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Abstract 

Phyniological mechanisms of adaptation to temperature were investigated in four 

~ m i n s  o f  Xenorhobdus rpp. that originated fmm various geographical ares: Xenorhobdzlr 

bovieeii NF wain and Xenorhobdu bovienil Ume& strain (boreal origin), Xenorhobdtdlrr 

nemorophilur All Nain (temperate origin) and Xenorhobdto sp. TX ~Uain (rubuopical 

origin). The criteria includcd ths effect of temperature on growth capacirj to synthesize 

isozymcs o f  metabolic enzymes and modify fany acids. In addition the TX strain 

(undereribed) and the NF smin (newly isolated) were eharaetecizedthrough phy$iologienl 

and biochemical Osts and eellulore acetate electrophoresis was evaluated for use in  the 

taxonomy of this categoryof bacteria. 

The irozymer of nine enzymes were separated by celluloreacelate eleotrophorerirand 

compared among the four bacterial smahs. The results indicated that these strains could be 

distinguished fmm one ano!her on the basis o f  irozyms panemr at 2S°C. Four enzymes 

[fumfumfe hydrame (FUM), malare dehydrogenase (NAD) (MDH). malate dehydrogenase 

(NADF)  ((ME), and phorphoglucomulare (POW] dirplayed species-specific iszyme 

pattern. and the irozymepauemr o f  arginine phosphokinare(APK) dirtinguishedbetwen 

!he NF $vainand the UmeA strain. Addirionally,the irozyme panems in the NF and Umei 

rmins were temporally stable for all enzymes, except ME (Umsi main) and IDH O.IF 

rmin). These findings suggested that cellulose acetate elccuophoresis could be an 

important 1001 for the idsntificationofXenorhobdusspee~ero~ even suainn. 

Xenorhobdus np. TX smin was physiologically and biochemically diriinguirhnble 



from the five devribed Xenarhobdur spcsicr and fmm thc relafed bacterium, Pharorhobdur 

luminescrm The TX TXruain differed fmm any of the five dacribedXennnhcbdur sp i es  or 

P lumrnescem m at ieast one of the following eharaReriJtics: p w h  at lo0C (-). gmwh GI 

3 7 ' ~  (+I, cnralsse (-1, biaivminacence (-),absorption of bmrnothymol blue dye (+), ti* 

(-1. "Rase (6). phasphat- (-1. alkaline phorphataJC (w: weak), ribose acidifieat~on (-1, 

glycerol acidification (+I, ralicin acidification (-), eefalathb rnsismce (-1, amoxillins & 

ealvuianic acid resistance (-1, and escvlm hydrolysis (-1. The NF and U m 4  swins 

displayed identical reactions for all the heterct in this d y ,  indicating ths they w e  

inwparable onthe basis ofcommon phyrtobgieal and biachemical tests. 

Gmwh of the folli Xenorhobdur rrrainc war examined over a wide rage of 

temperature% The boreal mains (NF. Umd) w w  at cullwe tempranrez h m  O'C to 3Z°C, 

the. Al l  smin 6om lo0C to 3Z°C. and the TX maan fmm 1S0C to 38.S°C. The optimal 

tempcram, based on gmwh rats. was 2S°C far the rwo boreal pwinr. 30°C for Ule Ali 

reain and the TX s&. The boreal sttans (NF. Umd) were satego-d as psychmphr, 

and thc Ai l  and TXreains 85 mesophiles. 

The effect o f  cul- tempera- an the i somer  of rwen enzymes w *died in  the 

four Xeeo~)habdd srahs. A l l  faw %wins displayed temperarunrelated variations in 

i s a w e  ptfems. Five s"zymes displayed temperam related modi6catioor m iroryme 

banding patterns io the Um.4 maiR four in fhc NF maiR three in the A l l  seain md ouo i n  

the TX swain. There results indicated that these bactea may physiologically adapt to 

tempcram by altering the rynchesbaf isarymer. 



All four rminr responded to low temprraNrer by insreasinj m o n a u n s a t ~ ~ a t ~ d  f w  

acids (I6 1-7 and 18:1.9) rvim concomitant decreares in the pmmlneni~arurared fatty acid 

(16:O). indicaiingfhai there bacteriacould adapt to temperacure by modifying h e  degree of 

faw acid unraumiion.Other fatry acids (l4:O. 17:O. 17.0,20:0). p m n r  in lower amountr. 

were affected by temperature in three ruains (All. NF. Umd) while they did nor 

significantly vary tmm 20°C lo 39C in the he srtrain. Thin rrudy ruggened that cold 

adapmtion in X bovienii may involve r h i h  in fatty acids amporition induced by 

temperatures well above freeing. 
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Chapter 1 

General introduction 

1.1. Emtornopathogenie nematode as biological eonrml ngeon 

Widespread applicatiom o f  chemicals in  insect pest management has resulted in  d ~ e  

acquisition of r e d r a c e  to chemical pesticides among pst populations with consequent 

resurgence o f  pa. pesticide residues i n  the food-chain. and environmental pollution. 

Biologleal control is one of the most anractlve alternatives for chemical control i n  pest 

management (Ehlerr and Hokkanen 1996; Metcalf and L u s h a m .  1994). Insect- 

parasitic nematodes are among the most important bialogical eonool u_eentr (Ehlcrs. 

1996; Kayaelol.. 1993). Nematodes fmm three families (Mermithidae. Steinemematid.. 

and Heterarhabdiridae) have been viewed as potentially effective biocontroi agents 

[Bedding e l  a l .  1993: Gaugler and Kaya. 1990). However. beawe of the difftcultiti in 

their artificial cullure and storage, msmithidr are no longer viewed as potential 

biocontml agents In  the foreseeable l i t m e  (Kaya rr ol. 1993). Cunent research is on 

steinemematlds and hetemrhabditids, both of which are entornopathogenic nematodes 

because they e w  symbiotic basteria. These nematodes can be anificially masr- 

produced, earily stored and transported (Bathon, 1996, Bedding cr 01.. 1993. Gauglec and 

Kaya, 1990). Some of there nematodes are being commercially produced or developed ar 

bioinrectisides (Smart, 1995) 



12. Eotornopnthogenir mematode m d  their mutunlirtir bacteria I 
Non-feeding mnfcctlvc juveniles (I,. dauer larvae) o f  steinernernatids and 

heterorhabdilidr carry. in  their intestines. speier-specific banerial rymbiontr belonging 

to the genera Xenorhabdur and Phororhobdus. respectively (Akhust and Boemare. 

1990). Thcsc infective juveniles enter the insects' hemoeoel via the mouth, anus. the 

respiratory rpiacles or by directly pneuaring the inrectr' cuticle (Poinar 1990: Bedding 

and Molyncur. 1982). Once the nematodes m in  the hcmocosl of the insect hoss. they 

release thew symbiotic bacteria. There bacteria gmw and reproduce i n  the hsmococl. then 

produce torinn to kil l  the host. and antibiotics to prevent other mlcroba h m  growing in  

the hemocoel. R i r  creates a "on-competitive env im~ len t  for the gmwth and 

repmduction of h e  bacteria and ther nematode horc, (Poinar. 1990). Aher proliferating 

for 2-3 generations. infective nematode juven~ier carrying bacterial symb~onrr in  their 

intertiner emerge fmm the insect cadavers, and enter the soil i n  rearch o f  new insect hosts 

(Kayaand Caugler. 1993). 

I n  there mutualistic associations. the nematodes vansport their bacterial rymbionts 

between insect hosts, protest bacteria fmm the rail envimnment i n  which t h e  bacteria 

are not competitive with other microbes, and carry bacteria into h e  hemacod o f  insect 

hosts (Akhurrt, 1993). On the other hand. the baereria produce toxins to k i l l  he imecrr, 

r r l e ~ ~ e  antibioIics to prevent insect cadavers fmm puvefaetion and modify the cadavers 

to provide suitable nutrients for the repmduelion of nematodes ( M u s t ,  1982, 1993: 

Fom and Nealron, 1996). 



The genus Xenorhabd~rr. formerly lchromobocrer (Poinar and Thomas. 1965). was 

initially pmpored by Thomas and Poinar (1979). with nuo species described: 

Xrnorhobdus nemorophiizrs fmm nematodes of the genus Sreinernemo (ryo. 

iveoopleatona) and Xenorhobdur luminercens from nematodes of rhe genus 

H~terorhobdi t~ (ryn. Chromonemo). AkhursI(1983) suggested t k e  rub-species (rubrp. 

nemaophiiur. rubrp. bavienri. and subrp. pornorii) far h e  species X nemarophiltrs. 

Several y m  later. another sub-specie9 (subrp. brddingii) was pmpored for the same 

sp ies  (A!&urrt 1986a). Based on the results of numerical ta~onomic studies of 240 

characters in 21 strains, the four sub-species (X nenarophilt,~ rubrp. nrmarophriur. 

rubrp. bavienii rubrp. poinor;;. and rubap. beddingti) were suggested as four rpeclcr (X 

nemotophilur. ,Y bovienii X pornorii and X beddrnsii, mpectively) (Akhunr and 

Boemare. 1988). Using DNA-DNA hybridiranon. Xenenorhobdrrr spp. were separated from 

each other and a new genus. Photorhabdur, was proposed. with X luminescenr renamed 

es Phororhabdtrs lumrnercens (Boemare er a 1  1993). Nishimm r a 1  (1994) suggested a 

new Xenorhabdcrs s p i a  (Xenarhobdus joponiczrs). To date, five species of bacteria 

have been described in the genus Xenorhobdzrr (Xenorhabdus nemolaphilz~r. 

Xenorhobdzrr bovtenii, Xenorhobdur pornmi;, Xenorhobdus beddingii. and Xenorhobdrr 

joponiarr) and one species for Photorhobdzrs (Phororhobdur iuminescenr). 



Morphological. phyriological and biochemical charactenrticr are widely uwd in the 

taxonomy of the bacterial associates of entomopathogenie nematodes IAkhwt 1983. 

1986a: Boemare and Akhust, 1988: Nishimura er 01.. 1994). Modern molecular 

approaches have alro been utilized to classify there bacteria. DNA-DNA hybridilarion 

was used to analyze the genomic differences among thew bacterial mosiater: the four 

Xenorhobdus s p i e r  (i.e. not including Xioponicur) were found m be different fmm one 

another. and X luminoscenr was transferred into a new genus. Phororhvbdus (Bocmarc rt 

01, 1993). 16s rRNA genes were found to be u e b l  in analyzing the phylogeny of 

Phororhobdzlr and Xenarhobdzrr rpcies. and also in identifying there bacteria. By 

camparing the 16s rRNA gene wqusncsr of 16 mains ofXenorhobdto or Phororhobdt,~. 

Liu er 01. (1997) confirmed the validity of the species X bovirnri. X nemorophilrm, and.Y 

poinarri. These authors alro found ar least rwo distinct groups in the Pholorhabdtrr 

isolares that they studied. These grovps may represent distinct species. n finding that is at 

odds with the c a n t  view that only one species has been reported for thir genus. S d 1 6  

el of. (1997) sequenced the 16s rRNA genes of 47 strains (40 from Phororhabdur. and 7 

from Xenorhobdm) In thir study, several rubelusterr were also found in Pha,orhobdur 

rminr, indicating the existence of several spmies within P 11,minercenr. By analyzing 

16s rRNA restriction pattern of 27 strains (14 Phororhobdtrr strains and 13 

Xenorhobdur ~uains), Brunel et ol (1997) proved t h  amplified 16s iRNA restriction 

analysis was a simple tool for the fast and ac-fe identification of the bacterial 

asraeiates ofentomopathogenis nematodes. 



Fatty acid profiles were alro utilized i n  the taxonomy of Xenorhobdrlr and 

Phororhobdnr species. Jan= and Smits (1990) analyzed !he fatty acid profiles of 33 

strains (26 Phoiorhobdur strains and 7 Xenorhabdur strains). found that there were thee 

subgmupr in  X (P.) lumine~cees. and suggested that i t  is questionable to place X (P )  

iuminercenr in  the Family Enterobacreriaceae because of the exirrence of branched nnd 

hydmxy fatty acidr. S d i  el 01. (1990) alro used fatty ncld compositions lo classify 

thac bacterial asrociatcr. 

Pmtcin dectmphoresis has pmved to be a usehrl ta~onomts tool for nematode 

species and even strains. and also for the bacterial associates of entomopathogcnic 

nematodes. Stareh gel (Akhwrt  19871, polyacrylam~de gel (She 1985: Korodoi er ol. 

1986) and cellulose acetate gel (Jagdale el 01.. 1996) elecuophorerer were applied in  

nematode manomy. HotcMin and Kaya (1984) ured accylamidc gel to examine the total 

protein profiles and some isozyme panem i n  X nemoraphrlzrs and X (P ) Itrminercenr. 

and found rhat this technique could be ured to repante the two species fmm each other. 

and alro to distinguish among the subspecies of X nemorophilzrr, which were later 

elevated as species by Bwmare andA!durrr (1988). 

I n  my research, Xenorhobdur rp. TX strain and Xenorhobdur bovienii NF suaxn, 

which were isalatd, rerpectively, hom the nematodes Slrinernema riabrrmis TX strain 

and Sreinentemo felriae NF main. were characterized with wdirional phyriolog!cal and 

biochemical tests. I n  addition, cellulose acetate clestmphoreris was evaluated for its 



possible use in  thc taronomy of bacterial EPeCleS associated with entomapathogenic 

nematodes by examining iroryme patterns. 

13.2. Biology 

1.3.2.1. Pathogenicity 

U~ually. eaher bacteria or nematodes alone are pathogenic to Golieria melloneiio. 

whose larvae (1st instar) have been widely used to detemUne the pathogsnieiy of the 

kctcrial symbiontr and their nematode horrr (Fornt er 01.. 1997). However. neither X 

poinorii nor S glaseri alone displays pathogenicity to GnI111in mellonella larvae. while 

these larvae am very anritive to rhlr bacteriuminemarade complex ( M m t .  1986b). 

Xenorhabdus,oponicur alone also show no pathogenicity to Spdopteeo lituro larvas 

(Yaman&* er oi.. 1992). The virvlcnce of the bacteria has been Largely ascribed to their 

endotonins and enoroxlns (Akhurst and Dunphy. 1993). 

The endoroxin lipopolyracchandc (LPS). o f X  nem~fophilus is involved in  bacterial 

evaslon horn the 1115ect ~ m m e  system and is dm considered to be a virulence factor. The 

l!ppolysaechande IS able to prewnr phenoloxidax hom activation (Dunphy and 

Webrter. 1988). A c t i ~ t e d  phsnoloxidnse converts tymsinc to dihydraxyphenylalaninc, 

which binds to me bacterial cell surfacer and probably impmves the bacterial adherence 

to insect hemocyter. Therefore, Xenorhobdur rpeeiu may tolerate or evade humoral 

defensive response by inhibiting the activation of insect phenalonidaw (Font er of., 

1997). Lippolysaccharide is also viewed as a virulence factor i n  X nemotophilur, 

because injecting the LPS purified from this bacterium -1s i n  the death of G. 



mellonello 1-e. Actually. rhe lipid A moiety of LPS inX  nemorophlrr was thought to 

stimulate hemocyte lysir (Forrt el 01.. 1997). However, the mler of LPS fmm P, 

luminescens in pathogenicity are different fmm those m X nemotophilclr Despite the fact 

that the LPS of P htminercenr war shown to damage the hemocyte of G mclionello 

(Dunphy and Webaec. 1988). either i s  purified LPS or dead bacterial cells were rhown to 

be tonic to the m e  Insect species (Clarkeand Dowdr. 1995). 

Bacteria of the genera Xenorhobdlo and Phororhobdz,~ produce e~atonns such as 

pmteare. hpase. lecithinare and exUacellular enzymes. although nor all of there tonlnr 

have been shown to he toxic to insects. Two ~nrecticidal exotoninr. a 40-ma protein 

frornX(P) luminercens strain NC-I9 (Ensign el u1.1990) and a 31 ma pmrein from X 

nemnfophilrrs (Baemare er a l ,  1997). have been isolated. Clarke and Dowddr (1995) 

showed that the sterile envacellular culture media of E coli containing the lipase gene of 

P lrrminescem strain K122 were toxic to G mellonello while the preparations of E coli 

containing no K122 lip- gene were safe to the same insecu. There authos suggested 

that the lipase activity in the K122 main was a virulence factor towards G mellonello. 

1.3.2.2. Speeif~cliy 

Specificity exisfs in associations benwen entomopathog~nic nematodes and their 

bacterial arociater. A given nematode species is naturally anociatcd with only one 

bacterial species, although a bacterial species may act as the symbiont in several nematode 

species ( M u s t ,  1993; Akhurstand Dunphy, 1993). The specifieityof association between 

nematodeand bacterium has brrn proposed to operate at h l e e :  nutrient pmvirion by 



bacteria for nematodes. bacterial retenno" uithin the intertines o f  infeetire juveniles of 

nematodes (Akhurst and Boemare. 1990). and development o f  infective juveniles (the thrd 

sage. also'dauef stage) into the founhrrage (Grewal aol . .  1997). 

Some degree o f  specificity c~rrs with respect to nutrient provision by symbiotic 

bacteria. Some nematodes were found to be capable o f  growing and reproducing with the 

ald o f  bacterial rpecier (including non-Xenorhnbdur bacteria) other rhan their natural 

rymbione. Houever. natural ~ymbrants are usually the bcesr nutrient pmvidcrn for the 

g m w h  and reproduction o f  their nematode hosts (Akhurst and Boemare. 1990: Poinar. 

1990). 

A higher degree o f  specificity war propowd with respect to the hecapaeilier o f  infective 

juveniles o f  entomopathogenic~ematodes for retaining bacteria in  their intesrlnes (Akhurrt 

and Boemare, 1990). No species o f  Steinernemo has been shown to retain any bacterial 

rpecier other than Xenorhobdirr bacteria. and some nematode species such as S 

corpacoproe can only retain its natwal symbiont Although the infective juven~ler o f  S 

/eltine may be experimentally inducedm cam, the symbiontr o f  other Sreioernemvrpeeies. 

the effkiency is Lower than that of retaining its natural symbiont (Akhum and Boemare. 

1990). 

Symbiont-rpesificdaucr recovery was recenlly pmposed as a new mechanism for the 

rpecificityof associations between nematodes and their bacterial symbionts(Grewa1 el 01,. 

1997). Dauerreeovery involvesthe abilityof the nematodes to develop fmm thedauernage 

to the fourth juvsnile stage and inclvdes the exshealhment o f  the nematode and subsequent 



rel- of the bacteM into the host's hemolwph. SleIne~nmmo rcopteriiei was found to 

have only a we& spsificiry of -ciation with is symbiotic bacterium st the levels of 

nutrient provision and of bacterial mention. However, ~ nematode species displayed a 

mong dependence on its mural banerial symbiont far efficient dauer recovery. The daua 

recovery of Ulir nematode rpcies wa^. found to b. sisoifi~~nfly delayed and redreded in the. 

manoxenic cultwen of Xenarhobdu nemorophilu and Xcnorho6du sp., qmbiontr of 

SrErnenremn cmpcopsoe and Sreinernema riobrovir, rcspstively. Cell-he filtmtes of the 

eulrurer of the nafural symbiont improved the daua =sovery of S rcoprerisei in the 

monoxenic sal- of Xenorlmbdm nemophiius and Xenorhobdm np. TX 

indicating rhat infective juveniles w chcmcal rrgnaln produced by their nafunl symbionts 

far daver recovery. Gmwal el a1 (1997) suggested that it was unlikely for infective juvmiles 

to hut feeding in the hosts previously infected by other Sreinememo nrmatodcs. mainly 

becaw of che heisiaence of impropu bacteria. 

