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Who should read this paper?
Anyone who knows the difficulty of planning an autonomous underwater 
vehicle (AUV) mission by hand will have a deep interest in this research. As 
AUV missions grow increasingly numerous and complex, those involved in 
AUV research – from technicians to scientists to policy-makers – will likely 
find themselves affected by the automatizing of mission planning. Outside the 
oceans, anyone naturally inclined toward efficiency and finds suboptimal 
solutions truly unconscionable will find in this software a kindred spirit.
 

Why is it important?
AUVs come in various forms. Gliders offer a typical dilemma: what you 
give up in speed, you gain in range. Electric motored AUVs are typically 
faster, but gliders use buoyancy, and the trade-off is significant: gliders have 
very low power consumption and can travel thousands of kilometres, 
allowing sampling missions of weeks or even months.

Part of the trick is planning a good sampling mission. The authors identify the 
Travelling Salesman Problem (TSP) as the “heart” of glider mission planning. 
The problem goes as follows: Given a list of cities and the distances between 
each pair of cities, what is the shortest possible route that visits each city 
exactly once and returns to the origin city? Glider missions, in addition to 
being an underwater version of the TSP, are plagued by other restrictions: 
local currents, battery life, and specific time windows for sampling; all 
conspire to remove degrees of freedom from the mission. The authors’ 
software package employs a variety of solvers to produce a mission plan that 
optimizes travel time, while also taking into account user-defined additional 
constraints. The result is an optimal order of goal points, a charted course.
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ABSTRACT

In this paper we describe several approaches to the AUV (glider) mission planning problem and 
investigate their complexity. At the heart of such mission planning are variants of an NP-hard 
(Non-deterministic Polynominal-time) Asymmetric Travelling Salesman Problem (ATSP); 
however, some modern-day heuristics can solve this problem optimally in a reasonable amount 
of time (although providing a proof of optimality slows down the computation). A glider mission 
plan often has to accommodate a variety of other constraints such as scheduling restrictions, 
specific time windows or order to visit selected points and so on.

Here we consider a general AUV mission planning problem which, although based on ATSP, can 
incorporate other constraints. Thus, the use of general-purpose solvers such as Integer Linear 
Programming or Satisfiability-based solvers may be desired. With this goal, we have developed a 
software package for the glider mission planning problem that utilizes a variety of existing 
solvers to compute an optimal order of goal points to visit, subject to travel time as well as user-
provided additional constraints. Then, to evaluate feasibility of this setting using state-of-the-art 
solvers, we analyze the performance of a variety of solvers on the core ATSP problem.
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INTRODUCTION

As small autonomous underwater vehicles 
(AUVs) such as gliders become more 
accessible and are used for a multitude of 
tasks, mission planning for such AUVs is 
becoming more and more challenging. In 
particular, planning a mission for an AUV that 
requires visiting a significant number of goal 
locations can be non-trivial, unless there is a 
simple ordering on the locations coming from 
a problem definition. The problem becomes 
even more complex when planning a mission 
with multiple AUVs.

As a motivating example, consider a joint 
mission in which an unmanned aerial vehicle 
surveys an area and notes a few dozen points 
of interest, which are then visited by a glider. 
Suppose, also, that the area happens to have a 
complex system of currents and land. In that 
case, planning a mission that would visit these 
points most efficiently, or determining whether 
it can be done in a single mission, can become 
complicated. Indeed, in some locations the 
currents may be too strong for the glider to fly 
against them, and other areas may be deemed 
too unsafe to approach. Planning by hand a 
mission that could satisfy all such constraints, 
though it can be done (and is done in practice), 
may result in a suboptimal solution and becomes
unwieldy as the number of points to visit grows.

The goal of our project is automating this 
mission planning task. However, the 
underlying problems are NP-hard, and thus no 
efficient algorithms for them are known. One 
possibility would be to forfeit optimality and 
settle for a fast approximation algorithm; 
instead, we chose to delegate computationally 

hard tasks to heuristics-based generic solvers. 
In the last several years such solvers, in 
particular Satisfiability (SAT) solvers, became 
a staple method for solving a wide range of 
constraint satisfaction problems, from 
automated hardware and software verification 
to planning problems, to exam scheduling at 
universities. In this setting, an optimization 
problem is encoded as an instance of a specific 
NP-hard problem such as SAT or Integer 
Linear Programming (ILP), and then 
approached using heuristics developed 
specifically for SAT/ILP. So to what extent can 
solvers’ heuristics tackle such complex mission 
planning problems? 

