
The Journal of Ocean Technology, Vol. 9, No. 2, 2014 49

Who should read this paper?
Anyone who knows the difficulty of planning an autonomous underwater
vehicle (AUV) mission by hand will have a deep interest in this research. As
AUV missions grow increasingly numerous and complex, those involved in
AUV research – from technicians to scientists to policy-makers – will likely
find themselves affected by the automatizing of mission planning. Outside the
oceans, anyone naturally inclined toward efficiency and finds suboptimal
solutions truly unconscionable will find in this software a kindred spirit.

Why is it important?
AUVs come in various forms. Gliders offer a typical dilemma: what you
give up in speed, you gain in range. Electric motored AUVs are typically
faster, but gliders use buoyancy, and the trade-off is significant: gliders have
very low power consumption and can travel thousands of kilometres,
allowing sampling missions of weeks or even months.

Part of the trick is planning a good sampling mission. The authors identify the
Travelling Salesman Problem (TSP) as the “heart” of glider mission planning.
The problem goes as follows: Given a list of cities and the distances between
each pair of cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city? Glider missions, in addition to
being an underwater version of the TSP, are plagued by other restrictions:
local currents, battery life, and specific time windows for sampling; all
conspire to remove degrees of freedom from the mission. The authors’
software package employs a variety of solvers to produce a mission plan that
optimizes travel time, while also taking into account user-defined additional
constraints. The result is an optimal order of goal points, a charted course.

About the authors
Tamkin Khan Avi is completing his M.Sc. in Computer Science at Memorial
University of Newfoundland, where he is a Research and Teaching Assistant.
This project is part of his M.Sc. research. He was previously a software
engineer at KAZ Software. Dr. Antonina Kolokolova obtained her PhD from
the University of Toronto, and began teaching at Memorial University in
2007. Her interests include complexity theory and algorithms, in particular
scalable approaches to hard problems such as routing and optimization. Adam
Murphy is a Computer Science undergraduate student at Memorial
University, whose thesis is a result of work on this project. Richard Bajona is
a student of Computer Science and Pure Mathematics at Memorial
University, where he worked as Research Assistant for Dr. Kolokolova.
Kenneth Collingwood is currently completing a B.Sc. in Computer Science at
Memorial University, and was involved with the early stages of this project.
Melissa Reid completed her B.Sc. in Computer Science at Memorial
University. She is currently Director of Cloud Solutions at ID Security
Experts Inc., and was involved with the early stages of this project.

Tamkin Khan Avi

Avi, Kolokolova, Murphy, Bajona, Collingwood, and
Reid glide onto the scene.

Bargains from travelling
salesmen: optimizing a mission

Antonina Kolokolova

Adam Murphy

Kenneth Collingwood

Melissa Reid

Richard Bajona

Copyright Journal of Ocean Technology 2014

50 The Journal of Ocean Technology, Vol. 9, No. 2, 2014 Copyright Journal of Ocean Technology 2014

GLIDER MISSION PLANNING USING GENERIC SOLVERS

T. Avi, A. Kolokolova, A. Murphy, R. Bajona, K. Collingwood, and M. Reid
Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada

ABSTRACT

In this paper we describe several approaches to the AUV (glider) mission planning problem and
investigate their complexity. At the heart of such mission planning are variants of an NP-hard
(Non-deterministic Polynominal-time) Asymmetric Travelling Salesman Problem (ATSP);
however, some modern-day heuristics can solve this problem optimally in a reasonable amount
of time (although providing a proof of optimality slows down the computation). A glider mission
plan often has to accommodate a variety of other constraints such as scheduling restrictions,
specific time windows or order to visit selected points and so on.

Here we consider a general AUV mission planning problem which, although based on ATSP, can
incorporate other constraints. Thus, the use of general-purpose solvers such as Integer Linear
Programming or Satisfiability-based solvers may be desired. With this goal, we have developed a
software package for the glider mission planning problem that utilizes a variety of existing
solvers to compute an optimal order of goal points to visit, subject to travel time as well as user-
provided additional constraints. Then, to evaluate feasibility of this setting using state-of-the-art
solvers, we analyze the performance of a variety of solvers on the core ATSP problem.

KEYWORDS

AUV mission planning; Gliders; Travelling Salesman Problem; Integer Linear Programming;
Pseudo-Boolean Optimization; Satisfiability Modulo Theories

The Journal of Ocean Technology, Vol. 9, No. 2, 2014 51Copyright Journal of Ocean Technology 2014

INTRODUCTION

As small autonomous underwater vehicles
(AUVs) such as gliders become more
accessible and are used for a multitude of
tasks, mission planning for such AUVs is
becoming more and more challenging. In
particular, planning a mission for an AUV that
requires visiting a significant number of goal
locations can be non-trivial, unless there is a
simple ordering on the locations coming from
a problem definition. The problem becomes
even more complex when planning a mission
with multiple AUVs.

As a motivating example, consider a joint
mission in which an unmanned aerial vehicle
surveys an area and notes a few dozen points
of interest, which are then visited by a glider.
Suppose, also, that the area happens to have a
complex system of currents and land. In that
case, planning a mission that would visit these
points most efficiently, or determining whether
it can be done in a single mission, can become
complicated. Indeed, in some locations the
currents may be too strong for the glider to fly
against them, and other areas may be deemed
too unsafe to approach. Planning by hand a
mission that could satisfy all such constraints,
though it can be done (and is done in practice),
may result in a suboptimal solution and becomes
unwieldy as the number of points to visit grows.

