CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY

MAY BE XEROXED

(Without Author’s Permission)

INFORMATION TO USERS

text directly from the original or copy submitted. Thus, some thesis and
copies are in face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and

print margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overiaps.

Photographs inciuded in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any or i ing in this copy for
an additional charge. Contact UMI directiy to order.

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 481081346 USA
®

800-521-0800

NOTE TO USERS

This reproduction is the best copy available

[\ |

National Bil nationale
of Canada o Canads®
ic Services services bibli i
Ot O KIA ONA o
Canada Canada
Vour i Ve e
PP —
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. 1a forme de microfiche/film, de

reproduction sur papier ou sur format
él ique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neitherthe droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-42419-7

Canada

Towards the Development
of an Automated
Ship Arrangement Design Tool

Christopher Olsen
B.Sc. (Mechanical Engineering)
BA (History)

Copyright © of the Author

A thesis submitted to the School of Graduate Studies
in partial fulfilment of the requirements for the degree of
Master of Engineering (Naval Architecture)

Faculty of Engineering and Applied Science
Memorial University of Newfoundland
September 1998

St Jobn's Newfoundland

Abstract

This thesis reviews Naval Archi methods ising the algorithmic and
computer-based design of ships. [t is shown that the problem of General Ammangemeas is
critical to design synthesis and yet lacks the systemisation found in other ship design problems.
Desiga systemisation improves the solution by reducing development periods and therefore
costs, and by making more time available for additional design iterations. The thesis addresses
the systemisation of the General Arrangement problem through the analogous Industrial

Engineering problem of Facility Layout.

While ly useful, the algorithms for computer-aided Facility Layout are limited
primaily by their crude and out-dated representation of spatial information. For this reason, the
bulk of this thesis describes 2 novel formulation for spatial data, replacing the traditional 2D

block layout model. Named Semi-Solids, the ion employs planar w©

manipulate and identically model 3D faceted surfaces. The name implies a variation of a solid
model because the unique formulation allows the computer to shape and position spatial objects

without the direct guidance or interpretation of a human user.

- ShipArrT

Microsoft’s Awess database software was used to create an efficient relational database for

and irative data. Code for the manipulation of

the storage of ints and
this data was developed using Microsoft's Vil Basiz, and because Visual Basicand Aess aze
closely related, data is casily shared by the database and the coded algorithm. In addition, it was
possible to include a number of analytical fanctions specific to the database within the Il
Basic code. The database and the Semi-Solids code have been named Skip Arangement Tool
(ShipAxcT) in preparation for additional work.

The thesis concludes with two detailed research plans showing necessary and potential areas

for furure research. The first plan completes the lid: ion and evaluates its

potential relative to other Solid Model representations. The second plan offers ideas and
direction towards the completion of a modern and robust Facility Layout/General Arrangement

algorithm.

ShipArrT

Acknowledgements

It is not often that one is given an opportunity to indulge one’s curiosity and I count myself
quite privileged o say that this has been my experience at Memorial University. Prof. D.A. Friis
and Dr. A.-M. Aboul-Azm bravely took me under their wings, and the work which follows is the
result. Their enthusiastic support cannot be understated. In particular Prof. Fiis has been most
generous with his time and knowledge in the face of my creative distractions, obtuse questions
and stubborm idealism.

T would like to thank the professors of the Faculty of Engineering for their assistance and
patience, as well as Associate Dean J.J. Sharp and his kind helper Mrs. M. Crocker.

Ms. L. Bulgin, who volunteered for the role of copy editor, also belongs in this group. In
addition to these, and too many to mention, are the students, staff, and faculty members
throughout the university who have championed my cause and been enormously helpful and
supportive.

Financially, I would like to thank Dr. Sharp for several T/As and the dribs and drabs he has
been able to send my way. My two-year stint s a Proctor in Paton College not only helped to

pay the bills but was a tremendous learning experience, and Dr. [an Jordaan should be

ShipArrT

mentioned for providing me with a Research Engineer’s salary for a period of this work. The
Faculty of Engineering and Applied Science unexpectedly provided me with office space, and
Prof. Friis with the assistance of Dr. Aboul-Azm was able to obtain for me a computer and
software. In addition to all this, my primary source of funds has been the Ontario and Canada
Student Loan programs, for which I will be grateful until the day the repayments begin!

Many of the papers I reviewed for this project appeated to have been published for the sake
of publishing and not because they make a significant contribution to the literature. Their
aumbers are discouraging to the researcher and reduce the time he/she can spend on valuable
papers. However, a small number of papers and texts were well-written and insightful, and it is

many of the concepts they presented which inspired this project. Even after many readings, T

find that the writings of this group still had ing to to my ing of the
design problem. These authors figure prominently in the Endnotes and I am grateful for their

efforts, without which [would not have known where to begin.

ShipArT

Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Figures

List of Tables

Context

1.1 Introduction . .
12 Design Theo
1.3 Design Applications .
14 General Arrangements and Facility Layout Problems .
1.5 Quadratic Assignment Problems .
16 Block Layouts and Placement . .
1.7 FLP Algorithms and Naval Architecture .
Figures Pertaining to Chapter 1 ...
Tables Pertaining to Chapter 1 ...

ShipAreT
21 A New Facility Layout Algorithm ..
22 Relational Databases

2.3 Expert/Knowledge-based Systems
24 Routing Problem

REBBE BBBEEFbGL. B B o8 &

ShipArrT

25 Traditional Facility Layout Approaches -
2.6 Semi-Solids Modelling

27 Development -
Figures Pertaining to Chapter 2
Tables Pertaining to Chapter 2 ...

Tha ShipArrT Database
Zone 1: Interior Inventory ..

3 2 Zone 2: Spatial Definitions .

33 Zone 3: Parch Adjacency .

34 Zone4: Parch Limits

35 ZoneS: Patch Equations .

36 Zone 6: Constraints ...

Figures Pertaining to Chapter 3

Tables Pertaining to Chapter 3

Interference Checking

4.1 Tnterference Approaches
42 ThePOIPrsm
4.3 Vertex Substitution .
4.4 Relate Vertices to Patches .
4.5 Remove Wholly Excluded Patches
4.6 Perpendicular Patches .
4.7 The Parch Prism ...
4.8 POI Vertex Substitution
4.9 Evaluate External Prisms .
4.10 Conclusion
Figures Pertaining to Chapter 4
Tables Pertaining to Chapter 4 .

Surface Superposition 101
Remove Conmined Parches: ;2. iavisssmvsssive it s siavindaisnsaings 102
Finding Potential Vertices
Verification of Vertices

Counting the Vertices -
Establishing a Vertex Sort Key .
56 Sorting the Vertices .
57 Creating Patches ..
5.8 Check Patch Orientation -
59 Finish the Patch List ..
Figures Pertaining to Chapter 5
Table Pertaining to Chapter 5 . .

ShipArrT vii

5

Constructing Adjacent Sides
6.1 Determining the Vertices
62 Creating an Ordered Vertex List .
63 Calculating Angles

B

e

121

64 Creating Patches . 122
6.5 Interference Checking 124
6.6 Anchor Points ... 125
6.7 Me:nng ‘The Other End 125
68 126
6.9 126
6.10 Potential Improvements
Figures Pertaining to Chapter 6 - 128
Representation Conclusions and Future Work 154
7.1 Literature Review of [EEE Materials . 156
7.2 Complete Coding for Semi-Solids . 157
7.3 Acquire and/or Code an Octree Model . 15§
74 Adapt Semi-Solids for Bicubic Surfaces . 159
7.5 Compare Semi-Solids, Octrees and Bicubic-Solids . 160
Figures Pertaining to Chapter 7 - 162
Tables Pertaining to Chapter 7 . s 166
Sb‘lpAﬂT Conclusions and Future Work 168
The Representation of Quantitative Data 169
s 7 Thc Representation of Qualiative and Indefinite Data . 170
83 with C and Data . m
8.4 Balloon Modelling 172
8.5 Problems Assodzmd Wi osition 174
8.5.1 Arrangement of Furnishings for Each Room 174
8.5.2 Design of Corvidors 175
8.5.3 Servicing Spaces with Utlities 176
8.5.4 Routing Problems for Sersices and Corridors. - 176
86 Optimization and Facility Layout . .18
87 Communication of Results18
8.8 Critcisms Associated with ShipArrT and Semi-Solids - 179
8.8.1 Too Much Detail 179
8.8.2 ShipArT Data Sources . . 180
8.8.3 Consistency of Analysis . 180
89 Summation and Conclusions . . 181
Figure Pertaining to Chapter 8 . T
Tables Pertaining to Chapter 8 . RETTY
References 185
ShipArrT

Selected Bibliography 191
Appendix 1: CAD, Solid Modelling and Semi-Solids

AL1 Raster Representations
AL.2 Vector Representations
AL3 Lines ...
Al.4 Surfaces .
AL5 Solids .
A1.6 Primitive Instancing
A1.7 Sweep Representations
A1.8 Surface and Boundary Representations -
A1.8.1 Esplicit Pofygons ..
A1.8.2 Polygon Meshes .
A1.83 Quadric Surfaces
Al.84 Bicubic Surfaces
AL9 Spatial Partitioning . .
A1.9.1 Spatial-Occupancy Enumeration
A1.9.2
A1.9.3 Binary Space Partitioning Trees .
AL40 Constructive Solid Geometry .
ALll Semi-Solids
AL12 Representation Comparison
Figures Pertaining to Appendix 1
Table Peruining to Appendix 1 .

Appendix 2: Code and Pseudocode 230
Module: Constraint Creation 230
Sub AddIndex
Sub AssignSpaclD .
Sub CloseConstrain(Tables
Sub ConstraintCreationMain
Sub FillConstrain(Tables .
Sub CreateTemporanyTable -
Sub GetConstraintRecords . .
Sub SetConstraintTables .
Sub GetShapeData .
Sub GetDimension .
Module:

Swb Test1_POIData

ShipArT

Sub Test2_VintoPOI ..
Sub Test3_VertexZone .
Sub TestZoneExamination
Sub Test4_PatchesToConsider .
Sub Test5_PatchestoExclude .
Module: ShipAxT Main Modu.le -
Sub PurgeWorkspace
Sub PlaceFSMain
Sub PrepareTemporaryDB
Function SeekLastRecord
Sub ShipArTMain . ..
Module: ~ Space Creation Module .
Sub Create_Deck .
Sub CreateCorner .
Sub CreateNewSpace .
Sub LocateNewSpace .
Function RelativeToCentroid .
Sub TempEquations
Module: Space Placement Tables .
Sub AttachAdditionalTable .
Sub OpenFSTables . .
Sub CloseFS Tabkes . .
Sub CreateFS AdjacenteyTable -
Sub CreateFSEquationTable
Sub CreateFSPatchTable .
Sub CreateFS VertexTable .
Module: ~ Space Table Routines .
Sub CloseCreationTables
Sub SetCreationTables
Sub SpaceCreationMain
Module: Utility Subroutines
Function MaxPoint
Sub CopyPs

K

N
N

v
N
N

m
2z

2

K

Function SurfacePos 4
Function EqualPts 275
275
275
Finding Porential Vertices — Pseudocode Corresponding to Section 4.3 . 6
Vi jon of Vertices — Pseuds ding to Section 4.4 . 276
Counting the Vertices — Pseudocode Gomespondmg to Section 45 . 277
Cxemng Patches — Pseudocode Cnuespandmg to Secuon 4.8 . 27
the Vertices — 10 Section 5.4 217

Cmﬁng an Ordered Vertex List — Pseudm:od.: ‘Corresponding to Section 5.3 . 27!
Sub FindFirstPatch — Pseudocode 278
Sub FindNextVertex — Pmdmdc 279
Sub RemoveCurrentPatch — Pseudocode 279

ShipArrT

Sub RemoveCurrentVertexc — Pseudocode - 32
Sib FindNestPatth — Pseudocods. 280
Calcul: les — docode Ce ding to Section 5.4 . - 28
Sub Fmdfrdz— Pseudocode 281
Sub FindAngle — Pseudocode . 281
Creating Patches — Pseudocode Conupoudmg to Section 5.5 . 282
Checking — ding to Section 5.6 . 284
Sub VerspNewPatch — Pseudocode . 284
Sub InterfirenceCheck — Psestdocode . 235
Module: ~DXF Face Import Code . . 286
Function DecomposeHEFlag 286
Sub DigestPatch ... 88
Sub DXFImportMain . 289
Sub Headers 29
Sub C/af:TaHf: 290
Sub IngestD XFFaces . . 291
Function OkObject . 294
Sub SexUpTables . . L
Function LengthOfFile 295
Sub NameNewSpace . 296
Module: DXF Export Ce - 297
Sub CreateOutputQTable 297
Sub CreatePolyMesh . 299
Sub D 299
Sub FaceOutput . 301
Sub FileFooter . . . 304
Sub GetOutputQTable . . 30¢
Sub GetPatches . . 305
Sub GefTriPatches . . 305
Sub GetVertices .. . 305
Sub PrepareActiveTables 307
Sub MesbHeaderOutput . 307
Sub MeshPatchOutput .
Sub FileHeader . . 309
Sub ‘\Iz.rbV:ﬂchnnt . 310
Function HiddenEdgeFlag 310
Sub MeshVertexOutput . 311
Sub PrepareOutputFile . 77
Appendix 3: Ci ing Adj: Sides Exampl 312

ShipArrT

List of Figures

Figure 1
Figure 2

Figure 3

Figure 4

Figure §

Figure 6

Figure 7

Figure 8
Figure 9

Figure 10

Model of Le Corbusier — a proposed RO-RO ferry design. -«

Cross-section view of Le Corbusier showing the ferry’s General Arrangement. .. 25

An example of a Design Spiral. The General Arrangement problem is shown
in grey to denote its limited COMPUIERZALON. .. .-« <.evnenernnennnnns

A depiction of an interaction mesh, very much like that originally proposed

by D.K. Brown in Nawa/ Architecture[6]. - - -« +vevneeeneaneneenennns 27

Cost Pyramid showing that small expenditures cacly in the design process can

lead to €NOFMOUS $aViNgs At SUDSEQUENE STARES. -+« -« <o evnnernenennenns 28

A child’s word scramble game is analogous to the 2D Block Layout approach

used by Industrial Engincers to solve Facility Layout problems. 2

Pseudocode for a ion algorithm. Note that sffident can be a usez-
defined preferential Valte.oceceonosniinieeeeiainaeens
for an i JgOtithMm. - ..o

Examples of distance measurements.cciiiiiiiiiiaaaaa 30

A graphical depiction of the creation of layouts on the basis of distance
relationships between spaces. Five different weighting values (shown with
five different line types) were used with an arbitrary distance unit to create
A A AN

ShipArrT

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16
Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

While layouts can be created on the basis of the positions of centroids, the
addition of spatial information may make such solutions invalid. Here, not
only do spaces overlap and have unnecessary void regions, but some spaces
violate the exterior boundary of the design fegio. - - .« .« -« <veeennnannns 32

A series of images showing various block layout configurations for the same
Iayoutproblem - cvin o vtie e s s s r e SRe e b S ReR SR R e R 33

Simplicity and contiguity problems in block layouts. The example on the lefc
shows the jagged edge which can result from the algorithm’s desire to place a
boundary through the middle of a grid unit. On the right is a corridor in
which one of the spaces violates a contiguity rule and thereby ruins a clean

Bounded vs. unbounded placement. The figure to the left shows how the
addition of a boundary constraint affects the shape and position of several
spaces. Compare this to the same spaces in their ‘natural’ configuration in
the unbounded example on the fght. - .« -« eeunnnonnereenaaannns 1

Relationships of different modules in the planned ShipArT package. The
database is treated as a central repository for project data and is accessed and
updated by a variety of modules. The figure also shows how two of the

fature modules are intrinsic to the database.vueeernnennnnnn 52

An example of a valid mesh element showing the four adjacent sides. - 53

Semi-Solids general algorithm. The flowchart shows the relationship of the
material presented in the next three Chapters.ccoueueeeeenns 54

Complete database for ShipAnT showing data relationships and zone
divisions. The zones divide the database into related topics and will be used
to facilitate the explanation of the database later in the chapter. 61

The tbles of Zone 1. This zone contains the ship’s overall description and
links Spaces to theif COMSEERIALS. . . -« ... vuureeenennneeeannaneenns 8

Table elements comprising Zone 2. These elements relate spatial data such
as vertices to each Space / room in the layout. ...

Two patches showing how the direction of the normal vector is affected by
the relative nUmbering OF its VErtCes. +« - ..« .. nevneenernneennernnnns 2]

ShipArrT

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28
Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35
Figure 36

Depiction of tables and relationships for Zone 3. The zone represents
nghbouzhooddau for each surface patch by identifying the adjoining

An example of a typical 4 x 4 surface patch. ..~ .- o.oaiiie i 0

A depiction of the tables and relationships of Zone 4. The zone involves the
vertex information of the comers of each patch. ...

A depiction of the tables and relationships of Zone 5. The zone deals with
the mathematical definition of each plane and its coincident orthogonal
surfaces.

... n
A depiction of the tables and relationships of Zone 6. The zone deals with
the constraints associated with each Space / room in the layout. In
particular, it demonstrates how pointers can be used to attribute a large
quantity of information to a single Space_ID. . - .- .. oeuuuoennaaneanes 2

Algorithm flowchart which describes the process of interference checking.

A six-sided meshed object within the boundary of 2 more complex meshed
ObJects corsisrsrassosaas s e B G SR S TR AR S 89

An example of several objects which neighbour each other but do not
intersect. The figure suggests the difficulty of identifying the relative

positions of non-contacting objects, particularly when the identity of the
fcighbouring ObJect is UOKAOWL. « - -+« + v+ v+« e eeeeeeearnnanennennes 8

A cross-section of the POI prism showing the normal vectors of the planes
which fOrm the PHSIL -+« +«««. v eeeneen e o ean e e e e e aees 2

A section of a PO prism showing the planes which define the region. The
POL is 2 patch which is perpendicular to the prism and whose dimensions are

the same as those of the interior of the prism. The normal vectors of each

plane forming the prism point outwards away from the bounded region. - - - .- 9

Figure showing five potential cases in which patches may be missed by the
first exclusion process. The patch which will be removed from the list of

interfering patches lies wholly outside a single plane of the POl prism. - 2
The POI prism showing a perpendicular patch which requires removal from

the Solutions for Patches table.ceveieueen e eeei e e eanes 9
‘The POI Prism showing a neighbouring Patch PEism. 9
The last of the remaining patches slated for removal. 95

ShipAr'T

Figure 37

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

Figure 43

Figure 44

Figure 45

ShipArT

A view of the POI Prism in which a space violates the prism. The normals
of the two sides of the interfering space which lic inside the POI point in
opposite directions, distinguishing between inside and outside. The Dot

Product of these normal vectors and that of the POI constitute the contents

of the INOrOu field of the Solutions for Patchestable. -« o.vvvnneenenen.s

In this view of the POI prism, the object which interferes also presents a
negative normal vector to the POL However, unlike the situation shown in
the previous figure, the offending patch is one to which it is intended to
‘mould the PO projection. Hence, it is case in which the InOzOut field of
the Solutions for Patches table cannot distinguish between patches to ignore and
those to address. The information found in the Paich Adjacency table for the
particular object can be used to provide additional information.

POI Prism showing how the prism is used to identify neighbouring patches
AR OBIES. <o sins viswios Soe TR S TS eSS

Flowchart of the algorithm which superimposes one surface on another. - - . -

Examples of patches which are wholly contained and partially contained
Within the POT PLSI. -« -+« +<x -t vneeanesnes cnenenaeesnannsoees

A depiction of two overlapping patches. The planes which form the patches
are shown in dashed lines with each of the 24 poteatial vertices. The four
vertices which form the new patch are distinguished from the remaining 20
because only these are wholly contained within both the Patch Prism and the
o S

Given a random set of patches, it is often difficult to determine the best way
to construct new patches. The Bow Tic-shaped patch shown in this figure is
an example of a patch which might result when the order and orientation of
the vertices are not taken into account when developing a new patch. -

A list of vertices can be sorted by use of a reference plane and vertex
substitution. The vertices ate coplanar and lie on the Patch Plane. The
reference plane is formed by the cross product of the equation of the Patch
Plane and the vector formed between the first two vertices in the list. Since
Vertex 3 in this figure lies on the negative side of the reference plane, it will
be necessary to constuCt 2 new reference plane. ... -......cv.reirneeenns

This figure shows the reference plane moved so that it now passes through
Vertex 3. By doing so, all of the vertices in the list now lie either on or on
the positive side of the reference plane. .

95

24

N

(]

Figure 46

Figure 47

Figure 48

Figure 49

Figure 50

Figure 51

Figure 52

Figure 53
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58
Figure 59
Figure 60
Figure 61

Figure 62

Once the reference plane has been determined, Dot Products can be used to

sort the vertices. The Dot Product is taken between the vector formed by

the reference plane and similar vectors formed from the contents of the
tmpVertodigtable. --..coiovsremivernaisiassior it s e s sas Sk s

Once the vertices have been sorted, it is a simple process of connecting the
dots to properly create the new patches.ovooiineiiiiiiiii 116

Thisimagebm]dsondutwoshipim-gsinmdnﬁdinch:ple Using the

in this chapter, the model has projected new patches onto
d:ehu.llboundny Both the boundary and the new patches are shown and
can be differentiated by the line formed by the POI Prism. - - -.o.on..... 116

A depiction of an invalid mesh element. The element violates meshing rules
because it has four sides while adjoining five other patches. 128

A depiction of the same mesh region, this time validly defined by the use of
wonewmeshelements. . ..o coeueeienenieennaeanmenmmaroacanesenann 128

This sheet is a key which shows the relationship of the flowchar pages
shown in the series of figures which follows. .

Algorithm for the Construction of Adjacent Sides — Page 1. The characters
in the connector symbols refer to parts of the algorithm on other pages. 130

Algorithm for the Construction of Adjacent Sides — Page 2.

Algorithm for the Construction of Adjacent Sides — Page 3. -............. 132
Algorithm for the construction of adjacent sides — Page 4. - 133
Algorithm for the construction of adjacent sides — Page 5. --............. 134
Algorithm for the construction of adjacent sides — Page 6. —-............. 135

Algorithm for the construction of adjacent sides — Page 7. .

Algorithm for the construction of adjacent sides — Page 8. --............. 137
Algorithm for the construction of adjacent sides — Page 9. 138
Algorithm for the construction of adjacent sides — Page 10. 139
Algorithm for the construction of adjacent sides — Page 11. 140

ShipArrT

Figure 63

Figure 64

Figure 65

Figure 66
Figure 67

Figure 68

Figure 69

Figure 70

Figure 71

Figure 72

Figure 73

Figure 74

ShipArrT

An example of the problem of vertices which define surfaces which adjoin
those which were created in the code of the previous chapter. 141

This figure is identical to the previous one except that Vertices 2 and 3 have
been dropped from the potential list of vertices for the surface. The POI
remains in the figure as a reminder that the vertices have only been removed
relative to the surface which faces the reader. . .

This figure shows a case in which the sort key described in the next section
mighe fail because more than one vertex lies on the same line (passing

through Vertices 1,2, 5 and 6). The distance from the POI can be used to

address this UOUSUAL CBSE. -« v er - eeeeeenn ceaneeneenean e eea e 143

The basic figure showing the vertices of the surface without the presence of

Figure showing the interior angles found between edges formed by the
wvertices of this surface. .

145
Detail of the previous figure showing interior and exterior angles ata vertex. . 145

A depiction of an invalid mesh clement. The vertices of each element should
form a convex hull. This is not true in this case and is evidenced by the
concavity shown in the fIgULE. - ..+« e.vneeeuneeerneeneneeneenennns 146

This figure shows the same mesh as in Figure 69 but with valid mesh
element highlighted for contrast. The element is valid because its vertices
form a Convex Hull. A property of the Convex Hullis that none of its

exterior angles exceed 180°.

The development of this invalid patch could have been prevented by noting

g
g
a2
7
g.
g
£
&
5
<
i
g
8
©
o
5

Patch showing the anchor point moved to the next vertex in the potential
new patch. Although the four-sided patch s still invalid, valid three-sided
PALCh S NOW POSSIBIE. - - -+ -+« ee e e ee e e e 147

In this case the patch contains an exterior angle at Vertex 3. A decision can
be made at this point to limit the patch to a valid three-sided shape. 148

The newly—created patch shown in this figure is invalid because it crosses a
boundary formed by the vertices of the Vertex List. «....oevnevnennnens. 149

Figure 75

Figure 76

Figure 77

Figure 78
Figure 79

Figure 80

Figure 81

Figure 82

Figure 83

Figure 84

Figure 85

Building on the previous figure, the algorithm attempts to create a valid
parch by dropping one of the four vertices thereby forming a three-sided
parch. Once again, the patch is invalid because one of its sides violates the
valid region defined by the Verfexc Lith. -« -« - vvneeeeeenaeneannaeennes
An example of patches which radiate from a single point. The figute is
intended to demonstrate the sliver-like form of the newly-created patches.
Similar to the previous figure, this figure shows that by altemating patch

creation origins (Anchor points), patches which are more regular or sguare
B T s U S,

Newly-created patches in which one patch faces ourward instead of inward. . .

A depiction of the same patches, but with Vertices 2 and 4 exchanged on the
invalid patch. The exchange makes it valid because it faces in a direction
consistent with its AeighbOULS. . .- - <.\ eetienan e eeaannaanns

Building again on the ship example introduced in Chapter 4, this figure
shows the construction of patches linking the back surface of the new object
and the projected surface which replaced the POL

The same image as in Figure 80, showing new patches on all four of the
ol T R R

Top view of the process of fitring one object against another. The view
shows how the vertex pointers at and b ase moved to reflect the new vertex
S

Top view showing how the next projection plane completes the firting
process. The figure also shows how the construction algorithm creates an
annecessary patch. The problem can be much more significant where the
bounding mesh is considered in three dimensions. - . .-« -+~ <.o.e......

An example of modelling a curve using Quadtrees. Quadtrees are the two-

of squares required to accurately model the curve. Also, while it is simple to
approximate a curve by spatial enumeration, itis difficult to create 2 curve

The same curve which was modelled in the previous figure can be described
by means of a series of straight lines. The lines correspond to facets in the
Semi-Solids formulation. For simple curves such as this, relatively few line
segments are required to approximate the curve to the level of accuracy
BRI o e oy R AR e e AR S F e v b et s st

162

ShipArrT

Figure 86 A possible model against which the three potential representation
formulations can be applied during the evaluation of their performance. The
simple shape extends into the page to provide a boundary for the third
GMEASION. - -+ e ee oo e e e e e et e eeaeeanas 165

Figure 87 A variation of a fuzzy set in which the membership function takes the shape
ofa /and is used as a penalty function. Applied in the scoring of layout,
the penalty function acts to discourage solutions whose quantitative values

differ from the preferred BMOUNE. oeoueennereenarnnnanaannns 182
Figure 88 Four-sided Bezier bicubic surface patch showing the 16 required control
TEOMIER) o2 4 A Y R A AT R 21

Figure 89 Boolean Operations for two objects. Given objects A and B, the middle left
depiction shows .4 U B (effectively A + B), the middle righc is 4 N B, and the
lower left and right show A - B and B - A respectively. 2

Figure 90 Examples of how Boolean Operations can be effective for identifying the
intersection of two objects, but are unable to offer any information in the
case where objects are not in contact. As an aside, the Regons of Exclusion are
impossible to remove without the use of additional objects or without

altering the dimensions of the Oginal OBJECTS. - -« + -« ++vev.vnveeneeene.. 223
Figure 91 A gear developed through primitive instancing. The data to the right was

used to prescribe the solid mOdel. -« eueeaeeiii e 23
Figure 92 Solids created by translational and rotational sweeps. s 24

Figure 93 A polygon mesh in which cach patch is defined by pointers to a single long
list of vertices. The vertices in the list are unique, thereby facilitating editing
and reducing storage reqUIrEMentS.etiinnniiiii e 224

Figure 94 A polygon mesh in which each facet is defined by pointers to a list of edges.
Each edge in the list is unique and in turn contains pointess to a list of
unique vertex coordinates. The format is intended to accelerate the

depiction of the mesh since shared edges are drawn only once. - .- 225
Figure 95 Torus by Spatial-occup ot e s 225
Figure 96 A ison of Spatial-O ion and Quadrees. A

Quadiree is the 2D equivalent of an Octree. The Quadizee formulation is

able o represent the same object using many fewer cubic uDifs. - -« -« +«-.... 226

Figure 97 Example Problem. Assumes thata Vertex List for this surface has already
been created and SOrted. - - . oot iiiiii e 313

ShipArrT

Figure 98

Figure 99

Figure 100

Figure 101

Figure 102

Figure 103

Figure 104

Figure 105

Figure 106

Figure 107

Figure 108
Figure 109
Figure 110

Figure 111

Set the first Anchorvertex, Vertex Aoooiiie e 314
Switch sides. Set second anchor vertex, or Kedge, at VertexB. 315

Switch sides. Since the angles at Derfizes 2 and 3 are less than 180 degrees,
the algorithm attempts to create 2 four-sided patch using the first four

verticesin the Voo List. «isnn sevassswvsiie i s b ddnsseies snesos o 316
The algorithm, having checked and found an interference, attempts to

remedy the problem by changing the new patch from one with four sides to

One With Only three SIdEs. - - - -« +« <« cveuunennnneneananananenenaans 317
Because of interference the three-sided patch is discarded and the need to

shift the Anchor vertex from Vertex A is noted. Switching sides, the

algorithm attempts to constructanew patch.ol 318
With this patch completed, Vertizes 2 and 3 are removed from the Vertex List,

and the vertex angles recalculated. It then switches sides to shift the Anchor

vertex from A to C. 319

Returning to Kedge B, the algorith builds another patch. The
Vertexc List treats Vrtices 1 and 4 of the previous patch as 7 and 2 of the new
patch.

Having removed the ‘trapped” vertices and switching sides, the algorithm
now successfully constructs a patch from Anchor C. It then removes its
“trapped’ vertices from the Verfex List. .

Although visibly unchanged, the algorithm has attempted and abandoned a
new patch from Kedge B. The large angle at the new Vertesc 2 forced the

abandonment. 322
Switching sides once more, the algorithm constructs a second patch from
Anchor C. The new patch has only three sides because of the large angle at

[ertest 3 O this DEW PALCh. - - . <.+« <eueeueeeaeneneeeiiaenn e enaaaes 323

In this step, the algorithm switches sides and shifts the Kedge rom Bro D. ... 324

Here the algorithm has switched sides and failed to construct a new patch

from Anchor C because of the large angle at Vertex 3, 4.oe.neeene.... 35
itching sides, the algorith a new patch from.
KD, . s bisine e smensies iz ensmasimsseian 326

Hete the algorithm has again switched sides, this time to shift the Ancbor
vertex from Cto E. .

ShipAreT

Figure 112

Figure 113

Figure 114

Figure 115

Figure 116

Figure 117

Figure 118

Figure 119

Figure 120

Figure 121
Figure 122

Figure 123

Figure 124

Figure 125

Figute 126

Switching sides, a second patch is created from Kedge D. The concavity at
Vertexc 4 is caught through the calculation of angles in the same way that the

Vertese List angles are calculated. -« -+« -« vuneeuenennnesnnsnnnnens 328

Because of the concavity error, a three-sided patch is attempted which leads

to the invalid situation shown. The patch will be discarded and a note made

o shift the Kedge fOm D. - +veeeeeeeeeeeee e e e aeaeas 329

Switching sides, a three-sided patch is created from Ancéor E. The large

angle at Vertex 3, 4 forced the creation of the three-sided patch. 330

Another change of side, and another anchor change. In this step the Kedge

vertex is shifted FOM D 0 F. -« ee.enoeeeueeen e e eeaeeeeaans 331

Here, 2 new patch was to be anchored on E, but the large angle at Vertex 3,4

gives the new patch a concavity, forcing is abandonment. [nstead, a note is

made to change AR E. ... w.eeneeieeee e ee s 332

A new three-sided patch is created from Kedge F. The large angle at Vertex 3

forced this patch CONBZUILON. - -+« -« ++veeennenannteenanaeeaans 333

In this step the Andbor vertex is shifted from Et0 G. .- - ovnoeenennnnn... 334

Here the algorithm attempts to build a new patch from Kedge F but fails

because of the exterior angle found at the second vertex. Instead it flags -

Kedge FfOT ChANEE. . .o oeeee e e eee e e eaaeen e 335

Switching sides, the algotithm attempts to build a new patch from Anchor G

but fails because of the exterior angle found at the second vertex. Instead it

Blags Anchor G £Or ChADGE. - +v. e eeeneaiaeinenen et eeanan e eaans 336

In this step the algorithm moves the Kedge vertex from Fto H.............. 37

Switching sides, the algoithm moves the Anchor from G to L.38

Here a new patch is attempted at Kedge H, but the exterior angle at what

would be Vertex 2 of the new patch forced its sbandonment. Instead, a note

is made to change Kedge L. -« e.onoeeeeeee e 339

Switching sides, the algorithm successfully creates a new patch from Anchor L.

.. 340

And once more the Kedge is moved from H 10ouvuueerenennnnnn. 341

Swa:mgndﬁ the algorithm successfully creates a second patch from
.. 342

ShipArT

Figure 127

Figure 128

Figure 129

Figure 130

Figure 131

In atempting to create a new patch from Kedge], the algorithm meers the
forward leg of its search engine. Therefore instead of creating a new patch it
begins the process again with the revised Vertex Li. -« .« v --evnnnnennnn 343

Beginning again, the algorithm sets the first item in the Verfex Listto be the
Anchor a. Recall that vertex angles are updated to reflect the ‘rapped’
vertices of each of the new patches.

Swltchlngsdr_sthe algorithm sets the last vertex in the Vertex Litt to be the
Kedlge VETeX bb. -« e et eeeee e e 345

Returning to the Anchor aa, the algorithm creates a new patch. The patch is
limited to three sides because of a potential concavity at Vertex 3. 346

Jumping to Kedge b, the algorithm unsuccessfully attempts to create a new
patch, failing because of the exterior angle at what would be Vertex 2 of the
Rew pateh: T o S S e s RS P S S e S S 347

Figure 132 The algorithm now successfully creates a second triangular patch from

IO B 5 oo TR RS R S A S SR
Figure 133 Switching ends, the algorithm now moves the Kedge from bbto ce. 349
Figute 134 In this step the algorithm unsuccessfully attempts to create a third patch

from the Anchor aa. Instead, it notes that the Anchor must be moved in order

O COMBIMUE. - -« v« s e e e e e e e e e e e e e e e e ae e e e e e e e enene 350
Figure 135 Here the algorithm builds a three-sided patch from Kedge cc. 351
Figure 136 Switching sides again, the algorithm now shifts the Anchor from aato dd. 352
Figure 137 In this step the algorithm successfully creates a second three-sided patch

A 353
Figure 138 Having once more had the Anchor and Kedge meet such that there is no longer

a sufficient number of vertices between the two to form a patch, the

algorithm resets the anchor vertices and begins again. - -« -« -« <.+ o...o.o..n 354
Figure 139 As can be seen, each iteration of the algorithm reduces the number of

vertices to be placed into patches until no more are required. -............. 355
Figure 140 Once more the algorithm sets the Anchor, this time A in the figure, to the

firstitemin the Vertex Lit. - oovvnnniiiiniiiii et 356
Figure 141 Switching ends, the algorithm then sets the Kedge BB equal to the last vertex

e VORI .o liaiiissmmmnrnrensrbmadssnsasvessnspinsepaine 357

ShipArrT i

Figure 142 In this step the algorithm unsuccessfully attempts to create a new patch from
the Anchor AA. The failure is due to the exterior angle at the next vertex in

i ot T AT R S G T S S 358
Figure 143 Similarly, the algorithm unsuccessfully attempts to create 2 new patch from

the Kedge BB. Instead, the need to change the anchor is noted. 359
Figure 144 In this step the Anchoris moved 10 CC. o« e veunernanennnanaananns 360
Figure 145 Switching ends again, the algorithm shifts the Kedge from BB to DD. 361
Figure 146 In this step a new three-sided patch is created from Anchor CC. -........... 362
Figure 147 The completion of the new patch also brings the two ends of the list together

again. Hence the algorithm resets for the [ast tme. -...........o........ 363
Figure 148 Beginning again at the star of the Verfex Lis, the algorithm sets the first item.

OB theiehir & « v ssves s wee b s S e S R S 364
Figure 149 Switching ends, the algorithm also establishes a Kedge at ji - .- -..--...... 365

Figure 150 Switching ends again, the algorithm successfully creates a four-sided figure
from Aschor . And with only two vertices remaining, the algorithm has also
successfully completed the new mesh. - -+« <.z vueunnnnanaaaianns 366

ShipArrT i

List of Tables

Table 1

‘Table 2
Table 3

Table 4

‘Table 5

‘Table 6

Table 7

Table 8

Table 9

ShipAreT

Concurrent Engineering Benefits accrue through multiple users. Softwate
developed for Simulation-Based Design offers this potential.

of di based layout

Examples of spatially-based layout CONSTEAIALS. -« - - - +evvveeeennnn.:

This example shows how the QAP formulation is used to determine an
optimal solution given four units 4, 4, cand dlocated at four locations 7, 2, 3
md 4. Connectivity, or weighting values, are shown in the last row of the

of the ipulation and i distics of the

Block Layout formulation using criteria from Table 3. 38

Steps required in the development of a modern Facility Layout Algorithm.
In addition to the material presented in this chapter, a discussion of future
research directions for Facility Layout can be found in Chapter 8.

Steps required in the development of a modern Facility Layout Algorithm.
In addition to the material presented in this chapter, a discussion of future
research directions for Facility Layout can be found in Chapter 8.

Examples of the spatial requirements for a cruise ship. The list shows how
many of the areas of the ship can be treated as quantities of a relatively few
uriber Of space. CHusER: i 52t 1w s R S H R S b b oS

Database field data tyPes. - -« -+« +euevtnernnnrn e eaeainians

Table10 Typical contents of the Patch Adjacencies table. For the purpose of example,

the contents are consistent with the surface patch in Figure 24.
Table 11 Typical entries in the Sofutions for All Vertices temporary table. Each columa

contains the solutions for the plane equations of the POI prism, with one

record for each vertex of the database. .
Table12 The field headings for the Solutions for Patches table. It reduces the contents of

the Solutions for A/l Patches table from a tepresentation based on individual

vertices to one which is based on patches. This shift is required for

subsequent analysis OF the PAtches. -« -« -« +x e rvnrnenensnsneeennenens 99
Table13 Field headings for the So/ufions for POI Vertices table. Because this table is the

result of the substitution of POI vertices into the other patch equations of

the layout, it is already compiled on the basis of Patch_IDS. - - -«-. 100
Table 14 Field headings for the Solutions for Patches table generated in the previous

CHRPRRT: st B S S AT AT 17
Table15 Table comparing the Block Layout representation commonly used for

Facility Layout Problems, and the new Semi-Solids formulation which has

Deen Proposed t0 fepIACE it. - -« -« -« -+« nneernrmn e ae e eas 166
Table16 Ideas for evaluation criteria to compare the model representations Semi-

Solids, Octrees and Bicubic-Solids. - -« -« -« - v oo oeeneennoeeenenes . 167
Table 17 ples of di based layout LS.~ oot 183
Table 18 of spatially-based layout TR 184
Table19 Solid model ison — Primitive and Sweeps. . 227
Table20 Solid model i paris — Spatial itioning and

CONSTUCTVE Solid GEOMEILY. -« -+« < s eneresennenenenaenareeenens 228
Table21 Solid model rep i p — Boundaty Rep jons and

I R O 229

SkipArrT

Context

The award-winning ferry[1] depicted in Figure 1 and Figute 2 was proposed in 1991 and is
a departure from traditional RO-RO ferries. While it contains no recognizably novel features,
the article describing the vessel which appeared in the Royal Institution of Naval Architect’s
journal The Naval Architect concludes with the assertion that the “design shows much thought
and considerable vision of future sea transport and deserves secious study{2].”

What makes this vessel noteworthy relative to other new designs is that its designer,
Hervé Folliott, is a graduate of London’s Royal College of Art and is neither trained naval
architect nor marine engineer. Folliott is not alone as someone without a marine background
being directly involved in the development of new ships. Interior and industrial designers,
civilian architects, and engineers from almost all disciplines are regularly called upon to make
significant contributions to the creation of modern vessels. Le Corbusier stands out because it is a
design of merit which was developed without the input of naval architects. While still an
unusual occurrence, Folliote’s design may be a portent of a decline in the role of the Naval
Architect in the conceptualization and over-all design of ships. It certainly begs the question of

the origins of new designs.

ShipArT

1.1 Introduction
‘This project briefly revisits the ideas of the few naval architects who have published on the
topic of design and uses this work to introduce a research program which attempts to identify
and susmount key aspects of the design process which contribute to the narrowing focus of
Naval Architecture. The inability to model spatial aspects of the design problem has limited the
and optimization of ship design. The imp of comp
modelling and the enhanced capability of CAD systems which results from the material

presented herein are expected not only to reduce costs for owners and builders, but to enhance
the process by which ships are developed, provide tools which may lead to greater
understanding of the design process, address the concems of the authors who have published on
the decline of design, and ultimately, lead to the creation of superior ships.

The thesis is intended to lead towards the devel ofa based Ship

P! 2

Amangement design Tool, referred to hereafter as SkpAnT. To this end two presentations are
made in this document. The first involving the material found in Chapter 1 presents a case for
and examination of Facility Layout Algorithms for ship design. The second, beginning in
Chapter 2 and occupying the subsequent five chapters, outlines a key step in Ship4rT, the
pmentof an three-dimensional ion for ship layout design.

1.2 Design Theory
There are many representations for the ship design process[3][4] but the traditional model is
iterative, and takes the form of a spiral such as that shown in Figure 3. Itis a graphical
representation of the steps in the design process, and because of its formulation, the figure

emphasizes the interrelationship of the topics. The headings shown in Figure 3 are common

ShipArrT

but additional topics ot sectors may also be included in the model. The order by which each
segment of the spiral is examined relative to the others is largely unimportant so long as no
segment is neglected. As ship design is a creative process and thereby iterative, the spiral form
indicates a progression towards an optimal solution as the number of iterations increases. A
sub-optimal design will be achieved if any of the sectors is overlooked or does not yield a local
optimal solution.

The design spiral model has been criticized by many authors such as D.K. Brown who

believes that

“Any design spiral is jally imensi ion of

design in which each topic is investigated in isolation and in turn. The

reality is very different as each topic interacts with many others to a

greater or lesser extent[5].”
Brown suggested that a supetior model to the design spiral is an “interaction mesh[6]” such as
that shown in Figute 4. However, in practice, the mannet of analysis is iterative within sections
of an interaction mesh — that is, for a particular ship length we select an engine and then we
adjust the engine size and update the ship length and so on back and forth to improve the

balance between the two parameters. When seeking solution consistency, the mesh elements

and their i i are almost imp to dardize from naval architect to naval architect

or even ship design to design.
Brown’s position reflects that of J.P. Hope who believed that the “design engineer’s

and £ design continue to be the dominant factors in design

decisions[7].” U ly, the ity and reliability of that experience is becoming

questionable. The number of ships developed by a Naval Architect is declining as designs

ShipArrT

become increasingly standardized, require more detail and take longer to produce. Promotion
has led to younger, less experienced managers who may have had lictle exposure to design
disciplines outside their specialties and the increased use of CAD software has replaced the
experienced draughtsmen who might have been able to advise the Naval Architects[8]. The Le
Corbusier ferry suggests that naval architectural experience may not even be necessary in the
development of new ships.
Tnstead of challenging the Profession’s ability to generate and apply experience through its

members S. Erichsen observed that

“When we fail in design it is in most cases due to a lack of an overview

or of a systematic approach and not so much due to lack of creativity.

[The] first task in developing the discipline of design in naval architecture

[is] to obtain a greater ing of the need fora
approach and an increased use of systematic design methods[9].”
While the design spiral may be an imperfect representation of the design process, itis a useful
algorithmic representation through which to discuss such methods and ultimately iteration and
optimization in ship design. Italso provides an important step towards the algorithmic methods
required for computer-based design.

The lack of formal structure in the current design process creates three problems. First,
because the design spiral method is essentially manual, it can be both slow and difficult to
resolve design changes between particular topics. Using engine selection as an example, a single
change can affect design parameters such as weight, volume, noise, vibration, speed, fuel
consumption and tankage, etc., many of which arc themselves interrelated. Second, because the

order of topics in the design has not been specified, it is possible to neglect topics, or to

ShipArT

introduce unresolvable conflicts between topics. Third, the unstructured eavironment gives the
user freedom to vary the depth of his analysis from topic to topic. Thus an assumption may be
used 1o deal with one aspect of the design, a heuristic for another, and a detailed analysis for a
third. Ships being the sum of their parts, four conclusions can be drawn:

1: The validity of the design is consistent with the

— Correctness
wvalidity of decisions which created it.
2: The design is only as complete as the topics
T
which were included in its development.
3: The accuracy of the design model is limited by
— Accuracy

accuracy of its components.

-

: The level of optimization in the design is
limited by the level of optimization of each of — Optimization

its components.

This paper takes the idea of synthesis one step further by secking consistency — that not
only is every topic understood and reviewed, but also that the analysis is cartied out to the same
level for cach design topic or sector of the spiral. In order for this to take place satisfactory

models must exist for every design topic.

1.3 Design Applications

The relatively recent application of scientific methods to the design of ships, exacerbated by

the introduction of the digital computer, has d specialization within the p
related to each sector of the spiral. Unfortunately, the depth of stady of specific topics has not

been uniform, and as a result some topics have been neglected or passed off to other

ShipAr'T

isciplines. The ity of ship design makes this a problem because each
change made anywhere in the ship affects other areas of the ship, whether they are interal or

external. Ironically, the specialization of areas of ship design at the expense of others may prove

1f- ive for the ion as recent p advances have allowed the automation of

some specialties. By way of. les, hydrostatics have for many years been analysed through

reliable automated software, and recently automated structures programs have been published
by a number of regulatory organizations including ABS and Germanischer Lioyd.
In his 1980 RINA paper Creative Ship Design{10] D.J. Andrews suggested that

... naval architects have taken the method of designing ships for granted

.. [and they] have not given it the attention that the more specialized

areas of marine technology have received .. because [they are] not readily

amenable to engineering mathematics[11].”
To tesolve this problem, Andrews proposed two steps towards “a mote creative ship design
process[12].” One begins with a discussion of design theory in which Andrews employed the
tem gnthesis to describe the comprehensive aspects of the design of ships. Building on the
concept of design theorist C.J. Jones who stated that “synthesis is putting the pieces together in
a new way[13]”, Andrews added that synthesis also demands an “appreciation of the totality of
the newly created form([14].” He believed that through 2 “review of new general techniques and
design theories that these could be used to produce an open and creative design philosophy able
to sexve the ship designer in the future[15].” The holistic definition of design synthesis
promulgated by Andrews may have been his reaction to 2 profession which is increasingly

oriented towards the trees instead of the forest (i.e., the mathematically-based specializations).

ShipArrT

Yet itis important to recognize that while Andrews sought to draw upon work originating from

more artistic roots, he was still ing a sy ic engineering-style approach.
Andrews was particularly interested in preliminary warship design and suggested that
modem to the problem k isions regarding the new vessel’s General

Arangement to a point t0o late in the design process. Because spatial constraints prescribe the
principle dimensions of the vessel and vice versa, Andrews believed that some sort of algorithm
was required which would make spatial requirements part of the initial sizing of the ship. This
led to his other proposal in Creative Sip Design which involved the application of Computer
Aided Architectural Design (CAAD) models to current ship design software 50 as to make
possible an exploration of “significant changes to ship internal layout and hence the total ship
form[16].” The addition of CAAD models was an attempt to bring the computer, and
ultimately the designer, closer to Andrews’ concept of gnhesis since the designer could explore
in detil options previously studied only superficially if at all. Therefore Andrews proposed first
to mathematise the empirical and hence neglected topic of General Arrangement and then to
seek contexts and processes through which to encourage naval architects to focus less upon
subsets and more upon the general design problem.

“The urgent question for the profession, with ever increasing demands

for ing of the intricacies of the i i P is

how we foster the task of integration and the architectural task of
coordinating the design development. The only positive development I
sce in this regard is the growing capability of computers, as true aids to
the designer rather than just powerful analytical tools; however, if they
are to become real aids then the designers must direct their application to

ShipArrT

the architectural aspects. Thus I see my proposal to incorporate layout

considerations in the ealiest stage of the technical design, as notjusta

worthwhile development but an esseatial step towards naval architecture

zegaining s primacy in ship desiga(17].”
Andrews, in advocating ship synthesis, sought to ensure that each design was fully understood
by each designer such that a single designer controlled the entire design process. In his
comments to Andrews, Fuller agreed and stated, “Our profession must go down the track where
vou can comprehend the whole ship, its requirements, and its extemnal relationships ..[18]”
While broad or ‘synthetic’ approaches do not address the level of analysis, they are more likely to
ensure that the intricate relationships of different parts of the design are recognized and
accounted for.

