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ABSTRACT  

 

Massive sulphide ore deposits are one of the major sources of valuable minerals. 

Therefore, identifying massive sulphide ores from their associated host rocks is of great 

interest in mineral exploration. The seismic P-wave velocity and density of massive 

sulphides and  associated host rocks  has been studied significantly but there has been 

very little work on attenuation. This thesis reports on a comprehensive assessment of 

attenuation and loss factor along with velocity for the sulphide minerals (pyrite, 

chalcopyrite, sphalerite and pyrrhotite) and the felsic and mafic host rocks. The Spectral 

Ratio Technique is used to measure attenuation. The relationships among velocity, 

attenuation and loss factor along with their sensitivity with hydrostatic confining pressure 

(10-600 MPa) will be discussed. Seismic P-wave velocity for silicates and massive 

sulphides shows positive change with pressure. Except for low pyrite, Q shows modest 

pressure dependence for other rocks. The low pressure results for Q are not systematic 

and low pyrite shows anamolus behaivour for Q and loss factor at low pressure. The 

changes in loss factor in felsic and mafic silicates are not pronounced compared to that in 

massive sulphides, however the response of Q with pressure is much more complicated 

than loss factor. The applicability of the joint interpretation of these parameters (velocity, 

attenuation and loss factor) to identify massive sulphides is the key of this research. 

Moreover the response of these parameters in low (below 100 Mpa) and high (above 100 

Mpa) pressure zones are observed separately to observe their pattern of change and 

gradient with pressure to establish a relationship with pressure.  
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Chapter 1  

Introduction 

1.1 Background 

 

The mining industry has been using electrical, electromagnetic and potential field 

techniques to explore for new minerals for decades. These techniques are reasonably 

good for exploring for minerals at shallow depth. However, shallow mineral deposits are 

being depleted. Therefore, there is a need for geophysical tools that enable exploration at 

greater depths. The exploration for minerals at greater depths (>500m) requires high 

resolution techniques. Gravitational and magnetic methods are not effective at such 

depths because they lose resolution. Therefore techniques which retain resolution at 

greater depths are required. Currently, seismic techniques are playing an increasingly 

important role in deposit characterization and exploration [Salisbury et al., 1996; 

Milkereit et al., 1996; Eaton et al., 1997; Eaton et al., 2003; Duff et al., 2012; Salisbury 

and Snyder, 2007].  Detailed seismic imaging of the ore and the host rocks can be carried 

out with high frequency (200-2000Hz) seismic techniques which provide information on 

the existence of ore, changes of rock types, offset of mineralization, location of structures 

(faults, troughs), and the extent of shear zones [Greenhalgh and Mason, 1997]. 

Laboratory measurements of ultrasonic velocity and attenuation, as well as their relation 
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to confining pressure provide the baseline information for applying the seismic technique 

to mineral exploration.  

 

When a seismic wave passes through the earth, the elastic energy associated with the 

wave is absorbed slowly by the passing medium. The higher frequency content of the 

wave attenuates. Therefore there is a reduction in amplitude and the wave loses its 

resolution as it propagates. This phenomenon is known as attenuation. It may cause total 

disappearance of the wave. The physical state and saturation condition of the rocks affect 

attenuation of compressional and shear waves. Measurement of attenuation is difficult 

because the amplitude is very sensitive to noise, scattering, receiver coupling effects and 

interference from other signals. .Velocity on the other hand, can be measured easily, but it 

does not often provide the resolution needed to identify small changes that might occur in 

physical properties of rocks under varying conditions [Donald et al., 2004].  The 

laboratory measurement of attenuation indicates that attenuation coefficient is dependent 

on frequency [Toksὂz et al., 1979]. 

 

Velocity and attenuation depends on elastic properties of the rocks, presence of any 

structures, pressure and temperature conditions, mineralogy, etc. Laboratory studies help 

to provide an understanding of how these parameters interact and which parameters are 

most important.  
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1.2 Importance of this study 

 

Attenuation is an increasingly important parameter in seismic analysis. This is 

particularly true due to recent advances in full waveform inversions. While a lot of 

laboratory work has been done on the seismic velocity and density of rocks [Birch, 1960; 

Rybach, et al., 1982; Winkler and Plona, 1982; Duffy et al., 1989; Salisbury, 1997; 

Milkereit and Eaton, 1998; Vanorio et al., 2005], attenuation studies are relatively rare 

[Collins et al., 1956; Toksὂz et al., 1979; Winkler and Plona, 1982; Butt, 2001]. Seismic 

attenuation studies of ore bearing rocks are very rare.  

 

Some host rocks and sulphides have similar velocities. Therefore distinguishing them 

based on velocity might not be unique. Therefore seismic attenuation study along with 

velocity and density is required and may eliminate the  non-uniqueness of velocity. This 

research aims to evaluate and compare the potential of using attenuation and loss factor 

of massive sulphide and the host rocks in conjunction with velocity to explore for 

massive sulphide deposits in the subsurface.    

 

1.3 Scope and Research Objectives 

 

The scope of this research is to carry out seismic attenuation analysis on massive 

sulphides and igneous and metamorphic host rocks. The database used for this research is 
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based on experiments conducted at the High Pressure Geophysics Laboratry (HPL) at 

Dalhosue University, managed by Dr. Maththew Salisbury, who conducted 

measurements of P and S wave velocity on massive sulphide and associated host rock 

drill cores. The velocities used in this thesis research were the values given in the 

database, however the author reprocessed the recorded full waveforms from the HPL 

measurements to determine the attenuation parameters, which form the primary 

objectives of the work. 

 

The objectives of this research are:  

 to determine the attenuation and loss factor for massive sulphides and their 

associated host rocks. 

 To examine the response of attenuation and loss factor with respect to high (100-

600Mpa) and low (10-100Mpa) confining pressures for massive sulphide ore and 

the host felsic and mafic rocks.  

 to evaluate the potential of using seismic attenuation and loss factor to image 

massive sulphide ore in the hard rock regime. 

 

1.4 Organization of the thesis 

 

Chapter 1 deals with the research problem, importance, scope and the objectives of this 

research. Chapter 2  reviews literature concerning the  necessity of new massive sulphide 

exploration techniques and physical properties of massive sulphides. However, the main 
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focus of chapter two is attenuation. The mechanism, dependency and application of 

attenuation are reviewed. Chapter 3 describes the measurement techniques. Details of the 

processing and grading of the data are demonstrated in that chapter. Chapter 4 discusses 

the detailed results of the attenuation analysis and presents an interpretation of the data. . 

Finally, Chapter 5 discusses how we might apply the results along with some  

recommendations for future work.   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

6 

 

Chapter 2  

Literature Review 

 

This chapter will discuss the necessity of a new massive sulphide exploration technique 

along with a brief description of the methods used in mineral exploration. Then the 

physical properties of massive sulphides are discussed. The major portion of this chapter 

will cover the literature review on attenuation mechanisms, factors affecting attenuation 

and finally the application of attenuation. 

  

2.1 Necessity of a new massive sulphide exploration technique 

 

The deposits of the present mining camps [such as Horne (Canada), Kidd (Canada) and 

Brunswick (Canada)] are depleting and they have been explored up to 300m depth. A 

need arises to search for new deposits due to the increasing demand of minerals around 

the world. In the existing mining camps, it is necessary to find  additional deposits at 

deeper depth [Gingerich et al., 2000]. Geophysical methods have been used economically 

to identify ore deposits in the past. These methods give informative data on the physical 

properties of the subsurface due to the presence of geological structures and 
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mineralization. Seismic methods are more effective at deeper depths (between 300 to 

1000m) due to their high resolution [Demerling, 2004].  

 

2.2 Geophysical methods used in exploration: 

 

Magnetic, gravity and electromagnetics are three major geophysical methods used for 

massive sulphide exploration. Another method, seismic with higher resolution and 

sensitivity is proposed here.  A brief description of these methods is stated below.  

 

The magnetic method is primarily dependent on the presence of magnetic minerals 

(mainly magnetite and pyrrhotite). In this method, the magnetic field of the earth is 

measured. The presence of magnetic minerals in the subsurface perturbs the earth’s field 

resulting in detectable anomalies that are analyzed. Gravity methods are based on 

perturbation of the  earth’s gravity field due to the density contrasts between the different 

rock types.  The gravity method is sensitive to large structures only. Therefore small ore 

bodies of massive sulphide deposits are hard to detect with this method. The most 

commonly used method in mineral exploration is electromagnetic. This method is 

responsive to secondary  electromagnetic fields associated with rock bodies of varying 

conductivity.  The depth of penetration of an electromagnetic survey is limited by high 

conductivity, near-surface zones. The present electromagnetic methods are not suitable 

for exploring at greater depths (over 500m) in crystalline terrains in Canada due to highly 

conductive glaciated overburden [Demerling, 2004; Telford et al., 1995].  
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Seismic methods are more expensive than other geophysical methods of mineral 

exploration but have the potential to provide much more detailed geological information 

because of higher resolution. Acquisition, processing and interpretation of the seismic 

data in hard rock exploration need to be modified according to the response of the ore 

body. Seismic methods play significant roles in detecting deep seated mineral deposits 

which are at greater depth of 800m [Malehmir et al., 2013]. A thorough understanding of 

the physical properties of a specific combination of ore and the host is required for the 

selection of a proper imaging technique. Duff et al., (2012) conducted an analysis on the 

sulphide ores and their associated host rocks from Voisey's Bay Ni-Cu-Co deposit (one of 

the most recent large-scale mineral discoveries of Canada). They showed that in the 

pyrrhotite-pentlandite rich assemblage (low pyrite sulphide), velocity is significantly 

lower than in felsic and mafic silicate hosts. Therefore tomographic imaging is better 

suited for this type of deposit instead of seismic reflection imaging due to the modest 

acoustic impedance contrasts. Often it is scattering that is important for location too.  

 

2.3 Physical properties of massive sulphides 

 

Study of elastic properties for the host and the ore is a prerequisite for exploration as the 

elastic property contrast between the ore and the host rock can be significant [Eaton et al., 

2003]. Salisbury et al., (1996) studied P wave velocities for massive sulphides and their 

associated hosts. 
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Figure 2.3-1 shows common velocity-density fields for silicates and sulphides. The v-d 

data shows that the behavior of the sulphides is different from that of the silicate hosts 

indicating that seismic techniques may be able to detect these differences . 

 

Figure 2.3-1 Velocity (Vp)-density fields for common sulfide ores and silicate host rocks at 

200 MPa. Ores: py=pyrite, cpy=chalcopyrite, sph=sphalerite, po=pyrrhotite. Silicate rocks 

along Nafe-Drake curve: SED=sediments, SERP= serpentine, F=felsic, M=mafic, 

UM=ultramafic, g=gangue, c=carbonate (Salisbury et al., 1996).  
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Dashed lines (Figure 2.3-1) represent constant acoustic impedance (Z) for felsic and 

mafic rocks. The bar shows the minimum impedance contrast required to give a 

detectable reflection (R=0.061). An impedance difference of 2.5E5 g/cm
2
s which is the 

contrast between mafic and felsic rocks, gives rise to the value R=0.06 [Salisbury et al. 

(2000)]. Sulphides have a large velocity-density zone and mostly controlled by pyrite, 

pyrrhotite, sphalerite and chalcopyrite. Pyrite has density of 5g/cc and velocity of 

8km/sec. Pyrrhotite is dense (4.6 g/cc) but it has low velocity of 4.7 km/sec. Sphalerite 

and chalcopyrite are intermediate. They have density and velocity around 4.1 g/cc and 5.5 

km/sec. Pyrite content causes the velocity to increase. In contrast, pyrrhotite, sphalerite 

and chalcopyrite content cause it to decrease. Pyrite rich samples have high Bulk, Shear 

and Young's moduli. On the other hand, low pyrite sulphides have low Bulk, Shear and 

Young's moduli. Therefore, pyrite rich ore is  resistant to  changes in shape and volume, 

whereas low pyrite ores demonstrate the opposite nature. Harvey (1998) relates the high 

and low values (velocity and elastic constants) of pyrite-rich and low pyrite sulphides 

respectively to the crystal structures. The bonding in sulphides is mainly covalent.  The 

dense structure and strong arrangement of pi-bonds may lead to the high elastic constants 

and wave velocity of pyrite. The low elastic moduli and velocity of chalcopyrite and 

sphalerite might be related to their rather open and weaker covalent bonds. The low 

elastic moduli of pyrrhotite are related with its molecular structure.  

 

The ore in the study of Salisbury et al., (1996) shows a wide range of velocities (5.1-7.3 

km/sec) due to the differing  proportions of pyrrhotite and pyrite. Felsic and mafic hosts 



 

 

11 

 

also have  a range of velocities and densities (ranging from 6.0 km/sec and 2.75 g/cm3 

(felsic) to 8.3 km/sec and 3.3 g/cm3 (ultramafic). The impedance contrast between the 

ores and hosts can be large but that is not always the case. Therefore considering the 

acoustic properties, the contrast between ores and associated host rocks will often but not 

always produce strong seismic reflections.   

The differing properties of massive sulphide ore compared to the host rocks is also 

reflected in the study of Malehmir et al.(2013). They measured P and S wave velocities 

for a series of rocks and ore samples from the Swedish crystalline environment at 

atmospheric and elevated pressure to see their dependency with pressure at depths of 2-3 

km. These samples are collected from three regions ranging from metallic ore deposits, 

meta-volcanic and meta-intrusive rocks to deformed and metamorphosed rocks. They 

found that the samples do not exhibit much sensitivity with applied pressure but velocity 

and density show a positive correlation with pressure except for the massive sulphide 

samples. A massive sulphide ore sample shows low velocity in spite of having high 

density. They relate this with the mineral texture and lower pyrite content compared to 

another massive sulphide sample (obtained from Norway) which shows significantly 

higher velocity (both P and S wave). They found that massive sulphide deposits show 

very strong impedance contrast with most of the lithologies which gives privilege of 

applying seismic methods to describe the deposits.  
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2.4 Attenuation and Q: 

 

When a propagating wave passes through the earth, the energy in the wave dissipates 

(attenuation) due to the propagation medium (physical state and saturation conditions). 

Attenuation of elastic waves tends to be frequency dependent resulting in the reduction of 

amplitude and the loss of the higher frequency content in the frequency band of the wave. 

Geometric attenuation associated with the spreading of the wave front as it propagates is 

a major consideration for normal seismic exploration scales. Geometric attenuation  

occurs at both the lab and field scale. However, the reduction in amplitude generally is 

not a function of frequency (i.e. uniform for all frequencies) and is related to the 

reciprocal of distance from the source. In the experimental data used in this research, the 

distance from the source to the receiver (the length of the sample) is approximately 

constant; therefore most of the amplitude changes observed are due to intrinsic 

anelasticity of the minerals, the frictional dissipation along cracks and grain boundaries 

and scattering. The intrinsic attenuation is related to the mineral anelasticity and the 

cracks and grain boundaries therefore more frequency dependent than geometrical 

spreading and give rise to the linear slope of the Ln (A1/A2) versus frequency curve (A1 

and A2 are the final amplitudes after passing through the reference and rock samples 

respectively) that has been used to calculate Q and loss factor. As well, it is plausible that 

one of these two types of attenuation (intrinsic anelasticity or frictional dissipation) 

predominates in the regions above and below 100 MPa hydrostatic stress. Based on our 



 

 

13 

 

experimental data ‘which case will govern’ will be discussed in the results and discussion 

chapter. 

 

Quality factor, Q, is a dimensionless parameter used to measure the attenuation which is 

inversely proportional to α [frequency dependent attenuation co-efficient]. It is the ratio 

of the maximum energy stored during a cycle divided by the energy lost during the cycle. 

When the loss is large it is defined in terms of the mean stored energy and the energy 

loss. 

 

 

 

Where, V=velocity, f=frequency, α= attenuation coefficient.  

 

The high value of Q for a rock indicates that the propagating wave undergoes less 

attenuation and vice versa. Attenuation coefficient is generally proportional to frequency 

(i.e., Q is independent of frequency).  

 

Toksὂz et al. (1979) conducted laboratory measurements on attenuation of P and S wave 

for sandstone and limestone in dry and saturated conditions at ultrasonic frequencies (0.1-

1.0 MHz). Pulse transmission and spectral ratio methods were used for these 

measurements. The current research also measures attenuation of waves in massive 
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sulphide and silicate rocks following those techniques and considering the same 

assumptions and frequency range as described by Toksὂz et al. (1979). To understand the 

mechanism of attenuation and extrapolate the lab data to field, the sensitivity of 

attenuation with pressure was described. They showed that attenuation decreases (Q 

increases) with differential pressure. At low pressure, the increase rate is higher and it 

levels off at higher pressure. Attenuation co-efficient is linearly proportional to frequency 

whereas Q remains constant in the frequency range of 0.1-1.0 MHz. The mechanism of 

attenuation was discussed by Johnston et al. (1979). The following section will describe 

some of the mechanisms associated with attenuation. 

