











ON-LINE RECONFIGURATION
OF SYSTOLIC ARRAYS

By

© Karunesh Pratap Singh, B.Tech.

A thesis submitted to the School of Graduate Studies
in partial fulfillment of the requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

June, 1992

St, John's Newfoundland Canada



L e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions el

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exciusive licence
allowing the National Library of
Canada to reproduce, Ioan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Youur B Violig i 'ereancer

et Tl NObre iehdrene

L'auteur a accordé une licence
irrévocable et non exclusive
permettant & ia Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa theése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées,

L’auteur conserve la propriété du
droit d'auteur qui protéege sa
thése. Nila these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-78121-1

1+1

Canada



ABSTRACT

Various existing reconfiguration algorithms for array processors cannot be used
efficiently for on-line reconfiguration of the array because they require a central
processor to initiate and control the reconfiguration. In addition, niost of the
existing algorithms assume that the switching network is operationally fault-{ree,

This report presents an on-line reconfiguration scheme for array processors.
The proposed algorithm can tolerate both processing element failure and switching
network failure. The processing elements and switches are of a self-testing type and
link failures are detected by the processing elements (by using parity bit checks).

The array is provided with a bottom row of spare cells and when a processing
element detects either a self fault or a link failure, it invokes the reconliguration. A
downward global shift {for the particular column) is performed to accomplish the
reconfiguration. A number of reconfiguration requests are generaled by the pro-
cessing elements and switch modules to facilitate the recoufiguration. The network
is modified and links for propagation of reconfiguration request are added. This
scheme makes full use of non-faulty partial results and it blocks the faulty partial
results.

The reconfiguration in the case of a processing element (ailure is completed in
two stages while the reconfiguration in the case of a link failure is completed in a
single stage. The links are duplicated to achieve redundancy and in the case of a

link failure the spare link is used.
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Chapter 1
INTRODUCTION

Von Neumann architecture restricts the speed of a memory based hardware system
because of the limited number of interconnections. The system speed can be in-
creased by reducing the number of memory interactions. Systolic arrays accomplish
this and thereby improve the system performance. Here, the interaction with the
outside world occurs only at the boundary cells of the array and once the data are
fed to the array, the intermediate results are not passed on to the memory devices,
A systolic array is an array of similar processing elements, where every element
performs the same basic operation.

Systolic arrays can be classified under various categories depending on the data
flow inside the array. The most common type is that of moving result, static
weights. In this type of arrays, the partial results move in a pre-specified way and
the weights stay in the processing elements. The various types are described in
Chapter 2.

These arrays have a number of similar processing elements, so some spare cells
can conveniently be introduced. In the case of a cell failure, the spare cell can
replace the faulty one, thus improving the system reliability.

Various reconfiguration schemes (described in Chapter 2) have been proposed
for the reconfiguration of these arrays in the event of a fault occurrence. Most of

the proposed reconfiguration schemes use hardware redundancy (spare cells) and in
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case of a fault detection, the reconfiguration algorithm is performed on the array by
an external central processor (which maintains information about the operational
effectiveness of processing elements). The external processor is capable of changing
the data routing. The reconfiguration algorithm changes the data routing paths
and makes the array operational if the algurithm is successful. The reconfigured
array is flushed to clear the partial results and the array can then be used again.

Since the array is flushed after every fault occurrence, these reconfiguration
algotithms cannot be used effectively during run-time. In addition, these algorithms
assume a fault free routing network, which is difficult to achieve. These two major
shortcomings restrict the use of the above algorithms to production time yield
improvement.

An on-line reconfiguration scheme should preferably be capable of utilizing those
partia] results which were not affected by Lhe fault occurrence (referred to as non-
faulty partial results in this report). In addition, the faulty partial results should
be blocked by the algorithm to ensure the proper operation of the array. If a faulty
partial result is passed on to the next processing element, it would make the final
results erroneous.

An on-line reconfiguration algorithm is presented in this report which accon-
plishes the above-mentioned tasks and, in addition, tolerates switching network
failures. This algorithm requires an additional row of processing elements, called
spare cells (and this row is the bottom most row of the array). When a processing
element failure is detected, the spare cell of the corresponding column is used to re-
place the faulty cell. Similarly, redundant links are provided to ensure the tolerance
of link failures.

The processing element and switch modules are redesigned to accomplish the
generation of above system. Each processing element performs a sclf-test and in-

vokes reconfiguration (by generating reconfiguration requests) when it detects a self



fault.

It is assumed that a central processor is linked to the array, which is capable
of controlling the clock pulses to the array. In the event of a detected failure, the
central processor is informed about the failure and it delays the clock pulses (as
will be explained in chapters 3 and 4).

The processing element which detects the fault informs the neighbouring pro-
cessing elements and switches about the fault occurrence. These neighbouring ele-
ments and switches generate reconfiguration requests again (if required) and inform
the other elements and switches. T'he reconfiguration request keeps on propagating

in this manner until it reaches the central processor.

1.1 Thesis Organization

The thesis is divided into six chapters. This chapter gives an introduction to the
research topic. Chapter 2 gives an overview of systolic designs and explains various
existing reconfiguration schemes and fault detection schemes. In this chapter it is
shown that most of the existing reconfiguration schemes cannot be used effectively
during run-time. An on-line reconfiguration algorithm for processing element fail-
ures is proposed in Chapter 3. In addition, chapter 3 describes the changes (in
the design of processing elements, network and switch modules) required for the
implementation of this algorithm. In this chapter it is proved that the recom-
mended changes are sufficient to facilitate the reconfiguration. Chapter 4 explains
the reconfiguration algorithm for failures in processing elements and links. Various
control circuits (for PEs and switches) are designed in this chapter. The proposed

algorithm is evaluated in Chapter 5 and conclusions are presented in Chapter 6,



Chapter 2
LITERATURE REVIEW

In this chapter, Section 2.1 explains the basic concept of systolic arrays. Scction 2.2
describes various fault detection schemes for these arrays and Section 2.3 gives a

summary of various well-known reconfiguration schemes and compares them.

2.1 Concept of Systolic Arrays

When memory-based hardware is used, typical Von Neumann bottleneck comes
into the picture because of the limited number of interconnections which can be
supported by conventional electronics based technology. In memory-based systems,
the memory-access time restricts the speed of the system. This can be further ex-
plained with the help of the classical finite state machine, shown in Figure 2.1.a.
This machine consists of several storage elements, M, a logic unit, inputs (I/P),
outputs (O/P) and interconnections. In this scheme all the memory elements are
updated and/or read simultaneously in parallel without any addressing. This con-
figuration is not feasible if the number of memory elements is large. So addressing
is used to reduce the requirement of parallel lines. This scheme is shown in Fig:
ure 2.L.b. Here additional address lines are used and data is fetched in parallel to
all the memory elements by a bus and, similarly, a bus carries the output from the
memory to the logic circuit.

Here, the number of required lines is reduced but the system performance has
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Figure 2.2: Reduced Memory Interaction

degraded because now only one memory element can be addressed at a time; as well
an address is required to access the memory locations. This results in an increased
memory-access time [1].

The Von Neumann problem can be solved by reducing the number of memory
interactions. To explain this, we will consider a processing element which requires
at least two memory interactions per operation. If memory access time is 100 ns,
we would get a maximum of 5 million operations per second (assuming that the
processing element takes negligible time compared to the memory access time).
But, if the data are returned to the memory after n such operations, the speed
becomes 5n million operations per second (see Figure 2.2),

All computations can be classified either under the compute bound category



Figure 2.3: Systolic Array Representation

or under the 1/0 bound category of computations. Compute bound computations
involve more computations than the required I/ O operations (such asmatrix-matrix
multiplication). In I/0 bound tasks, the number of computations is less than the
I/O requiremnents (such as matrix addition).

Systolic arrays reduce the number of memory interactions. In a systolic array,
once data are taken out from the memory, they are pumped through a number of
procesting elements before the final result goes back to the memory. The flow of
data in a systolic array resembles the blood flow in the body and the term systolic
shows the analogy with cardio-vascular biological system. The term array is used
to show the resemblance of the systolic array to a grid, as shown in Figure 2.3, in
which each junction point represents a processing element and the lines represent
the links between the processing elements.