As a part of our project, we have developed a 
software package to assist with glider mission 
planning. Users enter the parameters of a 
glider into the system using a software 
interface, as well as loading an ocean current 
map of the desired area. Then waypoints/goal 
locations can be either uploaded from a file or 
selected interactively using the interface. After 
that, a path planner is invoked to compute 
pairwise distances between goal points. Users 
then select a desired solver to compute an 
optimal order of points to visit; an instance of 
the optimization problem is generated in the 
format accepted by the solver. After the solver 
computes the resulting tour (sequence of 
points), it is displayed in the interface. Once 
the files encoding the distances and points are 
generated, users can edit them to add extra 
constraints, and then pass the result to the 
solvers. This allows for arbitrary extra 
constraints (available in that solver’s 
framework) to be incorporated. Please see 
section entitled “Mission Planner Software” 
for more details.
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Mission planning problem is far from new, 
and naturally there have been algorithms and 
software packages tailored to solving it in 
various contexts. However, many glider 
missions until recently involved only few 
(under ten) goals, or goals arranged in a 
simple pattern such as observation buoys 
located on a same line. In this project, we are 
interested in extending this to the case of a 
large number of goals, and providing a 
framework that can be extended to multiple 
(heterogeneous) AUVs and additional 
constraints.

Based on the goal-based approach from space 
exploration mission planning, Woodrow et al. 
[2005] from System Engineering and 
Assessment Limited (SEA) have developed a 
goal-based planner for Battlespace Access 
Unmanned Underwater Vehicle setting. In 
their paper they discuss an advanced software 
suite created with the focus on re-planning 
and goal-based mission planning. Though 
their software can plan a mission offline, it is 
generally intended for sophisticated AUVs 
capable of carrying out computation needed 
for re-planning on board and operating with a 
significant degree of autonomy. Whereas we 
consider a simple mission of visiting a 
number of locations, their atomic units of 
planning are of the form “lawnmower search 
over an area” or “loiter.” As a part of their 
software package, they develop a powerful 
path planner, capable of multi-parameter 
optimization (such as risk and energy) in a 
time-varying field. However, the intended 
military application naturally limits the 
availability of their software to the 
community and it is not clear how it would 
scale up with the number of goals.

A line of work more appropriate to gliders 
setting follows Vasilescu et al. [2005] results 
on using data mule AUVs collecting data from 
the nodes of an underwater sensor network. 
Most of this work is concerned with 
communication protocols and implementation 
of the framework; however, in a follow-up 
work by Bhadauria et al. [2011], the data 
gathering problem is explicitly stated and 
analyzed algorithmically, albeit not for the 
underwater sensor networks. In that paper, 
they describe an approximation algorithm for 
the data gathering problem based on 
approximation algorithms for variants of TSP 
(Travelling Salesman Problem), in particular 
Euclidean TSP, which does not apply in the 
underwater setting where currents are present.

An approach similar to ours has been 
investigated by Drucker et al. [2014] in a 
context of a different problem: continuous 
surveillance and monitoring by unmanned 
aerial vehicles (UAVs). There, given a list of 
locations to be monitored and maximal 
allowed times between visits to these 
locations, as well as flight times and 
characteristics of the UAVs, the goal is to 
design a cyclic mission, possibly employing 
several UAVs, that visits all the locations 
(repeatedly), satisfying the given constraints. 
They do discuss TSP as a special case of their 
problem, where each location needs to be 
visited only once as opposed to repeatedly. 
Thus, they do obtain a generalization of TSP 
with additional constraints. With this 
formulation of the problem, they experimented 
with several types of generic solvers, in 
particular mixed integer linear programming 
and SAT/SMT (Satisfiability Modulo Theories) 
solvers that we also employ. 
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It is worth noting that much of the AUV 
mission planning literature focuses on the path 
planning part, as opposed to the ordering of 
the goal points (see, for example, He et al. 
[2009]). We have developed simple path 
planners based on A* and FM* algorithms, but 
there are much more elaborate path planners 
for gliders in time-varying fields available, 
such as Eichhorn [2013]. Our software allows 
for an external path planner to be used, and we 
expect users to replace our basic planner with 
their preferred path planning software with 3D 
glider motion functionality.

Glider Mission Planning Problem
Consider the following scenario. An ocean 
survey organization has a multitude of 
observation buoys. It would like to have an 
automated way of collecting data from these 
buoys. It procures a small fleet of gliders, each 
capable of making contact with a buoy and 
offloading its data. Now, they would like to 
schedule data collection missions for their fleet 
of gliders in an optimal manner. They would 
like every buoy to be visited, ideally during 
the course of a single mission. Additionally, 
they may specify the time limits on visiting 
certain buoys, time spent downloading data, or 
have other constraints. Their planning will rely 
on the information about the currents, weather 
forecast, parameters of the gliders, and any 
additional information they can provide to help 
with the mission planning problem.

There are several settings in which this 
problem can be viewed; in particular, the 
planning done on the AUV itself versus the 
mission planning done offline. Here, we are 
interested in the offline version, as extra 
computational power and time available in that 

case can be used to solve the mission planning 
problem optimally. More precisely, the 
formulation of the mission planning problem is 
as follows.

Given:
1. Location of goal points (in the data 

collection scenario above, possibly the 
schedule of the previous data collection 
times for each buoy, time to receive their 
data, etc.).

2. The number and physical parameters of 
the gliders such as speed and battery life 
(where gliders are not necessarily 
identical).

3. Starting point(s).
4. A map of the currents, potentially with 

time-varying information and the weather 
forecast.

5. Additional constraints.

Compute: An optimal order of the goal points 
to be visited, if it exists.

Once computed, the points can be uploaded to 
a glider (with potential intermediate waypoints 
produced by the path planning software 
module).

