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ABSTRACT 

Due to concerns over the role of nitrite and high sodium chloride concentrations 

in cured meat products, nitrite-free alternative meat curing systems consisting of a 

colorant, the pre-formed cooked cured-meat pigment (CCMP) and antioxidant/chelator 

mixtures with or without an antimicrobial agent and other usual curing adjuncts have been 

developed. The present study was conducted to examine the antioxidative efficacy of 

CCMP (at 2.2, 6.2 and 10 pM), alone or in combination with sodium ascorbate (SA) 

and/or sodium tripolyphosphate (STPP), in a J3-carotene/linoleate model system. For 

comparative properties. pro- or anti-oxidative effects of metmyoglobin (MMb), 

nitrosylmyoglobin (NOMb) and butylated hydroxyanisole (BHA), were also investigated 

in the same model system at the same concentrations. CCMP exhibited an antioxidative 

effect at 6.2 and 10 pM concentrations and its activity was greater than that of NOMb, 

but less than that of BHA, whereas MMb exhibited a prooxidative effect. Moreover, the 

antioxidative properties of CCMP in the presence of both SA and STPP (at 550 and 500 

ppm, respectively) was marginally enhanced when compared to that of CCMP alone. 

Sodium chloride, generally regarded as a prooxidant, is always used in curing 

mixtures. In order to investigate whether this prooxidant effect as well as the influence 

of salt on water-binding capacity (WBC) and texture originates from the sodium ion or 

the chloride ion of the molecule, a number of halides and sulphates of alkali and alkali­

earth metals (at 100 and 200 meqlkg meat) were examined in a meat model system. 
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Similar studies were carried out using Pane-salt (52% NaO + 28% KO + 12% MgS04 

+ 3% Lysine.HCI). a commercially-available low-sodium salt. at 1. 2 and 3%. Results 

were compared with those for I. 2 and 3% NaCl. Lipid oxidation was monitored over 

a 7-day storage period at 4°C using the 2-thiobarbituric acid-reactive substances (TBARS) 

test. For systems exhibiting an antioxidative effect. further studies were carried out to 

determine their content of hexanal. Furthermore, salts with antioxidant activity were 

tested in a ~-carotene/Iinoleate model system. Fluorides and iodides of alkali metals 

inhibited lipid oxidation in meat model systems as reflected in TBARS values and 

hexanal contents and in a ~-carotene/linoleate model system. Meanwhile, chloride and 

bromide salts of alkali and alkali-earth metals had generally a minot prooxidative 

influence on lipid oxidation in both systems examined. Fluorides of alkali-earth metals 

did not exhibit an antioxidant activity, presumably due to an ion-pairing mechanism. 

while their iodide analogues remained effective. Pane-salt showed a slight prooxidative 

effect in meat model systems similar to that of Naa. 

Halides and sulphates of alkali and alkali-earth metals (except MgF2• MgBr2• Mgl2 

and CaFJ increased the cook yield (ie.. WBC) of treated samples whereas most salts 

(except LiF, NaF and LiQ) imparted a fmn texture (ie., high shear force values) to meat. 

The effect o~ Pan• -salt on increasing the cook yield and improving the texture of meat 

was generally less than that of Naa at the same concentrations examined. 
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CHAPTER 1. INTRODUCTION 

Curing of meat with salt, containing sodium nitrate as an impurity, has long been 

known to man as a preservation method With time, the curing techniques were 

developed and perfected. The cured products possess a characteristic cured-meat colour 

and a pleasant cured flavour as well as a prolonged shelf-life. Although a variety of 

ingredients are used in the curing mixtures, modem methods involve the addition of 

sodium nitrite, sodium chloride, sucrose, sodium ascorbate or erythrobate, polyphosphates 

and sometimes spices prior to thermal processing. Sodium nitrite, the key ingredient in 

the curing formulations, is responsible for the development of the characteristic colour and 

flavour and is also capable of prevention of the growth and toxin production of 

Clostridium botulinum, thereby lowering the risk of botulism. The reaction of nitric 

oxide, which is generated from nitrite upon the action of microorganisms and the other 

additives, with myoglobin gives rise to the formation of nitrosylmyoglobin (NOMb) which 

upon heating is converted to a pigment responsible for the pink: coloration of cured meats. 

Use of nitrite in meat and meat products has been a concern among consumers and 

researchers because of the formation of carcinogenic N-nitrosamines upon its reaction 

with arnines present in the meat itself and in the gastric fluid Considerable research has 

been carried out in order to find means to reduce or to eliminate the use of nitrite in meat 

curing. As a result, the addition level of nitrite to meat has been restricted to 156-200 

ppm and the incorporation of ingredients such as ascorbate that are capable of lowering 

the nitrite requirement, has been reconunended Unfortunately, no single compound has 

yet been found to duplicate the role of nitrite in meat curing. 
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The concept of alternative meat-curing systems is aimed at complete elimination 

of nitrite from cures and use of multi-functional curing mixtures. One of the biggest 

challenges in formulating such a curing mixture is to tmd pigments capable of 

reproducing the characteristic cured-meat colour in meat. Certain natural and synthetic 

compounds have been used to impart a pink coloration to mea~ but such compounds were 

unacceptable to consumers who were used to a nitrite cured-meat colour or because of 

hazards of chronic intoxication. An innovative technique to preform the cooked cured­

meat pigment (CCMP) in the mid 1980's, added a new dimension to modem curing 

practices. Promising results were obtained in many aspects indicating its potential as a 

colorant in alternative meat-curing mixtures, but little is known about the effects CCMP 

on lipid oxidation. 

The main role of sodium chloride in the curing process is to provide a salty 

flavour to the meat. However, the development of the desirable texture of cured-meat and 

meat products by sodium chloride cannot be underestimated. In addition, sodium chloride 

prevents the growth of common spoilage and pathogenic microorganisms and thereby 

extends the shelf-life of the products. 

Sodium chloride in foods also plays some negative roles such as its possible 

connection to hypertension or high blood pressure in human subjects. Furthermore, 

sodium chloride may act as an antioxidant or prooxidant in mea~ depending on the 

concentration and system in which it is added. Information on the role of sodium and 

chloride ions in lipid oxidation is controversial. Some researchers have demonstrated that 
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it is the sodium ion which is responsible for the anti- or pro-oxidative activity of sodium 

chloride while others have demonstrated that chloride ion is responsible for these effects. 

The objectives of this study were to investigate (1) the effect of cooked cured­

meat pigment (CCMP) on lipid oxidation (2) the effects of halides and sulphates of alkali 

and alkali-earth metals on lipid oxidation. cook yield and texture of meat and (3) the 

effect of Pan• -salt. a commercially available low-sodium salt mixture, on lipid oxidation, 

cook yield and texture of meats. 



CHAPTER 2. LITERATURE REVIEW 

2.1 Curing of meat 

Preservation of fish and meat by salt curing has been known to man since 3500 

B.C. The practice of meat preservation took place in the saline deserts of Hilther Asia 

and its coastal regions. Rock salt containing nitrates and borax as impurities was in 

abundance in this area (Pierson and Smoot. 1982). The an of meat preservation by salt 

and smoke was well known by 900 B.C. in Greece and was later passed on to the 

Romans. The reddening effect of these contaminants was not noticed until later by the 

Romans. They became skilled in the curing and pickling of a variety of meats including 

pork. Salts containing saltpetre were then intentionally added to meat to obtain the 

desired red colour and the distinctive flavour. With time, use of nitrate addition became 

a regular practice, and curing techniques were developed. Scientists have recognized that 

nitrate was reduced by naturally-occurring bacteria present in the post-mortem muscle _ 

tissues to nitrite and nitric oxide, which then could react with meat pigments during 

heating to produce the cured meat colour. However, scientific principles were not applied 

to meat curing until the latter half of the 19lh century (Kramlich et al., 1973). Today a 

wide selection of cured meat products is available. These products include bacon, 

sausages, salami and ham (Pierson and Smoot. 1982). Although a variety of compounds 

may be used in curing mixtures, current meat curing practice involves the addition of 

nitrite and salt. sugar, ascorbate, polyphosphates and/or spices (Shahidi, 1991). The effect 

of each curing ingredient is discussed in the following sections. 
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2.1.1 Sodium nitrite 

The use of sodium nitrite (NaNO:J has been regulated since 1925. Sodium nitrite 

has multi-functional properties in cured meats including the inhibition of Clostridium 

botulinum, development of cured meat flavour and colour, and prevention of warmed-over 

flavour (WOF) development by controlling lipid oxidation (Hadden eta/., 1975; Shahid.i 

eta/., 1985; Shahidi and Pegg, 1992). The development of the cured meat colour results 

from the reaction of sodium nitrite with haem pigments in the muscle and exhibits the 

most obvious effect of adding nitrite to meat (Howard eta/., 1973). The modification of 

flavour is another important change produced in meat by the addition of nitrite. Nitrite 

influences the flavour of cured meats by virtue of its antiox.idati.ve properties and 

stabilization of microsomal lipids and haem pigments (Hadden et al., 1975; Shahid.i and 

Pegg, 1992). The concentration of carbonyl compounds produced from autoxidation of 

meat lipids is markedly reduced by the addition of nitrite (Shahid.i. 1989a, b). 

The preservative or bactericidal effect of nitrite in meat products is another reason 

for its use. The problem of botulism, the toxicity caused by Clostridium botulinum. is 

closely associated with uncured meat and meat products. The inhibition of growth and 

toxin production of Clostridium botulinum by nitrite is not a function of nitrite alone. It 

needs acidulants and common salt to act as an antimicrobial agent (Vosgen, 1992). The 

mechanism by which nitrite inhibits the outgrowth of spore and the growth of vegetative 

cells of microorganisms is not fully understood. It appears, however, that a reaction 

between nitrite and iron-containing enzymes is involved (Shahid.i and Pegg, 1992). 
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2.1.2 Sodium chloride 

A typical curing mixture contains 20-30% sodium chloride (NaCl). The final 

product however, contains 2-3% NaCl (Sofos, 1986; Knight and Parsons, 1988). Sodium 

chloride contributes to the flavour, binding properties and extended shelf-life of cured 

products by retarding the growth of microorganisms (Barbut and Mittal, 1989). Salts 

inhibit the growth of a wide range of spoilage and pathogenic microorganisms by 

dehydration and alteration of osmotic pressure (Kramlich et al., 1973). Sodium chloride 

concentrations below 2% shorten the shelf-life of meat products. Whiting et al. (1984) 

have observed reduced shelf-life of frankfurters treated with 1.5% NaCI. In addition, salt 

plays an important role in the solubilization and extraction of myofibrillar proteins, 

especially the actomyosin complex. This functional property of salt is important in the 

production of sausages and other processed meat products. Solubilization and extraction 

of these muscle proteins contribute to meat its water and fat binding properties and 

consequently. reduces cook losses. Coagulation of solubilized actomyosin forms a 

protein network upon cooking, entrapping fat, water and other ingredients within the 

protein network. This results in a product with appealing texture and juiciness (Sofos, 

1986). 

2.1.3 Polyphospbates 

The use of polyphosphates for processing of ham and other cured products is a 

common industrial practice. Sodium tripolyphosphate (STPP), sodium pyrophosphate 
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(SPP), disodium phosphate, sodium hexametaphosphate (SHMP) and sodium acid 

pyrophosphate (SAPP), individually or in combination are allowed in amounts not 

exceeding 0.5% (w/w) of the finished product (Sofos, 1986). The purpose of using 

polyphosphate is to increase the water holding capacity of cooked meat through increasing 

pH and ionic strength and by unfolding muscle proteins. In addition, polyphosphates have 

the ability to chelate metal ions and subsequently prevent off-flavour and off-odour 

development through lipid oxidation (Wierbicki. et al., 1976). Polyphosphates increase 

the binding properties of cured meats by increasing the solubility of muscle proteins, 

namely actomyosin and myosin, particularly in the presence of sodium chloride. There 

is some evidence for antimicrobial activity of certain polyphosphates in meat products and 

other foods (Sofos, 1986). 

2.1.4 Sodium ascorbate 

Sodium ascorbate (or its isomer sodium erythrobate) is added at a minimum level 

of 550 ppm when curing meat products (Brown et al., 1974). It accelerates the rate of 

curing by acting as a reductant for the conversion of metmyoglobin to myoglobin and also 

it reacts with nitrite to increase the yield of nitric oxide from nitrous acid. Furthermore, 

excess ascorbate acts as an antioxidant (Kramlich et al., 1973). Sodium ascorbate also 

participates in the inhibition of N-nitrosamine formation in cured meat products. Izumi 

et al. (1989) have shown an increased loss of nitrite from the curing mixtures containing 

ascorbate. These authors concluded that the reaction product formed between nitrite and 
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ascorbate may be responsible not only for nitrosation reactions but also for the loss of 

nitrite during the curing process. 

2.1.5 Sugar (Sucrose) 

The addition of sucrose to cures is primarily for flavour enhancement of cured 

meat and meat products. In addition, it softens the meat and meat products by 

counteracting the hardening effects of salt. Sucrose can be inverted to glucose and 

fructose upon heating. Glucose so formed can react with the amino groups of proteins 

and upon cooking, forms browning products which enhance the flavour of cured meat. 

Usually, the sugar content of cured meat is around 2% (Kramlich et al., 1973). 

2.1.6 Spices 

The addition of spices to certain cured meat products is a common practice. Their 

key role in meats is to impart a spicy flavour to the product. The latter is caused by the 

volatile compounds present in spices. Allspice, clove, sage, oregano, rosemary, thyme 

and black pepper possess antioxidative properties due to the presence of certain phenolic 

compounds (Shahidi and Wanasundara, 1992). 
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2.2 Nitrite and carcinogenesis 

Although nitrite and its precursor nitrate have been involved in the curing of meat 

for centuries, their use in meat curing is of concern because of their potential adverse 

health effects (Buege et al., 1980). However, it should be mentioned that the main source 

of nitrite in the human diet is not cured meat. The consumption of certain vegetables and 

vegetable juices containing high levels of nitrate increases salivary nitrite levels to 

hundreds of parts per billion (ppb), many times higher than that permitted in any food 

product. The salivary nitrite is derived from the conversion of dietary nitrate to nitrite 

by the action of microorganisms in the mouth (Gray and Randall, 1979). Toxicity and 

carcinogenicity of nitrite per se has been reported (Sebranek, 1979). 

Reaction of nitrite with free amino acids in meats followed by decarboxylation or 

direct reaction of nitrite with amines of meat, spices and gastric fluid results in the 

formation of N-nittosamines (Gray and Randall, 1?79; Shahidi and Pegg, 1990). Many 

of these compounds are carcinogenic and, in addition, some exhibit mutagenic. 

embryopathic or teratogenic properties (Walters, 1980; Shahidi et al.. 1985; Shahidi et al., 

1987; Vosgen, 1992). Although there is no direct evidence that N-nitroso compounds are 

carcinogenic to man, animal studies such as in monkeys, mice, rats, rabbits, guinea pigs 

and sheep would suggest the potential danger (Gray and Randall, 1979). It has been 

reported that nitrite enhances the carcinogenic action of N-nitroso-N-methylbenzylamine 

in the pathogenesis of oesophageal tumours (Schweinsberg and Burkle, 1985). 
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The food items of major concern are cured meat products, especially bacon. The 

factors important to potential formation of N-nitrosamines in bacon include cooking, 

nitrite concentration, salt concentration, pH and presence of ascorbic acid. Of these 

factors nitrite concentration plays the most important role in the formation of N­

nitrosamines. Mirvish (1970) has shown that the rate of N-nitrosamine formation is 

directly proportional to the square of nitrite concentration. Although. there have been 

suggestions that it is the initial and not the residual nitrite that influences N-nitrosamine 

formation in bacon, there is evidence to indicate that the lowest residual nitrite gives the 

least probability of nitrosamine formation during frying (Sebranek, 1979). 

Addition of a-tocopherol with ascorbate, has remarkably reduced the amount of 

N-nitrosarnine formed in the final cured product (Izumi et al., 1989; Cassens, 1990; 

Shahidi and Pegg, 1992). Shahidi and Pegg (1992) have pointed that the most reliable 

means of overcoming the problem of N-nitrosamine formation in cured meat, is the total 

elimination of nitrite from the curing process. The absence of volatile N-nitrosamines in 

cooked nitrite-free cured muscle foods has been reported (Shahidi et al., 1994). 

2.3 Alternative meat curing systems 

Despite all of the desired effects of nitrite. objections have been raised to the use 

of nitrites because of the formation of carcinogens such as N-nitrosamines in cured meat 

products (Dymicky et al., 1975). It is unlikely that a single compound will be found that 

can perform all functions of nitrite. Therefore, any alternative meat curing system would 
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contain a mixture of substances which include a colorant, antioxidants and antibotulinal 

agents (Shahidi eta/., 1988; Shahidi and Pegg, 1992). 

Substitutes for nitrite in producing the desired colour have been reported. Early 

investigations for alternative colorants concentrated on the use of naturally-occurring red 

coloured plant pigments, especially betalains of beet. Betalains consist of two coloured 

substances namely betacyanine, which is red in colour, and betaxanthin, which is yellow­

coloured. Since beet powder is permitted as a colour additive by regulation, it has been 

used to simulate cured meat colour in cooked, smoked, and semi-dry fermented sausages 

(von Elbe and Maing, 1973; von Elbe et al., 1974a, b). 

Howard et al. (1973) have investigated 24 nitrogenous compounds for their ability 

to form ferrohaemochromes with bovine myoglobin. They found that methyl and hexyl 

nicotinate and N,N-diethylnicotinamide have the ability to produce a stable pink pigment 

in cooked ground meat. Moreover, methyl or hexyl nicotinate or N,N-diethylnicotinamide 

worked synergistically when used with low levels of nitrite. However, none of these 

nitrogenous compounds were able to produce the typical cooked cured-meat colour in 

sausages. Dymicky et al. (1975) have studied more than 300 compounds for their 

performance in imparting characteristic cured meat colour to products. They found that 

pyridine compounds were capable of producing a pink colour in meat model systems. 

Furthermore. 3-acylpyridines imparted the most desirable colour to meat. Lin and Lai 

(1979) have shown that imidazole could be used as a colour-fixing agent. Imidazole was 

demonstrated to react with the haem moiety of haemoglobin and subsequently form a red 
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colour pigment . The application of these compounds to meat is, however, not practical 

mainly due to their poor stability, poor solubility in water and possible toxicity. 

Preparation of the natural cooked cured meat pigment (CCMP) has attracted the 

interest of researchers. Shahidi et al. (1984) were able to synthesize CCMP from haemin, 

an iron porphyrin compound prepared from bovine red blood cells and sodium nitrite. 

The purity of the pigment so obtained was about 65-72% and. as such, it did not impart 

the cooked cured meat colour to meat effectively. Shahidi et a/. (1985) later 

demonstrated a novel method for the synthesis of CCMP using haemin and nitric oxide 

as the nitrosating agent. The CCMP so prepared had a purity of >97% and was capable 

of imparting an excellent cured colour to meats. 