 

2.4.1 Mechanism and dependency of attenuation:  

 

A propagating wave may undergo attenuation in the rock matrix due to several factors: 

frictional dissipation across the crack surfaces and the grain boundaries, the intrinsic 

anelasticity of the matrix mineral and scattering. Frictional dissipation is the principal 

cause. It is difficult to define the precise mechanism of frictional dissipation across the 

crack and grain boundaries. The relative motion of two sides plays important role in 

frictional dissipation. In dry condition there is no sliding motion across the surface 

therefore attenuation is much lower in the dry state than the saturated condition. Intrinsic 

attenuation is very small but not negligible. When all the cracks diminish by the effect of 

pressure then intrinsic anelasticity plays the dominant role in attenuation of the wave. The 

other mechanisms responsible for the attenuation of wave in rocks might be fluid flow, 
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viscous relaxation, and scattering. Johnston et al. (1979) applied a model of these 

mechanisms to the laboratory data and showed that friction at the thin cracks and grain 

boundaries is the dominant attenuation. 

 

The pressure dependence of these mechanisms is very important. We would like to see 

how pressure affects attenuation of waves in the rock. When pressure increases the elastic 

and anelastic properties of a rock undergo changes. Due to the applied hydrostatic or 

overburden pressure, the number of thin cracks decreases. Thus attenuation by friction at 

the crack decreases. The more the pressure increases the more the cracks close, resulting 

in additional decrease in attenuation. The point at which attenuation reaches a limiting 

value defines the intrinsic aggregate anelasticity. This is due to the unaffected grain 

boundary and fine structure. The decrease of attenuation with increasing pressure is 

verified by several experiments [Gardner et al., 1964; Klima et al., 1964; Levykin, 1965; 

Gordon and Davis, 1968; Al-Sinawi, 1968; Walsh et al., 1970; and Toksὂz et al., 1979; 

Molyneux and Schmitt, 1999].  

 

A clear decrease in attenuation co-efficient is found for diabase and greywacke up to 100 

Mpa by Klima et al. (1964). Rocks with very low porosity and with reasonable crack 

porosity may show an exponentially decreasing relationship of attenuation with pressure. 

For granite rocks Gordon and Davis (1968) showed that attenuation decreases with  

differential pressure. However for the other types of rocks, the intrinsic anelasticity must 

be considered where cracks are closed. Therefore attenuation is not zero at higher 
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pressure. In that case attenuation might not be decreasing exponentially with pressure. 

This non-zero value of attenuation at very high pressure remains constant with pressure 

and determined empirically by Toksὂz et al., (1979). He fitted a model for dry Berea 

standstone, Q with differential pressure (difference between the confining and pore fluid 

pressure) shows that  around over 41Mpa the changes of Q with pressure becomes linear. 

Below 41 Mpa higher changes are observed in Q with increase of differential pressure. 

Generally the relationship is exponentially decreasing up to the pressure indicated earlier 

at which the thin cracks are generally closed and then the relationship is nearly linear. In 

the current research, the sensitivity of attenuation with pressure will be observed for 

silicate rocks and sulphide minerals in both low and high pressure due to the difference in 

behaviour in these pressures.  

 

Frequency is another important parameter to be considered. Several studies discussed the 

relation of Q with frequency [Butt, 2000]. Q factor is independent of frequency over a 

broad range of frequency (10
-2

-10
-7 

Hz) for dry rocks [Birch and Bancroft, 1938].  

 

 

2.4.2 Application of attenuation 

 

Different branches of engineering and geoscience have used attenuation. Attenuation is 

used for providing the information about the strata [Sarma and Ravikumar, 2000], 

lithology and saturation conditions [Stainsby et al., 1985], reservoir characterization 
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[Carcione et al., 2003], non-destructive testing [Molina and Wack, 1982], fracture 

detection [Pyrak, 1990] and the stability of the rock structure [Kaneko et al., 1979]. In the 

present research, we will try to investigate the potential of using attenuation in identifying 

massive sulphide ore. For that purpose the following paragraphs will present some 

background study on application of attenuation along with a study on delineation of 

massive sulphide ore. 

Butt (2001) conducted an experiment on a diabase sample (very low micro crack density) 

to measure velocity, attenuation and fracture closure. This experiment was done to 

evaluate the potential of using attenuation to indicate roof failure in excavation of a 

fractured rock mass. He examined the influence of fracture on P-wave attenuation by 

observing the change of Q with stress level and frequency. Both the velocity and Q have 

similar trends. The change in attenuation is greater than velocity due to the sensitivity of 

attenuation to coupling between the transducer and the sample, source waveform, 

geological structure, reflection, beam spreading in small sized laboratory specimen etc. In 

this paper the spectral ratio (The relationship of the  with frequency) is plotted 

against frequency ranging from 100-300KHz, and from the linearity of the spectral ratio 

curve it is shown that Q remains constant over this frequency range for both intact and 

fractured specimens. Q in fractured specimen is lower than that of intact specimen. This 

implies that attenuation is higher in fractured specimen. Above 20 Mpa normal stress, 

this difference in Q values between fractured and intact specimens reduces. This study 
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provides an important background in our current research by demonstrating changes of 

velocity and attenuation with non-hydrostatic stress and fracture. 

 

The changes of attenuation and velocity with pressure are related with the closure of 

cracks [Meglis et al., 1996]. Increase in confining pressure causes cracks to close which 

causes the velocity to increase and attenuation to decrease. The velocity and the 

attenuation of the propagating wave in the intact rock and the cracked rocks are different. 

It may be noted that the response of the cracks with pressure is dependent on the nature 

of the cracks [Batzle et al., 1980]. The amplitude and the velocity of the wave are 

dependent on how the cracks are distributed and oriented and the sizes and geometry of 

the cracks.  

 

Another application of attenuation is in describing the crystalline crust [Holliger and 

Buhnemann, 1996]. Their study on attenuation of a wave which employed high quality 

seismic data (S/N>>1) in a band of 50-1500Hz on a near surface crystalline granite body 

implies high attenuation (Q values of 20-60 with standard error of 20%). These low 

values of Q (high attenuation) demonstrate that below the weathering zone the 

dampening of the wave in the crystalline crust is quite strong. The present research 

measures attenuation of crystalline hosts, the range of Q provided by Holliger and 

Buhnemann (1996) will give a base for this analysis. The range of attenuation for 

massive sulphides is still unknown in the literature except one study done by Khondakar 
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et al., (2010). However velocities for the massive sulphides have been studied 

significantly [Salisbury et al., 1996; Salisbury et al., 2000; Malehmir et al., 2013]. 

 

Salisbury et al. (2000) provided three parameters for the prediction of the resolution of 

seismic reflection technique in imaging massive sulphides: acoustic impedance, body 

diameter and minimum thickness. The acceptable limit of these parameters for easy 

imaging of the ore are described in that paper. They found that most of the massive 

sulphides have higher impedance than the silicate hosts. Therefore if the deposits are 

within the geometric restriction which means known subsurface condition,  then seismic 

reflection techniques can be used directly.  Sulphides  occupy a large velocity-density 

field and lie far to the right of the Nafe Drake curve representing silicate rocks. This 

velocity-density field is controlled mainly by four massive sulphide minerals: pyrite, 

pyrrhotite, sphalerite and chalcopyrite. The detailed properties of these sulphides are 

presented in section 2.3. This research established a relation between the acoustic 

properties and reflectivity of massive sulphides. We will work on the attenuation of wave 

in sulphide minerals and felsic and mafic silicates to find out correlation between velocity 

and attenuation and to observe whether attenuation alone or together with velocity can 

provide important information on imaging massive sulphides. These are the baseline 

information for applying seismic techniques. Also their study provides basis for the 

grouping of sulphide minerals in the present research.  
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Chapter 3  

Methodology 

This chapter covers the methodology we have used for attenuation studies including the 

location of the sample collections, laboratory set-up, test procedure, processing and 

sorting of the data. The database used in the present research is developed from 

experiments conducted in the High Pressure Laboratory at Dalhousie University by 

Geological Survey of Canada in cooperation with Dalhousie University. The aim of these  

experiments was to measure the acoustic properties (velocities, density) of the rocks. The 

resulting data base includes over 1000 rock samples collected from around the world. The 

samples include a wide variety of igneous, metamorphic and sedimentary rocks from the 

continental and oceanic crust, plus a large suite of ores provided by the mining industry. 

 

3.1 Locations of investigations 

 

Massive sulphide samples in the present study consist of a suite of rocks containing 

pyrite, chalcopyrite, sphalerite, pentlandite and pyrrhotite. The host rocks range from 

basalt to rhyolite.  Eighteen locations have been chosen for this investigation. The 

locations are Bathurst suite, Bathurst NB, Ecsoot’96 Labrador, Ecsoot’96 Labrador-

Nakvakfjord Nain, Kidd Creek, Inco-Sudbury Basin, Kapuskasing, Mattagami, Liscomb 
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complex, Norada 99-Bathust, Selbaie, Selbaie mine study, Suleivan area, Sudbury 

sample, Sudbury-Inco BH 85534, Thompson mn, Thompson Nickel Belt-Manitoba and 

Tally Pond. 

 

3.2 High Pressure Laboratory  

 

The following sections will describe the equipment set up and the test procedures carried 

out in High Pressure Laboratory. 

 

3.2.1 Equipment setup 

 

The High Pressure Laboratory of Dalhousie University consists of a pressure vessel that 

operates over a pressure range of 0- 1400 Mpa for pressure curing and velocity 

measurements. The main pressure vessel is 7 ton in weight and has a sample chamber that 

is  40 cm long ×10 cm diameter. Hydraulic oil is pumped into the sample chamber with 

the assistance of a two-stage intensifier. The oil acts as the pressure medium. Six samples 

can be measured in this chamber at a time. Electrical contact to the source and receiver 

transducers is made by eight insulated cone feeds.. They are attached through the closure 

of the vessel end. The entire arrangement is situated in a reinforced concrete cellar. The 

system is monitored by a control panel situated in the adjacent lab.  Figure 3.2-1 shows 

the setup of the High Pressure Laboratory. 
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3.2.2 Set up of the sample 

 

The samples used in this experiment were cored with diamond core drills. They are right 

circular cylinders with sufficiently smooth flat surfaces and have the dimension of 2.5-

6.0cm long ×2.5 cm diameter. They are covered by copper foil. The transducers and 

electrodes are attached to the sample and even contact is maintained. Electrodes are the 

ungrounded terminals for the transducers. The transducers are made of circular plate. 

Two types of transducers have been used in this experiment: one for the P wave 

 

Figure 3.2-1The Pressure vessel (on left) and the Pressure Control panel (on right) 

of High Pressure Laboratory Dalhousie/GSC (http://gdr.nrcan.gc.ca/rockprop/rock_e.php) 

http://gdr.nrcan.gc.ca/rockprop/rock_e.php


 

 

23 

 

measurement and the other is for the S wave measurement. It may be noted that 1 MHz 

Lead Zirconate and 1 MHz Lead Zirconate Titanate transducers are used for P and S 

wave measurements respectively. The transducer covers the end of the specimen. A pulse 

of voltage is applied to the transducer and the disturbance is transmitted to the other 

transducer on the other end of the sample and the mechanical signal is converted to 

electrical signal and after amplification it is read on the oscilloscope. The whole 

arrangement of the sample, transducer and electrode is put in neoprene tubing. The 

arrangement is then kept closed in the pressure vessel. The arrangement of the sample, 

transducer and electrode are shown in Figure 3.2-2. 
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3.3 Measurements of different parameters 

 

Measurement of velocity, attenuation and loss factor will be discussed here.  

3.3.1 The pulse transmission technique  

 

The pulse transmission technique [Birch, 1960; Christensen, 1985] is used to measure the 

velocity of the propagating wave. A pulse voltage is applied to the source transducer 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.2-2 the arrangement for the pulse transmission technique (Birch, 1960) 

Input 

Electrode 

Transducer  

Sample 

Rubber 

Tubing 

Electrode 

Output 

Transducer  



 

 

25 

 

which initates an elastic wave in the sample that is received at the receiving transducer. 

The time of flight of the pulse is recorded on a digital oscilloscope. Velocity is calculated 

from the ratio of the sample length to the travel time at room temperature with pressure 

ranging from 10-1000 Mpa. The velocity is measured primarily for the dry samples at 

room temperature. A few samples are saturated with water and the velocities for these 

wet samples are measured to simulate the field conditions. 

 

Shear and compressional wave velocities are measured in one direction for the samples 

which do not have any definite fabric. They are measured in various directions for the 

samples with distinct fabric.  Velocities are determined for both the compression and 

decompression cycles but the decompression cycle is considered to provide better results. 

The time of first arrival is chosen and then travel time is measured from the oscilloscope 

from the calibrated time marker. For a typical sample it is observed that velocity 

increases rapidly for pressure up to 200MPa and then the velocity gradient decreases 

which is shown in Figure 3.3-1. At the beginning, the increase in velocity is due to the 

closure of micro cracks. However at higher pressure the velocity becomes linear due to 

the intrinsic properties of the rock minerals. [Birch, 1960; 

http://gdr.nrcan.gc.ca/rockprop/rock_e.php] 
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3.3.2 Measurement of Attenuation 

 

The spectral ratio technique is the most commonly used method for attenuation 

measurements. Q which is a measure of attenuation, related inversely with attenuation co-

efficient is measured by this technique from the slope of the spectral ratio curve. As Q-

factor is considered independent of frequency, the dispersion of the waves is not 

considered [Frempong et al., 2005, Johnston et al., 1980] in the spectral ratio model. This 

technique is reliable for negligible noise [Tonn, 1989]. Two types of samples are used in 

 

Figure 3.3-1 Compressional velocity Vs. pressure for a typical sample 

(http://gdr.nrcan.gc.ca/rockprop/rock_e.php) 

http://gdr.nrcan.gc.ca/rockprop/rock_e.php
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this technique: one is the rock sample and the other is the reference sample.  Both the 

rock and reference samples have the same dimensions. The reference sample is assumed 

to have no attenuation. The spectral ratio is derived from the ratio of the reference and 

sample amplitude spectrum.  Quality factor Q can be calculated using the method 

described by Butt (2001) which is described below.  

 

The change in amplitude as a function of frequency is expressed by the following 

formula:  

 

………………………… (3.1)   

Where, 

A0 (f) =initial amplitude, 

A (f) = the final amplitude after passing through the sample 

G(x) =geometrical factor which is a function of spreading, reflection etc.  

f= frequency 

x=sample length 

c=velocity 

Q=quality factor 

 

Now we consider natural logarithm on both sides of equation (3.1), 
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…………… (3.2) 

Equation (3.2) can be rewritten for reference and rock samples as equations (3.2A) and 

(3.2B) respectively. 

 

 …………… (3.2A)   

 …………… (3.2B) 

 

Now subtracting equation (3.2B) from equation (3.2A) and assuming Q1=∞, we get the 

equation 

 

From which, 

…………….. (3.3) 

 

The basic assumption is that Q for the reference is essentially infinite. That provides a 

reference that gives a ratio that is independent (approximately) of all the other things 

going on in the wave propagation. The relationship of the  with frequency 
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defines the spectral ratio and in this case equation (3.3) represents a straight line with 

slope . The quality factor for rock sample Q2 can be calculated from this slope. 

 

 

3.3.3 Measurement of loss factor 

 

Loss factor represents the energy loss of a seismic wave per unit distance and it is 

frequency dependent. Loss factor can easily be used to measure attenuation per unit 

distance. We measured loss factor at 1 MHz because that was the resonant frequency of 

the transducers. It can be measured at any frequency but most always be referenced to 

that frequency.  

Loss factor is measured using the following equation 3.4, derived by Dr. Stephen D. Butt 

(Professor at Faculty of Engineering and Applied Science, Memorial University of 

Newfoundland).  

 

Loss factor (dB/m @1 MHz)= ……………………….. (3.4) 

 

Where, S is the slope of the spectral ratio curve and x is the length of the specimen. The 

details of the derivation and the relationship of loss factor and Q are demonstrated in the 

Appendix B.  
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3.4 Test data  

 

The database contains thousands of rock samples. The physical properties (weight, 

length, diameter, density, and volume) of the rocks, P and S wave velocities at 

hydrostatic confining pressures ranges from 10 to 600MPa are provided in the database. 