The goal of our project is automating this
mission planning task. However, the
underlying problems are NP-hard, and thus no
efficient algorithms for them are known. One
possibility would be to forfeit optimality and
settle for a fast approximation algorithm;
instead, we chose to delegate computationally

hard tasks to heuristics-based generic solvers.
In the last several years such solvers, in
particular Satisfiability (SAT) solvers, became
a staple method for solving a wide range of
constraint satisfaction problems, from
automated hardware and software verification
to planning problems, to exam scheduling at
universities. In this setting, an optimization
problem is encoded as an instance of a specific
NP-hard problem such as SAT or Integer
Linear Programming (ILP), and then
approached using heuristics developed
specifically for SAT/ILP. So to what extent can
solvers’ heuristics tackle such complex mission
planning problems?

As a part of our project, we have developed a
software package to assist with glider mission
planning. Users enter the parameters of a
glider into the system using a software
interface, as well as loading an ocean current
map of the desired area. Then waypoints/goal
locations can be either uploaded from a file or
selected interactively using the interface. After
that, a path planner is invoked to compute
pairwise distances between goal points. Users
then select a desired solver to compute an
optimal order of points to visit; an instance of
the optimization problem is generated in the
format accepted by the solver. After the solver
computes the resulting tour (sequence of
points), it is displayed in the interface. Once
the files encoding the distances and points are
generated, users can edit them to add extra
constraints, and then pass the result to the
solvers. This allows for arbitrary extra
constraints (available in that solver’s
framework) to be incorporated. Please see
section entitled “Mission Planner Software”
for more details.

52 The Journal of Ocean Technology, Vol. 9, No. 2, 2014 Copyright Journal of Ocean Technology 2014

Mission planning problem is far from new,
and naturally there have been algorithms and
software packages tailored to solving it in
various contexts. However, many glider
missions until recently involved only few
(under ten) goals, or goals arranged in a
simple pattern such as observation buoys
located on a same line. In this project, we are
interested in extending this to the case of a
large number of goals, and providing a
framework that can be extended to multiple
(heterogeneous) AUVs and additional
constraints.

Based on the goal-based approach from space
exploration mission planning, Woodrow et al.
[2005] from System Engineering and
Assessment Limited (SEA) have developed a
goal-based planner for Battlespace Access
Unmanned Underwater Vehicle setting. In
their paper they discuss an advanced software
suite created with the focus on re-planning
and goal-based mission planning. Though
their software can plan a mission offline, it is
generally intended for sophisticated AUVs
capable of carrying out computation needed
for re-planning on board and operating with a
significant degree of autonomy. Whereas we
consider a simple mission of visiting a
number of locations, their atomic units of
planning are of the form “lawnmower search
over an area” or “loiter.” As a part of their
software package, they develop a powerful
path planner, capable of multi-parameter
optimization (such as risk and energy) in a
time-varying field. However, the intended
military application naturally limits the
availability of their software to the
community and it is not clear how it would
scale up with the number of goals.

A line of work more appropriate to gliders
setting follows Vasilescu et al. [2005] results
on using data mule AUVs collecting data from
the nodes of an underwater sensor network.
Most of this work is concerned with
communication protocols and implementation
of the framework; however, in a follow-up
work by Bhadauria et al. [2011], the data
gathering problem is explicitly stated and
analyzed algorithmically, albeit not for the
underwater sensor networks. In that paper,
they describe an approximation algorithm for
the data gathering problem based on
approximation algorithms for variants of TSP
(Travelling Salesman Problem), in particular
Euclidean TSP, which does not apply in the
underwater setting where currents are present.

An approach similar to ours has been
investigated by Drucker et al. [2014] in a
context of a different problem: continuous
surveillance and monitoring by unmanned
aerial vehicles (UAVs). There, given a list of
locations to be monitored and maximal
allowed times between visits to these
locations, as well as flight times and
characteristics of the UAVs, the goal is to
design a cyclic mission, possibly employing
several UAVs, that visits all the locations
(repeatedly), satisfying the given constraints.
They do discuss TSP as a special case of their
problem, where each location needs to be
visited only once as opposed to repeatedly.
Thus, they do obtain a generalization of TSP
with additional constraints. With this
formulation of the problem, they experimented
with several types of generic solvers, in
particular mixed integer linear programming
and SAT/SMT (Satisfiability Modulo Theories)
solvers that we also employ.

The Journal of Ocean Technology, Vol. 9, No. 2, 2014 53Copyright Journal of Ocean Technology 2014

It is worth noting that much of the AUV
mission planning literature focuses on the path
planning part, as opposed to the ordering of
the goal points (see, for example, He et al.
[2009]). We have developed simple path
planners based on A* and FM* algorithms, but
there are much more elaborate path planners
for gliders in time-varying fields available,
such as Eichhorn [2013]. Our software allows
for an external path planner to be used, and we
expect users to replace our basic planner with
their preferred path planning software with 3D
glider motion functionality.

Glider Mission Planning Problem
Consider the following scenario. An ocean
survey organization has a multitude of
observation buoys. It would like to have an
automated way of collecting data from these
buoys. It procures a small fleet of gliders, each
capable of making contact with a buoy and
offloading its data. Now, they would like to
schedule data collection missions for their fleet
of gliders in an optimal manner. They would
like every buoy to be visited, ideally during
the course of a single mission. Additionally,
they may specify the time limits on visiting
certain buoys, time spent downloading data, or
have other constraints. Their planning will rely
on the information about the currents, weather
forecast, parameters of the gliders, and any
additional information they can provide to help
with the mission planning problem.