When Andrews published Creative Ship Design almost 20 years ago he felt that the two steps
of his thesis were necessary in the development of better ships. His concern regarding the
mathematisation profession echoes the historic debate over art and science, or more specifically,
architecture and engineering. Several authors have expressed concern that Naval Architecture
was giving way towards ship engineering[19][20]. Andrews feared that, by considering only
those topics amenable to mathematics, naval architects would ignore or approach haphazardly
other topics which impact the overall success of the design. Speaking to the need to systematise
layout design, R. Baker observed

“Mathematics, ot the ability to solve the technical aspects, gave a great
boost to [the respect of a customer for the integrity and competence of
the designer]. (The customer no longer has to worry as to whether the

ship would sink, capsize, break up, stop, o not steer). Unfortunately, the

ShipArrT

success of this element on the prestige of the designer tended to obscure
the importance of arrangement[21].”
At the same time, Baker also noted the importance of the layout to the overall success of the
design and its effect on the reputation of the Naval Architect:
“_. if the layout fails (that is, not liked) factorial N comphaints will
propagate, for the customer or his agents have to live with the
arrangement day in and day out, perhaps for years, and if they so live,
even making do, a failure in this field is bound, at least, to erode respect
and destroy all confidence, whereas an ultimate technical failure, even if
terminal, is only an episode[22].”
The systemisation of the ship design problem, including its sub-problems, becomes an issue of
credibility, with the potential of adversely affecting the position and prestige of the profession in

the eyes of the maritime community. Therefore the future employability of the naval architect is

nowa function of the d lication of mathematics and scientific methods to a//
aspects of design, including those topics which have been previously neglected.

Ultimately the goal of the ship design process is to develop better ships by optimizing every
topic in the Spiral, both relative o the constraints of the particular design area and relative to the

constraints imposed by other areas of the Spiral. Optimization in design requires iteration, but

iteration can be time ing and has a diminishing value of return. In practice,
time constraints limit the number of iterations to as few as one, and likely do not allow a full
exploration of the problem since “few desigers can manipulate more than three variables
simultaneously with some six more in a ‘quick recall memory’ which can quickly be brought into

play[23].” Not only are computers far more capable of coping with broad and complex

ShipArrT

lti-variable p but continuing advances in computer aided design “has enabled detail
o be handled much easlier in the design process” thereby providing the designer with more
information about the overall problem. In turn, this detail has led to a blurring of the line
berween Preliminary, Conceptual and Detail design s the same model is simply fine-tuned over

the course of the project[24][25]. The most recent trend is the development of the virtual ship

through the application of 3D Product Modelling in the US Navy. Based on CAD/CAM

software, a 3D product model

“contains not only 3D geometry, bu also associative and parametric

as well as other ic i ion. [If] provides
technical and logistical data necessary to describe and support a complete
ship design [and] setves as the main information vehicle for ship design

and production i jon, as well as the i for logistics and

other life-cycle data[26].”
Essentially a shared data format, the 3D product model contains all data associated with the ship
and provides a number of tools by which that data can be altered, viewed and managed by one
ot more users. Figure 5[27] shows the significant cost savings potential of CAD and virtual
design. [n addition, computer aided design facilitates concurrent engineering with benefits
suggested in Table 1{28].
Since the designer remains limited to the manipulation of a few variables, the advance

offered by the computet lies in automation. Over the years, software automation has made

possible graphical i input/output control, file 2 wide range of software
applications, etc. The key to the successes which have been achieved stem from the ability to

discretise problems sufficiently that each discrete step can be solved correctly and consistently

ShipArrT

10

and that the movement from one automated step to another can also be carried out correcty

and consistendy. Modem are now sufficieatly complex that they ate developed by
teams of programmers working on specific modules of automated code. Although software
becomes more complex all the time, the exponential improvements in compute hardware
obviate the additional computation required. Despite the complexity of the ship design
problem, advances in automation and the increasing capability of software led Andrews to write
that “the behind devel in preliminary [Computer Aided Ship Design]
CASD to simplify the initial design ‘synthesis’ is no longer necessary or desirable[29].” Building
on this idea, the author proposes naval architects should pursue more robust and sophisticated

models, trusting to automated algorithmic methods to deal with details, just as one might trust
software o display a graph without direct input or action.

Pechaps L.J. Rydill was on the right track when he asked, “With all the computer aids now
available earlier — one has capabilities that were not previously available — how can they be
exploited to improve the design process, as opposed o just improving the facility with which it
is carried out[30]?”

1.4 General Arrangements and Facility Layout Problems
Andrews, in his discussion of synthesis, recognized that the universal problem can only be
tackled once the critical General Arrangement sub-problem has been satisfactorily modelled and
automated. To date layout problems have been poorly if at all modelled using the computer,

either by the marine ity or otherwise. Currently, General A are

solved manually and instinctively. Computer use for General Arrangements is almost always

representational in the form of a CAD drawing. The development of software which can

ShipArrT

auromatically arrange objects with spatial definitions and generate such drawings would be an.
important step towards improving the process of design.

Layout problems are perhaps the most difficult problems to solve with the aid of 2 computer
because they are spatially based as opposed to numerically based. The key difficulty lies in the
representation and manipulation of spatial entities. Flumans are quite adept in determining the
solution of spatial problems but lag far behind the computer in coping with numbers and quickly

ing new spatial —a between implicit and explicit in that

humans attribute meaning to spatial objects beyond the mathematical data required for their
representation in the computer. It is for this reason that most design aids involve a user wotking
interactively with the computer such that the human manipulates the spatial objects relative to
one another, and the computer stores and evaluates the result. Unfortunately, a truly optimal
solution requires an enormous range of configurations to be created and evaluated and for this
to take place some sort of computerization of the spatial aspects of the problem must take place.
Based on barren literature and modern education curricula, Naval Architects appear to be
uninterested in the architectural aspects of their problem, much less in finding systematic
approaches for architectural design. In contrast, Industrial Engineers have made significant
progress towards the development of algorithms for what they termed the Facility Layout
Problem. Although materdal has existed for many years, it was not untl the 1950s and later that

progress appears to have been made towards the isation of the layout p B A

number of computer-based algorithms such as CRAFT and ALDEP built on this work in the
early 1960 and made Facility Layout Problem solvers some of the very eatly computer

applications. The Facility Layout Problem is data intensive as well s having a spatial

ShipArT

and algorithms and ization were ped as tools through

which such daza could be managed more effectively.

The [ndustrial Engineers considered the Facility Layout Problem to be an extension of their
own work in the area of manufacturing in which 2 common problem was the balancing and
optimization of assembly lines. They observed that labour and handling were significant
per-itern costs, and from this it was recognized that a relatively successful layout for a
manufacturing facility is one in which the cost of transporting a product from work space to
work space is minimized, generally achieved by minimizing the distances between departments.
In addition, the Industrial i ized that the p could be used for the

armangement of departments, and that they could quickly generate a score for the layout from the
work-cell-to-work-cell distances, thereby providing a means for the comparison of different
Iayouts. Even the terminology used for spatial layout has been developed along manufacturing
lines such that the jargon refers to any region of a layout as a department. However, since many
layout problems are not concerned with the efficient flow of materials through an assembly line,

for the purposes of this project the generic term space will often be used to denote a room, area,

department or work cell.
Despite many years of work, the Industrial Engineers have had little large-scale success with
their algoril The limitations of the of the day forced them to use heuristics and

crude models, and the resulring solutions were often found to be unsatisfactory and/or

b-optimal. Although computerized layout algorithms are stll used, their application and
acceptance is still limited and the majority of such problems are still solved manually through the
designer’s insight and inuition. The difficulty appears to be that, in principle, modern.
algorithms remain almost identical to the crude models developed in the 1960s.

ShipArrT

The formulation of FLP’s can be reduced to a simple process:
Select a placement or exchange
Perform the placement or exchange
Score the new arrangement
Compate the score with that of previous iterations
where scoring is pesformed by taking information from the layout, usually the distance between
spaces, and multiplying it by some weighting value.
Daa and constraints in FLP’s can be loosely divided into two classes: distance-based and

spatially-based. The two groups are distinguished by their means of ion and
manipulation. Distance-based constraints lend themselves to be measured against a common
scale such as cost and can be evaluated through simple summation. Spatial constraints are better
modelled by inference cngines such as those found in expert systems, since they require 2
decision to be made as 1o the case-specific importance of each constraint or piece of data.
Further, spatial constraints are not easily defined and may be qualitative instead of quantitative
which suggests that Uncertainty Theory might also play role in the manipulation of this group
of information. A. Cortand W. Hills pursued this concept with regard to Naval Architecture by
discussing fuzzy sets in their paper Space Layout Design using Computer Asisted Methods{32).

The following list of potential distance-based constraints ignores the size and shape of the
particular room or space as well as any spatial restrictions; it is instead concerned only with the
relationships between 2 room and its neighbours.

The constraints in Table 2 can be reduced to functions based on distance, and all encourage
or discourage the proximity of one space to another. By use of multipliers distances can be

treated as costs giving a measure of signil to each of the p In essence, cost

becomes a common denominator for each of the constraints, with the constraints acting as

ShipArrT

springs, drawing spaces closer together or pushing them further apart. In more generalized
terminology, cost is used as a weighting function and sezves to emphasize one constraint over
another. In addition to distance-based constraints, there are 2 number of practical constraints
which are not fanctions of distance as the items in Table 3 suggest.

There are signil dif in the ipulation of dis -based and spatially-based

Di based ints are well suited to computerization since they essentially

require the computation of a sum. This is quite unlike spatial constraints which generally require

a decision process to d ine which int takes and which might be

neglected for a particular lagout. U ly, it is difficult to late decisions regarding

spatial constraints. For example, is area more important than the dimensions of length and

width? The ination of ints is a ige-based problem and in the final chapter

is proposed as an area of future work.
The chief difficulty faced by FLP algorithms lies in bringing together spatial information and
aumerical information such as the distance measurement suggested for the constraints in Table
2. To address this problem, typical Facility Layout algorithms employ a number of assumptions
which allow them to employ 2 grid of uniform 2D blocks. This reduces the spatial problem to

one which is binary. C lly, the algorith are not signif ly dissimilar to a child’s

word scramble game (igure 6). By placing uniform blocks into a matching uniform grid, the
Industrial Engineers were able to create an environment in which the computer could, with
relative ease, find its way around the spatial aspects of the problem. Unfortunately, this
approach fails to adequately model cither the distance-based numerical constraints and data, or
the spatially-based and often qualitative constraints and data. However, it does lend itself to

solution by means of the well-studied Quadratic A

ShipArT

15 Quadratic Assig Probl

By far the most common algorithm for solving FLP’s is the mathematically explicit

Quadratic Assi Problem (QAP) Iation. The QAP assumes that spaces can be

represented as standard blocks, and that the design space into which the blocks will be inserted
can be discretised into corresponding slots for these blocks. Mathematically the blocks can be
described as the set M=(1, ..., mr} of equally-sized units, and their potential locations as the set
N'= {1, ..., 1} of n > mareas, each of which can house at most one uait. To address the

distances berween the blocks a distance matrix A = {a;} is required. Finally, 2 connection matrix: B =

{6;} completes the ion and the weighting functions for the various scores
between pairs of spaces. Then,

“let the m x n decision vasiables x;, €M, s € N'be defined as: x, = 1 if

unit £is located at area 5; otherwise, x;, = 0. [fa pair {5 j} of units are

assigned to areas {5, £}, respectively, then the contribution to the

objective function is 4,2, which, with the decision variables introduced,

can be expressed by the guadratic term x,x54, A 0-1 programming

problem formulation of QAP is then[33] Equation 1

min z = I_.;__Z..Z.x
ieM jeM seN teN

Equation1 Formula for the solution of the
Quadratic Assignment Problem.

The solution of the QAP requires the ti i ion of every combination of

blocks in the layout as suggested by Table 4. As a result, heuristics can be applied to facilitate

the solution of the QAP through additional ptions and by distinguishing between

construction nnd improvement. Although the constraining data required by both classes is the same,

ShipArT

ShipArrT

they differ in stare point and can also differ in their £ rules of sit it tigui

and utlizacon[34]. C i ithms such as that in Figure 7 are used to create or

construct layouts by placing the spaces into the design space in some optimal arrangement.
Improvement algorithms (Figure 8) geacrally begin with an existing layout, either user defined
or the product of a construction algorithm, and seek to improve it through the exchange of
spaces. Because spaces often differ in area, during a guess, exchanges may be tolerated which
violate one or more constraining rules.

The formulation of the QAP assumes a standard block size which is used for each space,
regardless of the size of the required space. This in turn creates problems when the time comes
to perform the layout with dimensionally correct spaces since the variety of sizes may affect the
relative positions of the spaces. The distance matrix contains measurements of the distances
from one slot of the solution grid to another. However, the distances are not necessarily correct
because the methods of distance measurement may not be appropriate for the particular
scenario. As shown in Figure 9 these might include Euclidian or rectilinear measures
originating from different points on the object such as a centroid or an edge. The proximity of
spaces is encouraged by the impact of the weighting values found in the connectivity matrix on
the overall score of the layout.

A generalized Facility Layout algorithm takes in user data and user preferences in the form
of weighting fanctions, and is able to indicate the superiority of one layout over another.
Ironically, research in Facility Layout has focused on the decision processes involved in the
problem, and not on the model itself. To the author’s knowledge, no attempt has been made to
address the limitations of block layouts, nor to develop an alternative representation format. If

one is prepared to neglect the problem of ‘fit’ for a moment and examine the configuration, a

17

crude layout can be created simply on the basis of the relationships between cells or spaces[35]

as shown in Figure 10. Essendially the layout problem can been solved without ever having to

address the physical constraint of ‘6. This is reminiscent of the comp ion of Pert

Diagrams with the pitfalls shown in Figure 11.

1.6 Block Layouts and Placement
Spatial constraints can be added to the QAP formulation through the utllization of smaller

blocks. In such a formulation, a user would choose a block size which could be used as a
common denominator for all of the spaces in the layout. Then an appropriate number of blocks
would be allocated to represent the floor atea of each space. To address the problem of
homogeneity — the need to keep the blocks which define a space adjacent to one another —a
very high weighting value in the connectivity matrix is used. While this clegantly introduces
spatial considerations to the QAP ion, in practice it only crudely models the spatial

problem. This can be by testing the + of the block layout formulation

in addressing the constraints in Table 3 as summarized in Table §

Fisst, block layout assumes that the sizr of a space is fixed. However, the reality is that there
is often a range of acceptable sizes. A bedroom would be 2 good example with a minimum,
preferred and maximum size and an acceptable solution lying somewhere in this range. Also,
block layout does not offer any means by which the orientation of a rectangular space can be
prescribed where a long and narrow space is required. The examples in Figure 12 illustrate
these concerns by depicting some of the odd configurations which can result from manipulating

block layouts[36].

ShipAnT

As previously discussed, fomogeneity can be ensured by means of high score weighting
between the blocks of a particular space. Simpliaty and cnfiguity are encouraged by the same
rules, but block layout can lead to instances such as those in 2. Consstency can also be forced by
means of the high internal scoring weights, but this can adversely affect acceptable variations in
shape/aspect ratio.

The complete Unilization of the layout region is ensured by the formulation’s explicic
definition of each of the blocks in the design space. Block layout does not lend itself to specific
control of access details such as doorways and windows, nor can it cope with elements which
could be shared in some configurations and independent in others. Finally, acessibility can be only

approximated by the block layout ion. Two find application in these

instances but each has disadvantages. First, including a corridor allowance in the area required
for each space effectively removes the problem of acressibility from the formulation. At the same
time, however, it can lead to configurations in which the position of the corridor is impractical
or inefficient. In the second approach, a corridor can be defined as a separate and additional
space with a high adjacency value. However, neither is there a means by which corridors can be
defined which vary in size depending on traffic flow, nor can the size of transportable objects be
modelled. There is also no facility through which corridors for two neighbouring spaces can be

shared, thereby taking up less floor area in the layout.

Despite all of these problems and limitations, block ions persist as the most
common spatial representation found in Facility Layout problems. While the reasons may vary,
the simplicity of the depiction and the underlying mathematics has great appeal whea no

obvious alternative exists.

ShipArT

19

“The problem of developing a layout planning decision aid appears to be

this: 2 on that is i display and for
the drafting process is not well suited for the designer's purposes or for
design algorithms. Conversely, a representation that is convenicnt for
algorithmic manipulation is not well suited to display and drafting

operations[37].”

1.7 FLP Algorithms and Naval Arch

The field of Naval Architecture presents 2 unique problem for traditional Facility Layout
designers. Moving beyond the spatial problem described in the previous section, a ship’s
General Arrangement calls for an integrated approach for aspects of the problem because of the
unique shapes and problem details involved.

Generally a vessel’s hull can be used to define a region for acceptable placement — spaces
cannot be placed outside the hull, nor outside a prism which extends upward from the deck line.
In the area within the hull it is desirable to £l the entire region — void space is wasted space.
Above the hull, one of two situations can occur: eithe the layout will drive the sides of the
superstructure to the boundary as might be the case in a bounded construction algorithm; or the
layout will take place freely within the prism as might be the case for unbounded placement.
This makes superstructure design a hybrid of bounded and unbounded construction (Figure 14)
methods with their associated constraints. Further, it is desirable to allow variation of the layout
during the improvement algorithm. Thatis, in instances where an unbounded superstructure
has been created, improvement algorithms should be able to alter the shape of the

superstructure as it exchanges spaces.

ShipAr'T

20

Neglect the superstructure for a moment and take the problem of arranging spaces within
the hull as an example. If one were to take a slice of the hull similar to a watedline to use as a 2D
design space one must first determine the elevation of the slice above the keel to achieve the
correct deck heights. This is 2 difficult task without first examining the hull contents for their
vertical dimensions and the potential for multiple decks. [n addition, one s also faced with the
problem of placing rectangular blocks against a curved boundary/design space regardless of the
slice. The obvious solution would be to use smaller blocks so that the curved boundary can be
better approximated; however, from the point of view of computational efficiency, more blocks

require more ion for evaluation, alteration and scoring. Also, the exchange of small

blocks may have only a negligible or even unevaluable effect on the score of the layout. Itis also
possible that the block exchange impacts the layout like a step function. For example, if one
thinks of a parabolic objective function then the exchange of a pair of blocks could hop from
one arm to the other without bringing the solution closer to the optimum. Problems such as
those described above will be difficult to overcome given current algorithms.

Is 2 2D approach teasonable? The hull form is actually a surface which curves in three
dimensions and areas within the ship almost always conform to these curved surfaces. One
need only examine the intesior of a sailing yacht to see how much the shape of objects contained
within the hull are affected by the hull/boundary. In order to address these characteristics a 3D
design space comprised of small cubes may be considered. To reduce the number of cubes
requiring examination it may be desirable to use polyhedrons which are the height of a Pween
deck space. However, while simplifying the problem in one respect, the contents of many

spaces need not necessarily rest on a flat floor. By way of example, the placement of a desk

against a canted wall may be quite 1 despite the possibility that it i cither

ShipArT 21

overhung or undercut by the wall. Flat decks are also a crude assumption because ships
commonly have camber and sheer. It is also common to find decreased head room in some
areas of the ship even though the area may be on the same deck as a taller space. Each of these

problems is difficult to model without a still further increase in block resolution — although one

might argue that camber and sheer can be by using a
system which alters the height of the blocks for particular X and Y (length & beam) coordinates.
For example, if one sought to design the interior arrangement of a large cruise ship one
might be dealing with a design space of 260m x 32m x 50m. Taking this to be rectangular for a
moment and using a 1m-sided cube as a spatial unit one finds that one is dealing with 416,000
cubes. And this assumes that all spaces in the interior of the vessel are divisible by 1m. A more
reasonable resolution would be litres instead of cubic metres, but this increases the number of
cubes to 416 million. Even by using a block which is 10cm by 10cm by 2m, the quantity of

to be solved is still i ically high.

Unlike many land-based layout problems, Naval requires the consideration of 2
number of constraints including the location of weight and the ship’s stability. Also, a number
of spaces must be placed in particular areas of the ship regardless of the efficiency values
suggested by the scoring engine of a layout algorithm. To illustrate this point, consider the
location of mooring winches and other equipment. The complexity of the layout is important
because not only ate services such as electricity used throughout the vessel, but the generation of
that electricity must also be accounted for. Further, in many instances it may be more effective
to distribute HVAC equipment throughout a cruise ship rather than distribute these services

from a single central location.

ShipAnT

In 2 subsequent paper to Creative Ship Design[38] called An Integrated Approach 1o Ship

Synthesis[39) which appeared in 1982, Andrews proposed a computer-based algorithm not

entirely dissimilar to the Quadratic Assi algorithm. U Andrews was more
interested in solving the Synthesis problem than the General Arrangement sub-problem and was
unable to automate or adequately develop his layout algorithm. The poor results he achieved
with his Synthesis algorithm could be attributed to his inability to effectively cope with the
spatial problem — ironically because the goal of his work was to “incorporate a fuller design
description in the initial synthesis of 2 new ship design through concurrent consideration of
spatial disposition[40].” Andrews feared black box solutions, and the resulting layout algorithm

called for the i ive and ic manipulation of spaces which the computer would

then score. The scores would then be used to update the remaining, automated, design modules
of his Synthesis algorithm. Scoring took place on the basis of circulation densities (a measure of
adjacency based on the traffic between different spaces) as the measurable quantity for the
relative positioning of spaces within the layout.

Despite ing on just the General A problem, other authors remain

trapped in an examination of scoring scoring and not representation and automation.
J.P. Hope's paper, The Process of Naval Ship General Arrangement Design and Analysis{41] proposes
several scoring principles and demonstrates 4 manual algorithm for their implementation.
Similarly Cort and Hills, while concentrating their efforts on the application of Fuzzy Sets when
they published Space Layout Design Using Computer Assisted Methods{42], finished with a

representation and algorithm not dissimilar to the manual one used by Andrews.

For the purpose of Naval Archi an 3D ion would be desirable

since it would be better able to model the unusual shapes and surfaces common to ships. In

ShipArT

addition, any new formulation must be automated so that the process of General Arrangement

design can advance beyond the stage of calculators and electronic drafting boards.

ShipAnT

Figures Pertaining to Chapter 1

Figure 1 Model of Le Corbusier — a proposed RO-RO ferry design.

Figure 2 Cross-section view of Le Corbusier showing the ferry’s General r\mngcuwn(

ShipArrT

Vessel
Objectives

Design
Principle Evaluation

Subdivision

Figure 3 An example of a Design Spiral. The General Arrangement problem is shown in grey

to denote its limited computerization.

ShipArT

26

/
Hull Form « =
| F“ N 7
Keeping UPtakeS Size Number of Decks g
- - N -
el
Operabiity ~ UPPerDeck pocuired
N Ny
Helicopter " Materials
Amangement \Veapon Fit —CrewSize /e rability)
EwW. Ship Husbandry
Figure 4 A depiction of an interaction mesh, very much like that originally proposed by D.K.
Brown in Naval Architecture[6]-

ShipAreT

Figure 5 Cost Pyramid showing that small expenditures carly in the design process can lead to
cnormous savings at subsequent stages.

ShipAn'T

Figure 6 A child’s word scramble game is analogous to the 2D Block Layout approach used
by Industrial Engineers to solve Facility Layout problems.

SELECT a new seed Space
PLACE the selected Space in the layout
FOR i = 1to number of spaces
SELECT a Space not yet placed
PLACE the selected Space in the layout
NEXT i
SCORE layout
IF Score < PreviousScore THEN
PreviousScore =

ENDIF
UNTIL the number of iterations is sufficient

Figure 7 de fora ion algorithm. Note that suffident can be a user-defined
preferential value.

ShipArrT

29

GET DATA
REPEAT
CHOOSE a pair of activities
ESTIMATE the effect of exchanging them
EXCHANGE if the effect is to reduce cost
CHECK to be sure that the new layout is better
'UNTIL no more improvements are possible

for an irp!

Figure 8

Euclidian Distance
from Comner to Corner

Euclidian Distance from
Centroid to Centroid

Distance from
Centroid to Centroid

I

Figure9 Examples of distance measurements.

ShipArrT

Figure 10 A graphical depiction of the creation of layouts on the basis of distance relationships
berween spaces. Five different weighting values (shown with five different line
types) were used with an arbitrary distance unit to create this figure.

ShipArrT

31

While layouts can be created on the basis of the positions of centroids, the addition
of spatial information may make such solutions invalid. Here, not only do spaces
overlap and have unnecessary void regions, but some spaces violate the exterior
boundary of the design region.

SbipArrT

32

A =36 units B =20 units A = 36 units D =32 units
C=24unts | D =32 units C =24 units B =20 units
|
!
A =20 units
. o | o L
A =36 units C =24 units
C =24 units
A= 36 units

probl

Figure 12 A series of images showing various block layout configurations for the same layout

ShipArrT

LI

|

Figure 13 qu:haxymdwnn‘wxypmblmamhbckhyoms The example on the left shows
the jagged edge which can result from the algotithm’s desire to place 2 boundary
through the middle of a grid unit. On the right is corrido in which one of the
spaces violates a contiguity rule and thereby ruins a clean wall line.

4 3 b L 3

Figure 14 Bounded vs. unbounded placement. The figute t the left shows how the addition
of 2 boundary constraint affects the shape and position of several spaces.

Compare
this to the same spaces in their ‘natural’ configuration in the unbounded example on
the right.

ShipArrT

Tables Pertaining to Chapter 1

Table 1

ShipArrT

Development Ti 30- 70 % reduction
i Changes _| 65 -90 % reduction

Time to Market 20-90 % reduction

Overall Quality 200-600 % improvement

Productivity 20- 110 % improvement

Dollar Sales 5 -50 % improvement

Retun on Asset 20 - 120 % improvement

Concurrent Engineering Benefits accrue through multiple users. Software developed

for Simulation-Based Design offers this potential.

35

Weight

room weight is relevant for large buildings and ships

Traffic

frequency of peopla/goods entering and departing

Vibration and Noise

vibration or noise created in a room, or the tolerance
of a room for vibration and noise

Services

Thermal Insulation

electricity, water, sewage, efc.

level of, or importance of, insulation for heat or cold
from one region to another

Construction Cost

Operating Cost

cost fo assemble and instail
cost of maintenance and upkeep

Access (corridors, stairweils)

requirements for people and goods beyond the room

Proximity to exterior

Adjacency to other spaces

need for external access

need to share a wall with another room

Proximity to other spaces need to be close to or far from another room
Sharing of common spaces corridors, washrooms, entrances, efc.
Table 2 les of di based layout

ShipArT

size of a space is not necessarily fixed
Orientation | orfentation refative to other spaces or the boundary

AspectRatio | shape of a space s likely bounded
Homogeneity | a space is not divided into several pieces
Simplicity few comers or jagged edges

Contiguity one wall ieads into another on the next space

Consistency | similar spaces resembie one another

Utilization no voids, and fixed structures and

Sharing efficiency of common spaces such as corridors,
washrooms, entrances, etc.

Accessibility | corridors, stairwells
Access location of doors, etc.

Table3 Examples of spatially-based layout constraints.

ShipArrT

37

Units located Distances associated Sum of
atareas with unit pairs Connectivity

1 2 3 4|@b)(ac)(ad (bo)(d|*

= blcidl 1 2 & 1 2| s |

a b DEEERFEERN 78

a c | d| 2 1 4 1 3 60

alc b 4 1 2 3 1 70

a'd c|l 2 ;i 4 ;1] 2 3 79

sidicibl 4 2 12 1| &

b a| a7 1 7 {3 [2] 51

b|a] c 1 3 1 4 | 2 73

Table 4 This example shows how the QAP formulation is used to determine an optimal
solution given four units 4, 4, ¢ and dlocated at four locations 7, 2, 3 and 4.
Connectivity, or weighting values, are shown in the last row of the table.

Size the size of a space is not necessarily fixed No variance
Orientation orientation relative to other spaces or the boundary No control
Aspect Ratio the shape of a space is likely bounded Limited variance
Homogeneity a space is not divided into several pieces Yes
Simplicity few comers or jagged edges To an extent
Contiguity one wall leads into another on the next space To an extent
" P In size but not
Consistency similar spaces resemble one another ily in shape
Utilization no voids, and adherence to fixed structures and Yes
y efficiency of common spaces such as corridors,
Sharng washrooms, entrances, etc. No
Can be assumed part
Accessibility corridors, stairwells of each space or forced
as an additional space
Access location of doors efc. No
Table 5 of the ipulation and ion of the Block

Layout formulation using criteria from Table 3.

ShipArT

ShipArrT

Research for this project began as a master’s degree investigation into computer-aided ship
design, and focused in particular on the use of knowledge-based (expert) systems. Andrews
among others recognized that these tools could be useful for ship design and several attempts at

the development of such programs appeared in the literature as this work began[43] [44].

During the literature search it became clear that the pplication of knowledge-based
systems was casier said than done. Since knowledge-based systems are best suited for the
balancing of relatively few, closely related constraints, the limited success of such systems is
primarly anributable to the quantity and domain of data involved in the problem. Design Spiral
solutions are particularly difficult to model because of the wide range of relatively unconnected
data required.

Having expanded the search parameters, it became evident that the tools for ship design,
whether knowledge-based or otherwise, focused on the derivation of principal dimensions and
characteristics and that no algorithm attempted to study the problem of design from a
functionality viewpoint. Thus, a designer is forced to work interactively with CAD software to

manually generate a vessel’s General Arrangement for each iteration of the design spiral.

ShipArrT

Esacerbating this problem is the great number of cases in which the General Arrangement
drives the external design parameters.

An algorithm which can generate a reasonable design of the interior layout of a ship would
serve to ensure not only that no element of the General Arrangement is omitted but also reduce
the time and effort required of the naval architect. Used in conjunction with 2 parametric or
knowledge-based optimization method, a Facility Layout Algorithm would make possible the
creation of a relatively complete preliminary design in a very short period of time. Hence, fora
given period, cither additional iterations of the design spiral can be completed thereby creating
potential for superior designs, or, greater number of preliminary designs can be generated.
Each design can also be developed in more detail due to automation of an increasing number of

design tasks, again creating the potential for superior designs.

2.1 A New Facility Layout Algorithm

A new Fadility Layout Algorithm, in order to bring about superior solutions to those of its
predecessors, must begin by replacing the heuristic block spatial representation. This leads to a
more complex algotithm and requires the use and management of significanty greater quantities
of data. The increased level of detail will make possible studies of routing and corridors
previously carried out either manually or crudely modelled through the use of heuristics.
Previous work in the field identifies algorithmic steps and suggests systematic approach to the
problem. In particular, scoring methods and many of the decision processes which have been
well-studied over the years can be easily expanded upon and employed by a new layout
algorithm. Table 5 shows the steps of a new Facility Layout Algorithm, and suggests the types
of computational tools and approaches required for each step. The modules are intended to

ShipArT

operate as separate entities drawing from and contributing to a central database as shown in
It was decided to name the project Ship Arrangement Tool, ot SkaAnT, so as to reflect the
emphasis which has been placed on Naval Architectural problems. From the table five
development tasks for ShipArnT become apparent:
® 2 Relational Database through which problem data can be tracked
and easily manipulated
® an Expert/Knowledge-based System for the manipulation of
conflicting constraints
® a Solid Modeler for spatial representation
® an algorithm for the solution of the problem of Routing and
superposition
® an Expert/Knowledge-based System and /o a number of optimization
algorith i A ling, Genetic Py
Dynamic Programming, etc) for updating and facilitating the
algorithm’s decision engine

The critical step in this list is the ofa iStie and robust jon for

the spatial aspects of the FLP. For this reason this project has explored the development of an

to the block ion called Semi-Solids. The ion stresses the
P and manip of 3D spatial objects, and is expected to address
citical ings of traditional Facility Layout lati

ShipArnT

41

2.2 Relational Databases

Any modern approach to Facility Layout would be expected to be far more encompassing
than its traditional counterpart, thereby requiring the collection and management of a very large
and varied dataset. A number of potential data fields are suggested in Table 6. The relationship
between data elements, or referential integrity in database jargon, becomes increasingly
important with the number of users and with the breadth and complexity of the problem. Large
databases and Relational Database Management Systems (RDBMS) have appeared in Naval
Architecture literature for many years[45], with the powerful system employed for 3D Product
Modelling (described briefly in Section 1.3) as an interesting demonstration of the ability and
advantage of collecting a project’s data in one universally accessible group. Thee s also some
merit in making data, as opposed to software, the common element for a project, whether it is
Facility Layout or broader Design Synthesis, because it leaves the user free to employ the models

and software tools of their choice in the manner in which they choose to use them.

2.3 Expert/Knowledge-based Systems
“A computerized expert system, as the name suggests, models the
reasoning process of a human expest within a specific domain of
knowledge in order to make the experience, understanding, and
problem-solving capabilities of the expert available to the nonexpert for
purposes of consultation, diagnosis, learning, decision support, or
research. Usually an expert system is distinguished from a sophisticated
lookup table (which merely maps questions to answers) by the attempt to

include in the expert system some sense of an understanding of the

ShipArr'T

42

meaning and of questions and i ion and an ability to
draw non-trivial inferences from data[46].”

Although expert systems have been used for engineering problems for some time, they have
been shown to be ill-suited for broad or complex problems[47]. Knowledge-based systems,
often referred to as ‘Expert Systems’, are generally used where 2 decision is required based on
incomplete or conflicting data. In this instance, a knowledge-based system would be used t©
derive information where data elements are missing or are contradictory. For example, the FLP
formulation will require leagth, width and height in order to create a new space. However, itis
offen more practical to define a space on the basis of an area and height. The knowledge-based
system would be used to determine the values which would ot be specifically prescribed by the
user but are required by the algorithm. In a second example, where values fot length, width, and
area have been prescribed but are in conflict, a knowledge-based system can be used to check
and resolve the conflict. A second application of a knowledge-based system would be to
manage qualitative constraints such as large, small, airy, etc.

The conteats of Table 6 also suggested that it may be possible to employ knowledge-based
systems to improve the layout decision process. The expert system’s ability to infer missing
informarion and to represent the practical experience of their human counterparts makes them
ideal tools for the rapid development of innovative layout solutions. As such they extend the
capability of modern optimization algorithms such as Genetic Programming and Simulated

A i]. Details and for this topic have been left for future work.

ShipAr'T

2.4 Routing Problem
The routing problem calls for the determination and placement of efficient routes between
various spaces in the layout. This includes the construction and cost minimization of corridors
and services such as piping, wiring and ducting. Most importantly, the algorithm examines cost

reduction through the sharing of routed services. Once solved, the results of this section will be

used to contribute to the layout’s overall score. Like the dge-based system

this section has been left for future work.

2.5 Traditional Facility Layout Approaches
This category refers to documented and accepted practices for the solution of Facility
Layout Problems. Solutions for the sub-problems Creation of a Layout Plan and Decision of Layout
Inmprovements have traditionally been based on the relationships between the nodes of spaces as
opposed o the spaces —ie, i of spatial ints. Despite the poor

manner in which traditional Facility Layout Algorithms represent spatial objects, many of the

steps of their algorithms are quite elegant and are worthy of further consideration and

Scoring, ordering, and imp methods have been well
studied [49][50] [51] (52][53] and thete is 1o reason why they cannot be used with an improved
representation format. Because of these strengths the traditional Faclity Layout Algorithms
provide an excellent place to begin the development of a new model appropriate for Naval
Architecture. This section bas been leftin the general terms above as it has already been well
examined in many sources, and since it has not been implemented in this phase of the ShipAnT

project.

ShipArrT

2.6 Semi-Solids Modelling
Semi-Solids modelling refers to a method for the representation and automated
manipulation of regular and irregular three dimensional objects. Developed for this project, it
addresses the limitations of solid and surface models and offers a viable alternative to Spatial
Enumeration methods such as that used in block layout. A description of CAD model
representations has been included in Appendix 1. While computationally more demanding than

the itic block ion, Semi-Solids is signif more flexible and able. The term

Semi-Solids was coined to reflect the sis ities and dil between this lation and a

traditional Solid Model. For data storage and for the purposes of manipulation, an object

created as a Semi-Solid closely resembles a solid model employing a Boundary

A Boundary Representation means that the object is defined by the surfaces, lines and vertices
of its exterior. Surface definitions such as colour and texture may also be included in a
Boundary Representation. Appendix 1 contains a more detailed explanation of Solid Modelling.

The ‘semi-’ designation refers to the atypical manipulation process employed by the

The majority of Solid Modellers create a single entity from the two ot more primitive entities

by intersecting the primitive objects mathematically. Referred to as C ive Solid Geometry,
the process employs Boolean Set Operators such as umion, intersection, addition and subtraction t©
manipulate simple objects such as cubes and cylinders. Undetlying Constructive Solid Geometry
is the assumption that any object can be created from a combination of primitive objects.
However, the approach is one of brute force and may require many primitives and a complex
seties of manipulations in order to create a shape which might have been more easily defined by

its boundaries. A (a four-sided pyramid) is an excellent example of such a case

(Figute 16). Shapes whose sutfaces are greater than second order, such as the splined bicubic

ShipArT 45

surface of a ship’s hull, cannot be modelled using itional solid modelling and

certainly cannot be constructed through the use of primitives. Since the ultimate goal of this
project s the design of ships, the problem of manipulation is one which must be overcome in
thei representation. In addition, it has been found that Constructive Solid Geometry cannot
cope with situations in which primitive objects do not contact or overlap one another —a

situation common in Facility Layout. Finally, like almost all CAD systems, Solid Models have
been constructed with the intention of interactive usage. For this reason, there has been very

little success in the ion of Ce ive Solid Gi etry — of having the computer

decide which primitives and Boolean transactions to use to create a more complex solid.
Given these limitations, Semi-Solids relies on the alteration of an object’s boundary
definition for changes in shape and size. The process is not trivial however. An analogy to the
difficulty experienced by the computer in dealing with a layout problem would be to consider
the plight of a blind person attempting to work with the Program Manager within Microsoft
Windows. Even if the person is able to find an icon to activate, they will not know what
program the icon invokes — the graphical icon object has no meaning because they do not use
the visual medium to interpret the world. The situation is further complicated because the
computer lacks the blind person’s spatial understanding of the objects on the screen (e.g., the
icons are adjacent to one another). Constructive Solid Geometry copes with highly complex
objects because the software can refer back to the primitives from which the object was created
in order to create a new surface. In Semi-Solids, the surface of a new object must reflect the
surfaces of its adjoining neighbours — there is no underlying combination of objects from

which a surface can be derived.

ShipAreT

The process of developing a new surface on the basis of neighbouring objects is 2 four-step
process in the Semi-Solids formulation, and a chapter has been devoted to each. The high

computational demands of the approach are consistent with the computer’s difficulty in

assigning meaning to graphical data. Manipulation using Semi-Solids is p d facet by facet
and it has been assumed that facets can only be altered in a direction perpendicular to the plane
of the face. Hence, a cube requires the process to be pursued six times, one for each of its faces,
plus additional iterations for any newly created patches.

The first step for the computer is to create an object and place it at a location in the design

space. In the context of Table 5, the location of 2 new space is an aspect of the problem which

ped using traditional FLP hes. Even so, the initial location is a non-trivial

canbed pp

problem requiring further work and will be discussed in Chapter 7. Forrunately, considerable

progress has been made in previous work by Industrial Engineers. For each new object,

i ion, including plane for each face, is defined by the algorithm.

Also, the object is defined in the same manner as a mesh such that only one facet can adjoin the
cdge of another facet (Figuse 17, Figure 50).

The analysis of the object begins by identifying if and which objects are in the proximity of
the new object. Methods developed for computer graphics problems use projections of lines
and points in order to correct the display of coincident and hidden objects. However, the
process is carried out on a pixel-by-pixel basis consistent with the display of the object and is

inefficient for the purpose of an automated model suitable for Facility Layout. Instead,

Semi-Solids takes ads of planar mathematics to identify objects neighbouring each plane.

Since each facet of the new object is exami peadently of its neig} itis

convenient to refer to it as the Plane of Interest or POL The algorithm creates a prism

ShipAreT

47

perpendicular to the POI and by a process of evaluation and substitution identifies those objects
which intersect the prism. Because plane equations are used to define each object, the equations
can also be used to determine if the POI faces the interior or exterior of a neighbouring object.
For the puzpose of decision making, it is convenient to sort the neighbouring objects on the
basis of distance from the POL The decision process in which a choice is made between
moving the POI and allowing it to remain unchanged has also been left for future work and is
described in the last chapter of the project. However, for this discussion it has been assurned
that the decision was to make a change.

The next chapter of the algorithm deals with altering the boundary of a Semi-Solid object
and is carried out in two phases. First, the POI must be altered to resemble the surface which it

will adjoin. Since this step often requires the creation of additional facets, an algorithm for

doing so has been ped. For cach i ing patch, it determines all 24 potential
intersection points and then reduces this to a list of no more than eight vertices from which the
new patch or patches will be formed. A sort is then used to determine the correct order of the
vertices, and the new patch or patches are created in a process much like connect-the-dots.
Chapter 6 describes the final step of the process as one of accounting in which the adjoining
object faces are updated to reflect any new patches which have been created by the previous
step. [t again uses sorts and a connect-the-dot process to create new patches. The model can
then continue by assigning the next facet of the new object the role of POL, until all the facets,
includiag any which are newly created, have been examined and updated. The final step
involves the removal of unnecessary patches and has been left for future work as described in
Chapter 7. The next four chapters explore each of these steps, and their relationships to one

another are shown in the flowchart in Figure 18.

ShipArrT

2.7 Development

The solution of Facility Layout Problems requires a great deal of iteration and the problem

does not lend itsel, at least initially, to i ive app Because the layout is controlled
by the weighting parameters used in its solution, an interactive interface with the graphical
depiction of the layout is unnecessary. Images will need to be generated to illustrate the solution

of the problem, but these will only be viewed once the algorithm has its

In this, the new program differs significantly from typical CAD software in which the
manipulation of objects is almost entirely controlled by a graphical and interactive drag-and-drop
approach. Although the drafting program AutoCAD is effectively an industry standard for the

underpinnings of commercially available Facility Layout Algorithms(54], the difficulty it poses as

2 develop 2 discouraged its use in the same capacity for this project. Further, it
was feared that too much effort would be spent customizing the algorithm for AutoCAD rather
than developing the best layout engine possible. For these reasons it was decided to focus the

ShipAnT develop effort on the iy ion of data leading to the solution of the FLP and

not on its display. Hence coding was required ot the importation and exportation of daa and
images, while their display and printing was to be handled using commercially available
third-party software. The transfer format was chosen to be the Drawing eXchange Format (% DXF)
used by AuteCAD design sofcware. The reasons for this decision include:
® _A4usCAD is a sophisticated 3D design environment capable of
the depiction and editing of solids and meshed surfaces
® DXF format lends itself to computerization and is freely available

to software developers

ShipArrT

@ AuoCAD and DXF are common exchange formats for graphical
information used by many programs in addition to AutoCAD

® a0 understanding and use of DXF was already required for the
importation of hull surface information from the AutoS4ip
software available through the Faculty of Engineering at
Memorial University of Newfoundland

Having dealt with the depiction problem through ion to AutoCAD a lop:

environment was required for the complex S4iAnT algorithm. A number of

languages were considered until it was di d that Mi bad developed both Vimal

Basicand the Relational Database Management System (RDBMS) Acess. The two programs are
compatible to the point where they can be considered combinations of each other. Visal Basic
makes available to software developers the same database engine used in Azess, which

effectively makes it possible to recreate Aecess. Microsoft also moved to use Viswal Basic as its

macro language in Awess. Following wotk in both envi itwas
that isual Basic lent itself to the development of interface, but made manipulation of the
database difficult. Conversely, using isua/ Basic as 2 macro language within Aeess introduced
minor interface limitations, but the database elements could be manipulated with far greater
ease. Again recognizing that the task at hand was the Facility Layout Algorithm and not the
interface, it was concluded that Awess was the best eavironment for the development of
ShipArT.

Since this thesis has d on the develop of Semi-Solid: ing has also

focussed on this part of the problem. As suggested in the previous section, the next three

chapters deal with the Semi-Solids formulation. However, only the code for the algorithm

ShipArT 50

described in Chapter 4 has been impl db € time ints. The algorithm for

the material found in Chapters 5 and 6 has been expressed as the pseudocode found in
Appendix 2 but should be mote than adequate to demonstrate the workings of the Semi-Solids
formulation. Even if the coding was completed for Semi-Solids, additional work will be required
for a decision engine to drive the formulation. More on this can be found in Chapter 7. Both
the code and pseudocode have been collected in Appeadix 2.

There are considerable differences in the style of the completed code when compared to that
which is only in pseudocode form because the former has, wherever possible, taken advantage
of the datbase engine to perform many computational tasks. It was hoped that the use of the
database’s intrinsic functions for sorting and data manipulation would reduce the algorithm’s
run-time and prove less complicated to code and debug. While it was successful, it was found
that the database tools were better suited to batch oriented tasks such as ‘sort this list’ or
“calculate X for each of this lis?. Since the algorithm of Chapters 5 and 6 requires the use of
multiple iP statements for more specific checks, it is likely that the database functions and the
Structured Query Language by which many tasks are executed will be less prominent in future
coding.

A broad and detailed database structure was developed in addition to the work on
Semi-Solids. In part a response to the long-term needs of Sk AT, the database is also the
tepository for the spatial data used by Semi-Solids. Its structure has been explored over the next
few sections.

Fanally, Chaptee & contains suggestions for fanse otk i axpending this dasbise, arid
provides a detailed outline of the direction of further research should

pursue towards completing the new General Arrangement model.

ShipAnT 51

Figure 16 A tetrahedron.

[

Figure 17 An example of a valid mesh clement showing the four adjacent sides.

ShipArr'T

53

Figure 16 A tetrahedron.

Figure 17 An example of valid mesh clement showing the four adjacent sides.

ShipArrT

For each Space in the
Layout

Insert the Space.
il Intarference Checking
(Chapter 4)
Dacision Process

For each Facet (including
newty created facets)
tLoop

No

No
Figure 18 Semi-Solids general algorithm. The flowchart shows the relationship of
the material presented in the next three chapters.

ShipArrT

Tables Pertaining to Chapter 2

Gather & Manage Constraint Data Relational Database
Represent Qualitative Constraints Uncertainty Variables
Interpret and Deal with conflicting Data Expert/Knowledge-based System
Create a Layout Plan litional Approaches, Probabilistic
(deals with relationship constraints) Memods or Graph Theory
Generate Layout including Corridors Semi-Solids Modelling
(deals with spatial constraints)
Generate and Superimpose Services Routing Problem
(deals with most ed
constraints)
Evaluate Layout Traditional Facility Layout Approaches
(evaluates score of spatial and
distance-based constraints)
Decision of Layout Improvements Traditional Facility Layout Approaches
(what changes to make to Layout Plan
or Spatial Layout) Possibly improved through the use of an
Expert/Knowledge-based System
Execution of Layout Semi-Solids Modelling
Report G
{dala. drawings, costs, ir ies, efc.)

Table 5 Steps required in the development of a modern Facility Layout Algorithm. In
addition to the material presented in this chapter, a discussion of future research
directions for Facility Layout can be found in Chapter 8.

ShipArrT

Space Definitions dimensions, boundaries, access, etc.
Service Requirements electricity, water, sewage, light, HVAC, etc.
Relationships relationships and links between spaces
Regulatory Requirements Lioyd's Register, Canadian Shipping Act, etc.
Solutions and Scenarios

Documentation

User security, etc.
Lists of Changes and Updates

made to the Database

Table 6 Steps required in the development of a modem Facility Layout Algorithm. In
addition to the material presented in this chapter, a discussion of future research
ditections for Facility Layout can be found in Chapter 8.

ShipArrT

The ShipArrT Database

The ShipArrT program takes full advantage of the capabilities of the relational database
format. Related information is kept in simple tables which are linked to other tables by a varety

of relationships. Continuity via relationships is through the use of pointers. Pointers

ate pieces of information common to more than one table, and are used to direct the program to
specific records. Field names including the script “_ID” refer to pointers. In structure, the

database can be thought of as a series of zones s depicted in Figuse 19.

3.1 Zone 1: Interior Inventory
Zone 1 can be thought of as the trunk of the tree which is the ShiaArT database; it contains
three tables — S Overall, Class List, and Space List. The zone is depicted graphically in Figure
20.
ShipArT begins the design process by allowing the user to stipulate the quantity of 2
particular class of spaces to be placed in the layout. The class definition does not include the

specific location of each space; it merely identifies data and constraints appropriate for cach

ShipArT

57

space. Further, it offers the potential of customization or using room classes which have been
previously defined either by the user or by means of architectural standards.

Using the example of a cruise ship, a user might require the spaces suggested in Table 7. In
this example, 366 Spaces of rooms are defined using data for only seven Classes of spaces within
the ship. The table illustrates the spatial efficiency of a relational database since the Shp Overall
table contains only those elements which are necessary to define the ship. Its companion table
Cllass List contains a long list of poteatial spaces for the layout, not all of which need be used.
Hence the data in Class List s readilly available to the user, but does not impede or denigrate the
pecformance of the database or ShipArT program.

The depiction of this zone in Figute 20 includes the data type and hence the field lengths
for each field. In particular, the field Class_ID has been defined as a byte (an integer between 0
and 254). The fields of a database have fixed lengths corresponding to the entries in Table 8
and where fields are shared between tables so are the data formats. Table 8 shows the data
types available in Microsoft Aess.

The Class List table stores a 50-character name for each class, a number for the occupancy of
the room, and pointers to adjoining and related tables in which specific information about the
room is stored. The reason for this choice was that a number of defining parameters might be
common to several spaces. For example, architectural standards suggest reasonable range of
floor areas for bedrooms, but different classes of bedrooms may differ in their contents, or
access to windows, and so on. This format minimizes the amount of repeated information in
the data-set, and keeps each table small in size. Also, the Class List table is entirely editable,
thereby providing the user the opportunity to edit the definition of a class ot to add new class

definitions to the table.

ShipArrT

The pointers in this list refer to different constraints:

Constraints_[D points to a table which contins other pointers regarding the spatial

constraints of the class. These may be summarized as length, width, height,
area, volume and shape and will be described in greater detail in the sections

dealing with Zones 5 and 6.