From this database, the test data are sorted for the present research considering the 

sample length. Selections of the reference and rock samples are described in the 

following sections.   

 

3.4.1 Selection of the reference sample 

 

The reference aluminum samples used in the database consists of eight different lengths: 

60, 55, 50, 45, 40, 35, 30 and 25 mm. The 55 mm aluminum sample is chosen as the 

reference sample based on the near and far field consideration  [Khondakar et al., 2010]. 

In the near field, the uneven distribution of the energy is found in the wave front and 

ripples are observed in the Fourier amplitude curve due to this uneven distribution 

(Figure 3.4-1).  
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It is observed that in the far field, the energy distributions are more even and Fourier 

amplitude curves look relatively smooth. The amplitude spectra become nice and smooth 

with increasing confining pressure (Figure 3.4-2)  

 

 

 

 

Figure 3.4-1 The amplitude spectrum in near field for 25 mm length aluminum 

specimen (normalized) [Khondakar et al., 2010]. 

Frequency (KHz) 
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3.4.2 Selection of the rock samples 

 

The same criteria (sample length consideration) of the reference aluminum sample have 

been used for the selection of the rock samples. Therefore, rock samples, greater than 

38mm lengths are chosen for the analysis [Khondakar et al., 2010]. 

 

 

Figure 3.4-2 Amplitude spectrum in far the field at different 

pressures for 55 mm length aluminum specimen (normalized) 

[Khondakar et al., 2010]. 
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3.4.3 Method used to process and analyse data for Q factor calculation 

 

A MATLAB code has been developed to process and analyse the data by Dr. Charles 

Hurich (Associate Professor at Department of Earth Sciences, Memorial University of 

Newfoundland). This code is the convenient implementation of the spectral ratio method. 

The database contains ultrasonic waveform data recorded at the High Pressure 

Laboratory. Prior to the analysis the program allows removal of DC and low frequency 

components of the data introduced by the acquisition system. The specific waveform of 

interest is windowed and tapered and Fast Fourier Transform (FFT) is carried out to 

determine the amplitude spectrum. The selected portion is usually one full oscillation of 

the wave. This selection should be done very carefully for the nice and smooth Fourier 

amplitude spectrum. Then the natural logarithm ratio of the amplitudes of reference and 

rock samples is plotted against the frequency, the linear portion of the spectral ratio plot 

is chosen and a linear fit determined. The slope of the spectal ratio provides the data 

required to determine Q using equation 3.3. An example of this procedure is shown in  

Figure 3.4-3 through Figure 3.4-7   

 

The reference and rock waveforms are shown in Figure 3.4-3. If we observe the  
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reference aluminum waveform (A), it is apparent that the very beginning part of the 

waveform is noise. Then distinct signal portion (5-8 microseconds) is observed and the 
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Figure 3.4-3 Raw waveform (A) Reference Aluminum sample (B) Rock sample 

(Felsic Norite). Note the reversed polarity of the rock waveform due to reversed 

transducer configuration. 
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last part is the reflection of the signal (14.5-17 microseconds). The same is observed for 

the rock waveforms (B). 

Figure3.4-4 shows the selection of the desired signal portion from the reference 

aluminum and the same has been done for the rock waveform. One full oscillation is 

chosen starting from zero, which is illustrated by green color. The analysis was also 

performed considering two full oscillations. But the amplitude spectrum does not appear 

as it should be and it shows two peaks. Therefore after analyzing a good number of 

samples with two cycles, one cycle was chosen for the analysis.   

 

 

The desired signal portion is shown both for the reference and rock waveform in  

Figure3.4-5 (A) and (B). They represent waveform in time domain. 

 

Figure 3.4-4 Selection of signal from the waveform (reference aluminum 

sample) 

A 
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Figure 3.4-5 Windowed waveform for (A) reference Aluminum and (B) rock sample 
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Figure 3.4-6 shows the amplitude spectrums of the aluminum and rock samples. The 

rock spectrum has not started from zero due to the presence of non-zero offset that still 

remains after applying taper.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The natural logarithm of the spectral ratio with respect to frequency is plotted in Figure 

3.4-7 and a best fit straight line is drawn to the straight portion of the frequencies 

between 0.5-1.5 MHz for determining the slope of the curve. The line is chosen in such 
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Figure 3.4-6 Amplitude spectrum of aluminum and rock (red 

denotes rock) 
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way that it remains between the frequency ranges of 0.5-1.5 MHz because most of the 

signal lies in this frequency range. 

 

 

 

3.4.4 Grading of the rock samples:  

 

The selected rock samples (Section 3.4.2) are graded based on the quality of the recorded 

signal. Depending on the nature of the signal in the waveform, three grades (Grade A, B 

and C) are made. If the signal in the waveform is clear and distinct, therefore easily 

separated from the noise, then it is considered as Grade A. In Grade B sample, signal is 
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Figure 3.4-7 Ln ratio of the amplitudes Vs frequency plot and the best-

fitted line 
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still distinguishable although noise is getting more pronounced than Grade A sample. 

Grade C mostly contains noise; therefore signal cannot be separated from the noise. 

Please note that these are largely subjective measure.  

 

The waveforms and the amplitude spectra for the reference and rock samples (Grade A, B 

and C) are illustrated in the subsequent figures (Figure 3.4-8 and Figure 3.4-9). It may 

be noted that 55mm length aluminum waveform (Figure 3.4-3 (A)) has been chosen as 

the reference for the spectral ratio technique. 
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Figure 3.4-8 Typical waveform for (top left) Grade A-Felsic norite and (top right) Grade B-Metatonalite and (bottom) 

Grade C rock-Basalt
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Grade A waveform shows that the signal is clearly distinguishable from noise. In Grade 

B, signal is also separable. However, noise is more pronounced in Grade B (comparison 

to Grade A). Grade C rock waveform mostly contains noise and signal is hard to detect. 

Therefore this type of samples are discarded for the current analysis (Figure 3.4-8). 

 

The amplitude spectrum for Grade A is nicely started from zero and smooth curve. Non-

zero offset is present in Grade B spectrum. Even though some of the amplitude spectra do 

not decay to zero (that is the trend or low frequency component is not completely 

removed), because the ratio of the slope is used, the results are still valid. 55 mm 

aluminum is used as reference in both grades which is denoted by blue color Figure 3.4-

9.  
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Figure 3.4-9Amplitude spectrums (left) Grade A and (right) Grade B rock  
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3.4.5 Summary of the grading and grouping  

 

The summary of the grading and grouping is shown in the following flowchart (Figure 

3.4-10) 

 

 

3.5 Summary data:  

The summary data which is included in Appendix A refers to the data that is used in the 

analysis after sorting them out from the whole database.  

 

 

Figure 3.4-10Flow chart for the grading procedure 
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Chapter 4                                                 

Results and Discussion 

In order to provide a guideline for seismic exploration and the choice of the seismic 

methods, it is necessary to analyze the  elastic properties of the rocks. For the successful 

mineral exploration for massive sulphide deposits, it is necessary to to analyze the 

physical and acoustic properties of a particular deposit because massive sulfides show 

large variations in elastic properties depending on mineralogy. Velocity and density by 

far have been given  the most attention for the exploration of minerals. Attenuation along 

with velocity may  provide more precise analysis. This chapter will discuss the changes 

and sensitivity of three parameters (velocity, Q and loss factor) with hydrostatic 

confining pressures for massive sulphides and felsic/mafic hosts. The relationship 

between these parameters and the rock-types and also how the individual parameters are 

related to each other will be discussed in detail. In addition, a sensitivity analysis is 

conducted to find out the correlation co-efficient of the parameters that determine Q. The 

low and high pressure analyses are presented separately to observe changes in both 

pressure regimes and in which the mechanisms of attenuation may be different.  

 

As described in Chapter 3, the whole dataset is graded in: Grade A, B and C to insure  

data quality. Grade C is discarded because the waveforms from these rocks do not 

contain sufficient signal for attenuation analysis. Velocity, Q and loss factor for Grade A 
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and B (silicates and massive sulphides for both the grades) are plotted separately. It is 

observed that they exhibit similar trends. Therefore no distinction is made between these 

two grades in upcoming analysis. Silicates are grouped into felsic and mafic and massive 

sulphides are grouped in to low and high pyrite rich rock samples. The following sections 

will demonstrate velocity, Q and loss factor with pressure for the ore and the host rocks. 

 

4.1  Velocity versus pressure 

 

Velocity was measured for massive sulphides, felsic and mafic rock samples (dry 

condition) at various confining pressures up to 600 Mpa by the Pulse Transmission 

Technique. The average velocities for the groups of massive sulphides and silicates will 

be discussed in the following sections. 

 

4.1.1 Velocity Vs. pressure for the four groups of massive sulphides 

 

In the database, massive sulphides contain mainly four types of sulphide minerals in 

individual state or in mixed ores . They are mainly: Chalcopyrite, Sphalerite, Pyrrhotite 

and Pyrite. Velocities of these sulphides are plotted against confining pressure (Figure 

4.1-1). These figures are from both grade A and B. Grade A massive sulphides are mainly 

low pyrites and grade B sulphides are high pyrite. The bars denote standard deviations. 
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Figure 4.1-1Velocity vs. pressure for four groups of massive sulphides 
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This figure shows that pyrite rich sulphides have the highest velocity compared to other 

sulphides and are easily distinguishable from the rest of the massive sulphides. The range 

of velocity for pyrite rich samples is around 6.6-7.1 km/sec whereas other sulphides have 

the range of 4.50-5.80 km/sec. For all the sulphides, velocity has a positive correlation 

with pressure. From Harvey’s (1998) study, as mentioned in literature review, it is 

understandable that the high velocity of pyrite rich sulphides is related to the crystal 

structure. Chalcopyrite, pyrrhotite and sphalerite rich samples have more or less similar 

densities and velocities hence they are grouped together into low pyrite group. The high 

and low pyrite sulphides are plotted with their associated hosts in Figure 4.1-2. The 

standard deviation bars show uniform spread of the velocities from the mean for all the 

pressures.  

 

4.1.2 Velocity for massive sulphides and silicates 

 

Figure 4.1-2 shows average velocities with hydrostatic confining pressure up to 600 Mpa 

for massive sulphides (high and low-pyrite) and silicates (felsic and mafic). The velocity-

pressure plots exhibit similar trend (velocity increases with pressure) for both the ore and 

the hosts.  
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Figure 4.1-2 Velocity vs. pressure for silicate hosts (felsic and mafic) and massive sulphides (high and low pyrite) 
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Velocity increases rapidly below 100 MPa apparently due to the closure of micro cracks 

and grain boundaries (Birch, 1960). Above 100 Mpa, the increase in velocity with 

pressure is slow and linear. Close observation on Velocity-pressure plots show that the 

crack closure pressure might be around 100 Mpa. The results below 100 Mpa will be 

discussed further in Section 4.5.  

 

Amongst the sulfides, pyrite-rich samples have the highest velocity and low-pyrite 

samples  have the lowest velocities. Silicates fall in between these two sulphides. The 

range of velocities are shown in Table 4.4-1. The range shows that silicates have narrow 

range compared to massive sulphides. It is to be noted that, in this research we have not 

considered ultramafic rocks (UM). Ultramafics rocks can have velocities as high as pyrite 

(Figure 2.3.1).  Felsic rocks have density around 2.72 g/cc which is lower than that of 

mafic rocks (around 2.92g/cc). Therefore the velocity in mafic should be greater than 

felsic, which is also observed in Figure 4.1-2, at 200 Mpa felsic has average velocity of 

6.23 km/sec while mafic has 6.52 Km/sec. The acoustic properties of sulphides are 

different from that of silicates [Salisbury et al., 1996] which is also depicted in Figure 

4.1-2. Massive sulphides have distinct velocity range compared to silicates. The 

velocities of felsic and mafic are very close to mean whereas massive sulphides have 

higher spread than the host rocks around the mean. 
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4.2 Q versus pressure 

 

This section will discuss how attenuation changes with pressure for different rocks and 

their range of Q. 

 

4.2.1 Q Vs. pressure for the four groups of massive sulphides 

 

Chalcopyrite and pyrite rich sulphides share the same range of Q values and they have 

the similar trend except at low pressure (Figure 4.2-1). On the other hand sphalerite and 

pyrrhotite rich sulphides have similar range of Q. This actually opposes the velocity 

picture of Figure 4.1-1, where chalcopyrite and sphalerite have the similar range of 

velocity.  Pyrrhotite and sphalerite have higher Q values than pyrite and chalcopyrite. 

Therefore seismic attenuation is higher in pyrite and chalcopyrite enrich sulphides. 
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Figure 4.2-1 Q vs pressure for four groups of massive sulphides
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Q increases (attenuation decreases) with pressure for sulphides with some exception in 

low pressure and also pyrrhotite and sphalerite rich samples have irregular trends of Q.  If 

we observe the relation between the velocity (Figure 4.1-1) and Q (Figure 4.2-1) plots of 

sulphides, it shows that high pyrite sulphides has the highest velocity and the lowest Q 

and this inverse relation of Q and velocity regarding range also holds for other sulphides. 

However both velocity and Q have the similar increasing trend with pressure except some 

anomalous values at low pressure. The rate of change in Q is greater than velocity due to 

the sensitivity of attenuation to coupling between the transducer and the sample, source 

waveform, geological structure, reflection, beam spreading in small sized laboratory 

specimen etc. as mentioned by Butt (2001). Unlike velocity, Q has more uncertainity in 

the results. The high value of standard deviation indicates that the data points are 

spreaded out over a large range of values 

 

Attenuation in high pyrite increases below 60 Mpa, this result of pyrite rich 

sulphides probably cannot be associated with crack closure.  It is a possibility that it 

could be associated with differential crack closure but that is difficult to assess.  It is 

mentioned in literature review that pyrite has a low Poisson's ratio compared to most of 

the other sulfide minerals. The Poisson’s ratios for the common sulphides and felsic and 

mafic are tabulated below. These data are collected from Harvey, (1998). 
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It is mentioned above that chalcopyrite, sphalerite and pyrrhotite have been grouped as 

low-pyrite due to their similar density and velocity. In this section Q for the four types of 

sulphides have been demonstrated. The following section will describe high and low 

pyrite sulphides along with the silicates.  

 

4.2.2 Q for massive sulphides and silicates 

Figure 4.2-2 and 4.2-3 are the plots of Q and (1/Q) respectively with confining pressure 

up to 600 Mpa. Silicates and massive sulphides are plotted on the same plot. The changes 

of Q with confining pressure is observed carefully.  

 

Table 4.2-1 Poisson’s ratio of silicates and sulphide minerals 

 Poisson’s ratio 

Felsic 0.26 

Mafic 0.30 

Pyrite 0.19 

Chalcopyrite  0.35 

Sphalerite  0.32 

Pyrrhotite 0.23 
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Figure 4.2-2 Q vs pressure for silicate hosts (felsic and mafic) and massive sulphides (high and low pyrite) 



 

 

54 

 

 

 

Figure 4.2-3 1/Q vs pressure for silicate hosts (felsic and mafic) and massive sulphides (high and low pyrite) 
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Q shows only modest pressure dependence (except for the low pyrite sulfides) and the 

low pressure results are not systematic.  The lack of low pressure systematics suggests 

that the analysis technique may have issues at low pressure.  

 An increase in attenuation (Q decreases) is observed for high pyrites up to 60 Mpa, 

Above 60 Mpa attenuation decreases (Q increases) with pressure and there is a very slight 

increase in attenuation observed over 400 Mpa. In low pyrite attenuation decreases with 

pressure (Q increases) and above 400 Mpa there is a slight increase in attenuation similar 

to high pyrite. Little change is observed in Q with pressure for felsic and mafic silicates.  

 

It seems that frictional dissipation likely dominates at low pressure regime and may 

approach very low values at high pressure. Intrinsic anelasticity might be present 

in both low (below 100 Mpa) and high pressure (above 100 Mpa) but dominant in high 

pressure regime. 

 

Low pyrite sulphides have the highest Q values and wide range (41-70) while  pyrite rich 

sulphides have the lowest and narrowest range (38-22)..  The Q for silicates overlaps with 

high pyrite sulphides. Felsic rocks (28-35)  have slightly higher Q values than mafic (26-

30) rocks’. The ranges of Q are shown in the Table 4.4-2. 

 

Observing Figure 4.2-2 or 4.2-3, low pyrite massive sulphide has distinct range and trend 

of Q which might separate them from host rocks and high pyrite. At high pressure, pyrite 

rich sulphides and their associated felsic and mafic hosts share the range of Q.  Q might 
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have higher sensitivity with pressure for the ore,  but due to the scatter in the  results it 

might be a possibility. 