Here, there can be a number of definitions of 
what constitutes an optimal sequence. The 
optimization parameters can be the travel time 
or distance, as well as the number of buoys 
from which data is collected (possibly 
weighted by the previous collection times), 
risk factors (how likely it is for some glider to 
be lost due to getting caught in a strong current 
or running out of battery), and other criteria. 
For the sake of simplicity, here we will 
optimize the total travel time, as computed by 
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the path planner. In general, we will rely on 
path planner to provide information about 
travelling between any two points such as 
travel time; it can be adapted to provide a 
combination of risk and travel time weighted 
by the uncertainty, or other information that 
can be used to modify the optimization 
criteria.

This is a classic example of a constraint 
optimization problem. Here, a number of 
various constraints are present. The most 
prominent are linear constraints such as limits 
on battery life or glider speed. Additionally, 
there can be Boolean constraints, specifying, 
for example, that a given buoy must be visited 
before another, or by a specific AUV. A 
plethora of other constraints may arise in 
practice.

Asymmetric TSP Representation
Let us first simplify the problem. Consider a 
situation where we have a single glider, a 
single starting point and need to visit all 
buoys, with no additional constraints; the 
glider returns back to its start point after 
completing the mission. Also, suppose the 
distances (that is, time spent travelling or 
battery used) between every pair of buoys, as 
well as to the starting point, are pre-computed 
and do not change with time. In this case, the 
problem can be recast as Travelling Salesman 
(SalesPerson) Problem (TSP). Formally, an 
input to TSP is a complete graph on n 
vertices, with all edges labelled with (non-
negative) cost values c(u,v). The output in 
this optimization problem is a minimal 
“tour”; that is, a sequence involving all 
vertices in the graph that minimizes the 
distance travelled.

Although TSP is NP-hard even for the case 
when the costs on graph edges are 0 or 1, there 
are dedicated TSP solvers such as Concorde 
[Cook, n.d.] that perform well in many real-
life applications. Also, some additional 
restrictions such as requiring distances to be 
Euclidean allow for a very good approximation 
algorithm [Arora, 1996; Mitchell, 1999]: in 
our setting, even though the triangle inequality 
constraint is satisfied, the distances are not 
metric due to asymmetry, and thus our setting 
is not Euclidean. Additionally, heuristics such 
as Lin and Kernighan [1973] and Helsgaun 
[2000] perform well in practice, although they 
do not guarantee optimality of the solution. 
For this project, however, we are interested 
both in computing an optimal solution and in a 
possibility to extend a TSP instance with 
additional constraints. Thus, we will consider 
more general-purpose solvers.

As time travelled does depend on the direction 
of travel due to ocean currents, we represent 
the simplified glider mission planning as an 
asymmetric TSP problem. Given a map of 
ocean currents, speed of the glider, and 
locations of goal points, a path planner 
computes all pairwise travel times between 
points. Now, construct a graph with vertices 
being goal points and the start point, and the 
cost of each edge c(u,v) a travel time from u to 
v as computed by the path planner. An optimal 
tour (ordering) of the vertices of this graph 
translates into an optimal ordering of the goal 
points, where the tour is considered to start 
from the start point.

Note that many of the solvers are designed to 
work with a symmetric TSP problem. An 
asymmetric TSP problem is usually 
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approached either using specialized heuristics 
or by creating an equivalent symmetric TSP 
instance involving twice as many points 
[Jonker and Volgenant, 1983].

In general, TSP constraints are not the only 
constraints a mission plan can require. For 
example, visiting a goal point is likely to take 
time, be possibly different for different points, 
and should be accounted for in the planning. 
There may be scheduling consideration in the 
mission plan, requiring certain locations to be 
visited within a specified time window. TSP 
constraints themselves can be modified: a very 
natural modification is TSP with 
neighbourhoods, where a goal location is 
represented by a disk with non-trivial radius, 
and it is sufficient for the AUV to touch this 
disk at any point.

Thus, a more general framework allowing for 
encoding of a variety of constraints is needed. 
There are several widely used choices for such 
frameworks, each with an associated class of 
generic solvers.

Integer Linear Programming Formulations
One natural framework for encoding TSP as 
well as additional constraints is the Integer 
Linear Programming (ILP) or Mixed Integer 
Linear Programming (MILP). In that setting, 
each constraint is represented as a linear 
function on the variables to be computed, 
together with a goal function of these variables 
to be optimized. Additionally, the variables (or 
at least some of them in case of MILP) are 
restricted to be integers. Without that 
restriction, a solution to a linear program can 
be found in polynomial time by techniques 
such as interior point method; the well-known 

simplex method, although exponential-time in 
the worst case, performs well in practice. 
However, ILP itself is an NP-hard problem. 
Nevertheless, as ILP and MILP problems 
occur very often in optimization, there is a 
number of heuristics that can be used to find a 
solution, although the running time is not 
guaranteed to be fast in the worst case.

Without additional constraints, (asymmetric) 
TSP can be encoded as the following 
polynomial-size integer linear program, by the 
classic result due to Miller et al. [1960] 
(known in the literature as “MTZ 
formulation”). Here, cij denotes the cost of an 
edge from vi to vj , and a variable xij is 1 if and 
only if the edge from vi to vj is included in the 
tour. Variables uj are supplementary; uj = k if vi 
is kth location visited on the tour. 

