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Abstract

DNA Sequencing by Hybridization (SBH) is a method for reconstructing a DNA

sequence based on its k-length subsequences. In this thesis we investigate several

issues related to SBH. The set of all k-mers of a sequence is known as the k-spectrum.

Using graph theory it is possible to reconstruct the unknown DNA sequence using

only the information available in the k-spectrum, but unique reconstruction of the

DNA sequence is not always possible. In this thesis we examine probabilistic models

which determine the likelihood of a random DNA sequence of length N being uniquely

reconstructable based on its k-spectrum. We will also discuss extensions of SBH using

both additional information on the k-spectrum and restriction enzymes. The use of

restriction enzymes in SBH is a next generation sequencing technique whereby the

DNA sequence is split into fragments using restriction enzymes and sequencing is

performed on the individual fragments rather than the sequence as a whole. We

develop algorithms which use a library of restriction enzymes to cut the sequence
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and perform sequencing. The width of DNA graphs is also important in the sense of

computational complexity and we investigate the DAG-width of the graphs obtained

from SBH. We show that the DAG-width of the these graphs is usually small, enabling

polynomial time solvability of the Hamiltonian path problem, which is at the core

of sequence reconstruction when the problem is modeled using graphs. In the final

section, we discuss a next generation variant on SBH.
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Chapter 1

Introduction

Deoxyribonucleic acid (abbreviated DNA) is a molecule responsible for all of the

phenotypes (observable traits) in any organism. Frances Crick and James Watson

pioneered the research that led to the preliminary understanding of DNA [12]. DNA

sequencing is the process of determining the precise ordering of the nucleotides within

a molecule of DNA. Many sequencing methods have been developed, some of which are

more biochemistry based than others that are more mathematically based. Some of

these sequencing technologies include terminating chains, hybridization to arrays, and

parallelized pyrosequencing. [23, 24]. Efficient sequencing techniques are important

because they greatly aid in biological and medical research. One such example is the

human genome project, which was a major international research project undertaken
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to map the entire human genome, in which DNA sequencing techniques played a

major role [9].

Figure 1.1: The structure of DNA [34].

Bioinformatics is an area of research focusing on understanding, analyzing and

manipulating of large amounts of biological information, often including DNA. Bioin-

formatics lies at the crossroads of biology, computer science, mathematics and statis-

tics. Developments in technology and mathematics has greatly enhanced the ability
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for researchers to better understand biological data. Bioinformatics is a vast field of

research with many subareas, some of which include sequence alignment, sequence

assembly, genome annotation and protein structure prediction [22,30].

Sequence assembly is the process of merging or putting together many small pieces

of DNA together in order to determine the original, longer sequence. Sequence as-

sembly often plays a role in DNA sequencing. Sequencing by hybridization is a DNA

sequencing technique which uses sequence assembly. Sequencing by Hybridization

(abbreviated SBH) was developed simultaneously by several researchers in the late

1980’s [3, 19]. SBH relies on the use of graph theory concepts, such as Hamiltonian

paths and Eulerian trails, to reconstruct a DNA sequence using the set of all k-length

sub fragments (k-mers) of the DNA sequence in question. This set is known as the

k-spectrum. Pevzner demonstrated that unique DNA reconstruction can be found

in polynomial time [25]. To construct the k-spectrum, one uses an array of probes

that contains all 4k possible k-mers. A particular k-mer binds to the unknown DNA

sequence if its Watson-Crick complementary sequence is contained within the un-

known sequence. Despite being relatively simple, SBH has many drawbacks. One

such drawback is that unique reconstruction of the DNA sequence is not always

possible. Enhancement have been proposed to help overcome this difficulty such as

obtaining location information of the subsequences [8] or using interactive sequenc-
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ing techniques [27]. In Section 3 we introduce SBH and demonstrate the problem of

non-unique reconstruction. We also introduce several variants of SBH that are often

studied as well. Finally, we discuss the computational complexity of SBH.

Many researchers have examined the probability that a random DNA sequence of

length N will be uniquely reconstructable from its k-spectrum. Asymptotic formulas

for this probability were given by Dyer et al. and Arratia et al. [1,14]. In [2] Arratia et

al. used combinatorial pairings to determine the probability of exactly K reconstruc-

tions of a random DNA sequence of length N . In Section 4 we will examine some

of the probabilistic methods developed in [28] and further extend them to include

modeling using conditional probability.

SBH is subject to errors when obtaining the DNA sequences k-spectrum. Many

studies on SBH assume, for simplicity, that sequencing errors do not occur. Others,

however, take into account the presence of both positive and negative sequencing

errors. Positive errors refer to an event in the experiment when an element of the

k-spectrum does not actually occur as a k-mer of the DNA sequence. Negative errors

refer to the event when a particular k-mer of the DNA sequence does not occur in

the k-spectrum. Because of these errors, SBH is often formulated in different ways

depending on the context of the study. Many of these contexts are outlined in [15]

by Formanowicz. In Section 5 we analyze SBH in terms of positive and negative
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errors. We also put forward an enhancement involving the use of restriction enzymes

to further increase the likelihood of a unique reconstruction. The method is then

tested using computer simulations.

In Section 6 we will analyze the graphs obtained using SBH in the context of

DAG-width. We will show that the graphs will often have a DAG-width of 1. This

implies that we can often achieve polynomial time solvability of the Hamiltonian path

problem, which is the problem we need to solve in order to reconstruct an unknown

DNA sequence.

In the final section we will discuss a next generation approach to SBH. This ap-

proach involves splitting the DNA sequence randomly into fragments and performing

sequencing on the individual fragments. The fragments can then be reassembled to

obtain the target sequence.



Chapter 2

Basic Concepts in Molecular

Biology

In this chapter we introduce some basic concepts in molecular biology that allows us

formulation of problems in bioinformatics that will be discussed later. We introduce

the concepts of DNA and RNA and their role in gene expression.

2.1 DNA and RNA

Genetics is the branch of molecular biology concerned with heredity and variation

in organisms. One of the first studies of genetics was carried out by Gregor Mendel
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in the 1800’s. During this time, Mendel studied pea plants and noticed that certain

traits of the pea plants were passed down to their offspring. He concluded that such

traits were controlled by discrete units called genes. A phenotype of an organism is

defined as any observable trait of that organism. For example, if a dog has black

fur, then the black fur could be referred to as a phenotype of the dog. Alternative

forms of a gene in a particular organism are referred to as alleles. For example, the

gene which encodes hair color can have different forms. One form could code for

blonde hair, while another could code for brown hair. All alleles associated with a

particular trait are known as a genotype. Alleles are directly responsible for many of

the phenotypes in organisms.

A chromosome is a structure in cells containing genes. Deoxyribonucleic acid, or

DNA, is one of the main components in the chromosomes of organisms. In the mid

1900’s it was shown through various experiments that DNA is the carrier of genetic

information in organisms. The shape of DNA is often referred to as a double-helix,

since it is composed of two strands that are shaped as a curled ladder. Contained in

DNA are many small molecules called nucleotides. The four nucleotides present in

DNA are adenine, cytosine, guanine and thymine, often abbreviated A, C, G, and T

respectively. In the double strand, the corresponding nucleotides in each strand are

complimentary to each other. The rule for complimentary nucleotides is that A is
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complementary to T, and C is complementary to G [12]. Such nucleotides are referred

to as Watson-Crick complementary.

Ribonucleic acid, or RNA is a substance which is very similar to DNA. The major

differences are that it is single-stranded, and contains the nucleotide uracil, abbrevi-

ated U, instead of thymine [18].

2.2 The Central Dogma of Genetics

The Central Dogma of Genetics is the process whereby DNA is copied into RNA, and

in turn, is used as a template to produce proteins. Proteins are the building blocks

of organisms and are responsible for many of their biological functions.

The first phase of the Central Dogma is known as the transcription phase. During

this phase, DNA is transformed into a strand of complementary RNA known as

messenger RNA, or mRNA. This is done using an enzyme known as RNA polymerase.

Once this has been achieved the mRNA binds to a ribosome. The next phase is the

translation phase. In this phase a protein is synthesized based on the mRNA that

binded to the ribosome. This is achieved through molecules inside the ribosome called

transfer RNA or tRNA. Proteins are made up of long chains of amino acids. Each

non-overlapping triple of nucleotides in an mRNA molecule codes for a specific amino



2.3 Mutations 9

Figure 2.1: The Central Dogma of Genetics.

acid. These triples are known as codons. There are a total of twenty amino acids

contained in organisms [11,18].

Replication is another phase of The Central Dogma. This occurs frequently and

is essentially to ensure genetic continuity between cells. When replication occurs, the

double strand of DNA unzips and each strand acts as a base to form new strands.

The new strands are generated using DNA polymerase, which adds base pairs to each

strand that are Watson-Crick complementary to the nucleotide bases in each strand.

2.3 Mutations

The genome of an organism is all of the genetic material contained in that organ-

ism. Mutations are defined as a change in the nucleotide sequence contained within

the genome of an organism. If such a change occurs, it could result in a different
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amino acid sequence being generated, and possibly a different phenotype present in

the organism. Mutations can often yield negative results in organisms. For exam-

ple, the disease known as Sickle Cell Disease is the direct result of a mutation in

the hemoglobin protein in blood. The resulting blood cells become sickle-shaped

as oppose to the traditional round shape. This in turn can cause blood flow to be

blocked to many of the bodies muscles, which can eventually lead to death [18]. Since

mutations can have many negative side effects, many organisms have mechanisms

which can repair these mutations [5]. Mutations can happen for a number of reasons.

Mutations, in general, are classified into two categories.

The first type of mutations are known as spontaneous mutations. They are referred

to as spontaneous because it is not a direct result of any outside agent or interference.

Spontaneous mutations often happen during the replication of DNA.

The second type of mutations are known as induced mutations. These mutations

are the direct result of some outside agent. Examples of such outside agents include

radiation from the sun, chemicals, as well as X-rays.

Mutations also have classifications based on their effect on nucleotides. For ex-

ample, a point mutation in a DNA fragment is when one nucleotide is substituted,

or replaced, by another. Because a point mutation effects just one nucleotide, it can

alter at most one amino acid in the DNA molecule. Insertion and deletion mutations
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Figure 2.2: Sickle Cell Disease. A collection of both normal blood cells and sickle

blood cells. Image taken from [4].
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are when one or more nucleotides are inserted into, or deleted from DNA. Such a

change results in a shift in the reading frame of the DNA and can have a significant

impact on the amino acid sequence generated by the DNA [18].



Chapter 3

Sequencing by Hybridization

In this chapter we will introduce sequencing by hybridization (SBH). We will also

introduce several concepts which are important in the study and understanding of

SBH. Combinatorics plays an essential role in the reconstruction of the sequences,

so we will review basic graph theory concepts which pertain to SBH. We will also

introduce some basic notions in computational complexity which will help in the

later discussion of the complexity of SBH.
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3.1 Preliminaries

3.1.1 Concepts in Graph Theory

Combinatorics, and in particular graph theory plays an essential role in many bioin-

formatics problems; often seemingly complicated problems can be greatly simplified

by using a graph structure to model data. In this section we will discuss many basic

concepts in graph theory that will be used in later sections in DNA sequencing. For

a more detailed list of graph theory concepts please refer to [33].

A graph is a pair G = (VG, EG) where VG is a set, elements of VG are called vertices

or nodes, EG is a collection of unordered pairs of elements in VG, and each pair in EG

is referred to as an edge. The vertices of each edge are referred to as the endpoints

of the edge. For each edge e = {vi, vj} ∈ EG we say that e is an edge from vertex vi

to vertex vj (or vice versa). A walk in a graph is a sequence v0e1v1e2v2 · · · ekvk such

that edge ei is an edge from vi−1 to vi. A cycle is a walk in which the starting and

ending vertices are the same. A graph which possesses no cycles is called acyclic. A

trail is a walk in which all edges are distinct and a path is a walk in which all vertices

are distinct. A Hamiltonian path is a path which travels through each vertex exactly

once, and an Eulerian trail is a trail which travels through each edge exactly once.

Graphs which posses a Hamiltonian path are called Hamiltonian and graphs which
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posses an Eulerian trail are called Eulerian.

Graphs are often represented visually to aid in the understanding of their struc-

ture. A graph G = (VG, EG) can be represented visually by drawing a dot or a

square to represent each vertex v ∈ VG and a line from vi to vj for each {vi, vj} ∈

EG. As an example the graph G = (VG, EG) where VG = {1, 2, 3, 4, 5} and EG =

{{1, 2}, {2, 3}, {2, 4}, {3, 5}, {4, 5}} is given below.

12

3

4

5

Figure 3.1: The graph G represented pictorially.

Example 1. In the graph G given above the sequence 1 · {1, 2} · 2 · {2, 3} · 3 · {3, 5} · 5

is an example of a walk. This walk is also a path since each vertex occurs at most

once. The path is not Hamiltonian because the vertex 4 is missing. It is also a trail

since each edge occurs at most once. The trail is not Eulerian because the edge {4, 5}

is missing.

Example 2. The sequence 1 · {1, 2} · 2 · {5, 3} · 3 · {3, 5} · 5 is not a walk in G because



3.1 Preliminaries 16

the edge {5, 3} occurs after vertex 2.