 

4.3 Loss factor versus pressure  

  

Loss factor is the energy loss of a seismic wave per unit distance at a given frequnecy. It 

is measured at 1 MHz frequency in this research. In addition to velocity and Q, the 

sensitivity of the loss factor with pressure is demonstrated in the following sections. From 

a mineral exploration perspective, loss factor is a more convenient parameter to estimate 

directly from seismic data than Q.  

 

4.3.1 Loss factor Vs. pressure for four groups of massive sulphides 

 

Figure 4.3-1 shows the changes of loss factor at 1 MHz with pressure for chalcopyrite, 

sphalerite, pyrrhotite and pyrite rich sulphides.  
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Figure 4.3-1 Loss factor vs pressure for four groups of massive sulphides 
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In general loss factor decreases with increasing pressure except some anomalous points in 

the low pressure. At higher pressure the change of loss becomes linear for chalcopyrite, 

pyrrhotite and sphalerite rich sulphides. As the pressure increases the pores and cracks 

diminish, therefore the propagating wave loses less energy in interacting the cracks and 

pores. It makes sense that loss factor decreases with increasing pressure and the presumed 

closure of the thin cracks.  But in Figure 4.2-3 1/Q vs. pressure, the relationship is a lot 

more complicated with some rocks showing increasing attenuation (1/Q) and then 

decrease (high pyrite) with increasing pressure, some don't change much at all (host 

rocks)and one set (low pyrite) shows a clear decrease  in attenuation with increased 

pressure.  It appears that there is more scatter in the Q (1/Q) measurements than the loss 

factor determinations. 

  

High pyrite has the highest loss compared to other massive sulphides. The range of loss 

factor for each sulphides will be presented in Table 4.4-1. Observing Figure 4.3-1 (loss 

vs. pressure) and Figure 4.2-1 (Q vs. pressure) of four groups of massive sulphides, it 

might be noted that individual massive sulphide has clear and distinct trend of loss factor 

unlike Q in high pressure. Q plots of pyrrhotite and sphalerite are not clearly separated.   

Further analysis on how Q and loss related will discussed in Section 4.7.3. 

 

4.3.2 Loss factor for massive sulphides and silicates 

 

Figure 4.3-2 shows loss factor with pressure for massive sulphides and silicates.  
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Figure 4.3-2 Q vs pressure for silicate hosts (felsic and mafic) and massive sulphides (high and low pyrite) 
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Loss of energy of seismic wave in massive sulphide decreases with pressure and remains 

almost linear for silicates over 100 Mpa. The major results drawn from Figure 4.3-2 are 

that at high pressure the loss factor is lower in sulphides than in silicates and that low 

pyrite sulphides have lower loss factors than pyrite rich rocks.  That is true for low 

pressures as well if the lowest pressure high pyrite sample is anomalous.   Loss factor is 

almost the same for felsic and mafic silicates.The ranges of loss factor will be shown in 

Table 4.4-2. An inverse relationship is observed between Q and loss factor (Figure 4.2-2 

and 4.3-2) which will be shown later. From the standard deviation bars, loss factor has 

moderate scatter around the mean.  

 

4.4 Summary of the velocity, Q and Loss factor plots 

 

This section will show the summary results from the plots previously discussed in 

Section 4.1 through 4.3 in tabular format.  

 

4.4.1 Summary results  

 

The range of velocity, Q and loss factor along with their trend in low and high pressure 

for the four groups of massive sulphides are tabulated in Table 4.4-1. The same 

parameters are tabulated for high and low pyrite massive sulphides and felsic and mafic 

silicates in Table 4.4-2. 
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Table 4.4-1 Summary results for pyrite, chalcopyrite, sphalerite and pyrrhotire 

 Massive sulphide Groups Velocity Q Loss factor 

Range Pyrite 

 

 

6.6-7.1 22-38 145-208 

Chalcopyrite 5.2-5.8 21-46 107-260 

Sphalerite 5.2-5.8 52-82 64-134 

Pyrrhotite 4.5-5.3 44-82 90-134 

High pressure response >100Mpa Pyrite Increasing Increasing Decreasing 

Chalcopyrite Increasing Increasing Decreasing 

Sphalerite Increasing No defined trend Decreasing 

Pyrrhotite Increasing No defined trend Decreasing  

Low pressure response <100Mpa Pyrite Increasing Decreasing  No defined trend 

Chalcopyrite Increasing Increasing Decreasing 

Sphalerite Increasing No defined trend No defined trend 

Pyrrhotite Increasing No defined trend No defined trend 

Remarks 

 

*Velocity increases with 

pressure, the gradient is 

high in low pressure and 

low in high pressure. 

**Pyrite has high velocity 

range compared to other 

Massive sulphides  

*Pyrite has decreasing Q 

at low pressure and Q 

increases at high 

pressure. Chalcopyrite 

has increasing Q both at 

high and low pressure. 

Pyrrhotite and sphalerite 

have no defined trend 

  

Loss factor decreases with 

increasing pressure above 

100 Mpa. Below 100 Mpa 

the result does not show 

any trend except for 

chalcopyrite 
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Table 4.4-2 Summary results of Silicates and massive sulphides 

 Rocks  Velocity Q Loss factor 

Range Felsic  5.7-6.3 28-35 178-204 

Mafic 6.2-6.6 22-30 173-205 

Low pyrite 5.1-5.6 41-70 95-170 

High pyrite 6.6-7.1 22-38 145-208 

High pressure>100Mpa 

response 

Felsic  Increasing  Almost linear  Mostly linear 

Mafic Increasing Almost linear Decreasing 

Low pyrite Increasing Increasing Decreasing 

High pyrite Increasing Increasing Decreasing 

Low pressure 

response<100Mpa 

Felsic  Increasing  No defined trend Mostly linear 

Mafic Increasing No defined trend Slightly increasing 

Low pyrite Increasing Increasing  Decreasing  

High pyrite Increasing Decreasing Decreasing   

Remarks 

 

*higher velocity gradient 

at low pressure. 

 

Q is more sensitive to 

massive pyrite rich and 

pyrite low samples 

 

Wave undergoes greater 

loss in silicates and high 

pyrites 
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4.5 Low pressure results 

 

The high pressure results show better trend and clear distinction among the ores and host 

rocks.  We assume this is due to the closure of the micro cracks (sections through 4.1 to 

4.3). At pressure below 100 Mpa (represents shallow depth), unclear trends in plots are 

observed. The plots from the previous sections will be shown here for pressure below 

<200 Mpa to observe closely the response of these parameters in low pressure. Frictional 

dissipation along the cracks and grain boundaries may govern the low pressure regime. 

Figure 4.5-1 to 4.5-3 represents velocity, Q and loss factor with pressure respectively 

below 200 Mpa.  
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Figure 4.5-1Velocity vs. pressure for silicate hosts (felsic and mafic) and massive sulphides (high and low pyrite) below 200 Mpa 
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Figure 4.5-2 Q vs. pressure for silicate hosts (felsic and mafic) and massive sulphides (high and low pyrite) below 200 Mpa 
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Figure 4.5-3 Loss factor vs. pressure for silicate hosts (felsic and mafic) and massive sulphides (high and low pyrite) below 200 Mpa 
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The thing that stands out in these graphs is the anomalus behaviour of the low pyrite 

sulphides with respect to both Q and loss factor. Low pyrite has increasing Q throughout 

the pressure range. Q for massive pyrite decreases (attenuation increases) up to 60 Mpa 

and over 60 Mpa Q starts to increase (attenuation decreases). There is no definite trend of 

Q in host rocks. Below 100 Mpa, low pyrite has decreasing loss factor with pressure 

while other rocks does not have any defined trend for loss.  

 

Velocity gradient with pressure is higher below 100 Mpa. As mentioned earlier 100 Mpa 

might be the crack closure pressure in the current case, therefore, greater changes are 

observed below that pressure. Velocity maintains positive correlation with pressure 

throughout the low and high pressure zone.  

 

 

4.6 Sensitivity Analysis by Monte Carlo Approach: Sensitivity of Q for Silicates 

and Massive sulphides 

 

To understand the sensitivity of Q to velocity, sample length and slope of the spectral 

ratio curve, an analysis will be carried out in this section. This will measure the 

sensitivity of Q to each parameter (sample length, velocity and the slope of the spectral 

ratio curve).   

From the spectral ratio technique (Section 3.3.2), the equation of Q is as follows:  
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…………………………………………………………………………….. (4.1) 

Where, 

x=sample length, 

c=velocity, 

m=slope [slope of the plot of  Vs frequency] 

On the right hand side of Equation 4.1, there are three variables: sample length, velocity 

and the slope of the spectral ratio curve. Among these three parameters, which one is 

more sensitive is not known. To identify the sensitivity of the above mentioned 

parameters of Equation 4.1 a  sensitivity analysis is conducted. Velocity and slope are 

inversely related to Q  and length of the rock sample is proportional to Q. 

Gardner et al., (1981) suggested a way to rank the  parameters according to their 

contribution. A simple correlation co-efficient derived from Monte Carlo simulations is 

the simple way to rank parameters. Linear correlation can be determined on the input and 

output parameters by the Pearson’s correlation co-efficient denoted by r. The details of 

the technique will be available at Gardner et al., 1981 
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……………… (4.2) 

The value of r determines the sensitivity of  each parameter. The parameter with highest r 

value will be the most sensitive parameter on the right hand side of  equation 4.1. The 

positive value of r represents that the parameter is positively correlated with Q and 

negative value of r represents inverse correlation of the parameter with Q.  

 

Sensitivity analysis is done on the data containing massive sulphides and host silicate 

rocks. The type of distributions and the distribution parameters for the sample length, 

velocity and slope are tabulated in Table 4.6-1 and Figure 4.6-1 (A), (B) and (C) shows 

the distribution.  

 

Table 4.6-1 Distribution type and parameter for Grade A rock data   

Grade A rock data Distribution  Distribution parameter  

Sample length  Normal  Mean=44.1422,  

Standard deviation=4.27443  

Velocity  Log normal  Mean=, 1.84601 

Standard deviation=0.054109 

slope  Weibull  a= 9.68827E-7, b=1.886  
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The best fit distribution was chosen based on maximum log likelihood value of Normal, 

Lognormal and Weibull. Length of the rock samples has normal distribution.  Velocity 

has lognormal and slope has Weibull distribution. The correlation coefficients, r for 

sample length, velocity and slope are tabulated in Table 4.6-2.  This table shows that the 

highest value of r is for slope (0.3447) and the lowest value of r is for velocity 0.0057. 

please note that the negative of the r value means those parameters (velocity and slope) 

are inversely related with Q. According to the r value, in the equation 4.1 Q is most 

sensitive to slope and least sensitive to velocity. A slight change in slope will cause 

higher change in Q.  

 

Table 4.6-2 Correlation coefficient of sample length, velocity and slope on Q 

Paraneter Correlation Normalized 

Correlation 

r Sample Length 0.0622 0.15 

r Velocity -0.0051 -0.01 

r Slope -0.3447  -0.84 
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Figure 4.6-2 is the graphical representations of the coefficients. The sensitivity analysis 

shows that the most sensitive parameter is the slope of the spectral ratio curve and its 

contribution to Q is 84%. Velocity has contribution of 1% and sample length has 15% 

contribution again negative values represent invere correlation.  

 

 

 

 

 

 

 

 

 

 

 

4.7  Relationship among the parameters 

 

Previous sections show the response of velocity, attenuation and loss factor with pressure. 

Depending on the rock type, the sensitivity of these parameters to pressure may vary. 

This section will demonstrate and establish a relation of attenuation and loss factor with 

velocity as well relation between Q and loss factor for massive sulphide and silicates. 

 

Figure 4.6-2Graphical representation of sensitivity analysis by 

Monte Carlo method for Grade A rocks 
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Joint interpretation of the parameters will provide base information of applying 

attenuation and loss factor in exploration of massive sulphides.   

 

4.7.1 Velocity and Q 

 

Q is plotted against velocity in Figure 4.7-1 for massive sulphides and the host rocks.  
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Figure 4.7-1 Q Vs Velocity for Massive Sulphides (Pyrite and Non pyrite) and Host rocks (Felsic and mafic) 

at pressures ranging from 10-600Mpa 
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The outcomes express that seismic parameter Q can identify massive sulphide from their 

associated hosts and also separate high and low pyrite. The figure demonstrates the 

following points,  

 Velocity separates high and low pyrite sulphides very well from each other and 

also from the host rocks (felsic and mafic). The range of velocity for high pyrites 

is the highest around 7-7.8 km/sec and for the low pyrites, velocities are around 

4.5-6 km/sec. Felsic and mafic have shared range of velocity (around 6-7 km/sec). 

The ranges of velocity clearly depict that massive sulphide is distinguishable from 

the host rocks.  

 In terms of Q factor, low pyrite has broad range of Q values (around 25-125), Q is 

low for the high pyrites (10-35) and felsic and mafic have shared their Q value, 

ranging from 10 to 60.  

 Visual observation shows that Q for low pyrite sulphides spreads to a wide region 

(This is also demonstrated in the greater pressure dependence of Q for the low 

sulphides in the Q Vs Pressure graph) while Q is not extensive for high pyrite 

sulphides. Felsic and mafic is hard to separate from each other as they have 

shared their Q range. Previously it was observed from Q Vs. Pressure  plots that 

high and low pyrite have distinct Q and low pyrites have much higher Q values 

than the host rocks. Q-factor in pyrite rich sulphides are typically much lower 

than low pyrites. Host rocks and pyrite rich sulphides might be difficult to 

distinguish depending on Q factor only.  
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 Joint interpretation of velocity and Q can provide better resolution for 

differentiating massive sulphide and the hosts.  

 Figure 4.7-1 provides four zones (low pyrite, high pyrite, felsic and mafic). Felsic 

and mafic rocks share the zones but that is completely understandable due to 

presence of some intermediate rocks. 

 

4.7.2 Velocity and Loss factor 

 

Loss factor is plotted against velocity for massive sulphides and the host rocks in Figure 

4.7-2.   
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Figure 4.7-2 Loss factor Vs Velocity for Massive Sulphides (Pyrite and Non pyrite) and Host rocks (Felsic) at 

pressures ranging from 10-600Mpa 
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Again this might aid in understanding ore and the host prior to seismic exploration. 

Majority of the low pyrite data have lower loss compared to high pyrite. The ranges of 

velocity are described previously for Q vs. Velocity plot.  

 

In a general view there are 3 zones observed both in Figure 4.7-1 and 4.7-2 

o Dark Blue Non pyrite zone: with low velocity, high Q , low loss and,  

o Green Pyrite zone:  with high velocity, low Q, high loss and  

o Red felsic and Light Blue mafic zone in between sulphides: which has 

same range of Q and loss but separated by velocity. 

 

4.7.3 Loss factor and Q 

 

Loss factors are plotted against Q in Figure 4.7-3.  
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This shows an inverse relationship between the loss factor and Q. Measurement of Q 

requires consideration of many parameters and also due to Q being a very sensitive 

parameter, it is difficult to measure. On the other hand loss factor can be measured easily. 

The relationship between loss and Q might be employed in measuring Q from loss factor.  

 

 

 

Figure 4.7-3 Q Vs loss factor for Massive Sulphides and Host rocks 

at pressures ranging from 10-600Mpa 
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4.7.4 Low and high pressure response  

 

Previous sections (4.7.1-4.7.3) considered pressure range of 10-600 Mpa. These plots are 

further plotted for two different range of pressure [(0-100MPa) and (100-600Mpa)] to 

observe the relationship of the parameters and the rock types at low and high pressures 

separately (Figure 4.7-4 and 4.7-5) represent the plots for low and high pressure 

respectively.   
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 Figure 4.7-4 Q Vs Velocity (Top left), Loss Vs Velocity (Top right) and Loss Vs Q 

(Bottom)for Massive Sulphides (Pyrite and Non pyrite) and Host rocks (Felsic and mafic) at pressures ranging from 10-100Mpa 
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Figure 4.7-5  Vs Velocity (Top left), Loss Vs Velocity (Top right) and Loss Vs Q (Bottom)for Massive Sulphides (Pyrite and Non pyrite) and Host rocks (Felsic and 

mafic) at pressures ranging from 100-600 Mpa 
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These plots [(Q vs. Velocity), (Loss factor vs. Velocity), and (Loss factor vs. Q)] do not 

show difference for high and low pressure. Due to greater data points, low pressure plots 

shows large spread. As high and low pressure results have similar response, the standard 

considered for high pressure data analysis might be assumed same for the low pressure 

analysis. If the analytic values (velocity, Q and loss factor) of rock samples (unknown) 

collected from the shallow depths matches with the characteristics value of a particular 

rock group (known) at high pressure analysis, then it can be implied that the collected 

sample rock (unknown) follows the same rock group (known) of high pressure analysis.  
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Chapter 5  

Conclusion 

Due to the high demand for minerals, detection and delineation of massive sulphide ore 

deposits are of great interest. High resolution seismic techniques (particularly 

tomography) are currently being used for imaging massive sulphide. Velocity and density 

have been extensively studied for massive sulphides to characterize the acoustic 

impedance. Velocity and density do not always uniquely characterize massive sulphides. 