Relationships_IDrefers to entries in an adjoining table in which the adjacency and other

relationships are defined between different classes.

Boundaries_[D points to a table containing information regarding the boundary of 2 space.

Entries_ID

This might take two forms: that of the materials used to create the walls,
floor and ceiling; and that of specific information about the existence of the
walls, floor and ceiling. By way of example for the latter, the foredeck area
of a ship could be defined as a room with partial walls (rails) and without a

iling.

points to a table containing information regarding the access o a space. Like

that of the boundaries table, this might also take two forms: that of the

of and hatches; and that which locates

those entry points (interior/ exterior, hatch above or hatch below, multiple

doors, doors at either end of a room, etc.).

Windows_ID points to a table containing information regarding the windows of 2 room. Also

similar to the boundaries table, this might take two forms: that of the
specification of prefabricated windows and skylights; and that which locates
those components (interior/exterior, skylight above or below, multiple windows,

windows on several walls of a room, etc.).

ShipArT

59

Setvices_ID

deals with the services required for the space. These might include: potable
water, hot & cold water, seawater, pneumatics, hydraulics, electricity,
communications, grey water drainage, sewage drainage, etc. The capacities
required for each service will also be included since this information will

affect the requirements of the layout solution.

Contents_ID points to a table in which the ID values for a list of furniture, machinery and

other interior contents are listed. Specific information about these elements will

be found in a third table and might include the physical dimensions and weight

of a particular piece. Since the Azess database has the capability of storing
graphic images as part of a database, a raster bitmap image of each object might

also be included.

Subspaces_ID refers back to the class list and identifies spaces which can be treated as part

of a lasger space. For example, 2 washroom in a passenger cabin could be
considered to be a sub-space of the cabin since the washroom will always be
adjacent to the cabin. This can lead to an efficiency for manufacturing since
the space and its sub-space are treated as a single object thereby facilitating
the modularization of each space. There is also a computational gain since
the algorithm can treat the two spaces as one in the construction of the

layout.

Regulation_List_ID poiats to a table containing constraining information in the form of

standards of various civilian and maritime regulatory agencies.

Comments_ID identifies relevant entries in a table containing textual information about the

class. This format again takes advantage of the efficiency of the relational

ShipArrT

database since the pointers for two classes may point towards a single
description, or multiple text entries can be attributed to the same pointer.
Since databases use fixed formats for data storage, textual information must
be limited to the 254 character imit of the text field. However, by using the
same pointer value for several records or by employing the memo data type,
more text information can be stored for the particular pointer.

The third table in this zone is Space List in which each of the spaces identified in the tble
Sbip Overall are given specific identifying codes and names. These are the objects or Semi-Solids
which the algorithm wil arrange and manipulate. The contents of this table are generated
automatically by modules of Visual Basic code in which the program creates a record for each
space of each class. Returning to the example which began this section, this means that the table
will contain 367 records, thereby identifying each space. Objects such as hull form can be

imported into the database; Space Lisz also stores the names and identities of imported objects.

3.2 Zone 2: Spatial Definitions

The external boundary of each space is defined by a meshed surface. In turn, the mesh can
be defined as a set of patches. In this zone the relationships which define these meshes are
described (Figure 21).

As discussed in Section 2.4.1, the table Space List contains identifying information for each
object in the layout. Its adjoining table Patch List, while simple in appearance, involves complex
data relationships. For each Space_ID value there is a set of patches which are used to define the
mesh which describes the object. In the table Path i, a counter column identifies each patch

element of the mesh and for each, the database stores a corresponding Space_ID pointer to

ShipArrT

61

atwibute them to a particular object. Each mesh element is unique such that no patch of
another object (o the fizst object for that matter) can be exactly the same as any other patch.
This does not in any way mean that two patches cannot lie back to back. In fact, the opposite is
true and for the solution of the problem of fitting, this superposition of one patch onto another
will be used extensively. This process is described in detail in Chapter 5.

Consider the example of two patches which lie back to back. Presumably they are part of
two different objects since otherwise they would enclose a space of zero volume. The term
“back to back’ is important: while the patches appear to be the same, and the vertices which
form the corners of the patches are common to both, they differ in the ordering of those
vertices as cither clockwise or counterclockwise. This affects the plane cquations which define
the patches, and also affects the adjacency pointers relative to cach side of the patches (Figure
22). Hence, each patch, while potentially similar, is unique because of the process which has
been defined for the evaluation of the terms inside and outside.

Corresponding to each patch in the Patch List table are entries in four other tables. Patch
Comers s a table which contains pointers to a table of vertices. The Pateh Adjiacengy table
identifies which patches share edges with each mesh element, thereby ensuring the treatment of
the sets of patches as an object defined by a mesh, as opposed to treating the set of patches as
an object defined by a number of disjointed or unrelated facets. The table Patch Equations
contains the four plane equation coefficients required for the patch. The final table, Parch Hidden
Edes, contains edge visibility flags; this table is unimportant to the Sk AnT algorithm, but does
facilitate the exportation of the solution layout meshes.

Unlike the tables in Zone 1 in which pointers referred to relatively few data elements, the

tables in this zone use the Long Integer format for storing pointers. This eliminates any

ShipAreT 62

difficulties which might arise from large or complex models as over 4 million pointers may be
assigned. Such problems were considered because of the assumption that for highly curved
surfaces, the patch sizes would be reduced to more accurately represent the curves with the flat

sided mesh elements.

33 Zone 3: Patch Adjacency

One of the most useful characteristics of a relational database is its ability to reflect editing
changes through its related tables. Referred to as Referential Integrity, this property is nowhere
more evident than in Zone 3 (Figure 23). The zone centres around the table Patch Adjacency and
is one of four tables associated with the definition of a patch as described in the previous
section. Patch Adjacency stores data such that for each Patch_ID value, ID values are stored for
each of the four patches which surround and adjoin the patch.

The tables which are linked to the Patch Adiacency table are simply additional instances of the
Patch List table. The reason for this lies with the need for referential integrity — the ability of
related tables to update one another. Such an instance might occur when 2 user decides to alter
the [D value for a particular patch. Not only must that ID value be altered wherever it appears,
but in the Patch Adjacency table the pointers which direct the mesh to that patch must also be
updated. By way of mechanics, the value Patch_ID is only stored in the Patch List table. Its
appearance in other tables is a result of the referential information. That is, when the table Patch
Adjacency is viewed, the Patch_ID values appear in the table but actually reside in the Patch List
table. Editing of the ID values, even from within the Patch Adjacencies table, will alter those in
the Parch List table and they will then reappear in altered form in the Patch Adjacendies table.
Therefore, a referential conflict exists when the table Patch Adjacency is displayed because more

ShipArrT

than one Patch_ID value is to be displayed for a particular record. Itis for this reason that the
four additional instances of the Patch List table have been created. These circumvent the
referential conflict by providing an unhindered Pateh_ID value for each of the four pointer fields
Patch_1, Patch_2, Patch_3 and Patch_4. The multiple instances are effectively copies of the
original Parch List table, and any changes which alter the Patch List table will also alter the data
found in the four additional instances. For 2 4 x 4 mesh such as that in Figure 24 the ble
would take the form shown in Table 9 of a number of pointers identifying other patches. Two
special situations should be mentioned. First, there is the potential that 2 patch might only have
three neighbours, as would be the case for a triangular patch. In this instance a null or blank
field will appear in place of the absent fourth neighbour. Second, in the case of the importation
of a hull form object, the object may not take the form of a closed object but may instead be
just a surface. For example, AutaShip appears to have difficulty exporting joined objects and
hence two or more objects such as a hull and a deck will be saved as separate files. When
imported into Sk ArT, each of these objects will be given Space_IDs in the Space List table
described in Section 2.4.1, and the points which define these objects will be stored in the
appropriate spatial definition tables. Since the importation of unclosed objects creates a
sitvation in which not all patches have four neighbours, tolerance has been built into the system

to allow for these null neighbours to appear as nulls in the Patch Adjacency table.

ShipArrT

3.4 Zone4: Patch Limits

As in Zone 3 (Eigure 23), multiple instances are used to establish the relationships
associated with the vertices which define a patch. Zone 4, the contents of which are shown in
Figure 25, uses multiple instances of the table Vertex List to define the corners of a new patch.
These are linked by means of pointers to the table Patcs Comers which stores pointer values for
each of the four comers of the patch. The use of these pointers makes it is possible to store all
of the vertices in the database in 2 single long table, thereby reducing unnecessasily repeated data
in the database.

The table Iertex List stores the X, Y and Z coordinates of each patch comer. Double
precision values are used for these values to ensure accuracy in the model since rounding could
create disagreement between the points which comprise a patch/plane and the equation of that
plane.

As discussed in the previous section, multiple instances are used in situations in which a
single record contains more than one pointer to the same table. Here, Vertex List appears four

times, once for each of the four comers of each patch record.

3.5 Zones: Patch Equations
Once again, multiple instances of a table, in this case Equation List, are used to represent the
five equations associated with each patch. The tables and their relationships are shown in
Figure 26.
In the Equations List table, each record stores the four coefficients for each plane equation.
Just as for the table Vertex List described in the previous section, double precision values are

used to ensure accuracy in the plane mathematics. For each patch noted in the Patch List table,

ShipArrT

there will be a corresponding record in the Patch Equations table, with the data elements being
pointers to the five equations comprising the five planes associated with each patch. The first
plane, or ‘Face’, is that of the patch itself, and the remaining four planes follow the edges of the

patch and are perpendicular to it, thus forming an open box shape.

3.6 Zone 6: Constraints

This region of the database has been left for future work. While far from complete, it has
been included here for the purpose of illustration.

Zone 6, shown in Figure 27, contains the now familiar multiple instances of tables
containing similar information, with pointers to each instance. The Constraints table contains
data in two forms: bit flags which indicate whether the user has specified a particular
dimensional constraint; and ID pointers all referring to either the Dimensions table or the
Constraints Shape table. The multiple instances of the Dimensions table is a result of a recognition
that the five spatial constraints — height, length, width, area and volume — share the same data
storage format. Both storage space and model complexity are saved by this move. Only the

Constraints Shape table differs in the fields required for its contents.

ShipArrT

Figures Pertaining to Chapter 3

Figure 19 Complete database for ShpAnT showing data relationships and zone divisions. The

ShipAn'T

zones divide the database into related topics and will be used to facilitate the
explanation of the database later in the chapter.

67

i
|

l

i Zone 1

Figure 20 The tables of Zone 1. This zone contains the ship’s overall description and links
Spaces to their constraints.

Zone 2

Figure 21 Table clements comprising Zone 2. These elements relate spatial data such as
vertices to each Space / room in the layout.

ShipArrT

68

1
Vector 4 Vector 1

Vector 1 Vector 4
X}fﬂml by 2

2 C—) % *;uomal
Vector 3 Vector 2

Vector2 Vector 3
R \/

Figure 22 Two patches showing how the direction of the normal vector is affected by the
relative numbering of its vertices.

E PaEh Lt | F

Zone 3

Figure 23 Depiction of tables and relationships for Zone 3. The zone represents
neighbourhood data for each surface patch by identifying the adjoining patches.

ShipAnT 6

10

11 12/

Figute 24 An example of a typical 4 x 4 surface patch.

Zone 4

Figure 25 A depiction of the tables and relationships of Zone 4. The zone involves the vertex
information of the comers of each patch.

ShipArT

70

[——__Patch Equations
om0 Cong imwger
oy Cong e
Say Cang ranger
sz oo
Son3 Loy g
St Long oo

Zone 5

Figure 26 A depiction of the tables and relationships of Zone 5. The zone deals with the
mathematical definition of each plane and its coincident orthogonal surfaces.

ShipArT

L
S

.

[
"lﬂﬂ"lﬂi
yzi iglgi_l! :
FA UL L]
)|

!{;il%%%"_f !g%!!%%%" | I%%i!{%{" l{%lim“_

-,ﬁ W [T (e

S
=
=
L.
=
s
; SN oy o
| S= &
| o | 2
== =
.Zone 6 ;

Figure 27 A depiction of the tables and relationships of Zone 6. The zone deals with the
constraints associated with each Space / room in the layout. In particular, it
demonstrates how pointers can be used to attribute a large quaatity of information to
2 single Space_ID.

ShipArT 2

Tables Pertaining to Chapter 3

Engine Room

1
4 Machinery Rooms for HVAC
1 Galley

etc...

Table 7 Examples of the spatial requirements for a cruise ship. The list shows how many of
the areas of the ship can be treated as quantities of a relatively few number of space
Classes.

ShipArrT

3

Text up to 255 bytes (1 byte per character).
Memo Alphanumeric characters (usually several sentences or paragraphs) up to 64,000
bytes.
Date/Time Dates and Times, always occupies 8 bytes.
Currency Monetary Values, always occupies 8 bytes.
Counter A numeric value i A i i for each record
you add. Occupies 4 bytes.
OLE Object OLE objects, graphics, or other binary data. Occupies up to 1 gigabyte (limited by
disk space).
Number Numeric values (integers or fractional values). Occupies 1, 2, 4, or 8 bytes.
» Bit A Boolean data element. True/False, Yes/No, On/Off, etc.
«Byte A combination of 8 bits. nmmmww-sxmﬂmmc
character or can also be used to store numbers from 0 to
* Integer Stores numbers from -32,768 to 32,767 (no fractions). It occupies 2 bytes.
= Long Stores numbers from -2,147,483,648 to 2,147,483,647 (no fractions). It occupies
Integer 4 bytes.
« Single Stores numbers with 6 digits of precision, from -3.402823E38 to 3.402823E38.
It occupies 4 bytes.
* Double Stores numbers with 10 digits of precision, from -1.79769313486232E308 to
1.79769313486232E308. It occupies 8 bytes.

Table8 Database field data types.

ShipArT

74

Table 9

ShipArrT

1 5
2 6 1
3 7 2
4 i 8 3
5 10 e 9
6 2 17 10 s
! & 3 8 " 6
8 4 12 T
9 5 1 10 13
10 6 | 1 14 9
11 T 12 15 10
12 8 16 1
13 9 | 14
14 0 . 15 13
15 1 16 14
16 2 15

Typical contents of the Patch Adjacencies table. For the purpose of example, the
Eigure 24.

contents are consistent with the surface patch in

75

Interference Checking

This chapter and the two which follow explain the mechanics of spatial manipulation using
Semi-Solids. The chapter has been divided into subsections which first introduce a basic object
and then discuss the process of locating that object relative to others in an Facility Layout
Problem (FLP) layout. A flowchart which illustrates the steps of this algorithm is shown in
Figure 28. The chapter which follows describes the method by which situations involving
spatial conflict are resolved.

At the time of writing, ShipAnT is in no way a complete program. For the purpose of
illustration, several steps of a Facility Layout algorithm have been passed over, and a number of
assumptions have been made. The manipulation of the dimensional variables of length, width,
height, area, volume, shape, etc., is not addressed in this phase of the ShiAnT development. In
addition, the process by which such an object is located at a particular location within the layout
has been left for future work. More information regarding these topics is presented in the
Chapter 7.

In this section it has been assumed that a user has created a spatial object. Although almost

any faceted 3D object can be defined and manipulated using the ional tools

ShipArrT 76

developed for this project, a rectangular polyhedron-shaped room will be used for the purpose
of illustration. Therefore values exist within the database for the shape, size and initial location
of the object. The algorithm has defined the room’s boundary by creating a six-sided figure, the
sides of which appear as single patches and the whole forming a continuously meshed entity.

This is placed in the layout where it joins objects which act as a hull boundary (igure 29).

4.1 Interference Approaches

The computet is much like a blind human at this stage. As in Figure 30, the computer is
aware that there is an object, and by virtue of coordinate systems, the object is in the vicinity of
others such as the hull form. The relative locations of objects in the layout remain unknown but
ate required in order to complete the layout efficiently, optimally, and without overlap or undue
void space.

Void regions and overlap would have been avoided in traditional block layout approaches by
verifying the contents of each square of the layout grid. However, Sh2AnT's Semi-Solid

representation makes this method of verification impossible. A Solid Modeller generally checks

by attempting to perform a ? ion involving two or mote objects.
Where there is a change in the net volume of the two objects following such a transaction, an

interference exists. Because Solid Modellers are d around Boolean i they

require manual i ion to correct the dimensions of the original objects to eliminate the

overlap. Further, where no overlap exists, the modellers are unable to find a reference by which

to determine if an object is in the vicinity of another. To determine adjacency and interference,

the Semi-Solid: ion takes adv: of the plane equation information and the

sophisticated search engines of the database software.

ShipArT

4.2 The POI Prism
lids takes of the mathematical ies of the patches to evaluate their

celative proximities and orientations. By way of example consider again the object within a hull
boundary as suggested by Figure 29. Taking the first of its six patches, the task is to determine
which other objects lie in the vicinity of that patch. The patch will hereafter be refetred to as the
PO or Patch of Interest. To facilitate this step, the database stores plane equations for the POT
and planes which adjoin and are perpendicular to the POL

The equations are derived from vectors formed by each of the four edges of the POL The
algorithm solves for the cross product of the normal of the POI and each of these vectors.
Because of the perpendicular characteristics of the cross products, the resulting four vectors are
the normals to planes which are perpendicular to the POI and pass through the sides of the
patch. Back substitution of the vertices and the new normal vectors yields the remaining d

thereby ing the itions of these four planes. The calculations necessary

are shown in ion 2 ion 3 and Ex ion 4.

Vector, =V, - V,
=le-X. 2~ 1 - 2]

Normalpg, = [@pg. bpop Cpoy 1

New Normal = Vector, X Normalp,,

Equation2 Calculation of the normal of a surface of the POI Prsm. Vector, is a vector
formed by the difference between the vertex coordinates of two adjacent vertices
of the POL. Normalpe, refers to the normal vector of the POL The cross
product of these two vectors yields a third vector called New Normal. This new
normal vector is that of one side of the POI prism.

ShipArrT

A = bpol2-2)) - Cool(¥2~1)
a = Al

Equation3 The A, B and C components of the New Normal vector are normalized in the
manner above to magnitudes between -1 and 1 to conrol the magitudes of
subsequent solutions.

Vi =lxn. 7l
NewNormal =[a, b, c]
0= asX+bsY+ceZ+d

=D = -1s(asx; +bey, +c+2z;)

Equation 4 Umngvhgmoxdlmmcfcmofdml’olvmuumdmIbecnk\l.lzlmnshown
i thed ient necessary for the
:qmuonofdmpmndr_ New Normal refers to the vector calculated in
Equation 2 and V, is a vertex of the POL Back substitution into the plane
equation formula yields the D coefficieat which is then normalized to be
consistent with the New Normal coefficients shown in Equation 3.

Since the planes are perpendicular to the PO, they never converge (Figure 31). Visually,
the region of intersection of the four planes can be thought of as a rectangular prism (Eiguse
32). By strictly adhering the vertex order conventions established in the database, the new
nommals all point into the intedior of the region of intersection. Working under the assumption
that any change made by a patch will take place only along a line perpendicular to the patch, the

prism defines the region in which is can occur. Me ically, the POI is much like

ShipArrT

an elevator, with its shaft formed by the prism. And just as in the case of the elevator, all is well

50 long as 1o other object violates the prism, sharing the shaft with the clevator.

4.3 Vertex Substitution

A Dynaset is a database object which appears to be table, but contains no data. It provides
2 means of temporarily combining the data elements of several tables in a single table for display
and evaluation. Dynasets are editable and the changes are written directly to the tables from
which the dynaset was detived. Itis similar to the multiple table instances discussed in Section
2.3.3. Tabular dynasets are created to collect relevant data for each of the algorithm steps
described in this Chapter.

The next step in the Semi-Solids algorithm is carried out by the substitution of every vertex
of all the objects of the database into the four prism equations and the equation of the POL
The resulrs are collected in a dynaset of a form simiar to that of Table 10. These values are the
equation solutions of the POI and its Prism for each vertex in the database.

This is perhaps the least efficient of all the steps of the algorithm because every single vertex
in the database is substituted into the five plane equations defined in the previous step, therefore

However, to the traditional mesh

requiring i P
evaluation using projections and lines, the batch nature of the process removes the evaluative

and primitive development steps from each iteration and thereby reduces the time required.

ShipArT

4.4 Relate Vertices to Patches
This step creates 2 large table called Solutions for Patches. The data it contains will be used by
not only the other queties in this section but also those of the next chapter in which the POT is
altered. There, not only will information regarding the patches be required, but so will
references to the parent objects of each patch.

The previous step collected a series of information relating the individual vertices of the
objects in the database to the POI and its prism. In this step, this data is compiled and
exptessed in terms of the patches and objects in the database. Because four vertices comprise
each patch, there is repetition of many of the fields, notably those which store the solutions for
each of the vertices as found in the Solutions for All Vertizes table described in the previous
section. The new table contains the fields depicted in Table 11 The table entries begin with

reference ID values through which additi is jon can be d¢ where

For each vertex in the patch, there ate solution values corresponding to the substitutions made
in the POI prism. A field referred to as InOrOx¢ completes the table and contains the output of
2 dot product calculation (Equation 5) which determines if the PO prism faces the inside or
outside of a patch. This distinction is important because it relates the direction faced by the POI

to that of the patches in the dataset.

ShipArrT

POINormal = | a,. by, ¢,]
Patch Normal = [a,. by, G, |

POI Normal - Patch Normal = | POI Normal || Patch Normal | cos@

Equation5 Given the normal vectors of the POI and a neighbouring patch, a Dot Product is
lculated which establishes the relative orientations of the two patches. The
solution IxOrOut which replaces csf gives a value from -1 to 0 for patches facing
the same direction and a value from 0 to 1 for patches facing one another.
Where InOrOut = 0 the patches are perpendicular to one another.

4.5 Remove Wholly Excluded Patches
The next step is 2 delete query in which all the patches found by the query criteria are

removed from the Solitions for Patches table. This does not mean that the patch information is
removed from the database; instead, the items which meet the criteria will no longer appear in
the dynaset developed in the previous step. The query evaluates the data stored in the Solutions
for Patches table to remove patches in which all four vertices lie in the negative or ‘out’ side of any
one of the four planes which define the POI prism. By way of example in Figure 33, if the
values stored in the fields V1_Plane2, V2_Phne2, V3_Plane2 and V4_Plane2 are all less than
zero, then their patch lies wholly outside the first plane of the POI prism. The vast majority of
patches in the Solutions for Patches table will meet this and similar criteria and will be removed
from the table, thus radically reducing the set size requiring subsequent manipulation and

evaluation.

ShipArrT

4.6 Perpendicular Patches

A special case of patches which interfere with the POI prism are those which are
perpendicular to it (Figure 34). Identification of these patches is carried out by means of a Dot
Product calculation between the normal vectors of the POI and each of the patches in the
Solutions for Patches table. This calculation has already been performed (Equation 5) and the
results are stored in the INOrOut field. Where InOrOut is exactly equal to O the patch is
perpendicular to the POL

Testing for interference s carried out by substiruting each of the four vertices of the POT
into the equation of the Patch. Whete any one or more vertices lies on opposite sides of the
plane of the Patch, that patch violates the POI prism. Vertices lie on opposite sides when the
solution of the Patch Plane equation yields one ot mote positive or negative values relative to
the other three solutions. The patch does not violate the POI prism when all four Patch
equation solutions share the same sign. Such patches can then be removed from the Solutions for

Patches table.

4.7 The Patch Prism
At this stage the algorithm has failed to exclude all the patches which lie outside the POT
prism. The remaining patches are removed by creating an interference prism for each patch
remaining in the Solutions for Patches table (Figure 35). Unlike the prism developed for the POI,
the new prisms will be perpendicular not to their patches but to the POL This is done by taking
the cross product of their border vectors and the normal vector of the POL. The process is
virtually identical to that described in Section 4.2 with the exception that the prism mathematics

are determined only for those patches in the Solufions for Patches table. As a result, the quantity of

ShipArrT

required are signil reduced relative to that which would be required for the
complete set of patches found in the Patch List table. The prisms created in this operation will
subsequenty be referred to as Parallel Patch Prisms. Equation 6 shows the formulation of the
mathematics of Parallel Patch Prisms. Using the same elevator metaphor which was introduced
in Section 4.2, the Parallel Patch Prism is an clevator shaft in which the floor of its clevator lies
ara slant o its direction of motion.
Vector, = V, - V;
=le-xu ¥ z-zl
Normalpg, = [8y, by, Sy]
Normal of Patch Prism Side = Vector, X Normalp

Equation 6 In this case V, and V, lie on the patch and not on the POL This differentiates
between the POI prism and the Parallel Patch Prism.

4.8 POI Vertex Substitution
The next step in the process of identifying patches which neighbour the PO is carried out

by substitution of the four vertices of the POl into the Parallel Patch Prism equations
determined in the previous step. The dynaset into which the results are stored differs in format
from that used in the evaluation of the PO prism in Section 4.3 because in this case four
vertices are substituted into many equations rather than many vertices into five equations. The
dynaset has been named Solutions for POI Verties, and its fields are shown in Table 12. The tble
contains fewer fields primarily because solutions specific to the POI have already been.
determined and stored in the Solutions for Patches table. Hence solutions are only found for the

equations of the prism sides and not for the plane formed by the patch itself. Also, the table is

ShipAr'T

not keyed to the Vertex_ID values as in the Solutions for Vertices table but instead to the Patch_ID

values, thereby eliminating the need fora ion step similar to that described in

Section 4.4.

4.9 Evaluate External Prisms

Once more a delete query is used to remove irrelevant patches from the Solutions for Patcbes
table. In almost exactly the same process described in Section 4.5, the query accesses the
information stored in the So/utions for POI Vertices dynaset. The patches which are to be deleted
are those in which all four POI vertices lie in the negative or ‘out’ side of any one of the four
planes which define each Patch Prism (Figure 36). By way of example, if the values stored in
the fields V1_Planel, V2_Planel, V3_Planel and V4_Planel are all less than zero, then the
patch lies wholly outside the POI prism, and can be discarded. Patches are discarded through
their deletion from the Solutions for Patches dynaset.

The vast majority of patches in the Solutions for Patcbes table were removed when the planes
of the POI prism were evaluated. In the three steps which have followed, the manipulation was
carried out only on the patches which remained in the table, and heace only a few patches will
be removed by this step in the algorithm. The computation required for the evaluation of the

external patches is significantly reduced by working with the smaller dataset.

ShipArrT

4.10 Conclusion

The goal of Semi-Solids modelling is to identify the relative positions of objects and to
enable the computer to quickly it objects against other objects, regardless of shape, thereby
performing the same fanction as the blocks in block layout. Since shape is derived from the
relationship of flat surfaces, it follows that the more oblique patches which define an object, the
more complex its shape.

The Semi-Solids algorithm has assumed that interference between objects can be evaluated
on a plane-by-plane o patch-by-patch basis. Further, it has also been assumed that a patch can
only be altered in its position along its normal vector. That is, for each PO, the POI can only
be moved in a direction perpendicular to its surface plane as suggested by Figute 37. This alters
the patches which are adjacent to the POL

The material presented in this chapter creates a list of patches which intersected the POI

prism. The POI Prism is a construct used to ine i and adj; Three

h istics were used to determine the position of objects relative to the POL First, for cach
vertex of each patch, the Solutions for Patcbes table contains solutions from their substiutions into
the plane equation of the POL. Through this technique it is possible to determine the position
of the patch relative to the POL Second, the InOrOu field in the Solutions for Patches table is
used o indicate whether it s the inside or outside of a patch which faces the POL A negative
sign in this feld indicates a patch which faces towards the POL, and a positive sign indicates a
patch which faces away from the POL In cases where the patches face the POL the PO faces
the outside of a neighbouring object. Conversely, patches facing away from the PO, effectively
in the same direction as the PO, expose the interior of a neighbouring object. Third, the
Space_ID field has been included to ensure that if a patch of one object is considered a

ShipArrT

boundary of the POI then all the patches of that object may be considered. Use of these ID's
and the information found in the Patch Agfacemsy table can be used exclusively to ensure that the
surface is applied only to the near side of an object which crosses the POI prism. Ideally, the
InOrOu field could be used to make the same determination but the criteria yields a false result
for cases in which an indentation in the surface exists which would present an interior view of
an exterior patch. Figure 38 shows such a case.

Figure 39 shows a potential outcome of the identification process described in the chapter.
While the POI in this example points aft, it could just have easily been oriented to coincide with

any of the six sutfaces of the original object in Figure 29.

ShipArrT

Figures Pertaining to Chapter 4

‘Setect a Patch of Inarest

17(PON of e new object
H 2

Remove Patch
‘Sotutons for Patches
g

Figure 28 Algorithm flowchart which describes the process of interference
checking.

ShipArrT

Figure 29 A six-sided meshed object within the boundary of a more complex meshed object.

Figure 30 An example of several objects which neighbour each other but do not intersect. The
figure suggests the difficulty of identifying the relative positions of i
objects, particularly when the identity of the neighbouring object is unknown.

ShipArrT e—

Nomai

Normal Normal

POI Prism

Normal
+

Figure 31 A cross-section of the POI prism showing the normal vectors of the planes which
form the prism.

ShipArrT

Figure 32 A section of a POI prism showing the planes which define the region. The POl is a
patch which is perpendicular to the prism and whose dimensions are the same as
those of the interior of the prism. The normal vectors of each plane forming the
prism point outwards away from the bounded region.

ShipArrT

91

Plane 1

Patch of Interest
(POI)

Plane 3

Plane 4
Plane 2

Figure 33 Figure showing five potential cases in which patches may be missed by the first
exclusion process. The patch which will be removed from the list of interfering
patches lies wholly outside a single plane of the POI prism.

ShipArrT

Plane 1

Patch to be = 2
B Patch of Interest
(POl)
Plane 3

Plane 4

L Y

Plane 2

Figure 34 The POI prism showing a perpendicular patch which requires removal from the

Solutions for Patches table.

ShipArrT

93

Plane 3

Patch of Interest
- (POIl)

_ Plane 2

Figure 35 The POI Prism showing a neighbouring Patch Prism.

ShipArT

94

Plane 4

N
Plane 1

Plane 3

Patch of Interest
(POI)

Figure 36 The last of the remaining patches slated for removal.

POI

Normal n

POI Prism

Interfering
Space
Figure 37 A view of the POI Prism in which a space violates the prism. The normals of the
two sides of the interfering space which lie inside the POI point in opposite
directions, distinguishing between inside and outside. The Dot Product of these
normal vectors and that of the POI constitute the contents of the InOrOut field of
the Solutions for Patches table.

ShipArrT

95

Normal of POl

POI Prism

Figure 38 In this view of the POI prism, the object which interferes also presents a negative
normal vector to the POL. However, unlike the situation shown in the previous
ﬁgum.dzoﬁzndmgpudusoncmvbrhnummdgdmmouldﬂuml
projection. Hence, it is a case in which the InOrOut field of the Solutions for Patches
table cannot distinguish between patches to ignore and those to address. The
information found in the Patch Adiazency tble for the particular object can be used
provide additional information.

ShipArrT

Figure 39 POI Prism showing how the prism is used to identify neighbouring patches and
objects.

ShipAn'T

Tables Pertaining to Chapter 4

Table 10 Typical entries in the Solutions for All Vertices temporary table. Each column contains
the solutions for the plane equations of the POI prism, with one record for each
vertex of the database.

ShipArrT

98

iy

g

i

i g

g ,;,s,s,ss

Table 11 The field headings for the Solutions for Patches table. It reduces the contents of the
Solutions for All Patches table from 2 representation based on individual vertices to one
which is based on patches. This shift is required for subsequent analysis of the
patches.

ShipArrT

Patch_ID

V1_Plane1
V1_Plane2
V1_Plane3
V1_Plane4

V2_Plane1
V2_Plane2
V2_Plane3
V2_Plane4

V3_Planet
V3_Plane2
V3_Plane3
V3_Planes

1

Va_Planet

Table 12 Field headings for the Solutions for POI Vertices table. Because this table is the result

ShipArT

of the substitution of POI vertices into the other patch equations of the layout, it is
already compiled on the basis of Patch_IDs.

Surface Superposition

The previous chapter determined which patches lic in the path of the Patch of Interest
(POI) and provided relationship information from which the relative positions of these patches
could be studied. A decision engine will interpret this data and decide if a change in the shape

or position of the POL is necessary. Generally a change in the POI will be executed so that it

can be d against a neighbouring surface. In such cases the decision engine will

reduce the list of patches in the Solutions for Patches table (Table 13) to just those against which
the PO should be superimposed. The decision engine has been left for future work but for the
purpose of illustration it has been assumed that the PO is to be altered and that a list of
adjacent patches has been created.

The algorithm described in this chapter resembles that of Chapter 4 in that the steps of the

process will be employed on a patch-by-patch basis. Just as the search algorithm

of Chapter 4 examined the patches of the new object one at a time, so will the new patches of
the superimposed POI be formed one at a time. Beginning with the list of coincident surfaces
identified by the hypothetical decision engine, the wotk of this chapter is carried out for each of

its records. A flowchart of the algorithm presented in this chapter is shown in Figure 40.

ShipArrT

As suggested in Figuse 41, each patch in the list of coincident surfaces falls into one of two
categories: those wholly contained within the PO prism, and those which are only partially
contained within the POI prism. Vertices and planes ate used in the evaluation of both cases. A
patch is wholly contained within the POI prism when all four of its vertices lie inside the prism.
For those patches which only partially cross the POI prism, a sub-patch is required which is

comprised of the region of the patch within the prism.

5.1 Remove Contained Patches

In this step the algorithm takes those patches wholly contained within the POI prism and
copies them as part of the replacement of the POL Such patches are those in which all four
vertices are contained within the PO prism.

This step is literally a copying process. The new patches will use the same vertices as that of
the coincident patch. The difference will be in the relative ordering of those vertices because of
the impact this has on the direction of the normal of the new patch’s plane equation. Similarly,
equation and possibly some adjacency information can also be reused to reflect the direction
faced by the new patch. Any missing adjacency information such as that required for patches

still to be created will be added as it becomes available.

5.2 Finding Potential Vertices
The patches which remain in the list are those which ate not wholly contained within the
POI prisms. For these patches it will be necessary to derive new patches from appropriate
vertices. The steps presented from hete are applied to each patch in the list individually. Such a

patch will be identified through the use of capitalized name Patch’. Each patch in the

ShipArrT

102

ShipAnT database has been stored with an equation for its own plane as well as the equations of

four planes p o this plane. ially this is the equivalent of the POI prism

introduced in the last chapterand is referred to by the name Patch Prism. It differs from the
Parallel Patch Prism developed in Chapter 4 because its sides are perpendicular to its
corresponding Patch and not to the POL The difference makes possible the generic application
of the methods described in this section for any potential configuration of neighbouring patches.
Were the Parallel Patch Prism used in this section, additional steps would be required to deal
with the case of a Patch orthogonal to the POL Therefore, any reference to a Patch Prism in
this Chapter refers to the prism formed by the planes orthogonal to the Patch and not the POL

New patches ate derived from vertices which are found from the intersection points of

planes which potentially define a patch. Combinations of i ions of the Patch Plane, a

POI Prism side, and a Patch prism side constitute 16 of the 24 possible vertices (Equation 7).

Patch Plane: a;=X + bysY + ¢,«Z + d, =0
POI Prism Side : 8,+X + by*Y + c+Z + d, = 0
Patch Prism Side: a,+X + by*Y + Cy*Z + dy = 0

7 ions used to ine 16 of the 24 potential vertices resulting from the
intersection of the POI Prism and the Patch Prism.

Four of the remaining cight points are taken from the four vertices of the Patch, and the last

four are found from the intersection of the Patch Plane and two adjacent POI Prism sides

(Equation 8).

ShipArT

Patch Plane : a,sX + by*Y + ¢+Z + d, =0

POI Prism Side (i): 8*X + by*Y + CeZ + dy = 0
POI Prism Side (i+1): a;+X + by*Y + CyoZ + dy = 0
Equation 8 to an additional four potential vertices. The solution of

ths:ysmofeqmmns:&cnvdypmﬂmﬁmxmof!hgmlmmﬁe
neighbouring Pa

Graphically, the 24 vertices might take a form such as that shown in Figure 42.
Because the goal of the work preseated in this chapter is to fit one object against the
boundary of another, the Patch Plane equation is used in the calculation of all intersections
because it is against this plane which the newly created patches will be located. As a result, all of
the vertices will be coplanar to the patch plane. An error function is used to flag unsolvable
vertices. A vertex may be unsolvable when two or more of the intersecting planes are parallel,
or if the patch or prism only has three sides. Pseudocode which finds these 24 points is shown

in Appendix 2.

53 Verification of Vertices
This section describes how the number of points found in the previous step is reduced to a
maximum of eight potential vertices for new patches. The reduction is performed by the
substitution of each vertex into the four prism plane equations of the POI and the four prism
plane equations of the Patch. A vertex is valid where it is wholly contained within all eight
planes (ie., where the solution of each vertex in each plane is greater than ot equal to 0).

Pseudocode which performs this decision is shown in Appendix 2.

ShipArrT

The vertices which are selected in this section have been found in no particular order.
Interestingly, they also form a convex hull — a region defined by a set of points where all the
points lie on the exterior boundary. A property of the intersection of two four-sided patches is
that the vertices which define the intersection region always define the exterior boundary of the
convex hull. Thus, 00 concave regions will be formed between vertices, so long as they are
taken in the appropriate order. While the convex hull region is obvious when viewed, its
development and evaluation is much more involved for the blind’ computer. The sorting and
formation of the convex hull region will be described in detail in subsequent sections.

5.4 Counting the Vertices

Next it is necessary to tally the vertices which form the patches or patches of the
superimposed surface. The vertex count affects the shape and number of new patches. The
pseudocode in Appendix 2 indicates how this count is performed.

A characteristic of this problem s that there can only be a maximum of eight valid vertices
created by the intersection of two four-sided patches. The portion of code which creates the
patches follows a connect-the-dot methodology. For this reason, the order of the patch vertices
becomes important. Where only three vertices are present in the list, the sort routine described

in Sections 5.6 and 5.7 can be skipped.

5.5 Establishing a Vertex Sort Key
Now that a list of valid vertices has been created, it is necessary to determine the order by
which they will be evaluated for the creation of patches. In order to avoid the creation of

overlapping or twisted patches, an ordering for the vertices must be established such as that

ShipArT

suggested in Figure 43. The only exception is the case in which only three vertices are
contined in the list because the points are always in the correct order. Where fewer than three
vertices exist in the Vertex: Lis, it is impossible to create a new patch.

The sort is conducted in two phases. First by determining a baseline reference plane and
then by measuring the positions of the vertices relative to this plane. A cutting plane is drawn
between points 1 and 2 in the tempVertexList as shown in Figure 4. The plane is formed by
means of the cross product of the normal vector of the Patch against which the PO s to be
superimposed and the vector formed by linking the two vertices. The plane is drawn
perpendicular to the Patch and not the PO because the solution vertices all lie on the Patch and
not the POL. Therefore it is important that the evaluation of the points be performed in the
context of the plane on which all the poiats lie. Having determined a normal vector [8, b, ¢]
for the reference plane through Equation 9, back substitution of one of the vertices can be used
o find the [d] value required fot the plane equation (Equation 10).

Once the equation of a refetence plane has been determined, it is then necessary to
substitute each of the remaining vertices in the list into the new plane equations. The result of
this substitution will be a list of Reference Plane Equation solutions of positive and negative
values. The sign of the solutions refer to which side of the plane each vertex lies. The goal of
the development of the reference plane is to create situation in which all the solution vertices
lie on one side of the reference plane (Figure 45). By doing s0, Dot Products can the be used
to determine the relative positions of the solution vertices. Where one or more negative values
are found in the list of Reference Plane Equation solutions, that with the greatest magnitude is
selected for use in the formation of a new reference plane. This process continues until no more

negative vertex solutions are determined.

ShipArrT

Vector, = V, - V,
= [exu Y2~ Y1 2-7]

Normalpyey, = [ay, by, 1
Sort Plane Normal = Vector, X Normalp,,,

Equation9 Derivation of the Cross Product calculation which determines the normal vector
of a reference plane used in the sorting of the vertices in the Vertex List.

Vi =[xy 2l

Sort Plane Normal = [agpy, bspy, Csen 1

O=ax+by+cz+d
= d = -8spyXy~bspy"¥;~CspnZ~dspn
10 Calculation of the final i quired for the plane equation of the new

Reference Plane.

5.6 Sorting the Vertices
Having now developed a Reference Vector, the next step in the development of patches
from vertices is to amange the vertices in order. This is done by means of Dot Products as

shown by Equation 11.

ShipArrT

Reference Plane Normal = [agew. bren: Cren |

VertexVector = V,-V,
=[x 2z]

Reference Plane Normal - Vertex Vector = | Reference Plane Normal | Vertex Vector| cos8

11 Dot Product ion in which the angles are determined between the
reference plane and vectors formed of the vertices o be sorted. This calculation
is the mathematical aspect of the model shown in Figute 46.

The dot product of two vectors results in an angle from 0 to 180 degrees (ot 0 to « radians).
The determination of a reference plane described in the previous section was implemented
because the angle between vectors cannot be determined through 360 degrees — hence it was
impossible to distinguish between angles on one side and the other of the Baseline Reference
Vector. From the angles between each of the vectors as shown in Figuse 46, the vertices can be

sorted into an order acceptable for the creation of patches.

5.7 Creating Patches

Having now ordered the vertices which comprise the new patches, the creation of the
patches is now a simple process of connect the dots (Figure 47). The algorithm works from the
newly-ordered list of vertices and begins assigning these points to the vertices of patches.
Pseudocode for the patch creation process is shown in Appendix 2.

Patches are restricted to 2 maximum of four vertices. Therefore, every four vertices the
algorithm assigas, the current patch is completed and a new patch is begun, building on the last
edge of the previous patch. Because there can only be at most eight valid vertices, no more than

two patches will ever be created by this subroutine.

ShipArT 108

5.8 Cbheck Patch Orientation
The last step in the creation of the new patch(es) is a verification of its orientation. For this,
2 Dot Product such as that in Equation 12 is calculated between the normal vectors of the new
patch and that superimposed by the new patch. The value of the solution indicates whether the
patch faces inward or outward relative to the object of space being created.
Patch Normal = [a,, by, ¢, |
New Patch Normal = [a,, by, ¢, |
Patch Normal - New Patch Normal = | Patch Normal || New Patch Normal | cos®
2,3, + bb, + 6

scos@=— 12 12 M2
where -1 < cos® < 1
Equation 12 Dot Product ion to ine the orit ion of the new patch relative to

the POI Prism side.

5.9 Finish the Patch List

Two tasks remain following the completion of the new patches for this particular
intersection. The first task involves the repetition of the algorithm described in this chapter until
all the patches in the Solutions for Patches table have been evaluated and superimposed. Typical
output for the example which was introduced in Chapter 4 is shown in Figure 48.

The second is one of housekeeping in which the tables dealing with adjacency and plane
equations are updated to reflect the new patches. However, this step cannot be completed until
the patches on the adjoining faces have been created as will be described in the next chapter.

ShipAnT

Figures Pertaining to Chapter 5

Grmalnd
aches
o
 Verex St
‘Soksionsor ey meare o Dok
T g
Comy vt o
©apma ity G
G vl cortarnd Pacher cruse new
EY ety
St Vs
£ AW
o
[[
| = Creste New Pucries)
PPty
T o
Paich caadnta l
424 Potaril Vertcas
e n
v | Creckpun
i o tatec e nai
£
T
Vs from
o ovareat
51
ver
i |
—_— -
| Cort e Virscan i
G e

Figure 40 Flowchart of the algorithm which superimposes one surface on another.

ShipArrT

Plane_1

Plane_1

Plane

POI Prism Section

Plane

Plane

-
L]

POI Prism Section

Figure 41 Examples of patches which are wholly contained and partially contained within the
POI Prism.

ShipArT

Plane_3

Plane_3

m

T

POI F,‘rism
1

12

14

BT

I
!
1
i
1
!
1
I

21

|

Figure 42 A depiction of two overlapping patches. The planes which form the patches are
shown in dashed lines with each of the 24 potential vertices. The four vertices which
form the new patch are distinguished from the remaining 20 because only these are

wholly contained within both the Patch Prism and the POI Prism.

ShipArrT

12

1

Figure 43 Given a random set of patches, it is often difficult to determine the best way to
construct new patches. The Bow Tie-shaped patch shown in this figure is an
example of a patch which might result when the order and orientation of the vertices
are not taken into account when developing a new patch.

ShipArrT

13

—
Positive

Positive

Reference Plane

Figure 44 A list of vertices can be sorted by use of a reference plane and vertex substitution.
The vertices are coplanar and lie on the Patch Plane. The reference plane is formed
by the cross product of the equation of the Patch Plane and the vector formed
between the first two vertices in the list. Since Vertex 3 in this figure lies on the
negative side of the reference plane, it will be necessary to construct a new reference
plane.

ShipArrT

Positive

Positive
1
Reference\Plane

Figure 45 This figure shows the reference plane moved so that it now passes through Vertex 3.
By doing so, all of the vertices in the list now lic either on or on the positive side of
the reference plane.

5
V, / 4
V3

2
3 \
\Z
Reference
Vector
1

Figure 46 Once the reference plane has been determined, Dot Products can be used to sort the
vertices. The Dot Product is taken between the vector formed by the reference
plane and similar vectors formed from the contents of the mp/ertexist table.

ShipArT

Figure 47 Once the vertices have been sorted, it is a simple process of connecting the dots o
propezly create the new patches.

Figure 48 This image builds on the two ship images introduced in Chapter 4. Using the
process described in this chapter, the model has projected new patches onto the hull
boundary. Both the boundary and the new patches ate shown and can be
differentiated by the line formed by the POI Prism.

ShipAnT

Table Pertaining to Chapter 5

Space_ID
Patch_ID
POI Patch_ID

Vertext
V1_POI

V3_Plane1
V3_Plane2
V3_Plane3
V3_Plane4

Vertex4
V4_pOI

V4_Plane1
V4_Plane2
V4_Plane3
V4_Planed

InOrOut
Table 13 Field headings for the Solutions for Patches table generated in the previous chapter.

ShipAr'T

u7

Constructing Adjacent Sides

The previous two chapters have dealt with the superposition of spaces. Chapter 4 described
a process in which the patches of a neighbouring object can be identified and isolated from the
rest of the dataset. Chapter 5 built on this by describing a means by which the Patch of Interest
(PO) could be superimposed on these patches.

Following the same progression, this chapter describes the means by which these new
patches ate tied into the mesh of the new Object. This process involves the identification and
sorting of vertices which lic on the boundary of the PO prism, and the creation of 2 mesh
which lies against the sides of the POI prism. The need for the creation of this side mesh is
based on the principle that objects created in Semi-Solids are formed by closed meshed surfaces.
In order for these meshes to be valid, for each patch edge there can only be one adjoining patch
cdge. The difference between invalid and valid patches is illustrated by Figure 17, Figure 50
and Figure 49 respectively.

The process begins by finding the vertices which lie on the plane in question. These vertices
are then sorted using the adjacency information of the patches created by the algorithm

described in Chapters 4 and 5. New side patches are developed by means of rays o vectors

ShipArrT us

which extend from an anchor point to each of these vertices. Steps are taken to encourage
reasonably shaped patches, and to deal with situations in which the rays overlap boundaries. A

Bowchart depicting this algorithm is shown in (Figure 51) through (Figure 62) inclusive.

6.1 Determining the Vertices
OF the steps in the construction of side patches, this step is the most simple. Given the list
of new patches and vertices created by the algorithm described in Chapter 5, it merely collects
those vertices which, when substituted into the equation ofa side of the POI Prism, yield a
solution equal to zero. Thatis, it finds only those vertices which lie exactly on the plane.
Pseudocode for this section can be found in Appendix 2. It performs the substitution of

vertex coordinates into the prism plane equations for each of the four prism sides.

6.2 Creating an Ordered Vertex List

The previous step gives the algorithm 2 means of disti the vertices coincident with
one side of the POI Prism from those coincident with another. The creation of new patches
requires additional vertex sorting before the algorithm can consistently create valid patches.
This involves sorting the vertices in the list into the order these vertices would be encountered
were one to move from one prism edge to the other (Surface A to Surface B in Figure 63). This
is analogous to a child’s connect-the-dot puzzle. The previous step has identified the dots, this
step numbers them.

The sort involves three steps. First the vertices of the POI Patch must be removed from the
list of vertices identified in the previous step. In so doing the algorithm effectively ‘drops’ the

POI patch definition in favour of the new patch created for the adjacent surface. At the same

ShipAnT

time, the two remaining vertices of the original POI Prism side are renumbered to become the
first and last poiats of the Vertex List. Figure 63 and Figure 64 show the deletion of the POT
Parch in favour of the new patches, and the renumbering of the vertices from 1 and 4

to 1and 6.

The next step is to establish a sort key by linking the five remaining patches of the new
object to the three new patches as shown in Figure 64. Linking patches A and C requires
identifying the shared vertex by substitation of all the vertices into the equation of plae A (the
top of the POI prism). The result of this substitution is the identification of Vertex 2 as shown
in Figure 64.

Although uncommon, it is possible that more than one vertex exists which meets this
criterion. This would require the adjacent surface to contain a switch-back or hollow such as
that shown in Figure 65. Where more than one vertex is found which meets this criterion,
distance from Vertex 1 is used to select the appropriate point. This distance can be easily
determined from the coordinates of two vertices using the formula in Equation 13.

Equation 13 A common distance formula suitable for determining the distance between two
three-dimensional poiats.