There are several settings in which this
problem can be viewed; in particular, the
planning done on the AUV itself versus the
mission planning done offline. Here, we are
interested in the offline version, as extra
computational power and time available in that

case can be used to solve the mission planning
problem optimally. More precisely, the
formulation of the mission planning problem is
as follows.

Given:
1. Location of goal points (in the data

collection scenario above, possibly the
schedule of the previous data collection
times for each buoy, time to receive their
data, etc.).

2. The number and physical parameters of
the gliders such as speed and battery life
(where gliders are not necessarily
identical).

3. Starting point(s).
4. A map of the currents, potentially with

time-varying information and the weather
forecast.

5. Additional constraints.

Compute: An optimal order of the goal points
to be visited, if it exists.

Once computed, the points can be uploaded to
a glider (with potential intermediate waypoints
produced by the path planning software
module).

Here, there can be a number of definitions of
what constitutes an optimal sequence. The
optimization parameters can be the travel time
or distance, as well as the number of buoys
from which data is collected (possibly
weighted by the previous collection times),
risk factors (how likely it is for some glider to
be lost due to getting caught in a strong current
or running out of battery), and other criteria.
For the sake of simplicity, here we will
optimize the total travel time, as computed by

54 The Journal of Ocean Technology, Vol. 9, No. 2, 2014 Copyright Journal of Ocean Technology 2014

the path planner. In general, we will rely on
path planner to provide information about
travelling between any two points such as
travel time; it can be adapted to provide a
combination of risk and travel time weighted
by the uncertainty, or other information that
can be used to modify the optimization
criteria.

This is a classic example of a constraint
optimization problem. Here, a number of
various constraints are present. The most
prominent are linear constraints such as limits
on battery life or glider speed. Additionally,
there can be Boolean constraints, specifying,
for example, that a given buoy must be visited
before another, or by a specific AUV. A
plethora of other constraints may arise in
practice.

Asymmetric TSP Representation
Let us first simplify the problem. Consider a
situation where we have a single glider, a
single starting point and need to visit all
buoys, with no additional constraints; the
glider returns back to its start point after
completing the mission. Also, suppose the
distances (that is, time spent travelling or
battery used) between every pair of buoys, as
well as to the starting point, are pre-computed
and do not change with time. In this case, the
problem can be recast as Travelling Salesman
(SalesPerson) Problem (TSP). Formally, an
input to TSP is a complete graph on n
vertices, with all edges labelled with (non-
negative) cost values c(u,v). The output in
this optimization problem is a minimal
“tour”; that is, a sequence involving all
vertices in the graph that minimizes the
distance travelled.

Although TSP is NP-hard even for the case
when the costs on graph edges are 0 or 1, there
are dedicated TSP solvers such as Concorde
[Cook, n.d.] that perform well in many real-
life applications. Also, some additional
restrictions such as requiring distances to be
Euclidean allow for a very good approximation
algorithm [Arora, 1996; Mitchell, 1999]: in
our setting, even though the triangle inequality
constraint is satisfied, the distances are not
metric due to asymmetry, and thus our setting
is not Euclidean. Additionally, heuristics such
as Lin and Kernighan [1973] and Helsgaun
[2000] perform well in practice, although they
do not guarantee optimality of the solution.
For this project, however, we are interested
both in computing an optimal solution and in a
possibility to extend a TSP instance with
additional constraints. Thus, we will consider
more general-purpose solvers.

As time travelled does depend on the direction
of travel due to ocean currents, we represent
the simplified glider mission planning as an
asymmetric TSP problem. Given a map of
ocean currents, speed of the glider, and
locations of goal points, a path planner
computes all pairwise travel times between
points. Now, construct a graph with vertices
being goal points and the start point, and the
cost of each edge c(u,v) a travel time from u to
v as computed by the path planner. An optimal
tour (ordering) of the vertices of this graph
translates into an optimal ordering of the goal
points, where the tour is considered to start
from the start point.

Note that many of the solvers are designed to
work with a symmetric TSP problem. An
asymmetric TSP problem is usually

The Journal of Ocean Technology, Vol. 9, No. 2, 2014 55Copyright Journal of Ocean Technology 2014

approached either using specialized heuristics
or by creating an equivalent symmetric TSP
instance involving twice as many points
[Jonker and Volgenant, 1983].

In general, TSP constraints are not the only
constraints a mission plan can require. For
example, visiting a goal point is likely to take
time, be possibly different for different points,
and should be accounted for in the planning.
There may be scheduling consideration in the
mission plan, requiring certain locations to be
visited within a specified time window. TSP
constraints themselves can be modified: a very
natural modification is TSP with
neighbourhoods, where a goal location is
represented by a disk with non-trivial radius,
and it is sufficient for the AUV to touch this
disk at any point.

Thus, a more general framework allowing for
encoding of a variety of constraints is needed.
There are several widely used choices for such
frameworks, each with an associated class of
generic solvers.

Integer Linear Programming Formulations
One natural framework for encoding TSP as
well as additional constraints is the Integer
Linear Programming (ILP) or Mixed Integer
Linear Programming (MILP). In that setting,
each constraint is represented as a linear
function on the variables to be computed,
together with a goal function of these variables
to be optimized. Additionally, the variables (or
at least some of them in case of MILP) are
restricted to be integers. Without that
restriction, a solution to a linear program can
be found in polynomial time by techniques
such as interior point method; the well-known

simplex method, although exponential-time in
the worst case, performs well in practice.
However, ILP itself is an NP-hard problem.
Nevertheless, as ILP and MILP problems
occur very often in optimization, there is a
number of heuristics that can be used to find a
solution, although the running time is not
guaranteed to be fast in the worst case.