The discrimination of massive sulphides and the host rock with identical or common 

velocity will be unclear.  Therefore in addition to velocity and density analysis, seismic 

attenuation may be considered for the better delineation of the ore. The literature survey 

indicates that seismic attenuation has not been considered so far for massive sulphide 

characterization. The aim of this research is to assess seismic attenuation and loss factor 

to provide information on ore and the host that will help to identify massive sulphide 

deposits. Velocity, attenuation and loss factors were analyzed for massive pyrite rich and 

pyrite poor sulphides and the host rocks. In the previous chapter, their sensitivity with 

pressure was observed along with the relation among the parameters. This chapter will 

briefly mention the findings from the analysis and discuss some recommendations for 

future work.  
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5.1 Findings from the analysis:     

 

The response of velocity with pressure shows clear trends. Velocities of massive 

sulphides and the host rocks have a positive correlation with pressure. Massive pyrite rich 

and pyrite low sulphides have the highest and lowest range of velocities respectively. 

Velocities of the host rocks (felsic and mafic) falls in between the high and low pyrite 

sulphides (please note that ultramafic rocks have not been considered here which have 

velocities as high as pyrite rich sulphides). The velocity gradient for both the ore and 

hosts is higher at low pressure (below 100 Mpa) and becomes almost linear with increase 

in pressure possibly due to the closure of micro cracks and grain boundaries.  

 

The picture of Q is much more complicated than velocity. The changes in Q with 

pressure for the sulphides is more sensitive than that of velocity. Among the sulphides 

seismic attenuation is higher (lower Q) in pyrite and chalcopyrite rich sulphides 

compared to pyrrhotite and sphalerite. Pyrite rich sulphides have the highest velocity and 

the lowest Q range. Individual sulphides also show this inverse relation of velocity and Q 

in terms of their range. Generally Q has increasing trends (decreasing attenuation) with 

pressure for sulphides except some anomalous results at low pressure. Sulphides with 

high pyrite content have increasing attenuation with pressure up to 60 Mpa. This unusual 

behaviour of high pyrite sulphides might be related with differential crack closure or 

presence of perpendicular cracks in the direction of the wave propagation which might be 

difficult to characterize. After observing the individual sulphides, they are grouped in to 
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two major groups: low and high pyrite sulphides. Attenuation with pressure for pyrite 

rich sulphides and the host rocks shows moderate change..  Low pyrite sulphides show 

increasing Q with pressure and change is much noticeable. Pyrite- rich sulphides and the 

host have overlapping Q. Much more scatter is observed in the Q plots for both the ore 

and the hosts compared to their velocity plots.    

 

Loss factor has decreasing trends with pressure. Over 200 Mpa, the change in loss factor 

becomes linear. As the pores and cracks starts to close with pressure increase, the loss 

factor decreases. The changes of attenuation (1/Q) is much more complicated than that of 

loss factor. Attenuation (1/Q) does not show clear decrease with pressure like loss factor 

for high pyrite and host rocks. However, low pyrite shows decrease in attenuation with 

pressure. The important conclusion from these observations is that Q measurement has 

more scatter compared to that of loss factor. The loss of energy of seismic waves is 

higher in host rocks compared to the sulphides. Felsic and mafic have almost similar 

range of loss.  

 

The response of the above mentioned three parameters in both high and low pressure is 

observed carefully. High pressure results have better trends. On the other hand due to the 

presence of micro cracks and pores the low pressure results (Q and loss factor) show 

unclear trends. From the analysis of Q-plots it might be that frictional dissipation 

dominates at the low pressure and may reach very low value at higher pressure.  On the 

other hand intrinsic anelasticity may dominate in the high pressure region. Close 
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observation of low pressure results depict anomalous behaviour of low pyrite sulphides 

with respect to Q and loss factor. As mentioned in the previous chapter, 100 Mpa might 

be the crack closure pressure in the current case. Therefore, greater changes are observed 

below that pressure. 

 

The relationship among the parameters might be aid in understanding the host and the ore 

prior to seismic exploration. The joint interpretation of (velocity and Q) or (velocity and 

loss factor) provides four zones: low and high pyrite sulphides are on two ends and felsic 

and mafic hosts are in the middle zone. Velocity separated low and high pyrite massive 

sulphides as they have the lowest and the highest range respectively. Felsic and mafic 

hosts are also separable in velocity range from each other and from the sulphides. Q 

separates low and high pyrite. Low pyrite has broad range of Q while high pyrite has very 

narrow range. This separates them well from each other. Felsic and mafic has 

overlapping Q range with each other and also with high pyrite and hard to distinguish 

from sulphides based on Q only. Q might provide higher resolution along with velocity. 

The correlation among the velocity, Q and the rock-type is the base knowledge that is 

required before attempting multi-parameter tomography (or joint inversion of velocity 

and attenuation).  This works set the basis for the next step (tomography).   

 

Loss factor and Q have an exponential decay relationship. Loss is inversely proportional 

to Q. Therefore joint interpretation of loss factor and velocity provides opposite picture 

from that of the Q and velocity. This relationship among the loss factor and Q  can 
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provide  measuerment advantage. Q can be measured from the loss factor which is easy 

to measure and does not requires consideration of many parameters as in the case of Q 

measurement. These joint interpretations show similar response in both the high (>100 

Mpa) and low (<100Mpa) pressures.  

 

5.2 Future recommendations  

 

Following are some future recommendations: 

 

 Current research considers dry samples only. Attenuation can be measured for the 

saturated rocks to better represent in situ conditions.  

 Attenuation for the compressional wave was measured in this research. 

Measurement of shear wave velocity, attenuation and loss factor along with the 

compressional wave can be carried out to observe the ratio of Vp/Vs and Qp/Qs.  

This experiment was conducted at ultrasonic frequencies, extrapolation of this data to 

seismic frequencies will provide broad spectrum.   
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A-1 Grade A: physical properties of silicates  

 
Rock name Sample Id Suite Location Weight  

(gm) 

Length  

(mm) 

Diameter 

(mm) 

Volume (mm
3
) Density (g/cc) 

Granophyre 10117 Sudbury Samples (second suite) 63.56 45.35 22.55 22.40 2.83 

Tuff 10130 Sudbury Samples (second suite) 53.75 49.55 22.69 19.92 2.69 

Granophyre 10142 Sudbury Samples (second suite) 57.90 46.60 22.75 21.59 2.68 

Tuff 10190 Sudbury Samples (second suite) 62.06 45.38 22.75 22.03 2.81 

Granophyre 10193 Sudbury Samples (second suite) 58.19 48.03 22.75 21.56 2.69 

Granophyre 10195 Sudbury Samples (second suite) 60.08 48.58 22.74 22.16 2.71 

Tuff  10196 Sudbury Samples (second suite) 63.43 47.82 22.75 22.47 2.82 

Felsic norite 52845 Sudbury Samples (second suite) 68.44 48.52 25.08 23.88 2.86 

Diorite  603841 Noranda-Louvicort 55.96 39.93 25.34 20.16 2.78 

Andesite 604961 Noranda, Quebec 60.22 43.01 25.35 21.71 2.77 

Andesite 604966 Noranda, Quebec 59.31 41.78 25.33 21.01 2.82 

Andesite 604967 Noranda, Quebec 59.26 41.77 25.36 21.14 2.80 

Tuff  52847-4 Sudbury Samples (second suite) 67.59 50.52 24.94 24.71 2.73 

Gneiss 60064-10 Sudbury Samples (second suite) 65.49 48.97 24.89 23.77 2.75 

Diabase 60064-11 Sudbury Samples (second suite) 63.69 42.06 24.89 20.40 3.12 

Norite  60064-4 Sudbury Samples (second suite) 69.78 50.15 24.88 24.29 2.87 

Breccia 60064-5 Sudbury Samples (second suite) 66.26 48.13 24.89 23.34 2.83 

Breccia 60064-6 Sudbury Samples (second suite) 72.58 50.60 24.89 24.51 2.96 

Gneiss 60064-7 Sudbury Samples (second suite) 72.80 48.72 24.89 23.75 3.06 

Granophyre  60066-2 Sudbury Samples (second suite) 59.85 44.87 24.89 21.64 2.76 

Felsic norite 60066-6 Sudbury Samples (second suite) 53.01 39.73 24.62 18.84 2.81 

Rhyodacite 604959xy Noranda, Quebec 54.66 39.40 25.34 19.92 2.74 

Rhyodacite 604959z Noranda, Quebec 53.53 38.76 25.35 19.53 2.74 
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A-1 Grade A: physical properties of silicates (continued) 

Rock name Sample Id Suite Location Weight  

(g) 

Length  

(mm) 

Diameter (mm) Volume (mm
3
) Density (g/cc) 

Rhyodacite 604960xy Noranda, Quebec 53.65 38.95 25.35 19.72 2.72 

Rhyodacite 604963xy Noranda, Quebec 54.88 39.53 25.34 19.90 2.76 

Norite  85597-14 Inco-Sudbury Basin 57.30 38.54 24.07 18.42 3.11 

Norite  85597-15 Inco-Sudbury Basin 60.42 40.42 24.67 19.33 3.12 

Horneblend BNB96-062 Yelloknife, Bucket#1 57.53 39.07 25.28 19.65 2.93 

Metatonalite  BNB97-018 Kapuskasing, Ont 52.06 38.40 25.32 19.67 2.70 

Anorthosite KAP88-3A Kapuskasing, Ont 53.22 40.23 24.66 Missing  Missing  

Anorthosite KAP88-3B Kapuskasing, Ont 56.49 42.58 24.66 20.48 2.76 

Anorthosite L6z Ecsoot’96 Labrador 58.42 46.60 25.33 20.85 2.80 
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A-2 Grade A: velocities (km/sec) of silicates at pressures 10-600 MPa 

 

 
Rock name Sample Id Suite Location 10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 

Mpa 

200 

Mpa 

400 

Mpa 

600 

Mpa 

Granophyre 10117 Sudbury Samples 

(second suite) 

6.09 6.21 6.26 6.29 6.31 6.32 c 6.42 6.46 

Tuff 10130 Sudbury Samples 

(second suite) 

5.74 5.86 5.97 6.01 6.03 6.05 6.09 6.15 6.18 

Granophyre 10142 Sudbury Samples 

(second suite) 

5.92 6.05 6.11 6.14 6.17 6.19 6.26 6.32 6.37 

Tuff 10190 Sudbury Samples 

(second suite) 

5.83 5.94 5.99 6.00 6.02 6.03 6.06 6.11 6.15 

Granophyre 10193 Sudbury Samples 

(second suite) 

5.63 5.76 5.86 5.90 5.91 5.93 5.97 6.03 6.06 

Granophyre 10195 Sudbury Samples 

(second suite) 

C 5.83 5.97 6.03 6.07 6.09 6.13 6.19 6.23 

Tuff  10196 Sudbury Samples 

(second suite) 

6.18 6.19 6.22 6.23 6.24 6.25 c 6.32 6.35 

Felsic norite 52845 Sudbury Samples 

(second suite) 

6.12 6.34 6.47 6.52 6.55 6.57 6.61 6.64 6.67 

Diorite  603841 Noranda-Louvicort Missing  c c c c c c 6.23 6.25 

Andesite 604961 Noranda, 

Quebec6.03 

c c c c c c c 6.40 6.41 

Andesite 604966 Noranda, Quebec 6.03  6.06 6.10 6.13 6.16 6.18 6.24 6.29 6.30 

Andesite 604967 Noranda, Quebec Missing  6.20 6.24 6.27 6.29 6.31 6.38 6.44 6.48 

Tuff  52847-4 Sudbury Samples 

(second suite) 

6.14 6.26 6.31 6.34 6.36 6.37 6.41 6.46 6.51 

Gneiss 60064-10 Sudbury Samples 

(second suite) 

5.94 6.07 6.14 6.17 6.18 6.19 6.24 6.26 6.29 

Diabase 60064-11 Sudbury Samples 

(second suite) 

C 6.34 6.51 6.67 6.74 6.78 6.85 6.88 6.91 
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A-2 Grade A: velocities (km/sec) of silicates at pressures 10-600 MPa (continued) 

Rock name Sample Id Suite Location 10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 

Mpa 

200 

Mpa 

400 Mpa 600 Mpa 

Norite  60064-4 Sudbury Samples 

(second suite) 

c 6.33 6.38 6.41 6.44 6.45 6.50 6.53 6.57 

Breccia 60064-5 Sudbury Samples 

(second suite) 

c 6.36 6.41 6.42 6.43 6.44 6.47 6.50 6.54 

Breccia 60064-6 Sudbury Samples 

(second suite) 

6.56 6.63 6.72 6.75 6.77 6.78 6.82 6.86 6.90 

Gneiss 60064-7 Sudbury Samples 

(second suite) 

c 6.52 6.64 6.71 6.74 6.76 6.80 6.83 6.86 

Granophyre  60066-2 Sudbury Samples 

(second suite) 

6.14 6.20 6.30 6.35 6.37 6.38 6.41 6.46 6.50 

Felsic norite 60066-6 Sudbury Samples 

(second suite) 

c 6.31 6.42 6.46 6.47 6.48 6.51 6.56 6.61 

Rhyodacite 604959xy Noranda, Quebec 6.04 6.06 6.09 6.12 6.14 6.16 6.21 6.26 6.29 

Rhyodacite 604959z Noranda, Quebec c 5.83 5.87 5.90 5.92 5.94 5.99 6.04 6.09 

Rhyodacite 604960xy Noranda, Quebec Missing 6.05 6.08 6.10 6.13 6.16 6.25 6.30 6.33 

Rhyodacite 604963xy Noranda, Quebec 5.99 6.00 6.03 6.05 6.07 6.09 6.17 6.23 6.26 

Norite  85597-14 Inco-Sudbury Basin 6.69 6.74 6.79 6.82 6.85 6.88 6.95 6.99 7.02 

Norite  85597-15 Inco-Sudbury Basin 6.77 6.96 6.99 7.01 7.03 7.04 7.09 7.13 7.15 

Horneblend BNB96-062 Yelloknife, Bucket#1 missing c 6.26 6.30 6.34 6.36 6.42 6.47 6.49 

Anorthosite KAP88-3A Kapuskasing, Ont c 6.66 6.74 6.78 6.81 6.83 6.89 6.95 6.97 

Anorthosite KAP88-3B Kapuskasing, Ont c 6.61 6.96 7.06 7.12 7.16 7.26 7.31 7.33 

Anorthosite L6z Ecsoot’96 Labrador Missing 5.42 5.75 5.91 6.02 6.08 6.24 6.36 6.43 

Average   6.11 6.21 6.30 6.34 6.37 6.39 6.47 6.48 6.51 
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A-3 Grade A: Q for silicates at pressures 10-600 MPa 

 
Rock name Sample 

Id 

Suite Location 10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 

Mpa 

400 

Mpa 

600 Mpa 

Granophyre 10117 Sudbury Samples 

(second suite) 

missing missing missing missing missing missing c 38.98 27.96 

Tuff 10130 Sudbury Samples 

(second suite) 

missing missing missing missing missing missing 34.89 29.19 35.46 

Granophyre 10142 Sudbury Samples 

(second suite) 

missing missing missing missing missing missing 56.97 44.75 missing 

Tuff 10190 Sudbury Samples 

(second suite) 

missing missing missing missing missing missing 63.88 32.33 37.56 

Granophyre 10193 Sudbury Samples 

(second suite) 

missing missing missing missing missing missing 24.27 27.14 17.10 

Granophyre 10195 Sudbury Samples 

(second suite) 

c 21.11 19.50 18.91 16.85 12.88 18.18 17.80 24.08 

Tuff  10196 Sudbury Samples 

(second suite) 

missing missing missing missing missing missing c 17.70 20.29 

Felsic norite 52845 Sudbury Samples 

(second suite) 

18.21 18.60 19.45 15.85 15.73 19.1 21.74 20.64 20.84 
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A-3 Grade A: Q for silicates at pressures 10-600 MPa (continued) 

  