The applicability of CCMP to meat as an alternative for nitrite has been 

thoroughly investigated. Successful application of CCMP to meat systems such as 

sausages and salami has been reponed (Pegg and Shahidi, 1987; Shahidi and Pegg, 1990, 

O'Boyle eta/., 1990; Shahidi and Pegg, 1991a). Shahidi and Pegg (1990) demonstrated 

that the colour characteristics of cooked conuninuted pork containing 12 ppm of the pre­

formed CCMP, were similar to those of nitrite-cured meat prepared with 156 ppm of 

sodium nitrite. There has also been some evidence for the antiox.idative nature of CCMP 

in meat model systems (Shahidi et al., 1987; Shahidi et al., 1988) 

One of the main problems associated with CCMP in early studies was its 

instability when exposed to light and oxygen. This problem was successfully overcome 

by storing the pigment under a positive pressure of nitric oxide or by encapsulating it in 
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a food-grade starch (Shahidi and Pegg. 1991b). Shahid.i and Pegg (1991b) and O'Boyle 

et a/. (1992) have demonstrated prolonged stability of microencapsulated CCMP in a 

mixture of ~-cyclodextrin and modified starches such as N-Lock or maltodextrin. Shahidi 

and Pegg (1991b) have shown the ability of encapsulated CCMP to remain stable even 

after one year of storage. 

The absence of volatile N-nitrosamines in cooked nitrite-free cured meat has been 

revealed by Shahidi et al. (1994). This finding provides a strong basis to researchers who 

are working towards nitrite-free curing of meat products with the hope of producing N­

nitrosamine-free processed muscle foods. 

Several alternative antimicrobial agents for nitrite have been reported. Among 

these. parabens, hypophosphite, biological acidulants such as lactic acid bacterial cultures 

and sorbates are in the forefront. Application of paraben to meat products is unlikely due 

to its insolubility in water. Use of lactic acid bacterial cultures to lower pH of meat 

products. especially in bacon, may not be acceptable to consumers as it imparts a tangy 

flavour (Pierson and Smoot, 1982). The sorbates have been found useful in preselVing 

various food items (Sebranek, 1979). Tompkin eta/. (1974) have shown the ability of 

potassium sorbate to delay toxin production by Clostridium botulinum in cooked uncured 

sausages. The influence of sorbic acid or potassium sorbate on the flavour of meat 

products has been a concern. Flavour alterations of products treated with sorbate have 

been reported (Pierson and Smoot, 1982). 
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2.4 Oxidation of meat and meat products 

Oxidation via a free radical chain mechanism, until the end of the 1960s, was 

almost exclusively an area of research in radical chemistry, polymer and food sciences. 

Recently, this area was expanded and now is one of the most irnponant areas of research 

in biology, biochemistry and medicine (Kanner, 1994). When cells are injurecL such as 

in muscle foods after slaughtering, oxidative processes are favoured. Disruption of the 

muscle membrane system by mechanical grinding, cooking and hydrolytic enzymes, 

causes the release of iron needed to catalyze lipid autoxidation (Sato and Hegarty, 1971; 

Love, 1987). These oxidative processes affect lipids, pigments, proteins, carbohydrates, 

vitamins and the overall quality of foods (Shahidi and Wanasun~ 1992). 

Fresh meat as well as processed meat products are susceptible to autoxidation. 

Tim and Watts (1958) first observed that cooked meat was rapidly oxidized at 

refrigeration temperatures, which is in marked contrast to the slow onset of rancidity 

commonly encountered in raw or frozen meat. The rapid onset of autoxidation in cooked 

refrigerated meat is coined as warmed-over flavour (WOF) and is a serious flavour defect 

in cooked, refrigerated meat and becomes most apparent on rewarming of the product 

(Tims and Watts, 1958; Sato and Hegarty, 1971; Fooladi et al., 1979). The intensity of 

the undesirable sensory notes is directly correlated with the content of carbonyl 

compounds formed through lipid autoxidation reactions. The decrease in the intensity of 

desirable sensory notes may be attributed to a decrease in the content of compounds that 

contribute to desirable flavour or to the masking of the desirable flavour compounds by 

an increased content of undesirable flavour compounds (Drumm and Spanier, 1991). 
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2.4.1 Mechanism of lipid autoxidation 

The mechanism of lipid autoxidation in muscle foods has been studied by several 

researchers utilizing model systems of linoleate emulsion, microsome membranes. or 

water-extracted muscle residues (Kanner et al .• 1991). The main reaction involved in 

lipid autoxidation is that involving molecular oxygen and unsaturated lipids (LH) to form 

lipid hydroperoxides (LOOH). However, direct reaction of lipids with oxygen is spin­

forbidden because the ground state of lipids is of singlet multiplicity whereas that of 

oxygen is of triplet multiplicity (Miller et al .. 1990). Lipid peroxidation must therefore 

occur via reactions that by-pass the spin barrier between lipids and oxygen. These 

reactions are promoted by some type of initiator (I· ) that can overcome the dissociation 

energy of an allylic bond and thus cause hydrogen abstraction and formation of a lipid 

alkyl radical (L • ). Lipid alkyl radicals can rapidly add oxygen to form lipid peroxyl 

radicals (LOO • ) which eventually liberate LOOH via hydrogen abstraction from a 

neighbouring allylic bond (Minotti and Aust, 1992). 

Lipid peroxidation is initiated by externally generated oxidants, but once starte~ 

the reaction is autocatalytic. Transition metals can catalyze the initiation and enhance the 

propagation of lipid peroxidation. For example Fe1+ will reductively cleave LOOH to 

highly reactive alkoxyl (LO • ) radicals, which in turn abstract hydrogen from lipids to 

form new lipid alkyl radicals. This reaction is known as LOOH-dependent lipid 

peroxidati.on (Svingen et al .• 1979). 
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Hydroperoxides, the primary products of lipid autoxidation, are unstable and thus, 

enter into breakdown and interaction mechanisms responsible for the formation of off 

odours and off flavours. Figures 2.1 and 2.2 depict the three-step free radical scheme and 

the generalized autoxidation process of lipids, respectively. 

2.4.2 Factors that affect lipid autoxidation 

2.4.2.1 Ionizing radiation 

The radiations of principle concern are those from charged particles such as 

electrons, protons, and a-particles, and electromagnetic waves or photons such as x-rays 

and y-rays. Although each of these interacts with matter in a different manner, the 

primary event is the same, that is the ionization of atoms or molecules where an energetic 

electron is ejected and a positively charged species is formed in the parent compound. 

Electrons ejected in the ionization process may be sufficiently energetic to produce further 

ionization and excitation. If it is of less than 100 eV energy, the resulting secondary 

ionizations will be close to the primary ionization site, thus fanning small clusters or 

spurs of excited and ionized species. More energetic electrons, called 0-rays, travel 

funher from the initial site and form tracks of their own, similar to those of J3-particles 

or other electrons with the same energy (Schaich, 1980). 

The major immediate consequence of the absorption of radiation is the production 

of free radicals. In biological systems, this may occur directly by deposition of energy 

within the molecule itself or indirectly through reactive species produced from the 

rad.iolysis of water (Schaich, 1980). 
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Figure 2.1 Three step free radical scheme. Adapted from Pegg (1993). 
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Generalized autoxidation process of lipids. Adapted from Shahidi and 
Wanasundara (1992). 
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Superoxide and perhydroxyl radicals 

Under biological conditions, a significant amount of superoxide anion (02) can 

be generated. In meat tissues. there is no direct evidence that 0 2- is generated, however, 

the presence of 0 2- in other biological systems may suggest its presence in muscle 

tissues. The sources of 0 2- in muscle tissues may originate from membrane electron 

transfer systems, autoxidation of oxymyoglobin to metmyoglobin. and oxidation of 

ascorbic acid and other reducing components by free iron. Though 0 2- itself is not 

prooxidative, the loss of charge during formation of perhydroxyl radical (HOO • ) allows 

the radical to penetrate into the membrane lipid region more easily, where it could initiate 

lipid peroxidation (Halliwell and Gutteridge, 1986; Kanner, 1994). 

2.4.2.3 Hydrogen peroxide 

Hydrogen peroxide (H20~ is normally present as a byproduct of phagocytosis at 

low concentrations in aerobic cells. A system generating 0 2- would be expected to 

produce Hz02 by non-enzymatic dismutation or by superoxide dismutase catalyzed 

dismutation. Mitochondria, microsomes, peroxisomes and cytosolic enzymes have all 

been recognized as effective H20 2 generators when fully provided with their substrates. 

Hydrogen peroxide has limited reactivity and has not been shown to react directly with 

polyunsaturated fatty acids, however, it can cross biological membranes (Halliwell and 

Guttenridge, 1986). 
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2.4.2.4 Hydroxyl radicals 

Hydroxyl radicals (HO) are produced when water is exposed to high energy 

ionizing radiation. One-electron reduction of H20 2 decomposes it to HO- and HO •• the 

latter being a highly reactive radical capable of oxidizing lipids and many other biological 

~olecules (Bielski and Allen. 1977). Most of the HO • is generated from the metal­

dependant breakdown of H20 2, according to the following reaction: 

M n+t + H20 2 ------> M <n+t>+ + HO. + HO-

in which ~~ is a transition metal. Ferrous ion (Fe2
) is known to promote the same 

reaction. which is also called the Fenton reaction. 

2.4.2.5 Singlet oxygen 

Singlet oxygen can be generated by both chemical and photochemical reactions. 

During propagation of lipid oxidation, haem proteins could accelerate the generation of 

peroxyl radicals, formation of singlet oxygen and the excitation of carbonyls. Lipid 

oxidation can be initiated by singlet oxygen, however no strong evidence of this pathway 

has been found in meats (Kanner eta/., 1987). 
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2.4.2.6 Ferryl ions 

Regardless of their state of oxidation~ myoglobin and haemoglobin are activated 

by H20 2, producing a short-lived intermediate of ferry! (Fe4+) ion. Kanner and Harel 

(1985) have reported that H20 2-activated myoglobin and haemoglobin could initiate 

membrane lipid peroxidation. 

2.4.2.7 Free metal ions 

Transition metals~ such as iron~ manganese and copper~ with their unstable d­

electron system, are capable of catalyzing redox reactions. They may initiate lipid 

oxidation by the following mechanisms: (1) generation of unsaturated fatty acid radicals 

by single-electron transfer or hydrogen abstraction, (2) reaction with triplet oxygen to 

generate the superoxide radicals~ (3) indirect generation of oxygen species by oxidizing 

flavin cofactors and (4) interaction with oxygen or peroxides or iron-containing enzymes 

and proteins to raise the oxidation state of metals from +3 to +5 (Kanner et al.. 1987). 

Iron, an important catalyst in meats, is found mainly in haemoglobin and 

myoglobin. A small amount of iron is found bound to small molecules such as adenosine 

triphosphate _(A TP), adenosine diphosphate (ADP), organic acids and deoxyribonucleic 

acid (DNA). These compounds are capable of decomposing hydroperoxides (ROOH) to 

form free radicals (Kanner and Doll, 1991 ). 

The main source of free iron or non-haem iron in cells is ferritin. Ferritin, a 

soluble iron storage protein found in liver, spleen, and skeletal muscle, has a molecular 
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mass of 450 kDa and contains 4500 iron atoms when fully loaded (Decker and Welch, 

1990). Recently. it was found that 0 2- releases iron from ferritin and 0 2- is the primary 

reductant in the ascorbate-mediated ferritin iron release (Boyer and McCleary, 1987). 

During storage of muscle foods, ferritin loses iron at a significant rate, and this amount 

initiates membrane lipid peroxidation (Kanner and Doll, 1991). 

Tichivangana and Morrissey (1985) indicated that Cu2+ catalyzed oxidation in a 

pattern similar to that of Fe2
• catalysis, but Cu2+ was slightly less effective as a prooxidant 

in the muscle. Moreover, these authors reported that the rate of prooxidant activity was 

in the order of: Fe2+> Cu2+> Co2•, and that differences in activity between Fe2+ and Cu2+ 

as well as Fe2
• and Co2

• were significant in muscle systems. The susceptibility of raw 

and heated muscles to lipid oxidation catalyzed by the various prooxidants was in the 

order of: fish> turkey> chicken> pork> beef> Iamb, which generally corresponds to the 

decrease of the polyunsaturated fatty acid (PUF A) content of the tissue (Salih et al., 

1989). The relative prooxidant-activity of ions in fish muscle decreased in the following 

order: Cu2•> Fe2•> CoJ+> Cd2+> Li+> Ni2+> Mi+> Zn2•> Ca2+> Ba2
• (Castell et al., 1965). 

Shahidi and Hong (1991) reported that metal ions such as copper and iron ions can 

enhance lipid autoxidation to a greater extent at their lower valance states. 

2.4.2.8 Haem pigments 

Traditionally, lipid oxidation in meats has been attributed to haem catalysts such 

as haemoglobin, myoglobin and cytochromes (fichivangana and Morrissey, 1985). 
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Brown et al. (1963) and Hirano and Olcott (1971) claimed that all haem pigments have 

proox.idant activity, although Brown et at. (1963) found that an induction period was 

sometimes necessary with ferrous haems. Furthermore, Brown et at. (1963) have reported 

that haems with iron in either the Fe2
+ or Fe.3+ states were effective catalysts of lipid 

oxidation. According to Shahidi and Hong (1991), haem pigments (iron-porphyrin 

compounds) possess a potent pro-oxidant effect in cooked meats. 

It has been found that ferric haem pigments may only be effective catalysts in the 

presence of hydrogen peroxide. For example, Harel and Kanner (1985a) found that in the 

sarcosomal fraction isolated from turkey's dark mea~ metmyoglobin or hydrogen peroxide 

alone had little influence on the rate of lipid peroxidation but together they accelerated 

the rate several hundred fold. Johns et at. (1989) have pointed out that ferric haem 

pigments are more powerful catalysts of lipid oxidation than inorganic iron compounds. 

They have also shown that hydrogen peroxide needs to be present for the ferric ions to 

be active catalysts. 

Labuza (1971) has suggested that the protein portion of haemoprotein molecules 

may cause steric hindrance of the iron, preventing it from catalyzing oxidation. When 

meat is heated, denaturation of the protein portion of the molecule might facilitate 

exposure and/or release of iron for interaction with unsaturated fatty acids (Love, 1983). 

Ben-Aziz et al. (1970a, b) have shown that cytochrome C is an effective 

prooxidant in a J}-carotene/linoleate model system. Kanner et al. (1979) have 

demonstrated the prooxidant nature of metmyoglobin and oxymyoglobin towards 13-
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carotene bleaching and linoleate oxidation in 13-carotene/linoleate model systems. 

Morrissey and Tichivangana (1985) have shown the antioxidant effect of 

nitrosylmyoglobin produced in situ in pork muscle systems containing myoglobin and 

metal ions as prooxidant catalysts. Shahicli et a/. (1987) have demonstrated the 

antioxidant effect of cooked cured meat pigment, nitrosylferrohaemochrome in meat 

model systems. The antioxidative nature of this pigment was concentration-dependant and 

the effect was comparable to 200 ppm of ex-tocopherol when used at 18-24 ppm. 

Studies employing model systems of linoleate emulsions have shown that both 

haem and non-haem iron are important catalysts of muscle lipid peroxidation (Lin and 

Watts, 1970). Non-haem iron played a dominant prooxidant role in shrimp flesh whereas, 

in beef muscle, haem iron appeared to be the major catalyst (Liu~ 1970~ b). Several 

other researchers have reported that haem pigments are not the principal prooxidants in 

meat model systems made with water-extracted muscle residues and that non-haem iron 

is the main catalyst (Sato and Hegarty, 1971; Love and Pearson, 1974; Tichivangana and 

Morrissey, 1985). 

2.4.2.9 Enzymes 

Lipid oxidation in meat can be initiated by tissue enzymes such as peroxidase, 

catalase, cytochrome C and lipoxygenase (Kanner and Kinsella, 1983). Ben-Aziz et al. 

(1970) have demonstrated the prooxidative nature ·of lipoxygenase in a ~}-carotene/ 

linoleate model system. Their studies show that the cliene conjugation in linoleate 
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oxidation is proportional to the concentration of enzyme and haem proteins. Moreover, 

catalase, peroxidase and cytochrome C show a relatively weak catalytic activity in diene 

formation as compared to lipoxygenase. 

The presence of a lipoxygenase that catalyses the insertion of oxygen into 

unsaturated fatty acids has been demonstrated in various animal tissues (Kanner and 

Kinsella, 1983). The possibility that other tissues in close proximity to muscles might 

also contain lipoxygenase capable of reacting with unsaturated fatty acids lead researchers 

to investigate skin tissues which contain lipoxygenase activity in mammals (German and 

Kinsella, 1985). The presence of lipoxygenase in chicken muscle has been reported 

(Grossman eta/. 1988). German and Kinsella (1985) discovered a lipoxygenase activity 

in gill tissue of trout and suggested that the postmortem release of this enzyme could 

generate considerable quantities of reactive hydroperoxides. These in conjunction with 

metallic catalysts would serve as a potent source of initiating free-radical species for 

oxidation of lipids present in the tissues (German and Kinsella, 1985). 

The pH of a muscle tissue plays an important role in enzymatically-activated lipid 

peroxidation. Kwoh (1971) has reported the enzymatic reducing activity ofmetmyoglobin 

increases with increasing the pH from 5.1 to 7 .1. Presumably at higher pH values, the 

reducing enzymes are in a much more active state. Oxygen is utilized by way of the 

electron transport system and any metmyoglobin present is reduced (Kwoh, 1971). 
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2.4.2.10 Phospholipids 

Most of the polyunsaturated fatty acids (PUF A) in meats are more likely in an 

esterified form with phospholipids rather than triacylglycerols (!gene et al., 1980). 

Therefore, phospholipid fractions have been identified as primary substrates in the 

development of oxidative deterioration of muscle foods (Igene et a/., 1979). Pikul and 

Kumrnerow (1991) have pointed out the presence of high levels of arachidonic, 

docosatetraenoic, docosapentaenoic. and docosahexaenoic acids in phosphotidylinositol, 

phosphotidylethanolamine, phosphotidylserine, and phosphotidylcholine. Funhermore, 

phospholipids were found responsible for the generation of a major portion of TBA­

reactive substances (TBARS). Igene et al. (1979) demonstrated compositional changes 

in the fatty acid profiles in total phospholipids of meat model systems after cooking and 

storage. A decrease in octadecadienoic, eicosatetraenoic, eicosapentaenoic and 

docosatetraenoic acids of phosphotidyl choline and ethanolamine in chicken dark muscle 

had been observed. !gene et a/. (1979) concluded that hydrolysis and autoxidation of 

phospholipids upon cooking and storage were involved. 