Example 3. The sequence 1 · {1, 2} · 2 · {2, 3} · 3 · {3, 5} · 5 · {5, 4} · 4 is a Hamiltonian

path in G. The sequence 1 · {1, 2} · 2 · {2, 3} · 3 · {3, 5} · 5 · {5, 4} · 4 · {4, 2} · 2 is an

Eulerian trail in G.

1

23

4

5

6

78

9

10

Figure 3.2: The Petersen Graph is a well known graph that has a Hamiltonian path

but no Eulerian trail.

In the study of graph theory, researchers are also often interested in a concept

known as directed graphs. A directed graph is a pair D = (VD, ED) where VD is a

set and ED is a collection of ordered pairs of elements of V called arcs or directed

edges. For each edge e = (vi, vj) ∈ ED we say that e is an edge from vi to vj. We
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also say that vi is the source node (or vertex) and vj is the target node. We represent

directed graphs visually in the same manner as graphs except that we attach arrows

to each edge which point to the target node. The concepts of walk, path, trail, etc.

can be defined analogously for directed graphs. As an example the directed graph

D = (VD, ED) where VD = {1, 2, 3, 4, 5} and ED = {(1, 2), (2, 3), (2, 4), (3, 5), (4, 5)}

is given below.

12

3

4

5

Figure 3.3: The directed graph D represented pictorially.

We will now turn our attention to graph decompositions. Many of the notions

we discuss from this topic are based on [6]. Given a directed graph G = (V,E) we

define the partial order �G as the reflexive, transitive closure of the relation given by

E. Let W,V ′ ⊆ V , any two subsets W and V ′ of V . We say that W guards V ′ if for

any (u, v) ∈ E with u ∈ V ′ we have that v ∈ V ′ ∪W . A DAG-decomposition of G

is a pair (D,X ) where D is a DAG (directed acyclic graph) and X = (Xd)d∈VD is a
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family of subsets of VD such that:

1.
⋃
d∈VD Xd = V .

2. For all vertices d �D d′ �D d′′, not necessarily different, Xd ∩Xd′′ ⊆ Xd′ .

3. For all edges (d, d′) ∈ ED, Xd ∩ Xd′ guards X�d′ \ Xd, where X�d′ stands for⋃
d′�Dd′′

Xd′′ .

The width of a DAG-decomposition (D,X ) is defined as max{|Xd| : d ∈ VD}. The

DAG-width of a directed graph G is the minimum width of any DAG-decomposition

of G. It is well known that deciding if the DAG-width of G is at most k is NP-hard [6].

Often with many graph decompositions there are associated games that are di-

rectly related to the width of the graphs. One such game is known as the game of

cops and robbers. Given a directed graph G = (VG, EG) the k-cops and robber game

on G is played between a cop player and a robber player. Each position in the game

is denoted by (X, r) where X ∈ [V ]≤k are the vertices occupied by the cops and r ∈ V

is the vertex occupied by the robber. The game is carried out as follows:

• At the beginning, the cop player chooses X0 ∈ [V ]≤k and the robber player

chooses a vertex r0 ∈ V giving position (X0, r0).

• From position (Xi, ri) if ri /∈ Xi then the cop player chooses Xi+1 ∈ [V ]≤k and
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the robber player chooses a vertex ri+1 such that there is a directed path from

ri to ri+1 in the graph G \ (Xi ∩Xi+1).

• A play in the game is a maximal (finite or infinite) sequence π := (X0, r0), (X1, r1), . . .

of positions given by the above rules.

• A play π is winning for the cop player if and only if it is finite. A play is winning

for the robber player if and only if it is infinite.

• A (k-cop) strategy for the cop player is a function f : [V ]≤k × V → [V ]≤k. A

play (X0, r0), (X1, r1), . . . is consistent with a strategy f if Xi+1 = f(Xi, ri) for

all i. The strategy f is called a winning strategy if every play consistent with f

is winning for the cop player.

• The cop number of a digraph G is the least k such that the cop player has a

strategy to win the k-cops and robber game on G.

We now introduce what it means for a particular strategy to be monotonic. Here

we assume G = (VG, EG) is a digraph.

1. A strategy for the cop player is cop-monotone if in playing the strategy, no

vertex is visited twice by the cops. Specifically that is, if (X0, r0), (X1, r1), . . . is

a play consistent with the strategy, then for every 0 ≤ i ≤ n and v ∈ Xi \Xi+1,

we have that v /∈ Xj for all j > i.
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2. A strategy for the cop player is robber-monotone if in playing the strategy, the

set of vertices reachable by the robber is non-increasing. That is, if (X0, r0), (X1, r1), . . .

is a play consistent with the strategy, then ReachG\Xi+1
(ri+1) ⊆ ReachG\Xi

(ri)

for all i.

It turns out that cop-monotone and robber-monotone strategies are closely related to

one another as was proven in [6].

Lemma 1 ( [6, Lemma 15]). 1. If the cop player has a robber-monotone strategy

then he also has a cop-monotone strategy.

2. Any cop-monotone strategy is also robber-monotone.

The cops and robbers game plays an essential role in the study of graph decomposi-

tions. It turns out that monotonic solutions to the cops and robbers game correspond

directly to upper bounds on the DAG-width of the associated graph.

Theorem 1 ( [6, Theorem 16]). For any digraph G there is a DAG-decomposition of

width at most k if and only if the cop player has a monotone winning strategy in the

k-cops and robbers game on G.

Corollary 1 ( [6, Corollary 17]). Let G be a digraph. Then G has a DAG-width of 1

if and only if G is acyclic.
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3.1.2 Concepts in Computational Complexity

Knowledge in computational complexity is important in the study of Sequencing by

Hybridization. This is due to the fact that there are multiple sequencing algorithms

and it is important to be able to distinguish which ones are most efficient. In this

section we introduce some basic notions in computational complexity that will aid us

in our discussions in later sections. Definitions in this section are based on [29,32].

A deterministic Turing machine (abbreviated DTM or simply TM) is defined

conceptually as a hypothetical machine that can manipulate symbols on a tape ac-

cording to a specified function [31]. Formally, a Turing machine is defined as a 7-tuple

(Q,Γ,Σ, δ, q0, qaccept, qreject) whereby:

1. Q is a set of states.

2. Γ is a set of symbols known as the tape alphabet. b ∈ Γ is known as the blank

symbol.

3. Σ ⊆ Γ \ {b} is known as the set of input symbols.

4. q0 ∈ Q is known as the initial state.

5. qaccept ∈ Q is known as the accepting state.

6. qreject ∈ Q is known as the rejecting state.
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7. δ : Q\{qaccept, qreject}×Γ→ Q×Γ×{L,R} is known as the transition function.

For x = x1 · · ·x|x| ∈ Σ∗ (that is, x a string over the alphabet Σ), where xi ∈ Σ is

the ith character in x, we denote x|ki = xi · · · xi+k−1. We define a configuration of a

TM as a string of the form aqixb, where a · x · b represents the non-blank symbols on

the tape, x ∈ Σ is the symbol that the read/write head is pointing to, a ∈ Σ∗ are

the non-blank symbols to the left of the read/write head, b ∈ Σ∗ are the non-blank

symbols to the right of the read/write head and qi is the current state. Given two

configurations C1 = aqixb and C2 = cqjyd of a TM M we say that C1 yields C2 if one

of the following holds:

1. δ(qi, x) = (qj, x
′, R) whereby ax′ = c and yd = b

2. δ(qi, x) = (qj, x
′, L) whereby a1 · · · a|a|−1 = c and a|a|x

′b = d

We say that a TMM accepts a string w ∈ Σ∗ if there is a sequence of configurations

C1, C2, . . . , Cn that accept w. That is:

1. C1 = q0w

2. Ci yields Ci+1 for i ∈ {1, 2, . . . , n− 1}

3. Cn is a configuration with the accepting state.
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The above definition also applies to the rejection of a string except that Cn is a

configuration with the rejecting state.

We define a language as a set of strings over some fixed alphabet Σ. A TM M

recognizes a language L iff M accepts all the strings in L and no other strings. If

some TM recognizes a language L we say that L is recognizable. A TM M decides

a language L iff M accepts all the strings in L and rejects all other strings. If some

TM decides a language L we say that L is decidable.

In computational complexity, researchers are also often interested in non-deterministic

Turing machines (NTMs). Non-deterministic Turing machines are similar to deter-

ministic Turing machines, except that the machine changes configurations accord-

ing to a relation ∆. For non-deterministic Turing machines we have that ∆ ⊆

(Q \ {qaccept, qreject} × Σ) × (Q × Σ × {L,R}). Configuration yielding is defined in

a similar way for NTMs. We say that configuration C1 = aqixb yields configuration

C2 = cqjyd if one of the following holds:

1. (qi, x, qj, x
′, R) ∈ ∆ whereby ax′ = c and yd = b

2. (qi, x, qj, x
′, L) ∈ ∆ whereby a1 · · · a|a|−1 = c and a|a|x

′b = d

The main difference here is that a given configuration may yield multiple other con-

figurations. For example, if a NTM N , is in configuration Ci, there is a set of possible
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next configurations {Cj1 , . . . Cjk}. A witness or certificate is a string which defines

a sequence of configuration choices for an NTM. When we run an NTM N with an

input string w we can also provide it with a certificate c, which designates the choices

N will make should it encounter a configuration that yields multiple configurations.

For instance, in the previous example we could define certificates cj1 , . . . , cjk such that

if we run N with input w and witness cjt , if N encounters configuration Ci then Ci

will yield Cjt according to the certificate. We say that a NTM M accepts a string

w ∈ Σ∗ if there exists at least one certificate c indicating a sequence of configura-

tions ending with an accepting configuration. We say that M rejects a string w if all

possible certificates result in configuration sequences that reject w.

The running time of a TM, M that halts on all input, is a function f : N → N

where f(n) is the maximum number of steps that M uses on any input of length n.

For a non-deterministic turing machine N that halts on all branches of computation,

we define the running time as a function g : N → N where g(n) is the maximum

number of steps that N uses for any witness on its computation on any input of

length n.

Note that any mathematical object can be encoded as a string over a fixed alphabet

Σ. This is actually the case with computers whereby graphs, functions, sets, etc. are

all encoded in the computers memory as strings over the alphabet {0, 1}. We define
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the encoding of some mathematical object X over a fixed alphabet Σ as < X >. For A

and B subsets of Σ∗ and T ∗ respectively and some computable function f : Σ∗ → T ∗

we say that f is a mapping reduction from A to B provided a ∈ A iff f(a) ∈ B. If

such a function exists we say that A is mapping reducible to B, denoted A ≤m B.

Note that one can simulate an NTM, N , using a TM, M . The basic idea involves

having M try all possible configuration sequences for a given input w ∈ Σ∗. For a

more detailed explanation of this notion refer to [29].

We can draw a relation between TM’s and actual computer algorithms. Church

and Turing proposed a thesis pertaining to this concept. To this day the thesis has

not been proven, however, it is widely accepted as true.

Church-Turing Thesis. Any real-world computation can be translated into an equiv-

alent computation involving Turing Machines.

It is also important to note that all reasonable deterministic models of computation

are polynomially equivalent, i.e., any one model can simulate the other with only a

polynomial change in the time complexity. This allows us to discuss complexity

without the concern of the selection of a particular computational model.

In computational complexity a computational problem is a question which a com-

puter might be able to solve. These questions often have an input parameter asso-

ciated with them known as an instance. For example, “Given an integer n, what is
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the prime factorization of n?” is a computational problem. If we were to ask the

question with n = 123, for example, then 123 would be the instance of the problem.

A decision problem is defined as a question with a yes or no answer depending on the

value of the instance. For example, the Hamiltonian path problem is the problem of

determining whether or not a given graph has a Hamiltonian path. This is clearly a

yes or no problem whereby the instance of the problem is a particular graph, hence

the Hamiltonian path problem is an example of a decision problem. It is important

to note that we can translate this problem into a problem involving TM’s. The in-

put to the TM would be the encoding of a graph G, denoted < G > and the TM

would accept if < G > is the encoding of a graph containing a Hamiltonian path.

If < G > encodes a graph with no Hamiltonian path the TM would terminate in a

rejecting state. We can therefore think of a decision problem as a problem of deciding

membership in a particular language. In the case of the Hamiltonian path problem,

we can define the language LH = {< G >: G contains a Hamiltonian path}, and the

problem becomes that of deciding whether or not a particular graph encoding < G′ >

belongs to the set LH . We can therefore talk about languages and decision problems

interchangeably.

Let f and g be two functions defined on some subset of the real numbers. We say

that f(n) = O(g(n)) if and only if there is a positive constant M0 and n0 such for all
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n ≥ n0 we have that

|f(n)| ≤M0g(n).

Similarly we say that f(n) = Ω(g(n)) if and only if there is a positive constants M1

and n1 such that for all n ≥ n1 we have that

M1g(n) ≤ f(n).

Finally, we say that f(n) = Θ(g(n)) if and only if there are positive constants K1,

K2 and N such that for all n ≥ N we have that

K1g(n) ≤ f(n) ≤ K2g(n).

The complexity class TIME(f(n)) is defined as the set of decision problems that

can be solved in O(f(n)) time by a deterministic Turing machine. The complexity

class P is defined as:

P =
⋃
k∈N

TIME(nk).