1.3.3.3. Phaserariatian 

ln order to evade host immune xsponscj or bacteriophage intectioa bacteria 

commonly undergo a revmible change in a major antigm such ar flagellar or Bmbrial 

pmtein. This common phenomenon is defined as phase variation The phase variation 

occvrring in Xenorhobdw and Phororhobdm il unusual in that it involver alterations in 

multiple charaeterr, which arc not related to each other andalso not involved inevading h o s  

immune defenw and bacteriophage infe~tioh Xenorh& and Phororhobdu usually 

display two pharer. Phare one was isolated fmm nematode infeefivejwcnilu while phase 



two was obtained fmm in vlrro CUINRE of phse one. Phase one cells absorb dyes 

(bmmothymol blue and Congo red), pmduce antibioticr.pigmenrationor luminercenee (in 

the ease o f  Phororhnbdur) while phax two cells lack these eharacrerirricsor show much 

we&erexprcssions for some ofthese charaeters(Akhurrt, 1993). 

Phase one usually pmduces a wide range of antibiotics. and provides bener nutrient 

faeron for the reprodueuon o f  its ncrnacodc arraciares (Akhurrt and Baemare. 1990). 

Srnigielrkieroi. (1994) reportedthat phasetwo cells o f X  nemotophilurand P hrminccccm 

rerranedgmwth withln2 to 4 hours after swa t i on  while phaw one cells required I 4  hourn. 

Phare nuo e i l s  also displayed much higher activity o f  major rrnpirarary enqmes in  

stationary cultures (shon o f  nutrients). There authors proposed that phase two cells were 

better adapted to roi l environments. assornil-Orterfeld(l997) found that low orrnolarity 

induced the rmsformation o f  phase one to phase two, and noted that high ormolarity (4100 

mOrmol) exists In ,"sect cadavers while low osrnolariry (60 mOsmol) is displayed in the 

inteniner o f  dauer lan.ae and i n  the soil envmnment. I t  was proposed that phase two is 

bener adapted to the starvation conditions m the intestines o f  "an-feeding infective 

nemarodejuveniles,~le phase one is more suitable to the nutrient ambience of the insect 

hemaeoel(KrasomilOrterfeld, 1997: Font eral.. 1997). 

The mechanism for phase variation i n  Xenorhobdur and Phomrhnbdus are not 

mderstood.It show thatthe phaw variation- not mediated by plasmids (Coueheer 

01.. 1987; SmigielrEand Akhurrf 1994). Major genomis wtriationr am also vnlikslyto k 

involvedin the pharevariation(Murste,(~i. 1992). 



13.3.Phyriolagyof l bem~lg rowlb  nod adaptationto temperature 

Tempera- har been found to be a factor limiting rhc succerrful applications of 

entomopathogenicncmatodesin pest management(Griffin. 1993). lhir  limitation has led to 

many investigations into the effect of remperarure on vanous aspects of the biology 1e.g. 

infwtivity. reproduction. temperature tolerance. enzymatic activity. fany acid profiles. and 

isoryme pmfiler) of these nematodes (Grewal rr 01. 1994: lagdale and Gordon. 1997a 

19976. 1997~. 1998a 1998b: Mason and Hominiek. 1995). Given that bacterld symbiontr 

arc lhc licy conuibutorrro the pathogenicity of these nemafadc1. fhc effect of t c m p a t u e  

on bacterial gmmh and the nature of the thermal adaptation mechanism of these bacteria 

have 0 be rakeninto consideralionin developingthere nematode~ar bioconuoi agenm. 

Very ilmltsd studies have been done on the temperature condit~ons penaiming to 

grouth of these bacteria. From 24'C to 300C. the generation times for X nemnrophiltirand 

P llrminereens were 1-2 hours in complex media 2.5-3.0 h a m  in defined media (Nealron 

el oi. 1990). Gwynn and Richardson (1994) eramlned the gromh of five Xenorhobdr,~ 

irolater a1 low temperatures (2.6 & IbC) and found that two isolates o fX  bovienni could 

gmw well a PC. This rerearchwas done only from 2'C to IbC. In my research. a wide 

rangeof temperaweswere examined for their influenceon the growthof fourxenorhobd~lr 

isolates with the geographicalorigins rangingfmm boreal, tempcrateand rubuopicalarrar. 

The mechaniunr for thermal adaptation of Xenorhabdus and Phororhbodu arr not 

-11 undemtood. Several previous studies examined temperature related changes in famy 

acids in several iloiatcr of these bacteria Xenorhobdrrs nemarophilrrs, under identical 



culture conditions. had a less ordered (i. e. more fluid) membrane rrructure than P 

I~rminescensdue to the differences in  their fatty acid profilen (Fador er 01.. 1997). Thir may 

explain why bacteria o f  the genus Xenooh(~bdtts are more cald-adapted than those of the 

genus Phalorhnbdrrr (Clarke and Dowds. 1994). ,Yenorhobd~rr rp. TX strain. initially 

isolated from S. nobrmrir, was down to increase saturated fany acids and decrease in  

unsamted fatty acids as the temperature increase fmm 15'C to 30°C (Abu Hamb and 

Gaugler 1997a). The existence o f  relatively high lewlr of branched fatry acids i n  

Phororhabdus bacteria was considered to be the result of thcir adaptation co low 

temperam (Clarke and Dowdr. 1994). To understand the membrane adaplation o f  there 

bacteria wider ranges of temperatures and o f  bacterial e so later should be studied with 

respect to fatty acid profiles. Other aspecu o f  thermal adaptation i n  there bacteria should 

also be examined. 

According to eumnt publieslionr.rhermal adaptationin other bacteria has been shown 

to involve f a y  acid profiles (Suutan and Laakro. 1994). enzymes (feller a "1.. 1996). 

special pmreins (e.g cold shock proteins) (Gumley and Innis, 19961, and phorphoryiation 

of lipopolysaccharides(Ray eta/., 1994). 

1.4. Rnnreh objectives 

To develop entomopathogenis nematodes for e m i v e  pert management, it i r  

important to obmin a thornugh understanding o f  the capacities o f  both the nematodes and 

their bacterial assomates for cemprratme adaptation and the name o f  the physiological 



me~hanirmsdeployed. For this rsason. I examined the effect o f  temperam on the growrh 

o f  four stninr of Xenorhobd~ls. whish associals w t h  nematodes originating from 

climatically diverre geographic regions. Additionally,phyriologiealeompnralorychanger 

were examined with rerpcct to changing Icmpcrarure. The four strains o f  bacteria were: (i) 

X bovienir NF and Ume l  mains, boreally adapted. orig~nating fmm S feRior populations 

in  Newfoundland, Canada (lagdale er 01. 1996). and UmeL Sweden (Pye & Pye. 1985). 

respectively: (ii) X n#motophiiur Al l  rvam. temperate. isolated from commercially mass 

cu lmdS .  corpocopsoe initially Fmm Georgia, USA (Poinar. 1979): (lii) an unidentified 

strain o f  Xenorhohdxir ~ubtmpical. isolated fmm S riobrovia a nematode endemic to 

southemTexac(CabanilIase1ol.. 1994). 

The NF strain of S frlrioc has a similar. but not identical isozyme profile to a strain 

(L1C)that was isolated fmmNedoundlandon an earlier occasion(Finney-Crawley. 1985). 

The NF and L I C  rtraim are legitimately considered to k separate m a i m  of S feitioe 

(lagdale er oi. 1996). n , e  bacterial a$roeiafe~ 0CS.pItiii NF strain and the rubtropicalS 

riobmvir have not ken  describedat all. Therefore. i t  %em i m p o m 1  lo  include laxonomic 

and dcscriptivec~mponents to my temperaNrerNdier. A ~ ~ o r d i n g l y , o p p o ~ i l y  was taken 

to evaluate the use o f  cellulose acetate elecuophoresis for the taxanomie ~epanition o f  the 

bacteria. Also, bacterial isolates were characterized using vaditional physiological and 

bmhemical tern 



Speeifically.ths~warshsonristcdot 

A. Ta~onomy 

(a) e~lu2I ion o f  the use o f  cellulose aceate elecVophoresis in the rawnomy of 

Xenorhobdzrs bacteria 

(b) characterirat~onof,Y~no~h~~bd~~ssp. rXr bovirniiNF s&n 

B. Physiology 

(a) sNdy o f  the effect o f  temperatureon the gmxzh o f  fourXenorhnbdus rtmins. using a 

wider range oftemperamrrhan previourlyemploycd. 

(b) enmination o f  the effect o f  temperature an iroryme patterns of several melabolic 

enzymes in Xenorhobdus bacteria 

( 5 )  investigation of  the influence o f  temperature on farry acid pmfiler in .Yenarhobd~zs 

bacteria 



Chapter 2 

Utilization of cellulose acetate electrophoresis in the taxonomy of 
Xenorhobdus spp. 

Celluloreacetateeleetraphareriswar used to Eeparatethe irarymer of nine enzymes in 

three Xenorhobdus ~pecies. representing four strains Xenarhobdrrr bovrenit NF strain. 

Xenorhabdris bovienii Umel strain. Xenorhobdm nemorophiltrr All strain. and 

.Yenorhabdus rp. TX strain. On the basis of isozyrne patterns. the four strains could be 

dirtinguirhedfmm one another. The irozyme patterns of four enzymes [Fumarate hydratase. 

rnalate dehydrogenase MAD-). malate dehydrogenase MADF) .  phosphoglucomutare] 

were species-specific.The NF and Urnelstrain o f X  bovieniiwcreseparableon the basis of 

their irozymc pattcm of arginine phosphokinase. In addition. the ivlryme p a u r n  were 

found to be temporally stable for all enzymes in the NF and Umea strains. except ME 

(Ume8 ruain) and IDH (NF strain). There findings indicated that scllulose acetate 

eleetrophorerircould k a useful tool for the identifisatianofXenorhobd~o rpccics or even 

strains. 

23. lomduclion 

Xrnorhnbdur rpp. are muNalirtic bacteria which are earried in the intestine of 

entornopathogenie nematales. Sreinernemo spp (Bird and Akhurrt, 1983). Since the 



early 1980's. these bacterium-nematode complexes have been under dcvelopmenr as 

insect b i o c o n ~ ~ l  agents (Kaya er a/. 1993: Akhwst and Boemare. 1990; Boemare er a/. 

1997: Poinar. 1990). Bacteria play a vital mle in  the pathogenicity and repmduerion of 

thew complexes. They pmduce t o x i n  to k i l l  insect hosts (Aburst. 1982. 1993: Kaya and 

Gaugler 1993) and pmvide nuUientr for nematode reproduction (Akhmt and Dunphy. 

1993: Poinar. 1990; Font  and Nealron. 1996: Fom et ol.  l99n.  

Biochemical approaches have been ruccersfully utilized for the taxonomy of 

X~norhabdcrs rpp. and Photorhobdur rpp., basterial rymblontr o f  Slainernemo and 

Haerorhnbdiris nematodes respectively. By restriction analysis of PCR-amplified 165 

rRNA genes. 27 scams o f  Xenarhobdrrr and Phororhabdtrr h m  a wide range of 

geaeraphical and nematode host source were found to be comprised of 17 genotypes. 

The 27 rm in r  *?re divisible into two heterogeneous clusters. one including all the 13 

Xenorhabdur ruanr and the other including all the I 4  Phororhobd~ ruainr (Brunel rr 

01, 1997). Comparison of partial 16s rRNA gene sequencer wsr used to determine the 

phylogeny of Xmorhsbdu and Phororhobdvs species (Rainey rr oL, 1995: Llu era/.. 

1997). By  means of DNA-DNA hybridinition. DNA  relatedness between Xenorhnbdcrr 

rpecler was rrudied. and consequently a new genus, Pharorhobdur. was pmpored for 

bacterial asrociakr of Hererorhobditis nematodes (Boemare el 0 1 .  19931. 

t ir parsible that physiological criteria other than DNA profiler could also be used i n  

h e  taxonomy of these bacrcria For example, Janre and Smils (1990). after eramining 

Ulc fmy acid patterns o f X  nernatophilus andX (P.) hrrninescem, concluded that the two 
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Xenorhobdus rp. TX ruain was isolated fmm S riobrovir T X  strain. originally pmvided 

by Dr. H. E. Cabanillas. USDA. ARS, Cmp Insectr Research Uni t  Werlaco. Texas. A l l  

the nematode iwrlater were recycled through Galleria meiionclio larvae at 2Q°C 

(Woodring and Kaya. 1988) for 26 months before being uwd for bacterial isolation. 

2.33. Barterial isolstioo, idcntifmtion, and subculture: Bacteria were xrolared from 

G melloneilo larvae that had been infected by nematodes. bared on the pmedvre 

described by Woodring and Kaya (!988) . Hemolymph of insect larvae that had been 

infected 24 h o r n  previously was rmaked onto NBTA plates (nutrient agar with 

bmmothymal blue dye and Uiphenoltetrazolium chloride). Bacteria were puritied by 

svbeulwring three conscsutivc timer on NBTA plater a 2S°C The purified bacteria were 

cultured on plates of BUGM medium (Car.'70001. Biolog, Ine.. Hayward. CA I  nuice at 

25'C. then suspended in  sterile saline and transf-d into each uz l l  o f  Biolog GN (Gram 

negative) mxcroplates. AAer 2448 horn '  incubation at 25'C. a Biolog Microstmion 

Systemn' was ut~lired to identify the bacteria (Biolag. Hayward, CA). Wells were read 

mine an automated plate reader. 

Following isolation and identification o f  the bacteria, X bovrrnii NF and Umed 

strains wen  maintained on NBTA plater at S°C, X nema!ophilur A l l  rmin at IO'C. and 

X rp. T X  strain at LS'C with a rubcullwe lntcrval of approximately one month. They had 

been maintained for about one year by the lime that they were cultured for irazyme 

omaerion. Each o f  Ute f w  strains war cheeked periodically for pvrity by using the 

Biolog Micmrtatian Sy*mTUand jm t  before rample preparation for e n q m e  analysis. 



233. Preparation of baetelial rulhlm end enyme erlr=efion: 

The bacteria in their primary phare on NBTA plates (primary phase: blue colony: 

secondary phase: red or pink colony) were uwd to inoculate 250-ml lryptic soy bmth 

(TSB) (DIFCO. Detroit MI) in a 500-ml Erlenmeyer flask with a cap They w e e  

cul-d at 2% with shaking at 100 rpm. The bacteria were harvested at rhe log phase 

(on the basis of optical density of the cul-) of their growth by centrifugation at 14.740 

gat  4'C. and aashed three timer with O.15M NaCI. Basterid cul- fmm rwo flasks was 

combined into one sample. and for each nuain there were t h  sampler (n=3) fmm sir 

flasks. In total. 24 flasks were utilized in this study. Hnrverted bacteria were kept at -20°C 

for 1-2 days. Each m p l e  was resuspended in 3-4 ml buffer (0.09M Tris HCI. pH 9 00). 

To avoid enzyme degradation. the test tube conraining the heclerial rurpsnrion was put 

into ice while the bacterial sell walls were broken using a Braun-Sonic 2000 ronicator 

The resultant suspension was cenvifuged at 24.790 g a t  2'C for 20 minuter. The enzyme 

extracts (supernatant) were bansferred into 1.5-ml polypropylene miemcenrtibge tubes 

a d  immediately fmren at -70°C until eleuaphoresis wa carried out. 

2.3.1. Cellulose neelate rlectmphomsis: Cellulose acetate plater (Car.' 3033, Helena 

Labornotier, Beaumont, TX) were pre-soaked for at lssst 20 minuter with Tnr-Glycine 

buffer (3.Og Ttis, 1 4 . 4 ~  glycine, LL distilled water, pH 8.5) before samples were loaded 

onto them. A IO-pl aliquot fmm cash sample was placed in a well in a sample holder and 

maintained on i u .  Then. 0.24.4 r l  of Ihe sample was spotted, bascd on the enzyme 



sensitivity to staining, anto Titan Ill Zip Zone Cellvlose Acetate Plater with a Super Z 

Applicator (Helena Laboratories. Beaumont, TX). NcnL the plates were laid in a 

horizontal electrophoresis chamber containing Trir-Glyeine buffer. Eleemphorerir lasted 

for 14-20 minuter at mom temperature (20-2S°C) uith 1.5 mA c m t  per plate. 

2.3.5. Enzyme staining: The procedure of Heben & Beaton (1989) war used for the 

staining of following enzymes: arginine phosphokinase (APK), karatc h y d r a ~ ~ e  

(FUM). glycerol-3-phosphsre dshydragemse (GPDH). i s e i m t s  dchydmgcwe (IDHI, 

malatc dehydragenav (NAD-1 (MDH). malats dchydragenase fNADP7 (ME). 

phorphoglucamuose (PGM), 6-phosphogluconate dehydmgeme (6PGDH) and 

phorphoglucase iromerav (POI). The fixative (acetic acid:methanol:dirtilled water- 

1:4:10) war wed to fix the iroryme banding p a n m r  for 10-15 minutes. ARer staining 

and firing. the plates were leh to dry overnight m the dark and photographed The 

migration distances of rroryme bands were memmd,  and their relative el~nophoretlc 

mobilities (r:cm'/vc/v) were salculared (Lehninger, 1979). Based on the criterion 

recommended by lagdale el a/. (1996). irozyme bands among lrolarer were considered to 

be the m e  band if Ulat their mobility varied only within 10% ofone another 

2.3.6. Elraminnlions of stabilify of irorymc pnneros: Five months later, after preparing 

the samples for the above examinations, dl the above procedures were repeated for the 

NF rmin and U m d  Etrainr of X bovienii in order to examine the is ryme stability 

relative to time and bacterial maintenance. 



2.4. Results: 

2.4.1. ldentilication of bacteria: AAer 18 h o w -  incubation on Biolog plater. the 

bacterium isolated fmm S fzitiae NF rmin and that from S mime UmeA strain werc 

identifled as X bovienii with SIM (similarity) valuer of 0.800 and 0.705. respectively. 

The bacterium fmm S corpocopsoe All rnain was identified as X nemo!oph~lur with 

SIM value of 0.553. The bacterium fmm S riobrmis TX rrrain was not identified as 

belonging to either X nemarophiltrr or X bovrenri. but w an cqual match to these two 

species based an the Biolog SIM value (Table I). 

2.4.2. Elretrophamis of bsrtrlial emymrr 

(1) Argininephosphokinosc (APK): The irozyme banding panem for this enzyme 

dirt~nguirhcd X bovienii from both X nemorophiicu All strain and X sp. TX strain 

which were indirnnguirhable fmm each other. The banding pattern of the NF strain of.Y 

boneni, contained one more cathodal band than that of the Ume& strain of this species. 