2.4.3 EfT~t of curing ingredients on lipid oxidation in meats 

2.4.3.1 Effect of sodium chloride 

Sodium chloride has been reported to act as a prooxidant (Kanner and Kinsella, 

1983; Kanner et al., 1991) or an antioxidant (Osinchak et al., 1992), depending on the 

concentration and system in which it is added (Pearson and Gray, 1983). Coleman (1949) 
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has shown that sodium chloride accelerates oxidation of the ferrous ion of haemoglobin 

and myoglobin to the ferric form. Mabrouk and Dugan (1960) have shown that sodium 

chloride has no direct effect on the oxidation of lipids in the absence of other organic 

prooxidants. Recently, Kanner et al. (1991) have shown that the effect of sodium 

chloride seems~ in part, to be attributed to its capability of displacing iron ions from 

binding macromolecules for oxidative reactions. They found that sodium chloride had 

increased the extraction of iron ions from muscle tissue. most of which were bound to 

molecules of a mass greater than 300 kDa. According to Love and Pearson (1974) and 

Igene et a/. (1979), nonhaem iron released from haem pigments is the principle 

prooxidant in cooked meat. Arnold et al. (1991) have demonstrated that NaCl has a 

marked effect on the prooxidant activity of Cu2
+ at temperatures below 0°C. 

Castell eta/. (1965) found that the prooxidant activity of NaCt in fish muscle was 

due to its sodium ion, and that cations of other salts such as lithium chloride and 

potassium chloride had a similar prooxidant effect. According to the studies of Osinchak 

et al. (1992), the prooxidative effect of NaCl is due mainly to its anion rather than the 

cation. Moreover, the inhibitory activity of other anions such as bromide, nitrate and 

particularly iodide was demonstrated. 

2.4.3.2 Effect of sodium nitrite 

Woolford and Cassens (1977) and Kanner eta/. (1979) have shown that the nitrite 

added to meat was accounted for as nitrosothiols, nitric-oxide myoglobin, protein-bound 
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ninite, free nitrite and nitrate, and gaseous nitrogenous compounds. Igene et al. (1979) 

have reported that the addition of nitrite to meat can reduce TBARS values ninefold, 

sevenfold, and fivefold in beef, chicken white and dark meats, respectively. These 

authors suggested that nitrite converts the haem pigments to a catalytically inactive form, 

thus resulting in an inhibition of TBARS formation. Morrissey and Tichivangana (1985) 

have demonstrated a decrease in TBARS values of muscle systems with increasing levels 

of nitrite addition. While addition of low levels of nitrite (20 ppm) significantly (p<0.01) 

inhibited lipid oxidation, highly significant (p<O.OOl) reduction in oxidation of meats was 

noted at 50 ppm nitrite addition. According to the studies carried out by Zubillaga et al. 

(1984), sodium nitrite per se does not possess either prooxidative or antioxidative 

properties in a ~carotene/linoleate model system. These authors have suggested that the 

residual sodium nitrite in the tissue is probably not responsible for the antioxidative 

action, in the unlikely event that the nitrite became associated with the polar lipids. 

The resistance of lipids of cooked nitrite cured meat to autoxidation is attributed 

to the cured meat pigment, nitrosylferrohaemochrome. The development of the cured 

meat colour is the result of the reaction of sodium nitrite with haem pigments in the 

muscle. The main compound formed is nitric-oxide myoglobin which is relatively 

unstable. During thermal processing, the protein moiety of the myoglobin is denatured 

and detached and a relatively stable haem pigment, nitrosylferrohaemochrome, is fanned. 

Figure 2.3 exhibits reactions involved in the formation of the characteristic cooked cured 

meat pigment. 



Figure 2.3 
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Some of the possible reactions during nitrite curing of meat. Adapted 
from Bard and Townsend (1971). 
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The antioxidative nature of nitric-oxide myoglobin in a 13-carotene/linoleate model 

system has been demonstrated. Kanner et al. (1979) have shown the inhibitory effect of 

nitric-oxide myoglobin at a concentration of 10"5M. Lower concentrations such as 

3x10-7M and 4xl0-7M, however, exhibited a definite prooxidative effect. Haem pigments 

can act both as inhibitors or catalysts of lipid oxidation, depending on their concentration. 

The catalytic effect of NOMb at low concentrations, therefore, bound to exceed inhibition 

(Kanner et al., 1979). 

2.4.3.3 Effect of ascorbates and phosphates 

L-ascorbic acid can act as a prooxidant or an antioxidant depending on its 

concentration and medium of application. Mahoney and Graf (1986) have investigated 

the performance of L-ascorbic acid in a model system containing Fe3+, Cu2
+ and L­

tryptophan. They observed a positive oxidation potential for low concentrations of L­

ascorbic acid in the presence of Fe3+ or Cu2+ ions. Steinhart et al. (1993) have shown the 

prooxidative nature of L-ascorbic acid at concentrations ranging from 0.56 to 1.40 

mmol/20 mL, in a model system containing Fe3+ and L-tryptophan, but acted as an 

antioxidant at concentrations higher than 1.40 mmol/20 mL. 

Shahidi et al. (1987. 1988) have demonstrated the antioxidative narure of L­

ascorbic acid and sodium ascorbate at 500 and 550 ppm addition levels in meat model 

systems, respectively. According to these authors, sodium ascorbate showed antioxidant 

properties in the presence of sodium chloride and sucrose, but the effect was 



31 

overshadowed by the prooxidative effect of sodium chloride after 3 days of storage. The 

antio:xidative behaviour of fat-soluble analogues of ascorbic acid, such as ascorbyl 

palmitate and ascorbyl acetate, has also been revealed (Shahidi et al., 1988). 

The role of phosphates in retarding oxidative rancidity has been reported by Sato 

and Hegarty (1971). A reduction in TBARS values of meat treated with STPP was 

observed by Shahidi eta/. (1988) and attributed to the ability of STPP to chelate metal 

ions. Crackel et al. (1988) have shown strong antiox.idative effect of STPP in raw frozen 

restructured pork: steaks. 

2.5 Prevention of lipid oxidation 

2.5.1 Physical methods 

Vacuum packaging or packaging under an inert gas such ·as in atmospheres 

modified to exclude oxygen, as well as refrigerati_on or freezing can reduce the rate of 

autoxidation. However, these means are not always practicable because very little oxygen 

is needed to initiate and maintain the oxidation process. It is neither economical nor 

practical to remove traces of oxygen from foods (Shahidi and Wanasund~ 1992). 

2.5.2 Antioxidants 

Antioxidants are the major ingredients that protect the quality of lipid-containing 

foods by retarding autoxidation (Wanasundara et al., 1994). Crackel et al. (1988) have 

shown that antioxidants are effective in retarding lipid oxidation in restructured beef 
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steaks. They have also shown that mixtures of narural antioxidants such as tocopherols. 

ascorbyl palmitate and citric acid are as effective as teniary-butylhydroquinone (TBHQ). 

Combinations of physical methods and antioxidants have also been reported to preserve 

food quality (Shahidi and Wanasundara. 1992). 

Labuza (1971) divided antioxidants into three major groups, namely type I, type 

II and type m. Type I antioxidants are primarily phenolic compounds such as butylated 

hydroxytoluene (BH1). butylated hydroxyanisole (BHA) and TBHQ. These are also 

known as free radical scavengers or primary antioxidants because they neutralize free 

radicals by donating a hydrogen atom or an electron to radicals. Type II antioxidants are 

mostly chelating agents such as ethylenediaminetetraacetic acid (EDT A) and citric acid 

which prevent the formation of free radicals, mainly by tying up transition metal ions, 

which act as prooxidants. Type ill antioxidants such as bisulphite compounds regulate 

environmental factors such as redox compounds and water activity. 

Currently. BHA. BHT. propyl gallate (PG) and TBHQ are commonly used as 

antioxidants in lipid-containing foods. Tocopherols and ascorbic acid and their derivatives 

are used as alternatives to BHA and BHT (Wanasundara et aJ., 1994). Figure 2.4 depicts 

the chemical structures of some of the commonly used synthetic antioxidants in foods. 

Phenolic antioxidants are excellent hydrogen or electron donors and their radical 

intermediates are relatively stable due to resonance delocalization and lack of suitable 

sites for attack by molecular oxygen. The phenoxy radical formed by the reaction of a 

phenol with a lipid radical is stabilized by delocalization of its unpaired electron around 
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Figure 2.4 Chemical structures of butylated hydroxyanisole (BHA). butylated 
hydroxytoluene (BHI). t-butylhydroquinone (TBHQ) and propyl gallate 
(PG). 
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the aromatic ring (Shahidi and Wanasundara. 1992). Phenol itself is inactive as an 

antioxidant. Substitution of the hydrogen atoms in the ortho and para positions with alkyl 

groups increases the electron density of the OH moiety via an inductive effect and thus 

enhances its reactivity towards lipid radicals (Shahidi and Wanasundar~ 1992). 

Use of synthetic phenolic antioxidants has been a concern for consumers because 

of their possible adverse health effects and scientists over the years have been interested 

in natural products with antioxidant properties (Stoick et al., 1991). Many spices and 

herbs have been shown to act as antioxidants in food systems and rosemary is among the 

most effective herbs. The antioxidative effect of spices and herbs comes from their 

polyphenolic compounds that occur in all parts of the plant (Houlihan et al., 1984; 

Kramer, 1985; Lee and Ashmore, 1986). Plant phenolics are multifunctional and can act 

as free radical terminators, metal chelators and singlet oxygen quenchers. Examples of 

common plant phenolic antioxidants include flavonoids, cinnamic acid derivatives, 

coumarins. tocopherols. and polyfunctional organic acids (Stoick et al .• 1991; Liu et al. .. 

1992; Shahidi and Wanasund~ 1992). Eugenol, found in the essential oil of clove, is 

a 2-methoxy phenolic derivative which has been reported to possess 90% of the 

antioxidant activity of BHA, whereas curcumin. the major phenolic pigment of turmeric, 

is reported to have 75% of the activity of BHT. The antioxidant activity displayed by 

spices, however, depends on several factors which include the chemical nature of the food 

or medium to which they are added (Al-Jalay et al., 1987). Bracco et al. (1981) have 

revealed the ability of crude extracts of rosemary and sage to prolong the induction period 



35 

in chicken fat oxidation. They concluded that rosemary antioxidants retard degradation 

of linoleic acid, carotenoid loss and protect lipids from oxygen attack. Inatani et al. 

(1982) have isolated rosmanol, the major antioxidant in rosemary. Later, it was found 

that two other antioxidants namely epirosmanol and isorosmanol were also present in 

rosemary. The antioxidant activity of epirosmanol and isorosmanol in both lard and 

linoleic acid was examined and shown to be four times as effective as BHA and BHT 

(Nakatani and Inatani, 1984). Stoick et al. (1991) have shown that oleoresin rosemary 

had antioxidative properties when tested in restructured beef steaks. The effect was 

morepronounced when rosemary oleoresin was used together with sodium 

tripolyphosphate. Figure 2.5 depicts some of the natural antioxidants found in plant 

sources. 

2.6 Methods of measuring lipid oxidation in meat 

2.6.1 Thiobarbituric acid-reactive substances (TBARS) test 

Kohn and Liversedge (1944) first observed the pink coloration of animal tissues 

which had been incubated with 2-thiobarbituric acid (TBA). The 2-thiobarbituric acid­

reactive substances test has been commonly used to measure lipid oxidation in tissue 

samples ever since it was introduced in 1944. During autoxidation of PUF A of lipids, 

malonaldehyde (MA) is formed. This secondary oxidation product is highly reactive and 

remains bound to other food components such as proteins and nucleic acids (Shahidi and 

Hong, 1991). Tarladgis et al. (1964) have shown that heating of foods, under acidic 
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Chemical structures of some natural plant antioxidants. (A), Antioxidant 
components of rosemary and (B), antioxidant components of black pepper. 
capsicum and turmeric. 
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conditions, would presumably release the bound MA from its adducts. Figure 2.6 depicts 

the steps involved in the formation of the pink-coloured TBA-MA adduct which has an 

absorption maximum at 532 run (Kosugi et al., 1989). 

There are a variety of methods available for quantification of TBARS, depending 

on the nature of food to be investigated. Distillation (Tarladgis et al., 1964) and 

extraction methods (Siu and Draper, 1978) are frequently used for assessing the oxidative 

state of muscle tissues. 

2.6.1.1 Origin of malonaldehyde 

Malonaldehyde (MA) is one of the most studied products of lipid peroxidation. 

It is believed to be a decomposition product of certain lipid hydroperoxides (lchinose et 

al., 1989). Fatty hydroperoxides, labile primary oxidation products,- readily involve in 

radical reactions which lead to their molecular transformation and degradation. The 

precise pathways for degradation of hydroperoxides and factors influencing it in the 

formation of malonaldehyde are poorly understood (Janero, 1990). 

Malonaldehyde can be formed from PUFA with three double bonds (triene) or 

more (Raharjo and Sofos, 1993). Abstraction of a hydrogen atom from a triene fatty acid 

was envisioned to take place at one of the positions between two double bonds and 

subsequently with the presence of oxygen it would form conjugated peroxyl radicals. 

These radicals could also abstract a hydrogen atom from other PUF A to produce cyclic 

peroxides. It appears, however, more likely that the cyclic peroxyl radicals would react 
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Possible mechanism for the reaction of malonaldehyde with the TBA 
reagent in the classical TBA test for assessing lipid oxidation. Adapted 
from Pegg (1993). 
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with oxygen to form an additional peroxyl group on the cyclic peroxides. The reason is 

that the reaction of alkyl radicals with oxygen is much faster, under autoxidation 

conditions, than the reaction with other PUFA. The peroxyl radical would ultimately 

abstract a hydrogen atom from PUFA to yield cyclic peroxide with an additional 

hydroperoxide group on the molecule. All cyclic peroxides could decompose under the 

conditions of the TBARS test to produce malonaldehyde (Frankel and Gardner, 1989; 

Raharjo and Sofas, 1993). 

Pryor eta/. (1976) proposed a modified pathway in which PUFA would form not 

only cyclic peroxides but also endoperoxides. The endoperoxide formation mechanism 

involves formation of a C-C bond. By this mechanism, the triene fatty acids could 

produce endoperoxide with an allyl radical which is subsequently transformed into 

prostaglandin-like endoperoxides. According to this mechanism, diene fatty acids would 

not give rise to endoperoxides because they are unable to produce allyl radicals. The 

inability of diene fatty acids to form prostaglandin-like endoperoxides has been proven 

experimentally. Hence, it is considered that the precursor of malonaldehyde is an 

endoperoxide with an allylic radical (Raharjo and Sofos, 1993). 

2.6.2 Chromatographic methods 

Both gas chromatography (GC) and high performance liquid chromatography 

(HPLC) have been used to measure the degree of lipid oxidation. Direct GC analysis 

of an extract of tissues is a time consuming process whereas GC with headspace analysis 
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represents a simple alternative to time consuming extraction procedures. HPLC is more 

suitable for isolation and quantificati:on of non-volatile polymeric decomposition products 

and thermally-labile peroxides and hydroperoxides (Robards et at., 1988). 

Several GC methods have been reported for the analysis of volatile flavour 

compounds in oils and lipid-containing foods (Lamikanra and Dupuy, 1990; Ramarathnam 

eta/., 1991a,b; Drumm and Spanier .. 1991; Ajuyah et at., 1993). Headspace GC analysis 

is a simple technique that measures volatile compounds equilibrated with liquid or solid 

samples in a closed system. This method has been used to analyze hexanal as a lipid 

peroxidation product in cereal foods .. vegetable and animal fats, and meats (Frankel, et a/., 

1989; Umano and Shibamoto, 1987; Matiella and Hsieh, 1990). 

A distinctive feature of the headspace analysis is that the volatile composition 

contained in the gas phase is used to determine the nature and composition of the 

condensed phase with which it is in contact (loffe and Vitenberg, 1984). The main 

drawback associated with headspace GC analysis is the size of sample that can be 

injected. Only those components that, by virtue of their concentration and relative 

volatility, are present in quantities sufficient to activate the detector will be detected. 

Relatively low-molecular weight and highly volatile compounds, such as ~-<; esters, 

aldehydes and ketones, can be readily detected by the direct injection of a restricted 

quantity of headspace gas (Jennings, 1979). 
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2.6.2.1 Origin of hexanal and other volatiles 

Carbonyl compounds, particularly volatile aldehydes, derived from fatty 

hydroperoxides, possess both desirable and undesirable effects in lipid-rich foods. The 

main volatiles produced from heated pork fat are pentanal, hexanal, heptanal (Yasuhara 

and Shibamoto, 1989). Most of these volatiles are the result of oxidation, usually of C18 

PUFA such as linoleic and linolenic acids and the ~0 arachidonic acid (Shahidi eta/., 

1986). Hexanal, a volatile with a powerful fatty-green and grassy odour, is derived from 

linoleic acid and has been successfully used for evaluation of the oxidative state of red 

meats from different species as well as fish (Shahidi and Pegg, 1993). Although fatty 

ester hydroperoxides are the recognized precursors of volatile secondary products from 

lipids, the origin of many important degradation products remains obscure. Two major 

mechanisms of volatile production from lipid hydroperoxides include a homolytic scission 

through an alkoxyl radical and an acid-catalyzed_ heterolytic scission. The homolytic 

scission is also known as ~cleavage while the heterolytic scission is called Hock 

cleavage. Heterolytic cleavage occurs selectively between the carbon bearing the 

hydroperoxide group and the allylic double bond. This reaction produces hexanal and 12-

oxo-10-dodecenoic acid from the 13-hydroperoxide of linoleic acid, and 2-nonenal and 

9-oxononanoic acid from the 9-hydroperoxide. Volatiles formed by thermal 

decomposition are more diverse, and can usually be explained by homolytic cleavage on 

either side of the alkoxyl radical derived from hydroperoxides. This mechanism predicts 

the formation of pentane, hexanal, and 13-oxo-9,11-tridecadienoic acid from the 13-
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hydroperoxide of linoleic acid. and 2,4-decadienal, methyl octanoate. and methyl-9-

oxononanoate from the 9-hydroperox.ide. Other radical reactions lead to the formation of 

relatively minor amounts of additional volatiles (Frankel and Gardner. 1989). Figure 2.7 

depicts the mechanism of hexanal formation from linoleic acid. 

Hexanal has been used as an indicator to assess the oxidation status and 

subsequent flavour deterioration of fats from land animals (Frankel et al .• 1989; Shahidi 

and Pegg, 1993). However, propanal has been used as an indicator to assess the oxidation 

state of marine fats (Frankel, 1993; Frankel et al .• 1994). Propanal is generated from ro-3 

PUFA such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA}(Frankel, 

1993). 