Here, the first two groups of constraints state 
that every site is visited exactly once, and the 
last group of constraints, the so-called subtour 
elimination constraints, guarantees that the 
solution consists of one continuous tour, as 
opposed to several disjoint cycles.

Subsequently, there have been a number of 
different formulations of asymmetric TSP as 
an integer linear program, from variations on 
the above encoding such as Gouveia and Pires 
[1999] to formulations via multi-commodity 
flow; see survey by Oncan et al. [2009] for the 
list of variants. Of special interest to the AUV 
community is the time-dependent TSP: there 

(MTZ)
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the cost to travel an edge depends on its position 
in the tour. See Gouveia and Voss [1995] and 
Miranda-Best et al. [2010] for formulations 
specific to the time-dependent setting.

Note that MTZ formulation can be easily 
adapted to the case of multiple AUVs as a 
multiple TSP problem (mTSP), where a fixed 
number m of AUVs can be used to visit the 
goals. There, all vertices other than the first 
still have the constraints                    and
                  ; however, for the start vertex 1 
these constraints become                     and   
                   . The subtour elimination 
constraints and the objective function remain 
the same. For other formulations of mTSP 
and multi-depot mTSP (where AUVs can start 
from different locations) see Bektas survey 
[2006].

Other extensions of TSP have been 
considered in practice and encoded in the ILP 
framework, including variants with time 
windows and differing costs for different 
agents.

Satisfiability-Based Approaches
Satisfiability (SAT) problem is one of the 
most well-studied NP-complete problems, one 
that was used to encode computation in the 
result that introduced the very concept of 
NP-completeness [Cook, 1971]. The classical 
satisfiability problem is a decision (returning a 
true/false answer) constraint satisfaction 
problem. More precisely, the input is a list of 
constraints of the form “either x1 or not x2 or 
x3 …,” called “clauses.” A formula is 
satisfiable if there is a way to assign values 
0,1 to the variables xi (there exists a truth 
assignment) so that every constraint contains a 

variable evaluating to 1 or a negation of a 
variable evaluating to 0. Checking whether a 
formula is satisfiable is NP-complete; thus, 
finding a satisfying assignment is NP-hard. 
However, there is a plethora of heuristics, 
implemented by generic SAT solvers that 
handle practical instances of NP-hard 
problems such as scheduling and verification 
surprisingly well.

Powerful as SAT solvers are, there are two 
issues that they do not address. First, they are 
tailored towards decision problems rather than 
optimization. Second, they normally work 
over Boolean domain rather than integers or 
real numbers.

Satisfiability Modulo Theories (SMT) is the 
framework designed to address the second 
problem. There, a variety of constraints such 
as arithmetic inequalities are allowed. They 
are treated as propositional variables from 
SAT solver point of view, but then the 
resulting satisfying assignment is checked to 
see if it makes sense from the point of view of 
the underlying theory. For example, with 
Integer Linear Arithmetic as an underlying 
theory for a formula (x = 5 OR NOT x + 1 > 
3) the SAT solver would consider a formula (p 
OR NOT q), and find a satisfying assignment 
with p = 1 and q = 0. Then, it will pass the 
resulting system x = 5, x + 1 ≤ 3 to an 
underlying theory solver that knows how to 
solve such systems of equations. In this 
example, the solver will say that this system 
has no solutions, prompting the SAT solver to 
look for a different assignment; in particular,  
p = 0, q = 0 works, as any value of x ≤ 3 will 
be x ≠ 5. So, for example, x = 2 would be a 
solution.
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For this project, we used Integer Linear 
Arithmetic and Uninterpreted Function Theory 
as underlying theories. Since SMT solvers 
solve decision problems, we used iterative 
approach to compute an optimal solution.

Alternatively, there is a class of solvers 
extending SAT solvers called Pseudo-Boolean 
Optimization (PBO) solvers [Roussel and 
Manquinho, 2002], which address both of the 
concerns above: they can take constraints in 
the form of a linear function of Boolean 
variables, and also can compute an optimal 
solution. During the execution, they output 
feasible solutions as they compute them, 
eventually converging on an optimal. We use 
three PBO solvers, namely clasp, Sat4j and 
SCIP in our experiments.

MISSION PLANNER SOFTWARE

Our mission planning software prototype, 
named Searistica, aims to provide an interface 
for solving the glider mission planning problem.
The software consists of a web interface, 
designed to assist users in choosing the goal 
locations by interactively selecting them on the 
ocean current map and visualizing the final 
answer, and a number of interfaces to the solvers
computing the optimal tour. It also includes a 
basic path planner that computes pairwise travel
costs between goal locations; the resulting paths
can also be visualized within the interface.