Similarly, we define the complexity class NTIME(f(n)) as the set of decision problems

that can be solved in O(f(n)) time by a non-deterministic Turing machine. The

complexity class NP is defined as:

NP =
⋃
k∈N

NTIME(nk).

We say that a decision problem Ψ is NP-complete if:
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1. Ψ ∈ NP and

2. ∀Y ∈ NP, Y ≤m Ψ in polynomial time.

Given a problem Π, we define DΠ as the set of all instances of Π. We define two

functions L : DΠ → N and M : DΠ → N which are to be associated with any decision

problem. The function L is a length function which is intended to map any instance I

of Π to an integer L(I) which corresponds to the number of symbols used to describe

I under some encoding scheme for Π. The function M is a max function which is

intended to map any instance I to an integer M(I) that corresponds to the magnitude

of the largest number in I. We say that two pairs of length and max functions, (L,M)

and (L′,M ′) are polynomially related if there exist two-variable polynomials q and q′

such that for all I ∈ DΠ we have that

M(I) ≤ q′(M ′(I), L′(I))

and

M ′(I) ≤ q(M(I), L(I)).

As an example consider the partition problem involving sets.

Example 4. Partition

Instance: A set A = {a1, a2, . . . , an} and sizes s(a1), s(a2), . . . , s(an) ∈ Z+.



3.1 Preliminaries 29

Question: Is there a set A′ ⊆ A such that

∑
a∈A′

s(a) =
∑

a∈A\A′
s(a)?

The following are length and max functions such that each pair of length/max function

is polynomially related:

L1(I) = |A|+
∑
a∈A

dlog2 s(a)e

L2(I) = |A|+ max{dlog2 s(a)e : a ∈ A}

M1(I) = max{s(a) : a ∈ A}

M2(I) =
∑
a∈A

s(a)

All subsequent results in this section will hold for any length and max functions

that are polynomially related to the ones we are using.

For any problem Π and any polynomial p, let Πp denote the subproblem of Π

obtained by restricting Π to only instances of I satisfying M(I) ≤ p(L(I)). We say

that a decision problem Ψ is strongly NP-complete if Ψ is in NP and there exists a

polynomial p over the integers such that Ψp is NP-complete.

Given two problems Π1 and Π2 we say that Π1 is polynomial-time Turing reducible

to Π2, denoted Π1 ≤T Π2, if Π1 can be solved using a polynomial number of calls

to an algorithm which solves Π2 and is polynomial outside of the algorithm calls. A

problem Π is said to be NP-hard if there is an NP-complete problem L such that
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L ≤T Π in polynomial time. Note that this definition of NP-hardness is an extension

of the one we described previously, since if A ≤m B in polynomial time, then A ≤T B

in polynomial time. The converse, however, is not true. The difference with using

Turing reductions is that the NP-hard problem need not be a decision problem. We

define strong NP-hardness analogously to strong NP-completeness. Specifically, we

say that a problem Π is strongly NP-hard if there exists a polynomial p over the

integers such that Πp is NP-hard.

3.2 Sequence Reconstruction Using Graph Theory

Sequencing by Hybridization (SBH) is a technique that was developed simultaneously

by several researchers as a method for sequencing DNA [3,19]. The method relies on

an array of probes containing all 4k DNA sequences of length k. The array is used to

generate the set of all k-length subsequences (k-mers) of our unknown DNA sequence

A with length N . This set is known as the k-spectrum of A, denoted Sk(A). Many

papers published on SBH make the assumption that Sk(A) is a multiset [7, 15, 28].

Once we obtain the multiset Sk(A) we must piece the k-mers together and thus,

determine our unknown DNA sequence A. It is important to note that there may

be more than one way to piece these k-mers together and hence, more than one
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candidate for A based on Sk(A). This situation is known as ambiguous, or non-

unique reconstruction.

To piece the k-mers together to form a string of length N we generate a graph

G = (V,E) whereby each k-mer x in Sk(A) is represented by a vertex v in the graph

G, such that the label of v, denoted l(v), is x. Once all of the k-mers in Sk(A)

have been added as vertices in G we draw the set of directed edges. A directed

edge is drawn from vertex u to vertex v if the last k − 1 characters of l(u) match

the first k − 1 characters of l(v). Finally, we determine all Hamiltonian paths in G.

Each Hamiltonian path in G through vertices v1v2 · · · vN−k+1 corresponds to a DNA

sequence with k-mers l(v1)l(v2) · · · l(vN−k+1) occurring in that order. This approach

to reconstructing A is known as the Hamiltonian approach.
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AGT

GTG

GTT ATG

TGC TGT

CGA

GAG GCG

TTA

Figure 3.4: An example of the Hamiltonian approach for SBH. The above graph

corresponds to the Hamiltonian graph generated from the spectrum {AGG, GGC,

GCA, CAT, ATA, TAG, AGG, GGC, GCA, CAT}. There are two Hamiltonian paths

corresponding to reconstructions ATGCGAGTGTTA and ATGTGCGAGTTA.

A major problem with the above method is that finding Hamiltonian paths in

graphs is NP-hard. Pevzner showed that reconstructing a DNA sequence from its k-

spectrum can be done in polynomial time [25]. We achieve this by generating a graph
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G where each k− 1-substring y in Sk(A) is represented by a vertex v in G with label

l(v) = y, where no two vertices have the same label (no repeated vertices from the

same k−1 substrings). We then a directed edge e = (v1, v2) for each k-mer x ∈ Sk(A)

where l(v1) is the first k − 1 characters of x and l(v2) is the last k − 1 characters of

x. We determine all Eulerian paths in G and each Eulerian path through edges

e1e2 · · · eN−k+1 corresponds to a DNA sequence with k-merss l(e1)l(e2) · · · l(eN−k+1)

occurring in that order. This approach to reconstructing A is known as the Eulerian

approach.

ACA
ACT CATCAC

ATG

ATC

TGA
GAT

TCA

CTT
AC CA

AT
TG

GA

TC

CTTT

Figure 3.5: An example of the Eulerian graph approach for SBH. The above graph

corresponds to the Eulerian graph generated from the spectrum {ACA, CAT, ATG,

TGA, GAT, ATC, TCA, CAC, ACT, CTT}. The sole Eulerian trail in the graph

corresponds to the reconstruction ACATGATCACTT.
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3.3 Variants on the SBH problem

SBH is commonly studied under different contexts with different assumptions made.

Sometimes it may be possible to obtain additional information using other lab ex-

periments. This information can sometimes reduce the chance of ambiguous recon-

struction. People also sometimes assume that the k-spectrum of an unknown DNA

sequence may contain up to a certain number of errors. Such assumptions have been

classified as separate problems of their own [15, 26]. In this section we will discuss

several of these variations of the SBH problem. As we have seen so far, the classical

SBH problem is defined as follows:

Problem 1. Given the multiset Sk(A) of k-mers, determine all sequences A′ such

that A′ contains exactly those k-mers present in Sk(A).

One problem with SBH that is characteristic of the lab experiments required to

generate the k-spectrum is the potential presence of errors in the k-spectrum. These

errors fall under two distinct categories. This first category of errors is false negative

errors. A false negative error occurs when a specific k-mer occurs in the unknown

DNA sequence A but does not occur in its k-spectrum obtained from probes. SBH

with the potential presence of false negative errors can be formulated as follows:

Problem 2. Given the multiset S−k (A) of k-mers such that S−k (A) ⊆ Sk(A), deter-
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mine all sequences A′ such that A′ contains all the k-mers present in S−k (A) as well

as any number of additional k-mers.

The second category of errors is false positive errors. A false positive error occurs

when a specific k-mer occurs in A’s k-spectrum, but does not occur as a k-mer of A.

SBH with the potential presence of false positive errors can be formulated as follows:

Problem 3. Given the multiset S+
k (A) of k-mers such that S+

k (A) ⊇ Sk(A), de-

termine all sequences A′ such that A′ contains all or some of the k-mers present in

S+
k (A).

As previously mentioned it is often possible to obtain additional information about

the unknown DNA sequence which helps reduce the chance of ambiguous reconstruc-

tion. One such variation of SBH that assumes some additional information is Po-

sitional Sequencing by Hybridization (PSBH). PSBH was suggested to improve the

resolving power of SBH using additional lab experiments which enables one to find

the approximate positions of every k-mer in a DNA sequence [8, 26]. Although this

greatly reduces the ambiguity as compared with that of regular SBH, polynomial time

algorithms for PSBH are unknown [26]. PSBH can be formulated as follows:

Problem 4. Given the set Sk(A) and interval Ikj = {lkj , hkj}, lkj < hkj for each kj ∈

Sk(A), find all sequences A′ with k-mers k1, k2, . . . , ki, . . . , kn occurring in that order
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such that A contains exactly those k-mers present in Sk(A) and for each 1 ≤ i ≤ n

we have that lki ≤ i ≤ hki .

3.4 The Computational Complexity of Sequencing

by Hybridization

In this section we will discuss in greater detail the computational complexity of DNA

sequencing by hybridization. As mentioned in Section 3.2, sequence reconstruction

can be done in polynomial time, provided the reconstruction is unique and no errors

are present in the spectrum. If, however, we further generalize the SBH problem to

include both positive and negative errors, the problem is no longer polynomial. This

was shown to be NP-hard. In this section we will discuss this result as well as several

other observations on the complexity of variants of the SBH problem. The definitions,

theorems and proofs from this section are taken from [7].

The non-error version of the SBH problem is defined as follows:

Problem 5. Given the set Sk(A) of k-mers and the length N of the original sequence,

find a sequence A′ of length N such that A′ contains exactly those k-mers present in

Sk(A).

In Section 3.2 we established that this problem can be solved in polynomial time.
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The main reason for this is that the problem can be transformed into an equivalent

problem involving finding an Eulerian trail in a directed graph. Since we are only

interested in finding one such string A′, we only need to find one Eulerian trail in the

resulting directed graph, which can be done in polynomial time. Note that the same

can be said about the equivalent problem which has multisets for the spectrum, since

we again are only interested in one Eulerian trail.

Theorem 2. Problem 5 is in P

Proof. We apply the transformation for the Eulerian approach for SBH in Section

3.2. Since we are only required to find one Eulerian trail in the resulting directed

graph, and since a single Eulerian trail can be found in polynomial time, the problem

is solvable in polynomial time.

The problem of interest in [7] involved DNA sequencing with the presence of both

positive and negative errors. The associated problem is defined as:

Problem 6. Give the set S±k (A) of k-mers and length N of the original sequence, find

a sequence of length ≤ N containing the maximum number of elements in S±k (A).

In order to determine the complexity of this problem we must first analyze the

problem under the restriction of only one type of error. The first type of errors we
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consider are false-negative errors. The associated problem with only false negative

errors is defined as:

Problem 7 (DNA sequencing with only negative errors - search version Πnss). Given

the set S−k (A) of k-mers and the length N of the original sequence, where S−k (A) ⊆

Sk(A), and Sk(A) is the spectrum of the sequence, find a sequence of length ≤ N

containing all the elements of S.

The corresponding decision problem is defined as follows:

Problem 8 (DNA sequencing with only negative errors - decision version Πnsd).

Given the set S−k (A) of k-mers and length N of the original sequence, where S−k (A) ⊆

Sk(A), and Sk(A) is the spectrum of the sequence, determine if there is a sequence of

length ≤ N containing all the elements of S.

The important thing to note at this point is that we are given in the problem

the length of the original DNA sequence as well as the type of error that can occur.

However, knowing that only false negative errors can occur and knowing the length

of the original sequence implies that we can always reconstruct the DNA sequence

in question. This, in turn, implies that the associated decision problem will always

have the answer “yes”. This leads us to define an alternate version of the decision

problem:
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Problem 9 (Positive quasi-sequencing - decision version Πnqd). Given the set S∗k(A)

of k-mers and length N of the original sequence, determine if there is a sequence of

length ≤ N containing all the elements of S∗k(A).

The main difference between this decision problem and the previous one is that

not all instances of this problem have the answer “yes”. The reason for this is that the

spectrum in the instances of this problem do not necessarily have only false negative

errors. It is the case, however that any instance of Πnsd which answers yes will also

result in an answer of yes for the problem Πnqd, and vice versa. Note that this problem

is closely related to a variant of the longest common superstring problem. A string u

is a superstring of a string s if it contains s as a substring. The variant of the longest

common superstring problem is defined as:

Problem 10. Given a set S of words of equal length k over a finite alphabet, the

length N of a superstring to be found, find a superstring of length N containing all

elements of S.

Lemma 2 ( [7, Lemma 1]). The negative quasi-sequencing problem is strongly NP-

complete.

Proof. In [16] the above variant of the shortest common superstring problem was

proven to be strongly NP-complete. Moreover, this is true even if the size of the
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alphabet is bounded by a number not smaller than 3. It can also easily be shown

that searching for a superstring of length not greater than n does not change the

complexity of the problem. Note that this is actually equivalent to the negative

quasi-sequencing problem.

Theorem 3 ( [7, Theorem 1]). DNA sequencing with only negative errors Πnss (search

version) is strongly NP-hard

Proof. Proving strong NP-completeness of negative quasi-sequencing Πnqd directly

implies the strong NP-hardness of sequencing with only negative errors Πnss. This

is true because if we had an algorithm solving Πnss in polynomial time, we could

use it to solve problem Πnqd in polynomial time. This could be achieved as follows.