Systolic arrays consist of a set of interconnected processing elements, each el-
ement capable of performing some basic operations. The data flow in a pipclined
manner within a systolic array and communication with the outside world occurs
only at the boundary cells [2]. The memory requirement is reduced because the
intermediate results are not passed on to the memory. Other than the reduced

memory requirements, we get the following ad vantages:
e modular expandability

e regular and simple data flow
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¢ use of simple and uniform cells.

Systolic arrays can be of many types (the types are defined based on the movernent
of data through the array). Some of the basic types are discussed in the following

subsections. Consider a simple computation, given below:
¥i = w2 + WaTipr + o0+ WeTipk-1, (2.1)

where w’s are the pre-specified weights and z's are the input data sequence. Here

we would take k=3 for simplicity. So,
Yi =T + W2.Tip1 + W3.Liga (2.2)

Many types of systolic arrays can be designed to accomplish this task [2].

2.1.1 Broadcast inputs, move results and weights stay

The systolic array with this design and basic cel! operation are shown in Figure 2.4,
In this design, one of the basic criteria of systolic designs is not satisfied, still it
works on the same principle that the intermediate results are stored in the array
itself. The inputs are broadcast to all the cells at the same time, which is not
acceptable for systolic arrays. Due to this shortcorning, this design is classified as

semi-systolic design.
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The data move at the tick of the clock pulse. The data present at the check

points A, B and output (shown in Figure 2.4), with reference to the clock are listed

below:
CLK. A B Output

0 w Ty Way Wiz,

1 Wiz W) + wir; T + Uy

2 W3 W+ wary Wy +wez; +wirs
3 ey Wzt wary Wiz +wWaTa + wWaly
4 Wy W4+ unry wyr3twaz4 + waTs
5 wiZe Wir5+ Upls wWiT4tWaZs + WaTe
6 WiTy  WTg+ Wely W) Ts+ WaZe + WaT7

We notice that from clock 2 onwards we get one correct output per clock cycle.
There are many variations of semi-systolic designs but for the sake of brevity we

will not, discuss them here,

2.1.2 Results stay, inputs and weights move in opposite
directions
This design is shown in Figure 2.5,
It is difficult to implement the previously explained semi-systolic design if Lthe
number of cells is large, because of the global broadcast bus requirement.
In this design, consecutive z’s and w’s are separated by two clock cycles to get

the proper results. When z; and w; meet at a cell, the cell multiplies them and
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Figure 2.6: Design 3; Weights stay, Results and Inputs move

adds the result to the previously stored result. When w; reaches a cell, it outputs
the stored values in the cell to the latch (shown below the cell in Figure 2.5) and
resets the cell before getting multiplied by z;. Here the path (shown by broken
lines) is used for collecting the final outputs.

Usually, the results and inputs move and the weights stay in the array. This

type of array is discussed next.

2.1.3 Weights stay, results and inputs move in opposite
dirzciicns

This array is shown in Figure 2.6 and here the results and inputs move systolically

in opposite directions. This type of design is most suited for on-line arrays and it

is used when the same set of coefficients is used to operate on different input data

(for example: recursive filtering, polynomial division etc.).

The other types are not discussed here for the sake of brevity.

Systolic arrays can be used for a number of processing operations. These ar-
rays ensure multiple computations per memory interaction. They are particularly
suited for FIR, IIR filtering, convolution operations and various matrix operations,
like matrix transpose, matrix vector multiplication, matrix matrix multiplication,
matrix inversion etc. [2] to [5]. These arrays can be used for any compute bound
problem, which is regular (that is, one where repetitive computations are performed

on a large set of data).
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2.2 Fault Detection Schemes

Systolic arrays are almost always designed to perform special purpose computations,
so algorithm based fault detection schemes can be applied to them with very little
hardware and time overheads. Some fault detection techniques are discussed in the

following subsections.

2.2.1 Matrix Encoding Methods

In this scheme, the matrix is encoded by adding some checksums. Consider the
matrix-matrix multiplication shown in Figure 2.7. During encoding, a checksum
row is added to matrix A and a checksum column is added to matrix B. After the
multiplication, the result matrix, C would have a checksum row and a checksum

column. An example of this is given below:

2417 [12(3 13 21 (34
324 |x|24({6) =19 18 {37
BHRHE N

Here, the checksums are shown in curly bracketa.

This method can be used for those matrix multiplication arrays where the re-
sults stay. An error is detected by checking the checksums and it is located at
the intersection of the inconsistent row and inconsistent column. For an n x n

multiplication, an (n + 1) x (n + 1) array is required (overhead of (2n +1) cells) (6].

10
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2.2.2 Recomputing with Shifted Operands (RESO)

Though many codes are available for concurrent error detection in addition and
subtraction arrays, they cannot be used for multiplier and divide arrays because
they unduly increase the complexity of the circuit.

For such arrays, RESO is an efficient scheme. The basic concept of this scheme
is shown in Figure 2.8. First the function f (which is the required operation on the
operands) is performed on the data z and the result is stored. The data z is then
encoded by ¢ and f is performed on this encoded data. The final result is decoded
by c~! and the decoded result is compared with the stored result. Any mismatch in
these two values shows the error [7] [8]. Here, the coding c is performed by shifting
the operands.

If many operands are used as inputs, then it may not be possible to shift all
the input operands equally. In this case the operands can be assumed to be shifted
by ky, k3, k3 ... and the result obtained by using these shifted operands would be
shifted by r bits, This scheme is known as RESO (ky k2, ...,r) [9).

If Eg and £ are the set of all possible erroneous outputs of fr(z) and fr(z)
respectively due to a fault F after the computations, where f(z) is the required
function, then the errors are detectable iff £ N Ey = ¢ (which means that any
possible output of the repeated step, fr(z) must not be an element of Eq).

The potential error set (as explained in [8]) of the first unshifted computation

11
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Figure 2.9: Multiplier with Ripple Carry Adder

can be written as:

Ep={£2xqlg=1,2, ...,ul, (2.9)

where ¢ is the minimum of the bit slice index of the fault module and = is the
maximum error factor (which reflects the integer value of the aflected output bit
due to the fault). To make it more clear, we can consider the circuit shown in
Figure 2.9.

Here, when onc adder cell i fails, it tries to change the value of the outpul. The
i** adder chip failure can result in an error in the :** sum bit or the carry bit, (which
affects the (i + 1) bit). So, there are two possible bits which can he affected and

these bits have weights 2¢ and 2*+!. This gives four possible combinations:
o both bits correct; error = 0,
o bit 2 has error, 2! correct; error = £2',
o bit 2¢+! has error, 2' correct; error = £2¢+!,

o both have error; error = +2 £ 21 or —2 4+ 24! = 497 £3 % 2%,

12



So, the result is in error by any one of the error set {0, 27, £2! 43 x 2/}
So, for an adder, u=3. In the earlier discussion, we neglected the element 0 of

the set, because this identifies a correct output.
In the recomputation step, the result is shifted left by r bits with respect to the

original unshifted result. So potential error set of the recomputation is:
Ey={£2""xql¢g=1,2, ...,u}. (2.4)

Now, the disjointness of Ey and E; can be ensured by making sure that the
maximum element in £ is less than the minimum element in Fq. 7
Using this strategy, arrays can be designed, whose faults can be diagnosed by

RESO method {9].

2.2.3 Triple Data Redundancy

This scheme uses the basic modular property of systolic array (that all the process-
ing elements, PEs, perform the same operation) to detect (and mask few) errors.
It is suitable for one dimensional arrays.

In this scheme, three PE's perform the same computation on the same data at
a time and they pass on their results to the next 3 PEs, which compare these 3
results and then perform the computation on the majority-voted input. Since this
scheme uses three PEs to perform the same operation on the same data, it can
mask the presence of a single fault and detect double faults [10].

The input is given to PE,, PE; and PEj; simultaneously (Figure 2.10) and

they perform their portion of work on this data and then
® PE, passes on the result to PE;, PE; and PE,,
e PE, passes on the result to PE, and PE, and

o PEj; passes on the result to PE; and PEy.

13



th
fv

-
=
r
Jll l}
e
e
L)
ﬁ" Y

:

PEy PE;

L S 1

e —5e see

Figure 2.10: Triple Time Redundancy

PE; PE,

PE:'"__-|1 PE, _4 PE,_y PEn

3
b

4L1

'K

So, at the next clock pulse, PE;, PE,y and PE; get three identical inputs (if no
fault is present) and each one of them votes on the data and then performs the
computation on the voted data.