The most computationally intensive part of 
mission planning is solving the underlying 
constraint satisfaction problem. To facilitate 
that, Searistica provides users with a choice to 
invoke one of the several state-of-the-art 
solvers including Pseudo-Boolean (PBO) 

solvers [Le Berre et al., 2010; Gebser et al., 
2007; Berthold et al., 2009], Incremental 
Satisfiability Modulo Theories (SMT) [De 
Moura and Bjørner, 2008] and 0-1 Integer, 
Mixed Integer Linear Programming solver 
(CPLEX) for finding an optimal sequence of 
goals (tour). In each case, the problem of 
computing an optimal tour given points selected
by users is encoded in a manner that a 
corresponding solver accepts. At this point, 
users can edit the generated files to add extra 
constraints.

Running Searistica
Searistica was developed as an ASP.NET web 
application on Windows platform, interfacing 
with a relational database to store the data as 
well as solvers run on a local machine. In 
order to use it, one first needs to load the two-
dimensional ocean current data for 
visualization into the database (we have tested 
it with MS SQL), with four columns 
corresponding to coordinates x and y, and 
ocean current in u and v directions. Then, the 
web application’s source code is loaded to 
Visual Studio integrated development 
environment (IDE); running it there opens the 
application in a web browser. The solvers to be 
used need to be installed separately.

More details as well as the software itself will 
be provided at the Searistica website www.
cs.mun.ca/~kol/Searistica. The interface is 
intended to be fairly self-explanatory, and will 
be described in the rest of this section.

Framework Architecture
Our software package handles all user 
interactions through a web application 
interface. It provides all its operations as web 
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services including project creation, 
preprocessing ocean data, storing ocean data, 
generating encodings and passing them to 
solvers, and visualizing the resulting tour. 
Thus, changes can be easily accommodated by 
modifying the web interface. We followed 
service oriented architecture throughout so that 
it would be convenient to add any external 
code base or user defined modules to our 
system. The framework uses industry standard 
web service communication method JSON, 
and XML for data exchange. This framework 
has been developed as a multi-tier application 
to separate the presentation, logic and 
optimization layers.

Ocean Current Data Preprocessing and 
Goal Location Selection
For our experiments, we used model ocean 
current data in Drog3D format; we worked 
with historic NetCDF data as well. Users can 
upload their own ocean current data to our 
system; latitudinal and longitudinal components
of the current (at a fixed depth) are then extracted

for each point in the data. At that time, the 
glider average speed can also be specified.

In our software prototype, we use a simple 
format for representing the data to be 
visualized: a list of tuples (xcoord, ycoord, U, 
V), where xcoord, ycoord are coordinates of a 
point, and U, V are the longitudinal and 
latitudinal components of the ocean current 
vector. We use a relational database to store 
the resulting file. This data is then visualized 
in the interface (see Figure 1).

Aided by the visual representation of the ocean 
data, users can select their desired locations for 
the glider to visit. Users can either select those 
goal points manually from web interface or 
can upload their mission goal locations as a 
file (see Figure 1). Finally, each selected 
location will become a vertex in the complete 
graph G = (V,E). The web interface also 
provides an option to visualize the complete 
graph with travelling costs generated by the 
path planning stage.

Figure 1: Ocean 
data visualization 
and goal points 
selection.
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We used sample data generously provided to 
us by Dr. Guoqi Han from the Newfoundland 
Region of Fisheries and Oceans Canada for 
testing the module, as well as publicly 
available historic NetCDF data. In both cases, 
we used scripts to extract the simple format 
that is loaded into the software for 
visualization purposes.

Path Planning
Our built-in path planner is grid based; to use 
it with the data, we average values of currents 
in each grid cell of user-defined size (set to 1 
km in our experiments), and use the centre of 

the cell as location coordinates. See Figure 2 
for the assignment of points in our sample data 
to the grid, and Figure 3 for the resulting data 
representation. 

Then, our A* algorithm-based path planner is 
used to compute the costs. To make it faster, 
we use the A* planner as a path visualization 
tool, and rely on a recomputed matrix of 
pairwise cost values for the mission planning. 
Figure 4 shows the computed path and 
travelling cost between two nodes v1 and v2 in 
graph. As many users have sophisticated path 
planners developed in-house, we expect path 
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Figure 2: Mapping scattered ocean data to smaller regions.
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planning task to be passed to an external 
algorithm, with resulting distance matrix 
loaded into our software for the optimal tour 
computation and visualization.

Generating Encodings for the Solvers and 
Computing an Optimal Tour
The encoding generation and computation 
of the optimal tour by a solver is the main 
part of our software package. At this stage, 
the mission planning problem is encoded 
using a corresponding formulation such as 
ILP and the resulting file, after possibly 
being customized by users, is passed to the 

respective solver. We have implemented the 
following types of encodings:

1. Mixed Integer Linear Programming
2. Boolean (0-1) Integer programming and 

Pseudo-Boolean Optimization (PBO)
3. Satisfiability Modulo Theories (SMT)

When users select the type of the solver, a 
back-end web server generates the 
corresponding encoding. At that time, users 
can do any custom modification to the 
resulting file such as adding extra 
constraints.
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Figure 3: Visualizing average ocean currents on a grid representation.
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When a solver returns an optimal solution, the 
corresponding tour is extracted and visualized 
using the web interface (see Figure 5).