Rock name Sample Id Suite Location 10 Mpa 20 

Mpa 

40 

Mpa 

60 Mpa 80 Mpa 100 

Mpa 

200 

Mpa 

400 

Mpa 

600 

Mpa 

Diorite  603841 Noranda-Louvicort missing c c c c c c 52.28 122.54 

Andesite 604961 Noranda, 

Quebec6.03 

c c c c c c c 181.66 108.94 

Andesite 604966 Noranda, Quebec 22.98 31.46 25.48 30.84 26.98 37.54 29.90 28.29 30.68 

Andesite 604967 Noranda, Quebec missing 60.78 69.46 44.67 34.02 33.57 31.55 41.79 47.95 

Tuff  52847-4 Sudbury Samples 

(second suite) 

40.49 41.21 36.46 34.02 44.15 34.66 35.11 31.23 33.03 

Gneiss 60064-10 Sudbury Samples 

(second suite) 

16.45 18.26 19.10 15.88 12.17 11.30 14.50 16.10 19.02 

Diabase 60064-11 Sudbury Samples 

(second suite) 

C 42.13 32 30.55 24.96 24.55 20.26 17.55 17.70 

Norite  60064-4 Sudbury Samples 

(second suite) 

C 17.81 25.54 32.03 28.99 36.65 31.43 40.99 30.87 

Breccia 60064-5 Sudbury Samples 

(second suite) 

c 24.84 18.52 14.75 14.69 14.32 13.75 11.71 325.09 

Breccia 60064-6 Sudbury Samples 

(second suite) 

29.26 35.94 40.93 45.23 39.51 42.97 3069 36.51 35.48 
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A-3 Grade A: Q for silicates at pressures 10-600 MPa (continued) 

Rock name Sample Id Suite Location 10 Mpa 20 

Mpa 

40 

Mpa 

60 Mpa 80 Mpa 100 

Mpa 

200 

Mpa 

400 

Mpa 

600 Mpa 

Gneiss 60064-7 Sudbury Samples 

(second suite) 

c 15.57 22.23 28.60 32.00 31.55 36.91 37.27 44.27 

Granophyre  60066-2 Sudbury Samples 

(second suite) 

36.08 21.23 18.02 15.88 12.81 12.53 13.45 15.11 15.25 

Felsic norite 60066-6 Sudbury Samples 

(second suite) 

c 11.43 11.99 13.30 15.03 13.74 16.96 15.80 16.83 

Rhyodacite 604959xy Noranda, Quebec 48.55 64.94 57.97 69.18 76.34 81.74 116.72 154.32 265.02 

Rhyodacite 604959z Noranda, Quebec c 28.92 35.47 46.48 39.72 39.32 44.32 55.51 41.61 

Rhyodacite 604960xy Noranda, Quebec missing 37.25 44.58 52.75 47.39 46.47 48.49 49.15 57.18 

Rhyodacite 604963xy Noranda, Quebec 31.76 38.99 30.14 27.71 25.21 27.91 28.35 52.27 31.23 

Norite  85597-14 Inco-Sudbury Basin 26.12 32.92 37.98 38.02 40.41 51.07 56.75 46.48 40.87 

Norite  85597-15 Inco-Sudbury Basin 15.28 11.81 12.80 12.98 13.43 11.61 11.09 12.20 10.67 

Horneblend BNB96-062 Yelloknife, 

Bucket#1 

missing c 16.98 21.32 18.60 19.80 24.91 27.18 23.31 

Anorthosite KAP88-3A Kapuskasing, Ont c 27.38 26.31 22.31 25.12 28.12 27.56 25.57 24.25 

Anorthosite KAP88-3B Kapuskasing, Ont c 37.4 41.1 51.91 52.59 48.69 41.91 45.25 33.1 

Anorthosite L6z Ecsoot’96 Labrador missing 33.73 37.95 40.97 55.06 50.03 48.28 49.96 59.91 

Average   25.52 30.62 30.43 31.48 30.94 31.74 34.91 41.06 53.94 
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A-4 Grade A: loss fators for silicates at pressures 10-600 MPa 

 

 
Rock name Sample Id Suite Location 10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 

Mpa 

400 

Mpa 

600 Mpa 

Granophyre 10117 Sudbury 

Samples (second 

suite) 

missing missing missing missing missing missing c 260.14 363.34 

Tuff 10130 Sudbury 

Samples (second 

suite) 

missing missing missing missing missing missing 52.59 248.99 257.13 

Granophyre 10142 Sudbury 

Samples (second 

suite) 

missing missing missing missing missing missing 273.55 334.62 missing 

Tuff 10190 Sudbury 

Samples (second 

suite) 

missing missing missing missing missing missing 70.49 270.04 255.95 

Granophyre 10193 Sudbury 

Samples (second 

suite) 

missing missing missing missing missing missing 188.32 166.75 263.29 

Granophyre 10195 Sudbury 

Samples (second 

suite) 

c 221.74 234.44 239.37 266.81 347.83 244.83 247.69 181.93 

Tuff  10196 Sudbury 

Samples (second 

suite) 

missing missing missing missing missing missing c 243.89 211.82 

Felsic norite 52845 Sudbury 

Samples (second 

suite) 

244.84 231.41 216.82 263.98 264.91 217.49 189.86 199.06 196.34 
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A-4 Grade A: loss fators for silicates at pressures 10-600 MPa (continued) 

  

Rock name Sample Id Suite Location 10 

Mpa 

20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 

Mpa 

200 

Mpa 

400 

Mpa 

600 

Mpa 

Diorite  603841 Noranda-Louvicort missi

ng 

c c c c c c 83.78 35.63 

Andesite 604961 Noranda, Quebec6.03 c c c c c c c 23.47 39.08 

Andesite 604966 Noranda, Quebec 196.9

5 

143.14 174.67 144.36 164.19 117.62 146.25 153.37 141.19 

Andesite 604967 Noranda, Quebec missi

ng 

72.41 62.96 97.44 127.54 128.82 135.57 101.39 87.82 

Tuff  52847-4 Sudbury Samples 

(second suite) 

109.7

7 

105.77 118.60 126.53 97.19 123.59 121.26 135.26 126.89 

Gneiss 60064-10 Sudbury Samples 

(second suite) 

279.2

2 

246.15 232.73 278.49 362.83 389.95 301.54 270.72 228.14 

Diabase 60064-11 Sudbury Samples 

(second suite) 

C 102.16 130.99 133.89 162.23 163.96 196.60 226.00 223.11 

Norite  60064-4 Sudbury Samples 

(second suite) 

C 242.00 167.49 132.92 146.17 118.67 133.58 101.95 134.55 

Breccia 60064-5 Sudbury Samples 

(second suite) 

C 172.69 229.83 288.19 288.95 295.94 306.64 358.43 357.45 

Breccia 60064-6 Sudbury Samples 

(second suite) 

142.1

6 

114.53 99.20 89.97 102.02 93.66 130.37 108.95 111.45 
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A-4 Grade A: loss fators for silicates at pressures 10-600 MPa (continued) 

Rock name Sample Id Suite Location 10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 

Mpa 

200 

Mpa 

400 

Mpa 

600 

Mpa 

Gneiss 60064-7 Sudbury Samples 

(second suite) 

c 268.84 184.90 140.93 126.52 127.94 108.72 107.19 89.86 

Granophyre  60066-2 Sudbury Samples 

(second suite) 

123.19 207.33 240.33 270.63 334.49 341.24 316.57 279.56 275.32 

Felsic norite 60066-6 Sudbury Samples 

(second suite) 

c 378.29 354.39 317.54 280.52 306.54 247.59 263.24 245.27 

Rhyodacite 604959xy Noranda, Quebec 93.05 69.34 77.29 64.46 58.21 54.19 37.64 28.25 16.37 

Rhyodacite 604959z Noranda, Quebec c 161.84 131.06 99.51 116.05 116.84 102.78 81.39 107.69 

Rhyodacite 604960xy Noranda, Quebec missing 121.07 100.68 84.81 93.92 95.32 90.03 88.13 75.38 

Rhyodacite 604963xy Noranda, Quebec 143.45 116.65 150.14 162.76 178.30 160.53 155.97 83.79 139.58 

Norite  85597-14 Inco-Sudbury 

Basin 

165.17 122.96 105.82 105.24 98.57 77.67 69.18 83.99 95.10 

Norite  85597-15 Inco-Sudbury 

Basin 

263.73 331.97 304.94 299.89 289.00 333.88 346.98 313.70 357.72 

Horneblend BNB96-062 Yelloknife, 

Bucket#1 

missing c 256.73 203.16 231.45 216.67 170.60 155.19 180.38 

Anorthosite KAP88-3A Kapuskasing, Ont c 149.65 153.89 180.38 159.49 142.07 143.71 153.54 161.46 

Anorthosite KAP88-3B Kapuskasing, Ont c 110.38 95.39 74.46 72.87 78.27 89.67 82.49 112.15 

Anorthosite L6z Ecsoot’96 

Labrador 

missing 149.26 125.07 112.70 82.32 89.72 90.58 85.88 70.83 

Average   175.25 174.53 171.67 170.04 178.46 179.93 165.24 172.29 159.92 
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A-5 Grade A: slope data for silicates at pressures 10-600 MPa 

 
Rock name Sample Id Suite Location 10 

Mpa 

(10
-7

) 

20 Mpa 

(10
-7

) 

40 Mpa 

(10
-7

) 

60 Mpa 

(10
-7

) 

80 Mpa 

(10
-7

) 

100 Mpa 

(10
-7

) 

200Mpa 

(10
-7

) 

400Mpa 

(10
-7

) 

600 Mpa 

(10
-7

) 

Granophyre 10117 Sudbury Samples 

(second suite) 

missin

g 

missing missing missing missing missing c 5.693 7.888 

Tuff 10130 Sudbury Samples 

(second suite) 

missin

g 

missing missing missing missing missing 7.327 8.670 7.102 

Granophyre 10142 Sudbury Samples 

(second suite) 

missin

g 

missing missing missing missing missing 4.105 5.177 missing 

Tuff 10190 Sudbury Samples 

(second suite) 

missin

g 

missing missing missing missing missing 3.683 7.216 6.156 

Granophyre 10193 Sudbury Samples 

(second suite) 

missin

g 

missing missing missing missing missing 10.413 9.221 14.559 

Granophyre 10195 Sudbury Samples 

(second suite) 

c 12.402 13.112 13.388 14.922 19.454 13.693 13.845 10.175 

Tuff  10196 Sudbury Samples 

(second suite) 

missin

g 

missing missing missing missing missing c 13.428 11.662 

Felsic norite 52845 Sudbury Samples 

(second suite) 

13.677 12.927 12.112 14.746 14.798 12.145 10.606 11.112 10.968 
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A-5 Grade A: slope data for silicates at pressures 10-600 MPa (continued) 

  

Rock name Sample Id Suite Location 10 

Mpa 

(10
-7

) 

20 Mpa 

(10
-7

) 

40 Mpa 

(10
-7

) 

60 Mpa 

(10
-7

) 

80 Mpa 

(10
-7

) 

100 

Mpa 

(10
-7

) 

200 

Mpa 

(10
-7

) 

400 

Mpa 

(10
-7

) 

600 

Mpa 

(10
-7

) 

Diorite  603841 Noranda-Louvicort missi

ng 

c c c c c c 3.852 1.638 

Andesite 604961 Noranda, Quebec6.03 c c c c c c c 1.162 

 

1.935 

Andesite 604966 Noranda, Quebec 9.473 6.885 8.402 6.944 7.898 5.658 7.034 7.377 6.791 

Andesite 604967 Noranda, Quebec missi

ng 

3.482 3.028 4.686 6.133 6.195 6.519 4.876 4.223 

Tuff  52847-4 Sudbury Samples 

(second suite) 

6.385 6.152 6.898 7.395 5.653 7.189 7.053 7.867 7.380 

Gneiss 60064-10 Sudbury Samples 

(second suite) 

15.74

2 

13.877 13.121 15.701 20.456 21.985 17.001 15.263 12.862 

Diabase 60064-11 Sudbury Samples 

(second suite) 

C 4.947 6.343 6.484 7.856 7.939 9.520 10.944 10.804 

Norite  60064-4 Sudbury Samples 

(second suite) 

C 13.973 9.670 7.674 8.439 6.852 7.712 5.886 7.769 

Breccia 60064-5 Sudbury Samples 

(second suite) 

C 9.570 12.735 15.969 16.011 16.399 16.992 19.861 18.014 

Breccia 60064-6 Sudbury Samples 

(second suite) 

8.281 6.672 5.779 5.206 5.943 5.456 7.595 6.347 6.493 
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A-5 Grade A: slope data for silicates at pressures 10-600 MPa (continued) 

Rock name Sample Id Suite Location 10 

Mpa 

(10
-7

) 

20 Mpa 

(10
-7

) 

40 Mpa 

(10
-7

) 

60 Mpa 

(10
-7

) 

80 Mpa 

(10
-7

) 

100 

Mpa 

(10
-7

) 

200 

Mpa 

(10
-7

) 

400 

Mpa 

(10
-7

) 

600 

Mpa 

(10
-7

) 

Gneiss 60064-7 Sudbury Samples 

(second suite) 

c 15.081 10.371 7.905 7.176 6.098 6.013 5.040 5.010 

Granophyre  60066-2 Sudbury Samples 

(second suite) 

6.364 10.710 12.415 13.981 17.279 17.628 16.354 14.441 14.223 

Felsic norite 60066-6 Sudbury Samples 

(second suite) 

c 17.304 16.210 14.524 12.831 14.021 11.325 12.041 12.219 

Rhyodacite 604959xy Noranda, Quebec 4.221 3.145 3.506 2.924 2.641 2.458 1.708 1.281 0.743 

Rhyodacite 604959z Noranda, Quebec c 7.222 5.849 4.444 

 

5.179 5.214 4.586 3.632 4.806 

Rhyodacite 604960xy Noranda, Quebec missi

ng 

5.429 4.515 3.803 4.212 4.275 4.031 3.952 3.381 

Rhyodacite 604963xy Noranda, Quebec 6.528 5.309 6.833 7.407 8.115 7.306 7.098 3.814 6.352 
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A-5 Grade A: slope data for silicates at pressures 10-600 MPa (continued) 

Rock name Sample Id Suite Location 10 

Mpa 

(10
-7

) 

20 Mpa 

(10
-7

) 

40 Mpa 

(10
-7

) 

60 Mpa 

(10
-7

) 

80 Mpa 

(10
-7

) 

100 

Mpa 

(10
-7

) 

200 

Mpa 

(10
-7

) 

400 

Mpa 

(10
-7

) 

600 

Mpa 

(10
-7

) 

Norite  85597-14 Inco-Sudbury Basin 6.929 5.456 4.695 4.670 4.374 3.446 3.071 3.050 4.220 

Norite  85597-15 Inco-Sudbury Basin 12.27

3 

15.448 14.191 13.956 13.449 15.537 16.147 14.598 16.646 

Horneblend BNB96-

062 

Yelloknife, Bucket#1 missi

ng 

c 11.584 9.138 10.411 9.746 7.674 6.98 8.113 

Anorthosite KAP88-

3A 

Kapuskasing, Ont c 6.931 7.128 

 

8.355 7.387 6.580 6.656 7.111 7.478 

Anorthosite KAP88-3B Kapuskasing, Ont c 5.411 4.676 3.650 3.573 3.837 4.397 4.044 5.498 

Anorthosite L6z Ecsoot’96 Labrador missi

ng 

8.008 6.710 6.046 4.416 4.813 4.860 4.608 3.800 

Average   8.446 8.494 8.689 8.650 9.090 9.188 8.305 8.206 8.091 
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A-6 Grade B: physical properties of silicates 

Rock name Sample Id Suite Location Weight  

(gm) 

Length  

(mm) 

Diameter (mm) Volume (mm
3
) Density (g/cc) 

Granophyre 10649 Sudbury Samples (second 

suite) 

61.09 47.23 22.72 22.46 2.72 

Andesite 604962 Sudbury Samples (second 

suite) 

58.57 41.53 25.34 21.00 2.79 

Andesite 604965 Noranda, Quebec 65.64 56.35 25.38 23.52 2.79 

Diorite 17-79-1751 Noranda, Quebec 55.42 39.06 25.33 19.64 2.82 

Rhyolite 181679z Sturgeon Lake- Noranda 

Mining 

57.13 42.41 25.35 21.33 2.68 

Magnate 181696xy Noranda 99-Bathu2.76rst 76.03 39.04 25.36 19.52 3.89 

Tuff 52847-1 Noranda 99-Bathurst 68.86 51.47 24.87 24.97 2.76 

Tuff 52847-2 Sudbury Samples (second 

suite) 

65.54 48.93 24.93 23.77 2.76 

Tuff 52847-3 Sudbury Samples (second 

suite) 