In the case of a detected error, the PE which detects the error informs the
central processor that the data output from PE, is wrong. After receiving this
message, the central processor attaches a flag (indicating a fault in the PE) to
PE, and ignores any further information about PE.'s health. In addition, the
central processor maintains a table of the health of all PE’s. Whenever it receives
an error message, it checks the table and if the faulty PE falls within a distance
of 2 from another faulty PE, reconfiguration is done by removing 3 PEs from the
array. Each reconfiguration removes three PEs from the array. If in the array,
shown in Figure 2.10, all PEs are working properly initially and then PE, _; fails,
the central processor marks it in the table and next if either PE,_; or PE, fails,
the reconfiguration removes PE,_,, PE,_, and PE, from the array. Similarly, if
in this case (with PE,_, as first failure) either PE,_3 or PE,_4 fails, the reconfig-
uration removes PE,_,, PE,_3 and PE,_; from the array. So a reconfiguration
removes exactly 2 faulty cells and 1 non-faulty cell from the array. The reconfigu-
ration reduces the array size and this necessitates a restructuring of the algorithm
executing on the array. So, after every reconfiguration, the full array is flushed and

the restructuring algorithm is run. This is done by the central processor {10].

14
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2.2.4 Comparison with Concurrent Redundant
Cemputation (CCRC)

This scheme can be used for those systolic arrays, in which the results move and

the weights stay in the PEs [11]. Here, the same computation is done by PE; and

PE;_, at the same time and the results are compared (Figure 2.11). This algorithm

assurmnes that only one PE fails at a time, so if PE; is faulty, it will be detected by

comparing ¥; and y;-;.

To implement this, the same input is given to the array twice. This can be
done in many ways. One of the methods is shown in Figure 2.11. Here, PEg is
the extra P2, which is used to introduce the proper delay and calculate the first
partial result.

The comparison can be done in two different ways. The scheme, shown in
Figure 2.12.a, assumes thal even when PE; is faulty, its comparator is working.
This condition is difficult to achieve. The scheme, shown in Figure 2.12.b, does not
assume this, but it requires an additional link between the PFEs.

This scheme generates an asynchronous error signal, which is necessary. In
this case the fault is detected even before the error propagates to the output and

corrupts the next stage of the system [11).

2.2.5 Double Calculation in the Same PFE

This scheme is suitable for the systolic arrays, where the results stay in PEs and

the coefficient and data streams move [12]. In such systolic arrays, the partial
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results stay in the PEs and when final result becomes available, it is passed on to
the output register from where it is scanned out.

Now, consider an FIR filter:

N
Un = ) &iTn_i, (2.5)
i=0
where N is the number of PEs.

To implement this filter, we have to separate the adjacent coefficient terms
and data terms by two cells. This cell separation feature can be used to get fault
tolerance. To add this additional feature, some extra hardware is required. Without
fault tolerance, the normal PE looks as in Figure 2.134. A second accumulator is
added to store the results of a second calculation, Figure 2.13.b. Each accumulat:r
R,, feeds the adder and accepts its output during alternate clock cycles. So two
independent calculations can be performed in each PE. When the calculation of an
output term is completed, the adder output is sent directly to the output register
Ro, while the accumulator containing the parallel result is reset.

Data flow is shown in Figure 2.14. Two boxes are shown for each PE and the
coutent of each box represents the content of an accumulator in the PE. In the

figure, §j means z;.a;; for an example, 32 would mean zj.a;.
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It is clear from this flow diagram that every output is available from two different
PEs. These outputs can be compared to detect a fault.

Here, it is not possible to locate the faulty PE, because only 2 copies of the
result are available, but whenever a fault is detected, the faulty PE can be located

by running some exhaustive checking algorithm.

2.3 Reconfiguration Schemes

Fault tolerance is incorporated in a systolic array to achieve two basic goals:
¢ to improve the system reliability and
¢ to improve the yield of VLSI and WSI chip production.

To improve the chip density it is required that the physical dimensions of the
transistor level circuitry be reduced making the manufacturing process more error-

prone.
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For a typical bulk CMOS process, the following is a brief list of common defects:

o Photolithography Defect: it causes missing or extra patterns on a mask layer.

Commen sources of this are mask defects, dirt particles and uneven etching.

o Contact and Via Defects: these are the windows between different layers for
providing interlayer connections. The defects in these can result in shorter/larger

window area causing the shorting of other connections.

o Gale Ozide Defect: charge trapping in gate-oxide regions of MOS devices
results in threshold voltage shifts which can lead to reduced noise margins

and malfunctioning of gates.

Because of these reasons, the production of VLSI/WSI chips does not always give
a yield at an acceptable lcvel. To improve the yield, the chip is designed to be
fault-tolerant [13].

To achieve fault tolerance we have to provide redundancy, which can be of two

types:

o hardware redundancy. in this case, spare cells and the corresponding inter-
connection network are provided and in the case of a fault, reconfiguration is

done.

o lime redundancy. here, the processing elements are provided a number of
processing states. Working elements perform the functions of faulty cells if
any fault occurs. In this case, the number of elements does not increase
but the interconnection network becomes very complex. Also, the processing

speed decreases drastically, so it is not suitable for systolic arrays.

Usually, hardware redundancy is provided in an array and in case of a fault, re-

configuration is done. The goal of the reconfiguration is to achieve 100% spare
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utilization (i.e. if N spare cells are available, the array should survive up to N
faults).

In discrete system architecture, 100% spare utilization is possible and also de-
sirable because here the cost of the processing element is much higher than that of
interconnection network and usually in this case each processing element is a CPU,
so the re-routing can be performed by one of the working PEs. If the CPU is an
extremely simple device (which can not perform the re-routing), the reconfiguration
is not needed because in this case the reliability of the system will be extremely
high due to the simple CPU design.

In the case of a systolic array, though the utilization of spare cells is still imn-
portant, it is also necessary to maintain the locality of interconnections. Here, it
is essential to use simple routing devices to minimize the time delays and silicon
area (it has been proved that excessive increase of chip area due to fault tolcrance
related circuits has a negative effect on overall device reliability).

So, for a systolic array, the reconfiguration process has to provide a compromise
between the reconfiguration-effectiveness and algorithm complexity. This compro-

mise depends on the approach adopted for the reconfiguration, namely:
¢ static reconfiguration, performed at production time,
¢ dynamic reconfiguration driven by a host computer at run time and
¢ dynamic reconfiguration, performed on-chip at run time.

Static reconfiguration is uniquely determined at production time and for this
the testing is performed externally (so no on-chip control circuitry is required). The
complexity of the reconfiguration algorithm is not a critical issue because it does

not affect either circuit complexity or operation speed.

For the second case, it is assumed that the external host can perform reconfiguration-

controlling actions on the basis of the available error information.
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The third case introduces additional costs for self testing and self reconfigura-
tion.

For all the dynamic reconfiguration algorithms, the problem of error-latency
(defined as the time that passes before the array is operational again after the oc-
currence of a fault) has to be considered. Any reconfiguration approach involves
two problems: the first problem is that of routing data through the recunfigured
array. It involves introduction of redundant links and routing devices. The local-
ity of the interconnection network is maintained by using the global deformation
technique in place of the direct replacement technique. In the global deformation
technique if cell § is faulty (see Figure 2.15), cell (i+1) assumes the role of cell 7 and
cell (i + 2) performs the functions of cell (: + 1) and so on. The spare cell performs
the function of cell N. In the direct replacement technique, the spare cell has to
perform the function of cell 3 and this disturbs the uniform data flow assumption
of the systolic array.

The second problem is that of the reconfiguration computation as related to fault
distribution. It involves the implementation of the reconfiguration algorithm [14].

An M x N faulty array is said to be reconfigurable into an m x n array iff m
horizontal and n vertical data flow paths can be achieved by reconfiguration.

There are two major types of reconfiguration schemes:

e Set Switching Schemes: here, a faulty cell is replaced by logically removing a

set of cells (row, column, block etc.), that contains the faulty cell. It is easily
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implemented but the waste of non-faulty cells is large.

o Processor Switching Schemes: here the replacement scheme proceeds in a
chain fashion such that a faulty cell is replaced by (shifted to) an immediate

neighbour and so on until the spare cell is reached [15].
Various reconfiguration schemes are discussed in the following sub-sections.