ENCODING AND INTERFACING WITH 
GENERIC SOLVERS

The first several encodings are based on the 
MTZ encoding of TSP described in the 

Figure 4: Path 
planner calculates a 
path of smallest 
travel cost (time).

Figure 5: Complete 
graph generated 
from selected goal 
points (Figure 1) 
with an optimal 
sequence 
highlighted.

equation shown in the section entitled “Integer 
Linear Programming Formulations.” The 
resulting encoding is then converted into a 
format accepted by the corresponding solver.

Encodings Based on Integer Linear 
Programming 
Recall that a mixed integer program is an 
optimization problem in which all constraints 
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are in form of linear equations or inequalities 
over a subset of real-valued variables (xi ∈ R), 
and the objective is to minimize or maximize a 
linear function f  (x1 ,..., xn). Although solving 
MILP problems is NP-hard, there is a number 
of heuristics employed by the solvers used in 
practice, such as the simplex or branch-and-
bound methods.

We encode the TSP problem on the complete 
graph using the MTZ encoding. That is, the 
travel cost matrix provides weights of the 
edges in the objective function, constraints are 
added for each vertex, and an appropriate 
number of new variables is introduced together 
with the subtour elimination constraints.

The simplest encoding is in the .lp file format 
accepted by an MILP solver (for our 
experiments, we used CPLEX). The resulting 
text file consist of four parts: “Minimize” 
followed by the objective function, then 
“Subject to” followed by the list of constraints, 
then “Bounds” section providing bounds on 
variables (in our case, on the variables 
occurring in the subtour elimination 
constraints) and finally “Binary” followed by 
the list of variables that should assume 0-1 
values (in our case, these are indicator 
variables for the edges in the tour). A variable 
xk is introduced for each pair (i,j) of the 
vertices in the graph; that variable will be set 
to 1 in the resulting solution if and only if the 
corresponding edge is to be included in the 
tour. This file can be easily edited by users to 
add additional constraints.

In the setting of 0-1 Integer Linear 
Programming, every variable needs to take a 
value 0 or 1. This is not an issue for the edge 

indicator variable xij ; however, variables ui 
used in subtour elimination can take integer 
values up to n. To remedy that, we represent ui 
using log(n) + 1 Boolean variables, and rewrite 
the constraints and bounds by substituting ui 
with ui =                           for new variables 
xik. Although this does increase the number of 
variables, it is only a log(n) increase; however, 
in this setting some other heuristics become 
available, in particular heuristics from the 
realm of Pseudo-Boolean optimization (PBO).

We have used variants of this encoding with 
CPLEX, as well as several PBO solvers, in 
particular clasp [Gebser et al., 2007], Sat4j [Le 
Berre et al., 2010], and SCIP [Berthold et al., 
2009]. All these solvers take problem encoding 
as “.pbo” file format similar to the “.lp” 
format. See the next section for the 
performance comparison.

Satisfiability Modulo Theories (SMT) 
Encoding
We tested both ILA (Integer Linear Arithmetic) 
[Jovanović and De Moura, 2011] and UF 
(Uninterpreted Function Theory) encoding on 
Z3 solver [De Moura and Bjørner, 2008]; we 
have used SMT-lib2 standard [SMT-LIB, n.d.] 
for all our SMT encodings.

Integer Linear Arithmetic allows underlying 
constraints to be represented as linear 
inequalities. Thus, we again use MTZ 
formulation of TSP as our encoding; as ILA 
allows for non-Boolean variables, the ui’s from 
MTZ encoding can remain integers. Thus, this 
encoding is essentially the same as mixed 
integer linear programming encoding, except 
rather than optimizing the objective function 
we add a constraint specifying that it is within 
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a bound, and use the solver to check if such a 
solution exists. We start with a bound of n * 
max of {cij}; at each iteration of the loop, we 
try for the bound given by the previous 
solution decremented by 1, as we are searching 
for the optimal value and our cost values are 
integers. Note that at each iteration the system 
retains intermediate information learned at the 
previous stages.

Uninterpreted Function Theory formulation is 
not based on MTZ. The encoding we used in 
this setting considers decision variables vi 
corresponding to the order of nodes in the 
sequence. That is, vi = j whenever node j is ith 
node visited. Now, we use a constraint stating 
that all variables vi assume distinct values in 
the range from 1 to n. Finally, we add a constraint 
costFunc(vn

, v1) +                                   ≤ 
bound, where costFunc(xi,xj) = cij and xi, xj 
both are integer type sort. As this is again a 
decision problem, we iterate calling the solver 
with decreased lower bound at each step to 
find an optimal solution.

SOLVER PERFORMANCE COMPARISON

We have compared the performance of several 
solvers on instances of the TSP problem 
generated by our software. Specifically, we 
used the map of ocean current over 
Newfoundland and Labrador shelf [Han et al., 
2008] with several sets of n = 4 to n = 30 goal 
points (randomly generated). In each case, 
encodings described above were generated 
and solvers ran with a timeout of 18,000 
seconds. All tests were done on Intel Xeon 
Ubuntu server having 3.50005 GHz of 24 
processors with 126 GB of RAM and 890 MB 
cache.