66.64 49.79 24.93 24.21 2.75 

Granophyre 52847-7 Sudbury Samples (second 

suite) 

65.17 49.72 24.96 24.31 2.68 
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A-6 Grade B: physical properties of silicates (continued) 

Rock name Sample Id Suite Location Weight  

(gm) 

Length  

(mm) 

Diameter (mm) Volume (mm
3
) Density (g/cc) 

Quartz gabbro 5988-1 Sudbury Samples 

(second suite) 

68.66 48.37 25.05 23.76 2.89 

Gneiis 60064-12 Sudbury Samples 

(second suite) 

64.90 49.67 24.90 24.10 2.69 

Felsic norite 60064-2 Sudbury Samples 

(second suite) 

62.25 44.85 24.87 21.66 2.87 

Breccia 60064-3 Sudbury Samples 

(second suite) 

58.55 43.92 24.87 21.24 2.76 

Breccia 60064-6-TOP Sudbury Samples 

(second suite) 

68.44 50.65 24.89 24.58 2.78 

Gneiss 60064-8 Sudbury Samples 

(second suite) 

58.70 43.03 24.57 20.35 2.88 

Granophyre 60066-1 Sudbury Samples 

(second suite) 

70.14 51.35 24.89 24.90 2.82 

Quartz gabbro 60066-3 Sudbury Samples 

(second suite) 

69.53 51.27 24.87 24.77 2.81 

Quartz gabbro 60066-4 Sudbury Samples 

(second suite) 

68.28 47.11 24.87 22.74 2.78 
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A-6 Grade B: physical properties of silicates (continued) 

Rock name Sample Id Suite Location Weight  

(gm) 

Length  

(mm) 

Diameter (mm) Volume (mm
3
) Density (g/cc) 

Greywacke BA 4301-8A-

BOT 

Sudbury Samples 

(second suite) 

96.51 47.43 24.75 34.63 2.79 

Greywacke BA 4301-8A-

TOP 

Sudbury Samples 

41.93(second suite) 

91.82 47.03 24.74 33.76 2.72 

Metatonalite BNB97-

018Az 

Sudbury Samples 

(second suite) 

56.90 40.40 25.34 21.11 2.70 

Metatonalite BNB97-

018Bx 

Yellowknife Bucket#4 54.54 44.10 25.34 20.31 2.68 

Medium grained 

Gneiss 

BNB97-

021Az 

Yellowknife Bucket#2 58.82 46.64 25.24 22.19 2.65 

Anorthosite L6xy Labrador- 

Nakvakfjord Nain 

65.61 44.91 25.32 23.46 2.80 

Metbasalt LG-196x-23 Liscomb complex 59.35 44.10 24.60 21.30 2.79 
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A-7 Grade B: velocities (km/sec) of silicates at pressures 10-600 MPa 

 

Rock name Sample Id Suite Location 10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 

Mpa 

200 

Mpa 

400 

Mpa 

600 

Mpa 

Granophyre 10649 Sudbury Samples 

(second suite) 

5.90 6.00 6.06 6.08 6.10 6.11 6.15 6.18 6.21 

Andesite 604962 Sudbury Samples 

(second suite) 

Missing c c c 6.38 6.40 6.47 6.53 6.56 

Andesite 604965 Noranda, Quebec 6.08 6.10 6.14 6.17 6.20 6.23 6.30 6.34 6.35 

Diorite 17-79-1751 Noranda, Quebec 6.03 c c 6.34 c c c c c 

Rhyolite 181679z Sturgeon Lake- 

Noranda Mining 

C c c c c c c 5.47 5.51 

Magnate 181696xy Noranda 99-

Bathu2.76rst 

C c c c c c 5.95 6.10 6.16 

Tuff 52847-1 Noranda 99-

Bathurst 

C C 6.28 6.30 6.31 6.32 6.35 6.38 6.42 

Tuff 52847-2 Sudbury Samples 

(second suite) 

C C 6.34 6.36 6.37 6.38 6.41 6.45 6.49 

Tuff 52847-3 Sudbury Samples 

(second suite) 

C C 6.22 6.24 6.25 6.26 6.29 6.33 6.37 
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A-7 Grade B: velocities (km/sec) of silicates at pressures 10-600 MPa (continued) 

 

Rock name Sample Id Suite Location 10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 

Mpa 

200 

Mpa 

400 

Mpa 

600 

Mpa 

Granophyre 52847-7 Sudbury Samples 

(second suite) 

C C 6.08 6.14 6.16 6.18 6.22 6.26 6.28 

Quartz gabbro 5988-1 Sudbury Samples 

(second suite) 

C C 6.14 6.19 6.21 6.23 6.26 6.30 6.32 

Gneiis 60064-12 Sudbury Samples 

(second suite) 

5.36 5.76 6.07 6.19 6.28 6.26 6.33 6.38 6.42 

Felsic norite 60064-2 Sudbury Samples 

(second suite) 

C 5.96 6.01 6.04 6.06 6.07 6.11 6.16 6.21 

Breccia 60064-3 Sudbury Samples 

(second suite) 

C c c 6.27 c 6.32 6.38 6.42 6.45 

Breccia 60064-6-

TOP 

Sudbury Samples 

(second suite) 

C 6.17 6.28 6.33 6.35 6.36 6.40 6.45 6.48 

Gneiss 60064-8 Sudbury Samples 

(second suite) 

c 6.56 6.64 6.66 6.67 6.68 6.71 6.75 6.80 

Granophyre 60066-1 Sudbury Samples 

(second suite) 

C c 6.41 6.44 6.46 6.47 6.50 6.54 6.58 



 

 118 

A-7 Grade B: velocities (km/sec) of silicates at pressures 10-600 MPa (continued) 

Rock name Sample Id Suite Location 10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 

Mpa 

200 

Mpa 

400 

Mpa 

600 

Mpa 

Quartz gabbro 60066-3 Sudbury Samples 

(second suite) 

C 6.24 c 6.34 6.36 6.37 c 6.43 6.47 

Quartz gabbro 60066-4 Sudbury Samples 

(second suite) 

C c c c 6..35 6.36 6.40 6.43 6.45 

Greywacke BA 4301-

8A-BOT 

Sudbury Samples 

(second suite) 

C c 5.94 5.97 5.98 6.00 6.05 6.13 6.20 

Greywacke BA 4301-

8A-TOP 

Sudbury Samples 

41.93(second suite) 

C c c c c c 6.09 6.16 6.20 

Metatonalite BNB97-

018Az 

Sudbury Samples 

(second suite) 

5.29 c 5.70 

 

5.76 c c c 6.02 6.06 

Metatonalite BNB97-

018Bx 

Yellowknife 

Bucket#4 

Missing Missin Missing Missing Missing c c 6.45 6.49 

Medium 

grained Gneiss 

BNB97-

021Az 

Yellowknife 

Bucket#2 

5.65 5.73 5.85 5.95 6.02 6.07 6.17 6.24 6.28 

Anorthosite L6xy Labrador- 

Nakvakfjord Nain 

Missing c c 6.06 6.16 6.20 6.29 6.37 6.45 

Metbasalt LG-196x-

23 

Liscomb complex C 5.36 5.82 6.02 6.12 6.19 6.41 6.52 6.56 

Average   5.72 5.99 6.12 6.19 6.24 6.26 6.30 6.31 6.35 
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A-8 Grade B: Q for silicates at pressures 10-600 MPa 

 

Rock name Sample Id Suite Location 10 Mpa 20 

Mpa 

40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 

Mpa 

400 

Mpa 

600 

Mpa 

Granophyre 10649 Sudbury Samples 

(second suite) 

Missing Missi

ng 

Missing Missing Missing Missing 42.93 27.44 26.20 

Andesite 604962 Sudbury Samples 

(second suite) 

Missing c c c 213.36 530.59 164.32 135.95 52.67 

Andesite 604965 Noranda, Quebec 26.12 37.18 72.56 76.45 53.72 120.14 81.63 75.59 78.57 

Diorite 17-79-1751 Noranda, Quebec 62.15 C c 86.21 c c c c c 

Rhyolite 181679z Sturgeon Lake- 

Noranda Mining 

C c c c c c c 16.45 17.12 

Magnate 181696xy Noranda 99-

Bathu2.76rst 

C c c c c c 11.24 20.76 24.65 

Tuff 52847-1 Noranda 99-

Bathurst 

C C Missing Missing Missing 17.13 15.29 13.90 11.94 

Tuff 52847-2 Sudbury Samples 

(second suite) 

C C Missing Missing Missing 10.96 9.87 9.25 8.51 
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A-8 Grade B: Q for silicates at pressures 10-600 MPa (continued) 

Rock name Sample Id Suite Location 10 Mpa 20 

Mpa 

40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 

Mpa 

400 

Mpa 

600 

Mpa 

Tuff 52847-3 Sudbury Samples 

(second suite) 

C C Missing Missing Missing 14.24 17.44 14.40 15.34 

Granophyre 52847-7 Sudbury Samples 

(second suite) 

C C 48.06 66.56 57.98 53.28 33.35 28.76 42.38 

Quartz 

gabbro 

5988-1 Sudbury Samples 

(second suite) 

C C 28.42 18.91 15.37 15.95 14.39 17.42 15.58 

Gneiis 60064-12 Sudbury Samples 

(second suite) 

26.04 missi

ng 

21.35 missing missing 21.9 24.13 21.98 20.64 

Felsic norite 60064-2 Sudbury Samples 

(second suite) 

C missi

ng 

21.72 missing missing 24.74 28.41 24.09 23.87 

Breccia 60064-3 Sudbury Samples 

(second suite) 

C c c c c 19.28 17.02 18.30 19.10 

Breccia 60064-6-

TOP 

Sudbury Samples 

(second suite) 

C missi

ng 

15.4 missing missing 14.36 11.3 10.82 13.35 

Gneiss 60064-8 Sudbury Samples 

(second suite) 

c 43.34 32.60 19.37 13.97 11.60 11.67 14.91 17.42 

Granophyre 60066-1 Sudbury Samples 

(second suite) 

C c missing missing missing 25.79 22.64 23.27 24.22 

Quartz 

gabbro 

60066-3 Sudbury Samples 

(second suite) 

C missi

ng 

c missing missing c c 23.66 24.55 

Quartz 

gabbro 

60066-4 Sudbury Samples 

(second suite) 

C c c c 18.06 14.93 14.93 15.13 285.91 

Greywacke BA 4301-

8A-BOT 

Sudbury Samples 

(second suite) 

C c 27.07 23.37 27.92 27.25 30.42 23.37 24.93 
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A-8 Grade B: Q for silicates at pressures 10-600 MPa (continued) 

Rock name Sample Id Suite Location 10 Mpa 20 

Mpa 

40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 

Mpa 

400 

Mpa 

600 

Mpa 

Greywacke BA 4301-

8A-TOP 

Sudbury Samples 

(second suite) 

C c c c c c 30.41 26.98 23.59 

Metatonalite BNB97-

018Az 

Sudbury Samples 

(second suite) 

177.17 c 113.1 82.58 c c c 37.57 40.65 

Metatonalite BNB97-

018Bx 

Yellowknife 

Bucket#4 

Missin

g 

Missi

ng 

Missing Missing Missing c c 19.22 22.44 

Medium 

grained 

Gneiss 

BNB97-

021Az 

Yellowknife 

Bucket#2 

13.05 12.57 15.54 13.63 14.05 21.20 21.84 20.23 18.45 

Anorthosite L6xy Labrador- 

Nakvakfjord Nain 

Missin

g 

c c 54.34 56.46 55.37 54.93 62.04 43.97 

Metbasalt LG-196x-

23 

Liscomb complex C 82.78 47.11 36.83 32.64 22.33 14.63 17.69 19.08 

Average   60.91 43.96 40.27 48.43 32.24 28.85 24.51 35.93 38.20 
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A-9 Grade B: Loss factors for silicates at pressures 10-600 MPa 

Rock name Sample Id Suite Location 10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 

Mpa 

400 

Mpa 

600 

Mpa 

Granophyre 10649 Sudbury 

Samples 

(second suite) 

Missing Missing Missing Missing Missing Missing 103.36 160.89 167.73 

Andesite 604962 Sudbury 

Samples 

(second suite) 

Missing c c c 20.04 8.03 25.67 30.73 78.97 

Andesite 604965 Noranda, 

Quebec 

171.80 120.30 61.25 570.85 81.93 36.46 53.06 56.94 54.69 

Diorite 17-79-1751 Noranda, 

Quebec 

72.82 C c 49.92 c c c c c 

Rhyolite 181679z Sturgeon Lake- 

Noranda 

Mining 

C c c c c c c 303.27 289.23 

Magnate 181696xy Noranda 99-

Bathu2.76rst 

C c c c c c 407.95 215.48 179.71 

Tuff 52847-1 Noranda 99-

Bathurst 

C C Missing Missing Missing 252.04 281.12 307.73 356.07 

Tuff 52847-2 Sudbury 

Samples 

(second suite) 

C C Missing Missing Missing 390.14 431.42 457.34 494.09 

Tuff 52847-3 Sudbury 

Samples 

(second suite) 

C C Missing Missing Missing 306.18 248.71 299.36 279.31 

Granophyre 52847-7 Sudbury 

Samples 

(second suite) 

C C 93.38 66.77 76.40 82.87 131.56 151.55 102.54 

Quartz gabbro 5988-1 Sudbury 

Samples 

(second suite) 

C C 156.35 233.12 285.85 274.66 302.91 248.67 260.36 

Gneiis 60064-12 Sudbury 

Samples 

(second suite) 

195.52 missing 210.58 missing missing 199.01 178.68 194.55 205.92 
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A-9 Grade B: Loss factors for silicates at pressures 10-600 MPa (continued) 

Rock name Sample Id Suite Location 10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 

Mpa 

400 

Mpa 

600 

Mpa 

Felsic norite 60064-2 Sudbury 

Samples 

(second suite) 

C missing 209.08 missing missing 181.74 157.18 183.87 184.07 

Breccia 60064-3 Sudbury 

Samples 

(second suite) 

C c c c c 223.99 251.32 232.32 221.49 

Breccia 60064-6-

TOP 

Sudbury 

Samples 

(second suite) 

C missing 282.11 missing missing 298.87 377.24 390.83 315.37 

Gneiss 60064-8 Sudbury 

Samples 

(second suite) 

c 95.98 126.05 211.54 292.75 352.17 348.48 271.22 230.38 

Granophyre 60066-1 Sudbury 

Samples 

(second suite) 

C c missing missing missing 163.56 185.39 179.32 171.24 

Quartz gabbro 60066-3 Sudbury 

Samples 

(second suite) 

C missing c missing missing c c 179.33 171.82 

Quartz gabbro 60066-4 Sudbury 

Samples 

(second suite) 

C c c c 237.99 287.46 281.86 14.84 12.89 

Greywacke BA 4301-

8A-BOT 

Sudbury 

Samples 

(second suite) 

C c 169.71 155.64 163.41 166.87 148.26 190.47 176.52 

Greywacke BA 4301-

8A-TOP 

Sudbury 

Samples 

(second suite) 

C c c c c c 147.35 164.17 186.58 

Metatonalite BNB97-

018Az 

Sudbury 

Samples 

(second suite) 

29.11 c 42.330 57.36 c c c 120.65 110.77 

Metatonalite BNB97-

018Bx 

Yellowknife 

Bucket#4 

Missing Missing Missing Missing Missing c c 220.17 187.39 
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A-9 Grade B: Loss factors for silicates at pressures 10-600 MPa (continued) 

Rock name Sample Id Suite Location 10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 

Mpa 

400 

Mpa 

600 

Mpa 

Medium 

grained Gneiss 

BNB97-

021Az 

Yellowknife 

Bucket#2 

370.06 378.83 300.32 336.42 322.67 212.02 202.51 216.21 235.46 

Anorthosite L6xy Labrador- 

Nakvakfjord 

Nain 

Missing c c 82.87 78.47 79.49 78.98 69.05 96.22 

Metbasalt LG-196x-

23 

Liscomb 

complex 

C 61.49 99.52 123.06 136.59 197.39 290.97 236.64 218.00 

Average   167.86 164.15 159.15 141.62 169.61 206.28 220.67 203.83 201.21 
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A-10 Grade B: slope data for silicates at pressures 10-600 MPa 

Rock name Sample Id Suite Location 10 Mpa 

(10-7) 

20 Mpa 

(10-7) 

40 Mpa 

(10-7) 

60 Mpa 

(10-7) 

80 Mpa 

(10-7) 

100 Mpa 

(10-7) 

200 Mpa 

(10-7) 

400 

Mpa 

(10-7) 

600 

Mpa 

(10-7) 