2.3.1 RC Cut (Row Column Cut) Method

A cut is defined as a set of cells, such that bypassing them lcads to an array with
one less data flow path. A horizontal (vertical) cut removes one horizontal (vertical)
data flow path from the original array. Horizontal (vertical) cut is also called row
(column) cut.

In this method, for a faulty cell all the cells in the same row/column are taken
to be in a cut. So, in the array, shown in Figure 2.16.a, one horizontal and two
vertical paths are involved in cuts. This results in a reconfigured 3 x 2 array from

a 4 X 4 array.
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The routing arrangement is shown in Figure 2.16.b. It is clear from the figure
that any cell can be bypassed by simple switch controls. The architecture and path
generation are simple but this algorithm wastes a large number of non-faulty cells.
Particularly, for a large array (suppose a 10 x 10 array), the failure of just one cell

removes a large number of cells (in this case 10) from the array [16).

2.3.2 RCS (Row, Column Slanted) Cut Method

This is also known as Kung and Lam approach. Here, the cells contributing to a cut

may not be from the same row or column but they satisfy the foliowing conditions:

e a cut must contain one cell per row (vertical cut) or one cell per column
(horizontal cut) and the slope of the line containing the cells in the cut must

be non-negative and

¢ the inclination of the line connecting the cells in the cut betvreen the successive
columns must be 0 or 45 degrees for horizontal cuts and 90 or 45 degrees

between successive rows for vertical cuts.

One such vertical cut is shown in Figure 2.17.a. Here, the 4 x 4 array (used as
an example in RC-cut subsection) is reconfigured into a 4 x 3 array. The routing
arrangement for an RCS cut is shown in Figure 2.17.b. It is clear that the utilization
of cells is improved in this method, but the routing complexity is also increased. It
is difficult to get an optimum cut in this method and for fewer faults this scheme

also wastes a large number of non-faulty cells [16].

2.3.3 Kuo-Fuchs Method

Now, consider the (7+2) x (9+3) array shown in Figure 2.18.a. Here (74-2) x(9+3)
means that it is a 7 x 9 array, having seven rows, /7; through R7 and nine columnns,
C, through Cy, with two spare rows, Sr; and Sga, and three spare columns, S¢;, Sca

and Sgj). Only faulty PESs are shown in the figure.
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A general set replacement algorithm replaces faulty rows/columns by proceeding
from left to right and top to bottom - so, rows 1 and 3 would be replaced by the spare
rows and columns 3, 4 and 7 would be replaced by the spare columns. Obviously,
it does not reconfigure the array.

In the Kuo-Fuchs method, the rows/columns that contain the maximum number
of faully cclls are replaced first. To implement this, the array is modelled as a
bipartite graph, whose two scts of nodes are array rows and columns that contain
faulty cells. Iidges of this graph refer to the faulty cells. The bipartite graph of the
{7+ 2) x (9 4 3) array is shown in Figure 2.18.b.

This method first chooses the nodes with maximum number of branches and re-
places them. Here, first R) and R, are replaced with spare rows and then C,, C4 and
Co are replaced with spare columns. This achieves a successful reconfiguration [17).

In all the above-mentioned schemes the utilization of non-faulty cells is very
poor. Next, some processor switching schemes are discussed, where an available
spare cell directly or indirectly replaces a faulty cell. Because of this, for these

methods, the reconfiguration cfficiency is good.

2.3.4 Diogenes Method

[n this approach the array is laid out in a line with bunches of wires, called bundles,
running above the line (the PEs need not literally lie in a line), as shown in
Figure 2.19.

Each PL has some number of lines entering it (connecting it to the PEs, that
lie to its left in the line) and some number of lines leaving it (connecting it to the
PFEs, that lie to its right in the line). These entering and leaving sets of lines are
connected to the bundles through switches that are set by external control. The
PEs arc scanned in a row and the faulty PEs are not connected to the bundle.

So, the utilization of the spares is maximized.
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In this method, the PEs are tested first and the outcomes of the tests are
available to the buses via control lines GOO D; that indicate the presence or absence
of fault in the i** PE. If PE; is fault free, the corresponding control line would
be high and PE; would be hooked to the bundle. A PE is hooked to the bundle
only if the corresponding line, GOOD; is high. This feature facilitates the testing
also. Any PE can be isolated and tested by setting its GOOD; line to *1’ and other
GOOD; lines to ‘0.

This scheme requires a large silicon area for the switch bus that might itself fail.
In the presence of consecutive faulty PEs, logically adjacent PEs can be far apart

physically, reducing the system speed [18).

2.3.5 Fault Stealing Methods

These are also known as index-mapping schemes. Here, for an array of M x N
cells, the spares are organized along the (M + 1) row and the (¥ + 1)** colurnn.
Reconfiguration is performed by mapping the array functions onto the working
cells by means of a global renaming process. Whenever a given algorithm does not

complete this mapping onto correctly working cells, a fatal failure condition is said
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to occur.

In this scheme, the physical and logical indices are defined first for each cell.
The physical indices (2, j) denote the position in the physical array consisting of all
cells and the logical indices (i', ') denote position in the logical array consisting of
working cells only and implement all the functions required by the array.

Consider the simplest case, in which a spare column is added. If a cell (¢, ) is
faulty, it is bypassed and logical indices (7, j') are associated with cell (Z,j + 1) for
cells (i,k),k > j. Figure 2.20 shows the result of one such reconfiguration. The
fatal [ailure condition is reached whenever there are two faulty cells in a row, This
problem can be overcome by adding one spare row and one spare column to the

array and slightly modifying the algorithm. The modified algorithm is as follows:

e the array is scanned from top to bottom
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s if in row ¢ there is only one faulty/stolen cell, rightward reconfiguration is

performed for that row,

¢ otherwise, the rightmost faulty or stolen cell invokes rightward reconfigura-
tion, while all other faulty or stolen ones steal the functions of cclls in the
corresponding positions of row (i + 1) making themn stolen cells. Stealing by

(z,7) implies associating logical indices (Z,7) with the stolen cell.

Figure 2.21 shows one such reconfiguration,

In this case, a fatal failure condition is reached when a stolen cell is faulty. The
locality is high in this case also. Here, a faulty cell (¢,7) can be shifted to a fault
free cell (1,7 +1) or (i+1,5) The set consisting of cells (i, 7), (¢,7+1) and (i+1,j) is
referred as an adjacency domain. This adjacency domain can be extended and the

algorithm can be modified to get more spare utilization. The modified approach is
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called complez faull stealing [14].

2.3.6 CFS (Complex Fault Stealing) Method

In this scheme, a spare row and a spare column are provided to the N x N array

and the algorithm is as follows:
e assume that in row i, 1<i< N there are faulty or stolen cells (7, ky), ..., (i, k,)

o foreach k;,0<¢t<3:
a- if (i 4 1, k;) is fault free, (1, k) is shifted to it,
b- else, if (Z -+ 1, k; + 1) is fault free, (7, k) is shifted to it,
c- otherwise, (i, &;) is shifted right.
e if no cell is shifted right along the row as per the previous rule, then (i, &,)

is shifted right. Otherwise (i, ,) is shifted downwards to either (i + 1, &,) or
(i+ 1L,k +1)

An example of this algorithm is shown in Figure 2.22, Here, (1,2) is shifted
twice, first to (1,3) and then to (2,4). The interconnection links required by this

algorithm are very complex {15] [19].

2.3.7 FUSS (Full Use of Suitable Spares) Method

This scheme uses an indicator vector, called the surplus vector to guide the re-
placement of faulty cells in an array. In its ideal case, FUSS achieves 100% spare
survivability. In FUSS-C, the array is an M x (N +C) array, where C is the number
of spare columns (spare rows are not used). First, the surplus vector of the array
is computed. Let f; be the number of faulty cells in row i. The surplus vector

(S-vector) is defined as

3= [s‘las?a' " 93M]T1
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where s; =3 (C — fi) is the surplus of row i.
=1
Next,

o if s; > 0, then the sum of spares in rows 1 through i is greater than the number
of faulty cells in row 1 through row i; so row i has extra cells available for use

by faulty cells in rows : + 1,2+ 2,... M,

e if s; < 0, then row i has a deficit and needs to use available cells from row

t+1,i+2,...,. M,

e if spr < 0, then the total number of spares in the array is less than the number
of faulty cells. In this case the array is not reconfigurable and fatal failure

occurs.