2.7 Texture of restructured meat products 

Texture is considered to be one of the most important sensory attributes of 

restructured products such as salami. pepperoni and sausages (Seideman and Theer. 1986; 

Fjelkner-Modig, 1986; Thiel et al.. 1986). Basically. the main factor responsible for the 

texture of restructured meat products is gelation of proteins. Gelation of proteins involves 

both intramolecular and intermolecular changes in proteins during thermal processing 

(Asghar et a/., 1985). Both NaO and STPP play important roles in improvement 

ofgelling capacity (emulsifying capacity} and gel stability (emulsion stability) of 

restructured meat products (van Roan and Krol, 1985). 
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Autoxidation of linoleic acid and the production of hexanal. Adapted from 
Frankel et al. (1984) and Pegg (1993). 
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Water binding capacity (WBC). another important property that contributes to the 

texture of restructured meat productS, represents the ability of muscle foods to bind water 

under a specific set of conditions (Trout. 1988). WBC is studied extensively because of 

its economic importance in terms of product yield (Trout. 1988). Although water is 

bound in muscle products by capillary action, the microstructure that produces the 

capillary action is the pores located between thick and thin filaments of the myofibrils, 

which are approximately 10 run in diameter (Trout. 1988). Sodium chloride and pH 

regulators such as STPP contribute to the formation of the microstructure by solubilizing 

actomyosin complex and making intermolecular salt bridges with proteins. Solubilized 

actomyosin may denature upon cooking to form a dense fibrous protein network which 

holds fat. water and other ingredients (Acton et al., 1983). It is therefore clear that NaCl 

and pH regulators are prime contributors to the texture of restructured meat. Moreover, 

nitrite may also have a considerable effect on the textural properties of cured, restructured 

meat products such as sausages (Randall and Voisey, 1977). Woolford et al. (1976) 

reported that nitrite can bind with myosin, a muscle protein, resulting in a modified 

myosin with increased emulsification capacity. 

2. 7.1 Impact of salt reduction on texture and other properties of restructured meat 

Increasing concern with the association between dietary sodium intake and 

hypertension has promoted voluntary efforts by food processors to reduce the amount of 

sodium in processed foods (Rhee et .at., 1983a). This practice, however, introduces 
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adverse effects on the quality parameters of processed meats (Terrell, 1983). As NaCl 

levels are reduced, flavour, texture, water-binding capacity (WBC) and shelf-life of 

processed meat are also reduced (Terrell, 1983; Sofos, 1986; Barbut and Mittal, 1989; 

Bemthal et a/., 1991). Thiel et al. (1986) have reponed a decrease in yield, breaking 

force and overall acceptability of chunked and formed ham when salt addition was 

reduced from 2% to 1.5% or below. Barbut and Mittal (1989) have demonstrated a 

decrease in the rigidity modulus (G) of meat homogenates with decreasing concentrations 

of NaCl. 

Most of the adverse effects due to a reduction in salt content may be overcome 

by using a mixture of additives. Salt substitutes, partly or totally containing components 

instead of NaCl are widely used in the food industry (Lantinen, 1986). Use of other types 

of chloride salts such as KC1 and MgCl2 (Rhee et al., 1983b) as well as polyphosphates 

(Sofos, 1986) as substitutes for NaC1 has been reponed. Nowadays, a variety of low­

sodium salt mixtures are available in the market. Monon salt and Pan~-salt, examples of 

low-sodium salt formulations, are widely used in the diets of hypertensive patients 

(Lantinen, 1986; Puolanne eta/., 1988). Monon salt is a mixture of 65% NaCl, 25% KCl 

and 10% MgS04.7H20 (Lantinen, 1986) whereas Pan•-sattcontains 52% NaCl, 28% KCI, 

12% MgS04 and 1-3% lysine monohydrochloride (Puolanne eta/ .• 1988). 



CHAPTERJ MATERIALS AND METHODS 

3.1 Materials 

Three fresh pork shoulders were obtained and trimmed from most of their surface 

fat. Each pork shoulder was ground twice in an Omega (Type T 12) commercial meat 

grinder using a 0.79 and then a 0.48 em plate. Ground pork shoulders were then vacuum 

packaged in separate plastic bags (Kapak Co., Minneapolis, MN) and stored in a deep 

freezer (Ultra Low, Revco, Inc., West Columbia, SC) at -60°C until used. 

Food grade sodium tripolyphosphate (STPP) was obtained from Albright & 

Wilson, (A Division of Tenneco Canada Inc., Toronto, ON). Ethylenediaminetetraacetic 

acid (EDT A), sodium ascorbate, 2-thiobarbituric acid (TBA), 1,1,3,3-tettarnethoxypropane, 

myoglobin, (3-carotene, and BHA were obtained from Sigma Chemical Co. (St. Louis, 

MO). Trichloroacetic acid (TCA) was obtained from Fisher Scientific (Nepean, ON). 

Reagent grade (purity 99- 99.99%) lithium fluoride (LiF), lithium chloride (LiCl), lithium 

bromide (LiBr), lithium iodide (Lil), lithium sulphate (L~SOJ, sodium fluoride (NaP), 

sodium chloride (NaCl), sodium bromide (NaBr), sodium iodide (Nal), sodium sulphate 

(Ne~zS04), potassium fluoride (KF), potassium chloride (KCl), potassium bromide (KBr), 

potassium iodide (KI), potassium sulphate ~SOJ, cesium fluoride (CsF), cesium 

chloride (CsCl), cesium bromide (CsBr), cesium iodide (Csl), cesium sulphate (CSzS04), 

magnesium fluoride (MgFJ, magnesium chloride (MgCIJ, magnesium bromide (MgBrJ, 

magnesium iodide (Mg!J magnesium sulphate (MgS04), calcium fluoride (CaF:z), calcium 

chloride (CaCIJ, calcium bromide (CaBrJ, calcium iodide (Ca.IJ calcium sulphate 
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(CaS04), ferrous sulphate (FeS04), sodium nitrite (NaN02), sodium carbonate (NazC03), 

Tween 80, 2-heptanone, haemin and linoleic acid were purchased from Aldrich Chemical 

Co., Inc. (Milwaukee, WI). Methanol, ethanol and chloroform used in this study were 

ACS grade. Helium, hydrogen, nitrogen, nitric oxide and compressed air were obtained 

from Canadian Liquid Air Ltd. (St. John's, NF). 

3.2 Sampling method 

Proximate, thiobarbituric acid-reactive substances (TBARS), cook yield and texture 

analyses were carried out using three meat samples taken from three comminuted pork 

shoulders. 

3.3 Proximate composition 

3.3.1 Determination of moisture content 

Approximately 3-4 g of pork was accurately weighed into a preweighed aluminium 

dish and placed in a forced-air convection oven (Fisher Isotemp 300, Fair Lawn, NJ) 

which was preheated to 105±1 oc. Samples were held at this temperature overnight or 

until a constant mass was obtained. The moisture content was calculated as the percent 

ratio of the weight difference of the samples before and after drying to that of the original 

material (AOAC, 1990). 
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3.3.2 Determination of crude protein content 

Approximately 0.3-0.4 g of pork was accurately weighed on a nitrogen-free paper 

and placed in a digestion tube of a Biichi 430 digester (Biichi Laboratories~ Flawil~ 

Switzerland). The nitrogen content in different samples was determined by digestion in 

20 mL of concentrated sulphuric acid in the presence of two Kjeltab catalyst tablets 

(Profamo, Dorval~ PQ) in the digester until a clear solution was obtained. Digested 

samples were diluted with 50 mL of distilled water followed by addition of 150 mL of 

a 25% (w/v} solution of sodium hydroxide. Nitrogen in the samples was converted to 

ammonia which was steam-distilled (Biichi 321, Biichi Laboratories, Flawil, Switzerland) 

into a 50 mL solution of 4% (w/v} boric acid containing a few drops of end point 

indicator (EM Science, Gibbstown, NJ). Approximately 200 mL of distillate were 

collected and the content of ammonia in the distillate was detennined by titrating it 

against a O.lN standardized solution of sulphuric acid (AOAC, 1990). The crude protein 

content of pork was calculated as N% x 6.25. 

3.3.3 Determination of total lipid content 

Total lipids were extracted into a mixture of chloroform and methanol as described 

by Bligh and Dyer (1959). Approximately 25 g of sample were accurately weighed and 

then extracted with a mixture of 25 mL of chloroform and 50 mL of methanol (1:2, v/v) 

by homogenizing for 3 min with a Polytron homogenizer (Brinkmann Instruments, 

Rexdale, ON) at a speed of 4. A funher extraction was done with the addition of 25 mL 
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of chloroform followed by homogenization. About 25 mL distilled water was added and 

the mixture was then ttltered through a Buchner funnel using a Whatman No.3 filter paper 

(Fisher Scientific, Nepean, ON). The filtrate was allowed to separate overnight in a 

separatory funnel. Dilution with chloroform and water resulted in separation of 

homogenate layers and inclusion of lipids in the chloroform. A 10 mL aliquots of the 

lipid extract in chloroform, after drying over anhydrous sodium sulphate, was transferred 

into a tared 50 mL round bottom flask and the solvent was removed under vacuum using 

a Biichi RE 111 rotovapor (Biichi Laboratories, Flawil, Switzerland). The flask was then 

placed in a forced-air convection oven (Fisher Isotemp 300, Fair Lawn, NI) at 80 °C for 

1 h. Mter cooling in a desiccator, the lipid content was detennined gravimetrically. 

3.3.4 Determination of ash content 

Approximately 3-4 g of pork was weighed into a cleaned porcelain crucible and 

then charred over a Bunsen burner and subsequently placed in a temperature controlled 

muffle furnace (Blue M Electric Co., Blue Island, ll..) which was preheated to 550 °C. 

Samples were held at this temperature until a gray ash-was produced and then cooled in 

a desiccator and weighed immediately. Ash content was calculated as percent ratio of the 

mass of the ash obtained after ignition to that of the original material (AOAC, 1990). 
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3.4 Preparation of meat model systems for thiobarbituric acid-reactive substances 

(TBARS) and headspace analyses 

Meat model systems were prepared as described by Shahidi and Pegg (1990). 

Ground pork was mixed with 20% by weight of deionized water in Mason jars. Salts 

(LiF, LiCl, LiBr, Lil. LizS04, NaF, NaCI. NaBr, Nai, N~S04, KF. KCI. KBr, KI, KzS04, 

CsF, CsCl, CsBr, Csl, C~S04, MgF2, MgCl2, MgBr2, Mg~. MgS04, CaF2, CaC12, CaBr2, 

Cal2, and CaS04) were added directly to meat at 100 and 200 meq/kg sample. The 

systems were then thoroughly homogenized and cooked at 85±2 oc (internal temperature 

of 72±2°C) in a thermostated water bath for 45 min while stirring occasionally with a 

glass rod. After cooling to room temperature, cooked meat samples were homogenized 

in a Waring blender (Model33BL73) for 30 sand then stored for seven days at 4 °C. 

Another set of similar model systems containing 1, 2 and 3% of Pan aD -salt, a low­

sodium salt mixture (52% NaCI. 28% KCI, 12~ MgS04 and 3% lysine.HCI) were 

prepared Model systems containing 1, 2 and 3% NaCl were also prepared for 

comparative studies. 

3.5 Tbiobarbituric acid-reactive substances (fBARS) test 

Samples were analyzed for TBA-reactive substances (TBARS) over a 7-day period 

according to the method of Siu and Draper (1978). Two grams of each sample were 

placed in a centrifuge tube to which 5 mL of 10% TCA (Fisher Scientific, Nepean, ON) 

were added and vortexed (Fisher Vortex Genie 2, Fisher Scientific, Nepean, ON) at high 
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speed for 2 min. Five millilitres of a 0.02 M aqueous solution of 2-thiobarbituric acid 

was then added to each centrifuge tube which was further vortexed for 30 s. The samples 

were then centrifuged at 3000xg for 10 min and the supernatants were filtered through 

a Whatrnan No.3 filter paper. Filtrates were heated in a boiling water bath for 45 min, 

cooled to room temperature in ice, and the absorbance of the resulting pigment was read 

at 532 nm using a Hewlett Packard diode array spectrophotometer (Model 8452A, Hewlett 

Packard Co., Mississauga, ON). TBARS values were calculated by multiplying the 

absorbance readings by a factor of 3.4 which was obtained from a standard line prepared 

using 1,1,3,3-tetrarnethoxypropane as a precursor of malonaldehyde (Figure A.l). 

Inhibition of TBARS formation(%) was calculated using the following equation: 

% Inhibition of TBARS formation= ((C- S)/C}*lOO 

where, C and S represent the TBARS values of the control and the treated sample, 

respective! y. 

3.6 Headspace analysis 

A Perkin-Elmer 8500 gas chromatograph and an HS-6 headspace sampler (Perkin­

Elmer Corp., Montreal, PQ) were used for volatile analysis of cooked pork samples. A 

high polarity Supelcowax 10 fused silica capillary column (30 m x 0.32 rnm internal 

diameter, 0.10 pm film, Supelco Canada Ltd., Oakville, ON) was used. Helium was the 
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carrier gas employed at an inlet column pressure of 17.5 psig with a split ratio of 7:1. 

The oven temperature was maintained at 40 oc for 5 min and then ramped to 200 oc at 

20 °C/min and hold at 200 oc for 5 min. The injector and flame ionization detector (FID) 

temperatures were adjusted to 280 oc and held at this temperature throughout the analysis 

(Shahidi and Pegg, 1993). 

For headspace (HS) analysis, 4.0 g portions of homogenized pork samples were 

transferred to 5 rnL glass vials. The vials were capped with teflon-lined septa, crimped 

and then frozen at -60 oc (Ultra Low. Revco, Inc., West Columbia. SC) until used. To 

avoid heat shock after removal from storage, frozen vials were tempered at room 

temperature for 30 min and then preheated in the HS-6 magazine assembly at 90 oc for 

a 45 min equilibration period. Pressurization time of the vial was 6 s, and the volume 

of the vapour phase drawn was approximately 1.5 rnL. Chromatograph peak areas were 

expressed as integrator count units. Individual volatile compounds were tentatively 

identified by comparing relative retention times of GC peaks with those of commercially 

available standards. Quantitative determination of dominant aldehydes was accomplished 

using 2-heptanone as an internal standard (Shahidi and Pegg, 1993). 

3. 7 Preparation of meat model systems for texture analysis 

Model systems containing LiF, LiCl, LiBr, Lii, Li2S04, NaF, NaCl, NaBr, Nal, 

Ne~zS04, KF, KCI, KBr, Kl, ~S04, CsF, CsCl, CsBr, Csl, C~S04, MgF2, M~. MgBr2, 

Mgi2, MgS04 , CaF2, CaC~. CaBr2, Calz, and CaS04 were prepared as described in Section 
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3.4. but the systems were not homogenized in a blender at any time. Systems were mixed 

thoroughly with a glass rod before cooking. After cooking. the excess water was 

decanted and the resultant meat crumbles were stored refrigerated at 4 °C overnight. The 

systems were brought back to the room temperature (25 °C) before Texture measurements. 

In addition, model systems were prepared with Pane-salt as well as NaCl at 1. 2 and 3% 

levels. 

3.8 Texture analysis 

Texture analysis of meat samples. conditioned to room temperature. were 

performed using an Ottawa Texture Measuring System (Model MC 1061). Meat crumbles 

were stuffed into a four-blade cell of the texturemeter. The sample was compressed 

through the cell by the plunger at 6.2 em/min. As the sample was pushed through the 

cell, the peak shear force (kg) was recorded (Daytronic, Model 9530A). 

3.9 Determination of cook yield 

Cook yield of comminuted pork treated with different salts at 100 or 200 meqlkg 

meat was determined as given below. A 10 g sample was transferred into a pre-weighed 

centrifuge tube along with an appropriate amount of salt and 5 g of deionized water. 

Tubes were covered with aluminium foil and then placed in a boiling water bath for 20 

min. The tubes were cooled to room temperature and then centrifuged for 15 min using 

a clinical centrifuge (IEC Centra M5, International Equipment Co .• Needham Heights., 
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MA) at 3000xg. The liquid released was decanted and the sample was blotted on a 

Whatman No. 1 filter paper and transferred back into the tube. The percent cook yield 

was calculated using the following equation (Onodenalore. 1993): 

Cook Yield. %=(Weight of cooked meat/Weight of fresh meat)*100 

3.10 Preparation of metmyoglobin (MMb) solution 

Myoglobin (18.8 mg) was weighed into a 10 mL volumetric flask and dissolved 

in a small volume of 0.05 M phosphate buffer (pH 4.5) and brought to the. mark with the 

same phosphate buffer. The absorbance spectrum ( 490-650 nm) of the resultant pigment 

was used to ascertain that metmyoglobin had been formed (Figure A.3). 

3.11 Synthesis of nitrosylmyoglobin (NOMb) 

A solution of nittosylrnyoglobin (100 mM) was prepared according to the method 

of Fox and Thomson (1963). Sodium nitrite (700 pL of 1 mg/mL stock) and 35 mg of 

L-ascorbic acid were weighed into a 100 mL volumetric flask and filled up to the mark 

with a 0.05 M phosphate buffer (pH 4.5). Horse heart myoglobin (18.8 mg) was 

transferred into a 10 mL volumetric flask and filled up to the mark with the above 

solution. The concentrations of NaN02 and L-ascorbic acid in the reaction mixture were 

7 and 350 ppm, respectively. The absorbance spectra ( 490-650 nm) of the mixture at 

different time intervals were recorded.in order to ascertain that metmyoglobin was fully 

converted to nitrosylmyoglobin (Figure A.3). 
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J.U Synthesis of the cooked cured meat pigment (CCMP) 

Synthesis of CCMP was carried out according to the method of Shahidi et al. 

(1994). Haemin (25 mg) was weighed into a 10 mL volumetric flask and dissolved in 

5 mL of 0.04 M sodium carbonate (N~C03) solution and then filled to the mark with the 

same solution. Haemin solution (1 mL) was added to a centrifuge tube containing about 

150-153 mg of sodium tripolyphosphate (STPP). 300 mg of sodium ascorbate and 9 mL 

of 0.2 M acetate buffer (pH 6.5). Tubes were then transferred to an AtmosBag (Aldrich 

Chemical Co .• Inc., Milwaukee, WI). Nitric oxide (NO) gas was bubbled into the solution 

for approximately 30 s and the tubes were then capped tightly so that the resulting 

nitrosylhaemochrome was maintained under a positive pressure of NO. Tubes were then 

centrifuged (ICE Centra M5, International Equipment Co., Needham Heights, MA) for 

5 min at 4000xg. The supernatants were drained off and the precipitates were dissolved 

in 50 mL of a 0.04 M sodium carbonate solution followed by vortexing (Fisher Vortex 

Genie 2. Model G-560, Fisher Scientific, Bohemia, NY). Absorption spectrum of CCMP 

is shown in Figure A.3. 

