraint is active

and, hence, the total transmit power is limited by this constraint. Increasing P (m)
th results

in a corresponding increase in both the average throughput and total transmit power. For

higher values of P (m)
th (the CCI/total transmit power constraint is inactive), the proposed

algorithm minimize the transmit power by keeping it constant, and, hence, the average

throughput saturates. For bi,max = 6, as expected, the average throughput and transmit
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power are reduced due to the constraint on the maximum allocated bits per subcarrier.

Fig. 4.5 depicts the average throughput and average transmit power as a function of

the ACI threshold PACI for Pth = 10−3 W, P (m)
th = 10−8 µW, α = 0.5, and bi,max =∞ and

6. Similar to the discussion on Fig. 4.4, for bi,max =∞, both the average throughput and

average transmit power increase as P (`)
th increases, and saturates for higher values of P (`)

th .

For bi,max = 6, as expected the average throughput and transmit power are reduced due

to the constraint on the maximum allocated bits per subcarrier.

In Fig. 4.6, the violation ratios of the CCI and ACI constraints at themth and `th PUs

receivers, respectively, are plotted as a function of FM for α = 0.5 and P (m)
th = P

(`)
th = 10−10

µW. We choose small values for the CCI and ACI thresholds so that their constraints are

always active. The violation ratios represent the percentage of simulation trials in which

the CCI and ACI constraints are respectively violated at the mth and `th PUs receivers

due to the partial channel information. As can be seen, increasing the FM value reduces
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the violation ratio values as expected. As it is difficult to estimate the channel between

the SU transmitter and PU receivers, the CCI and ACI constraints are violated in practice

when only knowledge of the path loss is available, and, hence, adding a fading margin

becomes crucial to protect the PUs receivers.

The effect of the number of subcarriers N on the SU performance is depicted in

Fig. 4.7 for α = 0.5, Pth = 10−3 W, P (m)
th = P

(`)
th = 10−8 µW, and bi,max =∞ and 6. For

bi,max =∞, increasing N increases the average throughput and also increases the transmit

power as long as neither the CCI nor the ACI constraints are violated. Such behaviour

occurs as increasing the number of OFDM subcarriers reduces the out-of-band spectral

leakage, and, hence, contributes lower interference levels to adjacent PUs. Accordingly,

this increases the SUs chances to transmit more bits/power per subcarrier. For bi,max = 6,

as expected, the average throughput and transmit power reduces due to the constraint

on the maximum allocated bits per subcarrier.
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4.6.3 Performance Comparison with some Works in the litera-

ture and the Exhaustive Search

In Fig. 4.8, we compare the leaked interference to the `th PU receiver for the proposed

algorithm at α = 0.5 and the works in [9, 12] that assume perfect spectrum sensing.

While the work in [9] assumes full CSI knowledge and maximizes the SU transmission

rate with constraints on ACI and with no constraints on the CCI/total transmit power,

the work in [12] maximizes the SU transmission rate and satisfies the CCI/total transmit

power and the ACI constraints in a probabilistic manner (i.e., meets the constraints with

a predefined probability). For this and in order to match the operating conditions, we

set Pth = P
(m)
th = ∞ and bi,max = ∞ in the proposed algorithm and consider knowledge

of the path loss for the work in [9]. Furthermore, we set the signal-to-noise ratio (SNR)

gap − ln(5 BERth,i)
1.6 to 10 log10(4.7506) = 6.77 dB in [9,12], and the predefined probability to

meet the ACI constraints in [12] to 90%. As can be observed, the work in [9,12] produces
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higher interference levels to the `th PU receiver (as well as, higher SU transmission rate)

when compared to the proposed algorithm. This is expected as increasing the value

of α in (4.9) gives more weight to minimizing the SU transmit power and, hence, it is

reduced. It is worthy to mention that the work in [12] produces lower interference levels

when compared to the work in [9] as it imposes a certain probability on violating the

ACI constraint which does not exist in [9]. So, it is expected that reducing the value of

the predefined probability in [12] allows the SU to transmit higher power levels and to

produce higher interference levels to existing PUs.

Fig. 4.9 compares the energy efficiency (in bits/Joule) for the work in [9, 12] and the

proposed algorithm at α = 0.5 for the same operating conditions. As can be seen, the

energy efficiency of the proposed algorithm is higher than its counterpart in [9, 12] that

decreases with increasing P (`)
th . This decrease is due to the logarithmic expression of the

rate, i.e., log2(1 +γipi), where increasing P (`)
th (that corresponds to increasing the value of
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pi) at the low range of the power results in a notable increase in the rate, while increasing

P
(`)
th at the high range of the power results in a negligible increase in the rate. On the other

hand, the energy efficiency of the proposed algorithm saturates as both the transmit power

and the throughput saturate for the latter range of P (`)
th . The computational complexity

of the works in [9, 12] is O(N3) when compared with O(N2) of the proposed algorithm;

hence, the improved energy efficiency of the proposed algorithm does not come at the

cost of additional complexity.

To characterize the gap between the proposed algorithm that finds the solution of

the MOOP problem in (4.9) and the discrete optimal solution, Fig. 4.10 compares the

values of the objective function achieved with the proposed algorithm and the optimal

exhaustive search. Note that the latter finds the discretized optimal allocation for the

problems in (4.9) by testing all possible combinations of the bit and power allocations (the

power per subcarrier is calculated from the discrete value of the bit allocation according
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to (4.10)) and selecting the pair with the least objective function value. Results are

presented for Pth = 5× 10−6 W, P (m)
th = P

(`)
th = 10−10 µW, and N = 4, 6, and 8; a small

number of subcarriers is chosen, such that the exhaustive search is feasible. As can be

seen in Fig. 4.10, the proposed algorithm approaches the discrete optimal results of the

exhaustive search. Note that the complexity of the proposed algorithms is of O(N2),

which is significantly lower than O(N !) of the exhaustive search.

4.7 Conclusions

Unlike prior work in the literature, this paper proposed a multiobjective optimization

approach for the optimal link adaptation of OFDM-based CR systems. We jointly max-

imized the SU throughput and minimized its transmit power subject to total transmit

power threshold and predefined CCI and ACI constraints to existing PUs. Additionally,
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we guaranteed a minimum BER and a maximum allocated bits per subcarrier for the

SU, and considered the effect of imperfect spectrum sensing. Closed-form expressions

were derived for the close-to-optimal bit and power distributions per subcarrier. Simu-

lation results demonstrated the flexibility of the proposed algorithm to support different

operating modes of the SU (i.e., to tune for various levels of throughput and transmit

power as needed by the CR system) while meeting the constraints. For example, the

SU may choose to maximize its throughput/transmission rate, and, hence, to reduce the

transmission time by choosing lower values of α. On the other hand, the SU may choose

to reduce its transmit power, and hence, the interference to existing PUs, if the channel

conditions to the PUs are not completely known or the spectrum sensing is not fully

reliable by selecting higher values of α (interestingly, the SU transmission in this case

is more energy-efficient when compared to the other case and/or to the work in the lit-

erature). Moreover, the results show that the violation of the interference constraints

can be due to 1) partial channel information of the links between the SU and the PUs

receivers, where a fading margin becomes crucial to protect the PUs receivers, and 2)

assuming perfect spectrum sensing. When compared to the single objective solutions,

the multiobjective optimization approach tends to be more energy efficient at the cost

of no additional complexity. Additionally, the results indicated that the performance of

the proposed algorithm approaches the discrete optimal results obtained by an exhaustive

search, with significantly reduced computational effort.

103



Appendix A

Proof of the Convexity of OP2

The Hessian of the objective function fOP2(b) can be written as

∇2fOP2(b) = ∂2fOP2(b)
∂b2

i

= α(ln(2)2)
(
− ln(5BERth,i)

1.6 γi

)
2bi IN . (4.21)

For an arbitrary vector x, the value of xT ∇2fOP2(b) x can be thus expressed as

xT ∇2fOP2(b) x = α(ln(2)2)
(
− ln(5BERth,i)

1.6 γi

)
2bi xT IN x,

(4.22)

which is positive semi-definite for any arbitrary vector x and bi; hence, the objective

function fOP2(b) is convex. Note that the term
(− ln(5BERth,i)

1.6 γi

)
is positive given that the

value of the BER threshold per subcarrier BERth,i is always less than 1
5 for practical

scenarios.

Similarly, the Hessian of the CCI/total transmit power and ACI constraints (g%OP2(b), %OP2 =

1, ..., L+ 1) is positive semi-definite, and, hence, OP2 is convex. �
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Appendix B

Proof of the Optimality of the Solution (b∗,p∗) of OP2

The KKT conditions are written as [30]

∂fOP2

∂bi
+

N+L+1∑
%OP2=1

λ%OP2

∂g%OP2

∂bi
= 0, (4.23a)

g%OP2λ%OP2 = 0, (4.23b)

g%OP2 ≤ 0, (4.23c)

λ%OP2 ≥ 0, (4.23d)

i = 1, ..., N and %OP2 = 1, ..., N + L+ 1. One can show that (4.23a)-(4.23d) are satisfied,

as sketched in the proof below.

• Proof of (4.23a): one can find that (4.23a) is satisfied from (4.14a) directly.

• Proof of (4.23b): one of the following possibilities exist in cases 1–8:

1. Either λ%OP2 = 0, %OP2 = 1, ..., N +L+ 1 (as in case 1); hence, g%OP2λ%OP2 = 0.

2. Either y%OP2 = 0, %OP2 = 1, ..., N +L+ 1, so G%OP2 = g%OP2 = 0 from (4.12) (as

in case 8); hence, g%OP2λ%OP2 = 0.

3. Either: λ%x = 0, %x ∈ {%OP2 = 1, ..., N + L + 1} and y%y = 0, %y ∈ {%OP2 =

1, ..., N + L + 1}, %x 6= %y (as in cases 2–7), hence, G%y = g%y from (4.12)).

Thus, g%OP2λ%OP2 = 0, %OP2 = 1, ..., N + L+ 1.

• Proof of (4.23c): adding non-negative slack variables in (4.12) guarantees that

g%OP2 ≤ 0, %OP2 = 1, ..., N + L+ 1; hence, (4.23c) is satisfied.

• Proof of (4.23d): the Lagrangian multipliers are found to be non-negative in order

to obtain the optimal solution. �
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Chapter 5

Rate-Interference Tradeoff in

OFDM-based Cognitive Radio

Systems

5.1 Abstract

In this paper, we investigate the tradeoff between increasing the secondary users (SUs)

transmission rate and reducing the interference levels at the primary users (PUs) for or-

thogonal frequency division multiplexing based cognitive radio systems. To achieve this

target, we formulate a generalized multiobjective optimization (MOOP) problem that

jointly maximizes the transmission rate of the SU and minimizes the co-channel inter-

ference (CCI) and adjacent channel interference (ACI) to existing PUs. We additionally

constrain the allowed CCI and ACI to the PUs in order to guarantee the PUs protec-

tion from harmful interference. The MOOP problem is solved by linearly combining the

normalized competing objective functions—through weighting coefficients—into a single

objective function. Prior work in the literature that maximizes the SU transmission rate
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can be considered as a special case of the generalized MOOP problem by setting the

weighting coefficients associated with interference minimization to zero. Since estimat-

ing the full channel-state information (CSI) of the links between the SU transmitter and

the PUs receivers is practically challenging, we assume only partial CSI knowledge of

these links. Simulation results illustrate the performance of the proposed algorithm and

quantify the SU performance loss due to incomplete CSI knowledge. Furthermore, the

proposed algorithm is compared to state-of-the-art techniques and our performance results

show that the proposed algorithm is more energy-aware, yet with reduced complexity.

5.2 Introduction

The Federal Communications Commission’s report [1] reveals that the spectrum under-

utilization problem faced by the wireless industry is a result of traditional inefficient spec-

trum allocation policies rather than an actual scarcity of radio spectrum. Therefore, the

concept of dynamic spectrum access is proposed to improve the spectrum utilization [2].

Cognitive radio (CR) promotes this concept by permitting secondary users (SUs) to op-

portunistically access spectrum holes in primary users (PUs) frequency bands, subject to

constrained degradation of the PUs performance [2].

Cognitive radio is based on a flexible software-defined-radio (SDR) platform that is

capable of adapting its transmission parameters to surrounding environmental conditions,

with two target objectives [2]: 1) improving the spectrum utilization by maximizing

the transmission rate of SUs for a given bandwidth and 2) controlling the amount of

co-channel interference (CCI) and adjacent channel interference (ACI) leaked to PUs

receivers due to the SUs transmission. Considering both objectives is a challenging task

for the SDR platform, as they are conflicting, i.e., increasing the transmission rate of SUs

is accompanied by an increase in the SU transmit power and, hence, potentially excessive

111



interference levels to PUs. Therefore, a tradeoff exists between the two objectives and

it should be carefully investigated in order to have a flexible design that improves the

overall performance of the CR systems. In prior work, this design flexibility was not fully

exploited as all the proposed algorithms focused on maximizing the SUs transmission

rate, with predefined thresholds for the leaked interference, and less attention was given

to minimizing the leaked interference to PUs [3–8].

Orthogonal frequency division multiplexing (OFDM) is widely recognized as an at-

tractive candidate for SUs transmission due to its capabilities in analyzing the spectral

activities of PUs [9]. Bansal et al. [3] investigated the optimal power allocation problem

in OFDM-based CR systems to maximize the SU downlink transmission rate under a

constraint on the instantaneous interference to PUs. Zhang and Leung [4] proposed a low

complexity suboptimal algorithm in which SUs may access both non-active and active

PUs frequency bands, as long as the total CCI and ACI are within acceptable limits.