In FUSS-C, an unavailable cell (¢, ) can be shifted down to (i +1, ) if 3; is negative

or shifted up to (i — 1,7) if s;—; is positive.
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Alter each step the corresponding entry in the surplus vector is readjusted to-

wards zero. Its effect can be described as a cell migration from regions having most

faulty cells to regions having less faulty cells.

Consider a 4 x (4 4 2) array shown in Figure 2.23 (FUSS-2 Scheme), where

‘0’ represents a good cell and ‘1’ represents a faulty cell. The reconfiguration is

executed as follows:

e scan the array downwards. When s; < 0, shift a number equal to |s;] of

unavailable cells to row ¢+ 1 and when successful, reset s; to 0. Here, s, = —1,

s0 one cell (2,2) is shifted down from row 2 to row 3 and this is assigned a

status code of 3,

e scan the array upwards. When s; > 0, shift |s;| unavailable cells in row i + 1

to row i; 9; is reset to 0 when all s; cells are shifted successfully. Here, s3 = 1,

so one cell from row 4, cell (4,4) is shifted up to cell (3,4) which assumes the

status code of 2; s; is readjusted to 0,

Now, the surplus vector is 0, which means that the fault shifting is successful. The
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Figure 2.24: Interstitial Redundancy Scheme

status matrix (B-matrix) has the status codes that guide the cell interconnection

phase of FUSS. Entry b;; has the following meaning:
o b; =0,if (¢,7) is fault-free
o b; = 1,if (i, ) is faulty
e b; = 2,if (¢,) replaces (i 4 1,5) and
e b;; = 3,if (4,7) is replacing (i — 1, ).

Now, since the status of the cells i3 known, it is easy to derive the intercon-
nection between the cells. In this algorithm, the probability of survival improves
and fewer cells are wasted. However, the algorithm becomes more complex and the

interconnection requirement is increased.

2.3.8 Local Redundancy Methods

In these schemes, the array is partitioned into smaller arrays, each of which can be
reconfigured independently. The main objective of these schemes is the minimiza-
tion of the interconnection delays. One such scheme is discussed next.

The scheme is called interstitial redundancy and it maintains short interconnec-

tion links.
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The array is divided into a number of subarrays (clusters) and one spare is
allocated to each cluster. The array shown in Figure 2.24 has 25% redundancy.
Each cluster is independent and it can tolerate one faulty cell. The spares are
physically close to the faulty cell they replace [20].

In these schemes, if reconfiguration is not possible within a block, the system
fails unless the faulty block can be replaced by a functional one. To avoid this, the
array can be organised in a hierarchical way. One such scheme is CHiP (configurable
highly parallel) architecture, made up of building blocks, each of which is a two
dimensional CHiP array [21].

The cut methods are simple but they are not efficient. In the slanted R-S cut
method, sometimes it is difficult to get an optimum cut. The switching scheme is
very simple for these methods.

The fault stealing and FUSS methods are very efficient but their algorithms and
switching structures are complex.

Some of the above schemes cannot be used effectively during run-time because
every time a fault occurs, the full algorithm has to run and it may completely
change the previous reconfiguration. These algorithms are suitable for improving
the production time yield.

In the next chapter an on-line reconfiguration scheme is proposed for PE fail-

ures.
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Chapter 3

ON LINE
RECONFIGURATION

On line reconfigurat. »n is performed to increase the reliability of the system for the
full duration of a mission. Here, in the case of a fault detection, the array is not
flushed as required by the previous algorithms.

The reconfiguration scheme should be capable of:

o fault detection: if the fault is not detected, the array fails and this failure

cannot be detected by the central processor; this is an unsafe failure;

o fault location: the fault location is important in order to replace the faulty

PE by a non-faulty PE;

e re-routing: the scheme should be capable of mapping the new logical index

on to the physical index and

o fault blocking: to ensure that the faulty data are not passed on to the next
PE, otherwise all the further computations would use the faulty data and all

the results would be faulty.

A major concern for an on-line reconfiguration is complete use of non-faully par-

tial results. During reconfiguration the fault-free partial results should be handled

properly.
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The reconfiguration scheme should have following attributes:

o simplicity of algorithm: the algorithm should be simple, so that it causes little
disturbance in the array, Here, disturbance refers to the total number of PEs,

for which the logical index changes.

o minimal additional hardware: any additional capability requires some extra
hardware, which depends on the algorithm. The algorithm should use min-
imum additional hardware otherwise the additional hardware would bring

down the array reliability instead of improving it.

o use of fault-free partial results: in systolic arrays, partial results are passed on
to the next cell as input. In the case of a fault-occurrence, the faulty partial
resuits should be blocked and the fault free partial results should be ideally

utilized to best advantage.

o locality: the locality of the data is one of the major attributes of systolic
arrays and the reconfiguration algorithm should maintain it. It is maintained

by using the global deformation instead direct replacement.
A scheme is proposed in the following section for on-line reconfiguration that has

these attributes.

3.1 On-Line Reconfiguration Scheme

This scheme does not perform any on-line testing, so self-testing PEs are required.
When a PE detects any fault, it invokes the reconfiguration. The followinyg as-
sumptions are made.

Assumptions:

o the faults are occurring one at a time;

o the links and the switching network are fault-free;
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e once a fault occurs, it is detected by the PE;
o the control circuitry of PEs never fails;

o a central processor provides input and clock to the array and it receives output

and fault occurrence signals from the array and

e the occurrence of a failure is reported to the central processor before the

arrival of the next rising clock edge.

The array is provided with an extra row of PEs (called spares) and these spares
do not perform any useful operation during the normal operation. These cells do
only self-testing and remain non-active for other operations. Once a PE;; (PE;;
denotes the PE whose physical index is (£, /) and P EE; denotes the PE with logical
index (%,7)) detects a fault, it marks itself as bad and the reconfiguration is done

as follows:
e if PE;; is a non-active spare, no shift is done;

¢ if a working PE;; fails and the spare cell, PE,,, ;, is available, PE;; invokes

a downward shift;
e else a fatal failure occurs.

For example, if in the array shown in Figure 3.1, P E; ; fails, no shift is performed
but it is marked as a bad PE. But when PE,, fails, it checks the availability of
spare cell, PE;,,, and since this spare is available, the reconfiguration is done and
a downward shift is performed for all PE, , where i < z < row — 1 (here, i=2
and row=3). After this failure, if any PE fails in column 1, the algorithm cannot
tolerate the fault and a fatal failure occurs.

Similarly if a spare, such as PFj,), fails first, then any further failure in column 1

would result into a fatal failure.
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Figure 3.1: Proposed On-Line Reconfiguration Scheme

INPUT staging! logic Ll staging]| logic I _ 5| stagingl logic -;OUTP ur
latch || ckt. latch || ckt. latch || ckt.

CLOCK

Figure 3.2: Staging Latch Position in Normal Arrays

3.2 Implementation

In most systolic arrays, staging latches are provided at the input end of the PE, as
shown in Figure 3.2.

The clock is applied to these latches for propagation of data. When a clock
edge arrives, PE; latches the data from PE;_, and it is available to PE; for the
full duration of a clock pulse.

Now, consider the one-dimensional pipeline shown in Figure 3.3.

During normal operation, each PE; gets input from the output of the previous

PE;_;. Here, inputs and outputs are written as I? and O%, meaning that I! is the
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Figure 3.3: Pipeline, Before and After reconfiguration

input of PE, at time ¢ and Oy is the output of PE; at time {. Similarly, I{; and
0% ;, denote the input and output of PEL at time t respectively. For the pipeline,
shown in Figure 3.3, at any time ¢, [{ = Of, I{ = O} ...and so on. At any time
4 (t <t <t+1), each PE; is processing the data, which was available at its
input at time ¢. Since we have the staging latches at the input end, the failure of
PE; at time t; makes the data available on link L{*' (the link between P£; and
PE;;,) erroneous. If a spare is available at the rightmost position of this pipeline, a
rightward global shift is performed and the pipeline would look as in Figure 3.3(h).

Now, PE;,, acts as PE and since the partial result generated by PF; is faulty
at time ¢;, it must be recomputed by PE?. For generating O}, P E;,; requires the
same input, which was available to PE; at time t, but this data is not available at
t; because at time t it was generated as O}_, by PE;_; and alter the clock edge the
PE;_, receives new input I!_; and changes the output.