3.13 Preparation of (3-carotene/linoleate model system 

3.13.1 Preparation of aqueous linoleate solution 

One millilitre of ethanolic linoleic acid (7.5% w/v), 0.3 mL of ethanolic Tween 

80 (10%, v/v) and 5 mL of 0.5% (w/v) aqueous ethylenediaminetetraacetic acid (EDT A) 

were mixed in a 10 mL volumetric flask and the pH of the mixture was adjusted to 9.0 
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by dropwise addition of 0.1 N sodium hydroxide (NaOH). Finally. the volume was 

adjusted to 10 mL with distilled water (Ben-Aziz eta/., 1971). 

3.13.2 Preparation of aqueous 13-carotene solution 

(l-carotene (83.3 mg) and 0.9 mL of ethanolic Tween 80 (10%. v/v) were 

transferred into a 25 mL volumetric flask and the volume was adjusted to the mark with 

the addition of chloroform. One rnillilitte of this solution was evaporated to dryness 

under vacuum (BUehl RE 111 rotavapor. BUehl Laboratories, Aawil. Switzerland) and the 

residue was dissolved immediately in 10 mL of a 0.25% (w/v} solution of EDT A (Ben­

Aziz eta/., 1971). 

3.13.3 Preparation of aqueous butTered P.carotene/Iinoleate solution 

Aqueous linoleate (l mL) was mixed with aqueous 13-carotene (1 mL) and the 

volume was adjusted to 10 mL with a 0.2 M citrate-phosphate buffer (pH 7). This 

solution, prepared immediately before use. contained 750 pg of linoleic acid. 33.3 pg of 

J3-carotene. 0.66 pL of Tween 80 and 0.5 mg of EDTA per mL (Ben-Aziz eta/., 1971). 

3.13.4 Assay procedure 

The assay was carried out at room temperature (25 ± 2 °C) in a cuvette placed in 

a Hewlett Packard diode array spectrophotometer (Model 8452A). Buffered 13-

carotene/linoleate system (1.5 mL) and an appropriate volume of the compound to be 
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examined were transferred to the cuvette and the volume was then adjusted to 2 mL. The 

concentration of (3-carotene, linoleate, EDT A and Tween in the assay medium was 25 pg, 

562.5 pg, 375 pg, and 0.5 pL per mL, respectively (Ben-Aziz et al .• 1971). The 

absorbance was measured at 460 run after every min for 5 min. Absorbance value of a 

blank sample containing all the ingredients except (3-carotene was measured and 

substracted from absorbance value of sample containing (3-carotene and all the other 

ingredients. Deionized water (0.5 mL) was used as a control sample. The amount of 13-

carotene bleached, in pg, was calculated using a factor obtained from a standard line 

(Figure A.2). The% (3-carotene protection was calculated using the following equation: 

% (3-carotene protection= ((C- S)/C}*lOO 

where, C and S represent the amount of (3-carotene bleached by the control and the 

compound under investigation, respectively. 

Mennyoglobin, nitrosylmetmyoglobin and CCMP were tested for their effects on 

(3-carotene bleaching at 2.2, 6.2 and 10 pM levels. Sodium ascorbate was tested at 50, 

100 and 550 ppm levels and STPP was tested at 50, 100 and 500 ppm levels, both in the 

presence and absence of CCMP (10 pM). The lower level of STPP used in these studies 

as compared to previous ones was necessary because of solubility limitations. In addition 

NaF, NaCl, Nal, KF, Kl, CsF, Csl, CaF2, Cal2, and FeS04 were tested for their 

performance in a (3-carotene/linoleate model system at 10 and 100 ppm levels. BHA was 
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used as a standard to compare the antiox.idative/prooxidative properties of the 

aforementioned compounds. 

3.14 Statistical test 

Analysis of variance and Tukey's studentized range test (Snedecor and Cochran, 

1980) were used to detennine differences in mean values based on data collected from 

three determinations of various experiments. Significance was determined at a 95% level 

of probability. 



CHAPTER 4. RESULTS AND DISCUSSION 

4.1 Effect of haem pigments on lipid oxidation 

Assessing the pro- or anti-oxidative nature of organic and inorganic compounds 

by measuring the disappearance of ~carotene in the coupled oxidation of linoleate and 

~-carotene is commonplace (Ben-Aziz et al., 1970a,b; Kanner et al., 1979; Zubillaga et 

at., 1984; Roozen eta/., 1994). The effect of MMb, NOMb and CCMP on (3-carotene 

destruction in a ~carotene/linoleate model system is shown in Table 4.1 and Figure 4.1. 

The MMb exerted a prooxidative effect regardless of the concentration tested. A high 

extent of ~carotene destruction was observed during the lst min of the reaction for all 

three concentrations examined. Over 72% of the total amount of ~-carotene bleached by 

MMb occurred during the 1st min of the reaction. A decrease in the catalytic activity of 

MMb was observed with increasing of its concentration in the medium (Table A.l). 

Kanner et al. (1979) have also observed a similar trend for MMb when tested in a (3-

carotene/linoleate model system. These authors suggested that above a certain 

concentration of MMb, inhibition is bound to exceed initiation. They also pointed out 

that the chelated forms of metals act as hydroperoxide decomposers, but at the same time 

react with t~?.e free radicals generated in the process, thereby terminating free radical 

propagation. The proox.idative activity of metmyoglobin in model systems including (3-

carotene/linoleate models has been reported (Kanner et al., 1979; Barel and Kanner, 

1985b; Kanner and Barel, 1985; Tichivangana and Morrissey, 1985; Rhee and Ziprin, 

1987). According to Love and Pearson (1974) and Igene et at. (1979), purified 



Table 4.1 Effect of haem pigments and BHA on ~-carotene destruction in a ~-carotene/linoleate model system as 
reflected by cumulative loss of ~-carotene (tJg)1

• 

Reaction Time, Min 
Compound 

1 2 3 4 

Control (H20) 1.41±0.02c 1.80±0.07c 2.08±0.llc 2.41±0.20c 
Concentration 2.2 tJM 

BHA 0.20±0.05cdc 0.27±0.10cdc 0.30±0.07c 0.34±0.03c 
MMb 9.18±0.071 10.71±0.861 11.28±0. 901 11.54±0.651 

NOMb 1.09±0.18c 1.51±0.13c; 1.82±0.25c 1.99±0.35c 
CCMP 5.68±0.45" 7.05±0.38" 7.85±0.3511 8.40±0.3411 

Concentration 6.2 tJM 
BHA 0.18±0.07cde 0.25±0.11 cde 0.31±0.10c 0.36±0.l0c 
MMb 6.16±0.64b 7.35±0.78b 7.92±0.80b 8.20±0.79b 
NOMb 0.82±0.01c 1.17±0.13c 1.36±0.11c 1.49±0,10c 
CCMP 0.45±0.08c;d 0.49±0.01c:d 0.88±0.1lc 1.02±0.07c 

Concentration 10.0 tJM 
BHA 0.11±0.01cde 0.21 ±0.02cde 0.31±0.10c 0.35±0.08c 
MMb 4.74±0.12b 5.96±0.1lb 6.54±0.1lb 6.52±0.35b 
NOMb 0.69±0.14c 1.10±0.32c 1.35±0.24c 1.52±0.28c 
CCMP 0.41±0.04cd 0.49±0.0 1 c:d 0.54±0.03c 0.57±0.06c 

1 Results are mean values of three detenninations ± standard deviation. Means sharing the same superscripts in a column 
are not significantly (p<0.05) different from one another. 



Figure 4.1 
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Effect of butylated hydroxyanisole (BHA). nitrosylmyoglobin (NOMb )~ 
cooked cured-meat pigment (CCMP) and metmyoglobin (MMb} on (3-
carotene stability in a (3-carotene/linoleate model system. Error bars 
represent standard deviations from means of three determinations. 



0 BHA 6.2 I-'M 

• BHA 10.0 ~M 
c CCMP6.2~M 

100 • CCMP 1 0.0 I-'M 
v NOMb6.2~M .. NOMb 10.0 ~M 

~ 0 80 
c: 
0 
;: 
(.) 

s 
0 -n. 
CD 
c: s e 
cu 60 (.) 
I 
~ 

40 

1 2 3 4 
Reaction Time , Min 



62 

metmyoglobin or EDT A-treated beef muscle extracts, did not accelerate lipid oxidation 

upon heating and subsequent storage, when added to a meat residue left after water 

extraction. According to Harel and Kanner (1985) and Kanner and Harel (1985), 

interaction of hydrogen peroxide (H20J with metmyoglobin can generate an active H20 2-

metmyoglobin species that eventually initiates membrane lipid oxidation. This may not 

be the reason for prooxidative narure of metmyoglobin observed in the (3-

carotene/linoleate model system which is devoid of H20 2• 

The effect of NOMb on (3-carotene destruction was antioxidative for all 

concentrations tested (Figure 4.1). NOMb also exhibited an elevated catalytic activity 

during the et min of the reaction. The stabilizing effect of NOMb may be attributed to 

the fact that Fe2
+ is tied by nittic-oxide (NO). Since NOMb has its iron atom in the 

ferrous oxidation state with all of its coordination sites occupied, it is more stable and 

does not release non-haem iron. The antioxidative effect of NOMb may also be attributed 

to the nitric-oxide group of NOMb. As the NO group has an unpaired electron, it can act 

as an antioxidant by free· radical neutralization through direct coupling with an alkyl 

radical (Morrissey and Tichivangana, 1985). The strong antioxidative activity of NOMb 

observed in this study could therefore be attributed to (1) the involvement of all the 

coordination sites of the iron atom of NOMb, (2) quenching of free radicals by the NO 

group of NOMb. and (3) the hydroperoxide decomposing and quenching action of MMb 

produced from dissociation of NOMb. 
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The behaviour of CCMP in a ~-carotene/linoleate model system. as shown in 

Table A.l changed from prooxidative to antioxidative. depending on its concentration. 

Therefore. the critical concentration of CCMP which detennines its role in lipid oxidation. 

lies within the concentration range tested in this study. Kanner et al. (1979) reported a 

similar phenomenon for NOMb. At lower concentrations. the ability of CCMP to quench 

free radicals may be inadequate to inhibit lipid oxidation. However. CCMP at a 

concentration of 10 J.IM showed a strong antioxidative property and the effect exceeded 

that of NOMb (Figure 4.1). Shahidi eta/. (1987) also reported an antioxidati.ve effect for 

CCMP in meat model systems. These authors have observed a negative correlation 

between TBARS values and the addition level of CCMP. As is the case for NOMb. 

CCMP (nitrisylferrohaemochrome) also has its iron atom in the ferrous oxidation state and 

the high stability of CCMP does not permit the release of non-haem iron ions which are 

powerful prooxidants. According to Kanner et al. (1979). iron porphyrin nitric oxide 

compounds can act in the early stages of the reaction to neutralize substrate-free radicals 

and subsequent inhibition of lipid oxidation. They also suggested that the NO group may 

interact with free radicals leaving iron porphyrin in the system. In the case of CCMP. 

nitrosylhaemochrome-radical may quench free radicals in the system while haemin. an 

iron porphyrin, which was generated upon the dissociation of nitrosylferrohaemochrome 

may act as a hydroperoxide decomposer. Furthermore. haemin may also act as a free 

rad.ical-quencher at lower concentrations. Being a chelator. haemin may act as an initiator 

or a terminator with the latter overshadowing the degree of initiation. 
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4.2 Effect of CCMP on lipid oxidation in the presence of sodium ascorbate and/or 

STPP 

Table 4.2 shows the effect of CCMP (at 10 pM) on ~-carotene bleaching in the 

presence of sodium ascorbate at 50. 100 and 550 ppm levels. CCMP exhibited even a 

stronger antioxidative effect in the presence of sodium ascorbate when compared to that 

of C0.1P alone (Figure 4.2(A)). This is not surprising since sodium ascorbate alone 

exhibited a strong antioxidative effect. at all concentrations tested (Figure 4.2(B)). CCMP 

and sodium ascorbate may have then acted synergistically to protect [}-carotene against 

oxidation. Shahidi et al. (1987) have suggested that sodium ascorbate and CCMP may 

retard lipid oxidation probably by keeping the haem pigment in its catalytically inactive 

state. Sato and Hegarti (1971) and Pearson et al. (1977) have envisaged that sodium 

ascorbate may upset the balance between Fe2
• and FeJ+ or may- act as an oxygen 

scavenger. Being a metal binder~ ascorbate can bind any iron ions which may originate 

from disassociation of CCMP. 

The effect of CCMP (10 pM) on (3-carotene destruction in a ~i-carotene/linoleate 

model system containing STPP at 50, 100 and 500 ppm, is shown in Table 4.2 and Figure 

4.3(A). Presence of STPP had a counter effect on the antioxidative effect of CCMP. 

Moreover, the antioxidative effect of CCMP decreased with increasing concentration of 

STPP. According to Tims and Watts (1958), STPP can inhibit lipid oxidation in meat 

model systems by sequestering metal ions. especially non-haem irons. However, 

according to Trout (1990), STPP can affect the rate of MMb formation in beef model 

systems. A low rate of MMb formation at pH 5.5 and a sharp increase in the rate 



Table 4.2 

Experiment 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Effect of cooked curedwmeat pigment (CCMP), sodium ascorbate (SA), sodium tripolyphosphate (STPP) and 
their combinations on ~-carotene destruction in a ~-carotene/linoleate model system as reflected by 
cumulative loss of ~-carotene (pg) 1• 

Reaction Time, Min 
Treatment 

1 2 3 4 

Control (H10) 1.41±0.021 1.80±0.071 2.08±0.111 2.41±0.201 

CCMP 10 fJM 0.41±0.04b 0.49±0.01b 0.54±0.03c 0.57±0.06c 
SA 50 ppm 0.39±0.08b 0.51±0.00b 0.59±0.04c 0.67±0.06c 
SA 100 ppm 0.30±0.04b 0.39±0.04b 0.48±0,01c 0.56±0,02c 
SA 550 ppm 0.27±0.09b 0.33±0.07b 0.37±0,11c 0.39±0.08c 

STPP 50 ppm 0.39±0.08b 0.62±0.01b 0.86±0.04b 1.09±0.01b 
STPP 100 ppm 0.51±0.07b 0.77±0.04b l.Ol±O.Olb 1.20±0.01b 
STPP 500 ppm 1.25±0.201 1.78±0.091 2.19±0.081 2.72±0.161 

2+3 0.19±0.02b 0.28±0.05b 0.36±0,04c 0.41±0.03c 
2+4 0.27±0.05b 0.35±0.04b 0.43±0.03c 0.48±0,01c 
2+5 0.27±0.06b 0.36±0.08b 0.47±0.02c 0.53±0.02c 
2+6 0.40±0.04b 0.52±0.06b 0.60±0.071: 0.65±0,03c 
2+7 0.55±0.03b 0.65±0.03b 0.76±0.05b 0.80±0.03b 
2+8 0.64±0.02b 0.77±0.05b 0.82±0.06b 0.86±0.02b 

2+3+6 0.31±0.10b 0.41±0.06b 0.47±0.04c 0.50±0.06c 
2+4+7 0.36±0.05b 0.51±0.04b 0.59±0.04c 0.60±0.07c 
2+5+8 0.47±0.04b 0.56±0.03b 0.63±0.08c 0.70±0.03c 

1 Results are mean values of three determinations ± standard deviation. Means sharing the same superscripts in a column 
are not significantly (p<0.05) different from one another. 



Figure 4.2 
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Effect of cooked cured-meat pigment (CCMP) on ~-carotene stability in 
a (3-carotene/linoleate model system containing sodium ascorbate (SA). (A) 
and the effect of sodium ascorbate alone, (B). Error bars represent 
standard deviations from means of three determinations. 
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Figure 4.3 
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Effect of cooked cured-meat pigment (CCMP) on J3-carotene stability in 
a (3-carotene/linoleate model system containing sodium tripolyphosphate 
(STPP). (A) and the effect of STPP aloney (B). Error bars represent 
standard deviations from means of three determinations; where not showny 
they were confined to the boundaries of symbols used. 
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between pH 5.5 and 6.5 were observed by this author. Based on these observations, it 

is suggested that the effect of CCMP is also pH-dependant. The iron (ll) atom of CCMP 

may oxidize to the ferric form due to pH effects brought about by STPP. Since ferric 

haem ions are more powerful catalysts (Kanner and Harel, 1985), they may favour 

substrate free radical decomposition causing an increase in new free radical generation 

leading to enhanced (3-carotene destruction. 

At 500 ppm concentration, STPP alone showed a mild prooxidative effect while 

at 50 and 100 ppm showed an antioxidative effect (Table 4.2 and Figure 4.3(B)). At low 

concentrations, STPP may inhibit lipid oxidation by sequestering metal ions and at high 

concentration it may alter the pH buffering capacity of the reaction mixture to a point 

where free radical chain reactions are favoured causing a high (3-carotene destruction 

which exceeds its sequestering effect. 

Table 4.2 shows the effect of CCMP in the presence of both sodium ascorbate and 

STPP on (3-carotene bleaching. As shown in Figure 4.4, CCMP in the presence of both 

sodium ascorbate and STPP, exhibited an antioxidative effect and the effect was not 

significantly (p<0.05) different from that of CCMP alone. This effect can be attributed 

to the antioxidative nature of CCMP backed up by sodium ascorbate but possibly 

counteracted by the presence of STPP. As discussed earlier, sodium ascorbate may act 

alone with CCMP to reduce the free radical concentration in the reaction mixture. 

Shahidi et al. (1987. 1988) have also reported a synergistic action between CCMP. 

sodium ascorbate and STPP towards inhibition of lipid oxidation in meat model systems. 



Figure 4.4 
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Effect of cooked cured-meat pigment (CCMP) on ~-carotene stability in 
a 13-carotene/linoleate model system containing both sodium ascorbate (SA) 
and sodium tripolyphosphate (STPP). Error bars represent standard 
deviations from means of three detenninations. 
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4.3 Effect of anion and cation of different salts on lipid oxidation in a meat model 

system. 

Tables 4.3 and 4.4 show the TBARS values of cooked comminuted pork 

(Moisture, crude protein, total lipid and ash contents were 71.84±0.20, 19.83±0.41, 

7.16±0.01 and 1.13±0.30%, respectively) containing different salts at a concentration of 

100 or 200 meqlkg meat. Both LiCl and NaCl, showed a prooxidative effect only at a 

concentration of 100 meqlkg meat, as reflected by % inhibition of TBARS formation 

(Figures 4.5 and 4.6). KCI, CsCI, MgCI2, and CaCl2 did not result in high TBARS values 

when compared to those of untreated controls (Tables 4.3 and 4.4). 

Sodium chloride did not exhibit a prooxidative effect until the day-3 of the 

experiment (Figure 4.6(A)). Takiguchi (1989) have reported similar results for NaCl. 