Zhao and Kwak [5] maximized the throughput of the SU while keeping the interference to

PUs below a certain threshold. In [6], Bansal et al. maximized the transmission rate of

an OFDM-based CR network while satisfying probabilistic interference constraints to the

PUs. In [7], Hasan et al. presented a solution to maximize the SU transmission rate while

taking into account the interference leakage to PUs and the availability of subcarriers,

i.e., the activity of PUs in the licensed bands.

In general, it is preferable for SUs to generate interference levels that are lower than

predefined limits to compensate for spectrum sensing or channel estimation errors, both

of which may lead to violation of the CCI and ACI constraints. Moreover, reducing

the transmit power (that results from minimizing the CCI or ACI) is important due to

various environmental and technical reasons, e.g., reducing global CO2 emissions and the

power needed to operate future mobile broadband systems. This motivates us to adopt

a multiobjective optimization (MOOP) approach for the resource allocation problem to
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investigate the rate-interference tradeoff of OFDM-based CR systems. Recently, MOOP

has attracted researchers’ attention due to its flexible and superior performance over single

objective optimization approaches, e.g., having two objectives in the cost function provides

significant performance improvements when compared with having a single objective in

the cost function and using the other objective as a constraint [10, 11].

In this paper, we provide a mathematical framework for the rate-interference tradeoff

of OFDM-based CR systems. This is achieved by formulating a MOOP problem that

jointly maximizes the SU transmission rate and minimizes the leaked CCI and ACI inter-

ferences to the PUs receivers. We additionally set predefined interference thresholds per

each PU as constraints. We consider partial channel-state information (CSI) knowledge

on the links between the SU transmitter and the PUs receivers and full CSI knowledge

between the SU transmitter and receiver pair. Simulation results show the performance

of the proposed algorithm and illustrate the SU performance degradation due to the

partial CSI knowledge. Additionally, the results show the advantages that the MOOP

approach provides compared to the classical single optimization approaches proposed in

the literature, with no additional complexity.

The remainder of the paper is organized as follows. Section 5.3 introduces the system

model. Section 5.4 analyzes the MOOP problem, outlines the proposed algorithm, and

provides a complexity analysis. Simulation results are presented in Section 5.5, while

conclusions are drawn in Section 5.6.

5.3 System Model

5.3.1 System Description

The available spectrum is divided into L subchannels that are licensed to L PUs. PUs do

not necessarily fully occupy their licensed spectrum temporally and/or spatially; hence,
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an SU may access such spectrum holes as long as no harmful interference occurs to

frequency-adjacent PUs due to ACI or to other PUs operating in the same frequency

band at distant locations due to CCI [12]. Without loss of generality, we assume that

the SU decides to access subchannel m of bandwidth Bm using OFDM; this decision can

be reached by consulting a database administrated by a government or third party, or by

optionally sensing the PUs radio spectrum [13].

As common practice in the literature, we assume that the instantaneous channel gains

between the SU transmitter and receiver pair are available through a delay- and error-free

feedback channel [3–8]. As estimating the instantaneous channel gains between from the

SU transmitter to PUs receivers is practically challenging without the PUs cooperation, we

assume partial CSI knowledge on the links between the SU transmitter and PUs receivers.

More specifically, we assume: 1) knowledge of the path loss, which is practically possible

especially in applications with stationary nodes, where the path loss exponent and the

node locations can be estimated with high accuracy [14] and 2) knowledge of the path

loss and the channel statistics (i.e., the fading distribution and its parameters), which

is a reasonable assumption for certain wireless environments, e.g., in non-line-of-sight

urban environments, a Rayleigh distribution is usually assumed for the magnitude of

the fading channel coefficients. The case of full CSI knowledge on the links between

the SU transmitter and PUs receivers represents an upper bound on the achievable SU

performance and is additionally provided in the numerical results section to characterize

the performance loss due to partial CSI knowledge.
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5.3.2 Modeling of the CCI and ACI Constraints with Partial

CSI Knowledge

Case 1—Knowledge of the path loss

The transmit power on subchannel m should be limited to a certain threshold P
(m)
th

to protect the mth distant PU receiver from harmful CCI. This can be expressed as

10−0.1 PL(dm)∑N
i=1 pi ≤ P

(m)
th , where PL(dm) is the distance-based path loss in dB at dis-

tance dm from the SU and pi is the allocated power per subcarrier i, i = 1, ..., N . To

reflect the SU transmitter’s power amplifier limitations and/or to satisfy regulatory max-

imum power limits, the total SU transmit power should be limited to a certain threshold

Pth as ∑N
i=1 pi ≤ Pth. Hence, the constraint on the total transmit power is formulated as∑N

i=1 pi ≤
[
Pth,

P
(m)
th

10−0.1 PL(dm)

]−
, where [x, y]− represents min(x, y). To simplify the nota-

tion and without loss of generality, we assume that P
(m)
th

10−0.1 PL(dm) < Pth. Hence, the CCI

constraint is written as

N∑
i=1

pi ≤ P
(m)
th X

(m)
Case 1, (5.1)

where X(m)
Case 1 = 1

10−0.1 PL(dm) represents the channel knowledge coefficient from the SU

transmitter to the mth PU receiver for the case of only knowing the path loss.

The ACI is mainly due to the power spectral leakage of the SU subcarriers to the PUs

receivers. This depends on the power allocated to each SU subcarrier and the spectral

distance between the SU subcarriers and the PUs receivers. The ACI to the `th PU

receiver should be limited to a certain threshold P (`)
th as 10−0.1 PL(d`)∑N

i=1 pi$
(`)
i ≤ P

(`)
th , ` =

1, ..., L, where $(`)
i = Ts

∫ fi,`+B`
2

fi,`−
B`
2

sinc2(Tsf) df , Ts is the SU OFDM symbol duration, fi,`

is the spectral distance between the SU subcarrier i and the `th PU frequency band, B`

is the bandwidth of `th PU, and sinc(x) = sin(πx)
πx

. The ACI constraint can be further
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written as

N∑
i=1

pi $
(`)
i ≤ P

(`)
th X

(`)
Case 1, ` = 1, ..., L, (5.2)

where X(`)
Case 1 = 1

10−0.1 PL(d`)
is the channel knowledge coefficient from the SU transmitter

to the `th PU receiver for the case of only knowing the path loss.

Case 2—Knowledge of the path loss and channel statistics

The CCI constraint is written as |H(m)
sp |210−0.1 PL(dm)∑N

i=1 pi ≤ P
(m)
th , where H(m)

sp is the

channel gain to the distant mth PU receiver. Since H(m)
sp is not perfectly known at the

SU transmitter, the CCI constraint is limited below the threshold P
(m)
th with at least

a probability of Ψ(m)
th . This is formulated as Pr

(
|H(m)

sp |210−0.1 PL(dm)∑N
i=1 pi ≤ P

(m)
th

)
≥

Ψ(m)
th . A non-line-of-sight propagation environment is assumed; therefore, the channel

gain H(m)
sp can be modeled as a zero-mean complex Gaussian random variable, and, hence,

|H(m)
sp |2 follows an exponential distribution [6]. After some mathematical manipulations,

the CCI statistical constraint can be expressed as

N∑
i=1

pi ≤ P
(m)
th X

(m)
Case 2, (5.3)

where X(m)
Case 2 = ν(m)(

− ln(1−Ψ(m)
th )

)
10−0.1 PL(dm)

is the channel knowledge coefficient from the

SU transmitter to the mth PU receiver for the case of knowing the path loss and the

channel statistics and 1
ν(m) is the mean of the exponential distribution. Similarly, the ACI

constraint can be written as

N∑
i=1

pi $
(`)
i ≤ P

(`)
th X

(`)
Case 2, ` = 1, ..., L, (5.4)
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where X(`)
Case 2 = ν(`)(

− ln(1−Ψ(`)
th )
)

10−0.1 PL(d`)
is the channel knowledge coefficient to the `th PU

receiver for the case of knowing the path loss and the channel statistics and 1
ν(`) is the

mean of the exponential distribution.

5.4 Joint Rate and Interference Optimization

5.4.1 Problem Formulation and Analysis

For most of the MOOP problems, due to the contradiction and incommensurability of the

competing objective functions it is not possible to find a single solution that optimizes all

the objectives simultaneously, i.e., there is no solution that improves one of the objective

functions without deteriorating other objectives. However, a set of non-dominated Pareto

optimal solutions exists and it is the decision maker’s (the SU in our case) responsibility

to choose its preferred optimal solution [10]. If the objective functions and constraints are

convex, then the obtained Pareto optimal solution is referred to as a global Pareto optimal

solution; otherwise, it is refereed to as a local Pareto optimal solution [10]. Furthermore,

the obtained solution is a weak Pareto optimal solution if there is no other solution that

causes every objective to improve; otherwise, it is refereed to as a strong Pareto optimal

solution [10].

We formulate an MOOP problem that jointly minimizes the CCI to a distant PU

(working on the same frequency band as the SU), minimizes the ACI to adjacent PUs,

and maximizes the SU transmission rate, while guaranteeing acceptable levels of CCI and

ACI to the existing PUs receivers, as

min
pi

1
X(m)

N∑
i=1

pi and min
pi

1
X(`)

N∑
i=1

pi$
(`)
i and max

pi
∆f

N∑
i=1

log2(1 + pi
|Hi|2

σ2
n + Ji

),
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subject to C1 :
N∑
i=1

pi ≤ P
(m)
th X(m), and C2 :

N∑
i=1

pi$
(`)
i ≤ P

(`)
th X

(`), ` = 1, ..., L,

(5.5)

where X(m) ∈
{
X

(m)
Case 1, X

(m)
Case 2

}
and X(`) ∈

{
X

(`)
Case 1, X

(`)
Case 2

}
represent the channel

knowledge coefficients from the SU transmitter to the mth and `th PUs receivers, re-

spectively, ∆f is the subcarrier spacing of the OFDM SU, Hi is the channel gain of

subcarrier i, i = 1, ..., N , between the SU transmitter and receiver pair, σ2
n is the variance

of the additive while Gaussian noise (AWGN), and Ji is the average interference power

from all the PUs to the SU subcarrier i, i = 1, ..., N where the PU signal is modeled as

an elliptical filtered white noise process [3]. We solve the MOOP problem in (5.5) by

linearly combining the competing CCI, ACI, and rate objectives into a single objective

function through weighting coefficients αCCI, α(`)
ACI, and αrate, respectively. In order for

the weighting coefficients to directly reflect the importance of the objectives, the CCI,

ACI, and rate objectives are scaled using the normalization factors uCCI, u(`)
ACI, and urate,

respectively, such that they are approximately within the same range [10]. That being

said, the normalization factors are set to the maximum of each objective, i.e., uCCI = 1
P

(m)
th

,

u
(`)
ACI = 1

P
(`)
th

, and urate is the inverse of the maximum achievable rate, so that the three

objectives are within the range [0,1]. The MOOP in (5.5) is written as

min
pi

αCCI
uCCI

X(m)

N∑
i=1

pi +
L∑
`=1

α
(`)
ACI

u
(`)
ACI
X(`)

N∑
i=1

pi$
(`)
i − αrateurate∆f

N∑
i=1

log2(1 + γipi),

subject to C1—C2, (5.6)

where αCCI + ∑L
`=1 α

(`)
ACI + αrate = 1. We assume that the SU chooses the proper values

of αCCI, α
(`)
ACI, αrate depending on the application, the surrounding environment, and/or

the target performance [10, 11]. For example, if the transmission rate, and, hence, the

transmission time is crucial, then the SU chooses higher values for αrate. On the other
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hand, if minimizing the CCI/ACI, and, hence, improving the energy efficiency is more

important, then the SU chooses higher values for αCCI/α(`)
ACI. The optimization problem

in (5.6) is convex, as the objective function is the sum of convex functions and the con-

straints are convex [15], and it can be solved by applying the Karush-Khun-Tucker (KKT)

conditions (i.e., transforming the inequalities constraints to equality constraints by adding

non-negative slack variables) [15]. The Lagrangian function L(p,y,λ) is expressed as

L(p,y,λ) = αCCI
uCCI

X(m)

N∑
i=1

pi +
L∑
`=1

α
(`)
ACI

u
(`)
ACI
X(`)

N∑
i=1

pi$
(`)
i − αrateurate∆f

N∑
i=1

log2(1 + γipi)

+ λ1

[
N∑
i=1

pi − P (m)
th X(m) + y2

1

]
+

L∑
`=1

λ
(`)
2

[
N∑
i=1

pi$
(`)
i − P

(`)
th X

(`) + (y(`)
2 )2

]
,(5.7)

where y =
[
y2

1, (y
(`)
2 )2

]T
and λ =

[
λ1, λ

(`)
2

]T
, ` = 1, ..., L, are the vectors of the slack

variables and Lagrange multipliers of length L + 1, respectively. The optimal solution is

found when ∇L(p,y,λ) = 0, which yields

∂L
∂pi

= αCCI
uCCI

X(m) +
L∑
`=1

α
(`)
ACI

u
(`)
ACI
X(`)$

(`)
i −

αrateurate∆f
ln(2)(pi + γ−1

i )
+ λ1 +

L∑
`=1

λ
(`)
2 $

(`)
i = 0,(5.8)

∂L
∂λ1

=
N∑
i=1

pi − P (m)
th X(m) + y2

1 = 0, (5.9)

∂L
∂λ

(`)
2

=
N∑
i=1

pi$
(`)
i − P

(`)
th X

(`) + (y(`)
2 )2 = 0, (5.10)

∂L
∂y1

= 2λ1y1 = 0, (5.11)

∂L
∂y

(`)
2

= 2λ(`)
2 y

(`)
2 = 0. (5.12)

It can be seen that (5.8)–(5.12) represent N+2L+2 equations in the N+2L+2 unknown

components of the vectors p,y, and λ. From (5.8), the optimal power allocation per
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subcarrier is given as

p∗i =

 αrateurate∆f/ ln(2)

αCCI
uCCI
X(m) +∑L

`=1 α
(`)
ACI

u
(`)
ACI
X(`) $

(`)
i + λ1 +∑L

`=1 λ
(`)
2 $

(`)
i

− γ−1
i


+

, i = 1, ..., N, (5.13)

where [x]+ represents max(0, x). In (5.13), the value of the Lagrangian multipliers λ1 and

λ
(`)
2 are determined as explained below depending on whether the CCI and ACI constraints

are active or inactive1, respectively. Equation (5.11) implies that either λ1 = 0 or y1 = 0

and (5.12) implies that either λ(`)
2 = 0 or y(`)

2 = 0, ` = 1, ..., L. Hence, four possible cases

exist, as follows:

—Case 1 : Setting λ1 = 0 (i.e., ∑N
i=1 p

∗
i < P

(m)
th X(m)) and λ(`)

2 = 0 (i.e., ∑N
i=1 p

∗
i$

(`)
i <

P
(`)
th X

(`)) results in the optimal solution for inactive CCI and ACI constraints.