Granophyre 10649 Sudbury Samples 

(second suite) 

Missing Missing Missing Missing Missing Missing 5.620 8.749 9.120 

Andesite 604962 Sudbury Samples 

(second suite) 

Missing c c c 0.958 0.384 1.227 1.470 3.776 

Andesite 604965 Noranda, Quebec 9.167 6.420 3.268 3.087 4.372 1.946 2.832 3.038 2.919 

Diorite 17-79-1751 Noranda, Quebec 3.275 C c 2.245 c c c c c 

Rhyolite 181679z Sturgeon Lake- 

Noranda Mining 

C c c c c c c 14.808 14.122 

Magnite 181696xy Noranda 99-

Bathu2.76rst 

C c c c c c 18.336 9.685 8.077 

Tuff 52847-1 Noranda 99-

Bathurst 

C C Missing Missing Missing 14.935 16.658 18.235 21.110 

Tuff 52847-2 Sudbury Samples 

(second suite) 

C C Missing Missing Missing 21.977 24.303 25.763 27.833 

Tuff 52847-3 Sudbury Samples 

(second suite) 

C C Missing Missing Missing 17.551 14.257 17.160 16.011 

Granophyre 52847-7 Sudbury Samples 

(second suite) 

C C 5.345 3.822 4.373 4.744 7.531 8.675 5.870 

Quartz gabbro 5988-1 Sudbury Samples 

(second suite) 

C C 8.707 12.928 15.918 15.295 16.868 13.848 14.499 

Gneiis 60064-12 Sudbury Samples 

(second suite) 

11.181 c 12.042 c c 11.380 10.218 11.125 11.776 
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A-10 Grade B: slope data for silicates at pressures 10-600 MPa (continued) 

Rock name Sample Id Suite Location 10 Mpa 

(10
-7

) 

20 Mpa 

(10
-7

) 

40 Mpa 

(10
-7

) 

60 Mpa 

(10
-7

) 

80 Mpa 

(10
-7

) 

100 Mpa 

(10
-7

) 

200 

Mpa 

(10
-7

) 

400 

Mpa 

(10
-7

) 

600 

Mpa 

(10
-7

) 

Felsic norite 60064-2 Sudbury 

Samples 

(second suite) 

C missing 10.796 missing missing 9.383 8.116 9.494 15.488 

Breccia 60064-3 Sudbury 

Samples 

(second suite) 

C c c c c 11.326 12.708 11.747 11.200 

Breccia 60064-6-

TOP 

Sudbury 

Samples 

(second suite) 

C missing 16.451 missing missing 17.428 21.998 22.791 18.390 

Gneiss 60064-8 Sudbury 

Samples 

(second suite) 

c 4.755 6.245 10.480 14.503 17.447 17.264 13. 

436 

11.431 

Granophyre 60066-1 Sudbury 

Samples 

(second suite) 

C c missing missing missing 9.670 10.960 10.602 10.124 

Quartz gabbro 60066-3 Sudbury 

Samples 

(second suite) 

C missing c missing missing c c 10.585 10.142 

Quartz gabbro 60066-4 Sudbury 

Samples 

(second suite) 

C c c c 12.908 15.591 15.287 15.507 17.807 

Greywacke BA 4301-

8A-BOT 

Sudbury 

Samples 

(second suite) 

C c 9.268 8.499 8.923 9.113 8.096 10.401 9.639 

Greywacke BA 4301-

8A-TOP 

Sudbury 

Samples 

(second suite) 

C c c c c c 7.978 8.889 10.013 

Metatonalite BNB97-

018Az 

Sudbury 

Samples 

(second suite) 

 c 2.043 2.769 c c c 5.824 5.347 
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A-10 Grade B: slope data for silicates at pressures 10-600 MPa (continued) 

Rock name Sample Id Suite Location 10 Mpa 

(10
-7

) 

20 Mpa 

(10
-7

) 

40 Mpa 

(10
-7

) 

60 Mpa 

(10
-7

) 

80 Mpa 

(10
-7

) 

100 Mpa 

(10
-7

) 

200 

Mpa 

(10
-7

) 

400 

Mpa 

(10
-7

) 

600 

Mpa 

(10
-7

) 

Metatonalite BNB97-

018Bx 

Yellowknife 

Bucket#4 

Missing Missing Missing Missing Missing c c 10.241 8.716 

Medium 

grained Gneiss 

BNB97-

021Az 

Yellowknife 

Bucket#2 

18.789 19.234 15.243 17.081 16.383 10765 10.282 10.977 11.955 

Anorthosite L6xy Labrador- 

Nakvakfjord 

Nain 

Missing 5.076 4.714 4.450 4.213 4.269 4.241 3.708 5.167 

Metbasalt LG-196x-

23 

Liscomb 

complex 

C 3.180 5.146 6.363 7.063 10.206 15.044 12.236 11.272 



 

 128 

A-11 Grade A: velocities (km/sec) of massive silphides at pressures 10-600 MPa 

 
Rock name Sample 

Id 

Suite 

Location 

10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 Mpa 400 Mpa 600 Mpa 

Chalcopyrite KC-

486xy 

Kidd 

creek 

4.95 5.05 5.21 5.26 5.29 5.31 5.38 5.43 5.44 

Chalcopyrite SEL-202 Selbaie 5.64 5.72 5.76 5.79 5.81 5.83 5.89 5.97 6.02 

Chalcopyrite SEL-204 Selbaie c 5.30 5.44 5.58 5.68 5.70 5.76 5.80 5.84 

Pyrrhotite Inco-9-1 Inco- 

Sudbury 

basin 

Missing  Missing Missing Missing Missing 5.85 5.91 5.98 6.03 

Pyrrhotite Inco-9-2 Inco- 

Sudbury 

basin 

Missing Missing 5.42 5.47 5.52 5.58 5.69 5..76 5.83 

Pyrite ore Sel-103 Selbaie c 7.48 7.55 7.58 7.59 7.60 7.65 7.69 7.73 

Pyrite ore Sel-105 Selbaie 7.31 7.46 7.52 7.56 7.60 7.63 7.70 7.74 7.77 

Pyrite-

chalcopyrite 

ore 

Sel-506 Selbaie 5.98 6.05 6.16 6.23 6.27 6.30 6.37 6.43 6.45 

Pyrrhotite T-

30826xy 

Thompso

n 

4.58 4.67 4.73 4.75 4.76 4.77 4.80 4.83 4.84 

Pentlandite-

pyrrhotite ore 

Inco-12-2 Inco- 

Sudbury 

basin 

C 4.56 4.60 4.63 4.65 4.67 4.70 4.73 4.74 

Pentlandite-

pyrrhotite ore 

Inco-12-4 Inco- 

Sudbury 

basin 

c c 4.76 4.90 5.00 5.07 5.19 5.21 5.23 

Massive 

sphalerite ore 

KC-

316xy 

Kidd 

creek 

5.21 5.31 5.41 5.45 5.47 5.48 5.52 5.55 5.56 

Sphalerite Sel-303 Selbaie 5.14 5.39 5.52 5.61 5.67 5.72 5.76 5.79 5.81 

Sphalerite-

chalcopyrite-

pyrite ore 

Sel-503 Selbaie C C 5.74 5.79 5.83 5.85 5.90 5.93 5.97 

Average   5.54 5.70 5.68 5.74 5.78 5.81 5.87 5.92 5.95 
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A-12 Grade A: Q for massive silphides at pressures 10-600 MPa 

Rock name Sample 

Id 

Suite 

Location 

10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 Mpa 400 Mpa 600 Mpa 

Chalcopyrite KC-

486xy 

Kidd 

creek 

28.73 21.61 31.19 42.34 50.14 42.38 51.16 56.10 61.14 

Chalcopyrite SEL-202 Selbaie 14.81 12.21 16.05 21.24 27.24 30.96 26.66 35.64 33.81 

Chalcopyrite SEL-204 Selbaie C 50.97 45.49 47.26 48.02 47.67 38.18 40.39 43.54 

Pyrrhotite Inco-9-1 Inco- 

Sudbury 

basin 

Missing  Missing Missing Missing Missing 59.17 71.55 211.87 123.87 

Pyrrhotite Inco-9-2 Inco- 

Sudbury 

basin 

Missing Missing 33.99 28.98 26.53 33.66 32.96 29.87 27.36 

Pyrite ore Sel-103 Selbaie c 9.12 12.81 1650 20.53 19.19 31.72 78.08 81.67 

Pyrite ore Sel-105 Selbaie 13.76 12.98 24.61 31.99 32.66 30.83 35.42 34.36 29.88 

Pyrite-

chalcopyrite 

ore 

Sel-506 Selbaie 57.44 50.79 39.18 35.99 36.35 38.57 39.45 39.99 40.65 

Pyrrhotite T-

30826xy 

Thompso

n 

44.39 59.48 68.29 56.66 57.61 59.79 71.53 59.36 82.78 

Pentlandite-

pyrrhotite ore 

Inco-12-2 Inco- 

Sudbury 

basin 

c 43.41 45.47 35.62 44.59 45.40 41.91 45.41 36.84 

Pentlandite-

pyrrhotite ore 

Inco-12-4 Inco- 

Sudbury 

basin 

c c 114.48 129.77 94.21 116.63 103.08 105.29 111.55 

Massive 

sphalerite ore 

KC-

316xy 

Kidd 

creek 

77.38 56.36 61.35 69.15 99.28 63.81 84.11 98.12 64.56 

Sphalerite Sel-303 Selbaie 43.88 51.36 76.71 85.22 105.48 92.04 116.57 77.62 102.80 

Sphalerite-

chalcopyrite-

pyrite ore 

Sel-503 Selbaie C C 18.48 22.03 26.82 31.83 46.38 55.10 57.25 

Average   40.06 36.83 45.24 47.90 51.50 50.85 56.48 69.09 64.12 
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A-13 Grade A: loss factors for massive silphides at pressures 10-600 MPa 

Rock name Sample 

Id 

Suite 

Location 

10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 Mpa 400 Mpa 600 Mpa 

Chalcopyrite KC-

486xy 

Kidd 

creek 

191.85 250.07 167.90 122.51 102.88 121.26 99.13 89.57 82.05 

Chalcopyrite SEL-202 Selbaie 326.69 390.77 295.21 221.91 172.38 151.17 173.78 128.23 134.07 

Chalcopyrite SEL-204 Selbaie C 101.01 110.26 103.47 100.05 100.42 124.09 116.48 107.32 

Pyrrhotite Inco-9-1 Inco- 

Sudbury 

basin 

Missing  Missing Missing Missing Missing 78.83 64.53 21.54 36.53 

Pyrrhotite Inco-9-2 Inco- 

Sudbury 

basin 

Missing Missing 148.14 172.13 186.31 145.29 145.49 158.61 171.09 

Pyrite ore Sel-103 Selbaie c 399.99 282.18 218.14 175.16 187.07 112.44 45.44 43.22 

Pyrite ore Sel-105 Selbaie 271.31 281.84 147.43 112.84 109.95 116.01 100.05 102.61 117.52 

Pyrite-

chalcopyrite 

ore 

Sel-506 Selbaie 79.44 88.80 113.05 121.72 119.74 112.29 108.59 106.12 104.06 

Pyrrhotite T-

30826xy 

Thompso

n 

134.22 98.23 84.48 101.39 99.51 95.68 79.48 95.18 68.10 

Pentlandite-

pyrrhotite ore 

Inco-12-2 Inco- 

Sudbury 

basin 

c 137.86 130.47 165.44 131.59 128.70 138.54 127.05 156.28 

Pentlandite-

pyrrhotite ore 

Inco-12-4 Inco- 

Sudbury 

basin 

c c 50.08 42.91 57.93 46.15 51.00 49.74 46.77 

Massive 

sphalerite ore 

KC-

316xy 

Kidd 

creek 

67.68 91.17 82.21 72.40 50.24 78.03 58.77 50.11 76.02 

Sphalerite Sel-303 Selbaie 120.98 98.57 64.44 57.08 45.63 51.83 40.64 60.72 45.68 

Sphalerite-

chalcopyrite-

pyrite ore 

Sel-503 Selbaie C C 257.26 213.91 174.52 146.056 99.73 83.52 79.84 

Average   170.31 193.83 148.70 132.76 117.37 111.38 99.73 88.21 90.61 
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A-14 Grade B: velocities (km/sec) of massive silphides at pressures 10-600 MPa 

 

 
Rock name Sample 

Id 

Suite 

Location 

10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 Mpa 400 Mpa 600 Mpa 

Pyrite Sel-5 Selbaie c c c c c c c 7.30 7.33 

Pyrite ore Sel-101 Selbaie 7.13 7.27 7.33 7.36 7.39 7.42 7.54 c c 

Pyrite ore Sel-104 Selbaie c C 7.09 7.16 7.22 7.26 7.35 7.39 7.40 

Pyrite ore KC-

470Bz 

Kidd 

Creek 

c c c c c c c 5.87 5.89 

Pyrite-

chalcopyrite 

ore 

Sel-502 Selbaie c c c 6.33 6.35 6.36 6.41 6.45 6.46 

Sphalerite Sel-302 Selbaie c c 5.63 5.67 5.69 5.72 5.78 5.85 5.89 

Pyrite-

sphalerite ore 

Sel0505 Selbaie 6.69 6.77 6.82 6.85 6.87 6.89 6.96 7.04 7.09 

Average   6.91 7.02 6.72 6.67 6.70 6.73 6.81 6.65 6.68 
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A-15 Grade B: Q for massive silphides at pressures 10-600 MPa 

 

 
Rock name Sample 

Id 

Suite 

Location 

10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 Mpa 400 Mpa 600 Mpa 

Pyrite Sel-5 Selbaie c c c c c c c 13.57 10.09 

Pyrite ore Sel-101 Selbaie 23.69 22.36 13.42 10.88 10.87 9.51 10.41 c c 

Pyrite ore Sel-104 Selbaie c C 16.75 16.41 18.32 17.95 23.48 15.96 18.59 

Pyrite ore KC-

470Bz 

Kidd 

Creek 

c c c c c c c 28.36 28.27 

Pyrite-

chalcopyrite 

ore 

Sel-502 Selbaie c c c 15.60 19.46 26.18 25.61 36.41 35.80 

Sphalerite Sel-302 Selbaie c c 13.81 18.08 18.61 21.22 23.65 27.33 26.63 

Pyrite-

sphalerite ore 

Sel0505 Selbaie 56.99 37.99 30.80 28.52 25.27 21.76 32.10 30.29 21.52 

Average   40.34 30.18 18.70 17.89 18.51 19.32 23.05 25.32 23.48 
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A-16 Grade B: loss factors for massive silphides at pressures 10-600 MPa 

 

 
Rock name Sample Id Suite 

Location 

10 Mpa 20 Mpa 40 

Mpa 

60 Mpa 80 Mpa 100 Mpa 200 Mpa 400 Mpa 600 Mpa 

Pyrite Sel-5 Selbaie c c c c c c c 275.36 369.07 

Pyrite ore Sel-101 Selbaie 161.52 167.87 277.47 340.87 339.84 386.67 347.64 c C 

Pyrite ore Sel-104 Selbaie c C 229.74 232.24 206.34 209.34 158.09 231.29 198.31 

Pyrite ore KC-

470Bz 

Kidd 

Creek 

c c c c c c c 163.93 163.90 

Pyrite-

chalcopyrite 

ore 

Sel-502 Selbaie c c c 276.37 220.85 163.87 166.21 116.19 118.01 

Sphalerite Sel-302 Selbaie c c 350.32 266.14 257.70 224.83 199.64 170.70 173.96 

Pyrite-

sphalerite 

ore 

Sel0505 Selbaie 71.57 106.11 129.89 139.69 157.18 182.03 122.13 127.96 178.82 

Average   116.55 136.99 247.01 251.07 236.38 233.35 198.74 180.91 200.34 
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Appendix B (Loss Factor) 
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Loss factor derivation and relationship with Q :  

 

Loss factor derivation by Dr. Stephen D. Butt, Professor at Faculty of Engineering and 

Applied Science (Oil and Gas Engineering/ Drilling and Geomechanics) Memorial 

University of Newfoundland.  

 

Loss factor (dB/m)=  

Where, 

 = the initial amplitude, 

=amplitude after passing through the specimen 

x =specimen length in meter. 

 

 

From theory:  

 
 

Where, f=frequency and  Q=Quality factor 
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Or  

From the spectral ratio fit,  

Therefore,  

And  

 

Loss factor (dB/m)=  

Select a standard frequency of f=1 MHz=  

 Loss factor =  

Hence, Loss factor (dB/m @1 MHz)=  

 

Relation between Q and loss factor: 

 

Therefore, Loss factor=  
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