According to this author the lower the NaCl content, the higher is the degree of lipid 

oxidation. Kanner eta/. (1991) have also demonstrated the prooxidative effect of NaCl 

in a comminuted muscle system and suggested that NaCI may favour the displacement 

of iron ions from binding sites of haem compounds by disturbing the iron-protein 

interactions. The free iron ions so formed may catalyze lipid peroxidation. Kanner et al. 

(1988) have reported that the initiation of lipid peroxidation in turkey muscle tissue is 

enhanced by non-haem iron ions. Although no information on the role of LiCl in lipid 

oxidation is available, based on the literature data on NaCI, it is suggested that LiCl also 

acts in a manner similar to that of N a a. 



Table 4.3 TBARS values (mg malonaldehyde equivalents/kg meat) of cooked comminuted pork treated with different 
salts at a concentration of 100 meq/kg meat stored at 4°C1

• 

Storage Period, Days 
Salt 

0 1 3 5 7 

Control (No salt) 2.20±0.12c 4.85±0.34b 7.21±0.17c: 9.00±0.24b 9.72±0.19d 

LiF 2.18±0.15cd 4.44±0.12c 7.64±0.10b 7.73±0.02d 8.98±0.07cr 
LiCI 2.24±0.03cd 5.43±0.14' 8.73±0.12' 9.27±0.16b 9.96±0.28d 
LiBr 2.48±0.14bc 5.09±0.09b 6.38±0.00dc 8.21±0.281: 7.85±0.118 

Lil 1.81±0.03e 3.76±0.03° 4.73±0.051 5.72±0.20( 5.53±0.14k 
Li2S04 2.30±0.04c 5.00±0.25b 7.19±0.38c 7.38±0.49d 8.32±0.27£ 

NaF 1.10±0.04b 2.61 ±O.OOb 5.15±0.01b 5.46±0.oor 5.79±0.65k 
NaCI 2.23±0.07cd 4.21±0.05d 7.13±0.1lc 10.92±0.12' 8.84±0.14' 
NaBr 1.98±0.07e 4.57±0.02c 8.37±0.46b 8.43±0.06c 7.61±0.028 

Nal 1.53±0.081 3.31±0.051 5.50±0.01' 6.39±0.14° 5.41±0.18k 
N~so. 1.94±0.02c 4.53±0.JOC 7.07±0.021: 8.81 ±0.26bc 8.37±0.041 

K.F 1.32±0.26' 0.72±0.051 1.04±0.08m 1.49±0.00b 1.36±0.0lm 
KCI 2.86±0.15' 4.97±0.07b 6.26±0.01e 8.70±0.36bc: 11.43±0.03' 
KBr 3.09±0.02' 4.40±0.08c 4.77±0.051 6.31±0.01° 9.52±0.08de 
KI 2.35±0.04c 2.78±0.20b 4.62±0.001 4.37±0.028 4.93±0.011 

K1S04 3.15±0.02' 4.41±0.12cd 5.42±0.09' 8.34±0.07c 1 0.48±0.19c 

.... continued on next page 
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CsF 1.41±0.06r 2.58±0.02h 4.23±0.07J 5.40±0,12r 6.29±0.00k 
CsCl 1.67±0.03r 4.96±0.06b 6.55±0.03d 9.46±0.12b 10.66±0.04bc 
CsBr 1.87±0.02° 4.57±0.05" 5.03±0.03h 5.81±0.0111 9.40±0.01d 
Csl 1.21±0.028 3.10±0.()()8 5.50±0.08r 5.92±0.07° 9.83±0.10d 

Cs2S04 1.01±0.07b 4.65±0.03" 7.81±0.19b 7.36±0.04d 7.63±0.038 

MgF2 2.35±0.1lc 5.30±0.05. 8.93±0.04. 8.94±0.10b 10.15±0.47bcd 
MgCI2 2.05±0.02° 4.95±0.18b 7.38±0.12c 8.10±0.26c 10.97±0.13b 
MgBr2 2.02±0.0011 4.16±0.0ld 6.41±0.07dc 7.73±0.l3d 7.10±0.22h 
Mgl2 1.25±0.018 2.39±0.01r 4.08±0.0lj 6.10±0.02° 5.64±0.02k 

Mgso. 2.02±0.00° 5.23±0.01 1 8.74±0.041 8.51±0.30c 7 .58±0.18gb 

CaF2 2.19±0.0ld 3.73±0.02° 5.31±0.038 7.74±0.02d 7.61±0.148 

CaCI2 2.54±0.05b 5.05±0.0lb 7.18±0.04c 8.85±0.15bc 8.88±0.46rcd 
CaBr2 2.64±0.00b 5.16±0.01 1 7.25±0.17c 8.83±0.0lc 8.40±0.17r 
Cal2 1.61±0.00( 1.96±0.01l 2.11±0.011 0.84±0.09l 0.92±0.05° 

CaS04 2.62±0.02b 2.77±0.03b 3.76±0.05k 5.27±0.04r 5.87±0.02J 

1 Results are mean values of three detenninations ±standard deviation. Means sharing the same superscripts in a column 
are not significantly (p<0.05) different from one another. 



Table 4.4 TBARS values (mg malonaldehyde equivalents/kg meat) of cooked comminuted pork treated with different 
salts at a concentration of 200 meq/kg meat stored at 4°C1

• 

Storage Period, Days 
Salt 

0 1 3 5 7 

Control (No salt) 2.20±0.12bc 4.85±0.34c 7.21±0.07b 9.00±0.241b 9.72±0.19cd 

LiF 1.55±0.09c 4.21±0.05c 6.45±0.03d 6.76±0.14' 7.59±0.52h 
LiCI 2.68±0.051 5.32±0.0lb 7.13±0.07b 7.51±0.31 de 7.45±0.20h 
LiBr 2.22±0.17bcd 5.18±0.02b 6.89±0.01c; 7 .76±0.32de 8.08±0.22'8 

Lil 1.04±0.02' 2.19±0.051 3.54±0.08b 4.06±0.2()1 3.82±0.02m 
u2so .. 2.21±0.02bc 4.65±0.04d 7.75±0.061 7.41±0,80deC 8.62±0.22'8 

NaF 0.24±0.021 0.35±0.oom 0.44±0.03m l.28±0.09a 1.15±0.01° 
NaCl 2.01±0.06d 4.14±0.0 I er 7 .00±0.04bc 6.91±0.10cf 7.80±0.1lb 
NaBr 2.39±0.0lb 4.35±0.0le 7.84±0.391 8.10±0.45cd 8.68±0.13' 
Nal 1.04±0.04r 2.67±0.04b 4.92±0.04' 5.30±0.48b 5.26±0.051 

N~so .. 2.09±0.0ld 4.31±0.09° 6.42±0.03d 8.10±0.06d 10.15±0.04c; 

KF 1.16±0.00' 0.4l±O.Olm 0.57±0.14ml 0.49±0.03Q 0JQ±0.02P 
KCl 2.29±0.07bc 4.12±0.18cf 4.60±0.088 6.89±0.06dc 7.87±0.01( 
KBr 2.84±0.181 4.01±0.08cf 5.19±0.01( 6.03±0.088 9.5l±O.Ola 
Kl 2.01±0.02d 2.0l±O.OIJ 2.50±{).041 2.97±0.13" 5.13±0.191 

K2S04 2.16±0.00bc 4.42±0.12de 5.39±{).02' 6.82±0.03de 10.88±0.07b 

.... continued on next page 
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CsF 0.41±0.06h OJ6±0.03m 0.99±0.011 1.00±0.05bn 1.36±0.01° 
CsCl 1.52±0.0611 3.61±0.14r1 6.04±0.0111 6.63±0.05r 11.28±0.0 11 

CsBr 1.66±0.0011 5.05±0.07bc 7.51±0.241 8.98±0.14b 11.37±0.02. 
Csl 0.66±0.02&h 1.71±0.07k 3.12±0.011 4.56±0.01J 6.36±0.1()1 

Cs2S04 1.17±0.01 ( . 3.94±0.14( 6.83±0.14d 7.81±0.04d 7.80±0.04b 

MgF2 2.27±0.08bc 5.24±0.06b 7.90±0.011 9.52±0.171 9.71±0.08d 
MgCI2 2.04±0.01d 4.87±0.03c 6.24±0.0311 6.96±0.0011 7.65±0.33h 
MgBr1 2.07±0.02d 3.37±0.071 5.11±0.05' 6.19±0.031 6.78±0.041 

Mgl2 0.70±0.068 2.14±0.10ij 1.72±0.00k 3.02±0.0711 3.25±0.12" 
MgS04 2.79±0.041 5.14±0.07b 6.58±0.04d 7.75±0.22d 7.14±0.26h 

CaF2 2.31±0.09bc 5.78±0.121 7.16±0.03b 8.81±0.19b 8.62±0.29'8 

CaCI2 2.49±0.05b 5.23±0.01b 7.70±0.011 8.49±0.021: 8.14±0.121 

CaBr2 2.72±0.058 5.05±0.02bc 7.87±0.os• 8.48±0.03c 8.88±0.08' 
Cal1 0.38±0.03b 0.80±0.011 0.81±0.051 0.84±0.01m 1.24±0.02° 

CaS04 2.t4±0.ooc: 2.75±0.04b 3.93±0.061 5.56±0.05h 5.80±0.11k 

1 Results are mean values of three detenninations ± standard deviation. Means sharing the swne superscripts in a column 
are not significantly {p<0.05) different from one another. 



Figure 4.5 
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Effect of LiF, LiCl, LiBr, Lil and L~S04, at a concentration of 100, (A) 
or 200, (B) meq/kg sample, on lipid oxidation as reflected by% inhibition 
of TBARS formation in cooked comminuted pork stored at 4 °C. Error 
bars represent standard deviations from means of three determinations; 
where not shown, they were confined to the boundaries of symbols used 
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Figure 4.6 
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Effect of NaF, NaCI. NaBr. Nal and N~S04, at a concentration of 100. 
(A) or 200, (B) meq/kg sample, on lipid oxidation as reflected by % 
inhibition of TBARS formation in cooked comminuted pork stored at 4 °C. 
Error bars represent standard deviations from means of three 
detenninations; where not shown. they were confined to the boundaries of 
symbols used. 
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All iodide salts tested inhibited the formation of TBARS at both 100 and 200 

meqlkg levels, but the effect was more pronounced at the higher concentration (Figures 

4.5, 4.6, 4. 7, 4.8, 4.9 and 4.10). Osinchak et al. (1992) reported a similar effect for 

iodides on lipid oxidation in a phosphotidylcholine liposome model system. According 

to these authors, iodides may retard lipid oxidation by blocking free radical chain 

reactions and by preventing ferrous ions from oxidation. Moreover, iodide is a reducing 

agent towards ferric ions which are considered by some investigators as being more 

powerful than ferrous ions in free radical chain reaction initiation (Kanner and Hare!, 

1985; Kanner et al., 1987). Furthermore, the iodine formed upon reaction with ferric 

ions, either free or bound to an organic substrate, is a good free radical scavenger. In 

addition, the weak C-I bond in organic iodides allows an alternative pathway for radical­

initiated oxidative addition reactions which could have an antioxidative effect (Osinchak 

et al., 1992). 

Treaunent of meat systems with NaF, KF and CsF resulted in low TBARS values 

at both concentrations compared to those of the control (Tables 4.3 and 4.4). Addition 

of the above salts to meat at a concentration of 200 meq/kg sample afforded much lower 

TBARS values as compared to the samples treated with 100 meqlkg sample. As shown 

in Figure 4.10, CaS04 also exhibited an inhibitory effect on lipid oxidation. Therefore, 

fluoride anion in NaF, KF, and CsF as well as sulphate anion of CaS04 may retard lipid 

oxidation by tightly binding any ferrous ion present in the system, thus eliminating the 

prooxidant activity of ferrous ion or preventing its oxidation to ferric ion. 



Figure 4.7 
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Effect of KF, KO, KBr, KI and ~S04, at a concentration of 100, (A) or 
200, (B) meq/kg sample, on lipid oxidation as reflected by % inhibition of 
TBARS formation in cooked comminuted pork stored at 4 °C. Error bars 
represent standard deviations from means of three detemrlnations; where 
not shown, they were confined to the boundaries of symbols used. 
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Figure 4.8 
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Effect of CsF, CsCI, CsBr, Csl and C~S04, at a concentration of 100, (A) 
or 200, (B) meqlkg sample, on lipid oxidation as reflected by % inhibition 
of TBARS formation in cooked comminuted pork stored at 4 °C. Error 
bars represent standard deviations from means of three determinations; 
where not shown, they were confined to the boundaries of symbols used. 
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Figure 4.9 
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Effect of MgF1, MgC11, MgBr1, Mg1I and MgS04, at a concentration of 
100, (A) or 200, (B) meqJk:g sample, on lipid oxidation as reflected by% 
inhibition of TBARS formation in cooked conuninuted pork stored at 4 °C. 
Error bars represent standard deviations from means of three 
detenninations; where not shown, they were confined to the boundaries of 
symbols used. 
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Figure 4.10 Effect of CaF2, CaCiz, CaBr2, Ca12 and CaS04, at a concentration of 100, 
(A) or 200, (B) meq/kg sample, on lipid oxidation as reflected by _% 
inhibition of TBARS formation in cooked comminuted pork stored at 4 °C. 
Error bars represent standard deviations from means of three 
detenninations; where not shown, they were confined to the boundaries of 
symbols used. 
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The fluoride ion is known to inhibit the activity of numerous glycolytic enzymes 

such as enolase. succinic dehydrogenase, phosphoglucomutase, phosphatases and 

acetylcholine esterase (Newbrun, 1986) which are known to catalyze free radical initiation 

reactions (Kanner et al., 1987). Auoride ion can replace a hydrogen in an enzyme 

molecule which is involved in enzymatic transfer and irreversibly complex and block the 

normal function of the enzyme (Sheppard and Sharts, 1969). The inhibitory effect of 

fluoride ion on glycolytic enzymes may play an important role in lowering the TBARS 

formation in meat as evidenced by the present study. Furthermore. the strong inhibition 

of TSARS formation observed immediately after thermal processing suggests that the 

action of the fluoride ion had started from the point of its incorporation into meat. 

However, fluoride ion, in the presence of divalent cations such as magnesium and 

calcium, no longer exhibited any inhibitory effect on TBARS formation. This may be due 

to the strong pairing of fluoride ion with divalent cations which renders them unavailable 

for participation in reactions and/or interactions explained above. 

The overall effect of halide and sulphate salts of alkali metals as well as 

magnesium and calcium, in a complex system like meat, may be a result of many 

interactions which are at the moment poorly understood. 

Selected iodide and fluoride salts were also tested for their effect on bleaching of 

(3-carotene in a (3-carotene/linoleate model system (Tables 4.5 and 4.6). BHA, an 

antioxidant, and FeS04, a prooxidant were used for comparative purposes. The iodide and 

fluoride salts were antioxidati.ve compared to the control containing deionized water. 



Table 4.5 Effect of BHA, FeS04, NaCl, NaF, KF, CsF, CaF2, Nal, Kl, Csl and Cal2, at a concentration of 10 ppm, on 
lipid oxidation as reflected by cumulative loss of P-carotene ()Jg) in a P-carotene/linoleate model system 1• 

Reaction Time, Min 
Salt 

1 2 3 4 

Control (H20) 1.41±0.02. 1.80±0.071 2.08±0.111 2.41±0.20' 

BHA 0.15±0.06d 0.18±0.04d 0.19±0.03d 0.25±0.04d 
FeS04 1.18±0.061 1.71±0.131 2.09±0.181 2.48±0.19' 
NaCI 0.62±0J2b 0.86±0.02b 1.06±0.03b 1.38±0.08b 

NaF 0.26±0.06' 0.48±0.10' 0.75±0.06c 1.13±0.10b 
KF 0.48±0.05c 0.63±0.06c 0.77±0.15c 0.89±0.04c 
CsF 0.18±0.03d 0.35±0.02c 0.46±0.05c 0.68±0.06' 
CaF2 0.48±0.01c 0.74±0.05c 0.96±0.02b 1.10±0.0lc 

Nal 0.36±0.0 1 c: ' 0.64±0.04c: 0.95±0.10b 1.24±0.09b 
Kl 0.42±0.03c: 0.61±0.08c: 0.74±0.07c 0.82±0.05' 
Csl 0.54±0.10C 0.68±0.22c 1.07±0.11b 1.34±0.06b 
Cal2 0.78±0.03b l.07±0.06b 1.38±0.05b 1.62±0.07b 

1 Results are mean values of three detenninations ±standard deviation. Means sharing the same superscript in a column 
are not significantly (p<0.05) different from one another. 



Table 4.6 Effect of BHA, FeS04, NaCl, NaF, KF, CsF, CaF2, Nal, KI, Csl and Cal2, at a concentration of 100 ppm, 
on lipid oxidation as reflected by cumulative loss of (}carotene (Jig) in a ~-carotene/linoleate model system•. 

Reaction Time, Min 
Salt 

1 2 3 4 

Control (H20) 1.41±0.02b 1.80±0.07b 2.08±0.llb 2.41±0.20b 

BHA O.Ol±O.OOd O.OS±O.Old 0.07±0.00d 0.09±0.0ld 
FeS04 2.77±0.171 3.96±0.281 4.99±0.601 5.70±0.51 1 

NaCl 0.46±0.041: 0.71±0.03c: 0.97±0.021: 1.35±0.02c 

NaF 0.40±0.07c 0.67±0.131: 0.98±0.04c 1.15±0.10c 
KF 0.27±0.021: 0.44±0.10c 0.59±0.05c: 0.71±0.09c 
CsF 0.15±0.03c 0.27±0.08c 0.52±0.05c 0.63±0.08c 
CaF2 0.30±0.01c 0.55±0.08c 0.65±0.0~ 1.01±0.16c: 

Nal 0.36±0.11c 0.56±0.08c: 0.74±0.06c 0.93±0.05c 
KI 0.17±0.04c 0.34±0.06c 0.47±0.03c 0.58±0.01c: 
Csl 0.28±0.04c 0.33±0.06c 0.49±0.031: 0.58±0.06c 
Cal2 0.24±0.05c 0.40±0,01c 0.63±0.03c 0.74±0.04c 

1 Results are mean values of three determinations ± standard deviation. Means sharing the same superscript in a column 
are not significantly (p<0.05) different from one another. 
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The effect of iodide was concentration dependent and was more pronounced at 100 ppm 

addition level, similar to that obseiVed in meat model systems. The effect of fluoride 

salts was independent of the concentrations tested. As expected, BHA exhibited a very 

strong antioxidant effect while FeS04 exhibited a prooxidant effect resulting in extensive 

bleaching of f3-carotene destruction. The chemical energy generated upon 

oxidation/reduction reaction (Redox reaction) between ferrous and ferric fonns may 

provide sufficient energy to accelerate free radical initiation reactions. Therefore, the 

behaviour of salts exhibiting antioxidative effects in a meat model system, may or may 

not correspond with their influence in an emulsion model system such as that of J3-

carotene/linoleate. 