The Umel strain o f X  bovrenii displayed a banding panern conrirrlng of !Am isozyrna. 

while those of the other h e  isolates comprised four lrozymes (Fig. 1. Table 2). 

(2)  6-phorphogluconote dehydmgcncue (6PGDH): X bovienii was dirtinguirhoble 

From X nemorophilur All d n  andX sp. TX suain on the basis of rhe isozyme banding 

panems ofthis e-e whileX nemarophiiur All strain andX rp. TX s u n  were 

indistinguishable fmm each other. The two stains o f X  bovienii had identical banding 

patterns. All ofthe four isolates showed two i s o w e  bands (one anodal, one cathodal) 

(Fig. 1, Table 2). 



(3) Malate dehydro$enorc WAD) (MDH): This enzyme rhowed species-specific 

irozyme patterns. Xenorhabdus bouienii NF and Umea d n r  had an anodal band and n 

cathodal band while X rp. TX strain enprerned one e m  cathodal band and d 

nemolophiius All strain had five cathodal bands (Fig. 2. Table 2). 

(4) Furnan-re hydmtose (FUM): The irozyme pattern for this enzyme was also 

spccicr-specific. Xcnorhobdr~s nernorophzlr,~ All re in  was the only isolate that lacked an 

anodal band. X sp. TX strain differed fmm R nemarophilur All strain by having an crm 

cathodal band. The rwo strains of X bovienii contained the m e  two is-es (one 

cathodal. one anodal) (Fig. I. TableZ). 

(3 ~~ycero1-3-phorpllofet dehydrogenore (CPDH): on the basis of the ixlzyme 

pattern of this enzyme, X bovienii NF and Urnel strains were indirtlnguirhable lram caeh 

other. but distinguishable fmm the two other species, whore iszyme parterns werc the 

m e  as each other All four rminr  showed one anodal band. but the X bovienii NF and 

Umed strains expressed an extra carhodal band not present in the other two species (Fig.1. 

Table 2) 

(6) Ismiffafe dehydn08~nare (IDH): All of the four isolates showed the some 

isozyme pattern The pattern comprised an anodal band and a cathodal band (Table 2). 

(7) Phorphoglumrnutcue (PGM): This e-e gave species-specific irazyme 

patterns. X bavienii NF and Umel strains had an modal band and a cathodal band. 

Howevsr, X nemarophiiur All swain showed another cathodal band (i.e. h e  irozymer 

total). Xenorhobdz,~ sp. TX only had an anodal band (Fig. 2, Table 2). 



(8) Plrorplroglvcore ironreme (PGI): According to the irozyme pauems of this 

enzyme. X nematophiltlr All strain was distinguishable fmm the other three strains. The 

other three strains had the same irozyme panem (one anodal. one cathodal band). X 

nematophilzrs All strain only had a cathdal band (Fig. 2. Table 2). 

(9) MaIafe dehydrog~nare (WADP) (ME): Like malare dehydcagenaze (NAD-I. this 

enzyme also showed npeci~spesific isozyme patterns. X bavienii NF and UmeA strains 

had an anodal band and a cathodal band. However, X sp. TX rmin rhowed another 

cathodal band. and X nwnorophiiur All smin expressed the anodal band and three 

cathodal bands (Fig. 2, Table 2). 

2.43. lsazyme stability: Compared to the former irozyme patterns. the Ume& smin 

displayed an additional cathodal irozyme band for ME. and the NF strain rhowed an extra 

cathodal band for IDH. All the other isozyme panems tested in these two strains were not 

chanaed within five months. 

2.5. Diseusrioo 

Using the Biolog system, three of the four bacterial Nains were identified ar 

belonging to currently dacribed species. The bacterium isolated fmm the TX smin o fS  

riobrmii war an qua1 match for eitherX nemotophnlw (SIM value: 0.263) or X bovienni 

(SIM value: 0.2631. Thsse matches were closer than far any ather species of Gram 

nsgativc bacteria included in the Biolog database. This eomspand. with the generally- 

accepted vicwoint that the bacterium associated with nematodes of Steinemematidae is a 



Xenarhobdzrs species (Smart. 199): Cabanillas zr 01,1994). Funher studies are n d c d  to 

assign the bacterial seain isolated from S. riobrwir TX strain to a currently described 

rpecles ofXenorhobdus other than these that were scanned. or ro designate i t  as n new 

rpsies. 

This study indicated that ceilulore acerare elecuophorer~r was effective in  separating 

the three s p i e r  ofXenorhabdvr "red in this study fmm one another on the basis of the 

isomme banding patterns of their enzymes. Four (FUM. MDH. ME and PGM) of h e  

nine enzymes studied produced %peeler-specific irorymc banding patterns. APK 

discriminated between X bovienri NF and Umei  strains. A l l  of the enzymes displayed 

temporal stability (Sve months). except for M E  (Umei  ruam) and IDH  (NF strain) The 

latter enzyme pmved unimportant for taxonomic purposes in  any event. since i t  could not 

distinguish between species. I t  would further appear that M E  should nor be used for 

ti~xonomic purpo~es. rince elecrmphemgrams, spaced five month apan. were nor 

repliable. Howver, a cambinarion of the APK isozyme panem and the partems of 

FUM. MDH, PGM would be sufficient lo di~sriminste between each of the four rttams. 

Using the same technology. Jagdale er mi. (1996) studied elght enzymes for the 

taxonomy of Sreinernemo nematodes, horrr of Xenorhobdzrr bacteria. Their mearch 

showed that a combination of isoryme banding pattern could be u e d  to distinguish tive 

isolates fmm one another. Using acrylamide gel elecoophoreris, Hotehkin and Kaya 

(1984) separated the isozymes of four enzymes [glucosed-phosphate dehydmgenase 

(G6PDH). lactate dehydmgenase (LDH). M D H  and 6PGDHl in  t h e  Xenorhabdur 



species. which were formerly elassikd ar subspecies (subrp. nemarophilur. rubrp. 

bourmrr. md rubsp. poinon0 of X nemotophilui There authon showed that iroryme 

panems could be u ~ d  to separate thehere species trom one another. In the same audy, the 

irorymer of four enzymes (G6PDH. LDH. MDH and PGM) were &mined for Ihe 

isolates of P (X) It<minescenccs. This inwscigarion indicsted that this w i s s  may 

conrain at lensr two ~ubrpccies. em inn lion^ of 16s rRNA (Liu er a / .  1997: S d l b  er 

oI.. 1997) and famy acid profiles (Janre and Smm. 1990) also showed that there may be 

rsvual dlrtlnct groups in P.(X) luminescenr. 

Cellulose acetate electmpho~rir is simpler. more rapid, and more sensitive than 

starch or polyacrylamide gel elecrrophorcsis (Ensteal and Boussy, 1987). Its m i n g  

time for nematodes' e w e s  in only 20-30 minutes (lagdale rr 01, 1996). In the cnse of 

Xenorhobdus bacterial enrymer only 14-20 minutes was needed for good eleetmphoretic 

r e p a l i o n  of their isazyme bands. 

Whllc this study show that cellulose acerate electmphocesir could be a useful 

determinative tool to discriminate bacterial maciater of entornopathogenic nematodes, 

further studies are needed before it can k advocated with confidcncc. The scope of the 

inquiry ~hauld be braadensd tu include a greater number of bacterial isolarer and 

enzymes. 

This study showed rhat the isarymc p a w n s  were relatively stable over time. 

However. Ihe posdble effect that miuntsnance and cvlrure temperatures may have on 

imzyme profiles should be ?&en into consideration. In a *cent study, Iagdnle and 



Gardon (1998b) have also shown that certain irorymes i n  steinemematids are associated 

with the temperatures at which the nematodes had been maintained or cultured and that 

the isozyme bandlng panems of certain enzymes at a fined culture temperature were not 

consrant over time Thw. i t  is not known with certainty that the heisozyme profiles reported 

herein me exactly the same ar those of the field population from which the laboratory 

smck colony origmated. The thermal and temporal rabil i ty of the isoryme banding 

panems of the baclek need to be evaluated funher. 



Fig. I: Elecmphemgrams of four enzymes in four ruainr belonging to Ihree rpecier of 

Xenorhobdus at P C .  All: Xenorhobdus nemorophilur All strain: N F :  Xenorhobdur 

bovrenii N F  ruain; TX: Xenorhobdzrr sp. TX strain; Umea. Xenorhobdur bovicnii 

Umsi strain. Arginine phosphorinare (APK). 6-phonphogluconate dehydrogensse 

(6PGDH). f u m t e  hydratare ( F W .  glyceml-?-phosphate dehydmgenase (GPDH) 

Arrow heads indicate the line of m p l e  application. Bands were numbered In 

increasing numerical order relative to the distance that they migrated from che original 

line of sample application. 





Fig. Z: Elsuophemgramrof ~ O O O " Z ~ ~ " Z Y " Z Y  in fourswa~~u belonging to k e  species of 

XenorhobduF at 25'C. All: Xenorhabdus nemotophilus All ~uain; NF: Xenorhobdzrr 

bovreni; NF strain; TX. Xenarhobdus sp. TX swain; Um& Xenorhabd~o bovienti 

U m d  main. Malate dehydrogenase (NAD') (MDH), malate dehydmgenare (NADP-) 

(ME), phorphoglucow Isomerase (POI). Phosphoglummuta~e (PGM). h w  heads 

indicate the line of m p l e  application. Bands were numbered in increaring numerical 

order relative to the dirranee that they migrated h m  the onginal line of  sample 

applcation. 





T ~ b l e  I: simikrify va lue  or baeccri., their mutonlistic mematodes and geographic origins 

Bacterium SIM ralue Nemacodr Geographic origin 

X bovienii 0.800 S fcifioo Newfoundland. Canada 
(NF strain) (NF ruain) 

X bovrenii 0.705 S felriii Northem Sweden 
(umel sliain) (Umei strain) 

X nrmatophil8rr 0.553 S c a r p o c o p s ~ ~  Georgia. U. S. A 
(All srrain) (Ail sliain) 

,Yenorhobdnr rp. 0.263 S riobrm~~ Southern Tcru. USA 
ITX suam) (TX ruain) 

Notes: SIM valuer w e e  the readings aher 48 hours' incubarlon on Biolog plater at 25'C. 

The value of X sp. T X  strain waz an equal match for either X nemorophilzrr or X 

bovienii. 



Table 2: Mean elretropboretic mobility (emfe.lv) o f  irorymrs of  several enzymes in 
four isohtu ofXmorl,obdusrpp. 
Number X nemorophilr,~ X bovienir X bovteni; X rp 
of bands Al l  strain NF rmin Umei strain TX strain 

Arginine Phorphoklnare (APK) 

1 0.309 0.509 0.509 0.549 

i 0.862 0.823 

2 1.411 1.528 1 .A50 

3 2.194 2.312 

4 3.174 2.939 3.056 3.213 

Malate Dehydmgenac (NAD') (MDH) 

0.549 0.549 0.514 

1.371 1.371 1.474 

2.640 



Table 2: Mean elretmphoretie mobility (cm%er/v) of ismymu of seven1 enzymes in 
four isolates ofXenorhobdurspp. ((continued) 
Number X nemarophilrrr X bovhnti .Y bovrenii X sp. 
of bands All stram NF main Umel strain TX main 

Fumaratc Hydratare (FUM) 

I 0.470 0.470 0 470 

I 1.371 1.332 1450 

2 1.959 

3 3.056 2.821 

4 3.409 

Glyccral-l-Phosphate Dehydmgenase (GPDH) 

I 0.514 0.514 0.566 0.547 

1 2.537 2.503 2331 2.537 

2 3.188 2.931 

lsoeiuate Dehydmgcnase (IDH) 

I 0.617 0.617 0617 0.669 

1 2.880 2.983 2.983 2.777 



Table 2: Mean eleefmphorrtie mobility (cm%eclv) af i rmymn of swernl enzymes in 
four isolser ofXenorhobdurrpp. (continued] 
Number X nemoroohilus X bovieni; ,Y bavieni; X so. 
ofbandr Ail $win NF rrraln Umel $win rX strain 

Malate Dehydrogennsc (NADP-I (ME1 

I 0.480 0.514 0.514 0.514 

I 1.371 1.440 1.474 

2 640 2.777 

3 3.017 

4 3.428 

I. All the bacterial m p l e s  werc prepared at 25°C with shaking at 100 rpm. Three 

samples ("=;I were obtained for each isolate. Each sample consisted of the cornblned 

contents oftwo flask. In total. there were twelve ramples (24 flasks) for the four isolates. 

2. Values (XI@) are the means ofthree rampler For each enzyme of each strain. irozyme 

bands were numbered in increasing numerical order relative to the dinance t b t  they 

migrated cathodally fmm the origin. Negative bands (numbered as -I) means Ulat 

enzymes electraphoretically move towards the anode while positive bands towanis the 

cathode. Dasher mean the absence of bands Bands were conrxdcred the same if their 

electrophoretic mofilify values were w i t h i  10% of one another 



Physiological characterization of Xenorhabdus sp. TX strain and 
Xenorhabdus bovienii NF strnio 

3.1. Absrnrr 

Xenorhobdur rp. TX stain (undescribed) and Xcmrhobdw. hovienii NF r m i n  

(newly-inolared). bacterial rymbionts of entornopathogenic nematodes. were 

characterized phyriologically and bioshcmically. n~he TX strain diflmed from any o f  the 

6ve r p i a  ofthe gcnw,Yrnorhohdurar P ( X I  luminercem a related nemarode~ymbianr 

i n  at least one of its following eharaeterintier: g i owh  at 1U"C (-). growth at 3PC (+I. 

earalaw (-). bioluminescence(-). absorpnonofbmmothyhymol blue dye (+I. lipase (-1. urense 

(-). phophatare (-), alkaline phophatase (w: 4). ribore acidification (-1. glycerol 

acidification(+), ralicinacidifisarion(-1. cefalothinreirtance(-). the mixture o f  amoxilline 

and clavulan~cae~d rcrirtance(-). and esculin hydmlyris (-). On the other hand. all the rear 

used 10 this rrudy ~su l t ed  i n  identical reactions for bath the NF ruain and the UmeA strain. 

suggesting that the NF rlrain could nor be dirringuirhed from the Umel  stain h u g h  

somonphyriologisaland biochemicalrcrts. 

3.2. Ioboductioo 

Entomopathogenie nematodes carry bacterial rymbionts that are responsible for 

ki l l ing the insect hosts (A!&x% 1983: Dunphy. 1994. 1995: Clarke and Dowdr. 1995). 

Two bacterial genera, Xenorhohdrrr and Pho!orlmbdu~ are assoeiatcd with nuo nematode 

genera Sleinrmemoand Heurorhobdiris, r e rp t i ue l y  (Boemare cf 01, 1993: Ehles a a/. 



19881. Agt~nnematoderpeciesonly naturallycamesa specific bacterial rpeoier.althaugh 

one rpeif ie bacterial species may be asociarcd with several "ematale species ( A k h u n ~  

1983. 1993: M u m a n d  90-e. 19901. To date. only five species of Xenorhabdrrrand 

one species of Photorhobdzrs have been described and physiolagicaily characterized 

(Akhmtand Boemm. 1988; Forstera/.. 1997: Holteral.. 1994: Nirhimumerol. 1994). 

Steinernemoriobrovir is an effective biological conuol agent agaimt lepidopteran 

perrr ar rubtopical tempe-r. It showed high pathogenicity ro the eom eanvarm. 

Hrlicoverpo zra (Boddie). which attacks a wide variety of cultivated empr such as com. 

cotton. tomato. and soybean (Cabanillas and Raulrton. 1994. 1996a. 19%b]. Ar a 

canreguence,rhis nematode has been commersiallypmdused for pert contol. However. its 

bacterial symbiont has not been characterized m d  identified. At  the ather r empmtm 

exueme. a strain of Sternernemafilrior isolated Fmm soil i n  Newfoundland. Canada 

(Jagdale rr 01. 1996). is a candidate for &vclapment as a biocontml agent against inwcr 

prcr  in  cold elimatu. Studies have been done to evaluate the efficacy ofthrr nematode 

relative to other species at a variety of laboratory tempemfurer (Jagdale and Gordon. 

1997a). However, the bacteriaassociated w ~ t h S  JelrioeNF strain has not been studied. The 

p q o s  ofthis study was to chc te l i ze l he~e  two bact~rialstraimphyriologicaily. 

3.3. Mnterinls and Metho& 

33.1. Bacterial sourn .  r o d  maintemancr: Xenorhobdzrr nemaophilur A l l  strain w a ~  

isolated Fmm Slelnemema carpocopm Al l  strain, which was provided originally by 



Plant Produes Ltd. Brampton. Ontario. Canada. Xenorhobdur bavienii NF ruain w 

isolated from Srein~mnemaf.l~ioe NF rwin. which was iwrlated fmm  oil in an organic 

garden near St. Johdr. Newfoundland. Canada (lagdale er 01 1996). Xenorhnbdus 

bovienii Umea swain was isolated from S felliie U m d  mi" .  which war provided 

originally by Dr. R. West. Canadian Forest Service (CFS), St. lohn'r. Newtbundland. 

C-da from a noek colony that had been initially obtarned fmm Biolog~f Bioconml 

Pmducrr. Willow Hill. PA. Xenorhobdtrs rp. TX Nain was ~wrlaied from Stcrnernemcr 

riobrmii TX shain. originally pmvided by Dr H. E. Cabanillas. USDA. ARS. Cmp 

Inma Research Unit, Werlaso. Texas. All the nematode iwrlatu were recycled through 

Galleria mellonello larvas (Wooddng and Kaya 1988) at 20°C for 26 months (lagdale rr 

01.. 1996) before being used for bacterial irolarion ( x c  Chapter 2 for rhe isolation 

method). Aher irolatian and identificatioh X bavieni! NF and Umel suains were 

mainmined on NBTA plates at j0C. ,t nemofaphil~rr All rtraln at IO°C, and X sp. TX 

rUain at 15'C with a rubcultvre interval of approximately one month. They had been 

maintained for about one year by the time that this rNdy war carried out. All of the four 

isolates were identified by using a Biolog Microstation SystemTM and cheeked 

periodically, and just bcforethir rtudy, forculorre purity 

Bacteria at their primary phase (blue colonies on NBTA plater) were rueaked onto 

plates of nulien1 agar (NA). Colonies that had grown ar 2j°C for 24 h o w  on NA plates 

were u e d  to m&e the bacterial svrpensionr for all the less  in this rtudy. 



333 .  API 50 CH tmt: An API 50 CH strip (50300, bioMCricw Vitek. Inc.. Missouri. 

USA) i r  composedof 50 micnuber.eashconlaininga singlecarbohydrateor is derivative. 

except one microtube which conlainsno rubmateand is usedas the negative control. I n  this 

mdy,  the strip is used to examine the bacteria's ability to produce acids fmm 49 carbon 

s o m s  under anaerobic conditions. The carbon rourccr were carbohydrates or their 

derivatives. 