Without additional constraints, (asymmetric)
TSP can be encoded as the following
polynomial-size integer linear program, by the
classic result due to Miller et al. [1960]
(known in the literature as “MTZ
formulation”). Here, cij denotes the cost of an
edge from vi to vj , and a variable xij is 1 if and
only if the edge from vi to vj is included in the
tour. Variables uj are supplementary; uj = k if vi
is kth location visited on the tour.

Here, the first two groups of constraints state
that every site is visited exactly once, and the
last group of constraints, the so-called subtour
elimination constraints, guarantees that the
solution consists of one continuous tour, as
opposed to several disjoint cycles.

Subsequently, there have been a number of
different formulations of asymmetric TSP as
an integer linear program, from variations on
the above encoding such as Gouveia and Pires
[1999] to formulations via multi-commodity
flow; see survey by Oncan et al. [2009] for the
list of variants. Of special interest to the AUV
community is the time-dependent TSP: there

(MTZ)

56 The Journal of Ocean Technology, Vol. 9, No. 2, 2014 Copyright Journal of Ocean Technology 2014

the cost to travel an edge depends on its position
in the tour. See Gouveia and Voss [1995] and
Miranda-Best et al. [2010] for formulations
specific to the time-dependent setting.

Note that MTZ formulation can be easily
adapted to the case of multiple AUVs as a
multiple TSP problem (mTSP), where a fixed
number m of AUVs can be used to visit the
goals. There, all vertices other than the first
still have the constraints and
 ; however, for the start vertex 1
these constraints become and
 . The subtour elimination
constraints and the objective function remain
the same. For other formulations of mTSP
and multi-depot mTSP (where AUVs can start
from different locations) see Bektas survey
[2006].

Other extensions of TSP have been
considered in practice and encoded in the ILP
framework, including variants with time
windows and differing costs for different
agents.

Satisfiability-Based Approaches
Satisfiability (SAT) problem is one of the
most well-studied NP-complete problems, one
that was used to encode computation in the
result that introduced the very concept of
NP-completeness [Cook, 1971]. The classical
satisfiability problem is a decision (returning a
true/false answer) constraint satisfaction
problem. More precisely, the input is a list of
constraints of the form “either x1 or not x2 or
x3 …,” called “clauses.” A formula is
satisfiable if there is a way to assign values
0,1 to the variables xi (there exists a truth
assignment) so that every constraint contains a

variable evaluating to 1 or a negation of a
variable evaluating to 0. Checking whether a
formula is satisfiable is NP-complete; thus,
finding a satisfying assignment is NP-hard.
However, there is a plethora of heuristics,
implemented by generic SAT solvers that
handle practical instances of NP-hard
problems such as scheduling and verification
surprisingly well.

Powerful as SAT solvers are, there are two
issues that they do not address. First, they are
tailored towards decision problems rather than
optimization. Second, they normally work
over Boolean domain rather than integers or
real numbers.

Satisfiability Modulo Theories (SMT) is the
framework designed to address the second
problem. There, a variety of constraints such
as arithmetic inequalities are allowed. They
are treated as propositional variables from
SAT solver point of view, but then the
resulting satisfying assignment is checked to
see if it makes sense from the point of view of
the underlying theory. For example, with
Integer Linear Arithmetic as an underlying
theory for a formula (x = 5 OR NOT x + 1 >
3) the SAT solver would consider a formula (p
OR NOT q), and find a satisfying assignment
with p = 1 and q = 0. Then, it will pass the
resulting system x = 5, x + 1 ≤ 3 to an
underlying theory solver that knows how to
solve such systems of equations. In this
example, the solver will say that this system
has no solutions, prompting the SAT solver to
look for a different assignment; in particular,
p = 0, q = 0 works, as any value of x ≤ 3 will
be x ≠ 5. So, for example, x = 2 would be a
solution.

The Journal of Ocean Technology, Vol. 9, No. 2, 2014 57Copyright Journal of Ocean Technology 2014

For this project, we used Integer Linear
Arithmetic and Uninterpreted Function Theory
as underlying theories. Since SMT solvers
solve decision problems, we used iterative
approach to compute an optimal solution.

Alternatively, there is a class of solvers
extending SAT solvers called Pseudo-Boolean
Optimization (PBO) solvers [Roussel and
Manquinho, 2002], which address both of the
concerns above: they can take constraints in
the form of a linear function of Boolean
variables, and also can compute an optimal
solution. During the execution, they output
feasible solutions as they compute them,
eventually converging on an optimal. We use
three PBO solvers, namely clasp, Sat4j and
SCIP in our experiments.

MISSION PLANNER SOFTWARE

Our mission planning software prototype,
named Searistica, aims to provide an interface
for solving the glider mission planning problem.
The software consists of a web interface,
designed to assist users in choosing the goal
locations by interactively selecting them on the
ocean current map and visualizing the final
answer, and a number of interfaces to the solvers
computing the optimal tour. It also includes a
basic path planner that computes pairwise travel
costs between goal locations; the resulting paths
can also be visualized within the interface.