Having joined the original patches in Figute 64 to the three new ones, the adjacency
properties of the patches can be used to order the remaining vertices. By checking each of the
new patches for that which contains Vertex 2, patch C can be identified. By comparing the
vertices of patch C to those in the vertex list, the third vertex can be established. Similarly

Vertices 4 and 5 can be found by the same process of the identification of patches and shared

ShipArnT

vertices. Psendocode for this step is shown in Appendix 2. The principle of the algorithm is ©o
find a patch and use its properties to find the next patch and its vertices. For the purpose of
efficiency, cach identified patch can then be removed from the patch list so that fewer patches
aced be searched in the next iteration.

For example, in Figure 66 Vertex 1 is taken as one of the vertices of the new object. Vertex
2 is found at the junction of two adjacent POI prism sides (Surface A and the surface facing the
reader). Since ao other vertex lies on this line, use of a distance criterion is unnecessary to
establish a point as Vertex 2 in the context of the sort. The list of new patches (Patch 1, Patch 2
and Patch 3) is then searched for that which contains Vertex 2 (in this case Patch 1). The
remaining vertices in the list are then checked against the vertices of Patch 1 to determine
Vertex 3. The algorithm then removes Patch 1 from the search list and checks for Vertex 3
among the remainders (Patches 2 and 3). The process continues until there are o new patches

and the sorted list is completed by the addition of the other vertex of the new object (Vertex 6).

6.3 Calculating Angles
Unlike a child’s connect-the-dot game, the goal here is to create a valid mesh through each
of the vertices. Neither crossed patches nor concaviies are acceptable in valid patches. The
angles measured between the vectors formed by adjacent vertices can be used to identify
potendally invalid patches priot to their creation (Figure 67). Angles are determined by means
of the Dot Product formula. Unfortunately, the Dot Product yields an angle between 0 and 180
degrees where an angle on a 360 degree basis is required. The reason for this requirement will

become apparentin the next section.

ShipAr'T

To distinguish between Dot Product results which are less than 180 degrees and those
greater than 180 degrees, a reference plane is used similar to that described in Chapter 5. Figure
68 shows three vertices to which the algorithm applies 2 Dot Product to calculate the interior
angle. The plane shown is created by means of the Cross Product between the normal vector of
the plane on which all three vertices lie, and the vector formed by Vertices 1 and 2. The normal
of this new plane points info the new patch. Substitution of Vertex 3 into the equation of the
new plane will give a result which suggests that it is cither above or below the new plane. Where
Vertex 3 lies below the new plane, the angle should be considered to be exterior and heace is
calculated by subtracting the angle found by the Dot Product from 360 degrees. Similarly,
where Vertex 3 lies inside the new plane, the angle should be considered to be interior and can
be taken directly from the Dot Product calculation.

Pseudocode for this section is in Appendix 2. Computation time can be reduced by

retaining the patch equations instead of recalculating them for each iteration.

6.4 Creating Patches
Having now created an ordered list of vertices and determined the angles between the

vertices, the algorithm can begin to construct the new patches. All new patches are created from
a specific anchor point. In the attempted construction of the first patch, the first vertex in the
sorted list is used as anchor. The new patch is created by salking around the vertices which
form the new boundary. Thus, Vertex 1 of the new patch is the first vertex in the Vertex List.
The vertex which will be assigned to Vertex 2 of the new patch will be the second vertex in the
Vertex List. At this point, a decision must be made about the potential validity of the new patch.

In general, a valid patch will be formed if ifs vertices form a Convex Hull. A Convex Hullis a

ShipArrT

theoretical boundary passing through each member of the enclosed set using only convex
curves. If there is an internal angle within a four-sided patch which is greater than 180 degrees
then a concavity exists in that patch and the Convex Hull property is violated. Figure 69 shows
such a concavity and is contrasted by the valid mesh element in Figure 70. Steps in the
algorithm can be saved by checking these angles as the algorithm creates the new patch and it
was for this reason the angles were determined in the previous step of the algorithm.

If the angle at Veertex 2 is less than 180 degrees then the new patch can continue. In
instances where the angle is greater than or equal to 180 degrees as in Figure 71, there is a
potential for a concavity in the new patch — a situation which is considered invalid.

Where an invalid situation is found, the algorithm discards this patch and notes that the
anchor position must be changed in order to create a new patch (Figure 72). In the case in
which the angle at Vertex 2 is less than 180 degrees the algorithm continues to walk through the
ordered Vertex List seeking the third vertex of the new patch.

Continuing to the next vertex in the new patch, a decision must again be made based on the
angle found at the current vertex. This time, instead of questioning the potential for the creation
of a patch, the algorithm decides if the patch will contain three ot four sides. If the angle at
Vertex 3 is less than 180 degrees then the new patch can be attempted with four sides. Where
the angle at Vertex 3 is greater than ot equal to 180 degrees, the new patch will be invalid
because of a concavity.

In cases where a four-sided patch is created, a final angle is calculated between the vectors
formed between Vertices 1 and 2 and Vertices 4 and 1. Such a case appears in Figuse 73.
Should this angle prove to be greater than or equal to 180 degrees, the fourth vertex is dropped

and a three-sided patch is attempted.

ShipArT

6.5 Interference Checking

Having created a four-sided patch, the next step s to ensure that the new patch does not
interfere with any other patches. To this end, a plane equation is determined from the vector
between Vertices 1 and 4 of the new patch and the normal vector of the current side of the POT
Prism. Using this equation, the remaining vertices in the Vertex List are checked to ensure that
they do notlie inside this plane.

If any vertex lies inside the plane then the algorithm assumes that a four-sided patch is
invalid. Taking Figure 74 as an example, Vertex 4 of the new patch is set equal to Vertex 3, and

checking is p again. checking takes place in exactly the same

manner as before — create a plane using a vector between points Vertex 1 and 4 and check the
remaining vertices in the Vertex List.

Although the number of sides of the patch in Figure 74 was reduced to three, Figure 75
still shows an interference. &- a tesult, this patch cannot be completed. Itis instead discarded,
and a flag is set to indicate that the anchor must be moved. Where no interferences are found,
the new patch can be considered to be complete and can be stored.

Once a new patch has been completed, the Iertex Listis updated by removing vertices. In
the case of a four-sided patch Vertices 2 and 3 would be trapped by the new patch such that
they could not be used in any additional patch construction. For this reason, these entrained
Vertices would be removed from the Vertex List. Similarly, in the case of a three-sided patch,
Vertex 2 would be removed. This step makes continued walking through the Vertex List

possible, greatly facilitating the creation of the remaining patches.

ShipArrT

6.6 Anchor Points

As already outlined, patches are created using a connect-the-dots approach in which the
algorithm walks through an ordered Vertex List. The first vertex of each new patch is
considered an anchor point and is shared by more than one patch whenever possible. In
Semi-Solids, two anchor points are used which correspond to the beginning and end of the
Vertex List. To distinguish between them, nautical definitions can be used such that ‘anchor’
refers to the first vertex in the Vertex List, and ‘kedge’ refers to the last vertex in the Vertex List.
Once a patch has been created from the anchor, the algorithm shifts its focus to the kedge point
and attempts another patch by walking backwards through the Vertex List. The use of anchor
and kedge points has been made to encourage more regular patch shapes instead of slivers as
might be created in the example in Figure 76 and Figure 77.

I a patch cannot be created from a particular anchor point, the anchor point is moved to
the next vertex in the list. For example, if no patch can be created using Vertex 1 as an anchor
point, the algorithm then assigns Vertex 2 to be the anchor. Movement of anchor points is
considered to be a full move, and therefore the algorithm changes sides again, in the hope that

this will encourage new patches to originate from the original patches.

6.7 Meeting The Other End
‘The algorithm tracks which vertices have been reached from cither end of the list. When the
two ends meet, the algorithm assesses the number of vertices in the list and stops when only two
vertices remain. Where more than two vertices remain in the list, the algorithm returns to the.
first vertex in the list and begins the process again, this time working with the remaining vertices

in the list.

ShipArrT

6.8 Checking Normals
Since the algorithm creates patches from either end of the list, the order of points will be
inconsistent for the new patches. The normal vector of these patches should all be the same and
be oiented towards the exterior of the object. Just as described in the previous chapter,
correction of the patches can be made by simply exchanging Vertices 2 and 4 of each incorrect
patch (Figute 78 and Figure 79). The verification process is carried out by determining the two
vectors, performing a cross product, and comparing the result to the intended surface normal

using 2 Dot Product calculation.

6.9 Examples

Figure 80 shows a typical output for the algorithm described in this chapter. The effect of
the anchor points on the shape of the patches is evident.

Unlike steps of the Semi-Solids algorithm, the material presented in this chapter forms a
series of nested loops and has not followed a linear pattern cither in execution or in description.
For the purpose of clarity a robust example has been solved step by step in the hopes that this
might provide the reader with a more clear understanding of the algorithm. Found in Appendix
3, the example assumes that the Vertex List has already been updated and sorted. As suggested
by the ship example in Figure 80, situations as complex as the one shown in the example are
unlikely in the majority of ship problems. The algorithm described in this chapter derives
surface meshes for each of the four sides of the prism. The ship example is shown with the POI

and the four prism sides completed in Figure 81

ShipArT 126

6.10 Potential Improvements

The formation of large regular patches is a desirable goal of this algorithm and the method
of alternating anchor points described in Section 6.7 is one means by which this can be
encouraged. A second means might be to form a patch using the start and end points of the
vertex list. However, where the adjacent surface is relatively flat this encourages small sliver-like
paches. Perhaps some sort of optimization could be added to minimize the number of patches
to form regular patches through the evaluation of the intetior angles of each patch, and to
encourage the development of similaly sized patches. Unfortunately there will be instances in
which the vertices fail to form a convex hull, thereby making less predictable the number of new
patches.

An alternative approach might be to try different initial anchor points. One could also
attempt to create triangular patches for the initial patch and/or additional patches.
Unfortunately, where there are many vertices such as in the case of the example in Appendix 3,
this ion may be time ing as the algorithm explores the many potential patch

configurations.

ShipArr'T

Figures Pertaining to Chapter 6

Figure 49 A depiction of an invalid mesh element. The element violates meshing rules because
it has four sides while adjoining five other patches.

Acceptable

Acceptable

Figure 50 A depiction of the same mesh region, this time validly defined by the use of two new
mesh elements.

ShipArrT

Page
¢ |

Figure 51 This sheet s a key which shows the relationship of the flowchart pages shown in the
series of figures which follows.

ShipAnT

Chaptar's
Oetarmine Versces for
For Each of the Four
podmyi Lo ‘e and store as e
a1
| l
Craste an
Ordered Vertex List
o2
Cakcutate interor Anges
‘at nch Vertex
a3

for this POl
Figure 52 Algorithm for the C ion of Adjacent Sides — Page 1. The in the
connector symbols refer to parts of the algorithm on other pages.

ShipArrT

T

Figute 53 Algorithm for the Construction of Adjacent Sides — Page 2.

ShipArrT

31

Figure 54 Algorithm for the Construction of Adjacent Sides — Page 3.

ShipArrT

Dicars o Puch
-
[rereomcnenrag = e
O
St appropriste fle to
Coangs et s o
keage

Figure 55 Algorithm for the construction of adjacent sides — Page 4.

e angie
t Vertax 2s an
wxterior angle

ShipArrT

Assign Second Vertex of
New Pach

Figure 56 Algorithm for the construction of adjacent sides — Page 5.

ShipArrT

‘Set appropriate fleg to
change either anchor or
kedge

Vertex 1and|

Exchange
Vertex 3 of the New
Patch

J

Figure 57 Algorithm for the construction of adjacent sides — Page 6.

ShipArrT

Figure 58 Algorithm for the construction of adjacent sides — Page 7.

ShipArrT

Discard the Patch

Sat appropriate g to
change sither anchoror
kedze .
i} ‘Caicutatn Dot Product of
Verscns n the Vartex List| New Paich gt o
&s
T
|
|
t any
=y
65
Yer
Oiscard e Patch,
Set approprate tag
change star anchor or
rese.
I
U]

Figure 59 Algorithm for the construction of adjacent sides — Page 8.

ShipArT

ShipArrT

Figure 60 Algorithm for the construction of adjacent sides — Page 9.

138

Set appropriats flag to
change sither anchoror Exchange Ve 1
the New Patch
‘ ‘ |
I L
|
i
B o = oo e

Figure 61 Algorithm for the construction of adjacent sides — Page 10.

ShipArrT

139

Vertex 4 bes
he opgosing Yo
or kedge
6
Set moraPatchesFiag =
Faise
"—_|
Cabutatn Dot Product of
the Normal Vactor of the
New Patch and that of
the curert POI Prism
Side
[
0o
Procuct =1
(Patch aces inward ve
agiead of
a8
Exchange Vertex 1
and Vertex3 of
the New Patch
"o T
|
S
Q

Figure 62 Algorithm for the construction of adjacent sides — Page 11.

ShipArT 140

Surface A
1

1

Adj acenti
iSurface

4 3 .
Surface B —f 5

Figure 63 An example of the problem of vertices which define surfaces which adjoin those
which were created in the code of the previous chapter.

ShipArr'T 141

Surface A —j'

1

New Object

Figure 64 This figure is identical to the previous one except that Vertices 2 and 3 have been

ShipArT

dropped from the potential list of vertices for the surface. The POI remains in the
figure as a reminder that the vertices have only been removed relative to the surface
which faces the reader.

142

New Object

10

Figure 65 This figure shows a case in which the sort key described in the next section might fail

ShipAreT

because more than one vertex lies on the same line (passing through Vertices 1, 2, 5
and 6). The distance from the PO can be used to address this unusual case.

143

Surface A =

1 P, W
Patch 1
3
4
s Patch 3
SurfaceB —— s

Figure 66 The basic figure showing the vertices of the surface without the presence of the POL

ShipArrT

6 5
Figure 67 Figure showing the interior angles found between edges formed by the vertices of
this surface.

»

Nomal
of Plane

Figure 68 Detail of the previous figute showing intetior and exteior angles at a vertex.

ShipArrT

cavity)

Figure 69 A depiction of an invalid mesh element. The vertices of each element should form a
convex hull. This is not true in this case and is evidenced by the concavity shown in
the figure.

Acceptable

Figure 70 This figure shows the same mesh as in Figure 69 but with valid mesh element
highlighted for contrast. The element is valid because its vertices form a Convex
Hull. A property of the Convex Hull is that none of its exterior angles exceed 180°.

ShipArrT

146

Anchor Point

Figure 71 The development of this invalid patch could have been prevented by noting the
exterior angle at Vertex 2.

Anchor
Point

Figure 72 Patch showing the anchor point moved to the next vertex in the potential new patch.
Although the four-sided patch is still invalid, 2 valid three-sided patch is now
possible.

ShipArrT 147

Figure 73 In this case the patch contains an exterior angle at Vertex 3. A decision can be made
at this point to limit the patch to a valid three-sided shape.

ShipArrT

148

3 4 B

Figure 74 The newly-created patch shown in this figure is invalid because it crosses a boundary
formed by the vertices of the Vertex List.

Figure 75 Building on the previ figure, the algorith pts to create a valid patch by
dropping one of the four vertices t.he:cby forming a three-sided pan:h Once again,

the patch is invalid because one of its sides violates the valid region defined by the
Veertexc List.

l ShipArrT e —— 149

1 2 3
Figure 76 An example of patches which radiate from a single point. The figure is intended to
demonstrate the sliver-like form of the newly-created patches.

1 7 3
Figure 77 Similar to the previous figure, this figure shows that by alternating patch creation
origins (Anchor points), patches which are more regular or sguar can be created.

ShipArT

normal

6 5

Figure 78 Newly-created patches in which one patch faces outward instead of inward.

6

Figure 79 A depiction of the same patches, but with Vertices 2 and 4 exchanged on the invalid
patch. The exchange makes it valid because it faces in a direction consistent with its
neighbours.

ShipArrT

Figure 80 Building again on the ship example introduced in Chapter 4, this figure shows the
construction of patches linking the back surface of the new object and the projected
surface which replaced the POL.

ShipArT

152

Figure 81 The same image as in Figure 80, showing new patches on all four of the POI prism
surfaces.

ShipArT

Representation Conclusions
and Future Work

The i fon of a three-dimensi ion format for Facility Layout problems

was prompted specifically by the needs of Naval Architects who require layouts to reflect the
compound curvatures of their hull forms. By moving to a 3D representation, the sophistication
of models can increase significantly and models will be more adaptable to ship hull forms.
Summarized in Table 14, the Semi-Solids formulation introduced in this study differs in many
respects from the 2D Block representation traditionally used for Facility Layout problems.

Although Semi-Solids has been described in this thesis by means of detailed pseudocode, the
algorithm has only partially been implemented. In an effort to save time, it was recognized that
the concepts of Semi-Solids, expressed in detail, would be sufficient for the requirements of this
project. A true implementation would employ modern programming environments and

specialists capable of achieving their full potential for a fast and accurate execution.

ShipArT 154

Chapters 4, 5 and 6 have described the ics of the ipulation of objects

chrough the Semi-Solids formulation. The process was examined in detail for a single face of an
initially six-sided object and can be generalized as three distinct steps:

® identification of neighbouring objects

® update of surfaces which lie flush to neighbouring surfaces

® update of surfaces adjacent to the updated surfaces

The process is completed by examining the remaining faces of the object until every patch, new
or old, has been updated to reflect its surroundings.
While Semi-Solids is well able to address the problem of fi, the algorithm has the potential

to create patches. { the simplification of the meshed surface of an

object is difficult to resolve because of the adjacency rules. The impact of this problem is

impossible to evaluate without Semi-Solids being operational, but is likely ional to the

number of patches against which an object is being placed. Particulaly for interior objects,
boundaries will tend to be square and simple, reducing the impact of this problem. Figure 82
builds on Figure 83 and shows the extra patch which might result.

This project has yet to examine the mechanics by which Semi-Solids can be applied, other
than to suggest that knowledge-based systems and fuzzy-st variables can be used to encourage
reasonable solutions in situations in which infeasible solutions may be found. The material
presented in Chapter 8 should begin to remedy this omission. However, without Semi-Solids or
some other similar representation for the spatial data one cannot begin to build an acceptable,
much less effective, Facility Layout Algorithm. The remainder of this chapter discusses areas for
future consideration and effort towards what amount to the bricks and mortar of a new Facility

Layout Algorithm.

ShipArrT

7.1 Literature Review of IEEE Materials
The Semi-Solids formulation proposed in this project was created as a response to

inadequacies in the Block Layout approaches currenty employed by Industrial Engincers.
However, advances in computer graphic models suggest that it may not be the only
representation format which could be used for this problem. For this reason it is recommended
that any future work include an extensive search in the literature of the Institute of Electrical and
Electronic Engineers (IEEE). Although almost 200 references were reviewed over the course of
this project, the emphasis was placed on marine-related topics. Because the IEEE publications
were ouly briefly surveyed, itis possible that the Semi-Solids formulation has already been
developed. However, on the surface, it appears that Electrical Engineering tends to approach
network problems using a 2D format and is therefore fundamentally different from the 3D
model described here. Itis also possible that a superior representation has been developed as

texts dealing with interactive computer graphics show the depth and rapid evolution of this

However, the continued emphasis on i ive models suggests that references
t© automated tepresentations may be few and far between. In addition, the Electrical
Engineering problem of Very Large Scale Integration (VLSI) shares many attributes with the
problem of Facility Layout and ideas and solutions for ShipAnT may be found in the
publications on this topic. For example, the corridor and services routing problem is similar to

the power and data lines within a integrated circuit.

ShipArT

7.2 Complete Coding for Semi-Solids
Furure work must pursue the completion of the code for Semi-Solids as well as the
optimization of the algorithm to reduce computation time. In the form presented in Chapters 4,
5 and 6, coding should be a relatively quick task, but there is considerable room for taking
advantage of aspects of the database environment to reduce computation time. To this end,

Structured Query Language (SQL) and the query functions of Microsoft Azess should be

employed wherever possible. For still superior imp jon in I such

as C or Assembler could potentially reduce run times although pootly written routines may

impact the algorithm’s as much as the efficiency of the basic
Once coded, performance testing should ke place o determine if Semi-Solids can be

reasonably applied to Facility Layout Problems. Because of the high number of calculations it is

expected that the algorithm will appear to be slow in execution. However, the model is

significantly more complex than its predecessors, and it is expected that by the time a complete

Facility Layout Algorithm has been ped, the speed of will have advanced to

the point where the additional ion will be i This evolution is similar to the

evolution of Graphical User Interfaces (GUT), such as Microsoft Windows, which have

their text-based pred as the ing power of the personal computer has

improved.

ShipAreT 157

7.3 Acquire and/or Code an Octree Model

Another possible representation for Facllity Layout would be the Octree model described in
Appendix 1. The advantages of Octrees suggest that the formulation would provide a usefal
benchmark against which the performance of Semi-Solids can be evaluated. For this reason itis
strongly recommended that an Octree model be developed in parallel to that of Semi-Solids.

Octrees are related to Block Layout in that both are a form of Spatial Enumeration.
However, Octrees differ significantly because they ate able to subdivide large blocks into smaller
blocks to model unusual shapes. Each cube is divided into cight smaller cubes and the process
of division can continue until any desired resolution is achieved. Unlike Semi-Solids which
exactly models a faceted approximation of a surface, Octrees approximate exact surfaces to a
predefined significant figure using a stepped approximation. In both models the complexity of a
solution is proportional to the complexity of the boundary of the design space and the shapes
being created. An example of the representation of a curve using facets and spatial enumeration
is depicted in Figute 84 and Figure 85.

Octrees offer a significant reduction in the complexity of manipulation, but may require a
large number of divisions to achieve a resolution which is acceptable to the user. That is, the
Octree algorithm may be simple but highly repetitive in contrast to the mote complex but less
repetitive Semi-Solids formulation. For the purpose of Facility Layout, the capacity of Octrees
to model objects with any level of resolution holds considerable appeal. In the course of
generating a layout it may become apparent that the current layout will not be an improvement
over its predecessor at a stage when the layout model is still quite coarse. The ability to
eliminate many potential layouts using a coarse model would significantly reduce the run time of

the Facility Layout process.

ShipArrT

Like the issues related to computation, thete is also a potential for Octrees to be demanding
for data storage. For example, an accurate model of a ship hull may require the definition of an
enormous number of cubes. However, the actual data element corresponding to each cube is
numeric so as to designate which room in the layout of which the cube is a part. This is in
contrast to Semi-Solids in which regions are defined by what may be quite few faceted objects,
but the definition of those facets requires many bytes of data to be stored.

A potential problem for the use of an Octree formulation is the difficulty of importing and
exporting models. While it is relatively easy to use Octrees to model faceted or curved surfaces,
icis very difficult to create a meshed surface from an Octree model. Since most output
programs such as those for mathematical modelling, rendered graphics and virtual reality require
meshed surfaces as input, this will be a critical problem to overcome. The minimum addresses
the importation problem because hull forms are currently imported as faceted 3D meshes or as

line plans.

7.4 Adapt Semi-Solids for Bicubic Surfaces
A third representation possibility would be to develop a formulation called Bicubic-Solids
which builds on the Semi-Solids formulation but replaces the 2D facets of the representation

with bicubic surfaces. Intuitively, this means that the definition of each facet will require 16

and the 3D inates of 16 vertices. This is in contrast to the planar
definition of four vertices and four equation coefficients for a comparable four-sided mesh

element. Not only does this increase the data storage requirements of a particular model, but

also radically increases the i i because of the complexity of bicubic

surfaces. Despite these two obvious reasons to discard a Bicubic-Solids formulation, there is

ShipArrT 159

potential for a reduction in the number of surface patches required to define a model such as a
ship’s bull-form. The bicubic definition is able to represent a large region of curvature with a
single patch such that the entire hull of 2 ship might be modelled by few patches, thereby
reducing both data and computation demands. Therefore, the trade-off lies between numerous
relatively simple calculations versus few highly complex calculations. It is likely that the optimal
approach is problem specific.

An additional advantage of moving to a Bicubic-Solids formulation is that the model
represents the desired surface exactly, thereby making this formulation the most robust of the

three. However, it is also common to experience agreement problems where two bicubic

patches intersect, particularly along the i ing edges of two sep: bj

The ics of manipulation of Bicubic-Solids may prove to create more problems than

it solves. For example, the projection of prisms described in Chapter 4 becomes virtually
impossible where the prism sides are bicubics. [tis hoped that future work will quickly

the feasibility of Bicubic-Solids, but for the purpose of this chapter it is assumed that

such a representation can be developed.

7.5 Compare Semi-Solids, Octrees and Bicubic-Solids

Perhaps the greatest difficulty in comparing the of the three
just proposed stems from the fact that the intent is their application in a Facility Layout

Algorithm. Although many of a Facility Layout Algorithm have been discussed in

the thesis, an algorithm which links and controls these components does not yet exist. Hence a

simple model must be developed such that each rep fon can display its strengths and
weaknesses while the detailed algorithm is being developed.

ShipArrT

One such model might take the appearance of the narrow hull of a catamaran similar to that
shown in Figure 86. For simplicity, the shape of the hull does not change with depth into the
page. The blocks shown may either be thought of as initial Octree blocks ot as spaces / rooms
in the other two formulations. The shape is relatively simple when compared to a complex ship
form and, more importanty, its narrow width climinates the need to be concerned with the
relative orentations of the spaces or cubes. It therefore reduces the problem to one of fifas
opposed to layout and provides a fair basis for the comparison of the different formulations
described in this chapter. Table 15 outlines a set of criteria for comparing the different

formulations.

ShipArT

161

Figures Pertaining to Chapter 7

Figure 82 Top view of the process of fitting one object against another. The view shows how
the vertex pointers at 2 and 4 are moved to reflect the new vertex positions.

SbipAnT 162

Figure 83 Top view showing how the next pm]ccuon plznc completes the fitting process. The

ShipArrT

figure also shows how the creates an patch. The
problem can be much more significant where the bounding mesh is idered in
three dimensions.

163

Figure 84 An example of modelling a curve using Quadtrees. Quadtrees are the

ShipArrT

two-dimensional equivalent of Octrees. There is a rapid increase in the number of
squates required to accurately model the curve. Also, while it is simple to
approximate a curve by spatial enumeration, it is difficult to create a curve from a
series of blocks.

164

Figute 85 The same curve which was modelled in the previous figure can be described by
means of a series of straight lines. The lines correspond to facets in the Semi-Solids
formulation. For simple curves such s this, relatively few line segments are required
to approximate the curve to the level of accuracy shown.

/

<

Figure 86 A possible model against which the thee potential representation formulations can
be applied during the evaluation of their performance. The simple shape extends
into the page to provide a boundary for the third dimension.

ShipAnT

Tables Pertaining to Chapter 7

Both representation and manipulation algorithm
are very robust and can form any faceted shape.
Makes possible the inclusion of surface atiributes.
such as the position of doors and windows, and
such as the weight of wall materials.

Three

Each room is defined as a single object.

tion algorithm is
‘computationally demanding.
Each model requires an enormous quantity of
mathematical data.
The time required to complete a layout may prove
to be unacceptable-

Block sizes cannot be varied May create unnecessary patches which are very
‘within the same (ayout. difficult to remove.

Blocks cannot accurately
represent curved surfaces.

Difficuit to assign surface
attributes such as doors and
windows to Blocks.

Table 14 Table comparing the Block Layout representation commonly used for Facility
Layout Problems, and the new Semi-Solids formulation which has been proposed to
replace it.

ShipAn'T 166

ShipArT

Accuracy

Facility Layout

of Representation
Sqmtydmmmmm(muulmmmmhud
facets for Semi-Solids, increasing the resolution for Octrees)

+ Ease by which code can create a shape (try creating the same
shapes

‘without the aid of the

- Ease by which a new space can be added to the layout
Ease of Manipulation

Miscellaneous

&um_-urmwnm
m

m(ﬂwmm.m.)
* Ease of visual display of model

« Import / Export constraints — especially for Octrees which require a
surface mesh to be created from their modeis

« Ease of checking consistency

Table 15 Ideas for evaluation criteria to compare the model representations
Semi-Solids, Octrees and Bicubic-Solids.

ShipArrT Conclusions
and Future Work

This project began as an investigation into computer-aided ship design and, for this reason,
requirements specific to the design of ships have been included wherever possible. The software

developed for the project has been named Ship Tool (ShipAreT) i reference to the

General Arrangement of a ship. Since a ship’s General A is closely analogous to the
land-based problem of Facility Layout, the ShipArT algorithm should be equally effective ashore
and afloat

The decision to modernize the software used for Facility Layout stems from two sources.

First, the lack of success of traditional algorithms for Facility Layout can be attributed to the

crude manner in which they mani spatial i i because of the almost

universal Block i Second, advances have been made in the

performance of computers, thereby making possible the use of more complex and sophisticated

models.

ShipArrT

Just as Semi-Solids has only been partially coded at the ime of writing, so does SkipArT
remain incomplete. The remainder of this chap! i ions and directions for future

work in research and development which should aid in bringing Shi24rT to a reality.

8.1 TheRep ion of Quantitative Data

The goal for any data-oriented problem is to maximize the i on available while

‘minimizing its storage requirements. Chapter 3 described 1 database structure by which
quantitative data could be stored and quickly accessed. It was also proposed that a relational
database is a suitable environment because it facilitates dau manipulation by linking dissimilar
data elements to one another, such as a door description and a room dimension. In addition,
the relational database greatly facilitates future expansion of the same dataset since the
appending of new tables allows the existing records and data structures to remain intact.

Since the size of a dataset is always of concern, particularly for a data-oriented problem such
as Facility Layout, the relational database makes possible the sharing of common data elements.
For example, if the model of a hotel contains 1000 identical rooms, a relational database makes
it possible to store a single room definition. Therefore, each room record in the database need
oaly contain data specific to that particular room (e.g-, its location in the hotel) with common
data such as the room’s contents accessed by means of a pointer to the shared room definition.

While still in the developmental phase, Microsofc’s Acess and Vismal Basic appear to offer a

simple, yet sophisti developmental eavi The Ascess database also offers

programmers access to many of the program’s internal functions such as sorts and queries.

Given that there is a large quantity of data associated witha Facility Layout problem and that the

ShipArrT

169

data must be accessed many times during the development of a layout solution, the speed by

which data can be stored and manipulated is critical.

8.2 The Representation of Qualitative and Indefinite Data
Briefly meationed in Chapter 2 was the potential for using a variation of fuzzy sets ©o
represent qualitative data and ranges of quantitative data. A fuzzy value is usually defined by a
and a membership fimction. The i function is usually, aithough not necessarily,
linear and ranges from 0 to 1. Itis intended to provide 2 measure of the degree to which the

value actually is a member of the set of values. Sometimes fuzzy membership functions are
described as measutes of the degree of possibility so as to distinguish such functions from their
statistical counterpart, although in many cases it is difficult to distinguish between the two. In

fact, “fuzzy measures ate defined by weaker axioms, thus subsuming probability measutes as a

special type of fuzzy 7].” “One i iately appareat di is that the
summation of probabilities on 2 finite universal set must equal 1, while there is no such

q for ip iag

The variation which was introduced in this project involves the use of a membersip function to

interpret a mnge of qualitative values. For example, under a fuzzy measure the floor area of 2
room can be defined by a range of numbers — a minimum, a preferred and 2 maximum value.
The range forms a set of valid potential values for the particular variable, area in this case. This

thata itative value can differ from its preferred value so long as it

the p
lics in the predefined range. However, it is also desirable that solutions be as close to their
preferred values as possible. To this end the membership function can be used to create a

penalty which appears in the score of the layout (igure 87). Thus, in terms of the area

ShipArnT

170

example, a layout solution in which the area of a room is the room’s preferred value receives no
penalty. However, 2 layout solution in which the area of the room is close o its minimum value
receives a penalty which increases the score of the layout. Since the goal of the Facility Layout
algorithm is to find the layout with the minimum scote, the penalty acts to discourage (but not

prevent) the algorithm from finding the second layout o be the optimum.

8.3 Difficulties Associated with Constraints and Data
As suggested in Chapter 2, traditional Facility Layout algorithms employ a single
for the purposes of scoring. However, there are a multitude of constraints associated with

Facility Layout and it is desizable to model as many as possible. Therefore, one step which is
necessary in a new Facility Layout algorithm is means by which multiple constraints can be
represented and applied to the layout model. The contents of Table 16 and Table 17 which
wete introduced in Chapter 1 show a number of such criteria. In implementation, factors such
as services will involve additional variables for calculation and will therefore become more
complex.

The use of many constraints introduces three problems in the development of the new

Layout algorithm. First, the greater the number of ints the greater the comp

demands of the model — hence the algorithm requires more time to determine a solution.

However, as previously noted, increasi ion time is not critical given that
the speed of computers increases daily. Second, there has been little research into the relative
significance of various constraints, so it is quite likely that some may be over- or under-valued,
thereby affecting the solution layout. The answer to this is to get a new Facility Layout
algorithm operational and then petform sensitivity analysis on each of the constraints for a

ShipArrT

aumber of different layouts. The results can then be confirmed by experts in the manual
solution of such problems. Third, there are often instances in which variables or constraints are
in conflict. For example, if a user defines a room in the layout by its floor area and volume
using the Fuzzy Sets described in the previous section, it may be that the solution will call for an
area which cannot be achieved for a valid volume. The solution to this problem might be best
addressed through the use of 2 knowledge-based/expert system. By developing such a system,
the problem of constraints becomes one of defining a set of rules by which preference can be
given to particular variables in the event of conflicts.

The problem of constraints can be solved by initially developing a model for a handful of
constraints. The model should be similar to the database structure discussed in the previous
section such that new constraints can be casily added as the algorithm develops. This will greadly
facilitate the addition of constraints such as those related to multi-story layouts. In the future, as

the success of multi-criteri; i becomes better it the addition of constraints

normally associated with building codes and the rules of regulatory bodies can also be added.

8.4 Balloon Modelling

An i for spatial ints in Facility Layout Problems is a box of

balloons{59]. If each balloon represents a space, then simultaneous inflation of the balloons
leads to a situation not unlike the layout process. Each balloon would be injected with a
quantity of air appropriate for the size of the space it represeats. The balloons would experience

some changes in relative positions as some became larger than their neighbours. Further, they

would also experi change in volume consistent with the forces applied by the surrounding

balloons. Once inflated, all of the balloons would contain air at the same pressure, with some of

ShipArrT

their numbers larger and others smaller as appropriate for the surroundings and the quantity of
air they conmin. The equality of the air pressure within all of the balloons is analogous to a
system solution. Further, because of the influence of their neighbours, balloons which were
intended to be equal in shape will likely vary. And yet, with the system at steady state, the
physical dimensions of the balloons will be optimal. The balloon model is therefore a very

of how ne ing spaces can impact on each other in a layout.

This balloon model does not address the relative configuration of the balloons, but instead finds
only an equilibrium for the spatial interaction.

‘This balloon concept introduces a interesting approach to the problem of improving the
score of a layout. For example, consider the exchange of two dissimilaly sized balloons.
Inflating the balloons will lead to a situation in which the large balloon crammed into a small
volume will have a high internal pressure and the small balloon in the large hole will have a
telatively low internal pressure. The pressutes effectively act as a force which push upon and
alter the positions and shapes of neighbouring spaces until a new steady state is achieved. It
should be possible to determine a measure of this force, and to evaluate/predict its effect on the

spaces relative to other ints, especially their ies. The ion of the pressures

is not dissimilar to 2 topographic style isobaric map in which the high pressure region appears as
2 mountain, the low as a valley, and the steady state/optimum is achieved when the map is
uniformly level. Weather models or perhaps Finite Element Modelling (FEM) might provide
quite interesting ways of evaluating this. If such a pressure-based evaluation can be made, this
method will avoid the need for rearranging the whole layout for each improvement attempt.
Further, it should be possible to make multiple exchanges (ie., five or more instead of two or

three) thereby greatly improving upon traditional Imp Lastly, a pressure

ShipArrT

ShipArrT

model such as this would make possible interactive manipulation of the layour, since it provides

2 means by which the layout can be appropriately updated to reflect I/interactive changes
in the position of a space.
8.5 Problems Associated with Superp

Another challenging problem associated with Facility Layout is the need for sharing of space
and resources. The difficulties associated with the traditional approach to distance constraints
such as pipe networks was introduced in Chapter 2. However, the problem does not just affect
sexvices but also spatial constraints in the form of walled and unwalled corridors. The next four
subsections discuss problems related to superposition and routing, and suggest ideas and

approaches which might contribute to their solution.

8.5.1 Arrangement of Furnishings for Each Room

Just as the layout boundary affects and is affected by its contents, so are the shapes and
dimensions of individual spaces impacted by their conteats. For this reason, a subproblem
would be the valid layout of the contents of each space. Machinery Arrangement has already
been a published topic of reseatch, and the problem is the same for any objects including
furnishings and cargo.

Using 2 bedroom as an example, one approach would be to establish 2 zone of open area
around each piece of fumiture, much like 2 corridor. For example, consider the furniture one
might find in a bedroom: a bed, desk, chair, wardrobe, and end table. The problem of layout
within a bedroom becomes one of maximizing open areas for the room’s preferred floor area

while maintaining access. However, there are instances in which the objects can share corridor

174

space, or corridor space can simply be neglected. The bed and the end tble are one such
example of pieces of frniture which do not require an open region between the two of them,
nor between themselves and a wall. Fusther, they can share the open region in front of the table
and to one side of the bed. Building on the use of fuzzy sets previously described, it should be
possible to define furnishings so that a range of interference percentages can be tolerated by the
arrangement algorithm. It should also be possible to increase the significance of the open areas
around a piece of furniture in a manner inversely proportional to the unencumbered area
remaining. Hence the more sides which are impinged upon by walls and other pieces of
fumniture, the greater becomes the importance of the dimensions of the corridor leading to the
piece of fmiture. Ideas such as these find direct application in superposition problems such as

corridors and services.

85.2 Design of Corridors

Traditional Facility Layout algorithms assume that the area required for corridors has been
included in the area definition of each room, and therefore the problem of corridors can be
neglected. In practice, corridors present the architect with a superposition problem, one which
is largely related to traffic flow. For example, a single room requires a corzidor of cross-sectional
dimensions appropriate for what will be entering and leaving the room, whether it is humans or
five-tonne trucks. When a second room is created adjacent to the first, it is intuitively obvious
that the creation of a separate corridor is an inefficient use of space in the layout. Instead, the
two rooms should share the single corridor. The next question is, should the dimensions of the
corridor be altered to suit the increase in traffic? If the two rooms have equal traffic

requirements then should the corridor be doubled in width? How does 2 change in corridor

ShipArrT

175

dimension affect the shape and location of the rooms and their neighbours? The problem is
similar to that of furniture armangement described in the previous subsection and it is likely that

many aspects of the solution algorithm can be shared.

85.3 Servicing Spaces with Utilities

If one extends the analogy of cotridors to the services associated with rooms in the layout,
then the problem of cortidors is similar to that of a large duct. From the solution of the
problem it should be possible to generate a list of the components required for the duct such as
dampers (doors), T-intersections and tubing of the appropriate diameter. Further, the same
logic can be applied to other services such as potable water, sewage, electricity, etc. The
inventory of the components required for services is quite useful for detailed design and because
real costs can be attributed to each pipe or wire, thereby leading to highly accurate cost
estimates. Also, recall that the layout solution is given a numerical score which could be
expressed in terms of cost. Therefore, the true cost of servicing a room can be incorporated

into the measures of merit of the layout solution, providing valuable information to the designer.

854 Routing Problems for Services and Corridors

The routing of services, including corridors can dramatically affect the efficiency of a layout
solution because of the potential for wasted space and high service costs. A routing algorithm
working in concert with the superposition methods suggested in the previous sections will make

a signi ion in the ination of an optimal layout.

ShipArrT 1%

“Going back to configuration design, and especially the layout of
compartments, because I felt it was most neglected, and it was the area of
simple design for production which I was working in about four years

ago which led me to the idea of space in the compartments of ship in
the comprehensive way (in fact, one stage beyond what the author has

done), where the simplifications of arrangement design and hence the

reduction in shij costs, and the imp: in ionality of
all the operational systems onboard — are all improved by simple
compartment layouts. The most important being the routing of pipes,
cables and trunkings. The reduced number of bends on pipes, to take a
simple example, reduces the pressure drop, so that the same functionality
and better performance is achieved fot less power: or you get better

functionality for the same power, whichever you preferj60].”

Fortunately, Mechanical Engineers have made progress towards automated algorithms for piping

and ducting of large systems. However, the key remains that of the whole Facility Layout

problem — how does one give the computer the means to freely add, delete, size, locate and

check the interference of the components of such systems without a means of perceiving or

modelling their spatial characteristics.

ShipArrT

177

8.6 Optimization and Facility Layout

There has been an enormous effort applied to the problem of optimization of complex

problemms. ical ing and search techniques are now well established and have

been imented by ditional algorithms such as Simulated Annealing and Genetic
Combinations of these algorithms guided by expert systems are also becoming

p {61]. Once the rep ional problems have been addressed and implemented as

suggested in Chapter 8, there is no reason why these modern mathematical approaches cannot
also be applied to the problem of Facility Layout. Further, it may be also appropriate to apply
some of these methods to sub-problems of the Layout, such as the routing problem described in

the previous section.

8.7 Communication of Results

lation routine was ped for the

Although not previously di d in this report a
importation and exportation of meshed objects. The importation algotithm reads files written in
AutoCAD’s Drawing Exchange Format (DXF) and assigns their contents to the appropriate
tables and fields in the database. DXF is a common translation medium for many CAD
programs. In particular, Autoship Systems’ AxtoSip surface modelling program, which has been
made available through the Faculty’s computing centre, exports its data as faccted 3D meshes
using DXF.

When exporting files from S4izAnT, a similar translation program reads the database and
creates a file in * DXF which can then be viewed and edited using AutoCAD. Since the Facility

Layout algorithm is intended to be automated, the display of layouts was considered to be

ShipArT

178

unnecessary and superfluous. Instead, layout solutions are exported and viewed from AutoCAD
or similar CAD package.

Each mesh which Ship AT imports s treated as a single object in the database. Thus, the
transom of a ship, as a different mesh, appears as a separate object within the database.
Similarly, when exporting solutions, the translation program creates a mesh for cach
Space/Room, which facilitates any viewing, rendering, colouring, etc.

Ideally the user would be able to watch the layout develop, but not only is display

lly i fent it is also in the of a solution. The more

practical alternative would be to export solution layouts to a third-party Virtual Reality package
and offer the architect the ability to walk through the layou. The ability to export models for
mathematical analysis such as that of Finite Elements would also be valuable. The use of such
third-party software for analysis and display makes the program more flexible for users and

greatly reduces the programming effort for the project.

8.8 Criticisms Associated with ShipArrT and Semi-Solids
88.1 Too Much Detail
The concesn that SkipAnT requires too detailed an analysis for preliminary or conceptual
design work can be challenged in two ways. First, the model is unhampered by a lack of
information / constraint information. So long as a hull shape can be provided to provide a hull
boundary, the model can be run on the basis of simple assumptions regarding the number and
classes of spaces require. Second, this criticism is valid if a distinction can be made between

preliminary design, conceptual design, detailed design, and production design. However, most

ShipAnT

new software for Computer Aided Ship Design, pasticularly those systems used commercially, is

to facilitate a beginni d approach to design.

88.2 ShipArrT Data Sources

In addition to the option of it ive editing of dis i data during the

process, dimensional data can also be predefined by the user or taken from published
architectural standards. If the user is content with using such standards then the creation of a
new ship need only involve identifying the number of required spaces for each class (e.g., 15
single bedrooms). In addition, it may also be possible to simplify the process even further by
using ship types to define interior regions — thus similarly sized ships of a particular type will

alwags have the same number of berths, cabins and recreational spaces.

8.8.3 Consistency of Analysis
In Chapter 1 it was suggested that design analyses should be executed to a consistent depth.
For preliminary or conceptual design the General Arrangement model proposed here will be
more sophisticated than the other models. However, if the layout algorithm is automated, the
impact of its detail wil be of little importance other than run-time. As suggested in Chapter 1,2
design analysis is only as accurate / optimal as its components — in this instance the overall

design will be limited by calculations other than that of the ShpArT algorithm.

ShipArT

8.9 Summation and Conclusions

There are years of work to be done towards the creation of 2 new algorithm for Facility
Layout. However, the problem can be divided into a number of steps, each of which can be
solved with a high probability of success given modem experience with computer modelling.
The premise which undetlies any such development lies in distinguishing between busy work
and the designer’s true thought processes. So long as Naval Architects choose to ignore this
difference the evolution and integration of computer-aided design will stagnate. In practice this
means moving beyond an interactive approach to design, and instead towards an automated
process under the expere direction of the Naval Architect in a manner similar to that suggested
by this thesis. Consistency and depth of analysis ate critical characteristics of this process, and,
as suggested in Chapter 1, the layout problem examined hetein is an area in which the profession
of Naval Architecture is very weak.

Systems engineering has a two-way relationship with archi Firstly, a system will adapt

to suit its surroundings in the same way that one adapts to a house lacking a front-hall closet.
The system of living in the house alters so that another closet might be used as a replacement or
that an additional piece of furniture such as 2 hall-tree might be introduced. Secondly, for
someone designing 2 new house, the system drives many aspects of the design. For example, if
there ace three children living in the house then the architecture might include bedrooms for
cach child as well as a family room. [n their own ways, the implementation of each of these
relationships are forms of busy work. The design problem, and the true intellectual challenge,
lies in the analysis and evaluation of the system itself. There is only so much time in the day and

the less busy work the better.

ShipArrT 181

Figure Pertaining to Chapter 8

minimum maximum

Membership

Function Increasing

Penalty

preferred

Figure 87 A variation of a fuzzy set in which the membership function takes the shape of a I
and is used as a penalty function. Applied in the scoring of a layout, the penalty
fanction acts to discourage solutions whose quantitative values differ from the
preferred amount.

ShipArT

Tables Pertaining to Chapter 8

Weight room weight is relevant for large buildings and ships

Traffic frequency of people/goods entering and departing

Vibration and Noise vibration or noise created in a room, or the tolerance
of a room for vibration and noise

Services electricity, water, sewage, efc.

Thermal Insulation level of, or importance of, insulation for heat or cold
from one region to another

Construction Cost cost to assemble and install

Operating Cost cost of maintenance and upkeep

Access (corridors, stairwells) | requirements for people and goods beyond the room

Proximity to exterior need for external access
Adjacency to other spaces need to share a wall with another room

Proximity to other spaces need to be close to or far from another room

Sharing of common spaces corridors, washrooms, entrances, etc.

Table 16 Examples of distance-based layout constraints.

ShipArrT

ShipArrT

Size size of a space is not necessarily fixed

Orientation orientation reiative to other spaces or the boundary

AspectRatio | shape of a space is likely bounded

Homogeneity | a space is not divided into several pieces

Simplicity few corners or jagged edges

Contiguity one wall leads into another on the next space
similar another

Utilization no voids, and

Sharing efficiency of common spaces such as corridors,
washrooms, entrances, etc.

Accessibility | corridors, stairwells

Access location of doors, efc.

Table 17 Examples of spatially-based layout constraints.

References

[} 1991. “Le Corbusier: A Ferry Proposal for the Future”, The Naval Architect, (The Royal
Institution of Naval Architects, London, United Kingdom), November 1991. Page
E525.

[2] 1991 “Le Corbusier. A Ferry Proposal for the Future”, The Naval Architect, (The Royal
Institution of Naval Architects, London, United Kingdom), November 1991. Page
E525.

(] DJ. Andrews, 1981. “Creative Ship Design”, RINA Tmt.mn.r, (The Royal Institation
of Naval Architects, London, United Kingdom). Pages 44844

[4] DX Brown, 1993. “Naval Architecturc”, Nasa/ Engineers Jowrnal, (The American
Society of Naval Engineers, Alexandria, Virginia), January 1993. Pags43—45

51 DK Brown, 1993. “Naval Architecture”, Nava/ Engincers Journal, (The American
Society of Naval Engineers, Alexandria, Virginia), January 1993. Page 44.

61 D.K. Brown, 1993. “Naval Architecture”, Nava/ Engineers Jowrnal, (The American
Society of Naval Engineers, Alexandria, Virginia), januuy 1993. Page 44.

[J.P.Hope, 1981. “The Process of Naval Ship General Arrangement Design and
‘Analysis”, Naval Engineers Journal, (The American Society of Naval Engineers,
Alexandria, Virginia), August 1981. Page 34.

[81] Hope, 1981. “The Process of Naval Ship General Arrangemeat Design and
‘Analysis”, Naval Engineers Journal, (The American Society of Naval Engineers,
Alexandria, Virginia), August 1981. Page 34.

ShipArT

1

o]

ny

2]

]

o4

]

[16]

on

8]

0

ShipArrT

S. Erichsen, cited in the discussion of:

DJ. Andrews, 1985. “An Integrated Approach to Ship Synthesis”,
RINA Transactions, (The Royal Institution of Naval Architects, London,
United Kingdom). Page 464.

D.J. Andrews, 1981. “Creative Ship Design”, RINA Transactions, (The Royal Institution
of Naval Architects, London, United ngdnm)

DJ. Andrews, 1981. “Creative Ship Design”, RINA Transactions, (The Royal Institution
of Naval Architects, London, United Kingdom). Page 447.

DJ. Andrews, 1981. “Creative Ship Design”, RINA Transactions, (The Royal Institation
of Naval Architects, London, United Kingdom). Page 447.

CJ. Jones. Design Methods, (Wiley Interscience). Cited in:

DJ. Andrews, 1981. “Creative Ship Design”, RINA Transactions, (The Royal
Institution of Naval Architects, London, United Kingdom). Page 452.