—Case 2 : Setting y1 = 0 (i.e., ∑N
i=1 p

∗
i = P

(m)
th X(m)) and λ(`)

2 = 0 (i.e., ∑N
i=1 p

∗
i$

(`)
i <

P
(`)
th X

(`)) results in the optimal solution for active CCI and inactive ACI constraints.

—Case 3 : Setting λ1 = 0 (i.e., ∑N
i=1 p

∗
i < P

(m)
th X(m)) and y(`)

2 = 0 (i.e., ∑N
i=1 p

∗
i$

(`)
i =

P
(`)
th X

(`)) results in the optimal solution for inactive CCI and active ACI constraints.

—Case 4 : Setting y1 = 0 (i.e., ∑N
i=1 p

∗
i = P

(m)
th X(m)) and y(`)

2 = 0 (i.e., ∑N
i=1 p

∗
i$

(`)
i =

P
(`)
th X

(`)) results in the optimal solution for active CCI and ACI constraints.

Similar to the discussion in Appendix B of Chapter 4, the solution p∗i can be shown

to satisfy the KKT conditions [15], and, hence, it is an optimal solution.

5.4.2 Proposed Algorithm and Complexity Analysis

The proposed algorithm can be formally stated as follows:

Proposed Algorithm
1: INPUT σ2

n, Hi, αCCI, α(`)
ACI, αrate, P (m)

th , P (`)
th , X(m), and X(`), ` = 1, ..., L.

1A constraint on the form Γ(x) ≤ Γth is said to be inactive if Γ(x) < Γth, while it is active if
Γ(x) = Γth.

120



Proposed Algorithm (continued)
2: - assume the optimal solution p∗i belongs to case 1.
3: - find p∗i from (5.13) when λ1 = λ

(`)
2 = 0.

4: if in Step 2, the assumption on the CCI constraint is not true and the assumption on the
ACI constraint is true then

5: - the optimal solution p∗i belongs to case 2, i.e., find a non-negative λ1 from (5.13) such
that

∑N
i=1 p

∗
i = P

(m)
th X(m).

6: end if
7: if in Step 2, the assumption on the CCI constraint is true and the assumption on the ACI

constraint is not true then
8: - the optimal solution p∗i belongs to case 3, i.e., find a non-negative λ(`)

2 from (5.13) such
that

∑N
i=1 p

∗
i$

(`)
i = P

(`)
th X

(`), ` = 1, ..., L.
9: end if
10: if in Step 2, the assumption on the CCI constraint is not true and the assumption on the

ACI constraint is not true then
11: - the optimal solution p∗i belongs to case 4, i.e., find non-negative λ1 and λ(`)

2 from (5.13)
such that

∑N
i=1 p

∗
i = P

(m)
th X(m) and

∑N
i=1 p

∗
i$

(`)
i = P

(`)
th X

(`), ` = 1, ..., L, respectively.
12: end if
13: OUTPUT p∗i , i = 1, ..., N .

The complexity order to find p∗i is O(NΩ), where O(Ω) is the complexity to find the

Lagrangian multipliers. The authors in [16] showed that the Lagrange multipliers λ1 and

λ
(`)
2 , ` = 1, ..., L, that satisfy the CCI and ACI constraints, respectively, can be obtained

with linear complexity of the number of subcarrier N , i.e., O(N). Hence, the complexity

of the proposed algorithm is O(N2).

5.5 Numerical Results

Without loss of generality, we assume that the OFDM SU coexists with one frequency-

adjacent PU and one co-channel PU. The SU parameters are as follows: number of sub-

carriers N = 128 and subcarrier spacing ∆f = 1.25 MHz
N

= 9.7656 kHz. The propagation

path loss parameters are as follows: exponent = 4, wavelength = 3×108

900×106 = 0.33 meters,

distance between SU transmitter and receiver pair = 1 km, distance to the `th PU d` = 1.2

km, distance to the mth PU dm = 5 km, and reference distance d0 = 100 m. A Rayleigh
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fading environment is considered, where the average channel power gains between the SU

transmitter and receiver pair E{|Hi|2}, between the SU transmitter and the receiver of

the `th PU E{|H(`)
sp |2}, and between the SU transmitter and the receiver of the mth PU

E{|H(m)
sp |2} are set to 0 dB. σ2

n is assumed to be 10−15 W and the PU signal at the SU

receiver is assumed to be an elliptically filtered white noise process of variance σ2
n [3].

Representative results are presented in this section, which were obtained through Monte

Carlo trials for 104 channel realizations. Unless otherwise mentioned, the value of the

probabilities Ψ(m)
th and Ψ(`)

th is set to 0.9, P (m)
th = 10−11 W, and P (`)

th = 10−11 W. In order

to better understand the MOOP approach, we consider the performance of the proposed

algorithm when: 1) αCCI 6= 0, αrate 6= 0, and α
(`)
ACI = 0, 2) α(`)

ACI 6= 0, αrate 6= 0, and

αCCI = 0, and 3) αCCI 6= 0, α(`)
ACI 6= 0, and αrate 6= 0.

5.5.1 Performance of the Proposed Algorithm

Fig. 5.1 shows the interference leaked to the mth PU receiver as a function of P (m)
th

2 at

α
(`)
ACI = 0 for different values of αCCI and αrate and for different degrees of CSI knowledge.

As can be seen, increasing the value of αCCI (which is equivalent to decreasing the value

of αrate, as αCCI +αrate = 1 at α(`)
ACI = 0) reduces the leaked interference to the mth PU for

all the cases of CSI knowledge. This can be easily explained, as increasing αCCI gives more

weight to minimizing the CCI objective and less weight to maximizing the rate objective in

(5.6). Accordingly, increasing αCCI reduces the CCI to the mth PU receiver, but also the

SU achievable rate. The interference leaked to themth PU receiver increases linearly with

increasing P (m)
th for lower values of P (m)

th and saturates for higher values of P (m)
th . This can

be explained as follows. For lower values of P (m)
th , the interference leaked to the mth PU

receiver is higher than the value of P (m)
th and, hence, it is limited by the value of P (m)

th . On
2It is worthy to mention that the proposed algorithm performance is investigated over a large scale

of P (m)
th values, however, we focus here on the range up to 20 × 10−12 W. This is as for higher than

20× 10−12 W the performance starts to saturate.
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Fig. 5.1: Interference leaked to the mth PU as a function of P (m)
th for different values

of αCCI and αrate and for different degree of CSI knowledge, at P (`)
th = 10−11 W and

Ψ(m)
th = Ψ(`)

th = 0.9.

the other hand, for higher values of P (m)
th , the interference leaked to the mth PU receiver is

less than the value of P (m)
th as it is minimized by the proposed algorithm, and, hence, it is

kept constant. As expected, knowing the full CSI allows the SU to exploit this knowledge

and to transmit with higher power (without violating the interference constraints at the

PUs) and higher rate (as shown in the discussion of Fig. 5.2). On the other hand, partial

CSI knowledge reduces the transmission opportunities of the SU in order not to violate

the interference constraints. Note that the case of knowing only the path loss generates

higher interference levels (and higher SU transmit power, hence, higher SU rates as shown

in Fig. 5.2) to existing PUs when compared to the case of knowing the path loss and

the channel statistics. This is due to the high values of the predefined probabilities Ψ(m)
th

and Ψ(`)
th (= 0.9); reducing these values produces higher interference levels to the PUs and

higher SU rates, as it will be shown later in Fig. 5.3.

Fig. 5.2 depicts the SU achievable rate as a function of P (m)
th at α(`)

ACI = 0 for different
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Fig. 5.2: SU rate as a function of P (m)
th for different values of αCCI and αrate and for

different degree of CSI knowledge, at P (`)
th = 10−11 W and Ψ(m)

th = Ψ(`)
th = 0.9.

values of αCCI and αrate and for different degrees of CSI knowledge. Similar to the discus-

sion of Fig. 5.1, the SU achievable rate saturates for higher values of P (m)
th . This is because

the SU transmit power saturates for higher values of P (m)
th . As expected, increasing the

value of αCCI (or decreasing the value of αrate) decreases the SU achievable rate. Further,

knowing the full CSI results in higher transmission rate when compared to partial CSI

knowledge.

In Fig. 5.3, the leaked interference to the mth PU receiver and SU achievable rate

are depicted as a function of the probability Ψ(m)
th , respectively, at α(`)

ACI = 0 for different

values of αCCI and αrate. As expected, increasing the value of Ψ(m)
th , decreases the leaked

interference to the mth PU receiver and the SU achievable rate in order to meet such

tight statistical constraints (i.e., meeting the CCI constraint with higher probability).

The achieved SU rate and leaked interference to the mth PU receiver drop to zero for

Ψ(m)
th = 1, as the proposed algorithm cannot meet such stringent requirements of satisfying
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Fig. 5.3: SU rate and interference leaked to the mth PU as a function of Ψ(m)
th for different

values of αCCI and αrate, at P (m)
th = P

(`)
th = 10−11 W and Ψ(`)

th = 0.9.

the active CCI constraint all the time, without knowledge of the instantaneous channel

gains.

Fig. 5.4 shows the achievable SU rate as a function of P (`)
th at αCCI = 0 for different

values of α(`)
ACI and αrate and different degrees of CSI knowledge. As can be noticed,

increasing the value of P (`)
th increases the SU rate. This occurs as increasing P (`)

th apparently

increases the transmit power and, hence, the rate increases. As expected, increasing the

value of α(`)
ACI (which is equivalent to decreasing the value of αrate, as α(`)

ACI + αrate = 1 at

αCCI = 0) decreases the achievable SU rate. Moreover, knowing the full CSI allows the

SU to achieve higher rates and transmit higher power without violating the CCI and ACI

constraints.

Fig. 5.5 shows the effect of changing the weighting coefficients αCCI, α(`)
ACI, and αrate

on the SU rate and interference to the mth PU. Similar to the previous discussions, one

can notice that the SU achieves a higher transmission rate for increased αrate and the
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Fig. 5.6: Comparison between the SU energy efficiency of the proposed algorithm and the
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leaked interference to the mth PU is reduced for increased αCCI. Additionally, the effect

of αCCI on the SU rate is stronger when compared with that of α(`)
ACI; this is because the

SU rate is a function of the transmit power which is affected more by αCCI (related to the

power itself) than α(`)
ACI (related to the weighted power). We should note that increasing

α
(`)
ACI reduces the interference to the adjacent `th PU receiver; however, the results are

not included due to space limitations.

5.5.2 Performance Comparison with Algorithms in the Litera-

ture

Fig. 5.6 compares the energy efficiency (in bits/joule) of the work in [3] and the proposed

algorithm, at αCCI = 0 for different values of α(`)
ACI and αrate and for the same operating

conditions. As can be seen, the energy efficiency of the proposed algorithm is higher than

its counterpart in [3] and it decreases with increasing P (`)
th . This is due to the logarithmic

127



1 4 8 12 16 20
2

4

6

8

10

12

14

16

P
(m)
th (×10−12 W)

E
n
er

g
y

effi
ci

en
cy

(×
10

6
b
it

s/
jo

u
le

)

 

 

αCCI = 0, αrate = 1 or [6]

αCCI = 0.25, αrate = 0.75

αCCI = 0.50, αrate = 0.50

αCCI = 0.75, αrate = 0.25
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expression of the rate, i.e., log2(1 + γipi), where increasing P
(`)
th (that corresponds to

increasing the value of pi) at the low range of the power results in a notable increase in

the rate, while increasing the power at the high range of the power results in a negligible

increase in the rate. The computational complexity of the work in [3] is O(N3) when

compared with O(N2) of the proposed algorithm; hence, the improved energy efficiency

of the proposed algorithm is achieved with reduced complexity.