The most computationally intensive part of
mission planning is solving the underlying
constraint satisfaction problem. To facilitate
that, Searistica provides users with a choice to
invoke one of the several state-of-the-art
solvers including Pseudo-Boolean (PBO)

solvers [Le Berre et al., 2010; Gebser et al.,
2007; Berthold et al., 2009], Incremental
Satisfiability Modulo Theories (SMT) [De
Moura and Bjørner, 2008] and 0-1 Integer,
Mixed Integer Linear Programming solver
(CPLEX) for finding an optimal sequence of
goals (tour). In each case, the problem of
computing an optimal tour given points selected
by users is encoded in a manner that a
corresponding solver accepts. At this point,
users can edit the generated files to add extra
constraints.

Running Searistica
Searistica was developed as an ASP.NET web
application on Windows platform, interfacing
with a relational database to store the data as
well as solvers run on a local machine. In
order to use it, one first needs to load the two-
dimensional ocean current data for
visualization into the database (we have tested
it with MS SQL), with four columns
corresponding to coordinates x and y, and
ocean current in u and v directions. Then, the
web application’s source code is loaded to
Visual Studio integrated development
environment (IDE); running it there opens the
application in a web browser. The solvers to be
used need to be installed separately.

More details as well as the software itself will
be provided at the Searistica website www.
cs.mun.ca/~kol/Searistica. The interface is
intended to be fairly self-explanatory, and will
be described in the rest of this section.

Framework Architecture
Our software package handles all user
interactions through a web application
interface. It provides all its operations as web

58 The Journal of Ocean Technology, Vol. 9, No. 2, 2014 Copyright Journal of Ocean Technology 2014

services including project creation,
preprocessing ocean data, storing ocean data,
generating encodings and passing them to
solvers, and visualizing the resulting tour.
Thus, changes can be easily accommodated by
modifying the web interface. We followed
service oriented architecture throughout so that
it would be convenient to add any external
code base or user defined modules to our
system. The framework uses industry standard
web service communication method JSON,
and XML for data exchange. This framework
has been developed as a multi-tier application
to separate the presentation, logic and
optimization layers.

Ocean Current Data Preprocessing and
Goal Location Selection
For our experiments, we used model ocean
current data in Drog3D format; we worked
with historic NetCDF data as well. Users can
upload their own ocean current data to our
system; latitudinal and longitudinal components
of the current (at a fixed depth) are then extracted

for each point in the data. At that time, the
glider average speed can also be specified.

In our software prototype, we use a simple
format for representing the data to be
visualized: a list of tuples (xcoord, ycoord, U,
V), where xcoord, ycoord are coordinates of a
point, and U, V are the longitudinal and
latitudinal components of the ocean current
vector. We use a relational database to store
the resulting file. This data is then visualized
in the interface (see Figure 1).

Aided by the visual representation of the ocean
data, users can select their desired locations for
the glider to visit. Users can either select those
goal points manually from web interface or
can upload their mission goal locations as a
file (see Figure 1). Finally, each selected
location will become a vertex in the complete
graph G = (V,E). The web interface also
provides an option to visualize the complete
graph with travelling costs generated by the
path planning stage.

Figure 1: Ocean
data visualization
and goal points
selection.

The Journal of Ocean Technology, Vol. 9, No. 2, 2014 59Copyright Journal of Ocean Technology 2014

We used sample data generously provided to
us by Dr. Guoqi Han from the Newfoundland
Region of Fisheries and Oceans Canada for
testing the module, as well as publicly
available historic NetCDF data. In both cases,
we used scripts to extract the simple format
that is loaded into the software for
visualization purposes.

Path Planning
Our built-in path planner is grid based; to use
it with the data, we average values of currents
in each grid cell of user-defined size (set to 1
km in our experiments), and use the centre of

the cell as location coordinates. See Figure 2
for the assignment of points in our sample data
to the grid, and Figure 3 for the resulting data
representation.

Then, our A* algorithm-based path planner is
used to compute the costs. To make it faster,
we use the A* planner as a path visualization
tool, and rely on a recomputed matrix of
pairwise cost values for the mission planning.
Figure 4 shows the computed path and
travelling cost between two nodes v1 and v2 in
graph. As many users have sophisticated path
planners developed in-house, we expect path

−5 −4 −3 −2 −1 0 1 2
x 105

−4

−3

−2

−1

0

1

2

3

4

5

x 105

Figure 2: Mapping scattered ocean data to smaller regions.

60 The Journal of Ocean Technology, Vol. 9, No. 2, 2014 Copyright Journal of Ocean Technology 2014

planning task to be passed to an external
algorithm, with resulting distance matrix
loaded into our software for the optimal tour
computation and visualization.

Generating Encodings for the Solvers and
Computing an Optimal Tour
The encoding generation and computation
of the optimal tour by a solver is the main
part of our software package. At this stage,
the mission planning problem is encoded
using a corresponding formulation such as
ILP and the resulting file, after possibly
being customized by users, is passed to the

respective solver. We have implemented the
following types of encodings:

1. Mixed Integer Linear Programming
2. Boolean (0-1) Integer programming and

Pseudo-Boolean Optimization (PBO)
3. Satisfiability Modulo Theories (SMT)

When users select the type of the solver, a
back-end web server generates the
corresponding encoding. At that time, users
can do any custom modification to the
resulting file such as adding extra
constraints.

−5 −4 −3 −2 −1 0 1 2
x 105

−6

−4

−2

0

2

4

6

x 105

Figure 3: Visualizing average ocean currents on a grid representation.