Using a sterile swab. bacterial colonies b m  an N A  plate were suspended i n  3-ml 

rterile distilled water until this suspension had a turbidity equal to that o f  a 4.0 McFarland 

standard. One mlllilitreaf this suspension was - f e d  into an ampoule of API 50 CHE 

medium (50400, bloM6rsux Vitck. Ins.. Missouri. USA). Using a sterile ptpette. the 

eonsequentrurpenrlonwas n incd and disvibutedinro each ofthc 50 microtubesofthe API 

50 CH strip Then. all o f  the micmmber were overlayed with sterilizedmineral o i l  to create 

anaerobic conditions. Finally, the %rip wm placed i n  a incubation nay containing wafer to 

avoid drying af  the bacterial culture I t  was incubated at 25'C with periodic reading. n e  

development o f  yellow color i n  a micmtubc indloateda positive reaction (acid production), 

and redcoloras uas shownin thecontrol micmtubeindieateda negativereaction. 

333 .  ID 32 E test: The I D  32 E strip (bioMerieux Vitek, Inc.. Missouri, USA) consists of 

32 t e n  cupules, eachconlaining a dchydatedreactive medium. It may be used to enamme 

bacterial cnrymatis activities, the abililifyfo utilize sarbohydrate~and to pmduce indole. 

Bacterial colonies on an N A  plate wcrs suspended i n  0.85% sterile saline (0.85 g 

rodiumchloridein 100 m l  dinilledwater) until this suspension had a turbidifyequa1 to that 



of a 0.5 MeFarland standard. Using a Gilron pipettcrnan. the bacterial suspension was 

distributed into eachofthe 32 test cupuia. Then, the rtrip was placed in an incubationmy 

containingwateeto avoid dryingofthe bacterialeulture.and incubatedat 2 5 C  for 24 hours. 

T e t  r e a ~ t i o ~ w e r e  read according to the instrUctionsiicIuddd withthe ID 32 E test paneis. 

3.3.4. API ZYM let: API ZYM strip (25200. bioMErieur Vitck. Ins.. Missouri. USA) 

consists of20 microtuben. among which one control microtube conrains no rubr~are  and 

the other 19 miemtuber allowcdcnzymatic rpactionr. Bacterial colonicr on NA plates were 

suspended in 0.85%NaCl slurion until this ~unpensionhad ad turbidity between McFarland 

No. 5 0 and No. 6.0 standard. Using a Gilson pipetteman. 65 pl of this runpendon war 

distnbutedinto each of the 20 microtuks.Then. the rtrip was placedinto an incubationtray 

containing water to avoiddrying the bacterialculture. After 8 hourr'ineubarionat 25'C. one 

dmp of ZYM A reagent and a drop of ZYM B reagent wcrp added to each of the 

mamtukr .  Colours developed for five minute. Colourr (violet. orange. blue or bmwn) 

indi~atedposiriveresrs while pale yellow meant a negativetest. A mluerangtng from 0 to 5 

(bmsdon colour intensity) war assigned to each reaction corresponding to rhe coloun on a 

eolowehan. 

3.3.5. ATB Antibiognm test: The ATE rtrip is composedof 16 pairs of cupule. 14 of 

which contain antibiotics at one or two eoncenrrationr, allowing e m i n a t i o n  of bacterial 

resistance to i s 2 1  antibiotics. Bacterial colonies on NA plates were suspended in 0.85% 

NaCl solution until chis suqsnrion har a turbidity equal to tbat of a 0.5 McFarland 

standard. Ten microliters of the suspension was wnrferred into an ampoule of ATB 



medium and homogenized. Using a G i l m  pfpeneman. 135 p l  of the rcrultmng wspensxon 

wss diruibuted into each o f  the eupulcr. Then the m i p  was placed in an incubation m y  

containing water to prevent the bacterial culture from dqing. After 24 hourr' incubationat 

2S°C. viriblecloudincrsin a cupule indicated= paririvererirtancerert 

35.6. Other test*; (I) catalare tcrr: A baetenal colony from a nutrient agar plate was 

emulsified into one dmp o f  3% hydrogen peroxide on a gl-r slide Immediate bubbling 

indicated a positive test. (2) Phorphatare test: Bacteria were streaked onto phosphatase 

medium plater AAer five days' incubation one drop of ammonia solution (40%) was 

placed in the lid ofthe inveitedplare,andthe culture plate was put over it (upridc-down1.A 

porttive test was indicated by the helonier turning red. (3) Oridaw test. A piece of filter 

paper was placed an a glaa slideand rnoirrcned with ~teriledistilled water Udng a plastic 

applicator. several colonies were rubbed onto the moistened filter paper. Then. a dmp of 

OXreagent(te-ethyl-pphenylcnediaminn: isoamyl alcohol= I g  : 100 ml) war added to 

the filter paper. A violet colovr development within two minuter indicated a podlive test. 

(4) Esculin hydmlyrir: Esculin bmth war inoculated with one drop of bacrerial rurpenrion. 

and incubated at 29C for 48 horn. A brownish black appearance and the absence of 

fluoreseenceindi~ateda positiverest. (5) Absorptionof bromothymal blue (BTB): primary- 

form bacteria were streaked onto aNBTA plate Inuuisntagarcontaining0.0025% ( M o l )  

BTB and 0 004% (dvo l )  uiphsnylteWloliumchloride1. The formation o f  blue colonies 

and red colonies after 3-5 days' incubation indicated a positive t s t  and a negative test 

rcspeetirply. 



3.4. Results 

All of the four bacterial strains rhowcd negative reaerionn for indolc production and 

ersulin hydrolysis (not included in the Tables). API 50 CH andior ID32 E tests showed that 

Xenorhobdtrr ~ p .  TX rtmih the bacteriwn isolated fmm $he nematode Sreinernemo 

riabrovir TX w i n ,  like the other t h e  rmnr tested producedacid from glyceml.glucore. 

hructorc. mannose. inanitol. N-aceryl-glucoramine. maltow. trehalore. and S-kcto- 

gluconare. However. it could not acidify ribare. while the other three strains could In 

addition. X bovienri NF strain showed the same pattern of acid production as rhat by the 

Umel strainof the namespier  (Table I). 

On the basis of API ZYM and ID 32 E teas. the TX main of Xenorhobdus sp.. like 

the other h e  strains tested. produced leucine arylamidare. N-aeetylg-glucoraminidare 

and m-glucoridase.and showed weak reactions for esreiase (C4). crterase lhpase (C8). acid 

phorphatase.naphtho1-AS-sI-pharphohydmla nemorophihrrAl1 stminand unlike 

the two strains of X bovienii. it showed a we& reaction for alkaline phosphatare. 

Additionally,The NF strainand Umdrtrain o f X  bovienti had the same enzyme patterns in 

thir study (Table2). 

Xeeorhabdtlr rp. TX strain displayed resistance only to amonlcilline in the nineteen 

antibiotics tested. Importantly, it was sensitive to eefalathin while the ather three strains 

wsre resistant to thir antibiotie(Tab1e 3). Like the UmelsrainofX bovienii the NF smin 

of the same rpecier was resistant to amaxilliieand cefalothi~and pmially resistant to the 

antibioticmixtursof amonillineandclawlanicacid. 



The chara~terirticn that reem o f  imporrancc i n  distinguishing among species and 

rrninr o f  ,Yenorhobdrrr and Phororhobdus are summarized (Table 4). Results for 

Xenorhnbdtrrpornorrr. Xenarhobdzrr beddingri and Phororhobdus itrmmescem are tahcn 

fmm che literature. The TX rwin of Xenorhobdus sp. shares the inabil~ty to acidify ribore 

rvlth X poinorii and Xenorhhbdzls,opon!czrs The TX suain is distinguishable fmm the 

others by irs inability to gmw at 10aC and its rweprlbi l i tyto cefalochin. The NF r& of 

X bovienri is identicalto the Ume& strainof the same speciswith regards to all the features 

listed i n  Tablc4. Xenorhobdurbovienriappem morphologically inseparable fmm the other 

Xenarhobdur isolates. 

3.5. Discussion 

I n  thir study. the TX strain of Xenorhobdtrr rp. and the NF strain of Xenorhobdus 

bavienir were phyriologxeally and biochemically characterized. With the enceprlon o f  

mistance to eefalarhin. no single t s t  allowed unequivocal reparation o f  either o f  these 

isolates Fram the athen prsviourly examined or thore that were included in  thir study. 

However, differences b-en these isolates and other individual species were apparent and 

the data suggested char ar least at the rpc ier  level. a combination o f  phyriologicnlfeaturer 

may be uceful in  reprating the bacteria The TX nwin differed h m  Xenorhobdrts 

nemarophilm(Ho1t er a l .  1994) i n  its temperawccange for grawlh, its inabilityto produce 

acid fmm ribose, and its sensitivity to cefalothin and additionally from Xenorhobdtrr 

bovienii (Baemare and Akhmf 1988: Halt rt ol ,  1994) i n  its we& reaction far alkaline 



phonphatareand irr renririvityro the antibioticmixme (amoxillins& slavulanicacid). The 

TX swin ofXenorhabdcusp. was distinguishable tiom X beddingri(A!&urrr 1986%: Holt 

er oi.. 1994) in its inability to pmducc acid fmm salieinand its negarivereactronr for lipare 

and phorphatase.The TX rwinditiered fmmXeeorhabdurpoino~ii(A!&u~~t. 1986b) in its 

ability to absorb bromothymol blue dye. and CIS negacive reaction for lipase. I t  was also 

distinct from Photorhobdt,~ izminercenr (Holt rr a!.. 1994) in  its inability 10 produce 

catalase and bioluminescence. and its negative reaction for phosphatare. Finally. 

Xenorhobdurrp. TX -in dicered from .Y japonieus(Nishimurart a!. 1994) in its ability 

ro gmw at :PC and to pmduce acid fmm glycerol and inritol. and its inability to pmduee 

acid fmm rhamnore. 

The NF rvain o f  X bovienii displayed the same charactccirticr as those o f  the Umel 

~ t a i n o f  the same species in all the tests used in this study However. the NF straindiffered 

fmm rhe TX suainofXenorhobdurrp. in  11% ability ro gmw at ICPC and produce acid fmm 

ribose. its inability co gmw at 34'C, its resistance to cefalothi~ and its partial resistance to 

the antibiotic mixture (amoxilline& clavulanicacid).and additionally fmm Ihe All strainof 

X nrmorophiiz,s in  its inabiliry to grow at :4'C, its megatwe respanre for alkaline 

pharphataseand its piufial resistance to Ihe antibiotic mi- (amoxillinecslawianicaaid). 

The NF strain was dirtingvi~hablefmm X beddrngii in its inabillry to gmw at :doc. to 

hydmlyreerculin, and to pmduce acid fmm salicih its ability to produce acid fmm ribare, 

and is negativereaction for phorpharase.The NF rrrain o f X  bovieniiwas distinct fmmX 

p o i m i i i n  its inability10 growat 34'C. and its capacityofabrorbing bmmothymol blue dye 



and of producing aeid fmm ribose and glyeeml. and additionally fmm Phororhabdtrs 

himinercensin its negativecafalme mponw, itsnbanceof bialuminescence.and is ability 

to produceacid fmm glycerol. The NF srrainofX bowenitwas different from X joponinrr 

RIirhimvraer oi.. 1994) i n  its ability to pmduce acid from glycerol. ribose and insitol. and 

is inability to produceacid fmm Bamnore(Tabls4) 

Acidificatianafcarbohydraterby the UmcaruainofX bovhniigaverimilvrerultrto 

those of prevlour study by B a e m a n d  A*huat (1988) for this swain. Slight differencesin 

results may be caused by the different incubation timer used in  the two studies. For 

example. a positive reaction for ribose was found aRer ten days' incubation i n  my study 

whilc only a weak rerponrc xvss reported after sin days' incubar~on by Boemare and 

A*hmI(1988). Similarly, no sapacityof aeid production From glyeeml wac recorded i0r.Y 

bovirniiafter nw days' incubation(Ho1t er 01.. 19941, whereas n positive lest was reported 

for the UmcA seain o f X  bovienri after six days' incubat~on (Boemare and Akhurrt, 1988) 

and &r ten days'incubaion i n  this study. H0wwer.a negativereaction for glvconatefmm 

my wark is at variance with Ihe we& reaction far he same carbohydrate reported in  the 

study by BoemareandAkhwrt(1988). 

Thc results of acid production fmm some carbohydrates by the Al l  strain were 

consirtmt with what has b m  previously rpported for X nemarophil~rs Several differences 

may be attributed to different incubation time? between my study and rhore of  other 

r e w h e n .  For example, acid productions from glyeeml, trehalore and maltose were 



negative for X nemotphiiuaftcr fwo days' incubation(Ho1t o o i .  1994). and poritivc for 

the Al l  rrrainafX nemorophiiurahcr ten days' incubationin our study. 

In thin study, the NF and Umcl ruaim o f  X bovienii and the Al l  strain of X 

nemotophilur rhowed negative reactions for onidase. catnlasc. phorphatav and -c. as 

war also found to be the ease for X bovienii and X nemorophiitrs (Holr er 01. 1994: 

Akhurr~ 1986% Foist cr al, 1997) However. the negative responses for lip= by the N f  

rm in  and Umel strain of X bovieni~ do not accord wlth what has been reported for X 

bovienri (Holt rr e l .  1994) Thii may be due to differences in senririvitles among the 

vanour procedures wed to identify the enzyme. Even within the current study. X 

nemmophiitlr All strain showed a positive reaction for N-acerylQ-glueoramirudd urng 

the API ZYM test, buta negativereactionur~ngthe ID 32 E test (Table2). 

The patterns of resistance to ant~biarics were different among Xenorhabdrlr species. 

indicatingthat rer~rtancepatternsmay be also useful i n  characteridngthere bacteria. 



Tnhle 1: Capacity of four stmins of Xrnohobdu. to pmduee acids from 
carbohydrates and their derivatives 

X n Ail main L b. NF strain X bUmed smin X sp. TX Euain 
teat 244896240h 244896240h 244896240h 244896240h 
glycerol - - ,"I+ + - - W +  . W + +  . + + +  

rrythriroi 

D-arabinose 

L-binow 

tibore 

D-xylare 

L-xylorc 

adonitel 

0-methyl- 
D-xyloside 

galactose 

glucose 

fructose 

mannose 

sorbore 

rhamnose 

dulciroi 

inosifol 

mannit01 

sorbitol 

a-methyl- 
D-mannoride 

a-methyl-D- 
glucose 

N-aecfyi- 
glucorvnine 



Table 1: CaorciN of four stmios of Xenorhobdur to orodure acids fmln 

sucrose . . . . . . - - - - - .  . . . .  

trehalore - - w +  - - w +  - - - +  . . . +  

. . . . . . . . . . . .  inulin . . . .  



Table 1: capxily of four 9Rai.s or X*no,hobdus or produring arid3 rmro 
carbohydrate and their derivatives (continued) 

X r All -in X b NF strain Y b Umel strain ,Y rp. TX strain 

- .. 
\ucc- I R e  rcwlr, Blr galxmronate. pnla<$norc. milooarc mi <&.hiroc am from ID 
32 F ~cqt uwh d l  the olherr tram MI 50 CH lest 



Table 1: Eozymatir ncfivitia of four swains ofXenorhobdus spp. 

X nemolophrftrr X bovienxi X hovienti X ~ p .  
Enrymer All strain NF strain Umel strain TX strain 
I. API ZYM (8 h o d s  incubation) 

alkaline phosphatasc w 

esarau (C4) 

ertmare lipare (C8) w 

l i p  (C14) 

leusine q l m i d w e  - 
valine arylmidare - 
cyrtine arymidarc - 

trypin 

ehymouypsin 

acid phosphatase w 

naphthol-AS-81- w 
phoqhohydroiars 

a-glueonidwe w 

11. ID :2 E (24 hods incubation) 

omithin decarboxylare - 
arginine dihydmlare - 
lyrine deearboxylase - 
-e 

P-glucosidars 

8-giucuronidars 

N-accryi-p-glueoraminidare - 



Table I: Eoyrnntie activities of four swains ofXororhobdur spp. 
X nemarophiiur X bovienri X bovhnii X ~ p .  

E w a  All strain NF rwin UmeA strain TX strain 

6-galactoridare 

or-glucoridaw + 
a-galactosidare 

o-maltoridafe 

L-aspanic acid arylamidase - 

I .  The ierulu ax From API Z W  tert or ID 32 E tert. The enzymes examined in 

both teru are repaned only once if they showed the identical reaction. 

2. For the original readings of  API ZYM tests. a value ranging from 0 to 5 was 

s i g n e d  to each test according to the intensity of  reaction. Valuer ranging fmm 

04.9, 1-2.9. and 3-5 were qualitatively considered as negative (-). weak (w), and 

positive (+), respectively. 



Table 3: Characterrtie resistance otXcnorho6dur spp. to antibiotics 
S netnarophr/f$? X bovienii ,Y bonmrr X rp. 

antibiotic All main NF sinin Umed <mirn ~x rmm 
amoxilline R R R R 

robmycine S S S S 

amikacine S S S S 

gcntamicine S S S S 

netilmieine S S S S 

pefloracine S S S S 

siproflonacine S S S S 

notes: R: rerirmce. Gmwth exists at both Low and high concenmtion o f  antibiotic: I: 
intermediate. Gmwth exins at low sonsentration, but no! at high concentration o f  
antibiotic: S: sensitive. Growth dosr not exist at both low and high concentration o f  
mtibiot!~. 



Table 4: Physiological characteristier differentisting X~norhobdur rp. TX stmin 
from the h e w n  sppeilr in Xcnorhobdvr and Photorlrobdus. and rharseteristiu of 
Xenorhobdur 6oviemii N F  stni11* 
test Xsp. X. n X ho. X b o  X be. X p .YJ P 1 

TX A l l  NF Ume& 1") (**I (.*) ("1 

gmwh at IO0C* - + +  + +  ? ? ?  
growhat :PC' + + + +  
bioluminercen~c - - - - - - - + 
ahwrrpfionofBBD i + + + + - + + 
catalare - . . . - . .  A 

Lip- . .  + + 1  

urease . .  d 

phorphatare . . .  + +  
alkalinephosphaase w  w  - - ? ? ? ? 

acid productionfrom. 

glyceml + + + + d  - - -  
"base - + +  + . , w . ?  

irnitol + + + +  + 
,hamnose . ? ? + ?  
1a1icin . . .  + ? ?  

cehlothin(rnistance) - + + + ? ? ? ? 

amoxillins& - i I ?  ? ? ?  

clawlanicacid(reriswee) 

erculinhydrolylir - - - - i - - ? 
Note3 I. X r :  Xenorhnbdur nemoophilrrr X bo.. Xlnorhnbdr#s bovienrr. X be: Xmorhabdrrr 
beddmgil. P I :  Ph0corhobdur lu",;.esc~ns X p: Xenorhnbdu poinari; X 1.: Xenorhobd,', 
joponicr,s. 

3. *:All the rrrultsarr bared 0" primayphaw. 
3. I.*). The rervltr for Ulere species arc fmm Bcrgey'r Manual of Dercminalcve 

Bactetiology~9thedition)oro~errcf~rencc.AllrheoU~cricruluwcrcfmm my own resn. 
4 + porifiuc, -: negative: w: weak reaction; ?: no dam: d. 15 ro 85% of the iralaier 

podfive.1, rrrirfanlaflawconcenrrarion.and wnritivest high concentmtionofanfihiofic. 
5.  '. The= dare for TX All, NF and UmeA sminr are fmm the study an the effect of 

temperatureon fhe~WlhofXenorhubdusrpp. ( x e  Chapfer4). 