To overcome this problem, the staging latches are shifted from the input side

to the output side and the new pipeline is shown in Figure 3.4.
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Figure }.4: Modified Staging Latch Position

In this case, the links and output ports never carry the faulty data, because the
moment a fault is detected by any PE, the PE requests the central processor to
block the clock. Here, in the case of PE; failure at time ¢,;, O}_, is available at the
output port of PE;_; and it can be used by the PEF. Once PE; changes its logical
index, it has to use the weight (static coefficient), which was being used by PE;_;.

This is discussed in the next subsection.

3.2.1 Loading of Weights

When an array is implemented, it is not possible to connect all the static coefficient
latches to the external ports (which are used to connect the array and the central
processor) due to extensive link requirements. So usually the input line is used to
load the static coeflicients in the array before the array begins processing data. In
most systolic arrays, one of the data streams (either vertical or horizontal) passes
through the array without getting modified and this feature is used to load the
static coeflicients. In the following discussion, it is assumed that the vertical data
stream is not modified. This can be generalized to the horizontal data stream also.
A simplified block diagram of a PE is shown in Figure 3.5.

We can use either of the following two methods for loading static coefficients in

the array.

39



- s W e W e e T m o SN E e W Emmu T M@ W e o m

r > LOGIC | v [[voureuT]!
I - ~|BLOCK LATCH 0"
: tw :
' STATIC H-OUTPUT| !
E o Eg%:gg __LATCH fj——> 0"
]
b Load E
y 1 ADDRESS 7 :
' | DECODER| :
T :
Input/Coef f. :E | :
Clock >t —+ ;
pateipioiitetsietaitituioieluiisiloiuls ity R
Address

(required only for random loading)

Figure 3.5: Block Diagram of PE (with emphasis on Coefficient Loading Circuit)

Method 1 (Sequential Loading) -

Here, the coefficients, w; ; are loaded into PE; ; by presenting w; ; on vertical input
line IJV in sequence Wm-1,j, Wm-2,j -.. and after m — 1 clock pulses (m is the total
number of rows in the array, one bottom row of spares is added - making the total
number of rows m + 1), each PE;; would have its static coefficient w; ; at its input
port. Now the input/coefficientline is made valid for coeflicient (informing the PEs
that the data available at their vertical input port is the static coefficient) and the
clock is applied once. The clock causes the PEs to store the data available at the

vertical input port into the static coefficient Jatch,

Method 2 (Random Loading) -

In this method, some extra hardware is added in the PE and an additional address
bus is provided which carries the address of the PE, to which the static coefficient

available on the input port (I)') belongs (see Figure 3.5).
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A multiplexer is used in the output latch block to bypass the output latch (see
Figure 3.6), when coefficients are being loaded. In this case, each PE;; (0 <1 <
m;0 < j < n) gets the same data which is available on input port IY. Firstly,
weight w;; i8 put on port IJV and then the address of PE;; is put on the address
bus and clock is applied to store w; ; in PE; ;. This scheme requires extra hardware
and random loading is not essential in most cases, so it is rarely used.

When the array is operational, it is not possible to load the static coefficients
without losing some information available in the P Es, because the PE’s output
ports carry the partial results. So when a shift is performed in the case of PE;;
failure, it is not possible to load the new weight w;—,; in PE..; (i < 2 < m) without
losing some of the partial results. To overcome this problem, one more static
coefficient latch is added in the PEs and the latches are called static coefficient
latch ‘0’ and static coefficient latch ‘1’ Initially the PE;; uses the static coefficient.
latch ‘0’ (carrying w;;) and in the case of a PE;; failure, the PE,; (i < z < m)
start using the static coefficient latch ‘1’ (carrying w,_, ;). An additional line select

0/1 is used to help the proper sturing of static coefficients. This avoids the need
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Figure 3.7: Block Diagram of PE With Two Static Coefficient Latches

to reload at the time of reconfiguration. The block diagram of PEs is shown
in Figure 3.7. RR (Reconfiguration Request) is a signal, which comes to PE,;
(¢ < ¢ £ n) in the case of PE; ; failure (it is explained in next subsection).

In this case the coeflicients are loaded initially using method 1 (explained ecar-
lier). Initially select 0/1 line is made valid for latch 0, so at clock m — 2 (because
there are m active rows in the array, namely row 0 through row (m — 1) and clock
pulses are counted from pulse 0), w;; is loaded in PE;; (0 < i < m) and w;;
(0 £ i < m) appears at the input of PE,;. At this point, the line sclect 0/!
is made valid for latch 1 and the next clock pulse, m — 1, loads w;.; in PFE;;
(0<i<m).

During reconfiguration, rerouting of data is done, so a switching network is
added to facilitate the rerouting. For an active array of size m x n, a physical array
of size (m+1)xn (PEyg through PE,, ,_,) is required and to support the routing,
a switch array of size (m + 2) x (n + 1) (Spo through Syn41,4) is required. The

complete array is shown in Figure 3.8. I and I} represent the horizontal input
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of row i and vertical input of column j from the central processor respectively.
Similarly, OF and O}' represent the horizontal output of row ¢ and vertical output
of column 7 from the array respectively.

Each switch module shown in Figure 3.8 is a pair of switches (one is used for
vertical routing and the other for horizontal routing). For the sake of clarity the
vertical and horizontal paths are shown separately in Figure 3.9.

In the next subsection a scheme is proposed for proper handling of partial results

in the case of PF failure.

3.2.2 Handling of Partial Results

Consider the array shown in Figure 3.8. When a PE;; fails, it invokes a downward
shift (if the bottom row spare is available) and the logicai index of PE;; (i <z <
m) changes from (z, j) to (z — 1,j). For the sake of clarity, vertical and horizontal

partial result handling are explained separately.

Handling of Vertical Partial Result

At any time ¢, ({ < t; < t + 1; shown in Figure 3.10), the PEs are processing
the data which are available at their input ports at time ¢; because the data were
latched by the ouiput latches of the previous cells at time ¢ and they remain there
till the next clock edge, t+1 comes, ],.”," and I; -V'-' denote the horizontal and vertical
inputs of PE; ; at time ¢ respectively and O"’ and OV‘ represent the horizontal and
vertical outputs of PE; ; at time ¢ respectively. Similarly, I} i EW 6y L of i and OV'

denote the horizontal input, vertical input, horizontal output and vertical output of
PEY; (PE with logical index (%, §)) at time ¢ respectively. When PE;; fails at time
t1, it immediately generates a Reconfiguration Request (RR) and passes it to the
central processor, which delays the next clock edge, t+1 for a pre-specified duration

(which depends on the time taken for the switch seitings and the processing time

43



CFah tae i

I

m\:\m\:\m

(OFEa0 Ot})I

DDD

If i
\UDDD[:(

opppo O

l

Figure 3.8: Basic Array with Switch Modules

Horizontal Data Routing Vertical Data Routing
Sp,0 So,0
P O O sy O O
o O 0O o O O
O O O o O O
o O O O]0 ] O

Figure 3.9: Vertical and Horizontal Data Paths

44



of each PE). RRs are written as RR}, which means that the RR is generated
by X and it is fed to Y (for example, RR ; #;, denotes the reconfiguration request
generated by PE;; and it goes to switch S; .i+1)- Since the logical index of PE; ;
(i < z £ m) has changed from (z,7) to (z — 1,j) at £;, the PE,; (i <z <m) has
to process the same data, which PE;_,; was processing at time t;; for instance,
after ty, PE;y1; should get O, ;, PEiyy,; should get O} and so on, meaning that
I i= 0!’;',',, I ; = 0! and so on. To accomplish this, an intermediate state
of the vertical path is provided (shown in Figure 3.10), which is called the first o
intermediate stage of rerouting. At ¢, the switches S;;41 (: £ 2 < m +1) are
set to provide this routing and the next clock is applied at ¢ + 1, which causes the
intermediate results to appear on the output ports of the PEs, At this time the
switches Sz j+1 (1 < z £ m + 1) are set again to get the final reconfigured vertical
path (shown in Figure 3.10). After final routing ,,L = o) HAy (I,‘;’,‘J = 0 ),
and so on.