Suppose A is the algorithm mentioned and let P (x) be the bound on A’s running

time on graphs with Hamiltonian paths. We apply A to a graph G obtained from

the Hamiltonian approach to SBH. If G has a Hamiltonian path, A will find one and

terminate in time P (|G|). If G does not have a Hamiltonian path, then after P (|G|)

steps A would not find one and we terminate the algorithm,

This concludes the discussion of DNA sequencing with only negative errors. We

now turn our attention to DNA sequencing with only positive errors. Recall that

a false positive error occurs when a particular element of our k-spectrum does not
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actually occur as a k-mer of our unknown DNA sequence. The problem of DNA

sequencing with only false positive errors is defined as follows:

Problem 11 (DNA sequencing with only positive errors - search version Πpss). Given

the set S+
k (A) of k-mers and length N of the original sequence, where S+

k (A) ⊇

Sk(A), Sk(A) being the actual spectrum of the sequence, find a sequence of length N

containing N − k + 1 of the elements of S+
k (A).

Similar to sequencing with negative errors, we must now define the associated

decision problem.

Problem 12 (DNA sequencing with only positive errors - decision version Πpsd).

Given the set S+
k (A) of k-mers and length N of the original sequence, where S+

k (A) ⊇

Sk(A), Sk(A) being the actual spectrum of the sequence, determine if there exist a

sequence of length N containing N − k + 1 of the elements of S+
k (A).

Again we have that all instances of the problem result in the answer “yes”. We

now define the corresponding quasi-sequencing problem

Problem 13 (Positive quasi-sequencing - decision version Πpqd). Given the set S∗k(A)

of k-mers and length N of the original sequence, determine if there is a sequence of

length N containing N − k + 1 of the elements of S∗k(A).
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As with negative quasi-sequencing, we have that any instance of Πpsd which an-

swers yes will also result in an answer of yes for the problem Πpqd, and vice versa.

We now proceed by proving the NP-completeness of positive quasi-sequencing. To do

this we apply a polynomial time mapping reduction from the NP-complete problem

directed Hamiltonian path between two vertices. This problem is defined as follows:

Problem 14 (Directed Hamiltonian path between two vertices (DHPBTV)). Given

a 1-directed graph D = (VD, ED) with two specified vertices s and t, determine if

there is a Hamiltonian path from s to t in D.

Lemma 3 ( [7, Lemma 2]). The positive quasi-sequencing problem Πpqd is strongly

NP-complete.

Proof. Given an instance of DHPBTV, the instance of Πpqd is constructed using the

following steps:

• to each vertex v ∈ VD, assign a unique label e(v) of length dlog2 |VD|e over the

alphabet {A,C}.

• let k = 2dlog2 |VD|e + 2, where k is the length of all constructed elements of

S∗k(A).

• build S∗k(A) such that for every v ∈ VD, one oligonucleotide is constructed of

the form e(v) ·G · e(v) · T .
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• add to S∗k(A) k−1 oligonucleotides for every arc (u, v) ∈ ED, where the oligonu-

cleotides are of the form u2 ·u3 · · ·uk ·v1, u3 ·u4 · · · v1 ·v2, . . . , uk ·v1 · · · vk−2 ·vk−1

whereby u1 · u2 · · ·uk is an oligonucleotide corresponding to vertex u.

• add to S∗k(A) k starting oligonucleotides of the form g1·g2 · · · gk−1·gk, g2·g3 · · · gk ·

s1, . . . , gk · s1 · · · sk−2 · sk−1 where gi = G and s1 · s2 · · · sk is an oligonucleotide

corresponding to starting vertex s.

• add to S∗k(A) k ending oligonucleotides of the form t2 · t3 · · · tk ·w1, t3 · t4 · · ·w1 ·

w2, . . . , tk · w1 · · ·wk−2 · wk−1, w1 · w2 · · ·wk−1 · G where wi = T and t1 · t2 · · · tk

is an oligonucleotide corresponding to vertex t.

The words generated from this method can be duplicated only if they correspond to

different arcs leaving the same vertex, or if they correspond to different arcs entering

the same vertex. In the spectrum the word only appears once, but it does not affect

the construction of a solution. We now show that a Hamiltonian path from s to t in

D exists if and only if such a sequence of length n = k(|VD|+ 2) exists which includes

the number of different elements of the spectrum S∗k(A) equal to k(|VD|+ 1) + 1.

Let us assume that D possesses a Hamiltonian path from s to t. One element in

S∗k(A) corresponds to each vertex from the path and k − 1 elements correspond to

each arc in the path. A construction of the elements makes it possible to construct a
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string of length k|VD| letters if all of the k(|VD| − 1) + 1 elements, in a proper order,

are maximally overlapped. If one then adds all starting elements and ending elements

(with maximal overlap) we obtain a string of k(|VD|+ 1) + 1 different elements of the

spectrum of length k(|VD|+ 2).

Now assume that a sequence of letters of length k(|VD|+ 2) exists and a number

of included elements of S∗k(A) is equal to k(|VD| + 1) + 1. This implies neighboring

elements in the sequence are maximally overlapped. This can only happen if between

any two consecutive elements corresponding to vertices, there are k− 1 elements cor-

responding to an arc joining the vertices. If one attempted to construct a sequence

using only elements which corresponded to vertices and arcs we would obtain a se-

quence of at most |VD| + (|VD| + 1)(k − 1) elements. This implies that the sequence

would have two elements less than required. Therefore the sequence must consist of

starting and ending elements. This forces the first vertex element of the sequence

to correspond to s and the last to correspond to t. All other vertex elements must

appear between the first and last vertex elements. To connect them by arc elements,

arcs joining vertices following each other in the sequence should exist in D. This

implies the sequence must contain spectrum elements in the following order:

• k starting elements
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• an element corresponding to s

• k − 1 elements corresponding to an arc leaving s

• other elements from vertices and arcs connecting them

• k − 1 elements corresponding to an arc entering t

• an element corresponding to t

• k ending elements

This ordering directly corresponds to a Hamiltonian path in D from s to t. Since

DHPBTV is strongly NP-complete and the above reduction is polynomial, we have

that Πpqd is strongly NP-complete.

We provide two examples of this transformation, one of which is illustrated in [7]

as an example when D contains a Hamiltonian path, and a second of our own which

illustrates the transformation when D does not contain a Hamiltonian path.

Example 5. A 1-digraph D1 = (VD1 , ED1) is given below, which contains a Hamil-

tonian path from s to t.
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1

2

t s

Figure 3.6: Directed graph D1 corresponding to an instance of directed Hamiltonian

path between two vertices

We consider labels for each vertex of length dlog2 |VD1 |e = 2 over {A,C}. We

obtain s − AA, 1 − AC, 2 − CA, t − CC. Next we construct the elements of the

spectrum of length k = 2dlog2 |VD1|e+ 2 = 6.

• s− AAGAAT

• 1− ACGACT

• 2− CAGCAT

• t− CCGCCT

• (s, 1)− AGAATA,GAATAC,AATACG,ATACGA, TACGAC

• (1, 2)− CGACTC,GACTCA,ACTCAG,CTCAGC, TCAGCA
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• (1, t)− CGACTC,GACTCC,ACTCCG,CTCCGC, TCCGCC

• (2, s)− AGCATA,GCATAA,CATAAG,ATAAGA, TAAGAA

• (2, t)− AGCATC,GCATCC,CATCCG,ATCCGC, TCCGCC

We now add the starting and ending elements: GGGGGG, GGGGGA, GGGGAA,

GGGAAG, GGAAGA, GAAGAA, CGCCTT , GCCTTT , CCTTTT , CTTTTT ,

TTTTTT , TTTTTG. Overall we have the spectrum:

S∗k(A) = {

AAGAAT,ACGACT,CAGCAT,CCGCCT,AGAATA,GAATAC,

AATACG,ATACGA, TACGAC,CGACTC,GACTCA,ACTCAG,

CTCAGC, TCAGCA,GACTCC,ACTCCG,CTCCGC, TCCGCC,

AGCATA,GCATAA,CATAAG,ATAAGA, TAAGAA,AGCATC,

GCATCC,CATCCG,ATCCGC,GGGGGG,GGGGGA,GGGGAA,

GGGAAG,GGAAGA,GAAGAA,CGCCTT,GCCTTT,CCTTTT,

CTTTTT, TTTTTT, TTTTTG

}

The corresponding graph using the Hamiltonian approach is given in the following

figure.
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AAGAAT

AGAATA

AATACG

ATACGA

ACGACT

CGACTC

ACTCAG

CTCAGC

ACTCCG

CTCCGC

GAATAC

AGCATA

GCATAA

AGCATC

GCATCC

ATAAGA

TAAGAA

TACGAC

ATCCGC

TCCGCC

CAGCAT

CATAAG

CATCCG

CCGCCT

CGCCTT

CCTTTT

CTTTTT

GACTCA GACTCC

GCCTTT

TCAGCA

TTTTTG TTTTTT

GAAGAA

GGAAGA

GGGAAG

GGGGAA

GGGGGA

GGGGGG

Figure 3.7: Graph generated from S∗k(A) using the Hamiltonian approach with a

reconstruction possible

We are now required to look for a sequence of length k(|VD1| + 2) = 36 using
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k(|VD1 |+ 1) + 1 = 31 elements of the spectrum. The solution here is

GGGGGGAAGAATACGACTCAGCATCCGCCTTTTTTG.

Example 6. Let us now consider a different example in which the 1-digraph D2 =

(VD2 , ED2) does not contain a Hamiltonian path from s to t.

1

t

2

s

Figure 3.8: Directed graph D2 corresponding to an instance of directed Hamiltonian

path between two vertices

We label the vertices of the graph the same as the graph in the previous example.

Since the only difference between this graph and the previous one is that the arc (1, 2)

is replaced by the arc (2, 1), we have that the majority of the spectrum elements are

the same. The only notable difference is that we replace the elements associated with

(1, 2) with the elements:

• (2, 1)− AGCATA,GCATAC,CATACG,ATACGA, TACGAC.
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The resulting spectrum in this case is given by:

S∗k(A) = {

AAGAAT,ACGACT,CAGCAT,CCGCCT,AGAATA,GAATAC,

AATACG,ATACGA, TACGAC,GCATAC,CATACG,ATACGA,

TACGAC,CGACTC,GACTCC,ACTCCG,CTCCGC, TCCGCC,

AGCATA,GCATAA,CATAAG,ATAAGA, TAAGAA,AGCATC,

GCATCC,CATCCG,ATCCGC,GGGGGG,GGGGGA,GGGGAA,

GGGAAG,GGAAGA,GAAGAA,CGCCTT,GCCTTT,CCTTTT,

CTTTTT, TTTTTT, TTTTTG

}

The corresponding graph using the Hamiltonian approach is given in the following

figure.
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AAGAAT

AGAATA

AATACG

ATACGA

ACGACT

CGACTC

ACTCCG

CTCCGC

GAATAC

AGCATA

GCATAA

AGCATC

GCATCC

ATAAGA

TAAGAA

TACGAC

ATCCGC

TCCGCC

CAGCAT

CATAAG

CATCCG

CCGCCT

CGCCTT

CCTTTT

CTTTTT

GACTCA GACTCC

GCCTTT

TTTTTG TTTTTT

GAAGAA

ACTCAG

GGAAGA

GGGAAG

GGGGAA

GGGGGA

GGGGGG

Figure 3.9: Graph generated from S∗k(A) using the Hamiltonian approach with no

reconstructions possible

It is easily seen that there is no path which travels through 31 of the vertices in



3.4 The Computational Complexity of Sequencing by Hybridization 52

the graph, hence there is no reconstruction possible using the spectrum S∗k(A).

Theorem 4 ( [7, Theorem 2]). DNA sequencing with only positive errors Πpss (search

version) is strongly NP-hard.

Proof. The proof can be deduced in the same manner as the proof for DNA sequencing

with only negative errors Πnss (search version).

Corollary 2. DNA sequencing with negative and positive errors (search version) is

strongly NP-hard



Chapter 4

Probability Models for

Non-Unique Reconstruction

One aspect of study of SBH for many researchers is the probability that a random

DNA sequence of length N = n+k−1 has an ambiguous reconstruction using probes

of size k [1, 2, 14, 28]. As a general rule of thumb, the larger the value of k the lower

the probability of an ambiguous reconstruction. Although this is helpful, having a

more accurate idea of the probability is very important before attempting sequencing

in order to avoid wasting lab time on sequencing which will likely be unsuccessful. In

this section we will explore this notion.

For a given a DNA sequence A = a1a2 · · · an+k−1, where n and k are positive
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integers, we define A|ki = aiai+1 · · · ai+k−1 for 1 ≤ i ≤ n. We say that the pair (i, j),

with i < j and j ≤ n, is a k-repeat in A if ai · · · ai+k−1 = aj · · · aj+k−1. A k-repeat

(i, j) in A is called rightmost if j + k − 1 6= n + k − 1 and (i + 1, j + 1) is not a

k-repeat. A k-repeat (i, j) is called weakly rightmost if (i, j) is rightmost or j = n.

We say that a pair of k-repeats ((i, j), (i′, j′)) is a k-R-pair if (i, j) is rightmost and it

is a k-Rr-pair if (i, j) is rightmost and (i′, j′) is weakly rightmost. The pair is called

interleaved if i ≤ i′ < j < j′.