In Fig. 5.7, the energy efficiency of the work in [6] and the proposed algorithm,

at α(`)
ACI = 0 for different values of αCCI and αrate, is compared for the same operating

conditions. As can be noticed, the proposed algorithm is more energy efficient when

compared to the work in [6]. The energy efficiency of the proposed algorithm saturates

for higher values of P (m)
th ; this is expected as the transmit power and the rate saturate

for higher values of P (m)
th (as can be seen from Figs. 5.1 and 5.2). The complexity of

the algorithm in [6] is O(N3) when compared with O(N2) of the proposed algorithm;
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hence, the improved energy efficiency of the proposed algorithm is achieved with reduced

complexity.

5.6 Conclusions

In this paper, we considered an OFDM-based CR network and adopted a multiobjective

optimization approach to investigate the tradeoff between improving the spectrum uti-

lization (through increasing the SU transmission rate) and reducing the CCI and ACI to

the PUs. This formulation is considered as a generalization of the work in the literature

that focused only on maximizing the SU transmission rate. A flexible low complexity

algorithm was proposed to solve the MOOP problem. Simulation results showed the flex-

ibility of the proposed algorithm, with which the SU can tradeoff rates and interference

levels optimally by changing the weighting coefficients. Further, results show the advan-

tage of using the MOOP approach when compared to the single objective approaches in

terms of improving the energy efficiency with reduced complexity.
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Chapter 6

Energy-Efficient Power Loading for

OFDM-based Cognitive Radio

Systems with Channel Uncertainties

6.1 Abstract

In this paper, we propose a novel algorithm to optimize the energy-efficiency (EE) of

orthogonal frequency division multiplexing-based cognitive radio systems under channel

uncertainties. We formulate an optimization problem that guarantees a minimum re-

quired rate and a specified power budget for the secondary user (SU), while restricting

the interference to primary users (PUs) in a statistical manner. The optimization prob-

lem is non-convex and it is transformed to an equivalent problem using the concept of

fractional programming. Unlike all related works in the literature, we consider the effect

of imperfect channel-state-information (CSI) on the links between the SU transmitter

and receiver pairs and we additionally consider the effect of limited sensing capabilities of

the SU. Since the interference constraints are met statistically, the SU transmitter does
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not require perfect CSI feedback from the PUs receivers. Simulation results show that

the EE deteriorates as the channel estimation error increases. Comparisons with relevant

works from the literature show that the interference thresholds at the PUs receivers can

be severely exceeded and the EE is slightly deteriorated if the SU does not account for

spectrum sensing errors.

6.2 Introduction

Cognitive radio (CR) can considerably enhance the spectrum utilization efficiency by dy-

namically sharing the spectrum between licensed/primary users (PUs) and unlicensed/secondary

users (SUs) [1]. This is achieved by granting SUs opportunistic access to the white spaces

within PUs spectrum, while controlling the interference to PUs. Orthogonal frequency di-

vision multiplexing (OFDM) is recognized as an attractive modulation technique for CR

due to its spectrum shaping flexibility, adaptivity in allocating vacant radio resources,

and capability of analyzing the spectral activities of PUs [2]. Generally speaking, the

interference introduced to PUs bands in OFDM-based CR networks can be classified as:

1) mutual interference (co-channel interference (CCI) and adjacent channel interference

(ACI)) between the SU and PUs due to the non-orthogonality of their respective transmis-

sions [2] and 2) interference due to the SU’s imperfect spectrum sensing capabilities [1].

Most of the existing research has focused on optimizing the transmission rate of SUs

while limiting the interference introduced to PUs to predefined thresholds (see, e.g., [3,

4] and references therein). Recently, optimizing the energy-efficiency (EE)—defined as

the total energy consumed to deliver one bit, or its inverse1—has received increasing

attention due to steadily rising energy costs and environmental concerns [5–12]. Wang

et al. in [6] optimized the EE of an OFDM-based CR network subject to power budget
1The EE can be defined as the number of bits per unit energy. However, it is common to define it as

the total energy consumed to deliver one bit, please see [5–7].
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and interference constraints; however, this comes at the expense of deteriorating the rate

of the SU. Oto and Akan in [7] found the optimal packet size that maximizes the EE

of CR sensor networks while maintaining acceptable interference levels to the licensed

PUs. In [8], Xie et al. investigated the problem of maximizing the EE of heterogeneous

cognitive radio networks coexisting with femtocells. Wang et al. in [9] optimized the EE of

OFDM-based CR system subject to PUs interference constraints and different SUs rates.

In [10], Mao et al. optimized the EE of CR MIMO broadcast channels while guaranteeing

certain interference threshold at the PUs receivers. The same authors optimized the EE

of OFDM-based CR systems subject to controlled interference leakage to PUs in [11].

To the authors’ knowledge, all prior research on optimizing the EE has assumed that

the SU has perfect spectrum sensing capabilities and perfect channel-state-information

(CSI) for the links between the SU transmitter and receiver pairs [6–11]. However, in

practice sensing is not fully reliable due to SU hardware limitations and variable channel

conditions. Furthermore, it is also of practical importance to study the impact of channel

estimation errors for the SU links on the EE optimization problem.

In this paper, we formulate a novel EE optimization problem for the SU subject

to its total transmit power budget and predefined quality-of-service (QoS) in terms of

the minimum supported rate, as well as statistical constraints on the CCI and ACI to

existing PUs. The optimization problem considers channel estimation errors for the links

between the SU transmitter and receiver pairs, along with SU spectrum sensing errors.

Furthermore, the SU does not rely on perfect CSI for the links between the SU transmitter

and PUs receivers, since the interference constraints are met statistically.

The remainder of the paper is organized as follows. Section 6.3 introduces the system

model. Section 6.4 analyzes the optimization problem and outlines the proposed algorithm

for its solution. Simulation results are presented in Section 6.5, while conclusions are

drawn in Section 6.6.
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6.3 System Model

6.3.1 System Description

The available spectrum is assumed to be divided into L subchannels that are licensed

to L PUs. We assume that the SU periodically senses the PUs spectrum in order to

identify vacant bands for its transmission. Without loss of generality, we consider that

the SU senses that subchannel m, of bandwidth B, is vacant. However, due to the varying

channel conditions between the SU and PUs, the SU may not detect the presence of the

mth PU. This means that the SU identifies the mth PU band as vacant when it is truly

occupied. This is referred to as a mis-detection error and it is assumed to occur with a

probability ρ(m)
md . On the other hand, the SU may identify the `th PU band as occupied

when it is truly vacant. This is referred to as a false-alarm error and it is assumed to occur

with a probability ρ(`)
fa . Mis-detection errors lead to severe co-channel interference to the

mth PU, while false-alarm errors result in the SU wasting transmission opportunities.

6.3.2 Modeling the Statistical CCI and ACI Constraints with

Imperfect SU Sensing

Using the Bayes’ theorem and the law of total probability, the probability that subchannel

m is truly occupied under the condition that the SU identified it to be vacant can be

expressed as [3]

β(m)
ov = ρ

(m)
md ρ

(m)

ρ
(m)
md ρ

(m) + (1− ρ(m)
fa )(1− ρ(m))

, (6.1)

where ρ(m) is the probability that the PU transmits on subchannel m and β(m)
ov represents

the probability that the interference due to mis-detection errors will be present in sub-

channel m, which is determined to be vacant by the SU. Furthermore, the probability
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that subchannel ` is truly occupied by the PU under the condition that the SU identified

it to be occupied can be written as

β(`)
oo = (1− ρ(`)

md)ρ(`)

(1− ρ(`)
md)ρ(`) + ρ

(`)
fa (1− ρ(`))

. (6.2)

Note that for perfect sensing β(m)
ov = 0 and β(`)

oo = 1.

Estimating the channel gains between the SU transmitter and the PUs receivers is

challenging without the PUs cooperation. Hence, we assume that the SU transmitter has

only knowledge of the fading distribution type and its corresponding parameters of the

channels on these links. This is a reasonable assumption for certain wireless environments.

For example, a Rayleigh distribution is usually assumed for the magnitude of the fading

channel coefficients in non-line-of-sight urban environments. The constraint on the CCI

from the SU to the mth PU is formulated as β(m)
ov |H(m)

sp |2G(m)∑N
i=1 pi ≤ P

(m)
th , where

H(m)
sp and G(m) are the channel gain and the distance-based path loss2 to the distant

mth PU receiver, pi is the power allocated to subcarrier i, i = 1, ..., N , and P (m)
th is the

interference threshold at the mth PU receiver. Since H(m)
sp is not perfectly known at the

SU transmitter, the CCI constraint is limited below the threshold P
(m)
th with at least a

probability of Ψ(m)
th . This is formulated as Pr

(
β(m)

ov |H(m)
sp |2G(m)∑N

i=1 pi ≤ P
(m)
th

)
≥ Ψ(m)

th .

A non-line-of-sight propagation environment is assumed; therefore, the channel gain H(m)
sp

can be modeled as a zero-mean complex Gaussian random variable, and, hence, |H(m)
sp |2

follows the exponential distribution [14]. After some mathematical manipulations, the

CCI statistical constraints can be expressed as∑N
i=1 pi ≤ 1

β
(m)
ov

ν(m)

G(m)
(
− ln(1−Ψ(m)

th )
)P (m)

th , where
1

ν(m) is the mean of the exponential distribution. To further reflect the SU transmitter’s

power amplifier limitations and/or satisfy regulatory maximum power limits, the total

SU transmit power is limited to a certain threshold Pth as ∑N
i=1 pi ≤ Pth. Therefore, the

2The SU is assumed to know the PUs location information by accessing a Radio Environment Map
[13].
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constraint on the SU total transmit power can be generalized as

N∑
i=1

pi ≤

Pth,
1

β
(m)
ov

ν(m)

G(m)
(
− ln(1−Ψ(m)

th )
)P (m)

th

− , (6.3)

where [x, y]− represents min(x, y). The ACI is mainly due to the power spectral leakage of

the SU subcarriers to the PUs receivers. This depends on the power allocated to each SU

subcarrier and the spectral distance between the SU subcarriers and the PUs receivers.

Similar to the CCI constraint, the statistical ACI constraint can be written as

N∑
i=1

pi $
(`)
i ≤

1
β

(`)
oo

ν(`)

G(`)
(
− ln(1−Ψ(`)

th )
)P (`)

th , ` = 1, ..., L, (6.4)

where 1
ν(`) and G(`) are the mean of the exponential distribution and the distance-based

path loss to the `th PU and $(`)
i = Ts,m

∫ fi,`+B`
2

fi,`−
B`
2

sinc2(Tsf)df , with Ts,m as the SU OFDM

symbol duration, fi,` as the spectral distance between the SU subcarrier i and the `th PU

frequency band, B` as the bandwidth of the `th PU, and sinc(x) = sin(πx)
πx

.

6.3.3 Modeling the Imperfect CSI on the Link Between the SU

Transmitter and Receiver

Unlike all the previous works in the literature that assume perfect CSI for the links

between the SU transmitter and receiver pairs [6–11], we consider the effect of the chan-

nel estimation errors on these links. The channel is assumed to change slowly and is

modeled as a time-invariant finite impulse response system with order equal to Nch,

h = [h(0), h(1), · · · , h(Nch)]T , where each channel tap is assumed to be complex Gaus-

sian distributed with zero-mean and variance σ2
h. To avoid the intersymbol interference,

a cyclic prefix is added at the SU transmitter and removed at the receiver. The noise

at the SU receiver is modeled as additive white Gaussian noise (AWGN) with zero mean

137



and correlation matrix equal to σ2
nI, where I is the identity matrix. The training pilot

symbols bpilot are added to the precoded block, where the receiver knows the pilot pat-

tern and estimates the channel using the linear minimum mean square error estimator

(LMMSE) as ĥ =
(
σ2
nR−1

h + BHB
)−1

BHx, where x is the received block and B is an

N × (Nch + 1) column wise circulant matrix with the first column equal to x [15]. The

subchannel estimates are computed as [15]
[
Ĥ(1), Ĥ(W ), . . . , Ĥ(WN−1)

]T
=
√
NFNchĥ,

where W = ej2π/N , FNch is a submatrix of F corresponding to the first Nch + 1 columns,

and F is the N ×N discrete Fourier transform matrix with the (l, n) element defined as

[F]l,n = W−ln/
√
N . The channel capacity is expressed in terms of the channel estimate

across subcarriers [15], while taking the interference from the PUs into account, as

c(p) = ∆f
N∑
i=1

log2

1 +

∣∣∣Ĥ (W i)
∣∣∣2Gpi

σ2
∆HGpi + σ2

n + Ji

, (6.5)

where ∆f is the subcarrier bandwidth, p = [p1, ..., pN ]T is the vector representing the

power allocated to each subcarrier, G is the distance-based path loss, Ji is the interference

from the PUs to subcarrier i of the SU (it depends on the SU receiver windowing function

and power spectral density of the PUs [16]), and σ2
∆H is the minimum mean square error

(MMSE) of the channel estimate. The latter can be expressed as σ2
∆H = (Nch+1)σ2

hσ
2
n

σ2
n+σ2

h
GPpilots

,

where Ppilots is the pilots’ transmitted power [15].