The horizontal partial result handling is explained in the next subsection,

Handling of Horizontal Partial Result

After the PE;; failure at t;, each PE.; (i < ¢ < m) has to work as PEL, ;
and each PE,; (: < z < m) has to get the same horizontal input as PE;_;; was
getting at time ty, i, [ty = I, = Offt I}, = Ifi%, = Ofi}; and so on.
To accomplish this, an intermediate horizontal routing is done at t; {as shown in
Figure 3.11) and at ¢ + 1 the final routing is done to get the final reconfiguration,
so that each PE; 4, (i £ z < m) gets horizontal partial result from PE.,, .
Lemma 3.1 - Reconfiguration in the case of a PE failure requires a maximum of
two stages of rerouting.

Proof - There are only two combinations of PE failure: either a spare PE fails or

an active PFE fails.
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1. When a spare PE fails, it does not invoke any reconfiguration and

2. when an active PE fails, it invokes the reconfiguration and as explained ear-
lier (in vertical and horizontal partial result handling subsections), any such

failure requires two stages of rerouting (intermediate stage and final stage).

a

In the next subsection switch modules are discussed.

3.2.3 Switch Module

As explained earlier, each switch module consists of two switches. One of them is
used exclusively for horizontal data routing and the other is used for vertical data

routing. Both of them are discussed separately in the following subsections.

Vertical Data Routing Switch

Consider the array shown in Figure 3.12 (only vertical data paths are shown).
Here, 1) ,1V,1¥ ... are the input data from the central processor to the array and
OY,0Y,0Y ... form the final output from the array.

At time 1y, PE;41 ;-3 has already failed (and has been reconfigured) and PE;;
fails at time f; causing the first stage of rerouting to be done. So in this figure, col-
umn (j —~1) of the switches shows the vertical data path, which is fully reconfigured
and column (5 + 1) of the switches shows the vertical data path in the interme-
diate stage. To support the reconfiguration, the network shown in Figure 3.13 is
provided.

It is clear from the network that the switch modules S: o (0 € z < m + 1) need
not have the vertical data routing switch. Each switch is a 2 x 2 switch, the inputs
are denoted as I¥, I¥, and the outputs are written as O and O%,. The vertical
input of the array, IY is given to the IY, input of S¥_,, (0 £ z < n) and the I

of these switches is not used. Final vertical output, OY is taken from the array by
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OY, of 8 41241+ In order to get all the required connections, the vertical switches
have two states (shown in Figure 3.14).

[nitially, all the switches S,VJ (0<i<m=1and 0 <j < n) are in state STy,
the switches SY; (m <i < m+1 and 0 < j < n) are in stale ST) and when a
PE;; fails at t,, it changes the states of switches 57, (i < 2 <m —1) from §Ty
to S7y. At t +1, switches SY.,, (i +2 < z < m + 1) are brought back to state
STy .

Lemma 3.2 - The two proposed states (STy and ST)) of vertical switches are
sufficient to support the algorithm.
Proof - As shown in Lemma 3.1, a PFE failure requires two stages of rerouting so

a vertical data path can be in either of the following three states:
1. the particular data path doesn't have any faulty PE;

2. the particular data path has a faulty PE and the reconfiguration is in the

intermediate stage or
3. the particular data path has a reconfigured faulty PE.

The data paths required by these states are shown in Figure 3.12. Since PE; -2

has been reconfigured completely, column (j — 1) of the switches shows the data
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paths required by final stage. PE; failure has gone through the first stage of
rerouting only, so column (j + 1) of switches shows the data paths required by
the intermediate stage of rerouting. Other columns of switches show the normal
data routing. It is obvious from Figure 3.12, Figure 3.13 and Figure 3.14 that
the proposed two states of the switches provide all the required data paths. For a
column = of PEs, if no PE;; (0 € il < m — 1) is faulty, the spare PE, PE,, .
is bypassed by bringing switches SY _., and S¥_, .., to STY. Other switches of
column (z + 1) would be in STY. PE;,, -, failure is reconfigured completely and
the data paths, required for this are provided by bringing S, ;_, and S,-‘j_,d-_, to
STY . Other switches of column (j —2) stay in STY. PE;; failure is in intermediate
stage and data paths are provided by bringing switches S,-‘{.J-‘,_, i€il<m+1)to
STY. Other switches of column (j + 1) stay in STy . o

Horizental Data Routing Switch

The horizontal routing is shown in Figure 3.15. At ¢, PE;;_; has alrcady failed
and has been reconfigured completely and PE;; fails at this point, causing the
first stage of reconfiguration. The network, illustrated in Figure 3.16 is provided to
support the algorithm. It is clear that the switches Sp; (0 < j < n) need not have
the horizontal switch. The horizontal input to the array, I¥ comes to the I port
of switch S,  for all (0 < i < m) and the output O is taken from the O, port
of switch S,-ff‘. The various switch states for a switch S,-’z- are shown in Figure 3.17.
When a PE;; fails at t,, it changes the states of S¥; (i < 2 < m + 1) from
ST3! to STH and at time ¢ 41 next clock edge is given which changes the switches
SH. .. (i <z <m+1)from ST) to ST{!. At the time of switch settings, the PEs
are informed to use the proper input port, on which the correct data is available.

The above scheme is valid when for a PE;; failure, there is no faulty PL; ;_,
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Figure 3.17: States of Horizontal Switches (For PE failure algorithm)

or PE; ;41 present. In presence of any such faulty PE, the algorithm is changed.
Both of these cases are explained below:

a. PE; ;-1 Faulty: the array is shown in Figure 3.18. After the intermediate
rerouting at ¢,, PEZ; (i < ¢ £ m; which is PE, ;) should get data from PEL,_,
(which is PEz41,j-1), so the switches SH._| (i < £ < m + 1) change state cither
from ST (caused by previous reconfiguration due to PE;; ;—; failure) to ST or
from STH to ST. The final reconfiguration at t + 1 changes the states of the
switches ST, | (i < £ < m +1), from ST to STY!.

b. PE; j+1 Faulty - the array is shown in Figure 3.19. Here, at ¢, all the switches
SH.1 (i < 2 < m+1) change state from STy to ST{!. After the rerouting at
t+1, F‘E,f‘h,-+l (i £ z < m) should get data from PEY;. To achieve this, at ¢ + 1
the switches SH. | (i < z < m + 1) change state either from STy’ to ST} or from
STH to STH.

Lemma 3.3 - The two proposed states (STy' and ST/) of the horizontal switches
are sufficient to support the algorithm.

Proof - Horizontal data routing, in the case of a PE; ; failure depends on earlier

failures. There are only four combinations of this occurrence, which are listed

below:

52



(] L] N

I'E.l',& + 4 4 e
by t+1 42
FE (normal clock)

e M A
~ . 1 1 !
th t+1 42
O Y @) (clock after failure)

‘ [

Figure 3.18: Horizontal reconfiguration for PE;; in presence of faulty PE; ;_y

PE.l.,w
PE,,
. links before ¢,
N R R A e S e links after 1st reconfiguretion
T Qe links changed during
5 e 2nd re-routing
O _o Y O

Figure 3.19: Horizontal rcconfiguration for PE;; in presence of faulty PEy ;4

a3



1. no PE in columns (j — 1) and (j + 1) is faulty;

2. column (j — 1) has a faulty PE (PE; ;_,) and it has been reconfigured (it is

assumed that faults occur one at a time);
3. column (j + 1) has a faulty PE (PE; j31) and it has been reconfigured and

4. both columns (j — 1) and (5 + 1) have faulty cells (PE;; ;-y and PEj 4,

respectively).

Ag shown in Lemma 3.1, only two stages of rerouting are required in the case
of a PE failure reconfiguration. For horizontal data rerouting, in the case of PE; ;
failure, the intermediate stage requires modification of data links between PEs
of column (§ — 1) and PEs of column § and the final stage of rerouting requires
modifications of data links between PEs of column j and PEs of column (j + 1).
Cases 1, 2 and 3 are shown in Figures 3.15, 3.18 and 3.19 respectively and it is
clear that the proposed two states of horizontal switches are capable of providing
all required data links. Case 4 is the combination of Case 2 and Case 3 and since for
horizontal data rerouting, intermediate and final stages of rerouting are mutually
exclusive (the intermediate stage requires state changes of switches in column j and
the final stage requires state changes of switches in column (j+1)), the intermediate
rerouting in this case would be similar to that of Case 2 and final rerouting would
be similar to that of Case 3. So the proposed two states (STJ! and ST!') would
provide all borizontal data paths required by the algorithm. o

So, in the case of a PE;; failure at t;, the switches SX,_, (i < z < m +1)
change state either from STJ to STH or from STH to STY at ¢, and at ¢ + 1
switches SH.., perform the same.