Chapter 4 

Effect of temperature on the gmwth ofXenorhobdw spp. 

The effect oftemperamon the growthof thReXenorhnbdlrrspecies (= four strains) 

irolared fmm nematodes that originated from climatically diverse geomhica l  ariginr 

(boreal. temperate, and rubwpieal) uas examined over a wide range of tempera-. The 

two boreal swans (NF. Umel) ofxenorhobdus bovieniigmw m rrypticroy bmthnt culture 

Iemperatvres fmm O'C to 3Z°C. Xenorhabdus nernotophrlur All strain (temperate origin) 

fmm IO"C to 39C, and ~enorhobdus rp. T X  strain (rubmpical origm) from I 9 C  lo 

38.9C. The NF and Urnelstrains displayed their highengruwh rates at 25'C. the Al l  and 

TX strains at >@C. The NF ruain and Ume6 suain were categotiredm psychcomphs.and 

the Al l  strain (temperale origin) and rhe TX strain (submpical origin) as merophiler. The 

relevance o f  these data to Ule femibiliry o f  using nematode-baeteriumcompIexes for pest 

management i n  cold clrmnter is direusred. 

Baneria of the genus Xenorhabdus are muruali~tie ~ymbiontr o f  entornopathogenic 

nematodes Steinernemospp.. These bacteria ure their nematode hostr to gain access into 

rhe hemososl of suweptible inrecf spesis In rerum. ths bacteria play a viral mic i n  the 

nematodelife cycle by produeingtoxinr to k i l l  the insecrandantibiotic.ropmteetthe insect 



cadaver b m  puuefaetian. thereby inruing a balanced nutitional environmenr for 

nematode proliferation(Akhurrt. 1982: A!&mr and Boemare. 1990: Foist and Nealson. 

1996: Poinar, 1990). 

Enviromenral temperature is one o f  the vital factors that influence the rwival .  

dirperd, establishment reproduction. development and infecrivity o f  entornopathogenic 

nematodes (Blackshawand Newell. 1987; Dvnphy and Webaer. 1986: Grrwal er a/. 1994: 

Grifiin. 1993; Maon  and Hominak. 1995: Molynem. 1986). The temperarvrer ut which 

nematoder survived and were able to infect rvrccptiblc insect h o N  were found to be 

correlated with the rempenrure features of the region from whleh the vrriour nematode 

rtrainr were initially irolated(Grewa1 d ol 1994: Molynem. 19861. TemperaRuetolerancc. 

infectivity and repmductlon o f  entornoparhogenie nematader could be affected by the 

ternperamreof recycling systems (lagdale and Gordon. 1997a 19982; Grifiin and Downti. 

1991). and improved in m virro reeyclingryarems (Glazer er 01.. 1990: Glewal er at. 1996). 

Giventhe critical irnpo-ceofths bacteria to the eff~caaofcntomoparhogenienem~tode~ 

BS biologideonuolagsnts. i t  is imponant to establish the degree to which bacterial growth 

is temperatwe-~lated.Tlerefore, I carried out the present study to compare the effects o f  

tempemrumon the growthofbacteriathat were isolated Fmm fow~~ainyofSle1nernemo 

43. Mnteriels and Methods 

4.3.1. BaWeri~l  source8 sod maintmanec: Xenorhobdvr nemotophilns A l l  strain wan 

isolated fmm Slelnernemo corpocapsoe Al l  strain, which was provided originally by 



Plant Pmducts Ltd. Bmpton. Ontario. Canada Xenorhobdnr bovienii NF strain war 

isolated fmm Sreinemenn /e$ioe NF d n .  which war irolated from roil in an organic 

garden near S t  Johdr. Newfoundland. Canada (Jagdale el a1 1996). Xenorhobdzrr 

bovaenii Ume& ~ u a i n  was isolated fmm S feltrae Umei ~uain. which was provided 

originally by Dr. R. West. Canadian Forest Service (CFS). St. lohds, Newfoundland. 

Canada from a stock colony that had been initially obtained from Biologic Biacanrml 

FTcdu~t~. Willow Hill. PA. Xenorhobd!8r sp. TX rean was isolated from Sreinernemo 

riobrwlr TX strain, originally provided by Dr. H. E. Cabanillaz. USDA. ARS. Cmp 

1-ell Research Unit. Weslaco. Texas. All rhc nematode isolates were recycled through 

Gollerro mellonella larvae (Wooding and Kay& 1988) at 20°C for 26 months (Jagdale er 

ol .  1996) &fore being used for bacterial isolation (see Chapter 2 for the irolauon 

method). After isolation and idenrification. X bovienir NF and Umei %wins were 

maintlined on NBTA (nuuient agar with bmmothymol blue dye and triphenoltetrmlium 

chloride) plater at 5'C, X nemrophilur All strain at IOC. and X sp. TX s m n  at ljYC 

with a ~ubculture interval of appmximafely one month. They had been maintained for 

about one year by the time rhat thir m d y  war carried out. All of the four isolates were re- 

idcntificd by wing the Biolog Microsration SystemTM pe&dically and just bsforc thir 

rmdy 

4.32. Cardinal temperalum sod b r c t e M l  growth 

Seven millilives of TSB ( q p t i c  soy bmth, DIFCO) in a IS-ml capped rube war 

inoculated with blue colonies (primary phase) of the reparale bacterial nwins on NBTA 



plates and incubatedat 25YC with shakingat 100 rpm for 24 hours. For the determinationof 

ultimate temperatures, 2 m l  o f  the above baetenal culrure was used to inoculate 250-ml 

TSB in a 500-ml capped h k .  The lowest temperatwe at which the bacterial culrurer 

rhowed visible gmwh  within 25 days at LOO rpm was considered ar their minimum 

temperatures for growth. Similarly. the highen amperarm at which the bacterial cultures 

displayed visible growth within 8 dayr was considered ar their maximum temperature for 

growh. The time periods used for determining whether the bactena had been killed were 

selected based on a pilot experiment that 1 eond 

high temperatures P3@C for the NF and Umel  strains: >39C far the A l l  and TX snrains). 

25 dayr at low temperatuies(<5'C for the NF andU for the Al l  and rX 

starins) were sufficient for growth to be displayed. 

Using the bacterial sample harvested after 24 hours' incubation i n  a 500-ml flask at 

29C  wlth shaking a 100 rpm. a standard curve showing the relationship between dry 

weightand optical dcnriryofbacterialculturewan prepared foreachofthe fourrminr 

Growthrateswereexaminedat 5'C. IVC, LSC, 2VC. 2%. 2FC and30"C for theNF 

and UmeA ntrainsofXenorhobdus6ovienii at IW. 15'C. 2@C, 25C. 2PC. 30°C and 32C 

for the A l l  strain ofXeeor~6dusnemoraph~lu~ and at 2VC. 22C. 3VC and 39C for the 

TX strain o f  Xenorhobdm sp. which was isolated fmm Steinernemoriobrovir TX  strain. 

For this purpose. 250-ml TSB i n  a 500-ml capped flask was inoculaledwith I-ml bacterial 

c d t m  that war prepared with the same procedwear that used for the determinationof the 

extreme temperat-. I t  was incubatedwith Ehakingat LOO rpm i n  a Psysrothem incubator 



(New Brunswick Scientific. USA) or in Freas 815 incubator inride which a small shaker 

( G y m t o g  Shaker-Model G2) was placed. Specuophotomerry was used to determine the 

optical denrityofthe hacterialculrure with 3-24 how intcrvllls(on the baris of tcmpsrams 

and growth stager). At each time. L-ml bacterial culture was withdrawn fmm each flask 

urmg a stmle pipette. and diluted up to 5 rimer with 0.15 M NaCI. Then. 3 4  ml of this 

diluted culture was transferred into a 4.5-ml euvette (10 mm thick) (fisherbranb:14-385- 

996). Using a Speermnie Gensys 5 rpecuophotomerer.oprien1 density w a ~  recorded at a 

wavelengthof 600 nm. Three replicates (i.e. lhree wparale flask) were measwed for each 

of the Fow rvains at each of the culture temperatures. wlth the excepnonr of the NF and 

U m d  rnainsofXenorhnbdzrsbovieniiat 5'C (one replieate) hecauseof the limitedspace on 

the small shaker. 

43.3. Statirtinlanslylis 

In this study, observed optical densities were -formed into uue optical densities 

according to the method of Lawrence and Maim (1977). The conceptual temperatures (To) 

[temperatures that are of no metabolic significance. the X-axis intercept of a plot of the 

square mot of the growh rate against temperature (<optimal tempera-) (\I r = W-To))] 

were obtained thmughthc methodsuggested by RatLowsky a a/. (1982). G m w h  r a t s  and 

generation rimes were calculated with the BASIC computer pmg- (Gerhardt el a / .  

1994). Theredata were funher analyreduring a one-way ANOVA, r-test (Sokal and Rohlf, 

1995) at Pd.05. 



4.4. Resulu 

Using =tic soy broth as culture med!um.X bovienii Umd and NF ruains were able 

to grow at temperatures fmm O°C to :PC. bur did not gmw at -2'C and 34'C X 

nemorophilus All rtrain grew at temperatvrer fmm l@C to 35'C. but nor at X°C and 37% 

Xenorhabdws rp. TX ruain grew at temperatures fmm 19C to 38.9C. but no gmwh 

orrunedar 12'C and4VC(Tabic I). 

Tbc gmwh c u e s  of baclerial dry weight plorted a g a i ~ t  time for different culture 

tempemhms are shown in Fig. I.  Groufh rater and generation timer w r e  calculated fmm 

these curves. At temperatures R@C, the he0 ruains of X bovienb rhowed higher graurh 

rater (Fig. 2. Table 2) or rhomer gencrarion timer (Table 3) than the All strain of X 

nemnrophiluilrrrand TX atrain ofXenorhobd8,rrp.. The All rtrain ofX nemotophilurand the 

TX strain ofXcnorhabdurrp. showed the highest gmwh rates at 3OSC, and the NF and 

Umcdi strains af .Y bovirni, displayed the highest growth rates ac 25'C (Fig. 2). The 

generation nmes. at optimal temperawes for gmwh, were about two hours for all of the 

fourrUainr rtudied(Table 3). 

The conceptual temperatures of no metabolic significance were 276.160K (3.ldC) for 

X nemarophilur All nuan, 282.5PK (9.5PC) for X rp. TX strain. 270.29K (-2.75'C ) for 

X bovieniiNF strain, and 269.7PK (-3.2SC ) forX bavieniiUmci ruain(Table I, Fig. 3). 

4.5. Discussion 

In this mdy, cardinal temperatures and temperam (To) of no metabolic rignlficance 

eomspondd to the gwgraphlc origins of Xenorhabdzrr rpecler. Compared with X 



mma,ophiit~s Ail strain (temperate origin: G e o r g i ~  USA) and Xenoriiobdur s p  TX s m i n  1 
(submpicai origin: Te- USA). the NF and UmeP strains ( b o d  ongm: Newfoundland. 

Canada and Urn=& norUlem Swedeh respectively) o f X  bovienii displayed lowei valuer 

for optimal, minimum and maximum temperatures, and the temperalure of no metabolic 

significance. in addition. X nemorophilus All strain also had lower valuer for min~mvm 

and maY~mum lempera-S. and T.thanXenorhobdtrr sp. TX stram. 

Morita (1975) defined psychrophiie~ as thore bacteria which could gmw at OYC and 

had an upper limit at about 20°C. with the optimal temperat- at about i jnC or Louer. He 

also defined prychmuophr as those growing at O°C and at rempe-r >2S°C. with the 

optimal temperamre higher than ijaC. Based on this definition. she NF and Umed strains 

of X bovienii satisfied there requirements and could be considered ss prychmtmphic 

bacteria. Mesophiier are defined as those that may stop growing fmm O-iOUC. with an 

optimal tempcranur of 3O-4O0C (Suutari and Lnakso, 1994). Thefore. the AIi strain of 

X nemorophiim and the TX srwm ofXenorhabduj np. could be dercr~bed as merophiies. 

The above gmuping also coincided with the classification which was based on the 

temperature (To) o f  no metabolic significance. Ralkowrky er nl (1982) found that To 

values were 248-263'K for pnychmphilcn. 261-269'K for prychmtraphr, 270-280°K for 

merophiler, 290-296'K for themophiies. Therefore. the closer1 gmup to the NF w i n  

(T0=270.25' K) and U m d  strain (Ts=269.78' K) o f  X bovzenil is psychmmphr. 

Similarly. the Ail smln (TO=276.i6K) o f X  namolophiitrr and the TXstrain (T,=282.52' 

K) ofXenorhabdm rp. eavld be considered as msrophilcr. Photorhabdus sp. Ki22 main. 



a bactend assacrate o f  hetemrhabditid nematodes. was also clmsified as a psychmvophic 

organism on the bmlr o f  iu cardinal tempemuer (Clarke. 1993) and iu To value (Clzke 

and Dowdr. 1994). 

The minimum temperatures for bacwrial gmwh correrpanded with the low limiting 

temperamw far the recycling of the corresponding nematode host. For example. the 

minimum temperatures for the gmwh ofXenarhobdz8s sp. TX rmin and X nemoruphili,~ 

Al l  rmin were l j m C  and 10°C. respectively. Their eom~ponding nematode horu. 

Sleinernemo riobrwir T X  strain and Srehernenln corpcopsoe Al l  rtrain. covld only be 

recycled at slS°C and >lVC, rerpcstivsly (Jagdals and Gordon. 1997.1. Presumably. ~t 

the nematodes' minimum tempera-, the bacteria grew too slowly ra produce ruEcient 

antibiotics and/or growh factors needed by the nematodes for growth and development. 

Thus, the minimum temperature for bacterial gmnth would become a limiting facmr for 

nematode reproduction. resulting in the failure to recycle there nematodes. Smilarly. 

OWYm and Riehardron(l994) suggested that the nematode's capability of kllllng invets at 

low temperammay dependon their bactetialmsoeiar~ beingableto gmw. 

GWM and Richardnon (1994) studied the growth of five irolats of bacterial 

asJociaterofentamopathogenicnematode~,and found thatXemrhaMusbovnniiU128 and 

U179 isalatcr were the only rwo isolate8 capable of growing at 2'C. and that Nemasrs 

isolate o f  the same species could grow at 6oC. Howwer. another two irolater, X 

nemalophilr!~ Bioryr 252 and Phororhobdmlumincrcenr Nemsys H, a u l d  gmw at IO°C. 

buI nor a1 6'C. lnadditio~ the three irolatenofX bovieniigrew mare rapidly rhan the other 



nuo i rolala at low tempcrarurcs such as 2'. 64 and IVC. The current study alro showed 

that two other smins (NF and Umebi) of X bovienii covld grow at OnC. and had higher 

gmwth rates at low temperatures (54 IV ,  19 and 2IPC) than Ule emperatenrain (All) and 

rubmpical strain (TW. S /elrim NF and Umei strains the nematode hoar of.Y bovienii 

NF and Umei strains respectively. have been shown to be capable of killing Callerin 

mellomella at j0C (Jagdale and Gordon. 1997a) These rerults support the proposition that 

X bovienii may be a coldadapted bacterial species and as nematode host could be used 

10 control sensitive inwcfr in  cold areas. 



Table I: Cardinal tcmpen~rer and e ~ ~ ~ e e p N ~ l t e m p e r a t ~ r ~ i n X e n o r h ~ b d u ~ ~ p ~ i i i  

PC for Growth ruC withoutemwh conceptual (ern 
baeleridraain min opr max law high -perarure('K) 

X bovienii 0 25 32 -2 34 27025 
(NF seain) 

X nemolophilt~r 10 30 35 8 37 276.16 
(Ail strain) 

Xenorhobdursp. 15 30 38.5 12 40 282.52 
(TX strain) 



Fig. I: Growlh curves ofXenorhobdur ~pp .  at different tempsrarurcs. A: Xenorhabdus 

nemorophilrrr All smiain; B: Xenorhobdm r p .  TX mam: C. Xenorhobdur bovienii NF 

strain; D: Xenorhobdtrr bovienii Umcd ruam. 
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Tnble 2: Growth nter ofXmorhobdur spp. at different tempenNrPs 
t"C Replicate X nemorophilu X bovknii X bovienir X sp. 

All strain NF strain Umei strain TX strain 
5 I 0.036 0.030 

mean 

I 
25 2 

3 
mean 

1 0.462 0.316 0.197 
27 2 0.371 0.267 0 248 

3 0.364 0.257 0.238 
mean 0.399=0032' 0.280=0.018' 0227=0.016b 

I 0.432 0.163 0.122 0.319 
30 2 0.395 0.135 0138 0.310 

3 0.432 0.154 0.119 0351 
mean 0.41910.012' 0.15lt0.008' 0.126t0.006~0.277r0.012' 

I 0.163 0.228 
35 2 0.180 0.238 

3 0.183 0.230 
mean 0.175r0.006' 0 232a0.003' 

*Valuer are the means r SE (standard error). Means with the rams superscnpr l e e r  
(down the ~ingle column) are not significantly different at P4) 05 by t-test (Sokal and 
Rohlf, 1995). 



Fig. 2: Effect of temperature on growth rarer o f  Xenorhabdrrr r p p  A. Xenorhobdtn 

nemorophdrrr All swain: B: Xenorhabdtrr rp. TX main: C: Xenorhobdzrs bovieniiNF 

strain; D: Xenorhbodcrs bovienir Umel  rmin. Valuer with the same superscript letter in 

each of four graphs are not significantly different fmm temperature to remperarure at 

P<O.O5 by f-test (Sokal and Rohlf. 1995). The bars reprerent rlandard errors. 





Table3 Georntioo lime (houn) ofXcnombdus spp. at different tempenturn 
t0C Repllerre X nernorophilzts X bovienii X bovienir X sp. 

A11 r m n  NF ruain Umea Nain TX r u i n  
5 I 19.26 23.17 

1 19.70 
10 2 23.06 

3 22.98 
mean 21.91~1.11" 

I 4.38 
20 2 4.91 

4.34 
mean 4.54=0.18' 

I 1 .SO 
27 2 1.87 

3 1.90 
mean 1.76t0.13d 

mCM 396r0 15' 2 9 9 ~ 0  0-1' 
. V ~ Y C ,  are Lhe mems : SF ~ l m C V d  e m r )  Means ~ 8 t h  Ihc some small leuer tdoum mc 
rlnrlc column are not r~dn#fieanfly diiferen~ nl PcL 05 b) I-lcx ( S o M  and Koh.,. 1995, 



Fig. 5: Relationship berw- square mot of gmwlh rate and temperature in 

,Yenorhahdus rpp A: Xenorhobdur nematophiiur All ruain; B: Xenorhobdur sp. T X  

wain: C: Xenorhobdus bovicnii NF strain: D: Xenorhbadur bovreniiUmd rtrain. Ta 

value is the intercept on the X-axa of the pptor of rhe square mots ofthe growth r a m  

againsrtemperature.(aptimaI rernperafue)[d r = b(T-To)]. 