In [28] a theta expression was given for the probability that a random DNA se-

quence of length N has an ambiguous reconstruction using size k probes. The expres-

sion was developed using several observations regarding ambiguous reconstructions,

combinatorial enumeration, and statistics. The observations giving necessary and

sufficient conditions for unique reconstructability is as follows, which is based on the

following results in [28]

Theorem 5 ( [28, Theorem 3.1]). A sequence A of length n + k − 1 is not uniquely

recoverable with respect to probes of size k iff either

1. A contains an interleaved (k − 1)-R-pair

2. A|k−1
1 = A|k−1

n+1 and there is an i ∈ {1, . . . , n+ 1} such that A|k−1
1 6= A|k−1

i .
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Theorem 6 ( [28, Theorem 3.2]). A sequence A of length n + k − 1 is not uniquely

recoverable with respect to probes of size k iff either

1. A contains an interleaved (k − 1)-Rr-pair

2. A|k−1
1 = A|k−1

n+1 and there is an i ∈ {1, . . . , n+ 1} such that A|k−1
1 6= A|k−1

i .

Lemma 4 ( [28, Lemma 3.3]). Let P k−1
i,i′,j,j′ denote the probability that ((i, j), (i′, j′)) is

an interleaved (k − 1)-Rr-pair. Then we have that P k−1
i,i′,j,j′ ∈ {0, 9/42k} for j′ < n+ 1

and P k−1
i,i′,j,j′ ∈ {0, 12/42k} for j′ = n+ 1

Proof. Consider the case where j′ < n + 1. Suppose A = a1a2 · · · aN . Then we have

that

Pi,j,i′,j′ = P

 ai = aj, ai+1 = aj+1, . . . , ai+k−2 = aj+k−2, ai+k−1 6= aj+k−1

ai′ = aj′ , ai′+1 = aj′+1, . . . , ai′+k−2 = aj′+k−2, ai′+k−1 6= aj′+k−1


We now build a graph Gi,i′,j,j′ whereby the vertices are the indices of the letters

that appear in the equalities and inequalities above and the edges correspond to the

equalities only. We have that the vertices are given by {i, . . . , i+ k− 1} ∪ {j, . . . , j +

k − 1} ∪ {i′, . . . , i′ + k − 1} ∪ {j′, . . . , j′ + k − 1} and the edges are {(i+ r, j + r)|r =

0, . . . , k − 2} ∪ {(i′ + r, j′ + r)|r = 0, . . . , k − 2}. Let V1, . . . , Vb be the connected

components of Gi,i′,j,j′ and let nl and ml denote the number of vertices and edges in

Vl respectively. The pairs (i, j) and (i′, j′) are repeats iff for each connected component
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Vl, all of the corresponding letters in A are equal. The probability of this occurring

is
∏b

l=1(1/4)nl−1.

We now consider separate cases. In the first case let us assume Gi,i′,j,j′ contains

parallel edges. This implies that (i+r1, j+r1) = (i′+r2, j
′+r2) for r1, r2 ∈ {0, . . . , k−

2} with r1 > r2. Therefore we have i′ − i = j′ − j = r for some r ∈ {1, . . . , k − 2}.

A repeat at (i′, j′) = (i + r, j + r) implies that ai+r+l = aj+r+l for all l < k − 1, and

in particular, for l = k − 1 − r we get ai+k−1 = aj+k−1. But if (i, j) is a rightmost

repeat we have that ai+k−1 6= aj+k−1. So, ((i, j), (i′, j′)) can not be an interleaved

(k − 1)-Rr-pair, so P k−1
i,j,i′,j′ = 0.

Let G′i,i′,j,j′ be the graph obtained from Gi,i′,j,j′ by adding the edges e1 = (i+ k−

1, j+ k− 1) and e2 = (i′+ k− 1, j′+ k− 1) which correspond to the two inequalities.

For this case we assume that Gi,i′,j,j′ has no cycles, and hence Gi,i′,j,j′ has no cycles.

This implies that ml = nl − 1 for all l. Therefore we have that the probability that

(i, j) and (i′, j′) are repeats is
∏b

l=1 1/4ml = 1/4
∑b

l=1ml = 1/42(k−1) which follows from

the fact that Gi,i′,j,j′ has 2(k − 1) edges. Furthermore, as the edges e1 and e2 do not

form a cycle we have that P k−1
i,j,i′,j′ = (1/4)2(k−1)(3/4)2 = 9/42k.

Now, for the final case let us assume that G′i,i′j,j′ contains a cycle. Note that the

vertex j′ + k − 1 only has i′ + k − 1 as its neighbor so any cycle in G′i,i′j,j′ cannot

pass through e2. We now claim that G′i,i′j,j′ contains a cycle that passes through e1.
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Let C = [v1, v2, . . . , vr−1, vr = v1] be some cycle in G′i,i′j,j′ . If C passes through e1

then we are done. Otherwise, for any edge e = (vl, vl+1) in C, as e 6= e1, e2, then

(vl + 1, vl+1 + 1) is also an edge in G′i,i′j,j′ . We repeat this process until we obtain

a cycle that passes through e1 and does not pass through e2. Therefore the vertices

i+ k− 1 and j + k− 1 are in the same connected component of G′i,i′j,j′ which implies

ai+k−1 = aj+k−1 and hence ((i, j), (i′, j′)) is not an interleaved (k − 1)-Rr-pair, so we

have that P k−1
i,j,i′,j′ = 0.

In [28] they define a function P (n, k) as the probability that a random DNA

sequence of length n + k − 1 is not uniquely reconstructable using probes of size k.

They further work to determine the asymptotics of P (n, k) by developing upper and

lower bounds on the function. The following theorems taken from [28] establish upper

and lower bounds on P (n, k).

Theorem 7 ( [28, Corollary 3.4]). P (n, k) ≤ (3
8
n3 + 5

4
n2) · n/42k + 1/4(k−1).

Proof. First suppose j′ < n+ 1. If i < i′ there are
(
n
4

)
ways of choosing i, i′, j, j′ such

that ((i, j), (i′, j′)) is an interleaved (k− 1)-Rr-pair. If i = i′ then there are
(
n
3

)
ways.

By Pascal’s identity we have a total of
(
n
4

)
+
(
n
3

)
=
(
n+1

4

)
possibilities.

If j′ = n + 1 then there are
(
n
3

)
possibilities with i < i′ and

(
n
2

)
possibilities with

i = i′. So by Pascal’s identity we have
(
n
3

)
+
(
n
2

)
=
(
n+1

3

)
.
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We must also address case 2 of Theorem 5. The probability of this occurring is

1/4k−1. By Lemma 4 we have that

(
n+ 1

4

)
9

42k
+

(
n+ 1

3

)
12

42k
+ 1/4k−1 ≤ (

3

8
n3 +

5

4
n2)

n

42k
+ 1/4k−1.

Theorem 8 ( [28, Lemma 3.5]). If n ≥ 4k then P (n, k) ≥ L(n, k)(1 − L(n, k)/2)

where D =
⌊
n
4

⌋
and

L(n, k) = (D − k + 1)4 9

42k

(
1− (D − k + 1)2 3

4k

)2

.

Corollary 3. P (n, k) = Θ(n4/42k).

Further studies were later done on other probability models for SBH. One such

model developed by the author is based on conditional probability, and has been

submitted to a journal [21]. Here we denote P (n, k, t) as the probability that a

random DNA sequence of length N = n+ k− 1 is not uniquely reconstructable using

probes of size k, given that we know it is not uniquely reconstructable using probes

of size t < k.

Theorem 9. Given a random DNA sequence A of length n + k − 1 we have that

P (n, k, t) = O
(

n442t

(n+k−t)442k
+ 1

4k−t

)
for 5(t−1) ≤ n+k− t ≤ 2t+1 +4(t−2) and t < k.
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Proof. Let Ez be the event that A is not uniquely reconstructible with respect to

probes of size z, let Rz be the event that A contains an interleaved z-Rr pair and let

Xz be the event that A|z1 = A|zn+k−z. Given our previous definition of P (n, k, t) we

have that

P (n, k, t) = Pr(Ek|Et) =
Pr(Ek ∩ Et)

Pr(Et)
.

Note that if A contains an interleaved (k− 1)-Rr pair then A contains an interleaved

(t− 1)-Rr pair. This, together with Theorem 6 implies that

Ek ∩ Et = Rk−1 ∪ (Rt−1 ∩Xk−1) ∪ (Xk−1 ∩Xt−1).

so we have

Pr(Ek|Et) ≤
Pr(Rk−1) + Pr(Rt−1 ∩Xk−1) + Pr(Xk−1 ∩Xt−1)

Pr(Et)
.

By Lemma 4 we have that Pr(Rk−1) ≤
(
n+1

4

)
9

42k
+
(
n+1

3

)
12
42k

.

Note that Pr(Rt−1 ∩Xk−1) = Pr(Rt−1) Pr(Xk−1|Rt−1). By lemma 4 we have that

Pr(Rt−1) ≤
(
n+(k−t)+1

4

)
9

42t
+
(
n+(k−t)+1

3

)
12
42t

. We now wish to find an upper bound

on Pr(Xk−1|Rt−1). Suppose event Rt−1 occurs, and we have that ((i, j), (i′, j′)) is an

interleaved (t−1)-Rr pair. The probability of event Xk−1 then depends on the position

of the interleaved (t − 1)-Rr pair. Note that the probability of Xk−1 is maximized

when one of the repeats in the interleaved (t−1)-Rr pair occurs at the beginning and

end of the sequence. This means there are less choices required to make the first k−1
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characters of the sequence equal to the last k−1 characters. Note that if either of the

repeats are at positions (1 + α, n + 1 + α), for 0 ≤ α < k − t then the occurrence of

event Xk−1 would be impossible, because if it did occur, then (1 +α, n+ 1 +α) would

no longer be rightmost, which is a contradiction. Note that if α = k− t then we have

(1 + α, n + 1 + α) = (k − t + 1, n + k − t + 1). Now, note that event Xk−1 can also

occur because (k− t+ 1, n+ k− t+ 1) will be weakly rightmost, and the probability

of Xk−1 is 1/4k−t, hence Pr(Rt−1 ∩Xk−1) ≤ 1/4k−t
((

n+(k−t)+1
4

)
9

42t
+
(
n+(k−t)+1

3

)
12
42t

)
Note that if event Xk−1 ∩ Xt−1 occurs then we have that A|k−1

1 = A|k−1
n+1 and

A|t−1
1 = A|t−1

n+k−t+1. This implies that A|t−1
1 = A|t−1

k−1−(t−2). The probability of this

occurring is 1/4t−1. Also, the probability that A|k−1
1 = A|k−1

n+1 is 1/4k−1. These two

facts together imply the occurrence of event Xk−1 ∩Xt−1, hence, Pr(Xk−1 ∩Xt−1) =

1/4k+t−2.

So overall we have that Pr(Rk−1)+Pr(Rt−1∩Xk−1)+Pr(Xk−1∩Xt−1) is less than

or equal to

(
n+ 1

4

)
9

42k
+

(
n+ 1

3

)
12

42k

+
1

4k−t

((
n+ (k − t) + 1

4

)
9

42t
+

(
n+ (k − t) + 1

3

)
12

42t

)
+ 1/4k+t−2.
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Hence,

Pr(Rk−1) + Pr(Rt−1 ∩Xk−1) + Pr(Xk−1 ∩Xt−1) = O

(
n4

42k
+

(n+ k − t)4

4k+t

)
.

Note that from [28] we have that Pr(Et) = Ω((n+ k − t)4/42t) which implies

Pr(Ek|Et) =
O
(
n4

42k
+ (n+k−t)4

4k+t

)
Ω((n+ k − t)4/42t)

= O

(
n442t

(n+ k − t)442k
+

1

4k−t

)
.

Theorem 10. Given a random DNA sequence A of length n + k − 1 we have that

P (n, k, t) = Ω
(

n4

(n+k−t)442(k−t) + 1
4k
− n4

43k

)
for 5(t − 1) ≤ n + k − t ≤ 2t+1 + 4(t − 2),

5(k − 1) ≤ n ≤ 2k+1 + 4(k − 2) and t < k.

Proof. Note that

P (n, k, t) = Pr(Ek|Et) ≥
Pr(Rk−1) + Pr(Rk−1 ∩Rt−1 ∩Xk−1)

Pr(Et)

Note that Pr(Rk) = Ω(n4/42k) by Lemma 3.5 of [28].

Consider now Pr(Rk−1∩Rt−1∩Xk−1). This expression is equivalent to Pr(Rk−1) Pr(Xk−1∩

Rt−1|Rk−1). Note that from the proof of the previous theorem we have that Pr(Rk−1) ≤(
n+1

4

)
9

42k
+
(
n+1

3

)
12
42k

which implies Pr(Rk−1) = 1−Pr(Rk−1) ≥ 1−
((
n+1

4

)
9

42k
+
(
n+1

3

)
12
42k

)
.