The Journal of Ocean Technology, Vol. 9, No. 2, 2014 61Copyright Journal of Ocean Technology 2014

When a solver returns an optimal solution, the
corresponding tour is extracted and visualized
using the web interface (see Figure 5).

ENCODING AND INTERFACING WITH
GENERIC SOLVERS

The first several encodings are based on the
MTZ encoding of TSP described in the

Figure 4: Path
planner calculates a
path of smallest
travel cost (time).

Figure 5: Complete
graph generated
from selected goal
points (Figure 1)
with an optimal
sequence
highlighted.

equation shown in the section entitled “Integer
Linear Programming Formulations.” The
resulting encoding is then converted into a
format accepted by the corresponding solver.

Encodings Based on Integer Linear
Programming
Recall that a mixed integer program is an
optimization problem in which all constraints

62 The Journal of Ocean Technology, Vol. 9, No. 2, 2014 Copyright Journal of Ocean Technology 2014

are in form of linear equations or inequalities
over a subset of real-valued variables (xi ∈ R),
and the objective is to minimize or maximize a
linear function f (x1 ,..., xn). Although solving
MILP problems is NP-hard, there is a number
of heuristics employed by the solvers used in
practice, such as the simplex or branch-and-
bound methods.

We encode the TSP problem on the complete
graph using the MTZ encoding. That is, the
travel cost matrix provides weights of the
edges in the objective function, constraints are
added for each vertex, and an appropriate
number of new variables is introduced together
with the subtour elimination constraints.

The simplest encoding is in the .lp file format
accepted by an MILP solver (for our
experiments, we used CPLEX). The resulting
text file consist of four parts: “Minimize”
followed by the objective function, then
“Subject to” followed by the list of constraints,
then “Bounds” section providing bounds on
variables (in our case, on the variables
occurring in the subtour elimination
constraints) and finally “Binary” followed by
the list of variables that should assume 0-1
values (in our case, these are indicator
variables for the edges in the tour). A variable
xk is introduced for each pair (i,j) of the
vertices in the graph; that variable will be set
to 1 in the resulting solution if and only if the
corresponding edge is to be included in the
tour. This file can be easily edited by users to
add additional constraints.

In the setting of 0-1 Integer Linear
Programming, every variable needs to take a
value 0 or 1. This is not an issue for the edge

indicator variable xij ; however, variables ui
used in subtour elimination can take integer
values up to n. To remedy that, we represent ui
using log(n) + 1 Boolean variables, and rewrite
the constraints and bounds by substituting ui
with ui = for new variables
xik. Although this does increase the number of
variables, it is only a log(n) increase; however,
in this setting some other heuristics become
available, in particular heuristics from the
realm of Pseudo-Boolean optimization (PBO).

We have used variants of this encoding with
CPLEX, as well as several PBO solvers, in
particular clasp [Gebser et al., 2007], Sat4j [Le
Berre et al., 2010], and SCIP [Berthold et al.,
2009]. All these solvers take problem encoding
as “.pbo” file format similar to the “.lp”
format. See the next section for the
performance comparison.

Satisfiability Modulo Theories (SMT)
Encoding
We tested both ILA (Integer Linear Arithmetic)
[Jovanović and De Moura, 2011] and UF
(Uninterpreted Function Theory) encoding on
Z3 solver [De Moura and Bjørner, 2008]; we
have used SMT-lib2 standard [SMT-LIB, n.d.]
for all our SMT encodings.

Integer Linear Arithmetic allows underlying
constraints to be represented as linear
inequalities. Thus, we again use MTZ
formulation of TSP as our encoding; as ILA
allows for non-Boolean variables, the ui’s from
MTZ encoding can remain integers. Thus, this
encoding is essentially the same as mixed
integer linear programming encoding, except
rather than optimizing the objective function
we add a constraint specifying that it is within

The Journal of Ocean Technology, Vol. 9, No. 2, 2014 63Copyright Journal of Ocean Technology 2014

a bound, and use the solver to check if such a
solution exists. We start with a bound of n *
max of {cij}; at each iteration of the loop, we
try for the bound given by the previous
solution decremented by 1, as we are searching
for the optimal value and our cost values are
integers. Note that at each iteration the system
retains intermediate information learned at the
previous stages.

Uninterpreted Function Theory formulation is
not based on MTZ. The encoding we used in
this setting considers decision variables vi
corresponding to the order of nodes in the
sequence. That is, vi = j whenever node j is ith
node visited. Now, we use a constraint stating
that all variables vi assume distinct values in
the range from 1 to n. Finally, we add a constraint
costFunc(vn

, v1) + ≤
bound, where costFunc(xi,xj) = cij and xi, xj
both are integer type sort. As this is again a
decision problem, we iterate calling the solver
with decreased lower bound at each step to
find an optimal solution.

SOLVER PERFORMANCE COMPARISON

We have compared the performance of several
solvers on instances of the TSP problem
generated by our software. Specifically, we
used the map of ocean current over
Newfoundland and Labrador shelf [Han et al.,
2008] with several sets of n = 4 to n = 30 goal
points (randomly generated). In each case,
encodings described above were generated
and solvers ran with a timeout of 18,000
seconds. All tests were done on Intel Xeon
Ubuntu server having 3.50005 GHz of 24
processors with 126 GB of RAM and 890 MB
cache.