In Figure 6 the performance of each solver 
is represented by a different colour plot, 
describing how many seconds, on average 
over sets of this size, it took to solve a given 
instance with n nodes. The lighter green 
circle in Figure 7 is the average of times 
when an optimal solution was obtained; a 
circle is coloured dark green if in at least 
one experiment the solver found a feasible 
tour, but did not provide an optimality 
guarantee before the timeout.

The graph makes it is clear that CPLEX with 
MILP or even 0-1 encoding performs better 
than all other solvers; in our experiments, it 
always provided an optimal solution even 
for a larger number of points. Surprisingly, 
CPLEX outperformed other solvers 
significantly even in the 0-1 integer linear 
program encoding (see Figure 8 for the 
comparison of CPLEX (LP) solver on MILP 
vs. 0-1 ILP encodings). In particular, even 
on 30 nodes CPLEX could solve the 
problem within a few seconds.

Pseudo-Boolean solvers except for Wbo 
performed reasonably well until about 22 
nodes, with clasp exhibiting the best 
performance. Surprisingly SCIP, which 
implements similar integer linear 
programming heuristics to CPLEX, did not 
perform as well. Finally, SMT framework 
did not result in a viable mission planning, 
with the likely reason that using iterative 
approach to find an optimal solution is very 
inefficient. Moreover, MTZ encoding in the 
ILA setting performed better than the 
simpler uninterpreted function theory 
encoding.
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Figure 6: Performance evaluation of different encodings on Linear Programming and Satisfiability based solvers. X-axis represents the 
number of goal points. Y-axis represents an average time (in seconds) taken by the solver.

Figure 7: Green circle indicates that the optimal mission plan was found, and dark green that a feasible solution was found without an 
optimality proof.
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Figure 8: Performance of the CPLEX (LP) solver on MILP and 0-1 ILP encoding of mission plan. X-axis represents the number of goal points 
in a mission plan.
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CONCLUSION

In this paper, we considered the mission 
planning problem for AUVs in the context of 
computing an optimal sequence of locations to 
be visited, with an emphasis on extendibility 
by a wide variety of other constraints. With 
that goal in mind, we focused on solving the 
mission planning problem using generic 
solvers such as ILP, PBO and SMT solvers. In 
the course of this project, we built a software 
prototype package for mission planning.

Our performance comparison indicates that 
TSP was solvable on the instances we 
provided; however, only CPLEX solver could 
provide results within an acceptable timeframe. 
Thus, unless additional Boolean constraints 
(encoding, for example, scheduling 
restrictions) dominate the size of the TSP 
instance, we suggest using such mixed integer 
linear programming framework to encode the 
problem as well as the additional constraints.

Generally, performance of a solver can vary 
greatly with the type of a formulation of a 
problem; part of our subsequent work is 
investigating whether there is a noticeable 
change in performance with different 
formulations of TSP, mTSP, TSP with 
neighbourhoods, and time-dependent TSP. In 
particular, we are interested in using a time-
varying data and analyzing the performance of 
the solvers on the time-dependent TSP problem.

ACKNOWLEDGMENTS

We would like to thank a number of people for 
discussions and feedback at various stages of 
this project, in particular Ralf Bachmayer, 

Christopher Williams, Moquin He, Michael 
Eichhorn, Yaroslav Litus, and David Mitchell. 
We are very grateful to Guoqi Han for giving 
us access to the sample ocean circulation data. 
The financial support for this project was 
provided by the Research and Development 
Corporation of Newfoundland and Labrador.

REFERENCES

Arora, Sanjeev [1996]. Polynomial time   
 approximation schemes for Euclidean   
 TSP and other geometric problems.   
 Foundations of Computer Science.   
 Proceedings of 37th Annual Symposium on  
 IEEE, pp. 2-11.
Bektas, Tolga [2006]. The multiple Traveling  
 Salesman Problem: an overview of   
 formulations and solution procedures.   
 Omega, Vol. 34, No. 3, pp. 209-219.
Berthold, Timo; Heinz, Stefan; and Pfetsch,  
 Marc E. [2009]. Solving Pseudo-Boolean  
 problems with SCIP. DFG Research Center  
 MATHEON Preprint #600.
Bhadauria, Deepak; Tekdas, Onur; and Isler,  
 Volkan [2011]. Robotic data mules for  
 collecting data over sparse sensor fields.  
 Journal of Field Robotics, Vol. 28, No. 3,  
 pp. 388-404.
Cook, William [n.d.]. Concorde TSP solver.  
 Retrieved from www.math.uwaterloo.ca/ 
 tsp/concorde.html
Cook, S.A. [1971]. The complexity of   
 theorem-proving procedures. Proceedings  
 of Third Annual ACM Symposium on   
 Theory of Computing, pp. 151-158.
De Moura, Leonardo and Bjørner, Nikolaj  
 [2008]. Z3: An efficient SMT solver. Tools  
 and Algorithms for the Construction and  
 Analysis of Systems. Springer, pp. 337-340.