Also note that the event Rk−1 has no effect on the events Xk−1 or Rt−1 hence,

Pr(Xk−1 ∩ Rt−1|Rk−1) = Pr(Xk−1 ∩ Rt−1) = Pr(Rt−1) Pr(Xk−1|Rt−1). Note that
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Pr(Rt−1) = Ω((n + k − t)4/42t) again by lemma 3.5 of [28]. We now wish to find a

lower bound for Pr(Xk−1|Rt−1). Note that Pr(Xk−1|Rt−1) ≥ Pr(Xk−1) = 1/4k−1.

Overall we have

Pr(Rk−1) + Pr(Rk−1 ∩Rt−1 ∩Xk−1)

Pr(Et)

which is greater than or equal to

Ω(n4/42k) +
(
1−

((
n+1

4

)
9

42k
+
(
n+1

3

)
12
42k

))
Ω((n+ k − t)4/42t)(1/4k−1)

O((n+ k − t)4/42t)
.

Simplifying the above expression we obtain

Ω(n4/42k) + Ω(1− n4/42k)Ω((n+ k − t)4/42t+k)

O((n+ k − t)4/42t)

which is

Ω

(
n4

(n+ k − t)442(k−t) +
1

4k
− n4

43k

)

The actual value of P (n, k, t) was simulated using a Monte Carlo method. In this

method, a random set of DNA sequences of length N = n + k − 1 is generated that

are not reconstructable with respect to probes of size t for some t < k. Each sequence

is then tested to see whether or not it is reconstructable using probes of size k. The

ratio of the number reconstructible using probes of size k to the total number tested

is then determined. See Algorithm 1 in Appendix A for a pseudocode description of

the simulation.
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n k t n442t

(n+k−t)442k
+ 1

4k−t
n4

(n+k−t)442(k−t) + 1
4k
− n4

43k
Simulation

100 10 9 0.3100612715 0.0600622251 0.05

200 10 9 0.3112654701 0.0612664223 0.09

300 10 9 0.3116735651 0.0616745117 0.03

400 10 9 0.3118788868 0.0618798182 0.12

500 10 9 0.3120024900 0.0620033895 0.12

500 12 10 0.06634437003 0.0038444296 0.009

600 12 10 0.06635459782 0.0038546573 0.005

800 12 10 0.06636743043 0.0038674899 0.004

3000 15 12 0.01586816650 0.0002431674 0.000

Figure 4.1: Comparison of estimates of P (n, k, t) using simulations and asymptotics

from Theorems 9 and 10.

We can easily see from the table in Figure 4 that the asymptotic upper and lower

bounds obtained from Theorems 9 and 10 are accurate.



Chapter 5

Extensions of SBH

In this section we will explore extensions of SBH in order to reduce the number of

elements in the reconstruction sets. This is an important topic in SBH because having

a large number of elements in the reconstruction set makes it difficult for people to

have any idea of the nucleotide structure of the DNA sequence in question. Many

researchers have studied alterations of sequencing by hybridization that account of

errors and increase accuracy [13, 27, 28]. Many of the ideas in this section have been

developed by the author and submitted for publication in [20].

The first thing we will explore is how having additional spectrum information can

reduce the number of reconstructions of the DNA sequence. Specifically, given the

k-spectrum of a DNA sequence, we will explore how the knowledge of the sequences
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reconstructability with respect to probes of size t < k can help us more accurately

perform sequencing using probes of size k.

Secondly we will explore sequencing by hybridization using restriction enzymes.

In 1989 Drmanac et al. proposed a modification to sequencing by hybridization which

will motivate some discussions in this section. Instead of sequencing an entire DNA

sequence one could determine the spectra of short random overlapping fragments of

the DNA sequence in question. Such overlaps are known as clones. One can then infer

the position of these clones within the actual DNA sequence. The clone endpoints

would partition the DNA sequence into short intervals called information fragments.

We would then use the spectra of the information fragments to reconstruct each

fragment and hence, the entire DNA sequence [13]. In this section we propose a similar

approach for cutting the DNA sequence except we instead use specific restriction

enzymes depending on k-spectrum of the DNA sequence in question. In this way, the

cuts are more specific and we can limit the cuts to only ones which will decrease the

number of reconstructions of the DNA sequence.
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5.1 Using Additional Spectrum Information

Note that it is sometimes possible to reduce the reconstruction set obtained from SBH

by using some additional information. For example, suppose we have an unknown

DNA sequence A which is not uniquely reconstructable using probes of size t. Suppose

we also want to perform sequencing using probes of size k for some k > t. We could

use the knowledge of A’s non-unique reconstruction with respect to St(A) in order to

reduce the reconstruction set obtained from Sk(A).

For example, suppose we know that our DNA sequence A is not uniquely recon-

structable with respect to probes of size 3. Using probes of size 4 we obtain

S4(A) = {AAAC,AACG,ACGA,CGAA,GAAA}

and hence,

R4(A) = {AAACGAAA,AACGAAAC,ACGAAACG,CGAAACGA,GAAACGAA}.

Since A is not uniquely reconstructable using probes of size 3, we can eliminate or

prune elements in the reconstruction set which are also not uniquely reconstructable

using probes of size 3. Note that |R3(ACGAAACG)| = 1 and |R3(CGAAACGA)| =

1, hence we can reduce our reconstruction set to

R4(A) = {AAACGAAA,AACGAAAC,GAAACGAA}.
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This example was carried out using knowledge of non-unique reconstruction using

one smaller probe size. We can extend this notion to knowledge of multiple non-unique

reconstruction using probes of sizes {p1, p2, . . . , pl} with pi < pi+1. The algorithm

involves checking reconstructability with respect to all probes pi ∈ {p1, p2, . . . , pl}.

When performing checks, we first check to see if the unknown sequence A contains an

interleaved (pi − 1)-R-pair and secondly if case 2 of Theorem 5. This is because if A

contains an interleaved (pi−1)-R-pair then it contains and interleaved (pj−1)-R-pair

for all j < i.

An obvious question here is whether or not it is possible to prune all but one

element of the reconstruction set and thus obtain unique reconstruction. We have

shown that when knowledge of non-unique reconstruction with one smaller probe is

available this is not possible. We also conjecture that this remains the same when

any number of smaller probes have obtained non-unique reconstruction.

Theorem 11. Let A be an unknown DNA sequence of length n such that |Rt(A)| 6= 1.

If Rk(A) = {s1, . . . , sl} where k > t, then there exists two distinct i, j where 1 ≤ i, j ≤

l, such that |Rt(si)| 6= 1 and |Rt(sj)| 6= 1.

Proof. Suppose instead that there is exactly one 1 ≤ i ≤ l such that |Rt(si)| 6= 1. Note

that all sj share the same k spectrum and hence none are uniquely reconstructible

using probes of size k. By theorem 5 we have that either sj has an interleaved (k−1)-
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R-pair or that sj|k−1
1 = sj|k−1

n−(k−1)+1. Note that for sj with j 6= i if sj were to contain

an interleaved (k− 1)-R-pair then sj would contain an interleaved (t− 1)-R-pair, and

thus sj would not be uniquely reconstructible using probes of size t which contradicts

our assumption. It must therefore be that sj|k−1
1 = sj|k−1

n−(k−1)+1 if j 6= i and sj does

not contain an interleaved (k − 1)-R-pair.

Consider now the sequence si. We know by our previous argument that si|k−1
1 =

si|k−1
n−(k−1)+1 or si contains an interleaved (k− 1)-R-pair. We treat each of these cases

separately.

Suppose si contains an interleaved (k − 1)-R-pair ((u, v), (u′, v′)). Let {t1, t2,

. . . , tn−(k−1)+1} be the set of (k − 1)-substrings of si, that is tj = si|k−1
j . Since

((u, v), (u′, v′)) is a (k − 1)-R-pair in si we have that

g = t1 � t2 � · · · � tu−1 � tv � tv+1 � · · · � tv′−1 � tu′ � tu′+1 � · · ·

�tv−1 � tu � tu+1 � · · · � tu′−1 � tv′ � tv′+1 � · · · � tn−(k−1)+1 (5.1)

is in the set Rk(si) and hence in Rk(A). Note that ((u, v), (u′, v′)) is also an interleaved

(k − 1)-R-pair in g. Also note that si|ku 6= g|ku since (u, v) is rightmost. However, this

is a contradiction since we previously established that no element in Rk(A) aside from

si has a (k − 1)-R-pair, hence si can not contain an interleaved (k − 1)-R-pair.

Now suppose that si|k−1
1 = si|k−1

n−(k−1)+1. Now since si is not uniquely recon-
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structible using probes of size t we have that si contains an interleaved (t− 1)-R-pair

or si|t−1
1 = si|t−1

n−(t−1)+1.

Now consider the first sub-case where si|t−1
1 = si|t−1

n−(t−1)+1. Since si|t−1
1 = si|t−1

n−(t−1)+1

and si|k−1
1 = si|k−1

n−(k−1)+1 then si is of the form

x1x2 · · ·xt−1y1y2 · · · yk−1−2(t−1)x1x2 · · · xt−1z · · ·

x1x2 · · ·xt−1y1y2 · · · yk−1−2(t−1)x1x2 · · ·xt−1

Now since si|k−1
1 = si|k−1

n−(k−1)+1 we have that the graph obtained from si’s k-spectrum

contains a cycle and that

P = x2 · · ·xt−1y1y2 · · · yk−1−2(t−1)x1x2 · · ·xt−1z · · ·

x1x2 · · ·xt−1y1y2 · · · yk−1−2(t−1)x1x2 · · ·xt−1z

is a reconstruction based on si’s k-spectrum. Note that if z 6= y1 then P contains

an interleaved (t − 1)-R-pair and hence not uniquely reconstructible based on its t-

spectrum. If z = y1 then the last t−1 characters of P are equal the first t−1 and we

arrive at the same conclusion. Hence P is in Rk(A) but Rt(P ) 6= 1, which contradicts

our assumption.

We treat the second sub-case where si contains an interleaved (t−1)-R-pair given

by ((u, v), (u′, v′)). Let ti be the ith k-mer of si, or in other words, tj = si|kj . If u 6= 1
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then

t2 � · · · � tn � t1

also contains an interleaved (t−1)-R-pair. Also the above sequence is a reconstruction

of si based on its k-spectrum. In addition this sequence is not equal to si because

if it were then it would imply all k-tuples in si would be equal. Now if u = 1 and

v′ 6= n− k + 1 then

tn � t1 � · · · � tn−1

also contains an interleaved (t − 1)-R-pair and is a reconstruction of si based on its

k-spectrum. Similarly it is not equal to si. Finally, lets consider the case where u = 1

and v′ = n − k + 1. We assume first that v ≤ n − k + 1 with repeat v occurring in

tuple tf(v) then we have that

tf(v) � tf(v)+1 � · · · � tf(v)−1

contains an interleaved (t − 1)-R-pair. Also the above sequence is not equal to si

because (u, v) is rightmost, hence t1 6= tf(v). So have that there is another sequence

in Rk(si) that is not uniquely reconstructible using probes of size t. We now assume

that v > n − k + 1, hence v occurs in the last k-tuple but does not occur at the

beginning of the tuple. Note that if no characters of the (t − 1)-mer at u′ occurs in

the last k-tuple (in tn−k+1) then the above sequence will also contain an interleaved
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(t− 1)-R-pair. If, however, some of the characters of that substring occurs in the last

k-tuple then we simply replace u′ with k − t + 1. Note that ((u, v), (k − t + 1, v′))

will be an interleaved (t − 1)-R-pair since si|k−1
1 = si|k−1

n−(k−1)+1. Also note that the

(t− 1)-mer occurring at position k− t+ 1 will have no characters in the last k-tuple,

so we can apply the above transformation to obtain another sequence in Rk(si) with

an interleaved (t− 1)-R-pair, and hence, not uniquely reconstructible using probes of

size t.

We also show that if a DNA sequence contains an interleaved (k− 1)-R-pair then

it is impossible to prune all reconstructions using any number of smaller probe sizes.

This result is presented in the following theorem.

Theorem 12. Let A be an unknown DNA sequence of length n with |Rkl | 6= 1 for

kl ∈ I ⊂ N and let r = t0 � t1 � · · · � tn−k be an element of Rk(A) with k-tuples tj,

where 0 ≤ j ≤ n − k and k > kl for kl ∈ I. If there exists an element r′ ∈ Rk(A)

such that r′ 6= ti (mod n−k+1) � ti+1 (mod n−k+1) � · · · � ti+n−k (mod n−k+1) for all integers i,

then for each kl ∈ I there exists at least two distinct elements y, z ∈ Rk(A) such that

|Rkl(y)|, |Rkl(z)| 6= 1.

Proof. The existence of such an r′ implies that A contains an interleaved (k − 1)-

R-pair. Using transformation 5.1 in Theorem 11 we obtain a second sequence r′′



5.1 Using Additional Spectrum Information 72

with the same k spectrum that contains an interleaved (k − 1)-R-pair and hence not

uniquely reconstructible using probes of size ti ∈ I.

Based on these theorems we can see that pruning is only really effective if case

2 of Theorem 5 is satisfied, that is, the last k − 1 characters of the sequence match

the first k− 1 characters. It is important to note that this doesn’t happen very often

and as the size of the DNA sequence increases the probability of this diminishes.