6.4 Optimization Problem and Proposed Algorithm

6.4.1 Optimization Problem Formulation and Analysis

Our target is to optimize the SU EE, under channel uncertainties, while guaranteeing a

total transmit power budget, limiting the CCI and ACI to the mth and `th PUs receivers

below certain thresholds with a predefined probability, and ensuring the SU QoS in terms
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of a minimum supported rate. In this paper, we minimize the EE defined as the total

energy consumed to deliver one bit. Accordingly, the optimization problem is formulated

as

OP1 : min
pi

ηEE = κ
∑N
i=1 pi + pc

c(p)
subject to C1 : (6.3), C2 : (6.4), C3 : c(p) ≥ Rth, (6.6)

where κ is a constant that depends on the power amplifier efficiency, pc is the circuitry

power consumption, and Rth is the minimum required SU rate. The objective function

in (6.6) is non-convex; hence, OP1 is non-convex and the global optimal solution is not

guaranteed. The non-convex optimization problem in (6.6) can be transformed to an

equivalent optimization problem using the concept of fractional programming [17]. Let

us define a new objective function as

Φ(p, q) = κ
N∑
i=1

pi + pc − q c(p), (6.7)

where q is a non-negative parameter/constant (and not a variable). We define a new

optimization problem OP2 as

OP2 : min
pi

Φ(p, q), subject to C1—C3. (6.8)

One can show that OP2 is quasi-convex (the proof is not provided due to space limita-

tions), and, hence, the global optimality is guaranteed. It was shown in [17] that at a

certain value of the parameter q, denoted as q∗, the optimal solution of OP2 is also the

optimal solution to OP1. Hence, finding the optimal power allocation p∗ of OP1 can be

realized by finding the optimal power allocation p∗(q) of OP2; then update the value of

q until it reaches q∗ [17]. Following [17], let us define Φmin(q) = min
pi
{Φ(p, q)|p ∈ S} to
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be the minimum of Φ(p, q), where S is the non-empty feasible region of OP1 and OP2

and q∗ is the minimum of ηEE(p), i.e., q∗ = ηEE(p∗) = κ
∑N

i=1 p
∗
i+pc

c(p∗) . If Φmin(q∗) = 0, then

the power that corresponds to q∗ = ηEE(p∗) is the optimal solution of OP1 [17]. OP2

can be solved by applying the Karush-Kuhn-Tucker (KKT) conditions [18], where the

Lagrangian function is expressed as

L(p,y,λ) = κ
N∑
i=1

pi + pc − q c(p)

+ λ1

 N∑
i=1

pi −

Pth,
1

β
(m)
ov

ν(m)

G(m)
(
− ln(1−Ψ(m)

th )
)P (m)

th

− + y2
1


+

L∑
`=1

λ
(`)
2

 N∑
i=1

pi $
(`)
i −

1
β

(`)
oo

ν(`)

G(`)
(
− ln(1−Ψ(`)

th )
)P (`)

th + y
(`)2

2


+ λ3

[
Rth − c(p) + y2

3

]
, (6.9)

where λ = [λ1, λ
(`)
2 , λ3]T and y = [y2

1, y
(`)2

2 , y2
3]T, ` = 1, ..., L, are the vectors of the

Lagrange multipliers and slack variables, respectively. A stationary point can be found

when ∇L(p,y,λ) = 0, which yields

∂L
∂pi

=
− ∆f

ln(2)(q + λ3)|Ĥ (W i)|2G (σ2
n + Ji)

σ2
∆HG

2(σ2
∆H + |Ĥ (W i)|2)p2

i +G (σ2
n + Ji)(2σ2

∆H + |Ĥ (W i)|2)pi + (σ2
n + Ji)2

+κ+ λ1 +
L∑
`=1

λ
(`)
2 $

(`)
i = 0, (6.10a)

∂L
∂λ1

=
N∑
i=1

pi −
[
Pth,

1
β

(m)
ov

ν(m)

G(m)(− ln(1−Ψ(m)
th ))

P
(m)
th

]−
+ y2

1 = 0, (6.10b)

∂L
∂λ

(`)
2

=
N∑
i=1

pi $
(`)
i −

1
β

(`)
oo

ν(`)

G(`)(− ln(1−Ψ(`)
th ))

P
(`)
th + y

(`)2

2 = 0, (6.10c)

∂L
∂λ3

= Rth − c(p) + y2
3 = 0, (6.10d)
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∂L
∂y1

= 2λ1 y1 = 0, (6.10e)

∂L
∂y

(`)
2

= 2λ(`)
2 y

(`)
2 = 0, (6.10f)

∂L
∂y3

= 2λ3 y3 = 0, (6.10g)

It can be seen that (6.10a)–(6.10g) represent N + 2L + 4 equations in the N + 2L +

4 unknown components of the vectors p,y, and λ. From (6.10a), the optimal power

allocation per subcarrier is given as

p∗i =

χi
−1 +

1−
(σ2

n + Ji)
G

−
∆f

ln(2)(q + λ3)|Ĥ (W i)|2

κ+ λ1 +∑L
`=1 λ

(`)
2 $

(`)
i

 2
χi
(
2σ2

∆H + |Ĥ (W i)|2
)
1/2


+

,

(6.11)

where [x]+ represents max(0, x) and the value of χi is calculated as χi =
(σ2
n+Ji)

(
2σ2

∆H+|Ĥ(W i)|2
)

2σ2
∆H

(
σ2

∆H+|Ĥ(W i)|2
)
G
.

In (6.11), the values of the Lagrangian multipliers λ1, λ(`)
2 , and λ3 are determined based

on whether the constraints on the CCI/total transmit power, ACI, and rate are active

or inactive, respectively (a constraint on the form Γ(x) ≤ Γth is said to be inactive if

Γ(x) < Γth, while it is active if Γ(x) = Γth). Equation (6.10e) implies that either λ1 = 0

or y1 = 0, (6.10f) implies that either λ(`)
2 = 0 or y(`)

2 = 0, and (6.10g) implies that either

λ3 = 0 or y3 = 0. Hence, eight possible cases exist, as follows:

—Cases 1 & 2 : setting λ1 = 0, λ(`)
2 = 0, and λ3 = 0 (case 1)/y3 = 0 (case 2) results

in the optimal solution for inactive CCI/total transmit power constraint, inactive ACI

constraints, and inactive/active rate constraint, respectively.

—Case 3 & 4 : setting y1 = 0, λ(`)
2 = 0, and λ3 = 0 (case 3)/y3 = 0 (case 4) results

in the optimal solution for active CCI/total transmit power constraint, inactive ACI

constraint, and inactive/active rate constraint, respectively.

—Case 5 & 6 : setting λ1 = 0, y(`)
2 = 0, and λ3 = 0 (case 5)/y3 = 0 (case 6) results
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in the optimal solution for inactive CCI/total transmit power constraint, active ACI

constraint, and inactive/active rate constraint, respectively.

—Case 7 & 8 : setting y1 = 0, y(`)
2 = 0, and λ3 = 0 (case 7)/y3 = 0 (case 8) results in

the optimal solution for active CCI/total transmit power constraint, active ACI constraint,

and inactive/active rate constraint, respectively.

6.4.2 Proposed Algorithm and Complexity Analysis

The proposed algorithm can be formally stated as follows:

Proposed Algorithm
1: INPUT Pth, P (m)

th , P (`)
th , Rth, ν(m), ν(`), G(m), G(`), Ψ(m)

th , Ψ(`)
th , β

(m)
ov , β(`)

oo , G, σ2
n, Ĥ

(
W i
)
,

σ2
∆H , ∆f , N , δ > 0, q = qinitial and Φmin = −∞.

2: while Φmin(q) < −δ do
3: - assume the optimal solution p∗i belongs to case 1, i.e.,

∑N
i=1 p

∗
i <Pth,

1
β

(m)
ov

ν(m)

G(m)
(
− ln(1−Ψ(m)

th )
)P (m)

th

−, ∑N
i=1 p

∗
i $

(`)
i < 1

β
(`)
oo

ν(`)

G(`)
(
− ln(1−Ψ(`)

th )
)P (`)

th , and c(p) >

Rth.
4: - find p∗i from (6.11) when λ1 = λ

(`)
2 = λ3 = 0.

5: if in Step 3, the assumption on the CCI/total transmit power constraint is true, the
assumption on the ACI constraint is true, and the assumption on the rate constraint is not
true then.

6: - the optimal solution belongs to case 2, i.e., find non-negative λ3 from (6.11) such
that c(p) = Rth.

7: - if the assumption on the CCI/total transmit power and ACI constraints are violated,
then p∗i = 0.

8: else if in Step 3, the assumption on the CCI/total transmit power constraint is not true,
the assumption on the ACI constraint is true, and the assumption on the rate constraint is
true then

9: - the optimal solution belongs to case 3, i.e., find non-negative λ1 from (6.11) such

that
∑N
i=1 p

∗
i =

Pth,
1

β
(m)
ov

ν(m)

G(m)
(
− ln(1−Ψ(m)

th )
)P (m)

th

−.
10: - if the assumption on the rate constraint is violated, then p∗i = 0.
11: else if in Step 3, the assumption on the CCI/total transmit power constraint is not true,

the assumption on the ACI constraint is true, and the assumption on the rate constraint is
not true then
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Proposed Algorithm (continued)
12: - the optimal solution belongs to case 4, i.e., find non-negative λ1 and λ3 from (6.11)

such that
∑N
i=1 p

∗
i =

Pth,
1

β
(m)
ov

ν(m)

G(m)
(
− ln(1−Ψ(m)

th )
)P (m)

th

− and c(p) = Rth.

13: - if the assumption on the ACI constraint is violated, then p∗i = 0.
14: else if in Step 3, the assumption on the CCI/total transmit power constraint is true,

the assumption on the ACI constraint is not true, and the assumption on the rate constraint
is true then

15: - the optimal solution belongs to case 5, i.e., find non-negative λ(`)
2 from (6.11) such

that
∑N
i=1 p

∗
i $

(`)
i = 1

β
(`)
oo

ν(`)

G(`)
(
− ln(1−Ψ(`)

th )
)P (`)

th .

16: - if the assumption on the rate constraint is violated, then p∗i = 0.
17: else if in Step 3, the assumption on the CCI/total transmit power constraint is true,

the assumption on the ACI constraint is not true, and the assumption on the rate constraint
is not true then

18: - the optimal solution belongs to case 6, i.e., find non-negative λ(`)
2 and λ3 from (6.11)

such that
∑N
i=1 p

∗
i $

(`)
i = 1

β
(`)
oo

ν(`)

G(`)
(
− ln(1−Ψ(`)

th )
)P (`)

th and c(p) = Rth.

19: - if the assumption on the CCI/total transmit power constraint is violated, then
p∗i = 0.

20: else if in Step 3, the assumption on the CCI/total transmit power constraint is not true,
the assumption on the ACI constraint is not true, and the assumption on the rate constraint
is true then

21: - the optimal solution belongs to case 7, i.e., find non-negative λ1 and λ
(`)
2

from (6.11) such that
∑N
i=1 p

∗
i =

Pth,
1

β
(m)
ov

ν(m)

G(m)
(
− ln(1−Ψ(m)

th )
)P (m)

th

− and
∑N
i=1 p

∗
i $

(`)
i =

1
β

(`)
oo

ν(`)

G(`)
(
− ln(1−Ψ(`)

th )
)P (`)

th .

22: - if the assumption on the rate constraint is violated, then p∗i = 0.
23: else if in Step 3, the assumption on the CCI/total transmit power constraint is not true,

the assumption on the ACI constraint is not true, and the assumption on the rate constraint
is not true then

24: - the optimal solution belongs to case 8, i.e., find non-negative λ1, λ
(`)
2 , and

λ3 from (6.11) such that
∑N
i=1 p

∗
i =

Pth,
1

β
(m)
ov

ν(m)

G(m)
(
− ln(1−Ψ(m)

th )
)P (m)

th

−, ∑N
i=1 p

∗
i $

(`)
i =

1
β

(`)
oo

ν(`)

G(`)
(
− ln(1−Ψ(`)

th )
)P (`)

th , and c(p) = Rth.

25: else
26: - p∗i = 0.
27: end if
28: - update Φmin(q) = min

pi
{Φ(p, q)}|p ∈ S}

29: - Calculate q = κ
∑N

i=1 p
∗
i+pc

c(p) .
30: end while
31: OUTPUT q∗ = q and p∗i , i = 1, ..., N .
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Efficient algorithms are presented in [19] to find the Lagrange multipliers λ1 and λ(`)
2 ,

and λ3 that satisfy the CCI/total transmit power, ACI, and rate constraints, respectively,

with complexity order of O(N). Accordingly, the complexity order of the proposed al-

gorithm can be O(NqN
2), where Nq is the number of executions of the while loop. The

average (over the number of channel realizations) value for Nq is 4 for δ = 10−8 and

4.46 for δ = 10−14; both values are significantly lower than the number of subcarriers N .

Hence, the complexity of the proposed algorithm is of the order O(N2).

6.5 Numerical Results

Without loss of generality, we assume that the OFDM SU coexists with one frequency-

adjacent PU and one co-channel PU. The SU parameters are chosen as follows: number of

subcarriersN = 128 and subcarrier spacing ∆f = 1.25 MHz
N

= 9.7656 kHz. The propagation

path loss parameters are as follows: distance between SU transmitter and receiver pair

= 1 km, distance to the `th PU d` = 1.2 km, distance to the mth PU dm = 1.5 km,

reference distance = 100 m, exponent = 4, and wavelength = 3×108

900×106 = 0.33 meters.