In Figure 6 the performance of each solver
is represented by a different colour plot,
describing how many seconds, on average
over sets of this size, it took to solve a given
instance with n nodes. The lighter green
circle in Figure 7 is the average of times
when an optimal solution was obtained; a
circle is coloured dark green if in at least
one experiment the solver found a feasible
tour, but did not provide an optimality
guarantee before the timeout.

The graph makes it is clear that CPLEX with
MILP or even 0-1 encoding performs better
than all other solvers; in our experiments, it
always provided an optimal solution even
for a larger number of points. Surprisingly,
CPLEX outperformed other solvers
significantly even in the 0-1 integer linear
program encoding (see Figure 8 for the
comparison of CPLEX (LP) solver on MILP
vs. 0-1 ILP encodings). In particular, even
on 30 nodes CPLEX could solve the
problem within a few seconds.

Pseudo-Boolean solvers except for Wbo
performed reasonably well until about 22
nodes, with clasp exhibiting the best
performance. Surprisingly SCIP, which
implements similar integer linear
programming heuristics to CPLEX, did not
perform as well. Finally, SMT framework
did not result in a viable mission planning,
with the likely reason that using iterative
approach to find an optimal solution is very
inefficient. Moreover, MTZ encoding in the
ILA setting performed better than the
simpler uninterpreted function theory
encoding.

64 The Journal of Ocean Technology, Vol. 9, No. 2, 2014 Copyright Journal of Ocean Technology 2014

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Ti
m

e
in

 S
ec

 &
 O

pt
im

al
 o

r F
ea

si
bl

e
pl

an

Number of goal points in mission plan

CPLEX (LP enc.)
Clasp (PB enc.)
Sat4j (PB enc.)
SCIP (PB enc.)
Wbo (PB enc.)
Inc. SMT (ILA enc.)
Inc. SMT (UF enc.)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Ti
m

e
in

 S
ec

 &
 O

pt
im

al
 o

r F
ea

si
bl

e
pl

an

Number of goal points in mission plan

CPLEX (LP enc.)
Clasp (PB enc.)
Sat4j (PB enc.)
SCIP (PB enc.)
Wbo (PB enc.)
Inc. SMT (ILA enc.)
Inc. SMT (UF enc.)

Figure 6: Performance evaluation of different encodings on Linear Programming and Satisfiability based solvers. X-axis represents the
number of goal points. Y-axis represents an average time (in seconds) taken by the solver.

Figure 7: Green circle indicates that the optimal mission plan was found, and dark green that a feasible solution was found without an
optimality proof.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

20

40

60

80

100

Ti
m

e
in

 S
ec

 &
 O

pt
im

al
 o

r F
ea

si
bl

e
pl

an

Numner of goal points in mission plan

CPLEX (MILP enc.)
CPLEX (0−1 ILP enc.)

Figure 8: Performance of the CPLEX (LP) solver on MILP and 0-1 ILP encoding of mission plan. X-axis represents the number of goal points
in a mission plan.

The Journal of Ocean Technology, Vol. 9, No. 2, 2014 65Copyright Journal of Ocean Technology 2014

CONCLUSION

In this paper, we considered the mission
planning problem for AUVs in the context of
computing an optimal sequence of locations to
be visited, with an emphasis on extendibility
by a wide variety of other constraints. With
that goal in mind, we focused on solving the
mission planning problem using generic
solvers such as ILP, PBO and SMT solvers. In
the course of this project, we built a software
prototype package for mission planning.

Our performance comparison indicates that
TSP was solvable on the instances we
provided; however, only CPLEX solver could
provide results within an acceptable timeframe.
Thus, unless additional Boolean constraints
(encoding, for example, scheduling
restrictions) dominate the size of the TSP
instance, we suggest using such mixed integer
linear programming framework to encode the
problem as well as the additional constraints.

Generally, performance of a solver can vary
greatly with the type of a formulation of a
problem; part of our subsequent work is
investigating whether there is a noticeable
change in performance with different
formulations of TSP, mTSP, TSP with
neighbourhoods, and time-dependent TSP. In
particular, we are interested in using a time-
varying data and analyzing the performance of
the solvers on the time-dependent TSP problem.

ACKNOWLEDGMENTS

We would like to thank a number of people for
discussions and feedback at various stages of
this project, in particular Ralf Bachmayer,

Christopher Williams, Moquin He, Michael
Eichhorn, Yaroslav Litus, and David Mitchell.
We are very grateful to Guoqi Han for giving
us access to the sample ocean circulation data.
The financial support for this project was
provided by the Research and Development
Corporation of Newfoundland and Labrador.

REFERENCES

Arora, Sanjeev [1996]. Polynomial time
 approximation schemes for Euclidean
 TSP and other geometric problems.
 Foundations of Computer Science.
 Proceedings of 37th Annual Symposium on
 IEEE, pp. 2-11.
Bektas, Tolga [2006]. The multiple Traveling
 Salesman Problem: an overview of
 formulations and solution procedures.
 Omega, Vol. 34, No. 3, pp. 209-219.
Berthold, Timo; Heinz, Stefan; and Pfetsch,
 Marc E. [2009]. Solving Pseudo-Boolean
 problems with SCIP. DFG Research Center
 MATHEON Preprint #600.
Bhadauria, Deepak; Tekdas, Onur; and Isler,
 Volkan [2011]. Robotic data mules for
 collecting data over sparse sensor fields.
 Journal of Field Robotics, Vol. 28, No. 3,
 pp. 388-404.
Cook, William [n.d.]. Concorde TSP solver.
 Retrieved from www.math.uwaterloo.ca/
 tsp/concorde.html
Cook, S.A. [1971]. The complexity of
 theorem-proving procedures. Proceedings
 of Third Annual ACM Symposium on
 Theory of Computing, pp. 151-158.
De Moura, Leonardo and Bjørner, Nikolaj
 [2008]. Z3: An efficient SMT solver. Tools
 and Algorithms for the Construction and
 Analysis of Systems. Springer, pp. 337-340.