DJ. Andrews, 1981. “Creative Ship Design”, RINA Transactions, (The Royal Institution
of Naval Architects, London, United Kingdom). Page 452.

DJ. Andrews, 1981. “Creative Ship Design”, RINA Transactions, (The Royal Insticution
of Naval Architects, London, United Kingdom). Page 447.

D.J. Andrews, 1981. “Creative Ship Design”, RINA Transactions, (The Royal Instirution
of Naval Architects, London, United Kingdom). Page 447.

DJ. Andrews, 1985. “An Integrated Approach to Ship Synthesis”, RINA Transactions,
(The Royal of Naval Architects, London, United Kingdom). Page 99.

G.H. Fuller, cited in the discussion of:

a,

DJ. Andrews, 1985. “An Integrated Appmzch to Shlp Syathesis”,
RINA Tr e Royal Lo
United Kingdom). Page 93.

G.H. Fuller, cited in the discussion of

DJ. Andrews, 1985. “An Integrated Approach to Ship Synthesis”,

RINA Transactions, (The Royal Institution of Naval Architects, London,
United Kingdom). Page 93.

120

1211

22

[23]

241

[25]

[26]

[27

281

29

ShipArT

LJ. Rydill cited in the discussion of:

D.J. Andrews, 1985. “An Integrated Approach to Ship Synthesis”,
RINA Transactions, (The Royal Institution of Naval Architects, London,
United Kingdor). Page 91.

Sir R. Baker, cited in the discussion of :

DJ. Andrews, 1981. “Creative Ship Design”, RINA Transactions, (].'hc Royal
Institution of Naval Architects, London, United Kingdom). Page 460,

Sir Rowland Baker, cited in the discussion of :

D.J. Andrews, 1981. “Creative Ship Design”, RINA Transactions, (The Royal
Institution of Naval Architects, London, United Kingdom). Page 460.

D.K. Brown, 1993. “Naval Architecture”, Naval Enginters Jowrnal, (The American
Society of Naval Engineers, Alexandria, Virginia), January 1993. Page 4.

M.A. Polini, D.J. Wooley, and J.D. Butler, 1997. “Impact of Simulation-Based Design
on Today’s Shipbuilders”, Marine Technology, (The Society of Naval Achitects and
Marine Engineers, Jersey City, New Jersey), volume 34, number 1, January 1997.

$.J. Baum and R. Ramakrishnan, 1997. “Applying 3D Product Modelling Technology to
Shipbuilding”, Marine Technology, (The Society of Naval Architects and Marine Engineers,
Jersey City, New Jersey), volume 34, number 1, January 1997.

SJ. Baum and R. Ramakrishnan, 1997. “Applying 3D Product Modelling Technology to
Shipbuilding”, Marine Technology, (The Society of Naval Architects and Marine Engineers,
Jersey City, New Jersey), volume 34, number 1, January 1997. Page 56.

SJ. Baum and R. Ramakrishnan, 1997. “Applying 3D Product Modelling Technology to
Shipbuilding”, Marine Technology, (The Society of Naval Architects and Marine Engineers,
Jersey City, New Jersey), volume 34, number 1, January 1997. Page 62.

$.J. Baum and R. Ramakrishnan, 1997. “Applying 3D Product Modelling Technology to
Shipbuilding”, Marine Technology, (The Society of Naval Architects and Marine Engincers,
Jersey City, New Jersey), volume 34, number 1, January 1997. Page S6.

DJ. Andrews, 1985. “An Integrated Approach to Ship Synthesis”, RINA Transactions,
(The Royal Institution of Naval Architects, London, United Kingdom). Page 90.

187

[30]

B

321

331

34

[351

(36

B7

[38]

39

[40]

[41]

ShipArrT

LJ. Rydill, cited in the discussion of

DJ. Andrews, 1985. “An Integrated Approach to Ship Synthesis”,
RINA Transactions, (The Royal Institution of Naval Architects, London,
United Kingdom). Page 92.

Refereace to W.G. Holmes, 1930. Plant Location, (McGraw-Hill, New York, New
York), as found in

James A. Tompkins, John A. White, 1984. Failities Plaoning, (John Wiley &
Sons, Inc., New York, New York).

A. Cort and W. Hills, 1987. “Space Layout Design Using Computer Assisted Methods”,

Naual Enginters Journal, (The American Society of Naval Engineers, Alexandria, Virginia),
May 1987.
P.B. Mirchandani and R L. Francis, eds., 1990. Discrete Location Theory (John Wiley &

Sons, Inc. New York, New York). Page 27.
R.L. Francis, L.F. McGinnis, Jr. and J.A. White, 1992. Facility Layout and Location: An

Analytical Approach, (Prentice-Hall Canada Inc., Toronto, 2nd Edition). Page 165.

H.L. Hales, 1984. Computer-Aided Facilities Planning, (Marcel Dekker, Inc.,
New York, New York). Page 50.

R.L. Francis and J.A. White, 1974. Facility Layout

Approach (Prentice-Hall Inc., Englewood Cliffs, New chse'y 1st Edmon)
Page 129-133.
R.L. Francis, L.F. McGinnis, Jr. and J.A. White, 1992. Facility Layout and Location: An

Analytical Approach (Prentice-Hall Canada Inc., Toronto, 2nd Edition). Page 149.

DJ. Andrews, 1981. “Creative Ship Design”, RINA Transactions, (The Royal Institution
of Naval Architects, London, United Kingdom).

DJ. Andrews, 1985. “An Integrated Approach to Ship Synthesis”, RINA Transactions,
(The Royal Institution of Naval Architects, London, United Kingdom)

DJ. Andrews, 1985. “An Integrated Approach to Ship Synthesis”, RINA Transactions,
(The Royal Institution of Naval Architects, London, United Kingdom). Page 73.

J.P. Hope, 1981. “The Process of Naval Ship General Arrangement Design and
‘Analysis”, Naval Engincers Journal, (The American Society of Naval Engincers,
Alexandsia, Virginia), August 1981.

[42]

[“43]

[441

[45]

[461

7

[48]

[491

501

51

(52}

[531

541

ShipAmT

A. Cort and W. Hills, 1987. “Space Layout Design Using Computer Assisted Methods”,
Naval Engineers Journal, (The American Society of Naval Engineers, Alexandria, Virginia),
May 1987.

M.Th. van Hees, 1995. “Towards Practical Knowledge-based Design Modelling”,
Procedings of the 61b International Symposim on Practical Design of S hips and Mobile Units, Seoul
Korea, September 17-22, 1995, (The Society of Naval Architects of Korea, Seoul, Korea),
volume 2.

M. Welsh, LL. Buxton and W. Hills, 1990. “The Application of an Expen System to
Ship Concept Design , RINA T Royal ion of
Naval Architects, London, United ngdnm)

B. Johnson, N. Glinos, N. Anderson, D. McCallum, W. Beaver and P. Fitzsimmons,
1990. “Database Systems for Hull Form Design”, SNAME Transactions, (The Society of
Naval Architects and Marine Engineers, Jersey City, New Jersey), volume 98.

G.J. Klir and T.A. Folger, 1988. Fuzzy Sets, L i and
(Preatice-Hall, Inc., Englewood Cliffs, New Jetsey). Page 265.

E. Turban, 1988. “Review of Expert Systems Technology”, IEEE Transactions on
Engineering Management, (The Institute of Electrical and Electronic Engineers, New York,
New York), volume 35, number 2, May 1988.

S. Ashley, 1992. “Engineous Explores the Design Space”, Mechanical Engineering, (The
American Society of Mechanical Engineers, New York, New York), February 1992.

Cliffs, New Jersey).

gl

R.L. Francis and J.A. White, 1974. Facilit ul jon: An i
A h, (Prentice-Hall Inc.,

RL. Feaacis, 1974. “Computerized Layout Planing”, Faclly Layou
h, (P Hall Inc., Eng d Cliffs, New Jersey).

H.L. Hales, 1984. -Aided Faciities Planning, (Marcel Dekker, Inc., New York,
New York), November 1984.

P.B. Mirchandani and R.L. Francis, 1990. Discrete Location Theory, (John Wiley &
Sons, Inc., Toronto, Canada).

RW. James and P.A. Alcom, 1991. “Layout of Facilities”, A Guide to Facilities
Planning, (Prentice-Hall Inc., Englewood Cliffs, New Jersey).

D.P. Sly, E. Grajo and B. Montreuil, 1996. “Layout Design and Analysis Software”, IIE
Solutions, (The Institute of Industrial Engineers, Norcross, Georgia), August 1996.

1551

[56]

[571

58]

591

601

[61]

ShipArrT

J.D. Foley and A. van Dam, 1984. Fund: s of i Graphics.
(Addison-Wesley Publishing Company, Reading, Massachusetts).

J.D. Foley, A. van Dam, SK. Feiner and J.F. Hughes, 1995. Computer Graphics:
Principles and Practice, (Addison-Wesley Publishing Company, Reading,
Massachusetts). March 1995.

G.J. Klir and T.A. Folger, 1988. Fu ets, Une
(Prentice-Hall, Englewood Cliffs, New Jersey). Pages 108-109.

GJ. Klir and TA. Folger, 1988. Fu
(Prentice-Hall, Englewood Cliffs, New J:zsey) Pag: 11

The idea of representing this problem using balloons came up briefly in a conversation

with M. FuglunoEMemomlUnwzmty sometime in the summer of 1995. At the time [

was d g how objects on their surroundings. [have
expanded the concept considerably for its inclusion in this document.

G.R. Snaith, cited in the discussion of:
DJ. Andrews, 1985. “An Integrated Approach to Ship Synthesis”,
Lo

RINA Transactions, (The Royal of Naval Archi ndon,
United Kingdom). Page 92.

New York, New York), February 1992.

S: Ashley, 1992. “Engincous Explores the Desiga Space”, Michanial Enginering, (The
Society of M

190

Selected Bibliography

1988. “General Arrangement Drawing Format”, Technical & Research Bulletin 7-2, Panel SD4
(General Arrangements) of the Sbip Design Committee, (The Socicty of Naval Architects and
Marine Engineers, Jersey City, New Jersey), volume 7, number 2, May 1988,

1988. “General Armngement Drawing Details”, Technical & Restarch Bulletin 7-3, Panel SD4
(General Arrangements) of the Ship Design Committee, (The Society of Naval Architects and
Marine Engineers, Jersey City, New Jesey), volume 7, number 3, May 1988.

1990. “General

ent Criteria and Constraints”, Technizal & Research Bulletin 74,

Pmlel SD+4 (Gennlw) of the Ship Design Committee, (The Society of Naval Architects
Marine Engineers, Jersey City, New Jersey), volume 7, number 4, May 1990.

1994. Access ver. 2.0: Building

poration), July 1994.
1994. Microsoft Access ver. 2.0: User's Guide, (Microsoft Corporation), July 1994.

A -\kmm.d:, M. Adar and S.M. Calisal, 1995. of Mult-hull FuhmgVakh
an System Eavironment”, the 6th Imuaul.g-pum on

Design of Ships xudMohlt Units, Seoul Korea, September 17-22, 1995, (The Society of Naval
Architects of Korea, Seoul, Korea), volume 2.

Ammar, 1989. “Determining the ‘Best' Decision in the Presence of Imprecise Information”,
Fuzgy Sets and Systems, (Elsevier Science Publishers B.V. (North Holland), New York, New
York), volume 29.

DJ. Andrews, 1981. “Creative Ship Design”, RINA Transactions, (The Royal Institution of
Naval Architects, London, United Kingdom).

ShipArrT

DJ. Andrews, 1985. “An Integrated Approach to Ship Synthesis”, mrm,mg
Royal Instirution of Naval Architects, London, United Kingdom)

S. Ashley, 1992. “Engineous Explotes the Design Space”, Mechanical Engineering, (The American
Society of Mechanical Engineers, New York, New York), February 1992.

SJ. Baum and R. Ramakrishnan, 1997. “Applying 3D Product Modeling Technology to
Shipbuilding”, Marine Technology, (The Society of Naval Architects and Marine Engincers,
The Society of Naval Architects and Marine Engineers, Jessey City, New Jersey), volume 34,
cumber 1, January 1997.

MP. Biswal, 1992. “Fuzzy Programming Techniques to Solve Multi-Objective Geometric
Programming Problems”, Fuzgy Sets and Systems, (Elsevier Science Publishers B.V. (North
Holland), New York, New Yotk), volume 51.

KS. Brower and K.W. Walker, 1986. “Ship Design Computer Programs - An Interpolative
Technique”, Nasal Engineers Journal, (The American Society of Naval Engineers, Alexandria,
Virginia), May 1986.

D.K. Brown, 1993. “Naval Architecture”, Nasa/ Engineers Journal, (The American Society of
Naval Engineers, Alexandria, Visginia), January 1993.

R Bymes and HLS. Marcus, 1990. “A Systematic Approach to Producibility and Lessons
Learned for Naval Shipbuilding”, Journal of Ship Production, (The Society of Naval Architects
and Marine Engincers, Jersey City, New Jersey), volume 6, number 4, November 1990.

D.E. Calkins, 1983. “z\nlnmeCompum-Adn‘lDa@SynMng:m
(The Society of Naval Architects and
Mzm:Engmﬂs,JeueyCuy New Jersey), volume 91.

D.E. Calkins, V.E. Theodoracatos, G.D. Aguilar and D.M. Bryant, 1989. “Small Craft Hull
Form Surface Definition in 2 High-Level Computer Graphics Design Environment”,
SNAME Transactions, (The Society of Naval Architects and Marine Engineers, Jersey City,
New Jersey), volume 97.

CM. Carlson and H. Fireman, 1987. “General A Design C: and
Methodology”, Naval Engineers Jounal, (The Ametican Society of Naval Engineers,
Alexandsia, Virginia), May 1987.

D. Catley and T. Koch, 1995. “The Impact of New Technologies on Computer-Aided Shij
Design”, Proceedings of the 6th International Symposium on Practical Design of Ships and Mobile Units,
Seoul Korea, September 17-22, 1995, (The Society of Naval Architects of Korea, Seoul, Korea),
volume 2.

ShipArrT

192

ShipArrT

S. Chanas, 1989. “Fuzzy Linear —A
“Approach”, Ficzgy Sets and Systens, (Elsevier Science Publishers B.. (North Holland), New
York, New York), volume 29.

S.C. Chapra and R.P. Canale, 1988. Numerical Methods for Engineers, 2ad Edition,
(McGraw-Hill Publishing Company, New York, New York).

Y. Chou and C.O. Benjamin, 1992. “An Al-based Decision Suppott System for Naval Ship
Design”, Naval Engincers Journal, (The Ametican Society of Naval Engineers, Alexandria,
Virginia), May 1992.

L.M. Collier, 1983. “Use of the Computer In Facilitics Planning — Yes”, Indutrial Engineering,
(The Institute of Industrial Engineers, Norcross, Georgia), Mazch 1983.

A. Cortand W. Hills, 1987. “Space Layout Design Using Computer Assisted Methods”, Nava/
Engincers Journal, (The Ametican Society of Naval Engineers, Alexandria, Virginia),
May 1987.

AM. D'Arcangelo, 1969. “Relationship Between Spaces and Access”, Ship Design and
Construction, (The Society of Naval Architects and Maine Engineers, Jersey City, New
Jersey).

G. D'Souza and B.B. Mohanty, 1986. “An Interactive Multilevel, Multicsiteria D
Approach to Facility Layout Analysis”, Fall Industrial Engineering Confirence, (The Institute of
Industrial Engineering, Norcross, Georgia).

D. Dutta, R-N. Tiwari and JR. Rao, 1992. “Multiobjective Linear Fractional Programming — A
Fuzzy Set Theoretic Approach”, Fuzgy Sets and Systems, (Elsevier Science Publishers B.V.
(North Holland), New York, New York), volume 52.

DJ. Eytes, 1988. Ship C on, (Hei o o

R.D. Filley, 1985. “Three Emerging Computer Technologies Boost Value of, Respect For
Facilities Function”, Industrial Engincering, (The Institute of Industrial Engincers, Norcross,
Georgia), May 1985.

J.D. Foley and A. van Dam, 1984. Fund: Js of | ive Computer Graphic:
(Addison-Wesley Publishing Company, Reading, Massachusetts).

J-D. Foley, A. van Dam, SK. Feinerand].F. Hughes, 1995. Computer Graphics: Principles and

Practice, (Addison-Wesley Publishing Company, Reading, Massachusetts), March 1995.

RB. Footlik, 1983. “Use of the Computer In Facilities Planning — No”, Industrial Engineering,
(The Institute of Industrial Engineers, Norcross, Georgia), April 1983.

193

RL. Francis and].A. White, 1974. Facility ocs
(Prentice.Hall Inc, Englewood Cliffs, New Jersey).

RL. Francis, 1974. “Computerized Layout Planning”, Facility Layout and Location: An
Analytical Approach, (Prentice-Hall Inc., Englewood Cliffs, New Jersey).

GK Gaston, 1984. “Fadility Layout Optimizes Space, Minimizes Costs”, Industrial Engineering,
(The Institate of Industrial Engineers, Notctoss, Georgia), May 1984.

H.L. Hales, 1984. Computer-Aided Faciliies Planning, (Marcel Dekker, Inc., New York, New

York), November 1984.

L. Hales, 1984. “Computerized Facilities Planning and Design: Sorting Out The Options
Available Now”, Industrial Engineering, (The Institute of Industrial Engineers, Norcross,
Georgia), May 1984.

RL. Harrington, 1992. Marine Engineering, (The Society of Naval Architects and Marine
Engineers, Jersey City, New Jersey).

PJ. Hartman, 1988. “Practical Applications of Artificial Intelligence in Naval Engineering”,
Naval Engineers Joursal, (The Ametican Society of Naval Engineers, Alexandria, Virginia),
November 1988.

J.P. Hope, 1981. “The Process of Naval Ship General Arrangement Design and Analysis”,
Naval Engineers Journal, (The Ametican Society of Naval Engineers, Alexandria, Virginia),
August 1981.

Y.A. Hosni and G.E. Whitehouse, “Layout Evaluation”, (The Institute of Industrial Engineers,
Norcross, Georgia).

Y.A. Hosni, G.E. Whitehouse and T'S. Atkins, “Optimum Facility Location”, (The Institute of
Industrial Engineers, Norcross, Georgia).

Y.A. Hosni, G.E. Whitchouse and T'S. Atkins, “Micro-CRAFT”, (The Institute of Industrial
Engineers, Norcross, Georgia).

Y.A. Hosni, G.E. Whitehouse and T S. Atkins, “From/To Chart Generator”, (The Institute of
Industrial Engineers, Norcross, Georgia).

Y.A. Hosni and TSS. Adkins, 1982. “Facilities Planning Using Microcomputers”, Anual
Industrial Engineering Confirence.

KM. Hyde and D.J. Andrews, 1992. “CONDES — A Preliminary Warship Design Tool to Aid

Customer Decision Making”, Procedings of the 5tb International Symposium on Practical Design of
Ships and Mobile Units, Newcastle UK, May 17-22, 1992, (Elsevier Scieace Publishers B.V.
(North Holland), London, United Kingdom), volume 2.

ShipArrT

194

FR. Jacobs,].W. Bradford and L. Ritzman, 1980. “Computerized Layout: An mewd
Approach to Special Planning and C ? ?, Industrial
(The Tnstitute of Industrial Engineers, Norcross, Georgia), July 1980.

RW. James and P.A. Alcorn, 1991. “Layout of Facilities”, A Guide to Facilities Planning,
(Prentice-Hall Inc., Englewood Cliffs, New Jersey).

B. Johnson, N. Glinos, N. Anderson, D. McCallum, W. Beaver and P. Fitzsimmons, 1990.
“Database Systems for Hull Form Design”, SNAME Transactions, (The Society of Naval
Architects and Marine Engineers, Jersey City, New Jersey), volume 98.

K. Khaopravetch and R. Nanda, 1990. “Assessing Solution Efficiency for Quadratic
Assignment Problems”, Industrial Engineering, (The Institute of Industrial Engineers,
Norcross, Georgia), April 1990.

S. Khator and C. Moodie, 1983. “A Microcomputer Program to Assist in Plant Layout”,
Industrial Engincering, (The Institute of Industrial Engincers, Norcross, Georgia), March 1983.

E.T. Kinney and D.F. 1987. “A Disciplined Approach to Machinery A

in Ship Design”, Naval Engineers Journal, (The American Society of Naval Engineers,
Alexandria, Virginia), May 1987.

GJ. Klir and T.A. Folger, 1988. Fuzzy Sets, U inty, and | ion, (Prentice-Hall,
Englewood Cliffs, New Jersey).

Y. Lai and C. Hwang, 1992. “A New A h to Some P istic Linear P:
Problems”, Fuzzy Sets and Systems, (Elsevier Science Publishers B.V. (North Holland), New
York, New York), volume 49.

Y. Lai and C. Hwang, 1992. “Interactive Fuzzy Linear Programming”, Fuzgy Sets and Systems,
(Elsevier Science Publishers B.V. (North Holland), New Yotk, New York), volume 45.

J.F. Leahy III and J.C. Ryan, 1987. “CAD/CAM Directions for the Navy”, Joumnal of Skip
Production, (The Society of Naval Architects and Marine Engineers, Jersey City, New Jersey),
volume 3, number 1, February 1987.

K. Lee, S.W. Suh and S. Han, 1992. “On the Development of Computer Integrated Basic
Ship Design and Performance Analysis System”, Proceedings of the 5tb International Symposisms on
Practical Design of Ships and Mobile Units, Neweastle UK, May 17-22, 1992, (Elsevier Science
Publishers B.V. (North Holland), London, United Kingdom), volume 2.

J. Lee, K. Lee, N. Patk, . Kim, Y. Jang,]. Bae and H. Shim, 1995. “Knowledge-based Design
System for the Machinery Arrangement of Ship Engine Room”, Proceedings of the 6th
International Symposium on Practical Design of Ships o Mo Units, Seud Korea, September 17.22,
1995, (The Society of Naval Architects of Korea, Seoul, Korea), volume 2.

ShipArrT

195

KY. Lee, SW. Suh, D. Shin, DK. Lee, W. Kang and Y. Kim, 1995. “Development of a
Computerized Ship Design System”, The 67 International Symposium on Practical Design of Ships
and Mobile Units, Seoul Korea, Septermber 17-22, 1995, (The Society of Naval Architects of
Korea, Seoul, Korea), volume 2.

G.F. Luger and WA. Stubblefield, 1989. As
Systems, (Benjamin, Cmngshlhhhmg&mpayln:. n.amodo:yc-iﬁmu)

MK Lubandjula, 1989. “Fuzzy Optimization: An Appraisal”, an.fwad.{m (Elsevier
Science Publishers B.V. (North Holland), New York, New York), volume

TD. Lyon and F. Mistree, 1985. Awww&:hmwa
Ships”, Journal of Sbip Research, (The Society of Naval Archi Jessey
City, New Jersey), volume 29, number 4, December 1985.

M. McCormick, 1985. “A Step Beyond Computer-Aided Layout”, Industrial Engincering, (The
Institute of Industrial Engineers, Norcross, Georgia), May 1985.

J.C. McNeal, H.G. Nilsen and J J. Matthews, 1985. “CAD/CAM Applications to Mass
Properties”, Journal of Ship Production, (The Society of Naval Architects and Marine Engin
Jersey City, New Jersey), volume 1, umber 2, May 1985.

P.B. Mirchandani and R.L. Francis, 1990. Discrete Location Theory, (John Wiley & Sons, Inc.,
Toronto, Canada).

F. Mistree, W.F. Smith, B.A. Bn:,jJCAl]mandD Muster, 1990. “Decision-Based Design: A
Contemporary Paradigm for Ship Desiga”, SNAME Transactions, (The Society of Naval
Architects and Marine Engineers, Jersey City, New Jersey), volume 98.

JM. Moore, 1980. “Computer Methods In Facilities Layout”, Industrial Engineering, (The Instirute
of Industrial Engineers, Norcross, Georgia), September 1980.

C.A. Mota Soares, 1986. “Computer Aided Optimal Design: Structural and Mechanical
ystems”, Proceedings of the NATO Advanced Study Institute on Computer Aided Optimal Design:
Structural and Mechanical Systems beld in Troia Portugal, June 29 - July 11, 1986, (Springer-Verlag,
New York, New York), April 1986.

R. Nelson, 1993. Ruaning Visual Basic, Press,
November 1993.

K. Niwa, 1990. “Toward Successful Implementation of Knowledge-Based Systems: Expert
Systems vs. Knowledge Sharing Systems”, IEEE Transactions on Engineering Management, (The
Institute of Electrical and Electronic Engineers, New York, New Yotk), volume 37,
number 4, November 1990.

ShipArrT

C. Olsen, 1993. “Helper & Hinderance — Optimization and Fuzzy Sets”, Engineering Economic
Analysiz Course Term Paper, July 1993.

M.A. Polini, D.J. Wooley and J.D. Butler, 1997. “Impact of Simulation-Based Design on
Today’s Shipbuilders”, Manine Technolagy, (The Society of Naval Architects and Marine
The Society of Naval Architects and Marine Engineers, Jersey City, New Jersey),
volume 34, number 1, January 1997.

AAG. Requicha, 1980. "R:pmnnonsﬁxxlgﬂSoH: Theory, Methods, and Systems”,
_ACM Computing Surveys, (Associ volume 12, number 4.

[\LF_Rm::,SH Klomparens and J.P. Lynch, 1981. “Machinery Arrangement Design — A
", Naval Enginters Journal, (The American Society of Naval Engineers, Alexandria,
V‘upmz),]une 1981.

H. Rommelfanger, R. Hanuscheck and J. Wolf, 1989. “Linear Programming with Fuzzy
Objectives”, Fuzgy Sets and Systems, (Elsevier Science Publishers B.V. (North Holland), New
Yok, New York), volume 29.

M. Sakawa and H. Yano, 1989. “An ive Fuzzy Sacrificing Method for
Nonlinear Programming Problems with Fuzzy Parameters”, Fuzgy Sets and Systems, (Elsevier
Science Publishers B.V. (North Holland), New York, New Yotk), volume 30.

M. Sakawa and H. Yano, 1989. “Interactive Decision Making for Maultiobjective Nonlinear
Programming Problems with Fuzzy Parameters”, Fuzzy Sets and Systems, (Elsevier Science
Publishers B.V. (North Holland), New York, New York), volume 29.

V. Sankar, 1986. “INLAPS: An Integrated Lagout Planning System — Some Algorithms for
the FLP using Quadratic Programming and Statistical Analysis”, (M-Eng. Thesis, Faculty of
and Applied Science, Memorial University of Newfoundland, St. John’s,
ewfoundland), July 1986.

D.A. Savic and W. Pedrycz, 1991. “Evaluation of Fuzzy Linear Regression Models”, Firzzy Sets
and Systems, (Elsevier Science Publishers B.V. (North Holland), New York, New York),

wvolume 39.

R. Sedgewick, 1983. Algorithms, (Addison-Wesley Publishing Company,
Reading, Massachusetts).

P. Sen and J. Yang, 1995. “An Investigation into the Influence of Preference Modelling in Ship
Design with Multiple Obijectives”, Procedings of the 61b International Symposium on Practical Design
of Ships and Mobile Units, Seoul Korea, September 17-22, 1995, (The Society of Naval Architects
of Korea, Seoul, Korea), volume 2.

D.P. Sly, 1995. “Computerized Facilities Design and Management”, IE Solutions, (The Institute
of Industrial Engineers, Norcross, Georgia), August 1995.

ShipArrT

D.P. Sly, E. Grajo and B. Montreuil, 1996. “Layout Design and Analysis Software”, ITE
Solutions, (The Institute of Industrial Engineers, Norcross, Georgia), August 1996.

D.P. Sly, 1996. “Using CAD for Space Planning and Asset Management”, IIE So/ations, (The
Institute of Industrial Engineers, Norcross, Georgia), November 1996.

D.P. Sly, 1996. “Issues and Techniques for Using CAD to Draw Factoty Layouts”, ITE Solutions,
(The Institute of Industrial Engineers, Norcross, Georgia), August 1996.

J- MacGregor Smith and R.S. Pelosi, 1982. “Interactive Modeling of Wicked Design Problems”,
Annual Indastrial Engineering Conference.

W.F. Smith, S. Kamal and F. Mistree, 1987. “The Influence of Hierarchical Decisions on Ship
Design”, Marine Technology, (The Society of Naval Architects and Marine Engineers, Jersey
City, New Jersey), volume 24, number 2, April 1987.

A. Tompkins, 1984. “‘Successful Faciliies Planner Must Fuléll Role of Integrator In the
pl
", Industrial Engineering, (The Institute of Industrial Engineers,
Nuxcxoss, Geoxgu), May 1984.

E. Turban, 1988. “Review of Expert Systems Technology”, IEEE Tr
Managemens, (The Institute of Electrical and Electronic Engineers, New Yo:k, New Yoxk),
volume 35, number 2, May 1988.

LB. Turksen, D. Ulguray and Q. Wang, 1992. “Hierarchical ing Based on App
Reasoning — A Comparison with ISIS”, Fuzgy Sets and Systems, (Elsevier Science Publishers
B.V. (North Holland), New York, New York), volume 46.

M. Th. van Hm, 1992. “QUAESTOR: A Knowledge-Based System for Computations in
Preliminary Ship Design”, Proceedings of the 5th International Symposium on Practical Design of Ships
and Mabile Units, Noweale UK. May 17-22, 1992, (Elsevier Science Publishers B.V. (North

Holland), London, United Kingdom), volume 2.

M. Th. van Hees, 1995. “Towards Practical Knowledge-based Design Modelling”, Proceedings of
the 6th International Symposium on Practizal Design of Skips and Mobile Units, Seoul Korea, Septerber
17-22, 1995, (The Society of Naval Architects of Korea, Seoul, Korea), volume 2.

R.K. Verma, 1990. “Fuzzy Geometric Programming with Several Objective Functions”, Fuzgy
Sets and Systems, (Elsevier Science Publishers B.V. (North Holland), New York, New York),
volume 35.

JR. Walters and N.R. Nielsen, 1988. Crafting Knowledge-Based Systems: Expert Systems
Made Easy / Realistic, (John Wiley & Sons, Inc., New York, New York), July 1988.

D.G-M. Watson and A.W. Gilfillan, 1976. “Some Ship Design Methods”, RINA Transactions,
(The Royal Institution of Naval Architects, London, United Kingdom).

ShipArrT 198

M. Welsh, LL. Buxton and . Hills, 1990. “The Application of an Expert System to Ship

Conmpzo-s.gn , RINA Tr (The Royal Institution of Naval
Axchitects, London, Usited Kingdom).
]WoﬂnnMIghnemdBF.Mlm“ModghgﬁorShpDengnmdedxﬂou
Journal of Siip Production, (The Society of Naval jncers, Jersey City,

New Jersey), volume 8, number 1, February 1992.

D.F. Wong, H.W. Leong and CL. Liu, 1988.
(Kluwer Academic Publishers, Boston, Massachusetts), May 1988.

KL. Wood, KN. Otto and EX. incering Design Cal
Fuzzy Parameters”, Fuzgy Sets and Systems, (Esthcznce BYV. (Noxdmomnd).
New York, New York), volume 52-

DJ. Wooley and M.L. Manix, 1987. “Development of an Initial Graphics
Specification Capability”, Jourmal of Ship Production, (The Society of Naval Architects and
Marine Engineers, Jersey City, New Jersey), volume 3, number 4, November 1987.

T. Yang, JP. [gmzw and H. Kim, 1991. “Fuzzy Programming with Noo-Linear Membership
Linear A ion”, Fuuzgy Sets and Systems, (Elsevier Science
Publishers B.V. (North Holland), New York, New York), volume 41.

ShipArrT

Al

Appendix 1: CAD, Solid Modelling
and Semi-Solids

This appendix reviews the representation formats currently used in solid modelling to

provide a basis for compatison for the new i i-Solids is similar to Surface &

Boundary R. jons, but differs in its ij i The often flicted p of

depiction and modelling are discussed and are used to introduce the unique methods used in

i-Solids

of objects as S

A1.1 Raster Representations
The fundamental building block of computer technology has been binary codes. Monitors
and printers control depictions by means of pixels, or tiny dots, covering their entire surfaces.
Raster images are formed by combinations of these dots. Used very commonly for graphical
interfaces and photographic reproductions, there are a number of significant drawbacks

associated with raster representations:

ShipArrT 200

® the storage required for even a simple raster image is large because the status of
every pixel must be saved

® image resolution is limited to that in which it was created such that zooming’
closer to the image does not give a more detailed view

® cditing images requires slow manual manipulation on a dot-by-dot basis

® ill suited for 3D models because of the enormous increase in the number of dots
required

® il suited for problems requiring some sort of mathematical calculation since the
representation is not based on values

® reduced resolution in diagonal and other non-rectilinear shapes

A1.2 Vector Representations
Vector ions ae software as opposed to image dependent as is the case in

raster representations. That is, vector images require a software interpretation of their data in order
to generate an image. Recall that in the raster format, images are stored by denoting a pixel
location and attributing that pixel with 2 colour or shade value. In the vector representation of a
line, all that would be stored would be the Euclidian coordinates of the line’s two end points,
and 2 note indicating that this object is a line. Any display of the line requires computer
software to generate the appropriate screen pixels. Other attributes can be associated with the
line but the format is the same — one or more location coordinates, plus appropriate attributes
and identifiers so that the software can distinguish between different objects. As a result,
models are often simple compared to the computational effort of their display.

ShipArrT

Vector representations can be divided into three broad modelling subgroups: lines, surfaces,
and solids. While the more complex model forms appear to merely employ their relatives as

P cach on has its own peculiarities and applications. Three di
models are easily and efficiently using vector rep ions because all that is
required is the i of their Euclid di Software manipulations which

control viewpoints and limit display areas are then used for the image’s depiction.

Software used for vector model ion is ir i i ive in format.

or

While perhaps the most versatile for single depictions, for scenario

interfaces must be far more batch oriented with their i ks. L
while their data is similar, batch CAE software does not lend itself to the simple drawing

manipulation and reproduction that is found with the interactive CAD packages.

A1.3 Lines

By far the most common of the Vector Representations, simple linear objects are the
mainstay of a great number of CAD and Desk Top Publishing software products. Other 2D
objects such as circles and arcs also fall into this category. Using these primitives, it is possible
o construct complex objects much as one would using a pencil and paper. However, the
representation is poor when it comes to colouring or giving a “surface’ to objects created from
lines. This is because the creation of surfaces requires the identification of a ‘region’ and then a
means of filling that region. Hatching is the most common manner in which linear objects are
given surfaces, and employs a continuous boundary for the filled region with a simple fil pattern
constructed from additional lines.

ShipArT

A1.4 Surfaces

Model pers i in filled or images found that not only was hatching

dequate but the line rep ion was difficult to manipulate into surfaces. Instead they
added additional subroutines to the software such that by creating a grid of coordinates or
vertices, the software would not only connect adjacent points with lines, but would also £l the
regions between the points with a surface. Thus, just as line representation requires software to
create objects for a sedes of coordinates, surfaces require the software not only to ‘draw’ the
lines between the coordinates, but also to apply colour o shading to the circumscribed regions.

The representation of surfaces need not be only in two dimensions. The smooth rendering
found in the depictions of many modern software packages is a reflection of this. That is, not
oaly are meshes created in 3D, but the lines and surfaces which connect the mesh vertices can
be of higher mathematical orders. Hence a mesh whose coordinates might suggest a great
number of flat facets can actually be drawn by the software as a smooth and continuous bicubic
surface. The ease with which surfaces can be applied to complex shapes s directly related to the
size and shape of the facets of their meshes. Three- and four-sided mesh elements are the most
common.

Surface modelling by means of meshes was an important advance in computer aided drafting
since mesh representations could be used for more than just linking many lines together in the
form of a single entity. One of the first applications of meshes was as input for rendering
software in which 2 meshed surface is displayed as a solid, whole surface. The process of

surface rendering has been the focus of many texts dealing with computer graphics' and is a

1 JD. Fol-ymdA.va-n 1984.
(Addison-Wesley Publishing Company, Reading, Massachusetts).

ShipArrT 203

sophisticated problem of light, colour, texture, surface development, projection, and
computation.

A second important application of surface meshes has been in the area of numerical
modelling. Software for the study of hydrodynamics and for finite elements generally use
meshed surfaces as part of their inputs. The reason meshes have been popular for modelling is

that they give the software an adjacency hip between individual objects or elements.

For example, Figure 88 shows a simple four-sided mesh element? While the element may
actually be a part of a curved surface, without additional control points, its curvature cannot be
calculated, represented, o utilized.

Surface representations are difficult to create and edit since they require a large array of
vertex coordinates for their creation. Further, rendered surfaces are extremely demanding
computationally such that full rendering is rarely used for anything other than final output. The
depiction of surfaces is often different from the modelling of surfaces because it is relatively
difficult for software to intersect surfaces in areas other than on their underlying mesh structure.

This problem in particular leads to solid modelling.

2 J.D.Foleyand A. van Dam, 1984. F
(Addison-Wesley Publishing Company, Reading, Massachusetts). Page 529.

ShipArrT

Al.5 Solids

Solid modelling “is the rep of volumes letely ded by surfaces, such

as a cube, an airplane, or a building™® Although many designers have switched to Solid
modelling, the transition has been very slow in part because the computational horsepower has
only recently become available. As a result there tends to be a lack of familiarity with the new
representation and its methods of manipulation. Also, there are 2 number of shapes which
cannor be easily constructed using the most common solid representations. An obvious
example would be the compound bicubic spline curvature of a hull surface.

Generally solid models are manipulated by means of transactions referred to as Boolean Set
Operations (Figure 89%) — a set of convenient tools for users since they remove the tedious task

of editing the locations of various surface vertices or volume primitives. However, this does not

mean that there is independence from such determinations; instead, the Boolean Set Operations
are coded into the underlying software and as a result, what appears to be a simple transaction
from the point of view of the user may be quite complex for the software. While not
unacceptable when used interactively, the time required for the computation of solid models
may yet prove to be a stumbling block for the automation of models.

Whete solids come into their own is in their ability to evaluate interference. Solid modelling

has grown in popularity for this reason and has proven itself very useful in areas such as the

routing of piping and HVAC services. Interference checks are generally performed by means of

3 J.D.Foleyand A van Dam, 1984. F
(Addison-Wesley Publishing Company, Reading, Massachuselts). Page 529.
4 Adapted from:

JD Foley, A. van Dam, S.K_Feiner and J.F. Hughgs 1996.
Practice, ZMEdnion. (Addison-Wesley Publishing Company, Reading, Muud\uuﬂs)
Page 535.

ShipAr'T

205

Boolean transactions such that where a subtraction is applied, and a volume change for two

objects is registered, an interference exists. However, just as for all vector-based representations,

solid modelling offers no ible means for evaluating relative positions of objects
(Figute 90). This is the strength of interactive approaches since the onus s on the user to make
the interpretation of the relationships between objects.

An area which the solid modeller has also proven itself is in cases in which additional
information is to be atrributed to a particular object. For example, software is available which
will allow the user to attribute a mass or density to particular objects and thereby perform weight
calculations for the computer model.

Solid model representations can be divided into six distinct groups: Primitive Instancing,
Sweaps, Surface & Boundary Representations, Spatial Parttioning, Spatial-Ocoupancy Enumeration, and
Constructive Solid Geometry. In several cases, additional subheading have been used to discuss
particular subsets of these six groups. While there are many representations, these are both the
most common and the most distinctive. Semi-Solids falls under the class of Surface & Boundary
Representations, and for this reason greater emphasis has been placed on this section. Section
A1.12 shows a detailed comparison of these the solid models discussed, including the

Semi-Solids formulation.

A1.6 Primitive Instancing
Primitive instancing is a solids representation which is often used for the representation of
relatively complex objects such as gears or bolts. The objects tend to be those which commonly
appear in a model but whose construction from primitive shapes through Boolean transactions

might be either tedious or impossible. Analogous to the CAD construct growp or block, the

ShipArrT

objects lack the facility for alteration or combination with other objects. Objects defined by
primitive instancing are generally defined by means of programmed code rather than by any’
direct definition of vertices and surfaces. For example, Figure 91° shows a gear created through

the specification of numerical constraints particular to their shapes.

A1.7 Sweep Representations

A simple means of defining a 3D entity is by means of a sweep. Such objects are created by
defining a closed 2D shape and then either rotating it about an axis o translating it linearly or
along a curve. In translation, a sweep resembles an extrusion as one might find in plastics or
metal fabrication. For the rotational case, swept objects have an appearance similar to that of a
material which has been turned on a lathe. Figure 92 shows a 2D shape used as a template for
3D solids through this approach. Because of the potential complexity in their definition, sweeps
tend to be difficult to combine with other objects without reverting either manually or

algorithmically to a more malleable representation such as surfaces or lines.

A1.8 Surface and Boundary Representations
Surfaces and Boundaries are both the most robust and the most complex of the
representations described here. They are robust in the sense that their capacity to represent

objects is virtually unlimited, but complex in that the format requires accurate and consistent

5 Adapted from:

J.D. Faiay AMM S.K. Feiner and J.F. Hughes, 1996. Computer Graphics: Principles and
Practice, 2nd Edition, (Addison-Wesley Publishing Company, Reading, Massachusetts).
Page 539.

ShipArT

management of a number of lists of data. The problem of data representation will become more

apparent in the following descriptions.

A18.1 Explicit Polygons
Intuitively, the most obvious way to represent a flat surface is to define an #-sided patch
using # coplaar lines. However, where many facets are to be defined, the manipulation of lines

becomes This has in tum. the use of standard 3- or 4-sided 3D Face

primitive (Equation 14) in which sets of (x,7.z) coordinates refer to the comers of the patch.

3D Face((Xy. Y1 24). (X Vzu Z). (Xg, Yy Z9)s voos (X Ve Z,))

Equation 14 Typical format of a 3D Face graphical object. The face clement is derived from
the comers by which it is defined. 3D Faces are commonly four-sided. Where
only a three-sided figure is desired, it is common for the coordinate of the fourth
comer in the structure to be set equal to the values of the third corner.

In terms of manipulation, this formulation is efficient for small numbers of faces. However,
whea used for the creation of 2 mesh, the duplication of shared coordinates becomes costly

from the point of view of storage. Further, in terms of display or output, that shared edges are

not explicidy defined by the rep ion leads to the computati wasteful duplication of

the lines which join them.® That there is no reference as o which patches arc adjacent is a

related problem and one which entails a long and computationally expensive search to

B these p , shared lines are displayed twice, and changes to vertices
are slow because each vertex must be sought several times through the sifting of the entire list of
patches.

6 JD. FﬂhlekV-\D!m 1984. Eummmmmmu
(Addison- , Reading, Ma Page 508.

ShipArrT

A182 Polygon Meshes

To address the efficiency problem raised in the previous section two tactics can be pursued.
First, where polygons are assembled to form 2 mesh, the coordinates of the comers of the
polygons are stored in a long list. Each vertex coordinate appears only once, and a polygon is
defined by means of pointers to this list. For example, a polygon might be defined as P = (3, 4,
2,7) where each of 3, 4, 2, and 7 refer to a particular coordinate in the vertex list.

As shown in Figure 93,7 this representation eleganty solves the problem of repeated vertex
points. It also addresses the editing problem noted in the previous section because a change in
the position of a vertex is immediately reflected in all the patches whose pointers address that
vertex.

It is important to distinguish between the needs of modelling software relative to those of
display. For the purpose of modelling, defining patches by pointers to a list of vertices is
sufficient to reduce storage requirements and facilitate editing changes. However, display
problems tend to be more common and hence an additional change in the data representation is
required. Each time software displays an object on the screen, it must first represent its model
of that object as a 2D view. As a result, the screen locations of every vertex, line, and surface
must be determined. Since the majority of mesh elements share edges with other elements,

computational time can be reduced by almost one-half just by preventing the computer from

7 Adapted from:

4D. Foley, A. van Dam, S.K. Feiner and J.F. Hughes, 1996. Computer Graphics: Principles and
%}"‘ Edition, (Addison-Wesley Publishing Company, Reading, Massachusetts).

ShipArrT

ShipArT

creating all four lines for each mesh element®. Thus, for the purpose of display, many polygon
meshes are described by a list of the edges which form each mesh element. Figure 94° shows 2
polygon defined as pointers to a list of edges. In tum, the edges in the list point to vertices in
the vertex list to complete the definition of the patch. Hence, display architecture requires only
that all the edges be displayed, and since the edges only appear once in the edge list, no longer is
there the case of two lines being drawn on top of one another during the display of the mesh.

Since the Semi-Solid: ion draws on the described in this section two

points should be emphasized: the first is the use of pointers to refer to data clements shared by

several objects which is similar to the mechanics of relational databases; second, it is often.

to establish a ion format which facilitates manipulation, just as for display

purposes it is computationally efficient to represent the mesh as edges.

A18.3 Quadric Surfaces
Instead of being defined by points and vectors, Quadsic Surfaces ate defined by
mathematical fanctions of the model’s coordinate system. Generally of the form shown in

Equation 15, such expressions are functions of the coordinate system of the model space.

8 Given a rectangular m x n mesh, the following lines are required to be drawn:

(n-1) x(m-1) elementsoftheform
1x(m-1) elementsoftheform

(n-1)x1 clements of heform
1x1 elements of the form O

Summing this list suggests that the number of edges requiredis 2nm +m +n Since the
ccomplete deiineation of every facet requit ﬂn&.ﬂl\gtﬂlﬂmﬁ'ﬁ,mmﬁnﬂsmﬂ
reduces to % - (m + n) / 4nm which for a very large mesh approaches the value of % or 50%.

9 Adapted from:

J4.D. Fﬂlﬂy.k_vubun S.K_ Feiner and J.F. Hughes, 1996. Computer Graphics: Principies and
Practice, 2nd Edition, (Addison-Wesley Publishing Company, Reading, Massachusetis). Page 475.

210

f(x,y,2) = ax? +by? +cz? +2dxy +2eyz +2fxz +2gx +2hy +2jz+k = 0

Equation 15 Generic function defining a quadric surface.

From the point of view of representation, curved surfaces expressed in this form are
extremely accurate and are limited only by the number of surface points determined for display
purposes. In terms of modelling, such implicit definitions of 3D objects are useful since they
provide an exact mathematical solution for every location on the surface without requiring
complex interpolation between points or across mesh surfaces.

Quadsic sucfaces are also efficient for data storage since such a function could represent a
complex surface or object boundary. However, definitions of this form do not lend themselves
to Boolean Set operations because of the prohibitive increase in formula complexity. For the
construction of non-uniform figures, a number of patches are usually required and are analogous
to hard chines in a hull form. Where two surfaces intersect at a chine it is possible that there will
be poor agreement regarding the shape and position of the shared edge. For this reason

Quadic Surfaces are generally only used to define uniform objects such s spheres and toroids.

A18.4 Bicubic Surfaces

Similar to Quadric Surfaces, 2 Bicubic Surface definition seeks to mathematically represent a
surface through the use of a surface function. However, instead of representing an entire
surface expanse, Bicubic Surfaces ate applied on a patch-by-patch basis. To this end, the suzface

of each square patch is treated as discrete cubic functions of sand #as shown in Equation 16.

ShipArrT

1

x(s.t) = S-M-G-MT-TT
y(s.t) = S-M-G,-MT-TT
z(s,t) = S-M-G,-MT-TT
Equation16 where S=[§’ s* s’ s] andsliesintherange Oss<1,T=[f £ £ t] and
tlies in the range 0 <t <1, Mis a 4 x 4 matrix of coefficients approprite to the
type of curve being represented, and G is another 4 x 4 matrix of coefficients
specific to this particular surface form.

Generally Biaubic Surfaces ate formed by providing a mesh of vertex points and then
indicating that the surface which links those points is one of a number of cubic forms such as
Hermite, Bézier, Uniform B-spline, Uniformly Shaped B-spline, Nonuniform B-spline,
Catmull-Rom, and Kockanek-Bartels. The regions between each set of four vertices are then
discretized by the variables sand #and form a surface patch. The use of the variables sand 7in
this representation make it possible for the surface to be created independent of its location in

the design space. Therefore the surface function is unique for each patch but is controlled by its

ighbouris rertices through the ics which define the function. A detailed derivation
and explanation of the creation and manipulation of Bicubic Surfaces may be found in the texts of
Foley & Van Dam.'®"" Ship hulls are examples of complex surfaces whose spline derivations

make their representation only possible through the use of Biabic Surface definitions.

10 J.D.Foley, A. van Dam, SK. Feiner and J.F. Hughes, 1996. ics: _Pri
Practice, 2nd Edition, (Addison-Wesley Publishing Company, Reading, Massachusetts).

11 J.D.Foley and A. Van Dam, 1984. Graphics,
(Addison-Wesley Publishing Company, Reading, Muua-usoﬂ:)

ShipArrT)

A1.9 Spatial Partitioning

This category of solid model is the three-dimensional equivalent of the block layout

formulation. Here, unique and non-i ing primitive objects are to 6l regions of
the design space, thereby defining more complex objects. The important characteristic of all

Spatial Partitioning models is that the primiti Ives cannot be ined directly; that

is, they are unique and discrete objects which cannot be united or divided to form new objects.
However, their grouping can be used to represent more complex objects, in which the primitives

continue to appear as distinct entities.

A1.9.1 Spatial-Occupancy Enumeration
Here space is divided into discrete objects, generally cubes, and objects ate represented by

the locations of filled cubes. A picture of a thousand cubes is worth a thousand words of

description; hence Figure 95." This is the 3D equivalent of the Block Layout representation

commonly used in Facility Layout Algorithms.