A Rayleigh fading environment is considered with Nch = 5, where the average channel

power gains between the SU transmitter and the receiver of the `th PU E{|H(`)
sp |2} and

between the SU transmitter and the receiver of the mth PU E{|H(m)
sp |2} are set to 0 dB.

σ2
n is assumed to be 4× 10−16 W, the PUs signal is assumed to be an elliptically filtered

white noise process [16] of variance 4 × 10−16 W, pc = Pth = 2 W, κ = 7.8, δ = 10−8,

Ψ(m)
th = Ψ(`)

th = 0.9, and P (m)
th = P

(`)
th = 10−13 W. Representative results are presented in

this section, which were obtained through Monte Carlo trials for 104 channel realizations.

Unless otherwise mentioned, imperfect spectrum sensing is assumed. Following [3] and

in order to favor the PUs protection, ρ(m)
md is uniformly distributed over the interval [0.01,

0.05], and it is lower than ρ(m)
fa , which is uniformly distributed over the interval [0.01, 0.1].
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Fig. 6.1: Effect of σ2
∆H on the SU performance.

ρ(m) and ρ(`) are uniformly distributed between [0, 1] and the EE, measured in J/bits, is

the total energy consumption to deliver one bit.

In Fig. 6.1, the EE (in J/bits) and the transmission rate (in bits/sec) of the SU are

depicted as a function of P (m)
th , for Rth = 0 and different values of σ2

∆H . As can be seen,

the EE decreases and the rate increases as P (m)
th increases, and both saturate for higher

values of P (m)
th . This is as for lower values of P (m)

th the total transmit power is limited, and

increasing P (m)
th increases the transmit power, and, hence, enables the proposed algorithm

to improve both the EE and rate of the SU. The EE keeps improving until the optimal

power budget is reached, after which a further increase in P (m)
th does not improve the EE,

and, hence, the rate is kept constant. As the value of σ2
∆H increases, i.e., the estimation

error increases, both the EE and the rate deteriorate accordingly.

Fig. 6.2 depicts the SU EE and rate as a function of P (m)
th , for different values for

Rth and σ2
∆H . As expected, for σ2

∆H = 0, increasing Rth from 0 to 6 × 105 bits/sec

guarantees the SU rate at low values of P (m)
th (i.e., when the rate drops below 6 × 105
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Fig. 6.2: Effect of Rth and σ2
∆H on the SU performance.

bits/sec); however, this comes at the expense of increasing the EE. On the other hand,

for Rth = 6× 105 bits/sec, increasing the estimation error deteriorates both the rate and

the EE of the SU at high values of P (m)
th ; for low values of the P (m)

th , the SU maintains its

required rate but this is at the expense of increasing the EE.

In order to show the effect of assuming perfect spectrum sensing, Figs. 6.3 and 6.4

compare the interference introduced into the mth PU band, and the EE and rate, re-

spectively, for the proposed algorithm and the work in [6] that assumes perfect sensing

capabilities for the SU. We set σ2
∆H = 0 and Rth = 0 in the proposed algorithm, in order

to match the conditions in [6]. As can be seen in Fig. 6.3, if the sensing errors are not

taken into consideration when optimizing the EE as in [6] (i.e., the SU is assumed to sense

the PUs bands perfectly, which is not true in practice), then the interference leaked in the

mth PU band exceeds the threshold (note that this is due to the increase of the transmit

power for the case of perfect spectrum sensing assumptions). On the other hand, if the

sensing errors are considered in the optimization problem (i.e., the SU is assumed to sense
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the PUs bands with a certain probability of error), then the interference to the mth PU

band is below the threshold. In Fig. 6.4 and as expected, the SU rate is higher if perfect

spectrum sensing is assumed because the transmit power is higher. Additionally, the EE

(in J/bits) is higher when compared to its counterpart that considers spectrum sensing

errors due to increasing the transmit power as discussed in Fig. 6.3.

6.6 Conclusions

In this paper, we proposed an optimal power loading algorithm that optimizes the EE of

an OFDM-based CR system under different channel uncertainties. The algorithm consid-

ers the channel estimation errors for the links between the SU transmitter and receiver

pairs and also the effect of the imperfect sensing capabilities of the SU. Further, the

algorithm does not require perfect CSI for the links from the PUs receivers to the SU

transmitter. Simulation results showed that increasing the channel estimation errors de-

teriorates the EE. Further, they showed that assuming that the SU has perfect sensing

capabilities deteriorates the EE and violates the interference constraints at the PUs re-

ceivers. Additionally, the results demonstrated that the proposed algorithm guarantees a

minimum QoS for the SU at the expense of deteriorating the EE.
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Chapter 7

Conclusions and Future Work

In this final chapter, we summarize the contributions presented in this dissertation and

discuss several potential extensions to our work.

7.1 Conclusions

The following conclusions can be drawn from this dissertation:

• We illustrated that the MOOP approach is a strong candidate for the optimal link

adaptation problem when compared to single objective optimization approaches.

The adopted MOOP approach showed significant performance improvements in

terms of the achieved throughput/rate and transmit power, when compared with

other works in the literature that separately maximized the throughput/rate (while

constraining the transmit power) or minimized the transmit power (while constrain-

ing the throughput), at the cost of no additional complexity. Moreover, the MOOP

showed better performance in terms of the energy efficiency.

• The MOOP approach allowed the MCM system to tune for various levels of through-

put/rate and transmit power, without resolving different single objective optimiza-
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tion problems. This was achieved through changing the weighting coefficient asso-

ciated with each objective.

• The improved performance of the MOOP approach did not come at the cost of

additional computational complexity. For the formulated MOOP problems, we pro-

posed low complexity algorithms that do not necessarily require perfect CSI on the

links between the SU transmitter and receiver pair and/or on the links between the

SU transmitter and the PUs receivers. We additionally quantified the performance

loss due to partial CSI on the links.

• We showed that the interference constraints at the PUs receivers can be severely

violated if the SU is assumed to have perfect spectrum sensing capabilities.

• We showed that adding a fading margin is crucial to compensate for the violation of

the interference constraints at the PUs receivers due to imperfect CSI on the links

between the SU transmitter and the PUs receivers.

7.2 Future Work

There are various directions to extend our work, which can be briefly outlined as follows:

• As discussed earlier, the MOOP approach showed superior performance over tradi-

tional single objective optimization approaches. It would be worth researching to

extend the problem formulation to the scenario of adaptive modulation and coding,

i.e., optimally allocate a specific code and its code rate in addition to the modulation

type/order and the power per subcarrier.

• Extending the formulated MOOP problems to include multiple SUs is interesting

and important. This can be done in both the downlink and uplink scenarios. In
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both cases, the SUs will employ orthogonal frequency division multiplying access

(OFDMA) in order to efficiently access the spectrum. Accordingly, the optimization

problem will optimally allocate the subcarriers in addition to bits and power to SUs

in order to improve the SUs network performance.

• The MOOP approach can be extended and applied in energy harvesting networks.

The energy harvesting receivers should divide the received signal in order to harvest

energy and decode the information as well. The MOOP approach seems to be a

strong candidate for the energy harvesting receivers to balance between the decoded

information rate and the amount of harvested energy.

153



References

Chapter 1

[1] T. Rappaport, Wireless Communications: Principles and Practice. Prentice Hall

PTR New Jersey, 1996.

[2] Z. Wang and G. Giannakis, “Wireless multicarrier communications,” IEEE Signal

Process. Mag., vol. 17, no. 3, pp. 29–48, May 2000.

[3] K. Fazel and S. Kaiser, Multi-carrier and Spread Spectrum Systems: from OFDM

and MC-CDMA to LTE and WiMAX. John Wiley & Sons Inc, 2008.

[4] I. Fu, Y. Chen, P. Cheng, Y. Yuk, R. Yongho Kim, and J. Kwak, “Multicarrier

technology for 4G WiMax system [WiMAX/LTE Update],” IEEE Commun. Mag.,

vol. 48, no. 8, pp. 50–58, Aug. 2010.

[5] H. Mahmoud, T. Yucek, and H. Arslan, “OFDM for cognitive radio: merits and

challenges,” IEEE Wireless Commun. Mag., vol. 16, no. 2, pp. 6–15, Apr. 2009.

[6] FCC Spectrum Policy Task Force, “Report of the spectrum efficiency working group,”

Fedral Communication Commission, Washington, DC, Tech. Rep. ET Docket no. 02-

135, Nov. 2002.

154



[7] J. Mitola and G. Maguire, “Cognitive radio: making software radios more personal,”

IEEE Personal Commun. Mag., vol. 6, no. 4, pp. 13–18, Aug. 1999.

[8] P. Kolodzy, “Cognitive radio fundamentals,” in Proc. SDR Forum, Singapore, Apr.

2005.

[9] S. Srinivasa and S. Jafar, “Cognitive radios for dynamic spectrum access - the

throughput potential of cognitive radio: A theoretical perspective,” IEEE Commun.

Mag., vol. 45, no. 5, pp. 73–79, May 2007.

[10] A. Goldsmith, S. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum gridlock with

cognitive radios: An information theoretic perspective,” Proc. IEEE, vol. 97, no. 5,

pp. 894–914, May 2009.

[11] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy efficiency in the future

internet: a survey of existing approaches and trends in energy-aware fixed network

infrastructures,” IEEE Commun. Surveys Tuts., vol. 13, no. 2, pp. 223–244, Second

Quarter 2011.

[12] D. Hughes-Hartogs, “Ensemble modem structure for imperfect transmission media,”

Mar. 15 1988, US Patent 4,731,816.

[13] P. Chow, J. Cioffi, and J. Bingham, “A practical discrete multitone transceiver load-

ing algorithm for data transmission over spectrally shaped channels,” IEEE Trans.

Commun., vol. 43, no. 234, pp. 773–775, Feb. 1995.

[14] J. Campello, “Practical bit loading for DMT,” in Proc. IEEE International Confer-

ence on Communications (ICC), vol. 2, Jun. 1999, pp. 801–805.

155



[15] N. Papandreou and T. Antonakopoulos, “A new computationally efficient discrete

bit-loading algorithm for DMT applications,” IEEE Trans. Commun., vol. 53, no. 5,

pp. 785–789, May 2005.

[16] K. Liu, B. Tang, and Y. Liu, “Adaptive power loading based on unequal-BER strategy

for OFDM systems,” IEEE Commun. Lett., vol. 13, no. 7, pp. 474–476, Jul. 2009.

[17] A. Leke and J. Cioffi, “A maximum rate loading algorithm for discrete multitone mod-

ulation systems,” in Proc. IEEE Global Telecommunications Conference (GLOBE-

COM), vol. 3, Nov. 1997, pp. 1514–1518.

[18] A. Wyglinski, F. Labeau, and P. Kabal, “Bit loading with BER-constraint for multi-

carrier systems,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1383–1387, Jul.

2005.

[19] B. Krongold, K. Ramchandran, and D. Jones, “Computationally efficient optimal

power allocation algorithms for multicarrier communication systems,” IEEE Trans.

Commun., vol. 48, no. 1, pp. 23–27, Jan. 2000.

[20] R. Sonalkar and R. Shively, “An efficient bit-loading algorithm for DMT applica-

tions,” IEEE Commun. Lett., vol. 4, no. 3, pp. 80–82, Mar. 2000.

[21] Z. Song, K. Zhang, and Y. Guan, “Joint bit-loading and power-allocation for OFDM

systems based on statistical frequency-domain fading model,” in Proc. IEEE Vehic-

ular Technology Conference (VTC)-Fall, Sep. 2002, pp. 724–728.

[22] L. Goldfeld, V. Lyandres, and D. Wulich, “Minimum BER power loading for OFDM

in fading channel,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1729–1733, Nov. 2002.

[23] K. Mehlhorn and P. Sanders, Algorithms and data structures: The basic toolbox.

Springer-Verlag New York Inc, 2008.

156



[24] T. Cover and J. Thomas, Elements of Information Theory. Wiley, New York NY,

2004.

[25] K. Ramchandran and M. Vetterli, “Best wavelet packet bases in a rate-distortion

sense,” IEEE Trans. Image Process., vol. 2, no. 2, pp. 160–175, Apr. 1993.

[26] B. Fox, “Discrete optimization via marginal analysis,” Management Science, vol. 13,

no. 3, pp. 210–216, Nov. 1966.

[27] R. Fischer and J. Huber, “A new loading algorithm for discrete multitone transmis-

sion,” in Proc. IEEE Global Telecommunications Conference (GLOBECOM), vol. 1,

1996, pp. 724–728.

[28] P. Wang, M. Zhao, L. Xiao, S. Zhou, and J. Wang, “Power allocation in OFDM-

based cognitive radio systems,” in Proc. IEEE Global Telecommunications Conference

(GLOBECOM), Nov. 2007, pp. 4061–4065.

[29] P. Wang, X. Zhong, L. Xiao, S. Zhou, and J. Wang, “A general power allocation

algorithm for OFDM-based cognitive radio systems,” in Proc. IEEE International

Conference on Communication (ICC) Workshops, Jun. 2009, pp. 1–5.

[30] G. Bansal, M. Hossain, and V. Bhargava, “Optimal and suboptimal power allocation

schemes for OFDM-based cognitive radio systems,” IEEE Trans. Wireless Commun.,

vol. 7, no. 11, pp. 4710–4718, Nov. 2008.