66   The Journal of Ocean Technology, Vol. 9, No. 2, 2014 Copyright Journal of Ocean Technology 2014

Drucker, N.; Penn, M.; and Strichman, O.  
 [2014]. Cyclic routing of unmanned air  
 vehicles. Information Systems Engineering  
 Technical Reports. IE/IS-2014-02.
Eichhorn, Mike [2013]. Optimal routing   
 strategies for autonomous underwater   
 vehicles in time varying environment.   
 Robotics and Autonomous Systems.   
 DOI:10.1016/j.robot.2013.08.010.
Gebser, Martin; Kaufmann, Benjamin; Neumann,
 André; and Schaub, Torsten [2007]. clasp:  
 A conflict-driven answer set solver. Logic  
 Programming and Nonmonotonic   
 Reasoning. Springer, pp. 260-265.
Gouveia, Luis and Pires, Jose Manuel [1999].  
 The asymmetric travelling salesman   
 problem and a reformulation of the Miller  
 Tucker Zemlin constraints. European   
 Journal of Operational Research, Vol. 112,  
 No. 1, pp. 134-146.
Gouveia, Luis and Voss, Stefan [1995]. A   
 classification of formulations for the (time- 
 dependent) traveling salesman problem.  
 European Journal of Operational Research,  
 Vol. 83, No. 1, pp. 69-82.
Helsgaun, Keld [2000]. An effective   
 implementation of the Lin–Kernighan   
 traveling salesman heuristic. European  
 Journal of Operational Research, Vol. 126,  
 No. 1, pp. 106-130.
Han, Guoqi; Lu, Zhaoshi; Wang, Zeliang;   
 Helbig, James; Chen, Nancy; and De   
 Young, Brad [2008]. Seasonal variability of  
 the Labrador current and shelf circulation  
 off Newfoundland. Journal of Geophysical  
 Research: Oceans (1978–2012), Vol. 113,  
 No. C10.
He, M.; Williams, C.D.; and Bachmayer, R.  
 [2009]. Simulations of an iterative glider  
 mission planning procedure for flying   

 gliders into strong ocean currents. 16th  
 International Symposium on Unmanned  
 Untethered Submersible Technology.
Jovanović, Dejan and De Moura, Leonardo  
 [2011]. Cutting to the chase solving Linear  
 Integer Arithmetic. Automated Deduction– 
 CADE-23. Springer, pp. 338-353.
Jonker, Roy and Volgenant, Ton [1983].   
 Transforming asymmetric into symmetric  
 traveling salesman problems. Operations  
 Research Letters, Vol. 2, No. 4, pp. 161-163.
Le Berre, Daniel and Parrain, Anne [2010].  
 The sat4j library, release 2.2, system   
 description. Journal on Satisfiability, Boolean
 Modeling and Computation, Vol. 7, pp. 59-64.
Lin, Shen and Kernighan, Brian W. [1973]. An  
 effective heuristic algorithm for the   
 traveling-salesman problem. Operations  
 Research, Vol. 21, No. 2, pp. 498-516.
Miranda-Bront, Juan Jose; Mendez-Diaz,   
 Isabel; and Zabala, Paula [2010]. An integer
 programming approach for the time- 
 dependent {TSP}. Electronic Notes in   
 Discrete Mathematics, Vol. 36, No. 0, pp.  
 351-358.
Mitchell, Joseph S.B. [1999]. Guillotine   
 subdivisions approximate polygonal   
 subdivisions: A simple polynomial-time  
 approximation scheme for geometric TSP,  
 k-MST, and related problems. SIAM   
 Journal on Computing, Vol. 28, No. 4, pp.  
 1298-1309.
Miller, C.E.; Tucker, A.W.; and Zemlin, R.A.  
 [1960]. Integer programming formulations  
 of traveling salesman problems. Journal of  
 the Association for Computing Machinery,  
 Vol. 7, No. 4, pp. 326-329.
Oncan, Temel; Altinel, I. Kuban; and Laporte,  
 Gilbert [2009]. A comparative analysis of  
 several asymmetric traveling salesman  



The Journal of Ocean Technology, Vol. 9, No. 2, 2014  67Copyright Journal of Ocean Technology 2014

 problem formulations. Computers and   
 Operations Research, Vol. 36, No. 3, pp.  
 637-654.
Roussel, Olivier and Manquinho, Vasco   
 [2012]. Input/output format and solver  
 requirements for the competitions of   
 Pseudo-Boolean solvers. Retrieved from  
 www.cril.univ-artois.fr/PB12/format.pdf.
SMT-LIB [n.d.]. The Satisfiability Modulo  
 Theories Library. Retrieved from http:// 
 smtlib.org.
Vasilescu, Iului; Kotay, Keith; Rus, Daniela;  
 Dunbabin, Matthew; and Corke, Peter   
 [2005]. Data collection, storage, and   
 retrieval with an underwater sensor   
 network. Proceedings of 3rd International  
 Conference on Embedded Networked   
 Sensor Systems, ACM, pp. 154-165.
Woodrow, I.; Purry, C.; Mawby, A., and   
 Goodwin, J. [2005]. Autonomous AUV  
 mission planning and replanning – towards  
 true autonomy. 14th International   
 Symposium on Unmanned Untethered   
 Submersible Technology, Durham, NH.