A192 Octrees
This format addresses the obviously high storage requirements of the Spatia/ Ocagpancy

Like that lation, Odrees employ simple geometric forms with

which to ‘fll’ space. The name refers to the cube format since each cube can be divided into

cube-shaped octants. In application, Octrees seek to reduce the design space into cubes which are

12 A.H.J. Chris ‘80 Confe Computer Graphics (14)3, July
1980. Referenced in:
. Foley and A. van Dam, 1984. Graphics,

idison-Wesley Publishing Company, Reading, Mm-:hm-ﬂ:)

ShipArrT

either wholly contained within or wholly excluded from the object being represented. Where a
large cube is only partially ‘filled” by the object, it is divided into its octants and each of the
smaller cubes evaluated in the same manner. Thus complex objects can be defined using this

method through increasing levels of until an acceptak 3 ion has been

achieved (see Figure 96').

A19.3 Binary Space Partitioning Trees
A simplification which further improves the problem of storage requirements from the Octree
formulation is that employing Binary Space Partitioning Trees. In this method each large
cube-shaped primitive which is only partially filled by the object being represented is divided
info two sub-spaces, separated by a plane of arbitrary oricntation and position. A more detailed

explanation of Binary Space Partitioning Trees may be found in Foley etal.™

A1.10 Constructive Solid Geometry

The most ized solids rep ion, C ive Solid Geometry (CSG) employs

simple geometric forms and Boolean Set operators to create complex objects. Common
primitive shapes include blocks, cylinders, spheres, and toroids. This use of primitives is
different from that of Spatial-Partitioning Representations in that when a Boolean transaction alters a

primitive, the primitive remains intact but the model is altered mathematically to reflect the

13 Adapted from:

J.D. Foley, A. van Dam, S.K. Feiner and J.F. Hughes, 1996. i
Practice, 2nd Edition, (Addison-Wesley Publishing Company, Reading, Maslldﬂldltl)
Page 550.

14 J.D. Foley, A. van Dam, S.K. Feiner and J.F. Huﬂhl‘.1m lics:
Practice, 2nd Edition, (Addison-Wesley ing Company, Reading, Mnsndwum)

ShipArrT 214

transaction. Therefore shapes can be altered by changing the size and position of their

p In contrast, Spatial-Parttionin jons tetain only their current

shape.

The primitives do not lend themselves to ing objects whose surfaces are of a higher
order because higher order objects almost invariably require unique multi-faceted surfaces.
Thus, using simple boxes, cones and cylinders, itis nearly impossible to reproduce complex 3D

surfaces as might be found comprising the hull of a ship. The creation of complex objects by

¢ ive Solid Geometry is a sophisticated problem and does not lend itself to automation.
For example, recreating an existing object through combination of primitive shapes is a process
which is very difficult to automate because different combinations of primitives may be used to
form the object, and the decision as to how to apply the Boolean Set combinations is non-trivial.
This makes CSG a good example of a CAD system which is cffective in representation but
requires a human to interpret and coordinate the model’s primitives.

Advances in Chess software have made possible accurate prediction of outcomes on the

basis of few inputs. The ination of brute force ion, optimization and

knowledge-based systems employed in the most recent iteration of IBM’s Deep Blue offers the

potential to automate primitive manipulation. However, such algorithms when applied to CAD

are far from or

P! ‘PP

ShipArrT 215

A1.11 Semi-Solids
Although applicable to civilian applications, this project was originally intended to facliaate
the design of ships. As such a key picce of data is the hull form. Hull models are generally
exported from one software package to another as lines ot as faceted surfaces, and not as valid
solids (valid means that the object completely encloses a volume) so any representation format

must be able to cope with a mixture of surfaces and solid objects. Unfortunately, solids and

surfaces are neither i nor in the ions described in this
chapter. This means thata solid cannot be truncated by a surface. Because of the need to
model curved surfaces and the difficulty in developing such curves using common Solid models,
some sort of hybrid of solids and suface modelling is required.

From the characteristics of the formats described in the previous section, it is clear that there
are significant trade-offs between different representation formats. For Semi-Solids it was
decided that the emphasis should be placed on the topics of Asuracy, Domain, Compactness, and,
Efficency. To this end most of the i were immediately ruled out leaving
only Space-Partitioning, Boundary Representations, and Constructive Solid Geometry as potential formats.

Because accuracy requires such a high resolution be used in Spatial-Ocupancy Ensmeration, and
because of the computational complexity of Binary Space Partiioning Trees it was decided that of
chis class only Octrres would be considered. Further, Constructive Solid Geometry was entirely ruled
out because of its inability to cope with the automated creation of complex objects — a
necessity for an automated Facility Layout algorithm. While the simplicity of the Octree
representation was recognized, it was also believed that the time required to traverse the Odree
model for location information would become significant under automation. Similarly, although

it is difficult to manage and manipulate the data of a Bowndary Representation, external factors such

ShipArrT

as the importation and display of data eventually tipped the scales in favour of this format. Its

meshed innings make it ideal for application in. lysis and display software.

However, there may be potential for computational speed gains for the Facility Layout process
through the application of Octrees and other Spatial Partitioning formats which should not be
overlaoked. Hence, under the topic of Future Work in Chapter 7, suggestions for research in
this direction were discussed. The critical problem is the logistics of translation between
Boundary Representation and Spatially Partitioned formats, particularly where angled facets are
required.

Developed to address some of these concerns, Semi-Solids takes its name from its ability to
bridge between the surface and solid representations. It falls under the category of Boundary
Representations in that a region of space is defined by 2 boundary comprised of a mesh of 2D
facets. Objects are not composites of primitive objects such as cubes and cylinders but are
instead complete entities.

The manipulation of objects for the purpose of Facility Layout requires a different process

from that of the Boolean combinations generally associated with Solid modelling: Models are to
be constructed by projecting the sides of a primitive object onto the surroundings of the new
object Then patch by patch, the object could take on the shape of its surroundings — to
effectively ‘Gt itself against its neighbouring objects. In Chapter 8, a balloon model for Facility

Layout was d and the jon used here is is with that concept.

Hull forms are imported as surfaces and not solids. Semi-Solids treats the hull model as just
another meshed surface thereby avoiding the difficulty of creating a solid from the imported
surface. Each space in the layout is stored as a single entity, whose reference number points to a

spatial definition for the space. The drawing database also contains 2 mesh definition for the

ShipArrT

217

referenced object. Interaction between spaces or a space and the hull boundary is carried out by

means of a six-step process:

1

6.

Search for neighbouring mesh clements.
Determine nature of interaction.
Alter the space’s boundary mesh to coincide with the other

object o surface.

. Determine and create the patches required to close the adjacent

sides of the object.

. Alter the dimensions of the space to correct for the portions

which were added or removed by repeating the process.

Remove unnecessary patches from the mesh.

Unlike most surface i Semi-Solids takes of the h ics of the

surface of each mesh element. The methods for Semi-Solids are equally appropriate for curved

surfaces instead of flat facets which suggests the potential of a relatively simple approach to

further increase the accuracy of a modelled surface.

ShipArT

218

Al1.12 Representation Comparison
The three tables (Table 18, Table 19 and Table 20) which conclude this chapter show an

of the of solid model ions on the basis of 2 aumber of

commonly accepted characteristics.' Falling under the headings Acuracy, Domain, Uniqueness,
Validity, Closure, and Completeness, these charactesistics have been used to provide a basis for

comparison of the strengths and of solid modelli h

The term Aeouracy refers to a model’s ability to represent objects. The Spatia/ Partitioning
methods described in the previous section are examples of models which can represent curved
objects only to the precision afforded by the size of their primitive unit. Hence curved surfaces
are approximated by right-angled steps.

Domain suggests a measure of the ilities of the model ion to depict objects.

The greater the versatility of the model format the greater its domain. For this reason, where
curved surfaces and edges are used in Boundary Representations, the domain is greater than that of
Constructive Solid Geometry which is generally limited by the shapes of its primitives.

Where modelled objects can be created in only one configuration of primitives or surface
elements, the modelling representation is said to have Unigueness. For example, Constructive Solid
Geametry tends not to lead to unique solutions because its formulation makes the creation of
objects possible by a number of different combinations of primitives and Boolean Set
Transactions.

A representation which can ensuze Validity is one in which each of the objects in the model

has a volume. The creation of objects without volume is a problem in model representations

15 AA.G. Requicha, 1980. "Representations for Rigid Solids: Theory, Methods, and Systems”,
ACM Computing Surveys, (Association of Computing Machinery). Volume 12, Number 4.

ShipArrT

employing Boolean Operations. For example, given two adjoining cube-shaped objects, a
subtraction of the objects leaves a single two-dimensional plane.

Closure refess to the ability of a model to be able to form whole and continuously bounded
solids following a number of Boolean transactions. An example of objects for which closure is
Dot possible is the case of Swegps where the union of two swept objects does not necessarily form
a new sweep object.

Finally, Compactness and Efficiency refer to the data and its manipulation in a model
formulation. For example, models constructed through Spatial Parfitioning require a large
quantity of data to discretise each primitive object, but require little programmed analysis to
carry out Boolean transactions. Tn general, the terms Compactness and Effidency are mutually
exclusive. That s, the fewer primitive objects required to define a complex model, the greater

is required in their

ShipArrT

Figures Pertaining to Appendix 1

Figure 88 Four-sided Bezier bicubic surface patch showing the 16 required control points.

ShipArrT

221

A_inters—ec’tion B

Figure 89 Boolean Operations for two objects. Given objects 4 and B, the middle left
depiction shows A U B (effectively A + B), the middle right is 4 N B, and the lower
left and right show A - Band B - A respectively.

ShipArrT

Figure 90 Examples of how Boolean Operations can be effective for identiying the
intersection of two objects, but are unable to offer any information in the case where
objects are not in contact. As an aside, the Regions of Exclusion are impossible to
remove without the use of additional objects or without altering the dimensions of
the original objects.

Gear Specs

Diameter: 4.0

Axle: 0S5
Thickness: 0.25
Teeth: 10
Key: Yes

Figure 91 A gear developed through primitive instancing. The data to the right was used to
prescibe the solid model.

ShipArrT

Figure 92 Solids created by translational and rotational sweeps.

V1
C, V =(V,,V,, V5V, Vg, Vg)
=((Xq Y40 Z4)s s (X Vo1 Z6))
P P=(C;, C2 C5 Cy)
1 =(Vy, Vy Vg Vy)
P,=(C,,C, C; C,)
C, =(V,, V, Vg Vy)
v4

Figure 93 A polygon mesh in which each patch is defined by pointers to a single long list of
vertices. The vertices in the list are unique, thereby facilitating editing and reducing
storage requirements.

ShipArrT

V =(V,, V, Vy V,, Vg V)

=((Xq ¥q0 Z9): -0 (K51 Ve Z5))
E,=(V,, V. P, null)
E,=(V,, Vj, P, null)
E,=(V,, V. Py, null)
E,=(Vj, V,, P, null)
E.=(V,, V,, P,, null)
E.=(V, V, P, null)
E,=(V,, Vi, P, P,)
P,=(e, e, e;¢€,)
=(E, B, E5 Eg)

P=(e. e, e5€,)
=(Ey By EnBr)

Figure 94 A polygon mesh in which each facet is defined by pointers to a list of edges. FHach
edge in the list is unique and in turn contains pointers to a list of unique vertex
coordinates. The format is intended to accelerate the depiction of the mesh since
shared edges are drawn only once.

ShipAnT

T ;|
/- 5
2] SmeT
il F
T T
T
T N
[' HH
BEX EEVITITTT
I i’ A
jms SRS T
CorrS EnEEEEE RS}
Figure 96 A comparison of Spatial-Occupancy E ion and Quadtrees. A Quadtree is the

ShipArT

2D equivalent of an Octree. The Quadtree formulation is able to represent the same
object using many fewer cubic units.

ShipArT

Table Pertaining to Appendix 1

lAccuracy [Limited by the accuracy ofthe _|Limited to that of the swept object.
(refers to the precision by which Junderlying coded structure.

lan object is

\Domain Limited because of the difficuity of |Limited ability to depict complex
(€] f the ing complex objects. lobjects.

imodel to depict a wide variety nf

\shapes and

Uniqueness [Not necessarily. INot necessarily.

(where modelled objects can be fle.g., a sphere may be represented le.g.. a cube may be swept from
|created in only one configuration fthrough either sphere or ellipsoid fany of its faces.

|of primitives or surface elements) ffunctions.

Validity JAlways since there is no oqeq atic where rotational
(refers to the creation of solid outside of [sweeps circle back on

objects without volumes) undertying coded stnme themselves.

\Closure JAlways since objects cannotbe |Can only be closed in Boolean
(tl‘leablhtyolamodo”aba-bla jused in partial form or in [transactions where the same

to form whe lcombination. isweep motion is applied to more
Ibounded Sdm) blﬂ one object.
Compactness [Only as compact as the code |As compact as the storage
\(refers to the quantity of data by Jwhich defines an object. frequired for the swept object.
which objects are modelled)

Efficiency INot applicable since objects [Not applicable since objects are
(ease by which models ars lcannot be combined. lrarely combined.

|created and depicted — efficiency |

land compactness are mutually

lexclusive)
Table 18 Solid model ison — Primitive and Sweeps.

|Accurac;

Jobjects which are curved or

|(refers to the precision by which fconstructed from polyhedral
lan object is represented) Jrequire a finer primitive unit. g
[Resolution can become
|Domain sofid within the |C: igh order
\(a measure of the capacity of the fiimits of the cube primitive lcurves without a template object.
model to depict a wide variety of fapproximations.
Uniqueness Vovynm-uwomw:yh INot necessarily. Shapes can be
(whers modelled objects can be |represent an object with Iproduced in a number of
in only one configuration [specified size .\dbﬁon jcombinations of
lof primitives or surface efements)
Validity Aimost always valid as a grid cube [Only simple checking is required
(refers to the creation of solid jis either or catch
|objects without volumes)
Closure [Since each prir primitives are bounded so
\(the ability of a model to be able fand closed, the whole is also mm
lto form whole and
\bounded solids)
ICompactness Storage is to Y all that need
(refers to the quantity of data by ~jmodel accuracy and hence the [be referenced are the primitives
which objects are modelled) lquantity of primitives required for and the applied transactions.
|Efficiency E ti An 'model such that
\(ease by which models are merely moves ‘blocks’ |CSG evaluates each primitive for
\created and depicted — efficiency leach
land compactness are mutually fchanges to are reflected|
lexclusive) lquickly but the format is siow
[where the model must be
many times.
Table 19 Solid model — Spatial and Ce

Solid Geometry.

ShipArT

|Accuracy Polygonal Boundary ‘approximate because
|(refers to the precision by which Jrepresentations may only dhonadmmmbmanbe
lan object is r deis. facet
je.g. a faceted sphere. [size.
mmm

[Domain [Greatest domain of all [Wide domain aithough limited to
(a measure of the capacity of the Jrepresentations dependingon [fiat facets.
frode o depict 8 wkle varisty of [surfeca ype— a0, fis facats ve.

ishapes and obj es and

Uniqueness mqu.smaawutyd s«mhaumque since models

|(where modelled obje be simple

lcreated in only one configuration mmdsmwmmm Ihanmonﬂnsnmofvmr

lof primitives or surface elements) Jbe used in a depiction. surroundings. Hence, given the
Isurroundings, the same
jrepresentation will be produced.

Validity [Most difficult to ensure vertex, |Can be ensured through careful

(refers to the creation of solid jedge and face data is consistent. |manipulation and error checking.
lobjects without volumes)

[Most difficult to determine linterference checking is the

in rpose of the i
Closure an be ensured lhmugll careful [Can be ensured with careful
{rhs ability of a model to be able ftracking of boundary elements |manipulation and error checking.

whole and continuously Jsuch as vertices and surfaces.
ndsd solids)
Compactness Moderate storage demands but |Moderate storage demands but
(refers to the quantity of data by ~ Jstorage of regular or curved storage of regutar or curved
which objects are modelied) Mlsqmmmbﬂmhqmmm‘lﬁvew
Partitioned models. ial Partitioned models.

|[Efficiency JAn evaluated model in M
(ease by which models are Boolean transactions are reflected |cof i
lcreated and depicted — efficiency Jin the object's current form. on;u: is in its final form.
land compactness are mutually [However, more computation may
lexclusive) |be required for evaluation than

might be required for the

i G model.
Table 20 Solid model rep 3 parison — Boundary Rep ions and
Semi-Solids.

ShipArT

Appendix 2: Code and Pseudocode

The contents of this Appendix represent the code and pseudocode developed during this
research program. Consistent with VZswal Basic, related functions and subroutines have been

grouped into blocks of code called modules which appear below.

Module: Constraint Creation

Sub AddIndex

(ableName As String, indexName As String, keyField As String)

I toble reated by, o Statement 1 create
om inde for the defined table N-un...—-..—u-.ﬁ—ymr-p-,on-‘

Dim fadexQ As QueryDef dmension Index) as = guery defimiion

Set IndexQ = TemporaryDB CreateQueryDef)) uk Indext) and the TomporaryDB

InduQN = tbleName & * Table Index Creation - * & indexName e tbe new gquery
‘CREATE INDEX " & indexName & " ON " & tbleName s the SOL information
l.nanSQL IodesQSQL & * (" & keyField &)7

TemporsyDB.QuecyDefs.Append IndexQ add the query to the TempanaryDB wariable
IndexQ Execurs o the guery
IndexQ.Close dhose the query

ShipArT

Sub AssignSpaceID

This rutine adds new enties 1o the SLTabl, and oreates @ ness name for that entry. ¥ here appropriate it provides a Class_ID mumber:

Dimi As Inweger @ counter sariable
Dim lastRecord As Long. a position marker.
Sec SOTable = ActiveDB.OpenRecordset("Ship Overall”, DB_OPEN_TABLE)
Sec CLTable mwsopmnm»dserrum List", DB_OPEN_TABLE)
Set SLTable = ActiveDB.OpenRecordset(*Space List", DB_OPEN_TABLE)
SOTable Index = "Class_[D" et the indeseof the SOTable 0 Class_ID
CLTable fndex = "Class_ID" et he indeeof the CLTable fo Class_ID
SLTable Index = *Space_Name" set she indese o the ST Table 10 Spoce_Name
SOTable MoveFisst
Do Uatl SOTable. EOF repeat until the mame i ot fiand
CLTable.Seek "=", SOTable.Fields("Class_[D")
Fori = 1 To SOTable Fields("Quantity) lop through the quaniity of each space
SLTable Seek =", (CLTable.Ficlds("Class_Name") & St5()) setk a space name
I€SLTable NobMach Thea check for repeated name
lastRecord = Seckl 'ACTIVE", SL &
SLTable AddNewr add e new entry
SLT;hILF‘lds('Spu:JD") IastRecord + 1 increment the Space_ID for the new reord
able.Fields("Space_Name") = (CLTable.Fields("Class_Name") & suo) name the new space
SLT:hI:.F:Hs('CIzss ID") = CLTable. Fields("Class_ID") new class
SLTable Update uwphlr the entyy
Else
spae bas abrady been deined
End I
sor,ugmwmm
Loop
End Sub
Sub CloseConstraintTables
CLTable Close

SI.Table Close
ConstraintsTable.Close:

MaTable.Close
PrefTible Close
MaxTable.Close
‘ShapeTable.Close

End Sub

ShipArT

ShipArrT

Sub ConstraintCreationMain

This is the main routine i this modick.

The

temporaryDB.

PeepareTemporaryDB
AssigaSpaceID

CreateTemporary Table "Minimum"

CreateTemporary Table "Prefemred”
Create Temporary Table "Masimum”

GetShapeData
Addlndex "Shape", "PrimacyKey", "Shape_ID"
Addlndex "Shape”, "Shape_[D", "Shape_[D"

SetConstraintTables
FillConstrain¢Tables

CloseConstraintTables

End Sub

Sub FillConstraintTables

SLTable-MoveFirst
Do Unl SLTable. EOF
1€ SLTable Fields("Class_ID") > 0 Then

GerConstraintRecords (SLTable. Fields("Space_iD"))

End If
SLTable MoveNext

End Sub

Clars, purges and pens the Temporary database

Call o routine which takes each iems dfined in the
Ship Overall List and cspies them, with a mmber; to
the Space List Table

Createsthe temporary tables i which al he
dimension data is stored.

Creates a temporary table in which the shape
information i stored

Creates indexes fo-theshape table sine Accss will
ot allow this 10 ke ploce dring @ Make Table
ey

Puts al the dimensional information into the new
aables

Repeat untl the mame is ot found.
Check 1o e if the curent item i am objec such as
bl or @ pace equiring placement

Call a routine o ge all he tabe comtents

232

Sub CreateTemporaryTable

(ableName As String)

The routine is fairky i
deiiion. I tur, tbis defiition the TemperaryDB.

ReDim £(6) As New Field

£(1).Type = DB_LONG
£(2) Name = "Length”
£2)Trpe = DB_DOUBLE
£03) Name = "Wk

£0)Type = DB_DOUBLE

) Name = “Height”
) Trpe = DB DOUBLE

£(3) Name = "Area”
£G).Type = DB_DOUBLE
£6) Name = "Volume"

€(6) Type = DB_DOUBLE

i(1).Name = “PrimacyKey”

Fori=1To6
newTbiDet Fields Append Q)

£ Name

Add it 10 the cllotion
Add it to the colecion
Add it to the collction

Name the new table
New gppend the new Tobk sbyect to tbe Tabk Dy
colection.

ShipArrT

Sub GetConstraintRecords

(Space_ID As Long)

Dim lengthiR As DimensionSet Set dimension variables

SLTable Index = "Space_ID" Find the current space_ID in the Space List table

SLTable Seek ™
CLTableIndex = "PrimaryKey" Find the currens Class_ID in the Class List table
CLTable Seek "=", SLTable-Fields("Class_ID")
Ccnnnlnu'l':bh.hdn “Primary}
ConstraintsTable Seek "=", CLTable.Fields("Constraints_[D") Find the cervent Constrasnts_ID entry in the
Conmstraints table

“onstraintsTable Fields("Length”) G the parameter flags

nstraintsTable. Fields("Width")
heightFlag = ConstraintsTable. Fields("Height")

traines Table. Fields("Azca")
volumeFizg = Constrains Table. Fields(*Volume")
Shape Table.Index = “PrimaryKey" Find the current Shape_ID in tbe Shape Table i the

TemporayDB
Sl'apeTabIr_Sczk ", ConstraintsTable.Fields("Shape_ID")
ShapeTable.Fields("Floating._Aspect_Ratio”) Store the Fixed_Aspect_Ratio vabue
up<cKRzun ‘ShapeTable-Fields("Aspect_Ratio”) Stare the Aspect_Ratio valve
If lengthFlag = True Then GetDimension "Length", lengthR, (C ir "Length_ID") Read i dons for
each flag salve

= True Then GetDimension "Width", widthR, (C

Ifhcgh!th e Then GetDimension "Height", e bghk (Cuxsm\s'l':hl;F‘:ldl('Haghl_D'))

If areaFlag = True Then GetDimension "Area”, areaR, (Constraints Table Fields("Area_ID")
1€ volumeFlsg = Tue Then GetDimension "Volume®, volumeR, (ConstraintsTable.Fields(*Volume_ID")

1€ ((lengehFlag = True) And (widthFlag = True) And (heightFlag = True)) Then
areaR.min = in * widthR min
areaR peef = lengthR pref * widthR peef
arcaR max = leny * widthR max
volumeR.min = lengthR.min * «R.min
volumeR pref = lengthR pref * -umP-:r- beghlpoet
volumeR max = lengthR max * widthR.max * heightR
Elself ((lengthFlag = True) And (widthFlag = True) And (volumeFlag = Truc)) Then

areaR min = lengthR min * widthR.min
aeaR pref = lengthR pref * widthR pref
areaR max = lengthR max * widthR max

heightR min =
heightR pref = vnlumlpﬂf / ﬂmg-hlput- -d‘u.pmn
beightR max = (leagthR mmax * widthR mazx)

ShipArrT

True) Then

Elsclf ((engthFlag = Truc) And (areaFlag = True) And (volumeFlag = True)) Then
beightRmin = volumeR min / areaR.min
heightR pref = volumeR pref / areaR.min
beightR max = volumeR max / aseaR min
widthR min = aceaR min / lengthR min
widthR pref = areaR peef / leagthR pref
widthR max = aceaR max / lengthR coax

Elself ((widthFlag = True) And (heightFlag = True) And (arcaFlag = True) Then

lengthR-min = areaR min / widthRmin
lengthR pref = areaR pref / widthR pre.
lengthR max = aceaR.max / widthR max

Elself (widthFlag = True) And (beightFlag = True) And (volumeFlag = True)) Then

volumeR.min / (widthR.min * heightR min)
= r ol .=(/ (vndupuf‘ heightR pref)
gﬂ\R.ple kiR p kit gt

Elself ((widthFlag = True) And (areaFlag = Truc) And (olumeFlag = Truc)) Then

heightRmin = volumeR.min / areaR.min
hngbtR.pmf volumeR peef / arcaR.min
R max = volumeR_max / arcaR min

lengthR.min = areaRmin / widthR min
lengthR pref = m&pmf/vldlhkpwi
lengthR max = areaR max / widthR max

Elself (floatingARFlag = False) Then
If (engthFlag
wid

‘rue) And (widthR pref = Nuln Then

ShipAre'T

leagthR max = (areaR max i
EIs:If(volnmgﬂ:g True) And (heightFlag = True)

(volumeR min / W/wm))
'ilv.klplv 'nhnzl.pwf/mﬂaglmm))
widthR max = (volumeR.max / heightFlag / aspectRatio) ~ (5)

(volumeR min / heightFlag * aspectRatio) ~ (5)
(volumeR pref / heightFlag * aspectRatio) " (5)
(volumeR max / heightFlag * aspectRatio) ~ (5)
End I
EndIf
Els:!f(ﬂmnng:\mag True) Then
= True) And (widthR pref = Nul) Thea
‘ndr.hR_min lengthR min / aspectRatio
widthR pret mgmkpnef/ (aspectRatio / 2)
widthR max
Elself (widthFlag :ue) ‘And (engthR_peef = Nul) Thea
leagthR min = widthRmin
leagthR pret vﬂd\lpﬂf' (npecxkzﬁn VE)
e * aspectRat
rd,:) And (widthFlag = Fz.ln) Thea
'ﬂm

ngthR max

Elself (engthFlag
lf(auuﬂlg

)~ (5)

wndrhleﬂf=(ﬂﬂ-Kpn=[/uwnR="°) (5)
widthR.max = (arcaR-max / tRatio) ~

lengthR min = (aceaR i * aspectRatio) " (5)

lengthR pref = (ﬂnlpuf'up«dbm) ~

leagthR max = (ascaR.max

beightFlag * aspectRatio) ~ (5)

vulmnn.p.ef/xmga.ﬂg ‘aspectRatio) * (5)
g TR e = (olumcRmax / heightFlag * speciRatio) * (9
I
End If

I£ volumeR pref = 0 Then
volumeR min = le * widthR.min * heightR-min
olumeR pref = kngd.\&.pr:f' wikhR pt m@mpgr

End If

Ead If

MiaTable AddNew Send vadees to the tobe i tbe TemparayDB
MinTable Fields("Space_ID") = Space_ID
MiaTable Fields("Length") = lengthR.min

MinTable Fields("Height") = heightR.min
MinTable Fields("Area") = areaR.min

ShipArrT

MinTable Fields("Volume") = volumeR min

MinTable.Update

PeefTable AddNew
PeefTable-Fields("Space_ID") = Space_ID
PeefTable. Ficlds("Length") = lengthR pref
PrefTable Ficlds("Width") = widthR pref
PoefTable Fields(" heightR pref
PrefTable Fields("
PrefTable Fields("Volume”) = vohumeR pref

PeefTable.Update

MaxTible AddNew

MaxTable Fields("Space_[D") = Space_ID

= areaR cmax:
MaxTable. Fields("Volume®) = volumeR max
MaxTable Update

lfSth:szle.F’:dds(‘z\:pzﬂ Ratio”) = Null Then

Sh:nper'xblgfbdds{'z\sp«dam"] lengthR pref / widdhR peef
ShapeTable.Update.
End If

End Sub

Sub SetConstraintTables

Set SLTable = ActiveDB.OpenRecordser("Space List", DB_OPEN_TABLE) Assign able aribie for the tables inthe
AdiveDB

Set CLTable DB OpenRecordsee("Class List", DB_OPEN_TABLE)

G

Set ConstrmintsTable = ActiveDB.OpenRecordset("Consteaints”. DB_OPEN_TABLE)

Set MinTable = TempocaryDB.OpenRecordsct("Minimun", DB_OPEN_TABLE) Asign fabl sariables or the tables in the
TemporaryDB

Set PeefTable = TemporacyDB. OpeaRecordset("Peeferzed"”, DB_OPEN_TABLE)

Set MaxTable = TemporaryDB.OpenRecordset("Mazimum", DB_OPEN_TABLE)
See ShapeTable = TemporaryDB.OpenRecordset("Shape”, DB_OPEN_TABLE)

End Sub

ShipAr'T

237

Sub GetShapeData

storesa i the TemporaryDB.

Dim SkapeQ As QuecyDef The mame of « query defexiion wiich creates @ it of
il the poteter acsociated with o porticnlar Space_ID
st
Wipe out old QueryDefe:

ShapeQSQ CT! ID. [Constrai -

ShapeQSQ sQ

ShapeQSQ SQ Name & Che§(34) & *

ShapeQSQ 5Q

ShapeQSQ Q

ShapeQSQ SQ ID = [Constraints}.Shape_ID) "

ShapeQSQ sQ

ShapeQSQ SQ

hapeQ.SQ sQ pace List) Class_ID) "
ShapeQSQ 5Q ID = [Class List).C

ActiveDB.QueryDefs Append ShapeQ
ShapeQ Execute
ShapeQ Close:

End Sub

ShipArrT

Sub GetDimension

(dimName As Sting, dimR As DimeasioaSer, ID As Loog)

This routine is called by the in ive. [t i called

Dim tempTable As Recordset
Set tempTable = ActiveDB.OpenRecordset(("Constraints * & dimName), DB_OPEN_TABLE) Set tbe omporory able sariable

tempTable Index = "PrimaryKey™ Find the corrent rws of the temp table
wempTable Seek "=", ID

dimR pref = tempTable Fields("Preferred) Assign the profired sale
IF emp Table. Fields("Fixed") = True Thea Check for a foced dimension
dimR.min = dimR pref.
dimR max = dimR pref
Else Yot fourd..
If emp Table Fields("Minimam_by_Contents") = True Then Adymn 1o e calowdated from the room
tents T BE IMPLEMENTED LATER
Ekdfltmplek Fgld:('hﬁnmm_bv Percentage”) = True Then Or if mivimw s 1o be calowlated from a percentage
dimR.min = dimR_pref * minaMe_FrJd;(‘N[{nmnm Percentage”) / 100
Else Otberwise use the mein valve
dimR min = tempTable. Fields("Minimum")
End If
£ cempTable Fields("Maximum_by_Percentage”) = True Thea And if the maximuny is to be calowlated from a
perventage
dimR_max = dimR pref * tempTable Fields("Maximum_Percentage") / 100
dimR max = tempTable-Fields("Mazimum®) Otberwise use the mein valve
End If
EndIf
End Sub

ShipArrT

Module: Patch Table Fillers

Sub Adjacentcies
cos i s . nd dhen e che ID male for
g $ ID. : H v 6 ID sl for
the four patches which are dirctly adjacent 1o the patch.
Nt that i : . The image dpicted blow is inpaid.
. T r This routine assiomes that patch 2 will
S ampletly share am edee wich path 1.
|
1
Dim vertex! As Long These mabues store the sertes pointers of & partioelar
Dim vertex2 As Long pet
Dim verex3 As Long
Dim vertex4 As Long
St AdTabe = AcimDB OpenRecosdc(Pach Adceacy’ DB_OPENTABLE) St e b el
ActiveDB.OpenRecordset("Patch Comess”, DB_OPEN_TABLE)

s«vr;ue ActiveDB OpenRecordser("Patch List”, DB_OPEN_TABLE)

PTable MoveFirst

CTable Index = "PrimacyKey” Set the Patch Cornes table indexc o the Patch_ID
ralie
AdjTable.Index = "PrimaryKey™
ActiveDB BeginTeans Use ramsactions to basten tis routine
Do Uasl Puble EOF Loap sntil the end o the patches tsble s reached.
AdiTable Seek "=", PTable Fields("Patch_[D")
If AdiTable.NoMazch Then
AdiTable AddNew Updite che ExqTable with the new extry
AdjTable Edic
EndIf

AdiTable Fields("Patch_[D") = PTable.Fields("Patch_D")
Get the cormer pointer data from the CTable

Seek patch adfacr to side 14

Seek patch adjacent o side 23

Sk patch adjacent 1o side 34

Seck paich adjaent o side 41

16 CTable NoMatch Then
AdjTable Fields("Patch4") = Null

AdjTable Fields("Patch") = CTable.Fields("Patch_[D")
End If

AdiTable. Update
PTable MoveNext
Loop
ActiveDB CommitTrans
AdiTable Close
CTable.Close
PTable Close
End Sub

ShipArrT

ShipArrT

Sub Equations

b,cand.

Tie equation takes theform of aX +8Y +Z +d=0

Dim d As Double
ReDim x(3) As Double

ReDim y(3) As Double
ReDim z(3) As Double

Set PTabl

ctiveDB.OpenRecordset("Parch

VTable.Index = "PeimaryKey"

Py
PTable.MoveFirst

ActiveDB BeginTeans

Do Undl Prble EOF
CTableSeek "=", Prable Fields("Pazch_ID")

Foci=1To3
VT

1) * Q) -2())
-2(1) * (@) -56)
+ 6O *20)-50) * 22)

b=x(D) * (@) -20)
-2(1) * () -x3)
150050

(\)‘(7(3')‘(5))
-7(1)‘((1)
+ &) *y0) - yﬂ) G)

(1) * G *20) -2@2) * yO)
-¥() * @) *20) - x0) * 2(2))

the Patch Eqs

A indexing variable
Equation parameters:

Arraysof aordinate information wed o derive a
patch

Equation”, DB_OPEN_TABLE)
tiveDB.OpenRecordset("Vertex List”, DB_OPEN_TABLE)

et theindies of the table being arced 1o teir ID
values

Begin a transaction to facitate the eficieny o the
routine.
Excamine the ensie Patch List table

Mo o the enty i the cormer e oresponding 0

corner pointer from the V Table

Generate the equation variables

242

d+ (D) * G * 30) - x0) * 5@
de el
/@~2+b"2+c~2"5 ‘Make normal values ‘unit normals”

b/@~2+b~24c 3~ 5
/@ 2+b"24c "5

d=-1%@*x() +b " ¥() +c* (D)
EqTable.Seek "=", PTable Fields("Patch_ID")
If EqTable-NoMatch Then
EqTable.AddNew Update the EqTable with the mew extry

EqTable.Edit
Ead If

EqTable.Ficlds("Patch_[D") = PTable Fields("Patch_ID")
EqTable Ficlds("a") =

EqTable. Ficlds("d")
EqTable.Update
CTable MoveNext
PTable MoveNext
Loop
ActiveDB.CommitTrans Finish the transaction

Caable.Close Clear refirences 1o the database tabls.

EndSub

ShipArT

ShipAnT

Sub HiddenEdges

Hem I sides 3 and +

e b blamked mben ther: s afming et

o o of i DXF sutput.

and

mm.mmum’-ﬂu e
b reflected i this ome.

Sct AdiTable = ActiveDB.OpenRecordset("Patch Adjacency”, DB_OPEN_TABLE) Assign sariabies to e tables wtized by
this routine

ActiveDB OpenRecordser("Patch Hidden

ctiveDB OpenRecordset("Patch List", DB_OPEN_T/
‘PrimaryKey"

PTable MoveFisst

AdiTable Index. 'Pmqu

ActiveDB BeginTrans

Do Until Pable EOF
‘AdiTable Seck "=", Prable Fickls("Pacch_ID")

HETable Seck "=", AdjTable Fields("Pazch_ID")
HETable Edic

£ HETable Fields(Edge1") Then HETable Ficlds("Edge1") = False
If HETable Fields("Edge2”) Then HE Table Fields("Edge2”) = False

If AdjTable Fields("Patch3" 'HETable FieldsCEdge3") = True
¥, mwp.m‘; nm HETable FicldsCEdges”) = True

HETable Update

Edges", DB_OPEN_TABLE)
"ABLE)

St the indexes ofthe tables 1 be searched

Begin tbe database transaction

Scan through the extive patch it
Find the emtry it the

Test o see f champes are reguired for the curvest
Edet etry

Tes 0 see if chamges are e for the curest
Edp2

Tu-?jhiapd.ﬁ_-%l
Test o s of there i pich et o Edges

Complete the record
Mo 1o the acxc patch

Complcte e transaction
Clear the able rriables

Sub KillVertexRepeats

(@b As Secing, A Steing)

This romtine dentifice repeated serties contained i the givem Ver sabl. I then woes the sortd PatcSSeaf) dymasnts to iy wpelate the patch
Patcbes Sirfoce tsble.

crery time the routine .

Dim pointer0 As Loog Poister 1o thefrst entry

Dim poiatec] As Long Poister o the second

Dim pt0 As Point3DDouble Goordinate values of the frt entry

Dim pt! As PointSDDouble Coordinate vales of the stcond enty

Dim vTempTable As Recordset

Dim pTempTable As Recordset

I€db = "ACTIVE" Then

Tmhb—h-ﬂd—i—hﬂh\h
shoud be

SexvTempTable = AciveDBO,

DB_OPEN. mua
DB_OPEN_TABLE) 4-..5-,1‘.&-‘&

ActveDB BeginTans
Elselfdb = 'KEMPOMKY' Then
o

DB_OPEN_TABLE)

TemporaeyDB BegiaTeans
End If

If (sTempTable.BOF And vTempTable EOF) Then
Else
“TempTable.Index = "XYZ"

vTempTable MoveFirst
pointei0 = Wunprmum.wm D"

DB_OPEN_TABLE) Auige the tomp’
osble

Test o see i amy Vrties b been sored. [mr._

Ifm then..

Mawe 1o e frst tem i the V TempTable
Assign the Vertex_ID 1o pointerd
g the vertex coondinates 0 0

“TempTable MoveNext Move 1o the mect iem in e U Temp Table
Do Undl vTempTable EOF Repeat untl the Temp Tabl i cxchausted
pointer] = vTempTable Fields("Vertex_[D") Acsige the Vertex_ID to pointer!
ptlx = vTempTable Fields("X") Ascige the sertesc coordinates 1 peT
pely = vTempTable Fields("Y")
ptlz = vTempTable Ficlds("Z")
1] P ru--;,n...,-—../p
Fori=1To4 Begin bopeng throngh the
- the PatchSet
pTempTable Seek ™ PR e o et i e et
Do Udp'l'ﬂw‘l'ﬂ&ﬂo“ Begin looprng wnis/ w0 other mestamcs of posnier
appear in Field i
pTempTable Edic Allw editin of the PatchSet
pTempTable. Fields(3) = pointes0 Replace pointer! with pointer
pTempTable Update: Update the PatchSet awd tbe PTempTable
pTempTable Seek "=", pointer] Find the mexct instance of pointer! in tbe PatchSet
Nexti
vTempTable Delete Dekte the epested ism in the V Temp Tabe

ShipArrT

pointes0 = pointerl Cay pointer 12 poieer
CopyPrs pel. pd A mew point 10 old ot
EodIf
TempTable MoseNext Move o the next e i the U Temp Table
I£db = "ACTIVE" Then Test 1o determine wsic database the tabeName
prpa——
ActiveDB CommiT
db = "TEMPORARY" Then
TemporaryDB. CommicTrans
Ead If
EndIf
pTempTable Close Clear the table wariables
vTempTable.Close
Ead Sub

SkipArrT

Sub Renumber

(b As String, ableName As Sering)

This roaine

Dim counter As Loag
Dim tempTable As Recordser

I£db = "ACTIVE" Then

= ActiveDB.Oy

Test 10 determeine which datsbase the tableName
should be acsociated

DB_OPEN_TABLE)

Elself db = "TEMPORARY" Then

End If

If (tempTable. BOF And tempTable.EOF) Then
Else

ActiveDB BeginTrans
counter = 1
tempTable.Index = "PrimaryKey"
tempTable MoveFizst
Do Unel tempTable. EOF
tempTable Edit
tempTable Fields(0) = counter
tempTable Update
tempTable MoveNext
counter = counter + 1
Loop
ActveDB.CommitTrans
End If

End Sub

DB_OPEN_TABLE)

Testto see if the table is empey.
Otberwise..

Set the counter 1o 1

Mave 1o e first meord i the rempTable
Loop untl the end of the tempTube is reached
Allow editing of the current ecord.

Replace the ID walee with the comnter vale
Save the mcord chamges

Move o the sexct record.
Inrement the unier

ShipArrT

Module: Patch Tests

Option Compare Dambase Use datsbse orer for g comparsines

Dim VIPOIPTable As Recordser

Sub TestMain

Checks 1o see if mew patch cormers sislte exteror bowndaris.
This reutine s sted it icudar reference (or Space_ID) D valve.

Final, the roatine acsiges sariable o the new table.

Dim g As Equation

TempPTable MoveFirst

Do Uadl TempPTable EOF Repeat wutil al s foces bave been oected
GetTempEqValues (TempPTable Fields("Patch_ID")). eq
Testl_POIData (TempPTable Fields("Patch_ID") Generate Prizm Data for POI
Test2_VintoPOT (TempPTable.Fields("Pasch_ID") Sbstitte all Vertias into POI Prizm equation:

est3_VertexZooe Determine Position Zones
‘Test4_Patches ToConsider (TempPTable. Fields("Patch_ID") Colbct Dats i terms of dataset patches
Tests_PatchestoEsclude Rernove paites whose points e wholly outsde a
Price bowndary plame
—Exxbuion procss

“Set VIPOIPTable = TemporaryDB OpenRecordser("Verties laside POI Prism”, DB_OPEN_TABLE)

' TewpPTable MoveNext
Toop

End Sub

ShipArT

Sub Testl_POIData

(POL_ID As Loag)
the POL.

Dim TempQ As New QueryDef.
Set TempQ = TemporacyDI
TempQ Name = “Interference - Dasa - POI"

Ecros Resume Next
TemporasyDB.QueryDefs Delete TempQ Name
On Esror GoTo 0
TempQ “SELECT [Te
TempQ & “[Temporary Versices_1] Vestex_ID, [Te Vertices_1}X ASx1,”
TempQ & "[Temporacy Vertices_ILY AS yl, [Temporary Vertices 1] Z AS z1,”
TempQ & *[Temporary Vertices_2).Vestex_ID, Vertices X ASx2,"
TempQ & "[Temporary Vestices_2|Y AS 2, [Temporary Vertices 2| Z AS 22,
TempQ & "[Temporacy Vertices_3|.Ve 3 Vertices 3] X AS 53,
TempQSQL & "[Temporary Vertices_3].Y AS y3, [Temporary Vestices_3].Z AS 23,
TempQSQL & "[Temporacy Vertices_{ Femporacy Vertices_§X AS x4,
TempQ ‘*'Tunpcﬂqu_J]YASyl,[l‘mpnqum-‘]ll\Sﬂ."
T &
TempQ & Siaconcidoasmon il
TempQ & ﬂlﬂ !l‘D‘M l‘l'([v"Hil) ASEq 21_a,"
TempQ & 1%
TempQSQL
TempQ
e

888888BBBBEEBEEBEEBEBBREBREBE8E B Y

88888888888888888888888888888888858%8%8

& "ON [Temporary Verices_4] Vertes_ID = [Temporasy Patches] Vertexd;"

TemporaryDB.QueryDefs.Append TempQ
“TempQ.Execute.

End Sub

ShipArrT

Sub Test2_VintoPOI

(POLID As Loag)

P 5 - in the detcbase. Plames 1 0.4 refir
prises wbich s perpendiclar ts the plame of iteret.
Becme of Aess Ermitations, the resebs of this query ame stored as @ tabke.

Dim TempQ As New QueryDef

Set TempQ = TemporacyDB.CreateQueryDef)
TempQ.Name = "lnterference - Vertices - Solutions for ALI"

On Esror Resume Next

TemporacyDB.QueryDefs Delete TempQ Name
On Exror GoTo 0

TempQ SQL = "SELECT | [Vertex Lisq| Veres_ D, *

TempQ SQ SQL& Daea - POILPatch_[D AS [POI Pazch ID], *
TempQ SQ SQL& Daca - POU}*[Vermex Lisf[X]"
TempQSQ SQL&* Daca - PODIb"(Verex List!(Y]”
TewpQSQ SQL & "+{1 Daca - POIJI}

TempQSQL SQLa& ™ Daca - POII] AS POL *

TemoO.SO SQL& - Data - POTIEq_21_a]*[Vertex Lisg!D]"
TempQ.SQ SQL & ™ Data - POIJI[Eq_21_b}*[Vestex Lisgi[¥]"
TempQSQ SQL & ™ Data - POIJIfEq_21_c]*[Vertex
TempQ SQ sQL& Daca - POIJ[Eq_21_d]) AS Plane1, *
TempQ.SQ SQL& Data - POIJI[Eq_32_s]*[Vertex List!(X]"
TempQSQ sQL& Data - PONI[Eq_32_bj*(Vertex Lise[]"
TempQ.SQ SQL&" Dara - POI)I[Eq_32_j*[Vertex List[Z]"
TempQSQ SQL& Daaa - POIJ![Eq_32_d])

TempQSQ & Dara - POIIEq 43_3]* [Vertex List{X]"
TempQSQL = TempQSQL & " Daa - POT] °

TempQSQL = TempQ SQL & *+{Itesference - Data - POI[Eq_43_c]*[Vertex Lisg[Z]"
TempQ SQL = TempQSQL & ™ POII{Eq_43_d])

TempQ.SQL = TempQ.SQL & -Data - POI![Eq_14_a]*[Vertex Lisg![X]"
TempQSQL = TempQ.SQL & Data - POIJ'[Eq_14_b]*[Vertex Lis{[Y]"
TempQSQL = TempQ SQL & ™ Daca - POIEq_14_c]*(Vertex Lisf{Z]"
TempQ SQL = TempQ.SQL & ™ Daca - POIIfEq_14_d]) AS
TempQSQL = TempQSQL & "0 AS Zone *

TempQ SQL = TempQSQL & [Query - - V - Solusioas foc Al *

TempQ SQL = TempQ SQL & "FROM [Vertex Lisd, Daa- POT] "
TempQ SQL = TempQ SQL & "WHERE ({lntesference - Daza - POI Pazch _ID =
TempQSQL = TempQ SQL & Sa§POLID) &) *

TempQSQL = TempQ SQL & “ORDER BY [Vertex Lisg, Verex_ID;"
TemporaryDB QueryDefs Append TempQ

TempQ Execute

End Sub

ShipArrT

Sub Test3_VertexZone

= 3 ined in the ‘Query - I - V - Solitions for AUl Table

1f Plane1] =0 And [Plane2] >= 0 And [Plane3] >=0 And [Plamet] >= 0 Then Zone 1

If (Plane1] < 0 And [Plone2] >= 0 And [Plane3] >= 0 And [Planes] >= 0 Thex Zone 2
If [Plane]] >= 0 And [PlaneZ] < 0 And [Plane3] >= 0 And [Planes] >= 0 Thex Zone 3
If [Plmel] >= 0 And [PlaweZ] >= 0 And [Plane3] < 0 Axd [Planes] >= 0 Thex Zowe §
If (Planel] >= 0 And [PlaneZ] >= 0 And [Plane3] >= 0 And [Planes] < 0 Then Zone 5

If Planel] <0 Aind [Plame2] < 0 Thex Zome 6
[Plaze2] < 0 And [Plane3] < 0 Then Zome 7
If Pime3? < 0 And [Plamet] < 0 Then Zone &
If Planed] < 0 And (Planel] < 0 Then Zome 9

If Planet] < 0.And [Pliane3] < 0 And ([Planet] < O Then Zone 10
If Planel] < 0 _And [Plane2] < 0 And [Plane3] < O Then Zane 1
If Plase?] < 0 And [Plsne3] < 0 And [Plamet] < 0 Thon Zane 12
If Plasel] < 0 And [Phsne3] < 0 And [Planet] < 0 Then Zame 13

\ 10/
% &
\%
N
s / \ € Zane 1 i the POI priome
\ I / Plane3
e e e
\/ | \/
BA S| 1|3 An
a4
’ [
N F Planel
s \/ 7
N\
LAY
712\
Planes Plane3
Dim VISEATable As Recordset

Sex VISEATable = TemporarsDB.OpenRecordset('Query - I - V - Solutioas for All", DB_OPEN_TABLE)

VISEATable MoveFirst
If VISEATable EOF And VISEATable BOF Then Retum
Do \‘nulg Not VISEATable EOF

fATable Edit

uqvmrwhn >= 0 And (VISCATable FikdeCProe2") >= 0 Aod (VISEATble Fcd(Pane3) >=0)
And (VISEATable Fields("Plane4”) >= 0)) Then VISEATable.Fiekds("Zooe")

Pt <9 And M)smm(vmrm-p-
0 Ao (VISEATabl P Plaet) >~ 0) Then VISCATube FkdCZoae) =2

Ehelf (VIS(ATible FedaPice1') 32 0) A (VISEATable FickisC Plancz? < 0 Ao (VISEATabe Fikds(Plnes?) >=
) And (VISEA” .ugw =) Then VISEATable Ficlds(*Zone") = 3

Elself (VISEATable Fields("Plane1”) >= 0) And (VISFATable Ficlds(Plane2") >= 0) And (VISEATsble Fields("Plane3") <
) And (VISEATable Fikis(Plane4”) >= 0)) Then VISEATable Fiekis(Zone") = 4

ShipAnT

251

Elelf (VISCATable Pty Plaoe1") >=) And
A Table Fields(Pianed”)

€A Table. Fields("Plane3”) ")
E_helf((WSEAT:Nstd:('th‘ﬁ <0) And (VISEATable Fields("Plane1”) < m) 'nu VISEATable Fields("Zone") =9
Elself (VISEATable Fields("Placel”) < 0) And (VISEATable Fields("Plane3") < 0) And (VISEATable Fields("Plane4") < 0))
Then VISEAT: =10
Elself ((VISEATable.Fields("Plane1”) < 0) And (VISEATable Fiekds("Plane2") < 0) And (VISEATable Fields("Plane3”) < 0))
Then VISEAT: =11

Sub TestZoneExamination

hich in whic ined i the ‘Quary -1 - /- Soltions for AU Tabke
I {Plame! >= 0 And [Plane2] >= 0 And [Plone3] >= 0 Aind [Planed] >= 0 The Zame 1

If [Plawel] < 0 And [Plane2] >= 0 And [Plone3] >= 0 And [Planes] >= 0 Then Zome 2
1 [Planei] >= 0 And [Plae2] < 0 And [Plonc] >= 0 And [Plwet] >= 0 Thon Zone J
If (Planel] >= 0 And [PlaneZ] >= 0 And < 0.And [Planet] >= 0 Then Zome 4
I Planel] >= 0 And [Plane2] >= 0 And [Plane3] >= 0 And [Planet] < 0 Then Zome 5

If Plamet] < 0 And [Plane2] < O Then Zone &
If Piome2] < 0 And Plane3] < O The Zone 7
If Pline3] < 0 And Planes] < O The Zone 3
I Planed} < 0 And [Planel] < 0 Then Zowe 9

If [Planel] < 0 And (Plane3] < 0 And [Planes] < 0 Then Zame 10

If Plomel} < 0 And [Plane3] <0 And [Planed] < 0 Thex Zome 13

ShipArT

\%
N
s SN Zone 1 i the POI pricms
\ | 21 / Plane3
N E
\/ | v
BN s 1[3 N 11
QU R S
’ I sl \
\ 7/ Planel
8 \/ 7
AN
\

12
Planed Plane3

U Zo = Zae2 = a3 = e = It P s i e by e PO e
1 Zanel = 1 And Zane2 = 1 And Zone3 = 1 Then

ReDim inVere(9) As lnveger

VIPOIPTable.MoveFirst
If VIPOIPTable. EOF And VIPOIPTable BOF Then Retum

Do Wi Not VIFOITible EOF
CotVesicmfoiie (VPO Tute Fubd Pk YD, Vi, i Ventioe

Case I: OuelVertln

Case & Fourl/ertln - ther is s need to add serties im this
-

ShipArrT

253

Sub Test4_PatchesToConsider

(POLID As Long)
Guery - -V - Solutions for AL forall pach and space D

salaes i the database.
Dim TempQ As New QueryDef

Set TempQ = TemporasyDB.CreateQueryDef)
TempQ Name = “Interference - Paiches - Patches o Coasider”

Next
Te B.QueryDefsDelete TempQ Name
On Ecror GoTo 0
TempQSQL = "SELECT DIST [Pacch List] Space_ID, [Patch Comers] Patch_[D, =
TempQSQL = TempQ SQL & “[Temporary sons] Pazch_ID AS (PO Pach_ID],
TempQ SQL = TempQ SQ
TempQ SQL = TempQ SQ
TempQ SQL = TempQ SQ
TempQSQL = TempQ SQ
TempQ SQL = TempQ SQ
TempQSQL = TempQ.SQ
TempQSQL = TempQ.SQ
TempQ SQL = TempQ SQ
TempQ SQL = TempQ SQ
TempQSQL = TempQSQ
TempQ SQL = TempQ SQ
TempQSOL = TempQ SQ
TempQSQL = TempQSQ
TempQ SQL = TempQ SC
TempQ SQL = TempQ SQ
TempQ SQL = TempQ SQ
TempQSQL = TempQ SQ
TempQSQL = TempQ SQ
TempQSQL = TempQ SQ
TempQSQL = TempQ SQ
TempQ.SQL = TempQ SQ
TempQSQL = TempQ SQ
TempQSQL = TempQ SQ
TempQ SQL = TempQ SQ
TempQSQL = TempQ SQ
TempQ SQL = TempQ SQ
TempQ SQL = TempQSQ
TempQSQL = TempQ.SQ
TempQSQL = TempQ SQ
TempQ SQL = TempQ SC
TempQ SQL = TempQ.SQ
TempQSQL = TempQ.SQ
TempQ SQL = TempQ SC
TempQSQL = TempQ.SQ
TempQ.SQL = TempQ SQ emporas
TempQSQL = TempQ SQL & "+{Temporary Equati [Temporary
TempQ.SQ TempQSQL & "+([Temporary ic {Temporacy AS InOrOut "
TempQSQL = TemmpQ SQL & TINTO [Query - I - P - Patches Consider] -
TempQ.SQL = TempQ SQL & "FROM Equations], [Pazch
TempQSQL = TempQ SQL & TNNEX JOIN ((Query 1 V- Soluons e AT
TempQSQL = TempQSQL & "AS [Query - I- V- LG

TempQSQ SQL & TINNER JOIN (Quesy -1 -V - Slutions foe Al *
TempQ.SQ SQL & "AS [Quezy - I - V - Solutions for.