Chapter 5 

Effect d temperature on the distribution of  isozymes in Xenorhobdus 
SPP. 

5.1. Abstract 

The effect of temperature on the dirlribution o f  irozymes of seven e w e r  was 

m i n e d  in  four Xenorhobdnr rmins using cellulose acewe elecuophoresis. 

Xenwhobdur sp TX strain displayed temperamre-related alterations in iroryme parrems 

for two enzymes p lDH :  malate dehydroge- (NAD-): ME: malare dehydmge-e 

(NADP')], and Xenorhnbd~dlo nernorophrlvr A l l  r m i n  for four enzymes [FUM (Fumerate 

hydrame), MDH, PGI (phorphoglucore isomerare), PGM (phosphoglueomutare)]. The 

NF strain of Xenorhobdco bovreni; e r p r e r d  ttemprafure-related changer i n  isoryme 

partems for three enzymes [APK (arginine phosphokinase). MDH. PGI], and the Umel  

strain of the m e  species far tivc enzymes (APK. F u M  ME, POI. PGM). There results 

indicated that Xenorhobdus bacteria may adapt to temperam changer i n  their 

environment by modifying the synthesis ofxsoqmer 

53. Intmduclitioo 

Nematodes of the family Stcinernematidae are being commercially pmduced as 

biological eonuol agents against soildwelling or cryptic insect pests (Dunphy and 

Thumon, 1990; Smart, 1995). Bacteria of the genus Xenorhobdur are symbiotically 

associated with these nematodes, and carried i n  the specialized gut vesicles of Ulc "on- 



feeding infective nematode juveniles (Akhmt and Boemare. 1990: Bird and Akhurrt. 

1983; Poinar, 1990). Aher infecting rhe insect hosts. the nematodes release the bacteria 

into the insect's haemoeoel. Then, the bacteria mulrtply and rel- antibacterial and 

antifungal compounds into the mrectr' hacmolymph, creating a non-eompetitlvc 

amblencc for nemarode a d  bacterium growth and reproduction ( M u m .  1982: Nealson 

rr 01 . 1990: P~inar  and Thomas 1966). 

Despite the high pathogmicity o f  entornopathogenic nematodes to sensitive in- 

pests under ideal environmental conditions. their applicatlons in  pest management are 

limited by envimnmental facton (Kaya. 1990; Jagdale and Gordon. 1998bl. Tempenture 

influences the nematodes' survival. infectioh growth and reproduction. and i r  considered 

as one of the moa imponant facton limiting the practical user ofthe nematodes (Griffin. 

1993; Mwon and Hominick 1995: Grswal et 01. 1994; Jagdale and Gordon. l998al. 

Therefore. knowlcdgc o f  the tempera- adaptation mechanisms o f  there nematodes and 

their bacterial associates i r  imponant in  the research and the development ofthis category 

o f  nematadcs. 

I t  hw been ertablirhcd that the nematodes are able to phyriologieally adapt to the 

temperatures at which they are recycled by changes m irozyme profiles (Isgdale and 

Gordon. 1998b). e q e  Eneties (lagdale and Gordoh 1997b) and f q  acid 

composition (lagdale and Gordon, 1997~). However, no such investigations have been 

mads with respect to the bacterial associates, key contributors to overall p u t  management 

efficiency. In poikilathemic animals, long-term adjusmenr to differing temperature 



regimes in ohen accamplirhed by synthesis of isozymer that geared to function 

optimally at the ambient tsmperatures concerned (Lin el ol . 1995. Marcus. 1917). 

possible smtegy for tempcratme compensation har not been investigated for bacteria 

however. The current study was done to invmtigatc whether or not bacterial associates of 

three species of steinememarid nematodes synthesize irozyma in response to the 

tcmpcmmr at which they are c u l d .  

5.3. Mnteriab and Methods: 

53.1. Saums of bacteria and nematodes: Wnorhobdur nema!ophilcu All rtrain was 

isolated horn 9rinernemo corpocaproe All main. which war provided by Plant Productr 

Lrd Brampton. Onlario, Canada. Xenorhobdm bov~enii NF strain was isolated from 

Steinememo feNioe NF rtiain which was isolated from the roll in Sr John's. 

Newfoundland. Canada (Jagdale er 01. 1996). Xenarhobdru bavienii Umea war isolated 

horn S filrrae U m d  main, which was pmvided by Dr. R. West. Canadian Foren Service 

(CFS), St. Johdr. Newfoundland Canada hom a stock colony that had been initially 

obtained from Biological BioconMl Producq Willow Hill, PA. Xenorhnbdur sp. TX 

swim was irolared fmm Sreinernemo riobrwrs TX strain, which ws, provided by Dr. H. 

E. Cabanillas, USDA, ARS, Crop Insects Research Unit, Weslaco. T-. Ail the 

nematode !solater had been reeyeled through Gollerio melloneNn l m a e  (Woodring and 

Knya 1988) at 20°C for 26 months before being used for bacterial isolation. 



There bacteria were irolared and identified in August 1996. AAer that time. X 

bowenii NF and UmeA nvains wem maintained on NBTA (nutrient agar with 

bramothymol blue dye and triphenolteframlium chloride) plates at 9C.  X nemorophil~u 

All strain at 10°C. a n d X  rp. TX svain at L5'C with a subculture interval of around one 

month. They were maintained in *is manner for about one year, then cultured for 

iroryme extraction. All of the fow irolales were re-identified by means of a Bialog 

Microsration System* periodically and just before the rample. we= prepared for enzyme 

analyrin. 

53.2. P ~ p a m t 1 0 0  of bacterial eulmre and cnrylne ertmrtioo: 

The t e m p r a m s  at which bacteria were cultwed to d e  samples for imzyme 

analyws were O°C. 5'C. IO'C, 20nC. 30°C for X bovrend NF and Umel suaim. IO'C. 

20°C. 3@C, and 3S°C for X nemorophilzzs All strain. 20°C. 30aC and 3SnC for 

Xenorhabdur sp. 'IX suain. 

The bacteria in their primary phase on NBTA plates (pnmary phase: blue colonies: 

secondary pha~e: red or p i k  colonies) were uud to inoculate 250-ml vyprie soy broth 

(TSB) (DIFCO. 0370-07-05) in 500-ml capped flasb (Kimar, Cat. No. 26505) They 

were culourd with sh&ing at LOO rpm, then harvested at the log phase (on the basis of 

optical density) of their gmwh by centrifugation at 14740 g a t  4'C, followed by wahing 

three timcr with 0.15M NaCI. Bacterial culture fiom each flask was considered to be one 

sample. The replicates were prepared for each bacterial isolate at each specified 

ternpermre. Harvested bacteria were ntod at -20°C for 1-2 days. The m p l e  for each 



replicate was resurpended in  a small glass rest tube with 2-3 m l  buffer (0.09M Trir HCI. 

pH  9.00). To avoid enzyme degradation. thc small Ierr tube with bacterial suspension was 

put into ice while cells were rvpnued with a Bra-Sonic  2000 sonicatoi The suspension 

produced was cennihged at 24.790 g a1 2'C for 20minutes. The enzyme exuactr 

(supematant) were Vansferred inm 1.5-ml polypropylene miemcentrifuge rubes and 

immediately frozen at -70DC until used for elccmphorerir. 

53.3. Cdlulose acetate electrophoresis: Cellulore acetate plates (Cat.' 3033. Helena 

Laboratories. Beaumont. TX) were prcso&ed for at least 20 minuter wirh Tris-Glycine 

buffer (3.0g Trir. 14.4g glyeine. LL distilled water. pH  8.5) bcfore sampler were loaded 

onto them. Ten milliliver aliquou fmm each sample were placed i n  each well i n  a sample 

holder and maintained on ice. Then. a 0.2-0.4 p l  aliquot o f  each sample was loaded. 

bawd on the enzyme sensitivity to rtainmg. onto a T i m  111 Zip Zone Cellulare Acetate 

Plate with a Super Z Applicator (Helena Laboratories. Beaumont, TX). and the plates laid 

i n  a horizontal elecuophorerir chamber containing Trir-Glysine buffeer Eleetrophorer~r 

larted for 14-20 minuter at room tempemfu1e(2@-25~C) wifh 1.5 mA current per plate. 

5.3.4. Enzyme staining: The procedure recommended by Heben & Bearon (1989) was 

wed for the staining of the following enzymes: vginine phorphokinare (APK). fumaate 

hydrara~e (FUM). mdate dehydmgenare(NADAMDH), malate dehydrogenare(NADP-) 

(ME), phorphoglucomutase (PGM), 6-phorphoglueonate dehydrogenare (6PGDH) and 

phorphoglucore i s o m e m  (PGI). ARer elecmphomir, the plater were removed from the 

chamber and laid on a horizonrd glass surface. The appropriate mining mix- 



containing liquified agar was poured over the plater. The plater were kept m the dark for 

about 10-15 minuta far the development of isazyme banding patterns. then rinsed with 

tap water. ro&d in  distilled water for 10 minuter. and fired (acetic 

acid:methanol:dirdllcd water-1:l:lO) for 10-15 minutes. The plates were left ro dry 

overnight in  the dark and phorographed. and the bands were measured for the migration 

rates of isoryme banb. The relative eleswophorelic motility (p: cm'ldvl for each enzyme 

was u e d  ro compare rhe m i m t ~ o n  rater (Lehinger. 1979). Based on the cntsrion 

recommended by fagdale er 01 (1996). irozyme bands among isolate were comidcred ro 

be the same i f  their elecmphoretic motility (p) valuer varied within 10% ofone anorher 

5.4. Result% 

I. Argninc phoapho*inase (APK): Its i s o w e  bandlng patterns were not 

temperam-related for .Y nemoroph#lur A l l  strain and X rp. TX  strain. However. they 

were influenced by tempcrarurc for rhe NF and Umeh rrrain o fX  bovienii (Table I). At 

temperatures r5'C. the NF s h i n  displayed an additional anodal band. and the Urnea 

strain expressed an extra cathodal band (Band 3) . 

2. Furnsnte hydracase 0: The irozyme banding panems of rhtr enzyme 

were not affected by temperanues for X bovienii NF smin and X sp TX strain while 

they were tempeiarurs-related for X bovieni; U m d  r m i n  and X namorophiltrr AIL swain 

(Table I). At  the high- temperature examined (30°C), the Umed strain of X bovhnii 

displayed an additional cathodal band. The A l l  swain of X nemorophilur had the same 



irazyme profile at 30'C and 3j°C. At c ~ l m  femperafures r20C.  an additional cathodal 

band (Band 3) was present which supplanted the slowest moving cathodal band (Band I) 

at the lowest t e m p e r w e  (ItPC) (Fig. I. Table I). 

3. Malate dshydrogenrsc (NAD)(MDK): The i roqme panemr were influexed 

by IemperaNre for X bovienii NF ruain. X nemotophiiur All suain and X sp TX strain. 

However. t e m p r a m  did not &ect the partem for X bovisnii U m d  ruain. which 

rhowed an anodal band and a cathodal band at all five temperatures. Xenorhobdzrr 

bavienit NF strain displayed an additional cathodal band (Band 2) at the highen 

temperature 30YC at which it was eulrured. The All swain ofX nemorophilur displayed 

one fewer cathodal band at IO'C than at the higher culture temperatures. The TX strain of 

the unidentified Xenorhobdzs ~peissr  dilplaycd one extra cathodal band at the hlghert 

tempera- (3j0C) and one fcwer anodal band at the lowerr temperasure (2OT) compared 

with the intermediate culture tempera- (30°C) (Fig. 3. Table I) 

4. Malate dehydmgensse (NADF)(ME): The irozyme panems of thls enzyme 

w e  not affected by temperam for X nema!ophilzrr All strain and .Y bovienii Nf strain. 

but =re temperalure-related for X rp TX strain and X bavienii Ume& strain. The r m n s  

lhat showed such temperam rensitivily synthertzed one fewer iroryme at the lawcr end 

of the temperam range at which they were e u l m d .  Xenorhabdtrs r p  TX strain lacked 

an anodal band at 20DC, which was present at 3O0C and 3j0C. Xenorhobdur bovienii 

U m d  main, culrured at <PC, lacked one of the cathodal bands that bacteria cultured at 

higher temperatures contained (fig. 4, Tablel). 



5. Phorphoglueomurnre (PGM): The banding panems were temperature- 

indspendcnr for X bo3,ien;i SF strain and X rp. TX rhain, bur were temperature- 

dependent far X nemorophilzrr All rmtn andX bovieni; UmeS ruain. The All main o fX  

nemorophrl~rr dirplaycd one fewer cathodal band at the lowest tempcmre (LO°C) than at 

higher ones. The UmeS strain o f X  bovienii synthesized an additional (cathodal) iroryrne 

when culturcd at temperatu sS'C (Fig. 5. Table I). 

6. 6-phosphoglueooste dehydmgmnsr (6PGDHl: The irazymc patrcmr were not 

influenced by r empenmr  far all the fovr stninr. all of which rhowed rwo irorymc 

bands(Fig. 2. Table I). 

7. Phosphoglucose i romcwe (PGI): The panem of this enzyme were unaffected 

by c u l m  temperature in  X sp TX  main. bur fernpenfurfurdependent for X bovienii SF 

and Umei  swains and X nernotophiit~r A l l  stram At 30°C. the SF rtrain of b bovirni; 

failed to synthesize the iroryme represented by an anodal band. which was produced at 

lower remperaturer. The Umel  rmin of rhlr species synthesized one additional isozyme 

(cathodal) at rSC. The A11 strain of X nrrnorophilzrs displayed temperature-related 

differences in  iroryme protiler at both ends of the temperature range at whish ~t was 

cultured. At the highesf t empemc  (3S°C), one fewer cathodal band was present. while 

at h e  lowst tempcram (IOV). this same iroryme, together with another cathodal one. 

m abscnt (Fig. 6, Table 1). 



5.5. Disru*riao 

The four m i n r  ofXenorhobdur bacteria responded to differing s u l m  temperatures 

by modifying the synthesis of irozymes. The Umel strain of X bovieaii showed 

temperature-related changes in iro-e pattern for five e q m e r  (APK. FUM. ME 

PGI. PGM). Ihe All r m n  of X nernotophilur for four s m c r  (FUM. MDH. PGI. 

PGM). the NF strain of X bovrenri for thm enzymes (APK. MDH. PGI). and the TX 

strain of the unidentified Xenarhabdzrs sp. for ouo eryvmer (MDH. ME). The enzyme 

MDH dirplayed tempera-related difference m lrozyme patterns for three strains (All. 

NF. and TX), POI for three rValnr (All. NF and Umcl). both FUM and PGM for two 

rmiainr (All and UmcL), APK for two strain3 (NF and Umes), and ME for wo strains (TX 

and Umel). None of the four Evainr showed temperature-related isozyme patterns for 

6PGDH. 

It is generally accepted that poikilothemic animals. m responre to their 

envimmmial tempera-. may pmduce different iroryme patterns as a temperature 

adaptation mechanism (Liner 01.. 1995; Yamawaki and Trukuda, 1979: Marcur. 1977) 

In a recent ~tudy, Jagdale and Gordon (1998b) showed that steinernemattd nematodes. 

~ c y c l c d  at differenl temperatures, displayed differences in the irozyme profiles ofseveral 

metabolic eryvmer. These authors concluded Ulat while same of the =hang- m isoryme 

complement were envimnmentally-induced, genetic drift may have been at least partially 

responsible for the differenerr among nematode cultures. In the current study, genetic 



eff-Is can be effectively ruled out becaure all o f  the replications among all of  the 

t empe ram emanated from thc same stock cdonicr on the NBTA plater. 

I n  rome inrimces. recycling temperatures affected inozyme banding panemr o f  

steinemematid Enzymes i n  an apparently adaptive fashion. while in  other mrmcer. no 

dincemable e n d  was apparent and the effecrr were likely the reruhr o f  inadvertent 

genetic mutations (Jagdale and Gordon 1998bl. I n  the current rmdy. irorymes were 

gained or Imt at either exueme o f  the remperam range at which a given isolate was 

cultured. Although 11 is porrlble that some o f  thew effects may be the result o f  thermal 

suers. they ae marc readily explisablc as being adaptive in  nature. Thus. the presence o f  

an additional irozyme of F U M  by the Umel  strain o f  X bovrenii (30°C) and of an 

additional isozyme of  MDH by the NF ruain o f  X bovienai (30'C). the Al l  strain of X 

nemataphrlus (12VC) and the T X  strain ofX=noohobdus rp. (35'C) may be considered as 

adaptive response to the warmer temperatus. Conversely. the additional irozymea of 

APK m the NF and Umel  strains o f  X bovienii (r5'CI. and the additional irozymer o f  

PGI and PGM in  X bovrenii U m d  main (rSDC). as well as the replacement of  the 

irozymer of F L M  in  X nemorophilr<s Al l  strain (IO'C) may be interpreted as adaptations 

to sold tmperams,  involving rhp synthesis of eold adapted isazymes In  rome 

instanccr. fewer isoryma were synthesized at colder t empe ram (eg. ME and MDH in 

X sp. TX strain, X bovienii Umea sflain PGM and POI i n X  nemorophilt!? A l l  strain). 

This may suggest that the irorymer no longer synthesized may be ill-suited ro eold 



remperaues. so that i t  would be advanrageour to redirer synthesis toward othcr 

enzymes 

Given that all four strains o f  bacteria displayed temperature related changer in 

irozyme profiles and that the presence or absence of an isozyme could be intemreted as 

being adaptwe. ir is not possible to evaluae these phyr~ological responses among Nainr  

i n  tmnr of  their eirrlottrrve capacities for heat or cold adaptation. Further nudies would be 

required. including isolation and chmteriration of the irorymes concerned i n  order to 

make rush cornparirons. Superficially. the dam suggea that all four aolarer. with 

geographic origins ranging from boreal [X bovienii). temperate [X nemorophrlus) lo 

rubtmp~cal (Xxxxrhabdm sp.) may display rhcnnal adaparion at the physiological level. 

Therefore, this d y  suggests that entornopathogenic bacteria may physiologically 

adjust to tempera- by altering the rynulerir o f  irozymer. Such a mechanism Far 

tempernure compensation would complement other strategies which bacteria are known 

to use. For enample. Preudomonarflrrorercenr increaser the synthesis o f  its enzymes to 

eompcnsate for the reduced enzyme activities at low temperature (Margerin er 01. 1992). 

To adapt to their cold environment, bacteria may alter the molecular structure o f  thew 

enzymes i n  order to lower the heativarion energy (Davail er 01, 1994, Feller er a / ,  1996: 

Narinx e l  01. 1992). Also, i n  respa- to temperature, bacteria may adjust their fatty acid 

composition (Clarke and Dowdud$ 1994; Fulco, 1970; Margesin er ol 1994, Suutari er 

01.1994). and rynthesire special proteins such 8s cold shock pmteins and cold 

acclimation proteins (Araki, 1991: Gumley er 01.. 1996; Jones cf 01, 1987). Preudomonar 



qringae may adjust the permeability of its ovter membrane in response to low 

temperBme by reducing the phosphoration of its lipopolysaeshride (Ray rr oL.1994). 