In [20] we implemented these algorithms in Python and tested them on 100 random

DNA sequences of different lengths which are not uniquely reconstructable using

probes of both sizes k and t < k. The results of this program do indeed support our

observations.
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N t k Average reduction via pruning

15 4 6 2.23

25 4 6 0.49

30 4 6 0.41

40 4 6 0

15 5 7 2.81

25 5 7 1.82

30 5 7 1.5

40 5 7 0

Figure 5.1: The average number of DNA sequences pruned from the k-reconstruction

set of a random sample of 100 DNA sequences of length N . The DNA sequences in

the sample are not reconstructible using probes of sizes k and some t < k.

5.2 Using Restriction Enzymes

In this section we will discuss how we can use restriction enzymes to obtain more

accurate results with SBH without having to increase the probe size. In [13, 28] it

was shown how obtaining the spectrum of shorter sub fragments of the DNA sequence

in question can yield more accurate sequencing. We will use a similar approach in
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this section except we will use specific restriction enzymes depending on the spectrum

of the DNA sequence in question.

We first assume that we have a library L storing all possible cut configurations

of the restriction enzymes we have at our disposal. For each pair of reconstructions

r1 and r2 we split r1 and r2 into pieces using a common cut configuration from L

corresponding to a specific restriction enzyme. We then check to see what is the

smallest substring that occurs in a piece from one reconstruction but not the other.

We continue this process for all x ∈ L and take the smallest such substring. We then

run a probe through the corresponding pieces to invalidate r1 or r2 as a candidate for

the unknown DNA sequence. The reason for taking the minimal length substring is

to reduce the size of the probe array we must use.

As an example of this algorithm, consider the 3-spectrum S3(A) = {AAA,AAA,

AAT,ATG, TGA,GAT,ATC, TCA,CAC,ACA,CAT}. The reconstructions based

on S3(A) are r1 = AAAATCACATGAT and r2 = AAAATGATCACAT . If use a

restriction enzyme which cuts the sequence after the occurrence of TCA we obtain

the AAAATCA/CATGAT from r1, and AAAATGATCA/CAT from r2. Note that

the suffixes are the smallest pieces so we compare them. We can see that they differ

by a G nucleotide, so if we run a probe detecting the G nucleotide we can determine

which of r1 or r2 is the actual unknown DNA sequence A.
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A program was developed which generates random DNA sequences of length N

that are not uniquely reconstructable using probes of size k. The algorithm is then

carried out on the DNA sequences k-reconstruction set using probes of size less than

or equal to k. The only sequences tested by our algorithm are those which contain a

recognition sequence corresponding to some restriction enzyme in our library L.

N k Average percentage of reconstruction set pruned Percentage solved

50 5 53.8096320346 67

50 6 40.4777777778 73

100 6 53.8986721612 69

100 7 44.5833333333 83

150 7 51.6166666667 83

150 8 44 81

Figure 5.2: The average percentage of the k-reconstruction set pruned and average

percentage of instances solved of a random sample of 100 DNA sequences of length

N using the second pruning algorithm. Restriction enzymes used: EcoRI, EcoRII,

BamHI, HindIII, TaqI, NotI, HinfI, Sau3A, PvuII, SmaI, HaeIII, AluI, EcoRV

The above algorithm can also be extended to account for errors in the k-spectrum.

As mentioned in Section 3.3, there are two types of errors which can occur in SBH.
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False positive errors refer to the event when a k-mer occurs in the k-spectrum, Sk(A),

of the unknown DNA sequence A, but does not actually occur in A. Similarly a false

negative error refers to the event when a k-mer does not show up in Sk(A) but does

in fact occur in the DNA sequence A. We now define our problem definition for SBH.

Our definition is an extension to Problem 2 in Section 3.3. We define the problem of

DNA sequencing by hybridization with multiple probe sizes and false negative errors

as follows:

Problem 15. Given the multiset S−k (A) ⊆ Sk(A) and |Rti(A)| 6= 1 for all i ∈

{1, . . . c}, determine all sequences A′ such that A′ contains all the k-mers present in

S−k (A) as well as up to ∆ additional k-mers, all of which are not in S−k (A) and A′

satisfies Theorem 5 for all probes of size ti.

We additionally make the assumption that A|k1, A|kn, the first and last k-mers of

A, are in S−k (A) and that any element y ∈ S−k (A) has the correct multiplicity with

respect to A. In other words, y occurs in A as many times as it occurs in Sk(A). It

is important to note that a false negative error can impact the graph generated from

Sk(A) in a number of different ways. As an example, suppose S3(A) = {ACT,CTG,

TGG,GGC,GCC}. One can infer from S3(A) that A = ACTGGCC. However, if

a false negative error occurred one might have S−k (A) = {ACT,CTG,GGC,GCC}.

When building the graph using the Hamiltonian approach we would obtain
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ACTCTG

GGCGCC

which contains two components.

Consider now the spectrum S3(A) = {AAA,AAA,AAT,ATG, TGA,GAT,ATC,

TCA,CAC,ACA,CAT}. Using the Eulerian approach for SBH we obtain the graph
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AAA

AAA

AAT

ATG ATCTGA

GAT

TCA

CACCAT
ACA

AA

AT

TG

GA

TC

CA

AC

Note that if instead we had a 3-mer missing, such as ATG, we would obtain a

graph with no Eulerian trail, and hence no reconstructions would be possible.

We define k-mers v to be a t-successor of u if the last (k− t) characters of u match

the first (k − t) characters of v, where 1 ≤ t ≤ ∆ + 1. Now, let w be the length

(k + t) string obtained by overlapping the last (k − t) characters of u with the first

(k− t) characters of v. Any k-length string in w that is not in S−k (A) is referred to as

an artificial k-mer. Define S−k (A)∆ as the set the set of all k-mers from Sk(A) union

with the set of all artificial k-mers generated from every pair of k-mers in S−k (A).
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This is to correct for the possible loss of multiplicity information when false negative

errors occur. In the normal circumstance, we would also let each distinct element in

S−k (A)∆ have a ∆ increase in multiplicity in comparison to S−k (A), however, because

of our previous assumption that each element x ∈ S−k (A) has correct multiplicity, this

is not necessary.

It is easily seen that if the number of false negative errors ∆ is such that ∆ < k

then the spectrum S−k (A)∆ will contain the unknown DNA sequence [35]. Hence, a

solution to the above problem in the case where ∆ < k would be to compute S−k (A)∆,

generate the list of reconstructions based on S−k (A)∆, and prune such reconstructions

based on probes of size ti (1 ≤ i ≤ c) using the algorithms in the previous section.

Note that pruning with algorithm 2, errors make no difference. So the method

is valid. When pruning with the other pruning algorithm we must note that the

algorithm does not account for errors, and errors can cause the algorithm to produce

incorrect pruning of the reconstruction set. To account for this, we again split each

pair of reconstructions into pieces using restriction enzymes but instead we look for

the smallest set of 2∆ + 1 substrings that occur in one piece but not the other. Since

there can be at most ∆ errors, when we run probes through each piece using two

sequencing projects, the piece which has the 2∆ + 1 substrings will have the most

matches with our probes.



5.2 Using Restriction Enzymes 80

Let S+
k (A) be any superset of Sk(A), where |A| = n + k − 1 and A is a DNA

sequence. We again use ∆ as an upper bound on the number of errors, which in

this case, is the maximum number of elements in S+
k (A) that do not occur in the

DNA sequence. Here, our definition is an extension of Problem 3 in Section 3.3. The

problem of DNA sequencing by hybridization with multiple probes sizes with false

positive errors is defined as follows:

Problem 16. Given the multi set S+
k (A) ⊇ Sk(A) and |Rti(A)| 6= 1 for all i ∈

{1, . . . c}, determine all sequences A′ such that A′ contains all but at most ∆ of the

k-mers present in S+
k (A) and A′ satisfies Theorem 5 for all probes of size ti.

We also make the assumption that if x ∈ S+
k (A) occurs in the unknown DNA

sequence, then it occurs as many times as it occurs in S+
k (A). The problem can be

solved by generating the Eulerian method graph G based on S+
k (A) and finding all

trails T in the graph G such that the number of edges e in T is such that |S+
k (A)|−∆ ≤

t ≤ |S+
k (A)|, and each edge e belonging to trail T occurs as many times in T as it does

in S+
k (A), or it does not occur at all. If we did not make the above assumption, then

it would not be necessary for each edge e to occur in T as many times as it does in

S+
k (A). We then applying our pruning algorithms on each reconstruction generation

from each trail.

We can further extend this method to solve the SBH problem with both positive
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and negative errors. We define the spectrum with both errors S±k (A) of an unknown

DNA sequence A of length n + k − 1 in such a way that Ak1, A
k
n, the first and last

k-mers of A, are in S±k (A).

Problem 17. Given S±k (A) determine all sequences A′ such that the sum of the

number of elements in A′ but not in S±k (A) and the number of elements in S±k (A) but

not in A′ is less than or equal to ∆.

We also assume that any element x ∈ S±k (A) with multiplicity c occurs either c

times in the unknown DNA sequence, or not at all. In other words if either a false

positive or false negative error occurs it will manifest itself in the spectrum as an

additional element (with some multiplicity) that does not occur in Sk(A), or as the

removal of an element that occurs in Sk(A) and its multiplicity reduced to zero. The

problem can be solved by first computing the set S±k (A)∆ (which we define in the

same manner as we did for S−k (A)). We then generate the Eulerian method graph G

based on S±k (A)∆. We then find all trails T in G such that the sum of the artificial

k-mers used in the trail and the k-mers not used in S±k (A) is less than or equal to

∆. Also note that as with the solution to the previous problem, any edge e in trail

T must occur in T as many times as it does in S±k (A), or does not occur at all.

Finally we run both pruning algorithms on the reconstructions to reduce the size of

the reconstruction set.
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A program was written which implements this algorithm using 100 random DNA

sequences. We keep track of the average percentage of the k-reconstruction set that

is pruned, as well as the percentage of the 100 instances that are solved uniquely after

pruning.

N k ∆ Average percentage of reconstruction set pruned Percentage solved

50 5 1 58.5563721336 55

50 6 1 50.2801226551 66

100 6 1 60.7826569264 64

100 7 1 51.4694444444 69

150 7 1 55.4095238095 72

50 5 2 59.3653743672 32

50 6 2 52.0017838601 43

100 6 2 64.0176245178 42

100 7 2 53.3569069819 57

150 7 2 61.9327468382 48

Figure 5.3: The average percentage of the k-reconstruction set pruned and average

percentage of instances solved of a random sample of 100 DNA sequences of length

N using the second pruning algorithm. Restriction enzymes used: EcoRI, EcoRII,

BamHI, HindIII, TaqI, NotI, HinfI, Sau3A, PvuII, SmaI, HaeIII, AluI, EcoRV



Chapter 6

The DAG-Width of DNA Graphs

In this chapter we will investigate the width of the graphs obtained by DNA se-

quencing by hybridization. Graph widths are important because they have many

applications in finding efficient graph algorithms. Specifically, if one can find con-

stant upper bounds on certain graph width properties, many NP-complete problems

restricted to those graphs can be solved in polynomial time [6, 10].

We will explore the DAG-width of the DNA graphs obtained from sequencing by

hybridization of DNA sequences of length N = n + k − 1 using probes of size k.

Similar to the previous chapter, we assume that the k-spectrum Sk(A) is a multi set

with each k-mer of A occurring in Sk(A) as many times as it occurs in A. We also

assume that the graphs of interest were obtained using the Hamiltonian approach to
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SBH.

An important thing to note is that the DAG-width of the associated DNA graph

can vary greatly depending on the structure of the DNA sequence A. This is obvious

because some DNA graphs can contain cycles, whereas others may not. Any acyclic

graph would have a DAG-width of 1 whereas any graph with cycles would have a

DAG-width of at least 2 by Corollary 1. Since the width can vary, even when the

parameters N and k are kept constant, we must instead analyze the width properties

using probabilistic models.

We first address the issue of cycles in the digraph G corresponding to a particular

k-spectrum, Sk(A), of an unknown DNA sequence A. It can easily be shown that

there are specific properties of DNA sequences which give rise to cycles in their

associated digraphs. Specifically, k − 1 repeats in the unknown sequence can be

directly attributed to such cycles.

Lemma 5. Let A be an unknown DNA sequence and let G be the associated graph

obtained using Hamiltonian SBH with probes of size k. Then G contains a cycle if

and only if A contains a k − 1 repeat.

Proof. First suppose that the unknown DNA sequence A contains a k − 1 repeat

at positions (i, j) where i < j. Note that there are vertices vi, vi+1, . . . , vj−1 in our

digraph with labels l(vi) = aiai+1 · · · ai+k−1, l(vi+1) = ai+1ai+2 · · · ai+k, . . . , l(vj−1) =
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aj−1aj · · · aj+k−2 respectively. Note that for each t ∈ {i, i+1, . . . , j−2}, the last k−1

characters of vt match the first k−1 characters of vt+1, hence there is a path through

vertices vi, vi+1, . . . , vj−1. Since (i, j) is a repeat we have that aiai+1 · · · ai+k−2 =

ajaj+1 · · · aj+k−2. This implies that the first k−1 characters of vi match the last k−1

characters of vj−1, which in turn implies there is an edge from vj−1 to vi. Adding this

edge to our path through vi, vi+1, . . . , vj−1 we obtain a cycle through the vertices.

Now suppose that G contains a cycle through vertices vi, vi+1, . . . , vj−1. This

implies that the first k − 1 characters of vi match the last k − 1 characters of vj−1

which in turn implies a k − 1 repeat in A.