Te SQ SQL & "INNER JOIN (Query - I - V - Solutions for Alll *
TempQSQ SQL & "AS [Query - -V - Saluti -

TempQSQ SQL & "INNER JOIN ([Quexy - I - V - Solutions foe All] *

TempQ SQ SQL & "AS [Quezy -1 - V - Solutions foc AL 1] *

TempQ SQ SQL & TINNER [OIN [Pach Comens]

TempQSQ SQL & "ON (Query - [-V - Solutions for All_1}Vertx_ID "
TempQSQ SQL & *= [Patch Comers].Verext) *

TempQSQL = SQL & "ON [Quezy - I - V - Solusions for All_2].Vertex_ID *

Te SQ SQL& "= Verex?) *

TempQSQ SQL & "ON [Query-1-V AIL_3] Vestex_ID *
TempQ SQ SQL& "= Paxch Verex3) *

TempQSQ SQL & "ON {Query -1 V - Solusic A4 Verex D"
TempQSQ SQL& "= | Vermext)

TempQSQ SQL & "INNER JOIN (Pazch Equation] *

TempQ.SQ SQL & "ON [Patch Comexs].Paech_ID = [Pawch Equation].Pacch_ID) *
TempQSQL SQL & "ON ([Pacch List|. = g
TempQSQ SQL & "AND ([Patch List]. Patch_ID = (Patch Equation].Parch_ID)
Te SQ SQL& ([Temporasy Equations}. =
TempQSQL = TempQ SQL & Stc$(POI_ID) &) *

TempQ SQL = TempQ SQL & "ORDER BY [Quesy - [- V - Solutioas for All_I]POL, *
TempQSQL = TempQ SQL & *[Query - I - V - Solutions foe All_2.POL,

TempQSQL = TempQ SQL & "Query - 1-V A3 POL "

TempQSQL = TempQ SQL & *[Query - I - V - Solugions for AL 4.POE"

TemporaryDB QueryDefs. Append TempQ

TempQ.Execute

End Sub

Sub Test5_PatchestoExclude

s routi - of patches i the table ‘Duery - [- P - Patches ts Consider’ and determeines potches whsc
potextially interere with tbe POI pricw.

The query tests o see if @ partioular pateh is icular plave. If s0, és paich frome ‘Ouery - I - P - Patches o
Consider.

Dim TempQ As New QuesyDef.

Sec TempQ = TemporaryDB CreateQueryDef)

TempQ Name = “Tnerference - Patches - Patches to Exclode™
On Esror Resume

Nexe
TemporaryDB.QuesyDefs Delete TermpQ Name
On Exror GoTo 0

= "DELETE DISTINCTROW [Query - I - P - Patches to Consider].*, "
-rmpqsqu-w.nww

rqqsql.x Query-1-V- Sehn-i-ALl).H-glAsv‘th-L'
TempQSQL & “[Query - I -V - Solutions for AlL AS V1 Plane2,

o
|
88888

ShipArrT

i

& "[Query - I - V - Solutions for All_1].Plane3 AS V1_Plane3, "
& "(Query - I-V - hlumasﬁ:n\ﬂ_\phn«;\svx_vhm'

& "[Patch Comes].Ve

8888

& "(Query -1-V - Sovhmamfut:\ll_"]?hngilLSV’ Phaget, "

3289

& "[Query -1-V II_2]Planc? AS V2_Plane2,

!

& “[Query - I - V - Solutions for All_2].Plane3 AS V2_Plane3, "

LR

!

& [Query - [V - Salutions for All 7, Plaoes AS V2 Plased,”

V‘thlﬁanlﬁxAlLllmnﬂASW_ﬂmd."

i

5Q

S

Q h C

SQ (Query

SQ (Quesy

SQ (Query
TempQSQ QL & "[Query Sclnnansﬁx:\ll_)].}’hulASV! Planed, "
TempQSQL QL & "[Patch Commers} Ve
TempQ SQL SQL & "[Query -1~V - So(lmmﬁxAlLl]Phng‘lASV‘_Phx! r
TempQ SQL QL & "[Query - [- V - Solutions for A_4]Plane2 AS V4_Plane2, *
TempQ SQL QL & "[Query - I - V - Solutions for AI_4} Plane3 AS V4_Plane3, "
TempQ SQ QL & "[Query - L -V - Solutions for All_|Planes AS V4_Planes "
TempQSQL SQL & "FROM ~I-V - Solutions for.
TempQSQL SQL & "AS [Query -1 - V - Solutions for All 4|
TempQ SQL SQL & "INNER JOIN ([Query - I - V - Solutions for All *

pQSQ &"AS [Query -1 - V - Soluti

TempQ.SQ SOL & 'INNER OIN (Qrery - [- V- Sokuiocs foc 1)
TempQSQL SQL & "AS [Query -1 Al
TempQSQ 5Q h"lNNE!JOIN([Qn::y I-V - Solutioas for Al *
TempQSQL QL & "AS [Query - - V - Solutions for Al 1] *
TempQ SQL & "INNER JOIN [Pacch Comnexs]
TempQSQL. SQL & "ON [Query - I - V - Solutions for All_t].Vertex_ID *
TempQ.SQL. SQL & "= [Patch Comess].Vertex1) *
TempQSQL & ON [Query -1 -V - Soluions for Al 2 Veres_ID *
TempQSQL SQL & "= [Patch Comers].Ve
TempQSQL SQL & "ON [Query-I-V - Sol\mnmfoz:\ll_}]v:nq_m"
TempQSQL SQL & "= [Patch Comers].Vertex3)
TempQS SQL & "ON [Query - I - V - Solutions for All_{}.Vertex_ID *
TempQSQL SQL & "= [Patch Comens].Vertexd) "
TempQSQL = TempQSQL & "INNER JOIN [Query - I - P - Patches to Consides] *
TempQSQL = TempQSQ N [Patch Comers].P:
TempQSQL = TempQSQL & "= (Query - I -P - Patches to Consides} Patch_ID *
TempQSQL = TempQSQL & "WHERE (([Query - I - V' - Solutions for All_1} Planc1<0) "
TempQ SQL = TempQSQL & "AND ([Query - L - V - Solutions for All_] Plane1<0) "
TempQSQL = TempQ.SQ k'AND(lQ\ﬂy-!»V—Seluﬁomﬁu{AﬂJ].Hane|<m'
TempQSQL = TempQSQL & "AND ([Query - I - V - Solutions for All_i].Plane1<0)) "
TempQSQL = TempQSQL & “OR ({Query -1 -V - Soluons fos ALl Plane2<0)
TempQ SQ :pQSQL & "AND (Query - I - V - Solutioas for All_2].Plane2<0) *
TempQ SQL = TempQSQL & "AND ([Query - I - V - Solutions for All_3].Plane2<0) "
TempQSQL = TempQ SQL & "AND (Query - T - V - Solutions for Al 4] Plane2<0)) *
TempQSQ PQSQL & "OR (Query -1 V- Soltionsfor AL Planeh<) *
TempQSQL pQ "AND ((Query - I - V - Solutions for AL
TempQ pQSQL & "AND (IQuery - - V - Solurioas for All 3]P1=nc3<0)“
TempQSQ Q
TempQSQ PQSQ
TempQSQL = TempQSQ
TempQSQL = TempQSQ Planed-
TempQSQL PQSQL & "AND ((Query - I - V - Solutioas for All_4] Plane4<0)):"
TemporaryDB.QueryDefs Append TempQ
TempQEsecute
End Sub

ShipAnT

Module: ShipArrT Main Module

Option Compare Dacsbase

End Type

Type Prism
POI As Equation
Plancl As Equation
Planc? As Equation

Global PTable As Recordset

Global ClassTable As Recordset

Use databae srder or sring comparisons

Define am Exquation dts e

b ool it
For an expression of the form

X HBY +Z+d=0

Defines & ramge of a partioclar dimension

kely that thi will be mowed 10 the Ship A TMain
modicke as & global defeision.

bﬁrrbh-u-_thﬁnfp‘ﬁrﬁr
n.p,-mma-.-.uw.

containing
Rafrs to the table containing the kit of class
specifcations

ShipArrT

Global POTable As Recordset
Global ConsccaintsTable As Recordset
Global CAreaTable As Recordset
Global CLengehTable As Recordset
Global CWidthTable As Recordset
Global CHeightTable As Recordset
Global CVolumeTable As Recordset
Global CShapeTable As Recordsec
Global VOTable As Recordset

Global TempVTable As Recordset
Global TempPTable As Recordset
Global TempEqTable As Recordset

Global TempAdiTable As Recordset

Sub PurgeWorkspace

Refers 10 the table comtaning the Placeraent orer for
each,
Refers t the table containing the Constraint Painters
Jfor each space
Brﬁnnmmm-,mm«.mmﬁ’
m-wubn—xmwawﬁr
m-mummmam«ﬁr
m.awmmwam‘»ﬁ'
m-:&ummwﬁ-m
each space
m.wmmm:wm:p
x:ﬁ..u-m..u.!-- the Vertexc ordering.
data
R.ﬁrr.l‘rm&mngmeuﬁmn
Jora newly ceated.
‘Refes 10 tbe 1able contaiing tbe Potch information
Jor newly reated.
‘Refers 1o the table contaiving the Equation
information for the ,um.f...gmm
Rofis 10 the table ontaving tbe Patch Adaentey
information for tbe patcbes of o newly created spacr.

2 7 in the midit of 3

This brief rowtine
be .Co

willdo o

error (enerally due to the lck: of a BeginTrans command).

On Ecror Resume
DBEnpne_Wodupw:s(O}Comszﬂns
On Exror GoTo

End Sub

ShipArrT

Sub PlaceFSMain

This rontine places the first space into the layout domain.

iveDB Name), "Vere Lit™
DB Narue), "Pacch Lisc"

iveDB.Name), "Patch Equation”

iveDB Name), "Patch Comers”

"Vestex Order”
i iveDB Name), "Placement Order”

CreaeFSEquacionTable

CreaeFSAdiaceatcyTable

OpeaFSTables

POTable.MoveFisst

Repeat until the name is ot found
CreateNewSpace (POTable.Fields("Space_ID") Call a rontine to et all the table ontents
KillVext MPORARY", (TempV Table.Narme), (TempP Table Name)

TempEquaons
TestMain

* TemporaryDB Rollback
' TemporayDB.CommitTaans
' POTable.MoveNext

“Loop

CloscFSTables

“TemporasyDB Rollback
“TemporaryDB. CommitTeans

End Sub

ShipArT

Sub PrepareTemporaryDB

Onfecy mpor Unfortunately, T 5
Jigare ou A i racine. It
m,uﬂ on disk. Tkﬁbuapghmw-ﬂ&un,flkhnﬂvuamaﬁml&bﬂ}
The contentsof this TemporayDB.
On Ecror Resume Next
Kill TempDBFName & "MDB"
Kill TempDBFName & "LDB"

On Exor GoTo 0

" MDB"), DB_LANG_GENERAL)

"MDB"), True)

Set T DB =D
Set TemporaryDB =
End Sub

Function SeekLastRecord

(db As String, mbleName As String) As Long

This routine i

any entries. fmnfnﬂa.rlh
Dim tempTable As Recordset

I€db = "ACTIVE" Then

ActiveDB.O}
Es:[ldh “TEMPORARY" Then
DB.Oy

Ead H

I T BOR A S NS EOR Thie
=0 andrenma0
Else
tempTable.Index = "PrimaryKey"
tempTable MoveLast
SeekLastRecord = tempTable Fields(0)
End If

tempTable Close

End Function

1D ralie for the lst recomd.

Test o determine which database the tableName
asmoiated

be,
DB_OPEN_TABLE) Assign the tempTable rariable

DB_OPEN_TABLE)

Testfor a tble witbout any entrics

Set the indexc 1 the key containing the ID vabues
And move 1o the last ety i the
Stare the ID value o the last entry

Parge tbe tompTable rrisbe.

ShipArrT

Sub ShipArTMain

(outineName As String)

This ine in tis Datab this allows the nse of
several global rariables throsgban the model
PusgeWorkspace
Set ActiveDB = DBEngine. Workspaces(0) Databases(0) Asige the database variable
[fmulm:Nmz "qu;ox' Then Test the rontine Name
Inport the DXF fik
xmvmm CTIVE", "Vertex List", "Patch Comess" Py unnecesiary mrtex: data
'ACﬂVE "Vertex List" Remamber the rertee st
erm allg/ﬁ! Eguations tble
Adjaceatcies the Adjacens Pt table entrics
et .v-/m Hidden Ed table etris:

HiddenEdges
Elself routineName = "DXFExport” Thea
D: ctbain Export the object dataset as a DXF fie
Elself routineName = "ConstraintCreationMain" Then
ConstraintCreationMain
ElscIf routineName = "SpaceCreationMain” Then
ConstraintCreationMain
SpaceCreationMain
Elself routineName = "PlaceFSMain" Then
ConstrintCreationbMain

ShipArrT 261

Module: Space Creation Module

Option Compae Damabase:

Dim Centroid_X As Double
Dim Centroid_Y As Double
Dim Centroid_Z As Double

Sub Create_Deck

(eq As Equacion)

Use database order for string comparisons:

The plame takes the form aX + bY + Z +d

Thi e be sty o Carenthy I
=Owhrea=0.6=0.c=1 A

Sub CreateCorner

(comecNum As Integer)

Dim comer As String

comer = "Vertex" & Right§(Stuf(comerNum), 1)

TempVTable AddNew

TempV Table-Fields("Vertex_I !D") SeckLastRecord("TEMPORARY", "Temporary
Centroid_X + RelativeToCentroid(corner & " - X") * PrefTable.Fiekds("

TempVTable. Fields("X")

Vestices”) + 1

Length™) / 2
‘TempVTable Fields("Y") = Centzoid_Y + RelativeToCentroid(comet & " - Y') * PrefTable. Fields("Wideh') / 2
fveToCe .z

TempVTable. Ficlds("Z") = Centroid_Z + Rel

PoefTable. FieldsCHeight") / 2

TempPTable Fields(comes)
TempVTable Updare:

End Sub

rempV Table. Fields("Vertex_ID")

ShipArmT

Sub CreateNewSpace
(TempPID As Long)

1 ertins are added i clockavise diection as viewed o inside the spac.

 TempPID

PrefTable.Index
PeefTable Seek

VOTable MoveFirst
Do Until VOTable EOF Repeat until all s faces bave been created
TempPTable.AddNew

‘TempPTable Fields("Parch_ID") = SeekLastRecord(TEMPORARY", "Temporasy Parches”) + 1
TempPTable.Fields("Face,_ Name") = VOTabie.Fields("Face_Name")

CreateCorner 1
CreaweComer 2
CreateComer 3
CreateComer 4
TempPTable Update:

VOTable MoveNext
Loop

End Sub

Sub LocateNewSpace

be flsbed i ir out in and ket X and Y go
random.

For the moment I will give a specic sart point

Amid sbip

Amid sbip
Assuwed base ofdeck les at Z = I and deck beight
iim

ShipAnT

Function RelativeToCentroid

(verwesName As Sting) As Double

1€ VOTble Fields(vertexName) = True Then
RelativeToCeatroid = 1

End If

End Function

Sub TempEquations
This. the a. b.c .

The cquation lakes the form of aX + Y + Z +d =0

Dim i As Integer

Dim a As Double

Dim b As Double

Dim ¢ As Double
Dimd As Double
ReDim X(3) As Double

ReDian Y(3) As Double
ReDim Z(3) As Double
TempVTable Index = "PrimaryKey"

TempPTable.Index = "PrimaryKey”
TempEqTable.Index = "PriroaryKey”

TempPTable MoveFirst
Do Untl TempPTable EOF

Fori=1To3
TempV Table-Seck "=", (TempPTable. Fields(®)

X@) = TempVTable Fields(X")

Y() = TempVTable Fields("Y")

Z() = TempVTable Fields("Z")
fest i

1oYg-En o)
2=a-21) * ¥Q@) - YO)
R TN N e

b=X()* 2@ - 20)

b=b-2(1) * X -XB)
bbrEmTZe-Xa 2R

ShipArrT

Points to postive side of Controid.
Poixts to negative side of Controid

stores them i the Temporary Patch Equations table.

An indexing pariable
Eguation parameters

Arrays of coondinate information sied 1o derive a
patch

Set the indices of the tables being searched to their [D
ralues.

Ecamine tbe entire Patch Lit table

Generate the equation varisbles

<=X0) * (¥ - YO)
e=c-Y0) - XQ) - XO)

c=c+ Q) *Y0) -YO) *XO)

d=x(1) 6@ = 20) -2 * 1O)

d=d-5()* @) * 20) - x0) * :2)

d=d+20) *) *10) -20) * 5@

d=d*(n

1=2/@ 2+b" 24~ 5 Aake mormal naikes ‘onit sormals
b=b/@~2+b~2+c "5

c=c/@~2+b"~2+c "3

d=-1+@=XM) + b= Y1) +c*Z)

TempEqTable Seck "=", TempPTable Fields("Patch_ID")

I€ TempEqTable NoMatch Thea)
TempEqTable-AddNew Update the ETable wich the sew exry

TempEqTable.Edit
Ead If

‘TempEqTable Fields("Patch_ID") = TempPTable Fields("Patch_D")

TempEqTable Fields('a") =
TempEqTable Fields("b") = b
TempEqTable Fields("c") = ¢
TempEqTable Fields("d") = d
TempEqTable Update
‘TempPTable MoveNext

End Sub

ShipArrT

Module: Space Placement Tables

Optioa Compase Database Use database arder fr string comparians

Sub AttachAdditionalTable

(leName As String, tableName As String)
Dim TempTableDef As TableDef

S0 TN & Tarpoig DA o Tt

TempTableDe£ Connect = “DATABASE=" & fleName

TempTableDe£SourceTableName = tableName

TemparayDB TobleDef Append TespTubleDef Attach tabl.
anectSource = True

End Sub

Sub OpenFSTables

Set POTable = TemporasyDB.OpenRecordset("Placement Order”, DB_OPEN_DYNASET) Assign tabk sariabies for the tables
i the ActinDB
Sec VOTable = TemporaryDB.OpenRecordser("Verex Order", DB_OPEN_DYNASET)

Set MinTable = TemporasyDB.OpenRecordset("Minimum’", DB_OPEN_TABLE) Asige table wariables for the tables
i the TemporaryDB

Set PrefTable = TemporaryDB.OpenRecordset("Preferred”, DB_OPEN_TABLE)

Ser bkl = Temporay DB OpesRecoatse Mz, DB OVEN_TATLE)

Sec ShapeTable = T

Set TempPTable = TemporacyDB.OpeaRecordsex(Temporacy Patches", DB_OPEN_TABLE)
Set TempEqTable B.OpenRecordset("Temporary Equations", DB_OPEN_TABLE)
Set TermpAdTible = TemporatyDB OpenRecordser(Temporsey Adiacontcies”, DB_OPEN. TABLE)

Set VTable = TemporaryDB.OpenRecordset("Vertex List", DB_OPEN_DYNASET)
BOmecmrﬂkr('Pm:h Lise", DB_OPEN_DYNASET)

= TomporeyD tch Equation”, DB_OPEN_DYNASET)
Set CTable = Tﬂ@an:yDBOansndxmthmnm DB_OPEN_DYNASET)

End Sub

ShipArrT

Sub CloseFSTables

POTabie Close
VOTibleClose
MisTable Close:
PrefTable Close:
MaxTable.Close
ShapeTable.Close:
TempVTable Close
TempPTable Close
TempEqTable Close:
‘TempadiTable.Close

End Sub

Sub CreateFSAdjacentcyTable

Dim TempTable As Recordser
Set AdjTable = ActiveDB.OpenRecordser("Patch Adjacency”, DB_OPEN_TABLE) St the tables e i

DoCend CopyObject TemporacyDB.Name, "Temporacy Adjacentcies”, A_TABLE, AdjTable Name
AdiTableClose

Set TempAdjTable = TemporaryDB.OpeaRecordset("Temporary Adjacentcies", DB_OPEN_TABLE)
TempAdiTable.MoveFirst

If ((TempAdiTable EOF = True) And (TempAdjTable. BOF = True)) Then
Do notbing,
Do Untll TempAdiTable. EOF
‘TempAdjTable Delet
‘TempAdiTable MoveNext
P

End If
TempAdiTable.Close

End Sub

ShipArT

ShipArrT

Sub CreateFSEquationTable

This reutine crates tempo

the newTabeDef

DB. io ing the tabl

dafniton. I urn, this defiition & the Te

ReDim £5) As New Field.
ReDim i(§) As New Index
Dim newTbIDef As New TableDef

acwTbIDefName = "Temporary Equations™
(1) Narme = "Parch_ID"

£(1) Type = DB_LONG

‘(') Trpe - DB_DOUBLE

£3)Namne ="b"
£G).Type = DB_DOUBLE

£(4) Name
£(4)Tspe = DB_DOUBLE
£5).N:

) Type = DB_DOUBLE

mnmefn.mJ\W 1)

Forj=1To5
newTbIDe£ Ficlds. Append £))

iG + 1).Name = fq)Nm

iG + 1).Fields = £G)-N:

iG + 1).pamary = False

newTbiDeE Indexes.Append i + 1)
Nexti

TemporaryDB TableDefs. Append newTbIDef

End Sub

Name the new table

Create flds

Add it 1o the eollction

Add it 0 the colection

Add it 1o the ollction

Now append the new Tabl obct 1o the TableDefe
@llection.

268

Sub CreateFSPatchTable

definition. I ure, thés defnition is TemporaryDB.

e ThiDef Name = “Temporary Patches™

K1) Name = "Parch_[D" Creat fiekds
1) Type =DB_LONG

(2) Name = “Vertex1"

%) Type = DB_LONG

{3)Name = "Veaes2"

() Type =DB_LONG

£(4) Name = "Vertex3"
£(4).Type = DB_LONG

£(5)-Name = "Vertexd”
£(5)Type = DB_LONG

£(6) Name = "Face_Name"
(6) Type = DB_TEXT

TemporaryDB. TableDefs Append acwTbiDef

End Sub

Name the new table

Add it 1o the callcion

Add it 10 the colecion

Add it 1o the collection:

Now append the mew Table byt 0 the TabkeDefi
cellction.

ShipArrT

Sub CreateFSVertexTable

Zbe TemporaryDB.

feceex_ID"
£1).Type = DB_LONG

£(2) Name = "X"
f2) Type = DB_DOUBLE

£(3).Name = "Y"
£(3)-Type = DB_DOUBLE
f(#)Name = "Z"

f(4).Type = DB_DOUBLE

i(1) Name = "PrimacyKey"

Temporary DB TableDefs Append aewTbiDef

End Sub

Name the new table
Create felds

Add it s the ollction

Add it 1o the ollection

Add it s the collection
Crease indies

Add it 1 the collction

Now qppend the ncwr Tabl obect i the TableDefi
@liection.

ShipArrT

Module: Space Table Routines

Option Compare Dacabase: Ule database order for string comparizons

Global MinTable As Recordset Refers 10 the table containing tbe mriinesons dimensions
each

Jor eah spae
Global PrefTable As Recordset Mm- u«uﬁa-as the preferred dimensions.
Global MasTable As Recordset Rﬁtbmmmlhm
domensions for cach
Global ShapeTable As Recordset mumuum.,muwpm

Sub CloseCreationTables

(dbName As Sting)
CLTable Close
SLTable Close.
Consteaints Table.Close
MinTable.Close
PeefTable.Close:

MasTable.Close
ShapeTable.Close

End Sub

Sub SetCreationTables

SetT: DB = e (TempDBFName & " MDB"), True)

SecSOTable

= ActiveDB OpenRecordset("Ship Overall”, DB_OPEN_TABLE)
A

SecSLTable = ActiveDB OpenRecordset("Space List", DB_OPEN_TABLE)

Set CLTable = ActiveDB.OpenRecordser("Class List”, DB_OPEN_TABLE)

Set SLTable = ActiveDB OpenRecordset("Space List", DB_OPEN_TABLE) Assign table variabes for the tables in the
AdiwDB

e ActiveDB.(Opmln:nnix(("ﬂm List", DB_OPEN_TABLE)

Sec ConstraintsTable = ActiveDB.OpenRecordser("Constzaints”, DB_OPEN_TABLE)

Set MinTable = TemporaryDB.OpenRecordset("Minimurn", DB_OPEN_TABLE) Assige table variables fr the tables i the

TemporayDB

Set PrefTable = TemporaryDB.OpenRecordset("Preferred”, DB_OPEN_TABLE)
Set MasTable = TemporasyDB. OFn.ll:n:dscl(‘Maxmm DB_OPEN_TABLE)
, DB_OPEN_TABLE)

End Sub

ShipAr'T

Sub SpaceCreationMain

Dim i As lntwger A coenter sarisble
Dim lastRecord As Long. A pasiton marker
SexCreasionTables
CLTable Index = "Class_ID* et the indescof the L Table 19 Clcs_ID
SLTable Index = “Class D" et the inde: ofthe STTibe to Space_Name:
SOTable Index = "Class_ID"
SOTable MoveFicse
Do Uasl SOTsble EOF Repest il the masme i ot fownd
‘CLTable Seck "=", (so'rwcu-,m'» Seek s pace name
SLTable Seck "=", (SOTable-Fields(*Class.
1€ SLTable Nobarch Then Check for pested mame
Fori = 1 To SOTable Fields("Quantity”) Loop tirongh the quansity of each space
IaRecoed = Seekl R ACTIVES, SLTsble Name) c.m.km-v
SLTible AddNew gt
SLTable FiekdeCSpmce_ID") = bRzl +- arcmen e Sp_ID fr the s
Table Fields("Space_Name") = (CL vddl('GuA_Nm')tSh’@) Name the mew spoce
SLTable Fields("Class_ID") = CLTxhl:.ﬁ:ldl(‘Gm ,_ID") Nurber the new s
SLTable.Update Complete the extry
Nexti
Spoce bas abeady boen defined.
EadIf
SOTabie MoveNext
Loop
End Sub

ShipArrT

Module: Utility Subroutines

Option Compare Dacabase:

Type.

* " cPos(4) As Long

End Type

"Dim SurfSort() As SurfSortPos
“Dim SucfSortFNum As Integer
Dim VeaCount As Loog.

Dim VertFNum As Integer
Dim Vertex() As PointSDDoutle

Function MaxPoint

(pe0 As PoincSDDouble, pel As Point3DDouble) As Integer

A o

Dim equalx As Integee
Dim equaly As Integer

I pt0.x = pel.x Then equalx = True.
I€ptOy = pel.y Then equaly = True

1£pt0x > pel.x Then
e = Tre
Elself equalx And pty > pel.y Then
MaxPoint = True
Elself equalx And equaly Aad pdz > pel.z Then
MaxPoint = True

MaxPoine = False
End If

End Function

Use datsbase srerfor siremg compartzons

ShipArrT

Sub CopyPts

(10 As PoincSDDouble, pel As PoiatSDDouble)

Function SurfacePos

(pe0 As PoinsSDDouble, comer As lateger) As Long

Biary search for thefrst corer of a 3d soficefrom owe of the srted surfce arrays.

i the DXF fil) of tbe givem 3d Point.

position i the. . he

Dimlo As Loag
Dim hi As Long

Dim indx As Long

Dim found As Integee

‘Dim surfPos As SucfSorPos
‘Dim sucfl As Sucf.

Letlo=1
Let hi = SucfCount
Lecinds = fa((i- ko) /)
Let found = False

Do While found = False Aad lo <= hi
* IfSudCount <= AmayMax Then
. suctPos = SacfSomfind)
Ek(wwmmﬂxr)),n‘ﬂ
Ges #SucfSonFNam, inds, sucfPos
Ger #SurfFNum, surfPos.cPos(comer), surfl
End If
1€ MaxPoint(p), surfl.cPr(comes)) Thea
lo=indx+1
' Elself EqualPrs(pe, surfl.cPt(comes)) Then
2 found = True
; SurfacePos = surfPos.cPos(comer)
Exit Do
Eise
2 hi =indx-1
End If
' indx=Taxe +4)/2)
Loop

End Function

ShipArT

274

Function EqualPts
(pt0 As PoincSDDouble, pel As PoiaSDDouble) As Integer
Compares the tws 3d Points provided for equaliy.
IF (p0.x = pel.x) And (prdy = pely) And (pd:z = pel.z) Then
EqualPrs = Tue
EqualPrs = False
Ead If
End Fuacton

Sub SwapPts
(pe0 As PoiacSDDouble, pel As PoinSDDouble)
This routine simpy exchanges two 3D points.

Dim temp As PoinSDDouble

CopyPts pid, emp

CopyPs pl. pt0

CopyPrs temp. pel

Eod Sub

Sub SwapValues

(saluel As Loog, value2 As Long)
Thic rouine simple xchanges o sariable e,

ShipArrT

Finding Potential Vertices — Pseudocode Corresponding to Section 4.3

Preuclocode for the derivations of the 24 potentialsrti i Patches. Note that the g i i o
subrotines. simple agebraic

k=0
Focl=1mo4
k=k+1
tempVertex(k) = Patch_Vertex(I)
Forj=1lw4
k=k+1
tempVerex(k) = Intessection(Patch_Equation, Patch_Side_Equation(1), POI_Side_Equation(j))
Nextj
IF1= 4 then
m=1
else
=i

ruanmgx{k)—lm(Puch Equation, POI_Side_Equatioa(T), POI_Side_Equation(m))
NextT

Verification of Vertices — Pseudocode Corresponding to Section 4.4

Pueacdocode for the substiution of the 24 mubtkm:/ley&ﬁ-dbl&:anﬂ/lln POI Priow and tbe Patch Pricms. Note
again that te bold portions of ode refr to simple algebraic brotines which are mot.

k=0
Forl=1t24
whollyContainedFlag = True
Forj=1t04
If not Contained(tempVertex(I), ParchPlane()) then whollyContainedFlag
1€ not Contained(wmpVena(l) mmau(1)) then whollsContainedFlag = False:
1€ whollyContainedFlag =
Nextj
[€ whollsContainedFlag = Teue then
k=k+1
parchVertex(1) = tempVertex(1)
Endif

Nexe I

ShipArT 276

Counting the Vertices — Pseudocode Corresponding to Section 4.5

counter =0

counter = 1
Unsl patchVertex(k) = aull
counter = counter - 1

Creating Patches — Pseudocode Corresponding to Section 4.8

Prscdoode by wbich new patches ae created on the Patch Plane.

NewPatch Comer(4) = Null
2

1 NewPach Comex(4) = Null then
NewPazch Comex(4) = NewPatch Comer(3)
Endif

Determining the Vertices — Pseudocode Corresponding to Section 5.2

oe ior o ; " pR——

Fori=lw+4
PeismPlane(i)
k=1

Forj = 1 © newVestexCount
solution = Pn-nﬂlu(l).l Vertes(j).x + PrismPlane(i)b * Verwex(j)y
solution = solution + PasmPlane(i).c * Vertex()z + PrsmPlane(i)d
1€ solution = 0 then

VerexList(i, k) = Verwex(j)
k=k+1

Nexel

ShipArT

Creating an Ordered Vertex List — Pseudocode Corresponding to Section 5.3

Prrdocode for the mesin Verex: Ordering rewtine.

1
SoredVenexLise(Side#, 1) = EndVertex
FindFirstPatch
RemoveCusrentVertex
FindNextVertex
FindNextParch
Cadl VestexListCount = 0

‘SorredVertexList(Side#) Count:
eexList(Side#, 2 + 1) = Ot

Sub FindFirstPatch — Pseudocode

Fori = 1 to NewParchCount
Forj=1mw4
16 NewParch(i) Vertex(j) = EndVertex thea
[EndPatch = False

Fork=1m4
1£j <> kthen
1€ NewPacch(i).Vertex(k) = OtherEndVertex then
EndParch = True

k=4

If EndPatch = False then

Endif

Nestj
Nexti

End Sub

ShipArrT

ShipArrT

Sub FindNextVertex — Pseudocode

Form = 1 o VertexLiscCount
Fora=1lm+
Ifa <> CamrentVertex then
VectexLisy Side#, m) < qudee:\zxL\sr(Sd:# ;)m
If NewPatch(i).Vertex(n) = VertexList(Side#,
a=a+l
SqdemLm(s.d:x 2) = VestexList(Side#, m)

Sub RemoveC atch —

SortedPatchCouat = SortedPatchCount + 1
SortedPatchList(SontedPatchCount) = NewParchList(CurrcatPatch)

N:wFauhCo\m! = NewParchCount - 1
an = 1 to NewPatchList Couat

If i = CurrentPatch then.
ISt T

Endif
NewParchList(i) = NewPatchList(j)

Nexti
EndSub
Sub R CutrentVertex — P
Const= e Coune + 1
texList(unt) = VertexList(Ct)

VertexList Count = VertexList Count - 1

i=1

Fori = 1 o VertexLise Count

Ifi = CusrentVertex then
i=i+1

Endif
VestexList(i) = VestexList(j)
Nexci

EndSub

279

Sub FindNextPatch — Pseudocode

EndSub

Calculating Angles — Pseudocode Corresponding to Section 5.4

Prendocade which determines the angles formed by the vertices of his plame.

Fori = 1 to VertexList(side#).Count
I€i= 1 then
Vector:x = VerexList(side#, VertexList Count).x - VertexLise(side#, i)x
Vet ot

#,1)z
Fm&\n‘k(vmhsl(ndgﬂ Vemhn.&mm) VertexList(side#, i), VertexLise(side#, i+1), Angle)
Else

Vectes = VeneeLin(iieh i41) - VertexList(side#, i)x
i+l y.y-v.md_’u.(ws,x),y
: e ST

FindAngle(m[‘x(%v-l).‘lmhn(1) VerexLis side#, i41), Angie)
Endif

1€ = VemesList(sidet
TM:V«MM 1

veaexToCheck = VenexLise(side#, i)
Endif

FindSide(Normal(side#), Vector, VertexList(side#, i), vertexToCheck, sideSolution)

If sideSolution < 0 then.
Angle = 360 - Angle

Nexti

ShipArrT

vectorLy = sectoc2z - vectorly * vecwel.z
m\x'w-m-mlz
vectocl.x * vector2 y - vectorx * vectorl.y

T~ (A= prOaPlncs + B+ pOPlancy + C*peOnPlane)
sideSolution = A * peToCheck + B * piToChecky + C * piToCheckz + D

EndSab

Sub FindAngle — Pseudocode

(prl.pe2 po, thewm)

tlx-plx
prly -pe2y

m/(squ(-r"obrz +c1°2) * SQRT(a2"2 + b2°2 + <2°2))

thera / Pi * 180

b

ShipArrT

Creating Patches — Pseudocode Corresponding to Section 5.5

morePacchesFlag = False

Repeat untll SortedVestexList Count <=2
1€ morePatchesFlag = Falsc then
changeAachoeFlag

=True
=Tre
anchor =0
kedge =0
directionFlag = 1
Elseif changeAachocFlag then check 1o see if the
anchor s to be adbanced.
anchoe = anchor + 1
dicectionFlag = - 1 * disectionFlag
changeAnchorFlag =
Elseif changeKedgeFlag check o se f the fedge
is to be etreated.
kedge = kedge + 1
directionFlag = - 1 * diectionFlag
changeKedgeFlag = False
Else 10y 10 il a patc
If directionFlag = 1 then setthe
sertexLitPainter
side#, verexListPointer) assgn te st vertexcof
the new patcs
If anchior + kedge +1 = SortedVerexList(side#).Couat check 1o e if the
ancbor or kedge willbe
et by the next sertex:
morePatchesFlag = False
Elseif VertexList(side#, vertexListPointes + 1 * directicnFlag) Angle > 180 then check 10 see i he angle
af wrtee 2 i inerior or
xcterior (invalid patch)
If directionFlag = 1 thea
changeAnchorFlag = True
Else
changeKedgeFlag = True.
Endif
Else continue patch building
2 ise side#, vertexListPointer + 1 * di i
of the mew patch
If anchor + kedge +2 = Sorted VertexList(side#).count check 1o ee i the
anchor or kedge will be
met by the next rertex
forcing a threesided

patch
ncwParchVertex(3) =SortedVertexList(side#, ventexListPoiater + 2 * directionFlag) asvige the thind mertex:
of e mew pach

newPatchVertex(4) =newParchVertex(3) assign the fourth rertec
of the ew patch
moreParchesFlag = False.
VerifyNewPacch
Elseif ise(sidett, vertexListPointer + 2 * directionFlag) Angle > 180 then ok intrior angle ar
the thind vertecof the
ShipArrT

282

oewParchVerex(3) =SoredVerexLisy(side#, vertexListPointer + 2 * directionFlag) assipe fhe thind sertex:
the mes,

o
acwParchVeres(4) =newPatchVerex(3) -n...d.':a-m-

of the new pah
VesifyNewParch

st o for-ed pach
ncwPatchVerex(3) =SoredVerexLis(side#, vervexListPointer + 2 * directionFlag) amge de thind seriex

of the mew pach
‘aewparchVertex(4) =SortedVermexLise(side#, verexListPoiater + 3 * directionFlag) assige de,

I£ anchor + kedge +2 = SortedVerwexList(side#).count check 10 s f the

ShipArrT

Interference Checking — Pseudocode Corresponding to Section 5.6

Sub VerifyNewPatch — Pseudocode

angle = FindAngie(. 4), 1. 2)) Tand2
sideSolution = FindSide(SoredVertexList(side# | Nosmal,
. 1) 2)) a2 angle
IF sideSolusion < 0 thea cormet exterior anghe
angie = 360 - angle
If angle > 180 then Ifange i excrior then patch is invaid
newPatchVectex(4) = newParchVertex(3) Crvate thre-sided patch
Endif
InterferenceCheck(side#®), Check side 4-1 ar 3-1 for interforence with other
sertizr
¢ < 3))and g “ .
three-saded amd recheck.
ncwPaichVertex(4) = acwPachVertex(3)
SaveParchFiag = InterferenceCheck(VertexList(sideft), newPatchVerier)
If SavePatchFlag = False then 1 potch fails then discard and reset the creation
direction
directionFlag = - 1 * directionFlag.
Else Check srentation of the mew patch

vectorl.x = newPatchVertex(2).x - acwParchVerex{ 1)

ncwParchVertex(3) = juak
I vCount = 3 then
newPatchVertex(4) = newPatchVertex(3)
Endif
Endif
SavePatch Save the mew patch
RemoveTeappedVertices Remose irapped serties from Verteoe List

ShipArrT

Sub InterferenceCheck — Pseudocode

(SomedVerexList{ side), newPatchVerwes)

If ocwParchVertex(4) = aewParchVertex(3) then
*Count =3
+Count = 4

Forl = (vCount + 1) to VertexLise(side#).Counc
sideSolution = FindSide(

ise(side#) Nogmal, 4), 1),

If sideSolution 2 then

Set SavePatchFlag =

1= VestexList(side#) count
Else

Sec SavePatchFlag = Trve
Eodif

Nexti

ShipAnT

Module: DXF Face Import Code

Coast IaFName = "Ci\wockingf\dxfBles\ship.dxf" Name of the inpet . This willbe emosed oz
war, ir created.
Dim [aFNum As lateger Inpuct file i
Dim IaPos As Loag Position flog for the currest pasitin i the input fle
Dim InLength As Loog A sarisble indicating the lomgeh o the Input Fie
Dim NewObject As lateger A bowiea flg incicatin the end of an ot
Function DecomposeHEFlag
(edge As lateger, hEVal As lnteger) As Integer Boskean
i Flidden Edge intge 7 inpwt DX fi. ines if the edie i i It turns
 trie o false boolear.
The HE al ol i the suneof the following:
1 ifedget is bidien
2 f edge? is bidden
4 of edee3 is idden
8 if edges is bidden
Bookean
No eds are bidden
All cles are iden
Top edpe i ofinerest
Right band edyy is of interest

ShipArrT

Ead
Elself edge = 3 Then Bottom edge is of interest

Elself edge = 4 Thea Lefe e i of internst

ShipArrT

Sub DigestPatch
(¢) As PoinSDDouble, BEVal As lnzeger)

e
Dim lastRecond As Loog
Dim i As Integer
lasiRecord = Seckl asiRecomd("ACTIVE®, (Prable Name))
u«m;-
= lastRecodd + 1
nw_m:sl.w

lsRecord = SeekLastRecosd("ACTIVE”, (Ctable Name))

"
CTible Fields("Pazch_ID") = Puhk_ﬁdd;('hl:h_m')

lastRecord = SeekLastRecord("ACTIVE", (HETable.Name))
HETbleAddNew '

HETableFiclds("Patch_[D") = lastRecord + 1
HETable.Fields("Patch_ID") = Prable.Fields("Patch_ID")

Fori=1To+
IastRecord = SeekLastRecord("ACTIVE”, (Veable Name))
Ve
VTable Fields("Vertex_ID") = lastRecord + 1
VTable Fields(x") = pef)-x
VTable Fields(y) = p@y
VTable Fields(2) = pe@x

CTable Fields() = Veable Fields("Verex_ID")

A plaeinlder srisble
An armay imdexc rarizble

Gt the madee of the st record i the Patch List tsble
Add o wew reord 9 the 156

Set e Patch_ID of the sew recard

Set the Space_ID of tbe mew rcard 1 she curress
SLTsbk enty

Get the sala of the st record i the Patch Comners
wble

Add a wew reord 1o the table
Set the Patch_ID of the new record

Set the Patch_ID fied ix tbe Patcbes Corners table to
the cxrment Patc coeter valive

Gt the value ofthe lastreord i the Pates Cormers
table

Add a mew record to the table
Set the Patch_ID of the new reord
:n&m_mpu.-nmm-ag.
table 10 the carrent Patch coenter

Begin looping throwgh the four crers of the patch
Gt the valie of the last record in the Patch Vertex:
wble

 pach corner
Set the Z coordinate field i the Patches 1 erses: toble
0 e Z oordinate of e ith patch cormer

Set the it Corner fld i the Patches Corners table 1o
the Vertex_ID walee

Veable Updaie Compet the hange 0 the VTable
HETable Fiekds() = DecomposeHEFlg(i, REVal) Cal the DecumporeHEFlog fincion and determise if
the ith e i buddew. S tore s ecel i the ith fiekd
of e Patcbes Hidden Edges table
Nexei
Pable Update Complete the cham 1o the PTable
Cable Update Comphte the cange 1o the CTable
HETable Update Comphtethe cange 10 tbe HE Table
End Sub
ShipArrT

Sub DXFImportMain

3D Faces. It then stores the

the DXF | fnes. [t ads a

aFNum = FreeFile
Open InFName For Input As IaFNum
InLength = LengthOfFile(InFNum)
InPos = 1

Headers

SecllpTables

NewObject = True

Do Whil InPos <= InLeagth And NewObject
NewObjece = False

ActiveDB BeginTrans
NameNewSpace

IngestDXFFaces
ActiveDB.CommitTrans
Loop

CloscTables

End Sub

in the formr of a 3D,

Assig the input file mumber to the nexct ancilable il
rmber

Open the Input Fie

Callthe functiom LengthOfFie to derermine the
imber-of Gnes i the fie

Set the fle inpuc posiion variable 1 the frst row of
the inpoct file

Call the Feaders subrontine to scax thragh the
initial entries of the Inpat file

Prepare the tables used by this rowtine

Set the NewObct flag 1o
Lupml&dujlkﬁbumbdaram
mu Acoumes that a srfa cannat

acoupy w0
Xm:th-OgmhuudlhbapﬁMmy&
Ingestion subrontine

Call the routine to add a new space_ID and e to

10 read the
S secionof the DX file and store this
i the database.

Clear al the tabl saiables

ShipArT

289

Sub Headers

iy sections of

This routine scaes the beader.

the DXF ik un,:;—q-i-b'E\Tn‘lEt"-ﬁ found.

Dim eatity As Integes
im inputLine As Vadaat

entiry = False

Do Whie (InPos <= InLength) And Not eaticy
Input #TaFNum, inputLine
InPos = TaPos + 1
IFinpuiLine = "ENTITIES" Then

cotiey = True

End I

Loop

End Sub

Sub CloseTables
Clase the tables used i this module.

HETableClose
SLTable.Close

End Sub

Bookax
Cantains whatever information contained i @ bne of
the DXF ke

Loop ol e pes e e s s the g o
g s .