[31] R. Zhang, “Optimal power control over fading cognitive radio channel by exploiting

primary user CSI,” in Proc. IEEE Global Telecommunications Conference (GLOBE-

COM), Nov. 2008, pp. 1–5.

157



[32] Y. Zhang and C. Leung, “An efficient power-loading scheme for OFDM-based cogni-

tive radio systems,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1858–1864, May

2010.

[33] X. Kang, Y.-C. Liang, A. Nallanathan, H. Garg, and R. Zhang, “Optimal power al-

location for fading channels in cognitive radio networks: ergodic capacity and outage

capacity,” IEEE Trans. Wireless Commun., vol. 8, no. 2, pp. 940–950, Feb. 2009.

[34] A. Attar, O. Holland, M. Nakhai, and A. Aghvami, “Interference-limited resource al-

location for cognitive radio in orthogonal frequency-division multiplexing networks,”

IET Commun., vol. 2, no. 6, pp. 806–814, Jul. 2008.

[35] C. Zhao and K. Kwak, “Power/bit loading in OFDM-based cognitive networks with

comprehensive interference considerations: The single-SU case,” IEEE Trans. Veh.

Technol., vol. 59, no. 4, pp. 1910–1922, May 2010.

[36] J. Tang, Y. Rahulamathavan, and S. Lambotharan, “Optimal adaptive bit loading

and subcarrier allocation techniques for OFDM-based cognitive radio systems,” in

Proc. IEEE International Conference on Communication Technology, Nov. 2010, pp.

454 –457.

[37] D. Ngo, C. Tellambura, and H. Nguyen, “Resource allocation for OFDM-based cog-

nitive radio multicast networks,” in Proc. IEEE Wireless Communications and Net-

working Conference (WCNC), Apr. 2009, pp. 1–6.

[38] G. Bansal, M. Hossain, and V. Bhargava, “Adaptive power loading for OFDM-based

cognitive radio systems with statistical interference constraint,” IEEE Trans. Wire-

less Commun., no. 99, pp. 1–6, Sep. 2011.

158



[39] Z. Hasan, G. Bansal, E. Hossain, and V. Bhargava, “Energy-efficient power allocation

in OFDM-based cognitive radio systems: A risk-return model,” IEEE Trans. Wireless

Commun., vol. 8, no. 12, pp. 6078–6088, Dec. 2009.

[40] O. Amin, S. Bavarian, and L. Lampe, Cooperative techniques for energy-efficient

wireless communications in green radio comunication networks. Cambridge Univer-

sity Press, 2012.

[41] Y. Wang, W. Xu, K. Yang, and J. Lin, “Optimal energy-efficient power allocation

for OFDM-based cognitive radio networks,” IEEE Commun. Lett., vol. 16, no. 9, pp.

1420–1423, Sep. 2012.

[42] M. C. Oto and O. B. Akan, “Energy-efficient packet size optimization for cognitive

radio sensor networks,” IEEE Trans. Wireless Commun., vol. 11, no. 4, pp. 1544–

1553, Apr. 2012.

[43] R. Xie, F. Yu, H. Ji, and Y. Li, “Energy-efficient resource allocation for heterogeneous

cognitive radio networks with femtocells,” IEEE Trans. Wireless Commun., vol. 11,

no. 11, pp. 3910–3920, Nov. 2012.

[44] S. Wang, M. Ge, and W. Zhao, “Energy-efficient resource allocation for OFDM-based

cognitive radio networks,” IEEE Trans. Commun., vol. 61, no. 8, pp. 3181–3191, May

2013.

[45] J. Mao, G. Xie, J. Gao, and Y. Liu, “Energy efficiency optimization for cognitive

radio MIMO broadcast channels,” IEEE Commun. Lett., vol. 17, no. 2, pp. 337–340,

Feb. 2013.

[46] ——, “Energy efficiency optimization for OFDM-based cognitive radio systems: A

water-filling factor aided search method,” IEEE Trans. Commun., vol. 12, no. 5, pp.

2366–2375, May 2013.

159



[47] J. A. Han, W. S. Jeon, and D. G. Jeong, “Energy-efficient channel management

scheme for cognitive radio sensor networks,” IEEE Trans. Veh. Technol., vol. 60,

no. 4, pp. 1905–1910, May 2011.

Chapter 2

[1] K. Fazel and S. Kaiser, Multi-carrier and Spread Spectrum Systems: from OFDM

and MC-CDMA to LTE and WiMAX. John Wiley & Sons Inc, 2008.

[2] T. Hwang, C. Yang, G. Wu, S. Li, and G. Ye Li, “OFDM and its wireless applications:

a survey,” IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 1673–1694, May 2009.

[3] I. Fu, Y. Chen, P. Cheng, Y. Yuk, R. Yongho Kim, and J. Kwak, “Multicarrier

technology for 4G WiMax system [WiMAX/LTE Update],” IEEE Commun. Mag.,

vol. 48, no. 8, pp. 50–58, Aug. 2010.

[4] A. Leke and J. Cioffi, “A maximum rate loading algorithm for discrete multitone mod-

ulation systems,” in Proc. IEEE Global Telecommunications Conference (GLOBE-

COM), vol. 3, Nov. 1997, pp. 1514–1518.

[5] A. Wyglinski, F. Labeau, and P. Kabal, “Bit loading with BER-constraint for multi-

carrier systems,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1383–1387, Jul.

2005.

[6] B. Krongold, K. Ramchandran, and D. Jones, “Computationally efficient optimal

power allocation algorithms for multicarrier communication systems,” IEEE Trans.

Commun., vol. 48, no. 1, pp. 23–27, Jan. 2000.

[7] R. Sonalkar and R. Shively, “An efficient bit-loading algorithm for DMT applica-

tions,” IEEE Commun. Lett., vol. 4, no. 3, pp. 80–82, Mar. 2000.

160



[8] D. Hughes-Hartogs, “Ensemble modem structure for imperfect transmission media,”

Mar. 15 1988, US Patent 4,731,816.

[9] P. Chow, J. Cioffi, and J. Bingham, “A practical discrete multitone transceiver load-

ing algorithm for data transmission over spectrally shaped channels,” IEEE Trans.

Commun., vol. 43, no. 234, pp. 773–775, Feb. 1995.

[10] K. Liu, B. Tang, and Y. Liu, “Adaptive power loading based on unequal-BER strategy

for OFDM systems,” IEEE Commun. Lett., vol. 13, no. 7, pp. 474–476, Jul. 2009.

[11] J. Campello, “Practical bit loading for DMT,” in Proc. IEEE International Confer-

ence on Communications (ICC), vol. 2, Jun. 1999, pp. 801–805.

[12] N. Papandreou and T. Antonakopoulos, “A new computationally efficient discrete

bit-loading algorithm for DMT applications,” IEEE Trans. Commun., vol. 53, no. 5,

pp. 785–789, May 2005.

[13] A. Mahmood and J. Belfiore, “An efficient algorithm for optimal discrete bit-loading

in multicarrier systems,” IEEE Trans. Commun., vol. 58, no. 6, pp. 1627–1630, Jun.

2010.

[14] D. Wang, Y. Cao, and L. Zheng, “Efficient two-stage discrete bit-loading algorithms

for OFDM systems,” IEEE Trans. Veh. Technol., vol. 59, no. 7, pp. 3407–3416, Sep.

2010.

[15] A. Goldsmith and S. Chua, “Adaptive coded modulation for fading channels,” IEEE

Trans. Commun., vol. 46, no. 5, pp. 595–602, May 1998.

[16] S. Chung and A. Goldsmith, “Degrees of freedom in adaptive modulation: a unified

view,” IEEE Trans. Commun., vol. 49, no. 9, pp. 1561–1571, Sep. 2001.

161



[17] Z. Song, K. Zhang, and Y. Guan, “Statistical adaptive modulation for QAM-OFDM

systems,” in Proc. IEEE Global Telecommunications Conference GLOBECOM, vol. 1,

Nov. 2002, pp. 706–710.

[18] B. Fox, “Discrete optimization via marginal analysis,” Management Science, vol. 13,

no. 3, pp. 210–216, Nov. 1966.

[19] M. Elmusrati, H. El-Sallabi, and H. Koivo, “Applications of multi-objective opti-

mization techniques in radio resource scheduling of cellular communication systems,”

IEEE Trans. Wireless Commun., vol. 7, no. 1, pp. 343–353, Jan. 2008.

[20] R. Devarajan, S. Jha, U. Phuyal, and V. Bhargava, “Energy-aware resource allocation

for cooperative cellular network using multi-objective optimization approach,” IEEE

Trans. Wireless Commun., vol. 11, no. 5, pp. 1797–1807, May 2012.

[21] M. Elmusrati, R. Jantti, and H. Koivo, “Multiobjective distributed power control

algorithm for CDMA wireless communication systems,” IEEE Trans. Veh. Technol.,

vol. 56, no. 2, pp. 779–788, Mar. 2007.

[22] F. Sun, V. Li, and Z. Diao, “Modified bipartite matching for multiobjective optimiza-

tion: Application to antenna assignments in MIMO systems,” IEEE Trans. Wireless

Commun., vol. 8, no. 3, pp. 1349–1355, Mar. 2009.

[23] E. Bedeer, O. A. Dobre, M. H. Ahmed, and K. E. Baddour, “Joint optimization of bit

and power loading for multicarrier systems,” IEEE Wireless Commun. Lett., vol. 2,

no. 4, pp. 447–450, Aug. 2013.

[24] K. Miettinen, Nonlinear Multiobjective Optimization. Springer, 1999.

[25] K. Deb et al., Multi-objective optimization using evolutionary algorithms. John

Wiley & Sons Chichester, 2001, vol. 2012.

162



[26] K. Deep, K. P. Singh, M. Kansal, and C. Mohan, “A real coded genetic algorithm

for solving integer and mixed integer optimization problems,” Applied Mathematics

and Computation, vol. 212, no. 2, pp. 505–518, Feb. 2009.

[27] D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used in

genetic algorithms,” Foundations of Genetic Algorithms, vol. 1, pp. 69–93, 1991.

[28] K. Deep and M. Thakur, “A new crossover operator for real coded genetic algo-

rithms,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 895–911, May

2007.

[29] S. Kotz, T. Kozubowski, and K. Podgorski, The Laplace Distribution and General-

izations: A Revisit With Applications to Communications, Exonomics, Engineering,

and Finance. Springer, 2001, no. 183.

[30] K. Deep and M. Thakur, “A new mutation operator for real coded genetic algo-

rithms,” Applied Mathematics and Computation, vol. 193, no. 1, pp. 211–230, Oct.

2007.

[31] T. Willink and P. Wittke, “Optimization and performance evaluation of multicarrier

transmission,” IEEE Trans. Inf. Theory, vol. 43, no. 2, pp. 426–440, Mar. 1997.

[32] C. A. Floudas, Nonlinear and Mixed-Integer Optimization: Fundamentals and Ap-

plications. Oxford University Press, USA, 1995.

[33] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,

2004.

[34] “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications,” Jun. 2003.

163



Chapter 3

[1] K. Fazel and S. Kaiser, Multi-carrier and Spread Spectrum Systems: from OFDM and

MC-CDMA to LTE and WiMAX. John Wiley & Sons Inc, 2008.

[2] A. Wyglinski, F. Labeau, and P. Kabal, “Bit loading with BER-constraint for multi-

carrier systems,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1383–1387, Jul.

2005.

[3] K. Liu, B. Tang, and Y. Liu, “Adaptive power loading based on unequal-BER strategy

for OFDM systems,” IEEE Commun. Lett., vol. 13, no. 7, pp. 474–476, Jul. 2009.

[4] A. Mahmood and J. Belfiore, “An efficient algorithm for optimal discrete bit-loading

in multicarrier systems,” IEEE Trans. Commun., vol. 58, no. 6, pp. 1627–1630, Jun.

2010.

[5] T. Willink and P. Wittke, “Optimization and performance evaluation of multicarrier

transmission,” IEEE Trans. Inf. Theory, vol. 43, no. 2, pp. 426–440, Mar. 1997.

[6] K. Miettinen, Nonlinear Multiobjective Optimization. Springer, 1999.

[7] S. Rao, Engineering Optimization: Theory and Practice. Wiley, 2009.

Chapter 4

[1] FCC Spectrum Policy Task Force, “Report of the spectrum efficiency working group,”

Fedral Communication Commission, Washington, DC, Tech. Rep. ET Docket no. 02-

135, Nov. 2002.

[2] E. Hossain and V. Bhargava, Cognitive Wireless Communication Networks.

Springer, 2007.

164



[3] D. Joshi, D. Popescu, and O. Dobre, “Joint spectral shaping and power control in

spectrum overlay cognitive radio systems,” IEEE Trans. Commun., vol. 60, no. 9,

pp. 2396–2401, Sep. 2012.

[4] X. Wang, H. Li, and H. Lin, “A new adaptive OFDM system with precoded cyclic

prefix for dynamic cognitive radio communications,” IEEE J. Sel. Areas Commun.,

vol. 29, no. 2, pp. 431–442, Feb. 2011.

[5] H. Mahmoud, T. Yucek, and H. Arslan, “OFDM for cognitive radio: merits and

challenges,” IEEE Wireless Commun. Mag., vol. 16, no. 2, pp. 6–15, Apr. 2009.