4.4 Effect of fluoride and iodide salts on volatile formation in cooked comminuted 

pork. 

Cooked comminuted pork samples containing different salts were analyzed for 

their content of volatile off-flavour compounds over a 7-day storage period. Results for 

day 0, day 3 and day 7 are shown in Tables 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12 and 

Figures 4.11, and 4.12 show the chromatograms of headspace volatiles of control and Cal2 

treated samples after 3 days of storage at 4°C. Of the identified volatiles, hexanal was 

the most prominent one. A highly significant correlation (r=0.9263) existed between 

hexanal content and TBARS values of cooked comminuted pork (Figure 4.13). Hexanal 

may be formed (1) from 13-hydroperoxide of linoleic acid through homolytic cleavage 



Table 4.7 Volatile composition of cooked comminuted pork, containing different salts at a cQncentration of 100 meq/kg 
meat, before storage. 

Volatile Content, mg/kg Meat 
Salt 

Ace Pro i-But But Pen Hex Hep Oct Hexdi 

Control (No salt) 0.7 0.9 0.5 0.1 2.0 10.0 0.4 0.2 0.1 
. 

LiF 1.8 1.2 0.3 0.2 2.1 9.5 0.5 0.3 0.1 
NaF 0.9 0.2 0.7 0.1 1.0 5.2 0.3 0.1 0.1 
KF 1.5 0.2 0.5 0.0 0.6 1.7 0.1 0.1 0.0 
CsF 2.0 0.8 0.3 0.1 1.4 6.8 0.4 0.2 0.1 

MgF2 1.8 1.0 0.3 0.1 1.7 7.8 0.3 0.2 0.1 
CaF2 3.1 1.1 0.2 0.2 2.2 9.6 0.6 0.3 0.1 

Lil 1.4 0.6 0.1 0.1 1.0 5.5 0.3 0.2 0.1 
Nal 1.6 0.9 0.2 1.0 1.5 7.1 0.5 0.3 0.1 
KI 2.4 1.0 0.4 0.1 0.3 8.1 0.6 0.3 0.1 
Csl 2.7 1.5 0.3 0.3 2.3 9.3 0.7 0.4 0.1 

Mgl2 1.1 0.9 0.3 0.2 1.2 5.7 0.4 0.2 0.1 
Cal2 0.2 0.0 0.2 0.0 0.0 0.2 0.1 0.0 0.0 

(Ace: Acetaldehyde, Pro: Propanal, i-But: iso-Butanal, But: Butanal, Pen: Pentanal, Hex: Hexanal, Hep: Heptanal, Oct: 
Octanal and Hexdi: Hexadienal). 

00 
0\ 



Table 4.8 Volatile composition of cooked comminuted pork, containing different salts at a concentration of 200 meq/kg 
meat, before storage. 

Volatile Content, mg/kg Meat 
Salt 

Ace Pro i-But But Pen Hex Hep Oct Hexdi 

Control (No salt) 0.7 0.9 0.5 0.1 2.0 10.0 0.4 0.2 0.1 

LiF 1.8 1.0 0.2 0.1 1.7 8.6 0.4 0.2 0.1 
NaF 0.1 0.0 0.1 0.0 0.1 0.3 0.0 0.0 0.0 
KF 1.4 0.0 0.7 0.0 0.0 0.1 0.0 0.0 0.0 
CsF 0.6 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.1 

MgF2 1.8 1.0 1.8 0.1 1.5 7.3 0.3 0.1 0.1 
CaF2 2.7 1.0 0.2 0.1 2.3 9.2 0.7 0.3 0.1 

Lil 1.5 0.7 0.2 0.1 0.9 4.9 0.3 0.2 0.1 
Nal 1.3 1.0 0.2 0.1 1.0 5.9 0.4 0.2 0.1 
KI 1.6 0.8 0.4 0.1 1.2 5.8 0.4 0.2 0.7 
Csl 2.1 1.1 0.2 0.1 1.4 6.5 0.5 0.3 0.1 

Mgl2 1.0 0.5 0.3 0.0 0.5 2.5 0.2 0.1 0.1 
Cal2 0.1 0.0 0.1 0.0 0.0 0.2 0.2 0.0 0.0 

(Ace: Acetaldehyde, Pro: Propanal, i-But: iso-Butanal, But: Butanal, Pen: Pentanal, Hex: Hexanal, Hep: Heptanal, Oct: 
Octanal and Hexdi: Hexadienal). 



Table 4.9 Volatile composition of cooked comminuted pork, containing different salts at a concentration of 100 meq/kg 
meat, after three days of storage at 4°C. 

Volatile Content, mg/kg Meat 
Salt 

Ace Pro i-But But Pen Hex Hep Oct Hexdi 

Control (No salt) 2.6 2.2 0.4 0.2 2.8 19.4 0.6 0.3 0.1 

LiF 1.6 2.2 0.4 0.2 2.4 17.6 0.6 0.3 0.2 
NaF 1.1 1.7 0.3 0.2 1.8 11.8 0.5 0.2 0.1 
KF 1.2 0.6 0.4 0.1 0.7 3.6 0.2 0.2 0.2 
CsF 1.0 1.4 0.3 0.0 1.2 9.2 0.3 0.2 0.1 

MgF2 1.7 2.7 0.4 0.2 2.3 14.8 0.4 0.1 0.1 
CaF2 1.7 2.2 0.4 0.2 2.2 13.8 0.4 0.3 0.1 

Lil 1.2 1.5 0.4 0.2 1.8 11.4 0.6 0.3 0.1 
Nal 1.5 2.0 0.3 0.2 2.2 12.7 0.7 0.1 0.1 
KI 0.9 1.0 0'.3 0.1 1.3 8.2 0.4 0.2 0.2 
Csl 1.0 2.1 0.3 0.3 1.5 9.8 0.4 0.2 0.1 

Mgl2 1.0 2.8 0.3 0.2 2.0 15.0 0.5 0.2 0.1 
Call 0.3 0.2 0.3 0.0 0.3 1.5 0.1 0.1 0.0 

(Ace: Acetaldehyde, Pro: Propanal, i-But: iso-Butanal, ·But: Butanal, Pen: Pentanal, Hex: Hexanal, Hep: Heptanal, Oct: 
Octanal and Hexdi: Hexadienal). 

00 
00 



Table 4.10 Volatile composition of cooked comminuted pork, containing different salts at a concentration of 200 meq/kg 
meat, after three days of storage at 4°C. 

Volatile Content, mg/kg Meat 
Salt 

Ace Pro i-But But Pen Hex Hep Oct Hexdi 

Conttol (No salt) 2.6 2.2 0.4 0.2 2.8 19.4 0.6 0.3 0.2 

LiF 1.6 1.7 0.4 0.2 1.9 14.9 0.5 0.2 0.1 
NaF 0.5 0.2 0.2 0.0 0.1 0.7 0.1 0.0 0.0 
KF 0.3 0.0 0.2 0.0 0.1 0.4 0.0 0.0 0.0 
CsF 0.3 0.1 0.2 0.0 0.1 0.2 0.0 0.0 0.0 

MgF2 1.6 2.6 0.3 2.1 0.3 13.8 0.4 0.1 0.1 
CaF2 1.7 2.4 0.3 0.2 2.5 16.9 0.5 0.2 0.1 

Lil 1.4 1.5 0.3 0.2 1.8 11.8 0.5 0.2 0.1 
Nal 1.2 2.0 0.3 0.2 1.9 11.5 0.7 0.3 0.1 
KI 0.8 1.2 0.3 0.1 1.2 7.2 0.4 0.2 0.1 
Csl 1.2 2.1 0.4 0.1 1.5 8.4 0.4 0.2 0.1 

Mgl1 0.5 1.1 0.3 0.1 0.8 5.2 0.3 0.1 0.0 
Cal2 0.2 0.2 0.2 0.0 0.1 1.5 0.1 0.0 0.0 

(Ace: Acetaldehyde, Pro: Propanal, i-But: iso-Butanal, But; Butanal, Pen: Pentanal, Hex: Hexanal, Hep: Heptanal, Oct: 
Octanal and Hexdi: Hexadienal). 



Table 4.11 Volatile composition of cooked comminuted pork, containing different salts at a concentration of 100 meq/kg 
meat, after seven days of storage at 4°C. 

Volatile Content, mg/kg Meat 
Salt 

Ace Pro i-But But Pen Hex Hep Oct Hexdi 

Control (No salt) 4.0 2.8 3.0 0.3 3.8 32.0 1.1 0.6 0.3 

LiF 3.0 3.8 4.0 0.3 3.8 30.9 1.3 0.6 0.3 
NaF 2.0 3.5 3.5 0.3 0.2 22.0 1.1 0.5 0.2 
KF 3.0 1.9 2.0 0.2 2.6 13.4 0.8 0.5 1.9 
CsF 3.0 3.6 3.2 0.0 3.7 23.5 1.1 0.5 0.2 

MgF2 3.5 5.8 4.0 0.0 4.7 32.3 1.2 0.1 0.2 
CaF2 3.4 4.7 4.7 0.0 0.1 29.2 1.2 0.1 0.2 

Lil 2.1 2.7 2.7 0.3 3.2 20.2 1.3 0.7 0.2 
Nal 2.3 3.6 3.6 0.4 4.3 27.7 1.7 0.9 0.2 
Kl 2.0 2.9 3.1 0.3 3.8 23.6 1.4 0.7 0.2 
Csl 2.0 5.1 4.9 0.5 4.8 29.2 0.3 0.7 0.3 

Mgl2 2.1 4.7 4.6 0.0 4.8 30.6 1.5 0.1 0.3 
Cal2 0.6 1.2 5.1 0.0 1.5 7.4 0.7 0.1 0.1 

(Ace: Acetaldehyde, Pro: Propanal, i-But: iso-Butanal, But: Butanal, Pen: Pentanal, Hex: Hexanal, Hep: Heptanal, Oct: 
Octanal and Hexdi: Hexadienal). 



Table 4.12 Volatile composition of cooked comminuted pork, containing different salts at a co.ncentration of 200 meq/kg 
meat, after seven days of storage at 4°C. 

Volatile Content, mg/kg Meat 
Salt 

Ace Pro i-But But Pen Hex Hep Oct Hexdi 

Control (No salt) 4.0 2.8 3.0 0.3 3.8 32.0 1.1 0.6 0.1 
. 

LiF 1.1 3.9 3.9 0.4 5.1 30.0 1.6 0.8 0.1 
NaF 1.0 0.0 3.7 0.0 0.0 2.5 0.0 0.0 0.0 
KF 1.0 0.3 0.3 0.0 0.3 0.6 0.1 0.1 0.0 
CsF 1.9 0.0 1.9 0.0 0.2 1.3 0.0 0.0 0.0 

MgF2 1.3 3.6 4.3 0.0 2.8 27.0 1.1 0.1 0.1 
CaF2 3.6 4.5 5.4 0.0 4.7 33.9 1.4 0.1 0.1 

Lil 1.7 2.0 2.0 0.2 2.7 19.2 1.2 0.6 0.1 
Nal 1.9 4.2 4.2 0.4 4.1 26.9 0.6 1.7 0.1 
Kl 1.6 2.3 2.3 0.2 2.6 17.9 1.1 0.6 0.7 
Csl 2.0 4.7 4.7 0.4 4.2 25.3 1.4 0.1 0.1 

Mgl2 4.3 2.8 4.1 0.0 3.7 17.0 1.0 0.1 0.0 
Cal2 0.6 0.9 5.3 0.0 1.1 4.9 0.5 0.1 0.0 

(Ace: Acetaldehyde, Pro: Propanal, i-but: iso-Butanal, But: Butanal, Pen: Pentanal, Hex: Hexanal, Hep: Heptanal, Oct: 
Octanal and Hexdi: Hexadienal). 
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Figure 4.11 Gas chromatogram of the headspace volatiles of an untreated cooked 
comminuted pork sample (control) after 3 days of storage at 4°C. (1) 
acetaldehyde, (2) propanal, (3) isobutanal, (4) butanal, (5) pentanal, (6) 
hexanal, (7) heptanal, (8) octanal, (9) 2,4-hexadienal. 
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Figure 4.12 Gas chromatogram of the headspace volatiles of a cooked comminuted 
pork sample containing calcium iodide (Ca.Iz) at 200 meqlkg sample after 
3 days of storage at 4°C. (1) acetaldehyde, (2) isobutanal, (3) butanal, (4) 
and (5) unidentified volatiles, (6) pentanal, (7) hexanal, (8) heptanal. 
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Figure 4.13 Relationship between hexanal contents and TBARS values of cooked 
comminuted pork (r=0.9263). 
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or (2) from the rearrangement of the 9-hydroperoxide of linoleic acid to the 13-

hydroperoxide or (3) from oxidative decomposition of 2,4-decadienal (Frankel and 

Gardner. 1989). 

The hexanal content of the control sample on day 0. was 10 mg/kg meat and 

increased to about 19 mg/kg meat by day 3. It further increased to 32 mg/kg meat on day 

7 which is about a 3-fold increase over the 7 days of storage (Figure 4.14). Contents of 

acetaldehyde. propanal and pentanal of the control sample were also increased over the 

entire storage period, but all were present at a much lower concentration when compared 

to that of hexanal. These volatiles, however, may not adequately represent the oxidative 

status of meat. The minor volatiles such as acetaldehyde. propanal, isobutanal, butanal, 

pentanal, heptanal, octanal and 2,4- hexadienal are some of the important flavour notes 

that are also responsible for the wanned-over flavour development- and meat flavour 

deterioration in heat-processed samples (Shahidi e~ a/., 1986). 

As shown in Figures 4.14(A) and 4.15(A). hexanal formation was affected. to 

different extents, by LiF, NaF, KF, CsF, CaF2 and MgF2• These salts, except CaF2, 

exhibited an inhibitory effect on lipid oxidation throughout the entire storage period 

(Figure 4.14). CaF2, at a concentration of 200 meqlkg sample, however. enhanced 

hexanal generation after day 5. The inhibitory effect of the aforementioned salts, at a 

concentration of 200 meqlkg sample, on hexanal formation decreased in the following 

order: KF>CsF>NaF>MgF2>LiF>CaF2• KF, the strongest inhibitor, decreased the hexanal 

content by 99%, 98% and 98% on day 0, day 3 and day 7, respectively, when tested at 
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Figure 4.14 Effect of selected fluorides. (A) and iodides. (B) at a concentration of 100 
meq/kg meat. on hexanal content of cooked comminuted pork stored at 
4°C. 
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Figure 4.15 Effect of selected fluorides, (A) and iodides, (B) at a concentration of 200 
meqlkg meat, on hexanal content of cooked comminuted pork stored at 
4°C. 
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200 meq/kg meat. Being highly reactive, fluorides may interfere with free radical chain 

reactions probably through binding with free metal catalysts or by inhibiting certain 

catalytic enzymes such as lipoxygenases. 

Effect of Lil, Nal, KI, Csl, Mgl2 and C~ on hexanal formation is shown in 

Figures 4.14(B) and 4.15(B). Iodides also exhibited an inhibitory effect on lipid oxidation 

in meat systems regardless of their addition level. The inhibitory effect of iodides, at a 

concentration of 200 meqlkg sample, increased in the following order: 

Calz>Mgl2>KI>Csi>Lii>Nal. Csl was less effective after day 3 and thus the order 

changed as: Calz>Mg~>KI>Lil>Csi>Nal. Cal2, which caused the strongest inhibition 

among iodides, decreased the hexanal content by 98%, 92% and 85% on day 0, day 3 and 

day 7, respectively. The iodine formed upon reaction with ferric ions is a good free 

radical scavenger and could reduce the generation of 9- and 13-hydroperoxides which are 

the precursors of hexanal. 

The literature on decomposition of lipid hydroperoxides does not yet provide a 

clear understanding of the pathway by which the majority of volatile products are formed 

from different hydroperoxides and how these pathways are affected by antioxidants. 

According to Frankel and Gardner (1987), various tocopherols and BHA can affect the 

stability of linoleic acid hydroperoxides. BHA and a-tocopherol are thought to stabilize 

unsaturated aldehyde against further oxidation. Similarly, fluorides and iodides may 

affect not only the free radical initiation reactions but also the hydroperoxide 

decomposition reactions. 
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4.5 Effect of Pane -salt on lipid oxidation 

Table 4.13 shows the TBARS values of comminuted pork treated with Pane-salt 

or NaCl. Both salts resulted in a somewhat higher TBARS values when compared to 

those of untreated controls. The reduced prooxidative effect of Pane -salt can be attributed 

to its KCl and MgS04 components which are less prooxidative than NaCl (Rhee eta/., 

1983b). However, Pane-salt may accelerate lipid oxidation by freeing iron ions which are 

bound to macromolecules and haem compounds. The free irons so formed are known to 

catalyze lipid peroxidation especially. in the presence of hydrogen peroxide in muscle 

tissues (Kanner and kinsella, 1983; Kanner and Doll, 1991). 

4.6 Effect of different salts on the cook yield and texture of comminuted pork 

Different salts affected the cook yield of meat to different degrees as shown in 

Table 4.14. MgF2, MgBr2, Mg~ and CaF2, even at 200 meq/kg meat addition level, did 

not significantly (p<0.05) change the cook yield when compared to that of the untreated 

sample (control). However, all other salts, at 200 meq/kg meat resulted in significantly 

(p<0.05) higher cook yields when compared to that of the control. The effect of halides 

of Li, Na and K decreased the cook yield of meat in the order of: r>Br->Cl->r. The 

sulphate anion had a lesser effect than that of the fluoride anion on enhancing the cook 

yield of the sample. Cations (as bromide or iodide) decreased the cook yield in the order 

of: Na+>Li+>Cs+>~>Mr~ea2+. 



Table 4.13 Effect of Pans-salt and NaCI on lipid oxidation in meat model systems as reflected in their TBARS values 
(mg malonaldehyde equivalents/kg meat)1

• 

Storage Period, Days 
Treatment 

0 1 3 5 7 

Control (No 
additive) 2.34±0.02b 3.30±0.01c 5.57±0.161 5.95±0.46c 6.84±0.02c 

NaCl, 1% 2.36±0.02b 3.14±0.12c 5.45±0.251 6.80±0.32b 7.16±0.14b 

NaCl, 2% 2.47±0.01b 3.35±0.03c 5.66±0.31" 7.08±0.01 ba 7.20±0.05b 

NaCl, 3% 2.92±0.011 3.83±0.03b 5.96±0.021 7.24±0.171 7.92±0.061 

Pan•-salt, 1% 2.17±0.04c 3.37±0.0lc 5.90±0.121 6.35±0.04c 7.01±0.07be 

Pan•-salt, 2% 1.97±0.04d 3.07±0.04c 5.60±0.121 6.01±0.30c 6,80±0.04c 

Pan•-salt, 3% 2.23±0.03bc 3.28±0,04c 5.75±0.101 6.71±0.04b 7.36±0.05b 

1 Results are mean values of three determinations ± standard deviation. Means sharing the same superscript in each column 
are not significantly (p<0.05) different from one another. 