If aontents of the ine are "ENTITIES"
Set op,log o rue

ShipArT

Sub IngestDXFFaces

contained in the input fike

I it o
DXF into two Fne e, e the group code.
Dimi s Integer Caunter variable
Dim curObj As String Carrent abget name
Dim dacaText As String Generie text string frame the DXF fike
Dim dataValue As Double Generic numerc salue from tbe DXF
Dim patchUpdated As Integer Bookan - lag o indlcate tbe compltion of
facx
Dim endSec As Integer Boskean ~log to indicate the end of 1 DXE algect
section
Dim groupCode As DXF group code ralve
Dim hEdgeValue As Integer Elidden edge vl
Dxmpmhnel’un\sboug Previous e posiion storage sariable
Dim blockLincPos "Block: line positin storcge sariable
Static :nme(«l):\stdDDaubk Patch wariable
Dim i Raw lne read from the DXF file
Dirm layesName As String
Clear the flag reguiring a writing of 3

patchUpdated = False
Falsc

layecName = "
Do While [nPos <= InLength And Not endSec:

prevLinePos = Seek(lnFNum)

Line logur #laFbbums. &

InPos = [nPos

1€ groupCode =0 Then
blockLinePos = prevLinePos
«curObj = Ucase(inputLine)

Elself groupCode < 10 Then
dataText = inputLine

potch
Clear the log marking the end of an input section
Clar the lier name variabke

Loop until the. um‘p-nnuﬁmllhbgbo/
thefk o the end of the sction i

Store dhe current fik posision

Imudul.p:ﬁkl’m-—nﬂ-
Get a e fom .
Imlbﬁpvtﬁbl’.m-mu
Test group ade for a mew obyct defvition
Stare the block start position

Asign he tingfoure on the inputLine a the
Carrent Ol

Test group cde for the prsence of o sting enty
Asign the inpat G 10 @ geneic sring dt sariable

Assign the input fine 10 a geeric umeric data
wariable

Classify the group cade

cardinal group andes

Start of entisy, abl, fie separater
Fnich of preous extity

291

ShipAreT

hE*Vlhg=0 Clear the bidden edge salue
parchUpdated =

False Clear e flag eguing a writingof paich
End If
1f InSex(1. curObj, "EOF™, 1) Then Clieck to see that the curvent object is not an End of
File marker. If
Se&mmva’-_h Back up owo nes
= laPos - Back p the Fik Inpat Pasition saribie two fnes
e T Set the Exd of Secton flg 10 e o complee the
Elself InSu(1, carObj, "ENDSEC”,) Thea ENTITY secion i complite bere_
Seck #InFNum, prevLinePos
-2 » Position sarisble twe Gmes.
endSec = Trae. Set the End of Section flag 10 true o complt the
impestion
ElseIf Not OkObject(carOb) Then Testtbe Carrest Ot for dipstabiiy acing the
=, OkObject function. If the obyect i wot diggstable...
previinePos = Seek(InFNum) Set the Inpat posision marier 1o the curmen pasition
Line g #1aF¥um el e Get a ne from DX and
= InPos + Advance through the InputDXF array o the nest
Loop Unl InSte(1, inputLine, *0%, 1) > 0 O InPos = InLength Repeat hine-by-ime adoance wntil a new ection 0 code
or until the cxrrent
same ar the lenth o thefile.
Seck #1aFNum, prevLinePos Reset position marker for Next lop 1o start at the
oo growp.
TnPos = InPos - 1 Back up the Fie Input Position riableane ine (one
e since the advance stopped on a group code)
End If
Primary text valve for entity (7)
Black mame, atribue iog et
Otber names.
Entity bandle (bex: string)
Dpe mame ic mexct string
Tet e mame

Ligyer masme i wexc siring
Test 1o see the kper aamme bas chomed. If ..
Move bock 4 e

Back up the Fie Inpat Position cownter 4 fnes
Set the flg incating 2 new Ly ts e

Ext tbe Do bop (and therefor the subroutine)

Otberwie st tbe Layer Name sarisble equal s the
it sting i the dataText sarisbie.

Variabie name ID (onty in beader)

VERTEX
Case 10 To 18 Some X werd of a vertexc
comerPr(groupCode - 10 + 1)x = daaValue Assig the ceent cormerpoint X oordinate 1o b the
/ A

i
patchUpdated = True St the fog 1 incicate that a mew patch s 1 be
written

Case 20 To 28 Some Y word of a vertese
comesPe(groupCode - 20 + 1)y = dataValue Asignthe ammeatcorser paist Y ordinate 0 be the
wadiee i the mumeric dataV/ alwe waricble.
patchUpdated = True St the g 0 it thata mew pat s 1 be
rites o he dadobase at the appropeiate time.

ShipArmr'T

Case 30 To 38

30 + 1)z = dataValue

parchUpdated = True

END VERTEX

Case38

Case 39
Case 0To 48

Case 9
Case 50To 58

-40) = daaValue

-50) = daraValue

Case62

‘caxColos = daraValue

Case 66
Case 0To 78

bEdgeValue = lne(daaVahue)

72 s face couat

Case 210 Or 220 0r 230

End Scl

Loop
EndSub

ShipArrT

lect

Some Z cord of a erte
Asign the corrent arner point Z coordinate 1o b the
ralee in the mawers: dats Valne mariab.

et the flog o incicate that & wew peich i 1o be
ritten to the database at the ppropriste fime.

Extity cleativa faeszere
Entity chickness ifeoncers
Mise dowbles
Repeted salee groups

Mie amgler

Color mumber

“ENTITIES FOLLOW™ flag
Miseints

Assige the Hidden Edee variable 1o the vatie of the
dataVValue marisble

For SDFACEs

293

ShipArrT

Function OkObject

(cucObj As String) As Tateger Bookan

This routi Z in the DXF,

se. here s room for much work ber.

Currently it can onfy deal with IDFaces.
If InSte(1, cusObj, "SDFACE", 1) Then
ject = True

"This section has aot been i
“Elself InSe(1, curObj, "TRACE", l)Thm
“Elself [nSex(1, curObj, "SOLID", 1) Thea
"Elself InSex(L, curobi, "LINE", 1) Then
"Elself InSte(1, curobj, "SDLINE, 1) Then
"Elself InSex(1., curobj, "POINT", 1) Then
Elself [nSte(1, curobj, "CIRCLE", 1) Then
"Elself InSt(1, curobj, "ARC", 1) Then
"Elself InSex(1, curobj, "TEXT", 1) Thea
Elself InSe(1, curobj, "SHAPE", 1) Then
Elsel InStx(1, curobi, "BLOCK", 1) Then
“Elself InSte(1, curobi, "ENDBLK", 1) Thea
“Elsclf [aSte(1. curobj, "INSERT®, 1) Then
Elself InStx(1, curobj,

Elself InStx(1, curobj, "VERTEX", i)’l‘ben
“Elself [nSte(1, curobj, "SEQEND, 1) Then

Elself InSt(1, curobj, "DIMENSION", 1) Then
'ELSE no cusrent object det

Else OkObjecc = False
EadIf

End Function.

As you can

294

Sub SetUpTables

Sec CTable z\cmDBOpmlzmds«("hmh Comers”, DB_OPEN_TABLE)

OpeaRecordser("Patch List",
Set SLTable = AcuvdDBOPdeerf‘Splmuf DB OPBJ I_TABLE)

‘PTable Index = "PrimaryKey”
CTable Index = "PrimaryKey”
HETable.Index = "PrimaryKey”
VTable.Index = "PrimaryKey”

SLTable-Tndex = "PrimaryKey”

End Sub

Function LengthOfFile
(FNum)
This function determines the nmber of lnes in the input DXF fike

Dim junk As Vasane
Dim counter As Long

Do While Not EOF(FNum)
Line Input #FNum, junk
counter = counter + 1

op

Seck #FN
LengthOfFile = counter

End Function

W—nnuw./ﬁbw"ﬁu
Read te il FNunw e
Omb&-n-kro/hr

Move the fl pointe 1o the begining of the file

ShipArrT

295

Dim i As Integer
Dim histRecosd As Loog
i=1

“SLTable Index = "Space_Name"

Do Untl SLTable NoMatch
SL =", ('Imported Object -" & Se3@)
©imitl

lastRecord = SeckLastRecord("ACTIVE?, (SLTable.Name)

SLTable. AddNew
SLTable Fields("Space_ID") = lastRecord + 1

SLTable. Fields("Space_Name") = "lmported Object -* & Su§()
SLTable.Fields("Space_Name") = InFName

SLTable Update

SLTable MoveLast Mo to the ast ecord i the SLTable

End Sub

A cier marisbie
A pociion marker

Clear-the counter
Set the indexc of the ST Table o Space_Name

Seek o pace mame
Repeat entil the mame & nat found

Incroment the couier

Gt the last record mmber

Add the new entry

Increment the Space_ID for the new eord
Name the new space

Name the new space
Complet the entry

ShipArrT

Module: DXF Export Code

Const OutFName = "c\workingf\tempfile\demo.dsf"
Const Teiangles = Trae

Const Mirror = True

Const ObjType = "3DFACES"

Dim OutFNum As Integer
Dirm ParchQ As QueryDef

Dim TeiParchQ As QueryDef
Dim VertexQ As QueryDef
Dim VectesTabQ As QueryDef

Dimn PatchQTable As Recordset
Dim TdPatchQTable As Recordset
Dim VertesQTable As Recordser

Dim OutputQTable As Recordset

Sub CreateOutputQTable

Urilike the rables ereated by query i this database, it was necessary

Canstant for the ap fike amee. This will
coentually be tied into a wser specifed item imvolving @

ot iy the g et
rriamglec. This will eventually be ied inta
specifd items involving form
Canstant referng to the iype of otput - the bul fles
Jrom Axtostip ,..@Fn..na.p,s.uk
Tai fog i il b cor i .

represents this.
Canstant eférng f the type of objectto be crvated i
DXF

A fie mamber sariabl fo the ontput fike

deimition which aeates a st of
assoiated with a partinlor Spae_ID

query defition which oeates a it of
aﬂwbptﬁuamuhpm
Space_ID member
The same of a qury difiiton which creates a bt of
all the verties asiociated with a particular Space_ID

mmber

Tie o of o iy i ek s s
Vertexg) query skt ito a single column of verties

The name of a table created by the output of the

PatchQ query

The namee of a able reated by the ouiput o the

Ir query

The name of a able created by the antput o the
VertexTab)

The name of a able which contains a remsmber et of

verias and the information required fo rossne these
1 the otber tabls i his database

The routine is firly anatory. It essenially

nded (o the Te DB

(Fiels and I 1 the newTablDef

dairitin.. I turs, this

The routine GerOs

 fll i the contents o this tabe.

Dim 1 As New Field

Dim £4 As New Field
Dim f5 As New Field
Dimil As New Index
Dimi2 As New Index
Dicn pewTbIDef As New TableDef

ShipArrT

297

ncwTbDeEName = *OutpurQTable” Name the ne table

£1.Name = "New_Vertex_[D" Createfelds
fL.Type = DB_LONG

£2Name = "Old_Venex_ID"
£2Type = DB_LONG

B.Name = "X"
5.Type = DB_DOUBLE

£ Name = "Y"
f4.Type = DB_DOUBLE.

£5.Name = 2"

6.Type = DB_DOUBLE

newTbiDet Fields. Append 1 Add it 10 the allection
aewTbIDeE Ficlds. Append €2 Add i 10 tbe collection
aewTbIDeE Fields. Append £3 Add it 1o the collection
newThIDeE Ficlds. Append 4 Add it 0 the callction
newThIDe£ Ficlds Append 5 Add it 0 the colbction

Create indices
il Primary = True
i2.Name = "Old_Vertex_ID"
2 Fields = "Old_Vestex_ID"
acwThlDet Indexes. Append il Add it to the collection
fewTbiDeEIndexes Append i2 Add it 1o the olbction
TemporaryDB TableDefs. Appead newTbiDef Now append the new Table obyect 1o the TabkDefi
ellction.

End Sub

ShipArrT

Sub CreatePolyMesh
(Bag As Tnteges, layetName As String)
MeshHeaderOutput layecName
MeshVertexOurpu fag, layeeName
MeshParchOurpuc flag, layecName.

Call the routine which creates the beginning of «
' extiy in a_DXE file

polmes
Call b routne which plaes alte et

information ints a DXE pobmest entity
‘Call the routine which ploces all e patchpainters
(painting 10 ertees)into . DXF polymeshs enity

Finish the DXF polymesb extity

Peint #OutFNum, 8
Print #OutFNum, layecName
End Sab
Sub DXFExportMain
Thi i DXF. ines. It oeates a DX he
Ordinari, eginning of Unfrtenatey, I o
e out b to gt Avwss o g Te DB Thenor, the routine y

DB o op. Lt
part of the PrepareTemporaryDB routine.
PreparcActiveTables Initialie AdtimDB tabes wsed in this modie
PrepareQutputFile Iniviadce the oxipud fike
PrepaceTemporaryDB tbe temporary database
FileHeades Write the DXF fke Header 1o the owtput il

SLTable.Index = "PrimaryKey™

SLTable MoveFisst
Do Until SLTable EOF

TemporaryDB BeginTrans

GetPatches (SLTable. Fields(*Space_ID")

Set the index of the SL.Table to the Space_ID
(the primary key)

For each space in the space table..

Begin the transaction - tbis means that all changes
until the .Commi(Trans or . RallBack commands are.
reached take place i memory and are therfoe faster:

Galla ot o et 1 o i vbes o
cxrrent space

See ParchQTable = TemporaryDB.OpenRecordset("PatchQTable", DB_¢ OPEN _TABLE)

GetTriPatches (SLTable Fields("Space_ID")

Call a ostine 10 gemerate a tabk of riampular patches.

Jor the ceren space
Set TPatchQTsble = TemporaryDB OpenRecordser("TePaichQTable", DB_OPEN_TABLE)

GetVertices (SLTable Fields("Space_ID")

al reutive 1o generate table of veree painters for

the aurrent space
Set VertexQTable = TemporaryDB.OpenRecordset("VeriesQTable", DB_OPEN_TABLE)

ShipArT

i 8 it Orpe b .
Assign the

CreateOQutputQTable Callsa
Set OutputQTable = TemporaryDB.OpenRecordset("OurpurQTable”, DB_OPEN_TABLE)

GetOurpurQTable

TEObjType = "PolyMesh” Then
CreatePolyMesh 1, (SLTable-Fields("Space_[D")
CreatePolyMesh 2, (SLTable.Fields("Space_ID")
TE Mizror Thea

CreatePolyMesh 3, (SLTable. Fields("Space_ID")

CreatePolyMesh 4, (SLTable-Fields("Space_ID"))
End If

Elself ObiTspe = "IDFACES" Then

FaceOutput 1, (SLTable Fields("Space_ID")
| FreOupuea (SLTable-Fields("Space_ID")
' IfMicroe Thea
¢ FaceOutput 3, (SLTable Fields("Space_ID")
¢ FaceOutput 4, (SLTable Fields("Space_ID")
* EndIf

End If

ParchQTable.Close:
TrParchQTable.Close:
VertesQTable Close:
OurputQTable Close
TemporacyDB Rollback
SLTable-MoveNext

Loop

FileFooter

Close OutFNum

End Sub

mmgr-umwf
the table of the same mame
Call a routine to create & table containing
reriec pointers

Not Mirror, Not Inside
Not Mirror, Inside
Mo, Not Inside
Mivor, Inside

Not Mirror, Not Inside
Not Mirror, Inside

Mivor, N Inside
Mirror, Inside

Puy al i b e emparyDB i e
-BeginTrans ammand

Wrie the.DXF file footer
Clase the DXF fie

ShipArrT

Sub FaceOutput

(fag As Integer, layesName As Secing)
Thi routi eguin b DXF file
g valies:

Note

ReDim cPt(4) As PointSDDouble This arnay contains serex pointers for each cornr of a
patch
Dim pointer As Loag
CTable.Indes = "PrimaryKey” Set the indesc o the Patch Corners table 1o the
Patch_ID ralue
OutpurQTable.Index = "Old_Verwez_ID" ,\'« the index: o the OutpuaITable to the Patch_ID
PatchQTable MoveFirst
Do Undl ParchQTable.EOF
pointer = PacchQTable.Fields("Patch_D") Iulhp-nnqlnl. et ID o the et
recand i the PatchTa
CTable Seck "=", PatchQTable. Fields("Pacch_D") Find the mlpuﬂ e Patch Corner's table
Fori=1To4
OutpurQTable Seek "=", Cuble Fields() Find the cormer poinses in the CTable in the
OupuTable
‘Find the carner vertex: cordinates i the VertexTable
() al And stoe the coordinate values
<Pt() 2 = OutpurQTable Fields("Z")
Nexti
1€ flsg = 2 Or flag = 8 Then Check 1o see if the olgect bas beem mirvored
SwapPts cPu(1), cPY(2) And swap the appropriae paints
SwapPts cP(3), cPe(4)
End If
Peine #OutFNum, 0
Pint #OutFNum, "SDFACE"
Pinc #OucFNum, 8
Print #OutFNum, layecName
IE Teangles Then This ctin taker @ foxr-ornered cafoce and eates
in the difie 2 surfoces.
IfEqualPrs(cPt(3), cPt(4)) Then Test for a triawguiar foc for the four-cornered e
I trw shew we cam plot this juct as i four cormers were
Sous of the graphicsrewtines will
be able 10 xse his more efficiet format. I the mean.
fime e senst nse riamgh based meshes.
Fori=1To4

ShipArT

Peine #0utFNum, cPt@).z
Nexti
i HEValue =0
S 1€ Not HiddenEdgeFlag(pointer, 12) Thea HEValue = HEVale + 1
. incer, 23) Thea
) 1 Not HiddenEdgeFlag(poiater, 34) Thea HEValue = HEValue + 4
' HEValoe = HEValue + 8 Blamk side which iz mom-exictent
B Print #OutFNum, 70 Vertex flag
) Pring #OutFNum, HEValue
Flee Ifnot equal points 3 and 4, crete triemgulr fice
. Jrom a squan fuce.
<

To4
Princ #OutFNum, 10 +i- 1
Ifi=4Then

Peint #OutFNum, cPt0)y
Print #OutFNum, cPt).y
3

Fori=1To4
dint #OutFNum, 10 +i- 1
[£(G=2) Oc @ = 3)) Then
Print #OutFN

jomm, <P + 1) x
Elself (G = 1) O¢ i = 4)) Then
‘Print #OutFNum, <Pi()x
EndIf
Prine #OutFNum, 20 +i-1
16 =20 =3) The
rint #OutFNum, P + 1).y
s.dt(r—x)m() Thea
‘Prine #OutFNum, <PiG)y
EadIf

ShipArrT 302

Princ #OutFNum, 30 +i-1

G
i
Elself (G = 1) Oc G =4)) Then
Peine #OutFNum, cPt@).z
- HEValue = HEValue + 1 Blank shared diogomal side
" iner, 23) Thea
¢ HiddenEdgeFlag(pointer, 34) Then HEValue = HEValue + 4
' HEValue +8 ‘Blank: side which is pam-cxistent
¢ Vertex g
. Print #OutFNum, HEValue
End If
Elsclf Not Triaagles Then This s a square mesb
ori=1To4
Princ #OutFNum, 10 +i-1

i Print #OutFNum, 70 Vertex flag
: Print #OutFNum, HEValoe

Ead I

ParchQTable MoveNext
Loop
End Sub

ShipAr'T

303

Sub FileFooter

Pnc
Pinc
Print
Princ

Ead

#OutFNum, 0
#OutFNum, "ENDSEC”
#OutFNum, 0
#OutFNum, "EOF"

Sub

Sub GetOutputQTable

This
rable.

Dim

iAs Tnteger

sets @ ariable of be same name to reprsens it and flls in all the entries for s

1€ Not (VertexQTable. BOF And VertexQTable EOF) Then VerexQTable MoveLase Check 1o ee that there is a entyy in the

VTable Index = "PrimaryKey”

v
Fori

Next

le.MoveFirst
=1 To VerexQTable Recordeount

OutpuQTable. AddNew
OurpurQTable. Fields("New_Vertex_ID") = [

OutputQTable. Fields("Old_Vertex_[D") = VertexQTable. Fields("Vertex")

VTable Seck *=", VertexQTable Fields("Vertex")
OutputQTable Fields("X") = Veable-Fields("X")

OutputQTable.Fields("Y") = Viable. Fields("Y")
OutpucQTable. Fields("Z") = Viable. Fields("Z")
OutpurQTable. Update

VerrexQTable MoveNext

End Sub

ShipArrT

Vertexg table o that the Movel ast command
does mat crvate an eror.

et the VTable index to the Vertex_ID walies
refered 10 in the PrimaryKey indesc

Loop throwgh the enive VertexOTable

Add a new tabl entry
igw the New_Vertex:_ID to be i cosnter value

Assign the Old_Vertex_ID t the sertex_ID stored.

in the ViertexQTable

Find the current setex muwber in the V' Table

Store the X value of the VTable i the

Store the X' value of the VTible i the
o
Stare the Z walue of the V/Table im the

OupurTable
Complee the new entry

ShipArT

Sub GetPatches

(ref_ID As Long)

wfirence G Spa_LD) D> el

Final. the rouine assigns a nariable 1o the new table.

Set PatchQ = TemporayDB CreateQueryDef)
PatchQName = "Count of Patches for Space_[D =" & Strf(cef_ID)

= PachQSQL & "IN " & Ches(34) & Che$(34) & "LDATABASE—" & (ActiveDB Name) &

PatchQSQL =
ParchQSQL = PachQSQL & "GROUP BY [Patch List]
PachQSQL = ParchQSQL & "HAVING (([Pazch Lm]Spt.e_]D =" & Steb(eef_ID) de)"

TemporayDB.QuecyDefs Append ParchQ
ParchQ Execute

End Sub

Sub GetTriPatches

(ref_ID As Long)
This i i iatd wi icular refienc (or Space_ID) ID value.

Fialy, the rosine assigns a variable 1o the new table

Set TePacchQ = TemporaryDB.CreateQuesyDef)
TeiPatchQ.Name = "Count of Teiangular Patches for Space._ID =* & St§(eef_ID)

= "SELECT DISTINCT [Patch Comess}.Patch_[D INTO TriParchQTable ™
= TeiPatchQSQL & "FROM [Patch Comess]
TaPachQSQL & 'IN * & Chef(34) & Ch§(34) & DATABASE=" & (ActiveDB Name) & "] *
SQL & "WHERE (((Exists (SELECT [Patch_ID] FROM [Patch Lisq *

SQL & "IN " & Cir§(34) & Che§(34) & "DATABASE=" & (ActiveDB Name) & " *
L = TaPuchQSQL & "WHERE [Patch List Space_ID= l))<>F=]x)

SQL & "AND ([Patch C¢

TciParchQSQL = TriPatchQ SQL & "GROUP BY [Pu:hComﬂs] Pach_ID;*

‘TemporaryDB.QueryDefs Append TePatchQ
TePaehQ Execute

End Sub

305

Sub GetVertices

(cet_ID As Log)

Thes rotine uses Z i iated wit foular ef_ID.

Th it quey ald Vit s ich combi ActinDB i
vabees. The wbSQL. saric SQL defiwition.

The i called VertecTab) informata Verts abe i the TemporayDB.

Finally. the routine assigns a variable o the new table.

Dim subSQL As String

subSQL = "FROM [Patch Comess]
5ubSQL = subSQL & *IN * & Chr§(34) & Chrs(34) & "[DATABASE=" & (ActiveDB Name) &]~
subSQL = subSQL & "WHERE EXISTS

subSQL = subSQL & "(SELECT [Patch_ID] FROM [Patch List] "

subSQL = subSQL & "IN " & Chr§(34) & Che§(34) & "[DAT: =" & (ActiveDB Name) & " *
subSQL = subSQL & "WHERE "

subSQL = subSQL & "(([Patch List].Space_[D=" & Ste§(cef_ID) & ") "
Sec VertesQ = TemporaryDB CreateQuesyDef()
VestexQ.Name = "List of Vertices for Space_ID =" & Ste§(ref_ID)

VerexQ.SQL = "SELECT DISTINCT [Vertex1] AS Vertex * & subSQL.
VertexQ.SQL = VertexQ.SQL & "UNION SELECT [Vertex?] " & whSQL
VertexQ.SQL = VertexQ.SQL & "UNION SELECT [Vertex3] " & subSQ]
VertexQSQL = VertexQSQL & "UNTON SELECT [Vertex4] " & mbSQL &

TemporaryDB.QuesyDefsAppend VertexQ

Set VerexTabQ = TemporaryDB.CreareQueryDef)

VertesTabQ Name = "Table of " & VertexQ.N:
VerexTabQ.SQL CTDISTINCTROW [& (VertexQ Name) & " Vertex *

e QSQL TibQSQL & "INTO

VertexTabQ.SQL ‘ertexTabQSQL & "FROM [& (VertexQ.Name) & "] *
VertexTabQ.SQL = VertexTabQ.SQL & "GROUP BY [* & (VertexQ.Name) & "] Vestexs™

TemporayDB QuesyDefs Append VertexT26Q
VerexTibQ Execure

End Sub

ShipArrT

Sex HET3ble = ActiveDB. OpenRecordset("Patch Hidden Edges”. DB_OPEN_TABLE)
AcgveD] OPEN_TABLE)

Set CTable ',D'B
Sex VTable = ActiveDB.OpenRecoriser("Vertex List", DB_OPEN_TABLE)
Set SLTable = ActiveDB.OpenRecordset("Space Lisc”, DB_OPEN_TABLE)
End Sab
Sub MeshHeaderOutput
(fayecName As String)
T bricfbnaderinforsmation g in 0 DXF fk.
i of miangulor be writen 20 the ik o
triangulor and. es. The count of il appear in tbe DXF fik.

Dien count As Long

Pring #OutFNurm, 0
Print #OutFNum, “POLYLINE"

Print #OutFNum, 8 Layer name marker
Peing #OutFNum, lasecName
“rerties folio” ke
Print #OutFNum, 1
Peint #OutFNum, 70 70 bit de
Print #OucFNum, 64 “this polyline is & polface mesh”
Print #OutFNum, 71
Pent #OucFNom, VerrexQTable Recordeount Nusber of mrties
Print #OutFNum, 72
1f Tdangles Then
count = PachQTs 2- TaPachQT:
Peint #OutFNum, count Nuwber of trizmpular facets 1o be made
Else
Prine #OutFNum, PatchQTsble Recordcount Nusber of rectangular o trismguiar focts
13
End Sub

ShipAr'T

Sub MeshPatchOutput
(flag As Tnteger, layecName As String)

This restioe ovi DXF fibs. e

prismary wicw
backfac or inside fceof am exerior primery wew

4 = mirrored primany wew
8= bock fox o incide ace of am excterior mirrored wew

Note that the routine wse o this wp. Ify of paper. of
of
ReDim cPi(#) As Long This arvay contains vt poietes or each cormer of &
Dim gallPe As PoincSDDouble Ao point
Dim pointee As Loag
aullPex =0 Difine the zem point
aullPey =0
aullPez =0

CTable.Index = "PrimaryKey”
OurpurQTable.Index = “Old_Vertex_ID"

PatchQTable.MoveFisst
Do Undl able EOF

CTableSeek "=", ParchQTable. Fields("Pacch_[D")
Fori=1To4
OurpurQTable Seck "=", Crable.Fields()

<Pt() = OurputQTable Fields("New_Vertex_[D")
fext i

[£ iag = 2 Oc flag = 8 Then
SwapValues cPy(), cPe(2)
SwapValues cPi(), cPr(4)

End If

If Triangles Then
1€ cPe(3) = cPr(4) Then

MeshVerntexPrint aullPr, 128, layecName:
Paint #OutFNum, 71
Print #OutFNum, HiddenEdgeFlag(pointer, 12) * cP(1)
Pm; #OutFNum, 72

#OutFNum, HiddenEdgeFlag(pointer, 23) * cPi2)
P-: #OutFNum, 73

Set the index: of the Patch Corners table 1o the
Patch_ID saiue

et the indese of the Outpus Tabl o te Patch_ID

e

Set the pointer equal o the patch_ID of the corrent
recard in the Ptch T able

Find the current patch in the Patch Corner's 1able

Copy find the orer piners i the CTable in e
o able
And store the new vertex: mxmber

Check o see i the abpct bas becn smivored.
ond wap the ppropraais poiats

¢ fur-<ornered ufoce and creates

bl 2 biongeler cufaas:

Testfor a rismgular fae for-the our-cornered fc

Fome —-_,u-,-.ij--m—-
edions o the gropiucs oncmes will

becbe more affcie format. In e meam

e e et ase rianghe based mesbe.

u—.-..npq.py-

This croates a focet with am owtward facing mormal

ShipArrT

cine furm, HiddeaEdgeFlag pointer, 34) * cPe(3)
Princ #OutFNum, 74

Peint #OutFNum, HiddeaEdgeFlag(pointer, +1) * cPe(4)

MeshVertesPeinc aullPr, 128, layecName Means pertec s the fxx of a pobfae mesh
Prine #OutFNum, This reates a face with an outward facing rormal

Peint o,
Print #OutFNum, -1 * cP(1) Supress the mull bme
Prine #OucFNuam, -1 * cPr(l) Suppress diggonal bne

Muthmenuﬂ?r, 128, layecName Means vertesc i he face of a pobfoce mesh
Print #OutFNum, 71

Priat #OutFNum, -1 * cPi(3) Suppress digonal bne

Print #OutFNum, 72

Prine #OutFNum, HiddenEdgeFlag(pointer, 23) * cPr(1)

fum, 73
Prine #OutFNum, -1 * cPt(4) Suppress the mull ine
i 4

Print #OutFNum, HiddenEdge Flag(pointer, 41) * cPr(4)

Ead If
Thisiv a suare mech
MeshVertexPeint aullPt, 128, fayecName Means erte i the fae o a pobface mesh
Peint #OutFNum, 71 This creates a foet with an outward facing rormal
Peint #OutFNum, HiddenEdgeFlag(pointer, 12) * cPy(1)
Peinc #OutFNum, 72
Princ #OutFNum, HiddenEdgeFlag(pointer, 23) * cP(2)
Prin #OutF-Num, 73
Pent #OutFNurm, HiddenEdgeFlag(pointer, 34) * cPt(3)
Peint #OutFNum, 74
Peint #OutFNum, HiddenEdgeFlag(pointer, 41) * cPt(4)
EndIf

PacchQTable MoveNext
Loop

End Sub

Sub FileHeader
The contents of thi file are the miximum required entrics to begin @ vakd .DXF file entry

Print #OutFNum, 0
Peint #OutFNum, "SECTION"
Print #OutFNum, 2
Print #OutFNum, "ENTITIES"

End Sub

ShipArrT

Sub MeshVertexPrint

(50 As PointDDouble, Code70 As Integer, lsyecName As Swing)

i 1o the DXF fik

e 3 -

Pdne #OutFNum, pi0.z
Print #OutFNum, 70
Print #OutFNum, Code70

End Sub

Function HiddenEdgeFlag
(pointer As Long, side As Tnteges) As Integer

Ve flog

DXF fits.

The incton steps throngh the HET g . wdden edge
egar

Tie fiction integer value o 1 or -1

HETble.Index = "PrimaryKey"
HETable Seek "=", pointer

1f side = 12 And HETable Fields("Edge1”) Then
i =Tae
Elself side = 23 And HETable Fields("Edge2") Then

ShipArnT

310

ShipArT

Sub MeshVertexOutput

(Bag As Tnteges, layecName As String)
. 5 i e the DXF fi
Dim pt0 As Point3SDDouble
OutpueQTable Index = "New_Vestex_ID"
OutpueQTable MoveFisst
Do Ul OutputQTable EOF
pedx = OurpurQTable Fields("X") Alsign the sertex: coondimates o pi0.
per = OurpueQT:
ped-z = OutpurQTable. Fields("Z")
1f flag > 2 Then pidy = -1 * piy- 1 flag indicates mirror-them mirror tramsversely by
chamging the sgn of the y ordinate of each valie.
MeshVertexPrine ped, 128, layesName Call the MessVartexPrint routine 10 ppend the
point information o the oxF,n

OutputQTable MoveNext
»

End Sub
Sub PrepareOQutputFile
T routine kil a the. Toe
program in

i spens Name i and assigus it N
ratine

Open QutFName For Ourput As OutFNum

End Sub

Assige the input file mcember 10 the mext avcilable fie
rber
Open tbe Inpwt Fie

3n

Appendix 3: Constructing Adjacent
Sides Example

The algorithm described in Chapter 5 is not nearly as straightforward as the matesial
presented in Chapters 3 and 4. The construction of the facets adjacent to the projected POI is a
complex problem where the validity of the new mesh is necessary. The following example
illustrates the steps and decisions of the algorithm. The example is relatively complex so as to
prove the ability of the algorithm, but in the majority of ship problems, situations as complex 2s
the one shown in this example are highly unlikely.

The first figure of this section shows the surface which is to be fitted against an irregular
adjoining surface. In this example, it is assumed that the Vertex Lit has already been updated
and sorted. Terminology particular to the example includes the terms Anchor and Kedge which
refer to the beginning and end of the Vertex List respectively. The Vertex Listis a list of vertices

which includes all the vertices which lie on the current plane.

ShipArT

312

Figure 97 Example Problem. Assumes thata Vertex Lit for this surface has already been
created and sorted.

ShipArr'T

313

Figure 98 Set the first Anchor vertex, Vertex A.

ShipAn'T

34

Figure 99 Switch sides. Set second anchor vertex, or Kedge, at Vertex B.

ShipArT

315

Figure 100 Switch sides. Since the angles at Vertices 2 and 3 are less than 180 degrees, the
algorithm attempts to create a four-sided patch using the first four vertices in the
Vertex List.

ShipArrT

316

3.4

Figure 101 The algorithm, having checked and found an interference, attempts to remedy the
problem by changing the new patch from one with four sides to one with only three
sid

les.

ShipArT

3

Figure 102Because of interference the three-sided patch is discarded and the need to shift the
(chor vertex from Vertexc A is noted. Switching sides, the algorithm attempts to
construct a new patch.

ShipArT

318

Figure 103 With this patch completed, Vertizes 2 and 3 are removed from the Vertex List, and the
vertex angles recalculated. It then switches sides to shift the Anchor vertex from A to
c

ShipArT

319

Figure 104 Returning to Kedge B, the algorith: builds another patch. The Vertex
Listtreats Vertizes 1 and 4 of the previous patch as 7 and 2 of the new patch.

ShipArr'T

320

Figure 105 Having removed the “trapped’ vertices and switching sides, the algorithm now
successfully constructs a patch from Anckor C. It then removes its ‘trapped’ vertices
from the Vertex List.

ShipAnT

321

Figure IOSAlxhough visibly ith
patch from Kedge B. mmmummez&wumMn

ShipArrT

322

Figure 107 Switching sides once more, the algorithm constructs a second patch from Anchor C.
The new patch has only three sides because of the large angle at Vertex 3 of this new
patch.

ShipArrT

323

Figure 108 I this step, the algorithm switches sides and shifts the Kedge from B to D.

ShipArT

324

Figure 109 Here the algorithm has switched sides and failed to construct a new patch from
Anchor C because of the large angle at Vertex 3, 4.

ShipArrT

325

Figure 110 Switching sides, the algorith a new patch from Kedge D.

ShipArrT

326

Figure 111 Here the algorithm has again switched sides, this time to shift the Anchor vertex from
CwE.

ShipArrT

327

Figure 112 Switching sides, a second patch is created from Kedge D. The concavity at Vertex 4is
caught through the calculation of angles in the same way that the Vertex List angles
are calculated.

ShipArrT

328

Figure 113 Because of the concavity error, a three-sided patch is attempted which leads to the
invalid situation shown. The patch will be discarded and a note made to shift the
Kedge from D.

ShipArT

Figure 114 Switching sides, a three-sided patch is created from Anchor E. The large angle at
Veertex 3, 4 forced the creation of the three-sided patch.

ShipArrT

Figure 115 Another change of side, and another anchor change. In this step the Kedge vertex is
shifted from D to F.

ShipAnT

331

Figure 116 Here, new patch was to be anchored on E, but the large angle at Vertex 3,4 gives
the new patch a concavity, forcing its abandonment. Instead, a note is made to
change Anchor E.

ShipArrT

Figure 117 A new three-sided patch is created from Kedge F. The large angle at Vertex 3 forced
this patch configuration.

ShipArrT

Figure 118 In this step the Anchor vertex is shifted from E to G.

ShipArrT

334

Figure 119 Here the algorithm attempts to build a new patch from Kedge F but fails because of
the exterior angle found at the second vertex. Instead it flags Kedge F for change.

ShipAnT

Figure 120Switching sides, the algorithm attempts to build 2 new patch from Andbor G but fails
because of the exterior angle found at the second vertex. Instead it flags Anchor G
for change.

ShipArT

Figure 1211n this step the algorithm moves the Kedge vertex from Fto H.

ShipArrT

Figure 122 Switching sides, the algorithm moves the Ancbor from G to L.

ShipArT

Figure 123 Here a new patch is attempted at Kedge H, but the exterior angle at what would be
Vertex 2 of the ncwpau:h forced its abandonment. Instead, a note is made to
change Kedge H.

ShipArrT

339

Figure itching sides, the algoriths creates a new patch from Anchor L.

ShipAnT

Figure 125 And once more the Kedge is moved from H to J.

ShipArrT

Figure 126 Switching sides, the algorithm successfully creates a second patch from Aschor L.

ShipAnT

342

Figure 127 In attempting to create a new patch from Kedge J, the algorithm meets the forward leg
of its search engine. Therefore instead of creating a new patch it begins the process
again with the revised Vertex List.

ShipArrT

Figure 128 Beginning again, the algorithm scts the first item in the Verfex List to be the
Anchor aa. Recall that vertex angles are updated to reflect the ‘trapped’ vertices of
each of the new patches.

ShipArT

Figure 129Switching sides the algorithm sets the last vertex in the Vertex Lis? to be the
Kedjge vertex bb.

ShipArT

Figure 130 Returning to the Anchor aa, the algorithm creates a new patch. The patch is limited
to three sides because of a potential concavity at Vertex 3.

ShipArnT

Figure 131 jumping to Kedge bb, the algorithm attempts to create a new patch,
failing because of the exterior angle at what would be Verfex 2 of the new patch.

ShipArT

Figure 132 The algorithm now successfully creates a second triangular patch from Anchor aa.

ShipArrT

348

Figure 133 Switching eads, the algorithm now moves the Kedge from bb to .

ShipArT

349

Figure 134In this step the algorithm unsuccessfully attempts to create a third patch from the
Anchor aa. Tnstead, it notes that the Anchor must be moved in order to continue.

ShipArrT

Figure 135 Here the algorithm builds a three-sided patch from Kede .

ShipArrT

351

Figure

itching sides again, the algorithm now shifts the Andhor from aa to dd.

ShipArrT

Figure 137In this step the algorithm successfully creates a second three-sided patch from Kedge
-

ShipArrT

Figure 138 Having once more had the Anchor and Kedge meet such that there is no longer a
sufficient number of vertices between the two to form a patch, the algorithm resets
the anchor vertices and begins again.

ShipArrT

Figure 139 As can be seen, cach iteration of the algorithm reduces the number of vertices to be
placed into patches until no more are required.

SkipArT

Figure 140 Once more the algorithm sets the Ancbor, this time AA in the figure, to the firstitem
in the Vertex List.

ShipArrT

Figure 141 Switching ends, the algorithm then sets the Kedge BB equal to the last vertex in the
Vertex List.

ShipArT

Figure 1421n this step the algorithm unsuccessfully attempts to create a new patch from the
Anchor AA. The failure is due to the exterior angle at the next vertex in the list.

ShipArrT

Figure

ShipArnT

attempts to create 2 new patch from the
Kedge BB. Insmd, the need to change the anchor is noted.

359

Figure 1441n this step the Anchoris moved to CC.

ShipAnT

Figure 145 Switching ends again, the algorithm shifts the Kedge from BB to DD.

ShipAnT

361

Figure 146In this step a new three-sided patch is created from Anchor CC.

ShipArrT

Figure 147 The completion of the new patch also brings the two ends of the list together again.
Hence the algorithm resets for the last time.

ShipArrT

Figurc 148 Beginning again at the start of the Verfex Lis, the algorithm sets the first item to be
the Anchor i.

ShipArT

Figure 149 Switching ends, the algorithm also establishes a Kedge atj.

ShipAnT

Figure hing ends again, the algorith; mmnfmln-ndedﬁgm&em
Auchrn.Andwnhm.lymvum ining, the has also

completed the new mesh.

ShipArT

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Information To Users
	0006_Note To Users
	0007_Copyright Information
	0008_Title Page
	0009_Abstract
	0010_Abstract iii
	0011_Acknowledgements
	0012_Acknowledgements v
	0013_Table of Contents
	0014_Table of Contents vii
	0015_Table of Contents viii
	0016_Table of Contents ix
	0017_Table of Contents x
	0018_Table of Contents xi
	0019_List of Figures
	0020_List of Figures xiii
	0021_List of Figures xiv
	0022_List of Figures xv
	0023_List of Figures xvi
	0024_List of Figures xvii
	0025_List of Figures xviii
	0026_List of Figures xix
	0027_List of Figures xx
	0028_List of Figures xxi
	0029_List of Figures xxii
	0030_List of Figures xxiii
	0031_List of Tables
	0032_List of Tables xxv
	0033_Chapter 1 - Page 1
	0034_Page 2
	0035_Page 3
	0036_Page 4
	0037_Page 5
	0038_Page 6
	0039_Page 7
	0040_Page 8
	0041_Page 9
	0042_Page 10
	0043_Page 11
	0044_Page 12
	0045_Page 13
	0046_Page 14
	0047_Page 15
	0048_Page 16
	0049_Page 17
	0050_Page 18
	0051_Page 19
	0052_Page 20
	0053_Page 21
	0054_Page 22
	0055_Page 23
	0056_Page 24
	0057_Page 25
	0058_Page 26
	0059_Page 27
	0060_Page 28
	0061_Page 29
	0062_Page 30
	0063_Page 31
	0064_Page 32
	0065_Page 33
	0066_Page 34
	0067_Page 35
	0068_Page 36
	0069_Page 37
	0070_Page 38
	0071_Chapter 2 - Page 39
	0072_Page 40
	0073_Page 41
	0074_Page 42
	0075_Page 43
	0076_Page 44
	0077_Page 45
	0078_Page 46
	0079_Page 47
	0080_Page 48
	0081_Page 49
	0082_Page 50
	0083_Page 51
	0084_Page 52
	0085_Page 53
	0086_Page 54
	0087_Page 55
	0088_Page 56
	0089_Chapter 3 - Page 57
	0090_Page 58
	0091_Page 59
	0092_Page 60
	0093_Page 61
	0094_Page 62
	0095_Page 63
	0096_Page 64
	0097_Page 65
	0098_Page 66
	0099_Page 67
	0100_Page 68
	0101_Page 69
	0102_Page 70
	0103_Page 71
	0104_Page 72
	0105_Page 73
	0106_Page 74
	0107_Page 75
	0108_Chapter 4 - Page 76
	0109_Page 77
	0110_Page 78
	0111_Page 79
	0112_Page 80
	0113_Page 81
	0114_Page 82
	0115_Page 83
	0116_Page 84
	0117_Page 85
	0118_Page 86
	0119_Page 87
	0120_Page 88
	0121_Page 89
	0122_Page 90
	0123_Page 91
	0124_Page 92
	0125_Page 93
	0126_Page 94
	0127_Page 95
	0128_Page 96
	0129_Page 97
	0130_Page 98
	0131_Page 99
	0132_Page 100
	0133_Chapter 5 - Page 101
	0134_Page 102
	0135_Page 103
	0136_Page 104
	0137_Page 105
	0138_Page 106
	0139_Page 107
	0140_Page 108
	0141_Page 109
	0142_Page 110
	0143_Page 111
	0144_Page 112
	0145_Page 113
	0146_Page 114
	0147_Page 115
	0148_Page 116
	0149_Page 117
	0150_Chapter 6 - Page 118
	0151_Page 119
	0152_Page 120
	0153_Page 121
	0154_Page 122
	0155_Page 123
	0156_Page 124
	0157_Page 125
	0158_Page 126
	0159_Page 127
	0160_Page 128
	0161_Page 129
	0162_Page 130
	0163_Page 131
	0164_Page 132
	0165_Page 133
	0166_Page 134
	0167_Page 135
	0168_Page 136
	0169_Page 137
	0170_Page 138
	0171_Page 139
	0172_Page 140
	0173_Page 141
	0174_Page 142
	0175_Page 143
	0176_Page 144
	0177_Page 145
	0178_Page 146
	0179_Page 147
	0180_Page 148
	0181_Page 149
	0182_Page 150
	0183_Page 151
	0184_Page 152
	0185_Page 153
	0186_Chapter 7 - Page 154
	0187_Page 155
	0188_Page 156
	0189_Page 157
	0190_Page 158
	0191_Page 159
	0192_Page 160
	0193_Page 161
	0194_Page 162
	0195_Page 163
	0196_Page 164
	0197_Page 165
	0198_Page 166
	0199_Page 167
	0200_Chapter 8 - Page 168
	0201_Page 169
	0202_Page 170
	0203_Page 171
	0204_Page 172
	0205_Page 173
	0206_Page 174
	0207_Page 175
	0208_Page 176
	0209_Page 177
	0210_Page 178
	0211_Page 179
	0212_Page 180
	0213_Page 181
	0214_Page 182
	0215_Page 183
	0216_Page 184
	0217_References
	0218_Page 186
	0219_Page 187
	0220_Page 188
	0221_Page 189
	0222_Page 190
	0223_Select Bibliography
	0224_Page 192
	0225_Page 193
	0226_Page 194
	0227_Page 195
	0228_Page 196
	0229_Page 197
	0230_Page 198
	0231_Page 199
	0232_Appendix 1
	0233_Page 201
	0234_Page 202
	0235_Page 203
	0236_Page 204
	0237_Page 205
	0238_Page 206
	0239_Page 207
	0240_Page 208
	0241_Page 209
	0242_Page 210
	0243_Page 211
	0244_Page 212
	0245_Page 213
	0246_Page 214
	0247_Page 215
	0248_Page 216
	0249_Page 217
	0250_Page 218
	0251_Page 219
	0252_Page 220
	0253_Page 221
	0254_Page 222
	0255_Page 223
	0256_Page 224
	0257_Page 225
	0258_Page 226
	0259_Page 227
	0260_Page 228
	0261_Page 229
	0262_Appendix 2
	0263_Page 231
	0264_Page 232
	0265_Page 233
	0266_Page 234
	0267_Page 235
	0268_Page 236
	0269_Page 237
	0270_Page 238
	0271_Page 239
	0272_Page 240
	0273_Page 241
	0274_Page 242
	0275_Page 243
	0276_Page 244
	0277_Page 245
	0278_Page 246
	0279_Page 247
	0280_Page 248
	0281_Page 249
	0282_Page 250
	0283_Page 251
	0284_Page 252
	0285_Page 253
	0286_Page 254
	0287_Page 255
	0288_Page 256
	0289_Page 257
	0290_Page 258
	0291_Page 259
	0292_Page 260
	0293_Page 261
	0294_Page 262
	0295_Page 263
	0296_Page 264
	0297_Page 265
	0298_Page 266
	0299_Page 267
	0300_Page 268
	0301_Page 269
	0302_Page 270
	0303_Page 271
	0304_Page 272
	0305_Page 273
	0306_Page 274
	0307_Page 275
	0308_Page 276
	0309_Page 277
	0310_Page 278
	0311_Page 279
	0312_Page 280
	0313_Page 281
	0314_Page 282
	0315_Page 283
	0316_Page 284
	0317_Page 285
	0318_Page 286
	0319_Page 287
	0320_Page 288
	0321_Page 289
	0322_Page 290
	0323_Page 291
	0324_Page 292
	0325_Page 293
	0326_Page 294
	0327_Page 295
	0328_Page 296
	0329_Page 297
	0330_Page 298
	0331_Page 299
	0332_Page 300
	0333_Page 301
	0334_Page 302
	0335_Page 303
	0336_Page 304
	0337_Page 305
	0338_Page 306
	0339_Page 307
	0340_Page 308
	0341_Page 309
	0342_Page 310
	0343_Page 311
	0344_Appendix 3
	0345_Page 313
	0346_Page 314
	0347_Page 315
	0348_Page 316
	0349_Page 317
	0350_Page 318
	0351_Page 319
	0352_Page 320
	0353_Page 321
	0354_Page 322
	0355_Page 323
	0356_Page 324
	0357_Page 325
	0358_Page 326
	0359_Page 327
	0360_Page 328
	0361_Page 329
	0362_Page 330
	0363_Page 331
	0364_Page 332
	0365_Page 333
	0366_Page 334
	0367_Page 335
	0368_Page 336
	0369_Page 337
	0370_Page 338
	0371_Page 339
	0372_Page 340
	0373_Page 341
	0374_Page 342
	0375_Page 343
	0376_Page 344
	0377_Page 345
	0378_Page 346
	0379_Page 347
	0380_Page 348
	0381_Page 349
	0382_Page 350
	0383_Page 351
	0384_Page 352
	0385_Page 353
	0386_Page 354
	0387_Page 355
	0388_Page 356
	0389_Page 357
	0390_Page 358
	0391_Page 359
	0392_Page 360
	0393_Page 361
	0394_Page 362
	0395_Page 363
	0396_Page 364
	0397_Page 365
	0398_Page 366
	0399_Blank Page
	0400_Blank Page
	0401_Inside Back Cover
	0402_Back Cover