[6] X. Kang, Y.-C. Liang, A. Nallanathan, H. Garg, and R. Zhang, “Optimal power al-

location for fading channels in cognitive radio networks: ergodic capacity and outage

capacity,” IEEE Trans. Wireless Commun., vol. 8, no. 2, pp. 940–950, Feb. 2009.

[7] Y. Zhang and C. Leung, “An efficient power-loading scheme for OFDM-based cogni-

tive radio systems,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1858–1864, May

2010.

[8] A. Attar, O. Holland, M. Nakhai, and A. Aghvami, “Interference-limited resource al-

location for cognitive radio in orthogonal frequency-division multiplexing networks,”

IET Commun., vol. 2, no. 6, pp. 806–814, Jul. 2008.

[9] G. Bansal, M. Hossain, and V. Bhargava, “Optimal and suboptimal power allocation

schemes for OFDM-based cognitive radio systems,” IEEE Trans. Wireless Commun.,

vol. 7, no. 11, pp. 4710–4718, Nov. 2008.

[10] Z. Hasan, G. Bansal, E. Hossain, and V. Bhargava, “Energy-efficient power allocation

in OFDM-based cognitive radio systems: A risk-return model,” IEEE Trans. Wireless

Commun., vol. 8, no. 12, pp. 6078–6088, Dec. 2009.

165



[11] C. Zhao and K. Kwak, “Power/bit loading in OFDM-based cognitive networks with

comprehensive interference considerations: The single-SU case,” IEEE Trans. Veh.

Technol., vol. 59, no. 4, pp. 1910–1922, May 2010.

[12] G. Bansal, M. Hossain, and V. Bhargava, “Adaptive power loading for OFDM-based

cognitive radio systems with statistical interference constraint,” IEEE Trans. Wire-

less Commun., no. 99, pp. 1–6, Sep. 2011.

[13] P. Kaligineedi, G. Bansal, and V. Bhargava, “Power loading algorithms for OFDM-

based cognitive radio systems with imperfect sensing,” IEEE Trans. Wireless Com-

mun., vol. 11, no. 12, pp. 4225 – 4230, Dec. 2012.

[14] X. Kang, Y.-C. Liang, H. K. Garg, and L. Zhang, “Sensing-based spectrum sharing in

cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 4649–4654,

Oct. 2009.

[15] R. Wang, V. K. Lau, L. Lv, and B. Chen, “Joint cross-layer scheduling and spec-

trum sensing for OFDMA cognitive radio systems,” IEEE Trans. Wireless Commun.,

vol. 8, no. 5, pp. 2410–2416, May 2009.

[16] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive MAC for oppor-

tunistic spectrum access in ad hoc networks: A POMDP framework,” IEEE J. Sel.

Areas Commun., vol. 25, no. 3, pp. 589–600, Apr. 2007.

[17] S. Srinivasa and S. Jafar, “How much spectrum sharing is optimal in cognitive radio

networks?” IEEE Trans. Wireless Commun., vol. 7, no. 10, pp. 4010–4018, Oct.

2008.

[18] S. M. Almalfouh and G. L. Stüber, “Interference-aware radio resource allocation in

OFDMA-based cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 60, no. 4,

pp. 1699–1713, May 2011.

166



[19] K. Miettinen, Nonlinear Multiobjective Optimization. Springer, 1999.

[20] E. Bedeer, O. A. Dobre, M. H. Ahmed, and K. E. Baddour, “Joint optimization of bit

and power loading for multicarrier systems,” IEEE Wireless Commun. Lett., vol. 2,

no. 4, pp. 447–450, Aug. 2013.

[21] M. Elmusrati, H. El-Sallabi, and H. Koivo, “Applications of multi-objective opti-

mization techniques in radio resource scheduling of cellular communication systems,”

IEEE Trans. Wireless Commun., vol. 7, no. 1, pp. 343–353, Jan. 2008.

[22] R. Devarajan, S. Jha, U. Phuyal, and V. Bhargava, “Energy-aware resource allocation

for cooperative cellular network using multi-objective optimization approach,” IEEE

Trans. Wireless Commun., vol. 11, no. 5, pp. 1797–1807, May 2012.

[23] F. Sun, V. Li, and Z. Diao, “Modified bipartite matching for multiobjective optimiza-

tion: Application to antenna assignments in MIMO systems,” IEEE Trans. Wireless

Commun., vol. 8, no. 3, pp. 1349–1355, Mar. 2009.

[24] M. Elmusrati, R. Jantti, and H. Koivo, “Multiobjective distributed power control

algorithm for CDMA wireless communication systems,” IEEE Trans. Veh. Technol.,

vol. 56, no. 2, pp. 779–788, Mar. 2007.

[25] C.-Y. Yang, B.-S. Chen, and C.-Y. Jian, “Robust two-loop power control for CDMA

systems via multiobjective optimization,” IEEE Trans. Veh. Technol., vol. 61, no. 5,

pp. 2145–2157, Jun. 2012.

[26] T. Weiss, J. Hillenbrand, A. Krohn, and F. Jondral, “Mutual interference in OFDM-

based spectrum pooling systems,” in Proc. IEEE Vehicular Technology Conference

(VTC)-Spring, May 2004, pp. 1873–1877.

167



[27] T. Willink and P. Wittke, “Optimization and performance evaluation of multicarrier

transmission,” IEEE Trans. Inf. Theory, vol. 43, no. 2, pp. 426–440, Mar. 1997.

[28] C. A. Floudas, Nonlinear and Mixed-Integer Optimization: Fundamentals and Ap-

plications. Oxford University Press, USA, 1995.

[29] S. Chung and A. Goldsmith, “Degrees of freedom in adaptive modulation: a unified

view,” IEEE Trans. Commun., vol. 49, no. 9, pp. 1561–1571, Sep. 2001.

[30] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,

2004.

[31] R. Burden and J. Faires, Numerical Analysis. Cengage Learning, 2010.

[32] J. More and M. Cosnard, “Numerical solution of nonlinear equations,” ACM Trans-

actions on Mathematical Software, vol. 5, no. 1, pp. 64–85, Mar. 1979.

Chapter 5

[1] FCC Spectrum Policy Task Force, “Report of the spectrum efficiency working group,”

Fedral Communication Commission, Washington, DC, Tech. Rep. ET Docket no. 02-

135, Nov. 2002.

[2] D. Cabric, “Addressing feasibility of cognitive radios,” IEEE Signal Process. Mag.,

vol. 25, no. 6, pp. 85–93, Nov. 2008.

[3] G. Bansal, M. Hossain, and V. Bhargava, “Optimal and suboptimal power allocation

schemes for OFDM-based cognitive radio systems,” IEEE Trans. Wireless Commun.,

vol. 7, no. 11, pp. 4710–4718, Nov. 2008.

168



[4] Y. Zhang and C. Leung, “An efficient power-loading scheme for OFDM-based cogni-

tive radio systems,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1858–1864, May

2010.

[5] C. Zhao and K. Kwak, “Power/bit loading in OFDM-based cognitive networks with

comprehensive interference considerations: The single-SU case,” IEEE Trans. Veh.

Technol., vol. 59, no. 4, pp. 1910–1922, May 2010.

[6] G. Bansal, M. Hossain, and V. Bhargava, “Adaptive power loading for OFDM-based

cognitive radio systems with statistical interference constraint,” IEEE Trans. Wire-

less Commun., no. 99, pp. 1–6, Sep. 2011.

[7] Z. Hasan, G. Bansal, E. Hossain, and V. Bhargava, “Energy-efficient power allocation

in OFDM-based cognitive radio systems: A risk-return model,” IEEE Trans. Wireless

Commun., vol. 8, no. 12, pp. 6078–6088, Dec. 2009.

[8] X. Kang, Y.-C. Liang, A. Nallanathan, H. Garg, and R. Zhang, “Optimal power al-

location for fading channels in cognitive radio networks: ergodic capacity and outage

capacity,” IEEE Trans. Wireless Commun., vol. 8, no. 2, pp. 940–950, Feb. 2009.

[9] T. A. Weiss and F. K. Jondral, “Spectrum pooling: an innovative strategy for the

enhancement of spectrum efficiency,” IEEE Commun. Mag., vol. 42, no. 3, pp. S8–14,

Mar. 2004.

[10] K. Miettinen, Nonlinear Multiobjective Optimization. Springer, 1999.

[11] E. Bedeer, O. A. Dobre, M. H. Ahmed, and K. E. Baddour, “Joint optimization of bit

and power loading for multicarrier systems,” IEEE Wireless Commun. Lett., vol. 2,

no. 4, pp. 447–450, Aug. 2013.

169



[12] Q. Zhao and B. Sadler, “A survey of dynamic spectrum access,” IEEE Signal Process.

Mag., vol. 24, no. 3, pp. 79–89, May 2007.

[13] B. Gao, J. Park, Y. Yang, and S. Roy, “A taxonomy of coexistence mechanisms

for heterogeneous cognitive radio networks operating in TV white spaces,” IEEE

Wireless Commun. Mag., vol. 19, no. 4, pp. 41–48, Aug. 2012.

[14] N. Salman, A. Kemp, and M. Ghogho, “Low complexity joint estimation of location

and path-loss exponent,” IEEE Wireless Commun. Lett., vol. 1, no. 4, pp. 364–367,

Aug. 2012.

[15] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,

2004.

[16] D. P. Palomar and J. R. Fonollosa, “Practical algorithms for a family of waterfilling

solutions,” IEEE Trans. Signal Process., vol. 53, no. 2, pp. 686–695, Feb. 2005.

Chapter 6

[1] D. Cabric, “Addressing feasibility of cognitive radios,” IEEE Signal Process. Mag.,

vol. 25, no. 6, pp. 85–93, Nov. 2008.

[2] X. Wang, H. Li, and H. Lin, “A new adaptive OFDM system with precoded cyclic

prefix for dynamic cognitive radio communications,” IEEE J. Sel. Areas Commun.,

vol. 29, no. 2, pp. 431–442, Feb. 2011.

[3] S. M. Almalfouh and G. L. Stüber, “Interference-aware radio resource allocation in

OFDMA-based cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 60, no. 4,

pp. 1699–1713, May 2011.

170



[4] G. Bansal, M. Hossain, and V. Bhargava, “Adaptive power loading for OFDM-based

cognitive radio systems with statistical interference constraint,” IEEE Trans. Wire-

less Commun., no. 99, pp. 1–6, Sep. 2011.

[5] O. Amin, S. Bavarian, and L. Lampe, Cooperative techniques for energy-efficient

wireless communications in green radio comunication networks. Cambridge Univer-

sity Press, 2012.

[6] Y. Wang, W. Xu, K. Yang, and J. Lin, “Optimal energy-efficient power allocation

for OFDM-based cognitive radio networks,” IEEE Commun. Lett., vol. 16, no. 9, pp.

1420–1423, Sep. 2012.

[7] M. C. Oto and O. B. Akan, “Energy-efficient packet size optimization for cognitive

radio sensor networks,” IEEE Trans. Wireless Commun., vol. 11, no. 4, pp. 1544–

1553, Apr. 2012.

[8] R. Xie, F. Yu, H. Ji, and Y. Li, “Energy-efficient resource allocation for heterogeneous

cognitive radio networks with femtocells,” IEEE Trans. Wireless Commun., vol. 11,

no. 11, pp. 3910–3920, Nov. 2012.

[9] S. Wang, M. Ge, and W. Zhao, “Energy-efficient resource allocation for OFDM-based

cognitive radio networks,” IEEE Trans. Commun., vol. 61, no. 8, pp. 3181–3191, May

2013.

[10] J. Mao, G. Xie, J. Gao, and Y. Liu, “Energy efficiency optimization for cognitive

radio MIMO broadcast channels,” IEEE Commun. Lett., vol. 17, no. 2, pp. 337–340,

Feb. 2013.

[11] ——, “Energy efficiency optimization for OFDM-based cognitive radio systems: A

water-filling factor aided search method,” IEEE Trans. Commun., vol. 12, no. 5, pp.

2366–2375, May 2013.

171



[12] O. Amin and L. Lampe, “Opportunistic energy efficient cooperative communication,”

IEEE Wireless Commun. Lett., vol. 1, no. 5, pp. 412–415, 2012.

[13] Y. Zhao, L. Morales, J. Gaeddert, K. K. Bae, J.-S. Um, and J. H. Reed, “Apply-

ing radio environment maps to cognitive wireless regional area networks,” in IEEE

DySPAN 2007, Apr. 2007, pp. 115–118.

[14] J. Proakis, Digital Communications. Mc-GrawHill, New York NY, 2001.

[15] S. Ohno and G. B. Giannakis, “Capacity maximizing MMSE-optimal pilots for wire-

less OFDM over frequency-selective block Rayleigh-fading channels,” IEEE Trans.

Inf. Theory, vol. 50, no. 9, pp. 2138–2145, Sep. 2004.

[16] T. Weiss, J. Hillenbrand, A. Krohn, and F. Jondral, “Mutual interference in OFDM-

based spectrum pooling systems,” in Proc. IEEE Vehicular Technology Conference

(VTC)-Spring, May 2004, pp. 1873–1877.

[17] W. Dinkelbach, “On nonlinear fractional programming,” Management Science,

vol. 13, no. 7, pp. 492–498, Mar. 1967.

[18] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,

2004.

[19] D. P. Palomar and J. R. Fonollosa, “Practical algorithms for a family of waterfilling

solutions,” IEEE Trans. Signal Process., vol. 53, no. 2, pp. 686–695, Feb. 2005.

172