66 The Journal of Ocean Technology, Vol. 9, No. 2, 2014 Copyright Journal of Ocean Technology 2014

Drucker, N.; Penn, M.; and Strichman, O.
 [2014]. Cyclic routing of unmanned air
 vehicles. Information Systems Engineering
 Technical Reports. IE/IS-2014-02.
Eichhorn, Mike [2013]. Optimal routing
 strategies for autonomous underwater
 vehicles in time varying environment.
 Robotics and Autonomous Systems.
 DOI:10.1016/j.robot.2013.08.010.
Gebser, Martin; Kaufmann, Benjamin; Neumann,
 André; and Schaub, Torsten [2007]. clasp:
 A conflict-driven answer set solver. Logic
 Programming and Nonmonotonic
 Reasoning. Springer, pp. 260-265.
Gouveia, Luis and Pires, Jose Manuel [1999].
 The asymmetric travelling salesman
 problem and a reformulation of the Miller
 Tucker Zemlin constraints. European
 Journal of Operational Research, Vol. 112,
 No. 1, pp. 134-146.
Gouveia, Luis and Voss, Stefan [1995]. A
 classification of formulations for the (time-
 dependent) traveling salesman problem.
 European Journal of Operational Research,
 Vol. 83, No. 1, pp. 69-82.
Helsgaun, Keld [2000]. An effective
 implementation of the Lin–Kernighan
 traveling salesman heuristic. European
 Journal of Operational Research, Vol. 126,
 No. 1, pp. 106-130.
Han, Guoqi; Lu, Zhaoshi; Wang, Zeliang;
 Helbig, James; Chen, Nancy; and De
 Young, Brad [2008]. Seasonal variability of
 the Labrador current and shelf circulation
 off Newfoundland. Journal of Geophysical
 Research: Oceans (1978–2012), Vol. 113,
 No. C10.
He, M.; Williams, C.D.; and Bachmayer, R.
 [2009]. Simulations of an iterative glider
 mission planning procedure for flying

 gliders into strong ocean currents. 16th
 International Symposium on Unmanned
 Untethered Submersible Technology.
Jovanović, Dejan and De Moura, Leonardo
 [2011]. Cutting to the chase solving Linear
 Integer Arithmetic. Automated Deduction–
 CADE-23. Springer, pp. 338-353.
Jonker, Roy and Volgenant, Ton [1983].
 Transforming asymmetric into symmetric
 traveling salesman problems. Operations
 Research Letters, Vol. 2, No. 4, pp. 161-163.
Le Berre, Daniel and Parrain, Anne [2010].
 The sat4j library, release 2.2, system
 description. Journal on Satisfiability, Boolean
 Modeling and Computation, Vol. 7, pp. 59-64.
Lin, Shen and Kernighan, Brian W. [1973]. An
 effective heuristic algorithm for the
 traveling-salesman problem. Operations
 Research, Vol. 21, No. 2, pp. 498-516.
Miranda-Bront, Juan Jose; Mendez-Diaz,
 Isabel; and Zabala, Paula [2010]. An integer
 programming approach for the time-
 dependent {TSP}. Electronic Notes in
 Discrete Mathematics, Vol. 36, No. 0, pp.
 351-358.
Mitchell, Joseph S.B. [1999]. Guillotine
 subdivisions approximate polygonal
 subdivisions: A simple polynomial-time
 approximation scheme for geometric TSP,
 k-MST, and related problems. SIAM
 Journal on Computing, Vol. 28, No. 4, pp.
 1298-1309.
Miller, C.E.; Tucker, A.W.; and Zemlin, R.A.
 [1960]. Integer programming formulations
 of traveling salesman problems. Journal of
 the Association for Computing Machinery,
 Vol. 7, No. 4, pp. 326-329.
Oncan, Temel; Altinel, I. Kuban; and Laporte,
 Gilbert [2009]. A comparative analysis of
 several asymmetric traveling salesman

The Journal of Ocean Technology, Vol. 9, No. 2, 2014 67Copyright Journal of Ocean Technology 2014

 problem formulations. Computers and
 Operations Research, Vol. 36, No. 3, pp.
 637-654.
Roussel, Olivier and Manquinho, Vasco
 [2012]. Input/output format and solver
 requirements for the competitions of
 Pseudo-Boolean solvers. Retrieved from
 www.cril.univ-artois.fr/PB12/format.pdf.
SMT-LIB [n.d.]. The Satisfiability Modulo
 Theories Library. Retrieved from http://
 smtlib.org.
Vasilescu, Iului; Kotay, Keith; Rus, Daniela;
 Dunbabin, Matthew; and Corke, Peter
 [2005]. Data collection, storage, and
 retrieval with an underwater sensor
 network. Proceedings of 3rd International
 Conference on Embedded Networked
 Sensor Systems, ACM, pp. 154-165.
Woodrow, I.; Purry, C.; Mawby, A., and
 Goodwin, J. [2005]. Autonomous AUV
 mission planning and replanning – towards
 true autonomy. 14th International
 Symposium on Unmanned Untethered
 Submersible Technology, Durham, NH.