We now let pd(n, k) denote the probability that the DAG-width of the graph

obtained using the Hamiltonian approach of SBH with probes of size k from a random

DNA sequence of length N = n+ k − 1 is d.

Theorem 13. p1(n, k) = 1−Θ(n2/4k−1) for 2(k − 1) ≤ n ≤ 2k−1.

Proof. Let p>1(n, k) denote the probability that the DAG-width is greater than 1.

By the rules of complementary probability we have that p1(n, k) = 1− p>1(n, k). By

Corollary 1 we have that the DAG-width is greater than 1 if and only if the graph

contains a cycle. By Lemma 5 we have that the associated DNA graph contains a

cycle if and only if the unknown DNA sequence has a k − 1 repeat. Note that the
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probability that (i, j) is a k− 1 repeat is 1/4k−1. There are
(
n
2

)
ways to select indices

i and j such that (i, j) is a k − 1 repeat. It follows that

p>1(n, k) ≤
(
n

2

)
1

4k−1
= O(n2/4k−1)

For the second part of the proof we consider 2 disjoint sub-intervals of [1, n+k−1]

I1 =
[
1,
⌊
N
2

⌋
− (k − 1)

]
and I2 =

[⌊
N
2

⌋
+ 1, n

]
. We now let the event Z be the

event that there is a repeat (i, j) for some i ∈ I1 and j ∈ I2. We also let Zα

be the event that α = (i′, j′) is a repeat for i′ ∈ I1 and j′ ∈ I2. We now let

Yα = Zα∧
∧
β∈(I1×I2)\{α} Z̄β. Note that the events Yα are disjoint so Pr(Yα1 ∩Yα2) = 0

for all αi, hence Pr(Z) ≥ Pr
(∨

α∈I1×I2 Yα
)

=
∑

α∈I1×I2 Pr(Yα). By Lemma 3.5 of [28]

we have that

Pr(Yα) ≥ Pr(Zα)

1−
∑

β∈(I1×I2)\{α}

Pr(Zβ|Zα)


= (1/4k−1)

(
1− (bN

2
c − k + 1)2(1/4k−1)

)
.

This in turn implies that

p>1(n, k) ≥ Pr(Z) ≥ (bN
2
c−(k−1))2(1/4k−1)(1−(bN

2
c−(k+1))2(1/4k−1)) = Ω(n2/4k−1)

From this Theorem we can easily see that there is a high probability that the DNA

graphs obtained from SBH using the Hamiltonian approach will have a DAG-width
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of 1 for many values of n and k. This is advantageous because it allows for efficient

algorithms to solve the Hamiltonian path problem.

Another well known decomposition for digraphs is the arboreal decomposition in-

troduced in [17]. This decomposition has an associated width known as the directed

tree-width. In [6] it was shown that if a digraph has DAG-width k, then its directed

tree-width is at most 3k + 1. It was also shown in [17] that the Hamiltonian path

problem can be solved in polynomial time on digraphs of directed-tree width bounded

by a constant.

Proving that the probability of the DAG-width being 1 is 1−Θ(n2/4k−1) is there-

fore equivalent to proving that the probability of the directed tree-width being at

most 4 is 1 − Θ(n2/4k−1). Although this is not an upper bound in the strict sense,

it implies that the majority of the time we obtain a small directed tree-width and

hence, polynomial time solvability of the Hamiltonian path problem.



Chapter 7

Next Generation Sequencing by

Hybridization

As discussed in the previous chapters of this thesis, the major problem with SBH

is the existence of non-unique reconstruction. Many enhancements have been put

forward to help deal with this problem.

One such enhancement was introduced in [13] by Drmanac et al. In this en-

hancement, the target sequence is fragmented into random, overlapping subsequences

known as clones. If the clones overlap to a large degree then their spectra would be

very similar. This allows us to determine the clone positions in the target sequence.

The endpoints of the clones create a partition of the target sequence. The DNA
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subsequences between these endpoints are known as information fragments. We then

obtain the spectra of the information fragments and attempt to reconstruct them

using their spectra. In doing this we also reconstruct the target sequence.

Example 7. Suppose we have the unknown DNA sequence A. We perform sequenc-

ing using the above enhancement. We obtain clones with spectra S3(C1) = {ACT,

CTA, TAG,AGT,GTT, TTA}, S3(C2) = {TAG,AGT,GTT, TTA,ACT,CTC}, S3(C3) =

{TTA, TAC,ACT,CTC, TCT,CTG}. We assume that the clone positions on the

target sequence are known and that we have

A =

C1

a1a2

C2

a3a4a5 a6a7a8a9a10a11a12a13

C3

Obviously, the higher the number of clones the greater the intersection between clones

and hence the small the length of the information fragments. In this example we

obtain the following information fragments.

A = a1a2

I1

a3a4a5

I2

a6a7a8

I3

a9a10a11

I4

a12a13

I5

We now reconstruct each of the clones. If this can be done uniquely we need not

worry about the spectra of the information fragments. We obtain the following DNA

graphs using the Hamiltonian approach.
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ACT1CTA1

ACT2 CTC2

ACT3

CTC3

CTG3

AGT1

GTT1

AGT2

GTT2

TAG1

TCT3

TTA1

TTA2 TAC2

TAC3

TAG2

TTA3

Figure 7.1: Graphs generated using the spectra S3(C1), S3(C2) and S3(C3).
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We have that C1 = ACTAGTTA, C2 = TAGTTACTC, and C3 = TTACTCTG

and hence A = ACTAGTTACTCTG.

In [13] Drmanac et al. used simulations to test this method of sequence on target

sequences with 106 nucleotide bases. This was done by obtaining clones which were

500 base pairs long. The probabilistic models discussed in Section 4 can be extended

to account for this next generation SBH, as was shown in [28]. The probability for

non-unique reconstruction of a DNA sequence of length N = n+k−1 with probes of

size k is Θ(d3n/42k), where d is the length of the information fragments obtained by

cutting the target sequence. These probability models were also extended to account

for the presence of false negative errors [28].



Chapter 8

Conclusions and Open Problems

In this thesis we investigated several aspects of DNA sequencing by hybridization.

We highlighted various results by researchers, both classic and contemporary, and

expanded on several notions.

In the second section we examined the different variants on the SBH problem and

how it is often studied in different contexts [15]. We highlighted how the spectrum

can be considered to be either a set, in which the multiplicity of k-mers is unknown,

or a multi set, in which it is assumed that knowledge of the multiplicity of k-mers is

known. We also examined the role of errors in SBH. We introduced the notions of

positive and negative errors.

The third section of the thesis examines the computational complexity of DNA
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sequencing by hybridization. The results of [7] were summarized showing how the

Hamiltonian approach to SBH with no errors is NP-hard, due to the NP-hardness

of the Hamiltonian path problem in directed graphs. It was later shown that the

problem of SBH with no errors is solvable in polynomial time when we use the Eulerian

approach to SBH and when only a single reconstruction is of interest [25]. When we

assume the spectrum associated with a particular sequence can contain either positive

or negative errors, the problem then becomes NP-hard, regardless of which method

we use [7].

In the fourth section we examined were the probabilistic models involved in SBH.

In [1,2,14] probabilistic models were constructed to determine the likelihood of success

with SBH on a DNA sequence of length N using probes of size k. This was later

expanded to include next generation sequencing whereby the target sequence is cut

into fragments [28]. We also introduce conditional probabilistic models that predict

the likelihood of sequencing failure for probes of size k, given that a sequencing

failure has already occurred with probes of size t < k. A further direction of research

is whether this can be extended to include more than one previous failure with more

than one probe size.

In the fifth section we discussed extensions of SBH. Specifically we looked at SBH

with additional spectrum information and the use of restriction enzymes in SBH. Re-
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striction enzymes are used in order to cut the DNA sequence at points and determine

the spectrum of shorter sub fragments of the DNA sequence in question. We intro-

duce algorithms here that make use of a library of restriction enzymes and known cut

configurations to obtain the best cutting strategy in order to reduce ambiguity in se-

quencing. We also provide computer simulations of the algorithms which demonstrate

their performance in reducing ambiguity. A further direction of research here would

be to develop probabilistic models to determine the likelihood that the algorithms

will produce unique reconstructions of the unknown DNA sequence.

The sixth section focused on examining the DAG-width of the graphs obtained

from SBH. The DAG decomposition of a directed graph is a relatively new graph

decomposition. The decomposition is analogous to the tree decomposition for undi-

rected graphs [6]. The DAG-width of a DNA graph can vary greatly depending on

the DNA sequencing in question, even if the parameters N and k are kept constant.

We studied probabilistic models of the DAG-width of DNA graphs obtained from

SBH using the Hamiltonian approach. We showed that there is a high probability

of the DAG-width being 1 and hence we can usually find Hamiltonian paths in the

associated DNA graphs efficiently. A further direction of research here would be to

find the probability that the DAG-width is d for d > 1.

In the final section we discussed next generation SBH techniques. Specifically, we
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discussed a method where the DNA sequence is randomly split into fragments and

sequencing is performed on the individual fragments.



Appendix A

Algorithms

Algorithm 1 Monte Carlo simulation of P (n, k, t)
Require: Parameters n, k, t and sample size.
Ensure: Simulated value of P (n, k, t) based on a random sample of DNA sequences of length N =

n + k − 1.
1: num := 0, nonreconstructs := 0
2: while num < sample size do
3: Randomly generate a DNA sequence A of length N = n + k − 1
4: if A is not reconstructible using probes of size t then
5: num := num + 1
6: if A is not reconstructable using probes of size k then
7: nonreconstructs := nonreconstructs + 1
8: end if
9: end if

10: end while
11: return nonreconstructs/num.
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Algorithm 2 Pruning Algorithm 1: Carries out pruning algorithm 1
Require: Reconstructions R and integers T = {t1, t2, . . . tc} with ti < ti+1 such that A of length

N is not uniquely reconstructible using probes of size ti for i ∈ {1, . . . , c}.
Ensure: A list of candidates for A
1: for Each r ∈ R do
2: for j = c to 1 do
3: if r contains an interleaved (tj − 1)-R-pair then
4: Break
5: else if r

tj−1
1 6= r

tj−1
N−tj+2 then

6: Remove r from R
7: Break
8: end if
9: end for

10: end for
11: return R
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Algorithm 3 Pruning Algorithm 2 w/ errors: Carries out pruning algorithm 2 in
the presence of false negative errors.
Require: Reconstructions R = {r1, r2, . . . , rM}, cut configurations L and maximum false negative

error bound ∆
Ensure: A list of candidates for A
1: for Each pair ri, rj ∈ R do
2: smallest :=∞
3: {cut num, S occurrence, S non occurrence, c} := {NULL,NULL,NULL,NULL}
4: P := NULL
5: for Each cut configuration x ∈ L do
6: Cut ri into disjoint substrings i1, . . . , iu and rj into disjoint substrings j1, . . . , jv based on

x
7: if u 6= v then
8: Cut the unknown DNA sequence using restriction enzyme x. If it does not get cut into

u sequences remove ri from R. Also if it does not get cut into v sequences remove rj
from R.

9: Return control to outer most loop.
10: end if
11: for Each pair pair ik, jk do
12: Determine the set S of size 2∆ + 1 with the smallest maximum length string such that

all the element of S occurs in ik and not jk (or jk and not ik)
13: if MaxLength(S) < smallest then
14: smallest := MaxLength(S)
15: if All element of S occur in ik and none in jk then
16: {cut num, S occurrence, S non occurrence, c} := {k, i, j, x}
17: else
18: {cut num, S occurrence, S non occurrence, c} := {k, j, i, x}
19: end if
20: P := S
21: end if
22: end for
23: end for
24: Obtain the cut numth substring s′ from the unknown sequence upon cutting with the restric-

tion enzymes specified by c
25: Run all probes in P through s′

26: if More than ∆ probes occur in s′ then
27: Remove rS non occurrence from R
28: else
29: Remove rS occurrence from R
30: end if
31: end for
32: return R
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Algorithm 4 MaxLength(S): Determines the length of the largest string in the set
of strings S.
Require: Set S of strings
Ensure: The largest string in S
1: largest := 0
2: for Each string x ∈ S do
3: if largest < Length(x) then
4: largest := Length(x)
5: end if
6: end for
7: return largest

Algorithm 5 SBH with errors: Carries out SBH using pruning algorithms 1 and 2
in the presence of errors.

Require: The error k-spectrum S±k (A) of an unknown DNA sequence A, error bound ∆, and
integers T = {t1, t2, . . . , tc} with ti < ti+1 such that A is not uniquely reconstructible using
probes of size ti for ti for i ∈ {1, . . . , c}.

Ensure: A list of candidates for A
1: Compute S±k (A)∆

2: Generate the Eulerian method graph G based on S±k (A)∆

3: Find all reconstructions R of A based on G. Each trail T in the graph corresponding to a
reconstruction with m artificial k-substrings and do not contain M elements in S±k (A) must be
such that m+M ≤ ∆. Each edge e in trail T much occur in T as many times as its corresponding
k-substring occurs in S±k (A)∆.

4: R := Result of algorithm 2 with input R and T .
5: R := Result of algorithm 3 with input R, some known cut configuration library L, and ∆
6: return R
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