Regardless of the biological significance of the tempeiafllre-induced variations in 

lroryme profiler, the fan that they did occur suggests rhat isozyme banding p te rn r  

would have to be u x d  cautiously far the purpose of taxonomy of this group af bacteria. 

Ewmes (eg. 6PODH). in  which irozyme banding panemr were independent of 

temperature. would have to be used or in  the case of enzymes that are temperature 

sensitive. would have to be carefully controlled and reported. 



Fig I: El-phecagrams of fumarate hydratase (FUM) in fourXenarhobdz,r strain$ 

belonging to three species ar different temperatures. Arrow heads indicate the the line 

of sample application. Bands were numbered in increasing nwnerical order relative to 

the distanee that they migrated fmm the original line ofsample application. 





Fig 2: Elecmphemgrams of 6-phosphoglueonate dehydmgenaw (6PGDH) in four 

Xenarhobd8rr straim belonging to three rpes ia  at different temperatures. Armw heads 

indicate the the line of sample application. Bands were n u m k e d  ~n increasing 

numerical order relative to the distance that they migraffd from the original line of 

sample application. 





Fig 3 Electrophemgramn of malate dehydmgenare (NAD-) (MDH) in four 

Xenorhnbdu suainr belonging to thRe species at different temperatups. Anow heads 

indicate the the line of sample application. Bands were numbered in increasing 

numerical order relative to the distance that they migrated horn the original line of 

rample applicarian. 





R g  4: Electropherograms of malatc dehydrogenarc (NADP-) (ME) in four 

Xenorhobdzrr strains belonging to h e  species at different temperams. Arrow heads 

indicate the the line of sample application. Bmdr were numbered in increasing 

numerical order relative to the dismce that they migrated fmm the original line o f  

sample application. 





Fig. 5: Eleermphemgramr of phorphoglucomume (PGM) m four Xenorhobdus strains 

belonging to t h e  species at different tempsraturff. Arrow heads indicate the the line 

of sample application. Ban& were numbered in incrcaring numerical order relative m 

the distance that they migrated fmm the onginal line of sample application. 





Fig. 6: ElffUapherograms of phorphoglueore iromerare (PGI) in four Xenorhobdus 

m i n r  belonging to three species at different tempratures. A m w  heads indicate the 

the line o f  sample application. Bands were numbered in increasing numerical order 

rslativc to ihc distance that they migrated from the original line of svnple application. 





Tsble I: Effect of trmpernhlre on the irozyme panems of seven enzymes in 
Xcnorhobdur rpp.' 
bands 10aC ?OmC 30°C 3S°C 

Xenorhnbdus nent~fophilur Au s t t i n  

Arginine phasphokinax (APK) 

I 1.543' 1.543 1.543 1.543 

2 1.886 1.851 1.851 1.851 

3 2.194 2.160 2.160 2.160 

4 2.503 2.468 2.468 2.503 

5 4.148 4.114 4.148 4.114 

Fumarate hydratax (FUM) 

I 0.514 0.514 0.514 0.514 

I 1.234 1.234 1.131 

2 1.543 1.611 1.543 1.543 

2.160 2.228 

4 2.537 2.606 2.571 2.571 

2.880 2.914 2.880 2.880 



Tabb 1: Effect of temperrhlre om the isowme patterns of seven eorytna in 
Xenorhobdur spp.'(sontinued) 
bands IOYC 20°C 30°C 35'C 

X~norhobdur nemofophilur All strain 

Malate dehyhgmax  ( N A D P S ( W  

0.446' 0.446 0.411 0.41 1 

2.331 2.366 2.468 2.468 

2.777 2.708 2.708 2.708 

3.188 3.257 3.120 3.154 

3 2.743 2.777 2.777 2.811 
*:Bands were eonsidered the m e  if their elecrmphorerie motiliry values were within 
10% of one another. Neglive bands (numbered as -I) means that -me$ 
elsrmphoretically move t a w d r  anode while positive bands towards cathode. Dasher 
means the absence of bands. 
t: Motiliw valuer (sm'lseciv) arc cnprcrsed ar lxlOd times, and are the mean of three 
ramplcr, sash fmm s q m t c  c u l m  flask 



Table I: Effect of temperature on the isoymc pnnems of rwen e w m n  in 
Xcnorhobdur spp.'(Continued) 
bands O'C jaC 10°C 20°C 30'C 

Xenorhobdm bovienii NF strain 

Arginine phorphokinase (APK) 



Table I: Effect of temperature on the isozyme panems of  rwen enzymes in 

Xe"orl,obd"s spp.' (Continued) 

bands O'C 5'C 10°C 20UC 30°C 

Xenorhobdur bovicnii NF strain 

Phorphoglummurare (PGM) 

1.714' 1.680 1.680 1.680 1680 

2194 2.194 2.160 2.194 2 194 

I 0.411 0.411 0.411 0.41 1 

I 2.571 2.468 2 468 2.537 2.571 

*:Bands were considered the same if their electrophoretic motility values were within 
10% of one another. Negative bands (numbered as - I )  meanr that enzymes 
elecmphoreridly move towards anode while positive bands towards cathode. Darhes 
means the absence of bands. 
t: Morllity values (cm%ec/v) are expressed as Ix104 rimer, and are rhe mean of three 
sampler. each from a reparatecultwe flask. 



Table I: Effect of temperature on the ismyme pattern of seven eoryrns in 

XeaorhaMurspp.' (Continued) 

bands O°C S°C 10°C ZOYC 30°C 

Xenorhobdm bovienii UmeA strain 

Arginine phanphakinass (APK) 



Table I: Effect of temperature on the isoryrnt patterns of seven cnryrnn in 

Xmorhabdur rpp.'(Continued) 

bands O°C 5'C IffC 2VC 30'C 

Xmorhobdw bvienii UmeA strain 

Phorphoglueomutase (PGM) 

Phosphoglucose isomerase (PGI) 

I 0.514 0.514 0.514 0.514 0.514 

1 2.297 2.263 2.297 2.434 2.400 

7 4.217 4.217 - 

.:Bands were eonsidered the same if their eleempharetic motility ~ I u e s  were within 
10% of one another. Negative bands (""",bered as -I) means that enzymes 
electropharctiealiy move towards anode while positive bands towards cathade. Dashes 
means the abance of bands. 
t: Motility valuer (cm'lredv) are exprcued as lx104 timer, and are the mean of three 
rampler, each Cmm a separate culture flask. 



Table I: Effect of  temperamre on the bmyme patterns of  six cnrymn in 

Fummfe hydrarase (FUM) 



Tnble I: Effect of tempcnhlm on the isozyrne patterns of sir enzyme. i n  

Xcnorhobdus spp.'(Continued) 

bands 20°C 3OOC 35'C 

Phorphoglucamutaw (PGM) 

I 0.514 0.514 0514 

I 2.983 3.086 3.154 

*:Bands were sonsidered the same i f  their elenmphoretic motility valuer were within 
10% of one another. Negative bands (numbered as -1) means that enzymes 
elecmpharetisaily move towards anale while positive bands towards cathode. Dasher 
means the abmcc of bands. 
t: Motiiiry values (cm'/s/sedv) are expressed as 1x10.' timer, and are the mean of three 
samples, each fmm a n-fe culrvrp flask. 



Effect of temperatureon the composition of f a q m h h t o t a l  lipids of  
four bacterial strains of the genus Xenorhobdus 

6.1. Abstract 

The impact of temperatureon the fatty zcid ttyompositionrof totzl lipids &as studied for 

four rvainr of Xenorhbodus. isolated fmm nsmatoder Ulat were inilislly recovered from 

various geographical areas: Xenorhobdzgs bosienir N F  strain ( b o d  origin), X bovieni, 

Umed strain (boreal origm), Xenorhabdtrr nemorophilzu All rtrain (urnperare origin). and 

Xenorhobdur rp. TX rwin (subuopieal origin). The most prominent fatty acids were 

palmitis (16:O). palmiroleic (16:1,7) and oleic (18:1,9) acids in all four ruams. A 

IemperaNrc decline& all of the rrrains significlntly insrcaned the proponions of the two 

major unrarumtedfatty acids (16:1,7. 18:1.9), with concomitant decreases in rhc prevalent 

saruratsd fatty acid (16:O). Additionally, fovr other rammated fatty acids (14:O. 17:O. 17 0-. 

20:O) ~ignificanrly declined in Ulree strains (All, NF, Umd) a temperature decreased. 

whils they did not significantly vary in the TX rtrain from 35C to 20°C. There results 

indicated that Xenarhobdzrr bacteria may respond to environmentzl temperarue variations 

by modifyingthedcgreeof fattyaeid unsa~ration. 

6.2. LttWdueGon 

Xenorhobdur bacteria are mutualistieally associated with nematodes of the genvr 

Sreinernemo The bacteria are vectored into the insects' hemocoel by infeetivejuven!ler 



of the nematodes. The inseccr are killed by the combined pathogenicity of the bacteria 

and the nematodes. although the bacteria are considered to be the major lal len (Akhwrr 

and Dunphy. 1993). Then, the bacteria and the nematodes continue to repduce on rhe 

inrect cadavers. ARer proliferation for about three generations. new combined bacteria- 

nematode eomplexer leave the cadaverr and search for new hosts (Poinar. 1990). 

Effective use o f  the nematode depends on ths capacity o f  both the nematode and the 

bacterium to perpetuate their life syslcr in the temperature regimes into which they are 

administered (Grewal e l  al.. 1994: Gcewal st al.. 1996; G w y m  and Richardson 1994: 

Malyneu. 1986: C l d e  and Dowdr. 1994). Temperatwe optima o f  various nematode 

species and strains are conelated with their geographic origins. indicating that they are 

adapted to the conditions in  therr natural environment. The nematodes usually funelion 

berr at the temperatures that typify the habitats fmm which they originated (Griffin. 1993: 

Molyneaur 1986). 

The nematodes have been s h o w  to possess physiological mechanisms lo adjust to 

changing tcmperaNR. One mechanism is to alter rhe degree o f  fatty acid saturation 

(Jagdale and Gordon. 1997"; Abu Hatab and Gaughr. 1997b). However. the capacity and 

mechanism of bacteria to adapt to varying remperahlre are pwr ly  understood. This study 

was done lo compare the physiological capacities of four strain o f  bacteria to adjut lo 

temperature by changa i n  fatty acids. 



6.3. Msterinlsand Methods 

63.1. Bacterial sources and maintenance: Xenorhobdur nemorophilus A11 smin was 

isolated h m  Sreinernemo carpocopsae Al l  swain. which was pmvided originally by 

Plant Pmdvcrr Ltd. Brampton. Ontario. Canada Xenorhubdtrr bovienii N F  smin war 

isolated fmm Sleinernemofellioe NF strain. which was isolated from roil in  an organic 

garden near St. lohdr, Newfoundland. Canada (Jagdale er a1.1996). Xenorhabdrrr 

bovienii Ume& r m i n  warj isolated from S /elrim Umed rmin. which was provided 

originally by Dr. R. West, Canadian Forest Selviee (CFS), St. Johdr. Newfoundland. 

C d a  fmm a stock colony hat  had been mitially oblained fmm Biologic Biosonuol 

Products. Willow Hill. PA. Xenorhabdzrr rp. TX strain was isolated from Sleinernemo 

riobrwir TX strain, originally pmvided by Dr. H. E. Caban~llas. USDA, ARS. Cmp 

Insects Research Unir. Weslaco. Texa.. Al l  the nematode isolates were recycled through 

Gallerio melionello larvae (Woodring and Kay% 1988) at 20°C for 26 months (lagdale et 

al., 1996) before being used for bacterial isolation ARer isolation (see Chapter 2) and 

identitication, X bavienii NF and Umcd strains were maintained on NBTA plate9 at jC, 

X nem*.rophilrrs Al l  r m i n  at IO'C, andX sp. TX main at 15'C with a subculture interval 

o f  approximately one month. They had been maintained for about one year by the time 

that this study war carried out. The purity o f  all the four isolates was identified using a 

Blolog Micmstation SystemiM periodically and jun before h is  study. 



6.3.2.Cvlhlrrfempernhlrr%nod preparationof bnrrcriaIeulhlre: 

Culturc t e m p c r a m  were 100. 204 30' and :PC for X nemoroplrilrrs All main. 200. 

300 and 39C for Xenorhobdusrp. TX straih and 0'. 9 ,  100.20' and 30°C far the NF svain 

and Umd strain o f X  bovienii. Blue bacterial ealonies (primary phase) on NBTA (nutrient 

agar wth bmmothymol blue dye and mphenoltefrarolium chloride) plates were used to 

inoculnte 250-ml tryptie soy bmch IDifco) in a 500-ml capped flask. It was c u l m d  with 

shaking at 100 rpm at a given temperature. hvve~tedat the mid-log phaw (0" the hasis of 

opucal denrity of the culture) of their gmwth by centrifugation at 14.740 g at CC. then 

washed three rimer by repeated cemifugation. decanting and replenishing with O.l5M 

NaCI. The bacterial pellet was transferred into a plastic cap. which was then covered with 

filar paper, and frozen at -200C for 24 horn. The m p l e  was freezedried far 48 hours 

using a Labeonco' freere dry system. Lypho-lock 6 (Labconco Corp.. Kansas City. MO. 

USA). The dried sample w z  transferredinto a 6.0 ml capped vial. and kept at - 2 W  until it 

was used for lipid exuaetian. Three m p l e r  fmm thrrt separate flasks were prepared for 

each bacterialswainat each ofthe giventcmperaturcs. 

633. Exlr~rtioooflipidsznd a~mlysipoffrltyntidr in tohl  lipids 

Fatry acid components in total lipidr were determined by means of gas liquid 

eluomatography(GLC). Lipids were emacted from basteriausing the methadof Blighand 

Dyer (1959). as modified by Jagdaleand Gordon (1997~) Thirty miiligrams of each of the 

frcezedriedsamples was placed into sepmfepolypmpylenemicmcenmfugeruber (1.5 ml) 

to whish 750 pl methanol, 250 ul distilled water, 250 ill chloroformand a few cryrlalr of 



hydmquinone(antioxidantagent) were then added. Each sample was vottered. ieFd ac mom 

tcmpenhire(about 29C) for3-4 h o w  with intermittettetr~ing.thencenUiFug~dat 13.150 

rpm for 2 minutes at room temperature The supernatant was tranrferred into a 

micmmvifugetubs to which 300 p l  distilled watcr and 300 p l  ehlomform w r e  added. 

This mix- rvas "onexed and incubated at room rempenfure for 30 minutes. The lower 

tipid-containing layer (shlomform+ lipids) was Ransferred into a 6.0-ml Uanrmethyiatian 

vial. and evaporated to dryness under a stream of  nitmgen. Then. 2.0-ml transmerhylating 

agent (methanol:rdfurie acid=94:6) and a few crystals o f  hydmqulnane were added to this 

vial. vortored, and incvbated for 4 hours at 70°C. Then 1.0 m l  distilled Water and 1.5 ml 

hexane were added and shaken. AAer 10 minuter at room tempcraturp. the upper layer 

[hexanc + fatty acid rnethyi ester3 (FAMEI)] t r a n s f a d  into a small capped vial (4.0 

ml) and blown to dryness under a stream o f  nitrogen. finally, 100 pi orbon dirulphide 

(CS) was utilized to dirroivc the ex-ted FAMEs. Then. 0.25 p l  o f  this solution was 

injceted into the GLC appara1us.a HewicnPackard 5890 series I1 gas liquid ckomatognph 

equipped with a flame ionization detector. The column was a 30 m Supelcow 1010.53 

mm (Supelco. Supeico Park, Bsilfonts, PA, USA). Helium war uud as the iinencmierat o 

flow rate of 1.00 m l  per minute. Temperatvrcnwere s t  at 209C. 2 4 W  and 240°C for the 

oven, the injector and the detector. rerpectively. The fatty acid components were identitied 

by referring to the retention timen o f  fatty acid standards i n  bacterial acid methyl erten 

CPm' mix (Catalog No 11 14, MaUcya, Inc., Pleasant Gap, PA), and of some standards 

obtained fmm Supelcoand SigmaChemicalCo. 



63.4. Statistirnlao~lysis 

Data were -formed with Log,,(l+X). and analyzed using one-way ANOVA. 

Signifieanrdifference~were determinedby t-ten(Sokal and Rohlf. 1995)ar P<O.Oj. 

6.1. Results 

The mast pmminenr farry acids i n  all four summ were palmitic acid (160) and iu 

monounrarurated fom. palmitoleic acid 116:1,7). Collectively, there 16C faily acids 

accounted for 47-65 percent o f  total fatty acids. Oleic acid (18.1,9) was the next most 

abundant tarry acid. accounting for 8.35% of the total. Each o f  the other fatty acids. 

including myristic (14:O). - k c  (17:O). cyclopmpane (17:OJ. stewie (1S:O). mchidic 

(20:O). and cxsvaceenic (18:1.7) acids. accounted for <LO% of the total faay acidr. 

regardlesrof rm in  or temperature 

Fatty acid compositions were influenced by culture temperatues. When the 

temperamdecrea~NL two major unrarwated faay acids (16:1,7 and 18:1,*9) rigniii-tly 

increased while five ramred fatty acids (14:O. 160. L7:O. 17.0~. 20:O) decreased in three 

strains (NF. Umcg All). In  the ease o f  the TX strain, tempera- deereases also caused 

inc-E in  palmitoleic (161.7) and oleic (18:1,9) acids. with concomitant significant 

deereases in  only one samated fany acid (16:O). Steaie acid (184) w nor rigifieantly 

affected by IcmperaNrr in a l l  four mains. Additionally, the minor unsarwafed fatty acid 

(18:1.7) decrsartedwhentemperatwem lowersd(Tab1e I). 



At a culture temperatureof bC. the proportiomof 16:1,,7 and 18:1,9 in the fatty acid 

moiety of X bovienii NF were appmximately double thore of bacteria which had been 

cultwed at 3bC. Conversely. 140  and 16:O accounted for approximately half the 

pmportbn of fatty acid3 at O°C as was the case at 30°C. The same send was displayed for 

14-0 and 1 6 0  in the Umed Nain of X bovienir the pmponionz in O'C cultured bacteria 

beingappmrimately halfthoreof 30°C culrrurdoner. The proportianof 18:1.9 was tripled. 

and the proportionof 16:1.7 elevatedabout five fold in the fatty asidrofbacretiaeulturedai 

O'C (cf. 3bC). FOE the ma rUainsofX bouieni~ the proportionsofthe most abundant fatty 

aci&Clfi:O andCl6:l changedat temperatuTeI1100C ina fashiontbt hatwasconsicteefwfh 

the general trends over the entire temperature range. i e. C16 0 decreased. while C16:I 

~nsrcaredas a propnionofthe total fatty a c i d s  10' to O°C. The 

concenvdtions of all other identified fatty acids remained stable over this low temperature 

range [Figs. I. 2). However. at the upper end of the temperature range (=PC). all four 

sezinr displayedthe samegencralrrend. lnvolvinga continual increase in the proponionof 

C16:O. with consomiWtdccrearesin 161 and 18:1,9, as the Iemperatureinsreased(Fig. 

3, 4). Other fatty acids, present m lower amounts, remained stable and rhowed small scale 

changes in conrrnmtionoverthis highertemperaturerange. 