,..... 
8 
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Table 4.14 Effect of different salts on cook yield(%) of comminuted pork1
• 

Concentration, meqlkg Sample 
Salt 

100 200 

Control (No salt) 73.58±0.871: 73.58±0.871: 
LiF 75.89±1.501: 77 .34±0.45b 
NaF 82.08±1.18b 85.62±1.05. 
KF 76. 78±0.33d 78.28±0.37b 
CsF 77. 73±0.63d 79.93±0.78b 

MgF2 71.26±0.801: 71.23±1.601: 
CaF2 72.28±0.071: 7L85±2.og: 
LiCI 80.13±0.71b 81.92±0.42b 
NaCl 79.86±1.07bd 85.66±1.47. 
KCI 74.25±0.541: 79.85±0.86b 
CsCl 74.73±0.521: 79.97±0.79b 
Mg~ 70.96±1.36e 75.84±1.36b 
CaCl2 72. 76±0.351: 75.13±0.95b 
LiBr 84. 71±2.35. 84.53±1.75. 
NaBr 77 .70±1.65d 82.39±0.51 b 
KBr 73.67 ±1.05c: 79.86±0.53b 
CsBr 77 .05±0.28d 81.18±1.21 b 

MgBr2 71.65±0.351: 73.98±1.41 be: 

CaBr2 72.68±0.831: 76.63±0.84b 
Lil 81.33±1.80b 88.53±1.27 • 
Nai 

. 
85.47±0.86. 89.51±1.47. 

KI 74.85±1.101: 82.51±0.21 b 
Csl 79.84±1.63b 87.61±0.86. 

Mgl2 71.83±1.151: 74.66±1.13bc: 

Calz 73.25±0.44(; 76.50±0.85b 
L~S04 7 4.59±0. 79c: 75.00±0.04b 

NazS04 81.58±1.03b 85.08±0.96. 

KzS04 74.28±0.521: 75.41±1.94b 

c~so4 80.95±0.23b 83.50±1.08b 
MgS04 72.92±0.691: 77.74±1.08b 
CaS04 74.69±0.811: 77.24±l.OOb 

1 Results are mean values of three determinations ± standard deviation. Means 
sharing the same superscripts in a column are not significantly (p<0.05) different 
from one another. 
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Based on the results given in Table 4.14, it appears that monovalent cations and 

anions are more effective in increasing cook yield of restructured meat. Cook yield is a 

function of protein extraction and subsequent water binding. Addition of salts to meat 

can disassociate actomyosin complex to release a considerable amount of myosin which 

eventually forms a finn protein network upon thermal processing. This has a positive 

effect on moisture retention of cooked meats. Moreover, water-binding capacity of 

myofibrillar proteins is increased during extraction of proteins by salts. Salts may also 

shift the isoelectric point of the myofibrillar proteins in a manner that creates a larger net 

negative charge by ionizing carboxyl groups of protein molecules. Repulsion between 

these negatively charged groups may cause the protein to open up its spatial arrangement. 

thus increasing the degree of hydration. In addition, hydrated halide ions can attract the 

positively charged groups of the proteins, thus breaking the inter- and intra-protein salt 

bridges. This may result in further increase of the negatively charged species and in tum 

may enhance water-binding. 

Results in Table 4.15 indicate that salts generally increase the texture of 

restructured pork to different degrees and that the effect is more pronounced at 200 

meqlkg meat. Of the salts tested, NaCI, LiBr, NaBr, Lil and N~S04 did not exhibit a 

considerable effect on texture when tested at a concentration of 100 meq/kg meat. 

Moreover, salts such as LiF, NaF and LiCl had a very little effect on texture even at a 

concentration of 200 meqlkg meat. The other salts, regardless of their concentration, gave 

a firmer texture as reflected in maximum shear force data (Table 4.15). Magnesium salts, 
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Table 4.15 Effect of selected salts on texture of restructured meat as reflected 

in their maximum shear force (kg) data1
• 

Concentration. meqlkg Sample 
Salt 

100 200 

Control (No salt) 8.4±0.2d 8.4±0.2d 
LiF 8.7±0.ld 8.7±0.2d 
NaF 9.5±0.ld 9.4±0.2d 
KF 11.4±0.2c 11.5±0.1c 
CsF 11.1±0.2c 13.8±0.2c 

MgF2 13.3±0.1c 13.7±0.1bc 
CaF2 11.1±0.1c 14.5±0.1c 
LiCI 8.7±0.1d 8.7±0.3d 
NaCl 9.1±0.1d 11.0±0.3c 
KCI 11.4±0.2c 14.2±0.2bc 
csa 12.9±0.2c 15.4±0.2bc 

Mg02 16.0±0.2b 20.3±0.1. 
Ca~ 14.8±0.2bc 15.6±0.2b 
LiBr 9.8±0.2d ll.3±0.2c 
NaBr 8.7±0.ld ll.9±0.lc 
KBr 12.9±0.2c t3.5±0.r 
CsBr 13.3±0.lc 14.0±0.2bc 

MgBr2 19.8±0.2. 21.1±0.r-
CaBr2 16.7±0.2b 17.5±0.1b 

Lil 8.9±0.1d 12.0±0.2c 
Nal 11.1±0.2c 16.0±0.2b 
KI 13.l±O.lc 17.6±0.2b 
Csl 16.8±0.2b 16.9±0.2b 

Mglz 19.2±0.2. 20.8±0.2. 

Calz 15.7±0.1 be 20.0±0.2· 
L~so. ll.0±0.2c 11.0±0.3c 

NazSO• 9.7±0.2d 11.6±0.1'; 

~so. 17.l±O.lb 12.4±0.2c 
CSzS04 13.4±0.2c 16.1±0.3b 

Mgso. 17.7±0.1b 20.3±0.r-
caso. 14.4±0.2c 20.1±0.1. 

1 Results are mean values of three measurements ± standard deviation. Means 
sharing the same superscripts in a column are not significantly (p<(J.05) different 
from one another. 
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except MgF2, resulted in a greater shear force when compared to the samples containing 

other types of salt- Calcium salts, except CaF2 and CaCl2, also caused higher shear force, 

thus indicating a higher degree of firmness. Both magnesium and calcium salts exhibited 

similar effects on texture and shear force data and these salts were not significantly 

(p<0.05) different from one another. 

In general. salt-soluble myofibrillar proteins such as myosin, actomyosin and actin 

have been shown to play an important role in the formation of a firm protein network in 

the restructured meat products (Acton et at .• 1983). Solubilized proteins coagulate upon 

thermal processing to form a liquid-in-solid emulsion (Asghar et at., 1985). In muscles, 

actin and myosin filaments are kept in phase by binding with Z- and M-lines, 

respectively, and thus exert a constraint on solubilization. Moreover, cross-bridges 

between actomyosin units decrease the protein solubilization. Addition of neutral salts 

affects the structural stability of macromolecules through electrostatic and lyotropic 

changes. The electrostatic effect of ions depends mainly on the sign and magnitude of 

their ionic charge while lyotropic effect originates from other properties of ions, such as 

ionic radii and electronic features (Acton et al.. 1983). According to Asghar et at. (1985). 

as explained in the previous paragraph, the addition of salts brings about a shift in the 

isoelectric point of the myofibrillar proteins and formation of a larger proportion of 

negatively charged carboxyl groups which repel each other and causes the protein to open 

up, thus increasing its hydration. 
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Cations of salts. at a concentration of 200 meq/kg meat. decreased the shear force 

m the following order: Ca2~Mg2~Cs~K+>Na~Li-+- (for fluorides); 

Mg2~Ca2~Cs~~a+>Li+ (for chlorides and bromides); Mg2~Ca2+>K~Cs~a+>Li+ 

(for iodides) and M~~Ca2+>cs+>K~a~i+ (for sulphates). The effect of Ca2+ and 

MgZ+ ions can be attributed to solubilization of myofibrillar proteins. Usually, muscle 

contains an enzyme called calpain which is capable of disintegrating the Z-discs of 

myofibrils causing the release of actin molecules (Taylor and Ethrington. 1991). 

According to Taylor and Ethrington (1991). calpain requires Ca1+ ions in order to act upon 

Z-discs. However, the enhancement of the action of calpain by Ca2+ ions is not the only 

reason for the high protein solubilization caused by Ca2+. Taylor and Ethrington (1991) 

observed that both Ca1
+ and Mgl+ could increase the protein extraction in a myofibrillar 

protein model system containing calpain inhibitors. Moreover. it was demonstrated that 

Mgl+ ions are equally as effective as Ca1
+ ions in terms of protein extraction. It is 

therefore thought that Ca1+ and M~+ may increase the solubilization of myofi.brillar 

proteins by destabilization of protein structure. 

The effect of monovalent cations on textural properties of heat processed meats 

may be attributed to their ability to neutralize electrostatic charges causing destabilization 

of protein structure. Cations are capable of lessening noncovalent interactions required 

to maintain the structure of myosin. In this regard divalent cations are more effective 

than monovalent cations (Goodno and Swenson, 1975)~ Furthermore, hydrated cations can 

interact with destabilized proteins making the peptide chains farther apart. There may be 
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a relationship between the hydrated ionic radii of cations and their performance in protein 

solubilization. The hydrated ionic radius of Lt, Na•, ~and cs+ ions are 3.4, 2.76, 2.32 

and 2.28 A. respectively (Cotton and Wilkinson, 1976). Results suggest that the shorter 

the hydrated ionic radii, the greater the protein solubilization. Lithium ion, which has the 

largest hydrated ionic radius, was the least effective for protein solubilization whereas 

cesium ion, which has the shortest hydrated ionic radius, was most effective. 

The anions of salts did not follow a uniform trend in improving firmness of 

restructured meat. Their effects could depend upon the associated cations. Anions of 

salts, at an addition level of 200 meq/kg meat. decreased the firmness of restructured meat 

in the following orders: 1>Br~S042->Cl~ (for lithium or sodium salts); 

1>Cl->Br->S04 
2->r (for potassium salts); 1>S04 

2->cl->Br->r (for cesium salts); 

Brd!CC>1>S04
2->F" (for magnesium salts) and 12S04z->Br->CC>r (for calcium 

salts). Hydrated anions can strongly attract the positively charged groups of a destabilized 

protein and consequently the inter- and intra-protein salt bridges are broken down thus 

resulting in a further increase in the availability of myofibrillar proteins for gelation. 

According to the aforementioned orders, iodide ion imparted the highest finnness to meat 

in most cases whereas fluoride ion always did the least. The exact reasons for this 

phenomenon remain unknown. 

The varying effects of anions and cations of salts on meat texture may arise from 

numerous factors. Any factor that affects the structural conformation of myofibrillar 

proteins can eventually cause either protein solubilization {salting-in) or insolubilization 
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(salting-out). The higher the degree of protein solubilization, the greater the finnness of 

the thermally processed comminuted· meat and vise-versa. 

4. 7 Effect of Pan• -salt on the cook yield and texture of restructured meat 

Table 4.16 shows the effect of Pane-salt and NaCl on cook yield of restructured 

pork. An increase in cook yield was obseiVed with increasing concentration of Pane -salt. 

Treatment of meat with salts decreased the cook yield in the following order: 3% 

NaC1>3% Pane-salt>2% NaC~% Pane-sal~l% NaC1>1% Pane-salt. The cook yield of 

meat treated with 1% Pane-salt was not significantly (p<0.05) different. from that of 

control sample. Furthermore, the effect of 2% Pan111-salt was not significantly (p<O.OS) 

different from that of 1% and 2% NaCl. Since cook yield is a function of water-binding 

capacity, muscle protein solubilization plays an important role in cook yield. The higher 

the protein solubilization the greater the water retention upon thermal processing. 

The effect of Pane -salt on textural propeny of restructured pork is shown in Table 

4.17 alone with data for NaO-treated samples for comparison. Pane -salt significantly 

(p<O.OS) increased the finnness of restructured pork, regardless of its level of addition. 

Shear force data of samples containing 1 or 2% Pan111-salt were not significantly different 

from one another, but 3% addition caused a significantly higher shear force when 

compared to those containing 1 or 2% Pan111-salt. Furthermore, Pan111-sal~ up to 2% 

addition level, had an effect similar to that of 1% NaO, while 3% Pan111-salt resulted in 

a significantly (p<O.OS) lower shear fo(Ce value when compared to that 
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Table 4.16 Effect of Pan® -salt and NaCl on cook yield (%) of restructured pork1
• 

Treatment Cook Yiel<L % 

Control (No additive) 69.54±1.02c 

NaCI. 1% 74.32±0.84b 

Naa. 2% 76.48±0.51b 

Naa. 3% 81.29±1.79& 

Pan~-salt. 1% 69.78±0.94c 

Pan~-salt. 2% 74.67±0.94b 

Pan~-salt. 3% 78.67±0.87& 

1 Results are mean values of three determinations ± standard deviation. Means 
sharing the same superscript are not significantly (p<O.OS) different from one another. 
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Table 4.17 Effect of PanG11-salt and NaCl on the texture of restructured pork1
• 

Treatment Maximum Shear Force, kg 

Control (No additive) 8.4±0.2e 

NaC1, 1% 19.1±0.1 d 

NaC1, 2% 21.9±0.1c 

NaCI, 3% 27.0±0.2. 

PanG11-salt, 1% 18.9±0.1d 

Pan-G!Isalt, 2% 19.1±0.1d 

Pan-G!lsalt, 3% 24.8±0.2b 

1 Results are mean values of three measurements ± standard deviation. Means 
bearing the same superscripts are not significantly (p<0.05) different from one 
another. 
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of samples containing 3% NaCl. Addition of 1. 2 or 3% NaCI or Pan®-salt to meat 

increased the finnness of thermally processed samples in the following order: 

3% NaC1>3% Pan®-salt>2% NaCl>l% NaCl = 2% Pan®-salt>l% Pan®-salt. 

Samples containing Pan®-salt exhibited lower shear force values perhaps due to 

the presence of smaller amounts of NaCl in the mixture. Barbut and Mittal (1989) have 

also demonstrated a reduction in the rheological and gelation properties of pork. beef and 

poultry meat batters containing low levels of NaCL Moreover. Thiel et al. (1986) 

reported a decrease in finnness of restructured ham with decreasing NaCI concentration. 

Partial replacement of NaO with KCl and MgS04 definitely improved the textural 

properties of meat compared with the control, but the effect was still slightly lower than 

that of NaCl alone. Magnesium ions are known to improve the firmness of meat (Taylor 

and Etherington. 1991; Whipple et al.. 1994). However. the amount of magnesium ions 

(3%. w/w) present in Pan®-salt may not be sufficient to improve the texture of meat to 

any great extent. 



CONCLUSIONS 

The effect of cooked cured-meat pigment (CCMP), at 2.2, 6.2 and 10 pM 

concentrations, on lipid oxidation was examined in a (3-carotene/linoleate model system. 

For comparison, metmyoglobin (MMb), nitrosylmyoglobin (NOMb) and butylated 

hydroxyanisole (BHA} were also examined in the same system. CCMP, at 6.2 and 10 

p.M. exhibited a concentration-dependent antioxidative effect. but showed prooxidative 

activity at 2.2 J.IM. NOMb and MMb exhibited an antioxidant effect and a proox.idant 

effect. respectively, for all concentrations tested. The antiox.idative effect of CCMP was 

in between that of BHA and NOMb, while BHA exhibited the highest antiox.idative effect. 

Combinations of CCMP (10 pM), sodium ascorbate (SA; 50, 100 and 550 ppm) and 

sodium tripolyphosphate (STPP; 50, 100 and 500 ppm) showed a similar antioxidant 

activity when compared to CCMP alone in the above model system. 

Effects of halides and sulphates of alkali and alkali-earth metals (at 100 and 200 

meqlkg meat) on lipid oxidation in meat and [3-carotene/linoleate model systems were 

investigated. Lipid oxidation in meat model systems was monitored using both the 2-

thiobarbituric acid-reactive substances (TBARS) test and hexanal analysis. Fluoride salts 

of alkali metals inhibited the formation of the TBARS and hexanal in a meat model 

system. Furthermore, alkali fluorides showed an antioxidant effect in a (3-

carotene/linoleate model system. The antiox.idative properties of alkali halides can be 

attributed to the ability of fluoride anion to inhibit the activity of catalytic enzymes and 

also to its strong pairing with non-haem iron ion. Fluorides of alkali-earth metals 

(magnesium and calcium) were not antioxidative in a meat model system due to ion-
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pairing of fluoride anions with divalent magnesium and calcium. Iodide salts of alkali 

and alkali-earth metals inhibited both the TBARS and hexanal formation in meat model 

systems and also exhibited antioxidative effects in a ~-carotene/linoleate model system. 

The antioxidati.ve effect of iodide anion can be attributed to its ability to alter the balance 

between ferrous and ferric forms of the redox system. Chlorides and bromides of alkali 

and alkali-earth metals were either prooxidative or possessed no considerable influence 

on lipid oxidation in meat model systems. Of sulphate salts testecL only calcium sulphate 

exhibited an antioxidative effect. Based upon the evidence presented above~ it is 

concluded that pro- or anti-oxidative effects of salts are primarily due to their anions but 

also depended on the cation and its ion-pairing strength. Meanwhile, PanGD -salt (52% Naa 

+ 28% KCl + 12% MgS04 and 3% lysine.HO)~ a low-sodium sal4 exhibited a slight 

prooxidant effect in meat as assessed by the TBARS test. 

In another experiment, the effects of halides and sulphates of alkali and alkali­

earth metals on the cook yield and texture of meat were examined. Enhanced cook yields 

were evident in the samples containing monovalent cations (ie., alkali metal ions) when 

compared to those of divalent cations (ie., alkali-earth metal ions). Divalent cations were 

more effective than monovalent cations in imparting a fliiil texture to meat, although they 

were unable to influence the moisture retention of the system as much as the monovalent 

cations. Generally~ fluorides had the least and iodides had the greatest effect on both 

cook yield and texture of meat. Results for chlorides9 bromides and sulphates fall in 

between. The cook yield and shear force: ofPanGD-salt treated meats were somewhat lower 

than those of NaCl treated meats at the same concentration. 
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Figure A.l 
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Dependence of the absorbance of malonaldehyde (MA)-TBA complex at 
532 run on the concentration of MA. 
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Figure A.2 Concentration dependence of the absorbance of (3-carotene at 460 run. 
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Figure A.3 Absorption spectra of (A); metmyoglobin (MMb)~ (B); nittosylmyoglobin 
(NOMb), and (C); cooked cured-meat pigment (CCMP). 
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