6.5. Direurrion 

It has beenestablishedtbt 90% of the fatty acid methyl esters in E coliare acylated to 

phorpholipids,and that almost all of the phospholipids exist in the cytaplarmic membrane 



and the imer  lealet o f  the outer membrane. Bared an this fact. falty acid profiles in  total 

lipi& were directly used to d i sew  the temperature adaptation o f  Photorhobdt~ rpp. 

(Clarke and Dowdr. 1994). Like E coli and Phororhobdar rpp.. bacteria o f  the genus 

Xenorhabdzzs are also Gram ncgativc. and have the m e  basic cell r~ucturer a that in  E. 

coii Therefore, the fatty acid profiles i n  this study can also be utilized ro analyze the 

thermal adaptationofXenorhobdzbds bacteria 

The fow rvains o f  Xenorhobdcrr bacteria involved i n  this study responded to low 

remperature by increasing monounrat~~~fed falty acidr (16 1,,7 and 18:1,>9) with 

concomitant decreases in  rarurated fatty acids ( T X :  160; other strains: 140. 16:O. 17:O. 

17:Oc. 20-0). Adaptationto low temperature( IVC) involvedeampenramrychangee i n  the 

relative pmponionr o f  the dominant fatty aeids 16:O and 161. At higher tempenturer. 

changer i n  the relative pmponionr o f  16:O. 16 1 and 18:1,.9 characterized the tempemure 

eompensatorymechanism. 

I t  is a eommonmeehanirmfor poikilotherm~1.3 adapr to law temperature by increasing 

u n r a t ~ ~ ~ f e d  fatry acidr with the accompanying reductiom o f  saturated fatty acidr (Jagdale 

and Gordon, 1997~; H a l ,  1995: Suutari and Laakro. 1994). Many bacterial species such 

as E eoli. Preudomonarflaorescens Preudomonas o e r ~ r ~ n o s e  Proreus mirobifis, and 

XenorhobdusTX sfrain were found to increase the degree o f  fatty acid waturationat low 

temperam (Suutari and Laakso. 1994: Abu Hatab and Gaugler, 1997a). Unsaturated fatty 

acidr with different positions and different numbers o f  double bonds have different 

eonformatiom. 'There different conformations prevent hydrocarbon ehaitns o f  fatty acids 



from becoming stacked together at low temperatwe. and the temperature at which the 

membrane sr/rtalirer is conr~luently lowered. Therefore. increases o f  fatty acid 

unsaruration at low temperame increase the membrane fluidity. and a ~ d  in  maintaining 

normal membrane funstions (Suutari and LaaLso. 1994). I n  addition. unraNratedfatty acids 

also insrearemembrane permeability (Hakomori, 1986: Abu Harab and Gaugler. 1997a). to 

eompnsate for the lowering o f  membrane prmeability that would athewise occur at low 

temperame. 

From the data reported m rhir study. i t  would appear that all four srrainr o f  bacteria 

modified the level o f  saturation o f  their fany acids in  an adaptive fashion at hrgh 

IemperattMS. At cold mperatwes. the two strains o f  X bovrenir displayed adaptive 

changer: rrudieson the A l l  and TX rvainr were precluded by their inability to gmw at low 

rempraruren. Such bmad capacities for physiological adaptation to warm temperature by 

the bacteria were not recorded for their steinemematidvcstorr. The unraturation indices o f  

S feltiaeNF ~vain.S.feRnoe Ume&ruain.andS corpcoproeAl1 strain ehangedadapl~vely 

with temperature over the range 5-2j0C. However. S riobrovir TX strain darplayed no 

changer i n  the unsarumtion index over the tempera- range. leading Jagdale and Gordon 

(1997") B concludc !hat i t  had a lower degree o f  phyriological adaptation to changing 

tsmperaolrcrlhan the otherruainr. 

The first hp redom inan t  fam, acids in the fourrtrainrofXenorh~1bdus bacteriawsre 

found to be palmitie (16:0), plmiloleie (16:1,7) and oleie (18:1.9) acids. which w a s  i n  

agreement with the study onXenorhobdur TX (Abu Hamb and Gaugler, 1997a) Much less 



cyclopmpane(l7:Oc) was found i n  this study than in  a previous report (Janre and Smar. 

19901, i n  whish these authors determined the fatty acid profiles of 32 Xenorhobdur strains 

at 28'C. andused there profilerto clarnifythue bacteria This may be due to the differences 

in  culture media and the harvening phases of the bacterial samples. The bacteria were 

cultured i n  rryptic soy broth (Difco) and harvested ar mid-log phase i n  my m e m h .  while 

bacterial sampler were hwesfed at late-log g r o h  phase Fram trypic- roy bmth agar 

(Difco) i n  the otherrtvdies(Abu Hataband Oaugler. 1997a: Janseand Smirr. 1990). I n  fact. 

cyelopmpane has been found to be ~ignififiantly influenced by culture media. tempera- 

and g m h  phase in Xenorhobdus rp. TX swain (Abu Hatab and Gaugler. 1997a). For 

example. this r m i n  displayed only 1.7% cyelopmpane when i t  was cultured ar lSPC u i rh  

Golleriamellonellac~ude lipid (CmCL) as the ptimmy carbon rovrce i n  culturemedia and 

harvested at log p b e .  However. i t  ~howed 30.6% cyclopropane [very close to the 27.7% 

cyslopropanein the rtudy by Janse and Smits (L990)I when culturedat >PC with glucose 

a~ the mamearbon source and harverredar starionmyphase. 

In the study by Abu Hatab and Gaugier (1997a). fatry acid comporit~onr in  total lipids 

were examined only for Xanorhobdur rp. TX rnain cultured at IS, 20, 25, and 30°C on 

media with glucose or OmCL as the pnmary carbon source. In this rtudy, saturated fatty 

acids increasedand unsaruratedfattyacidsdecreasedas tempemfyreincreareQregardlersof 

the main carbon source i n  cultwe medla. C o m p d  with this study, my r e m h  involved 

three rpcciu(fourmains) whichotiginatedhomvariousgeographicalregions. which made 



i t  possible to compare the capacities. with respect to fany acids. of Xenorhobd,~~ bacteria 

fmmdiffersntareas for mmal adaptation. 

Faw acid panems have been urd for the avonomy of rhe bacteria o f  the genera 

Yenorhabd~rsand Phocorhobdzrr(lanse and Srnits. 1990: S d i  et d.. 1990). This study 

shows the importance o f  specifying culture temperature i f  f aw  acids are to be used m this 

manner In addition. f e w  acid profiles can be affecred by culture media tempera- and 

p w t h  phaer i n  Xenorhobdttr bacteria(Abu Hatab and Gausler. 1997a). These eonditiom 

a190 have lo k carefully specificdin tanonomicstudier. 



Table I: Effect of temperamre on faw srids in total lipids of three X~norkabdrrr 
rpeeinineludingfourstnini 

f* Baetetialruainr 

acids rYC NF Umsa All TX 

0 b1.97=0.1P '3.42rO.ZP - 

5 ?.41rO.lP ?.64=0.171 - 
10 b1.84r0.16d 7.49t0.46 'l.59=0.34" 

14:O 20 7.82-0.3@ '3.89.0.16 b4.13i0.41" '6.87=0.8Y 

30 '5.41t0.11a 7.58r0.26 I . 80~0 .24~  "7.73=0.?1' 

35 - %.24=0.12" "8.61=0.56 

0 "47.24a2.3Cf '47.47rl.lC - 
5 "47.17+3.32 '44.17=1.39 - 

10 '45.08r2.9f '43.11r2.55. 13.07r3.43" - 
16:1.7 20 '26.16r2.7C ?4.12i0.36b '23.46=2.1? ?0.49+2.04' 

30 "18.26*1.M '8.95t0.13' '16.59t0.54' "5.50a0.21D 

35 - '8.28t0.54* '13.32r0.14' 

.Note: Valuer are expcesedas the percentages in total fatty acids. Each of the values ir the 
mean t SE (-dad error) of t h  independent replicates. The valuer with the m e  
~upencriptletter (acrns~ c c l ~ m n ~ )  on the leR of the mean are not slgn~ticantly different at 
P41.05 (among ruainr). The values with the same superscrtpt letter (down the coiumnr) on 
the rightof the SE are not signifisanflydifferentat P<O.O5 (amongremperaiursr). 



Table I: EKeet of temperature on flay acids in total lipi& of three Xenorhobdu 
species including famr srraini(continued) 
fatty Bacterialsllains 

acids PC NF Umeh All TX 

0 '0.05i0.05b U.08*0.0% - 
5 '0.09rO.09L '0.38.0.2Y - 

10 '0.00rO.Ob "031r0.16 '0.45rO.ZZ - 

17:O 20 '1.00t0.54' '0.97rO.OP 0.79=O.lP l).37rO.;r 

30 '1.62e0.25' 169 r0 .12  k1.28?0.18 '0 96e0.06" 

35 - '1.39r009 '0.97t0.ija 

0 '5.80+1.02' '5.21iO.26 - 
5 b3.85=0.501 '5.88r0.31" - 

10 '4.20r0.53" '5.59~0.5C '4.99r0.69 - 

18:O 20 '7 87~2.90. '6.37r0.491 "3.81i0.11' '5.17t0.44' 

30 V.22~0.28' '6.23r0.18' '4.75t0.23' '4.55t0.17. 

35 - '4.41=0.191 '5.60i0.09. 

'Note: Valuss arc cxprsssedar thc percentagesin total fattyacidr. Each of Ule values s the 

mean r SE (srandard error) of three independent replicates. The values with the m e  
rupenenpr letter (acmrs columns) on the leli of the mean arc nor nignifieantlydiffe~nt at 

P<0.05 (among Nains). me valuer with the rams ruprscriptletter (down the columns) on 
the rightofthe SE arc notsignifi-dydifferenfaf Pc0.05 (amongtemperarurer). 



Table I: Effmt of temperature am fatty neidr in lohl  lipids of three Xcnorhabdus 
specie in~ludiogfour straini(eonrinued) 
fatty Bactcrialruains 
acids tV NF Urn& All TX 

0 '0 OO~O.OOb '0.00tO.Off - 
5 "O.oO~o.oob ~.00.0.08 - 

10 "0.00r0.06 "0.15t0.1Y ~O00=0.001 - 
20:O 20 '0.69r0.69 a1.91r0.18b 'l.MtO.171 '0.30~0.38 

30 b2.23r0.48 %61*0.23' b1.34r0.12b 0.62t0.36' 

35 - ?.86=0.28 Q0.49r0.2S 

Note: Valuer are expressed as the percentages in total fany acids. Each of the values is the 

mean = SE (rtandard emd of rtuee independent replicatcr. me valuer wilh h e  same 

superreript letter (across co1wnns)on the IcR of the mean are not ripnitieanrly different at 

Pc0.05 (among 6). The valueswilh Ule same rupendptlener (down the eolumm) on 
the right ofthe SE are nor rignificantlydiffercnf~f P<O.OS (amongtcmpcmmr). 



Fig. I: Effm o f  temperature on farty acids in total liptdr o f  Xenorhobdur bovienti N F  

main 

Fig. 2: Effect o f  tempsmNreon fatty acids in total lipids ofXenorhobdus bovienriUme2 

strain 
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Fig. 1: Effect oftemperam on fatry acids in total lipids of  Xenarhabdrrnemorophil~,~ 

All Nain 

Fig. 4: Effecroftempemmreon fatry acids intotal lipids ofXenorhobdurrp. TX .train 
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Chapter 7 

General discussion 

Xenorhobdrlr sp. TX swain. the bacterial symbiont o f  the nematode Steincrnemo 

riobrwis was physiologically and biochemically different t o m  all the described bacterial 

s p i e r  that were natually associated with entamopathogenic nematodes. Moreover. is 

rim~larity value. obfained usmng the Biolog system. showed that i t  was neither X bovienii 

nor X n~mo,ophilur. Thsse findings suggest that thi l  bacterivm is probably a new species. 

On the other hand, Xenorhobdzrr bovienii NF smin could not be di~r~nguished t o m  the 

UmeSrrrainofLk m e  s p i e r  by common physiologicaland bioeh~micalterts and i t  had 

n similarity value coincident with X bovienii. There two sminr were separable from each 

other using the irozyme patterns o f  arginine phasphokinass(APK). However. although this 

cnr)m5 was t ~ p o r a l l y  stabls, its pattern of isozymcr was affeectsd by temperature: so. irs 

value for taxonomic purpose is questionable. 

The present study has shown that. like their nematode hons (lagdale and Gordon. 

1998b). the bacterial assaeiates o f  entomopathagenic nematodes contain enzymes that arc 

temperam seositive with respect to isoryme synthesis. Only one (6PGDH) of the seven 

enzymes studied had an isozyme panern that was independent o f  temperature and this 

enzyme failed to discriminate among species. Thus, i f  tcchniqucs such as cellulose acefare 

electmphoresir or acrylamide gel electmphorerir (Horchkin and Kay% 1984) are to be 

advacated for use in the lanonomy o f  bactsrial associates o f  entomapathogenic nematodes. 

a broader n w e y  of enzymes i r  needed to determine those that arr both diagnostic and 



tempemweindependem. Alrernarively.rhe tempemmat which the bacteriaare g ~ w n  for 

m~onomicrtudiesshould beeare6Alycontrolledd specified. 

Moreover. although the results on temporal rtebility o f  the enzymes are encouraging. 

revealing only two our of a possible fourteen [2 irolarer (NF and Urn&). 7 enrymes] 

r imtionr where i s o w e  patterns changed omr time, the long-rerm stability o f  iroqme 

patterns should be examined for more enzymes over periods of  rime in  excess of the live 

months used i n  this study. and for a wider range of bacterial specia and stmrnr. Only the 

iroqmepanerns with good nrabiliry over time could be used fortaxonomicpurposrr. 

In  response to the changes in  culture temperatures. all four bacterial mainr modified 

the synthesis o f  the isomma of their merabalic enzymes and the degree of fatty acid 

unsmatianin total lipids. These findings suggertpssible phyriolog~cal mechanisms used 

by Xenorhobdu bacteria for temperarue adaptation. The strategy of~yntheridng isoqmcs. 

geared to function opr~mally at either end of the organirm's temperature range. has been 

docvmentcd for pikilothermicanimaln (Jagdalc and Gordon 1998b: Mareus. 1977; Smith 

and Hubbn. 1986) Thur far. I t  has not been reportedto occur i n  bacteria. However. the fact 

that differencesin enzyme banding prernr  ocuvredat either endof the heemperanveranga. 

r a k  than randomly, relative to temperam a suggestim of an adaptive rerpnre. By 

sonnast, the nematode hosts displayed tempera- related changes i n  isoqme profiles o f  

mefabDlie e v e r  that i n  many insrancer, were suggestive of random. "an-adaptive 

genetic muution. (lagdale and Gordon. 1998b). 11 should be noted, however, that the term 

o f  exposure to the culture tempcramre (ca. 2 years) was coluidcmbly greater in  the 



nematode studies than i n  rhe cunent investigationroo rheir bacteria. So. the two situations 

may not bedireetlyeomparable. 

The changer in  the saturation o f  fatty acids thar occurred in  all bacterial strains i n  

response to temperatweir consistentwith what han been reported to occur for other types af 

bacteria(Suumi and L d s o .  1994). as well as for Xenorhobdllrrp. TX strain (Abu Hatab 

and Gaugler, 1997a). As bacteria use lipids mainly for stnrstural purposes (Clarke and 

Dowdr. 1994). i t  seems reasonable to conclude thar the temperature related changer m 

raturarionlevelr are adaptive.maintainingmembme fluidity and permeability over a bmad 

temperamrerange. 

Fmm this study, i t  appears that temperatwe adaptive mechanisms such ar changer in 

iszymc ryntherir and fatty acid naturationlevcls arc common to all the bacterial strains. so 

the observed differences i n  lemperatn~/gmwth m w t  be attributed to other smin specific 

properties. 

The climat~c pmfiler of the geographic origins o f  the bacteria conerpondcd la the 

temperatwe ranger for rheir gmwh and limited their phyriologiealeapacity of adapting to 

temperature. In this rrudy, the nw boreal bacterial strains (NF, Umei) could gmw under 

much lower tempramsthan the temperaleruain (All) and the rubuopicalsmin (W. A 

similar tendency w a ~  also found in the temperatwe requirements for recycling the 

conerponding nematode hose o f  thcic bacteria so that the l aum t e m p r a m  limit for 

recyelingS felrioe c S  eorpocoproe<S rrobrovir(Jagda1eand Godon, 1997a). 



Whether bacterial arrociater grow well at a giwn tcmpcrarure has relevance to rhc 

successful m y d i n g  of their ~ o r m p d i n g n r m a t ~ d e  host specie. [Gwym and Richardson 

1994: Jagdaleand Oordon. 1997a). The rearonraredueto the mles that bacteria play in the 

bacterium-nematodeeompleeee. Fim, bacteria provide their nematode hosts wtrh nurrients 

for efficientnematoderepducrion(Akhurstand Dunphy, 1993. Font and N&n. 1996). 

Bacterial f a l m  m gmw wadd result in inadequate nutrition for nematode repmduction. 

Additionally. in mon nematode-inrelinreractions, bacteria are the key contributors to h e  

pathogen~cityof theireorresponding bacteriwn-nematodeeomplexer (Akhurrt and Dunphy. 

1993; Forst and Nealson. 1996). so if bacteria are unable to grow well. this couldaffect the 

effcciiencyofrhe companding bacterium-nemmttde~~mplexe~ m controllingthe pests. 

The smim ofXenorhobdur bovienii are well adapted m low temperatures. capable of 

growing at a temperature as low as O°C. with maximum groufh ocevrring at ZS'C. This 

finding awes  with that of Gwynn and Richardson (1994). who rhowed that two other 

strains (Lil28 and U179) ofXenorhabdzrr bovienti could gmw ar Z°C. The nematode hoa 

species (Sreinernemofelrioe) of the bacterial strains used #n !his study were shown to 

have superior lolerance than the ncmatode hosts of the other bacterial isolates, and could 

kill Gollerio meilonella larvae ar low (5'C) temperatures (Jngdale and Godon, 1997% 

1998a: Grewal et 4.. 1994). Thus, it may be concluded that X bovienii and its nemarode 

host (S. feltiae) may be utilized for pest management in cold regions. On the other hand, 

the bacterial TX rmin displayed good gmwh only at warm temperarurer (>1S0C) and its 

nematode host (S riobrovir) infected insen hosts at IOJ9'C (Grrwal er al., 1994, Jagddc 



and Gordoh 1997a). So. the bacterial TX strain rhovld be viewed as a warm+daptcd 

speiff. and S. riobrwrs could be used to mntrol renritive insects in warm areas Finally. 

S corpmqmm A l l  stain. which has undergone enenrive laboratory eoloniation. 

showed similar rempcrature-gmwth relations as S riobrmrir TX strain (lapdale and 

Gordon, 19978.1998b). Its bacterial associate (growing at >IOaC). X nematoph,lur All 

strain, is a little more cold-adapted than ihe TX strain of .Tenenorhobd~~d (growing a 

(ST). So. i t  reems that S corpocapsoe A l l  strain would hmction well for insect pest 

management i n  temperate and warm regions. 
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