The switches are finite state blocks, In the next subsection various changes in

the basic network, processing element and switch modules are explained.
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3.2.4 Network

The network is modified to implement the algorithm and it is shown in Figure 3.2C.

In this figure, global clock line (CLKpg), input/coef ficient line, select 0/1
line {used for loading the coefficients initially), reset line (used for resetting all the
flip flops initially ) and fatal failure line (explained later) are not shown. Various
control lines for a PE and switch module are shown in Figure 3.21.

RR?E::"’ is the reconfiguration request from PE;; to PE;y, ; and RR‘,S:"E"': is
the reconfiguration request from PE;; to switch S;; ;;. F'F is connected to the fatal
failure line, which indicates the occurrence of fatal failure. Once a PE fails, the
reconfiguration staris and it is done based on the information available on these
lines. When a faulty PE;; receives an RR from PE;_,;, it generates F'F (fatal

failure signal) and puts it on the FF line, which carries it to the central processor.

3.2.5 Processing Element

The block diagram of the processing element is shown in Figure 3.22. Each PE;;
has two static coefficient latches and two horizontal inputs (/Fg, and I¥;,) and the
selection is done by using the signal selecty); line, which becomes high when PE;;
rcceives RR;g:fl.,.

The SPE (spare PE) signal is applied to the spare cells initially and it is
latched to derive SPE}, which is used to ensure that the spare cells do not invoke
reconfiguration. The PE test circuit checks the state of the PE and when it
detects a fault in the logic circuit, it generates Erocic, which remains high for the
full duratior of the array operation. The block diagram of the control circuit is
given in Figure 3.23 and timing diagram of various signals is shown in Figure 3.24.
Once a fault is detected by the self-test circuit of PE;;, it passes this information
on to the control block of the PE; ; using the line Erpgic. When the control circuit

of PE;; receives this Erogic (see Figure 3.24.a), it generates RR);S::"’,RR?}?:;
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and RR’:‘E};’. These RRs are reset at ¢ + 1, but Erpgrc stays high. Now, if PE;;

receives RR?E-::.J, it would generate the F'F signal (because this indicates two

faulty PEs in the same column).

When PE; ; receives RRLE™  att, (see Figure 3.24.b), it gencrates RRL’L’J“ R lt"f,‘,‘,f-";

i=1,)
and R p",-_.‘El',’ at t; and at the next clock edge, t+1 it resets these R Rs and gencerates

RR,SJE."',’“, which is reset at the next falling edge of the clock, at ¢;. In this case, if

PE;; fails at {3, it generates FF.

3.2.6 Switch

The block diagram of the switch module is given in Figure 3.26. Each swilch
consists of three basic circuits: one control circuit, one horizontal switch {(used for
horizontal data routing) and one vertical switch (used for vertical data routing).
The control circuit is very simple in this case and the horizontal swilch toggles
from one state to the other, when either RR?}.;’{_M or RRg:':M comes. The vertical
switch goes to state STY when RRi‘g‘..’_. comes and it goes back to ST} at the
arrival of RRFZ, ..

Consider a portion of the array as shown in Figure 3.25. When PE;; fails at ¢,,
various RRs are generated. The control circuit (shown in Figure 3.23) is used to
generate these signals. The RR’;S::"’ of the bottom row of cells is connected to
the central processor, which delays the next rising edge (¢ + 1) of the clock. This
delay is the sum of the switch settling time and the processing time of a PI. The
arrival of pulse ¢+ 2 is also delayed by the same amount of time and after that the
clock resumes its normal speed.

The central processor gives a signal called SPE (spare PE) to the spare PEs
and it is used to bring SY, ; and Sk, ; to STY initially. SPE is latched as SP Ly,
which is used to ensure that no RR is generated, when a spare cell detecty a self-

fault. The RRg::M input of switches, Sm4;,; (0 < j < n) is pulled low and it is
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Figure 3.25: Reconfiguration Request Propagation (for PF failure algorithm)

called RR3™". SPE,, and RR3™*"* ensure that S 1 (0 £j < n)donot change
state (these switches always remain in STj').

The switches are finite state blocks as shown in Figure 3.26 and the states of
the switches, depending on the RR lines, are shown in Figure 3.27. Case A shows
the vertical switch state change for switches SV, and S{i1j41 in the case of PE,;
failure at t;. At t;, these switches go to ST and stay there. Case B shows the
vertical switch state changes for switches S ;,; (i + 1 < i; < m), in the case of
PE; ; failure at t;. At ¢t these switches go to STY and come back to STy at ¢ +1.
Case C shows the state transition of switches Sff; (i < i; < m). These switches
toggle from one state to the other at {; and remain in this state. Case D shows the
state transition of switches S/ j+1 (i < iz £ m). These switches toggle from one

state to the other at t + 1 and remain in that state.

In the next section, the full algorithm is detailed.
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Figure 3.26: Block Diagram of the Switch module (for PE failure algorithm)

3.3 Operation of the Algorithm

Consider an m x n array (with m active rows of PEs, 0 through m — 1, and n
active columns of PEs, 0 through n —1).

Initially, all the horizontal switches Sf; and vertical switches SY; (0 < @ <
m+1; 0 < j < n) are brought to state ST§? by applying a pulse at the global
reset line. Then the static coefficients are loaded in the array by using vertical
input and input/coef ficient lines as explained in the subsection 3.2.1 (PE;; (0 <
i < m;0 € j < n) contains the static coefficient of PE,—LJ in accumulator ‘0’ and
of PEL, ; in accumulator ‘1'). Spare PEs, PE,; (0 < j < n) do not have any
valid data in accumulator ‘0’ and accumulator ‘1’ contains the static coefficient of
PEL_, .

Next, the vertical switches, .S',VJ (m<i<m+1;1<j<n)are brought to
state STY by giving a pulse to the SPE inputs of the spare cells. SPE gets latched
as SPE;. This prepares the array for operation.

When a PE;; (i # m) fails at ¢;, it issues RRs to S;;41,Si41,j41,Si41,; and

PE;,;. After receiving this request PE;;,; generates RRs to switches and to
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PE;43;. In this way the reconfiguration request goes from PE;; to the spare,
PE,.4. If on its way it encounters a faulty cell, a fatal failure occurs and the FF
signal is given to the central processor. When a switch, S; ;, receives RR,SD"g._M_l it
generates RRf-:;"’ to S;_;,;, which is used to decode the relative location of Si_; ;
with respect to the failed P£,

Once the reconfiguration request reaches PE,, ;, PE, ; generates RR;g::"’,
which is given to the central processor. The central processor delays the next
CLKpg edge, t + 1. Each PE,; (i < 2 < m) generates the RRs to the switches
and the switches are reconfigured in two stages:

1. At ty, the vertical switches, 57, (i € 2 £ m—1) are brought to state ST,
gV

v je1and SY_, .. remain in ST} and the horizontal switches, S, (i < z < m+1)

toggle either from state STY! to STV or from ST} to ST . At the same time, PE, ;
(i < = £ m) start using the static coefficient latch ‘1’ and select the horizontal input
port IHg, for use.

2. At t + 1, the vertical switches, SY;,, (i-+1 < # < m + 1) change state from
ST to STy and the horizontal switches, SH.,, (i < z < m +1) toggle either from
state STy to STH or from STH to STJ. This completes the reconfiguration and

then the normal clock speed is resumed.

3.4 Concluding Remarks

In this chapter an on-line reconfiguration algorithm for PE failures was discussed.
Here an extra row of cells (called spares) is provided to the array and in the case
of a detected PE failure global shift is performed for the corresponding column.
The staging latches were shifted from the input side to the output side to fa-
cilitate the full use of non-faulty partial resuits. The PEs are provided with an
additional static coefficient latch to avoid reloading of static coefficients in the case

of a PE failure. The testing circuit and control circuit are added in the PEs to
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detect the fault and generate the reconfiguration requests. In addition, the control
circuit selects the proper input data ports after the rerouting.

The network is modified to support the algorithm and switches are designed as
finite state machines. It was proved that the reconfiguration requires a maximum
of two stages of rerouting and the proposed two states of vertical and horizontal
switches provide the required data paths.

It is assumed that the control circuit of the PEs never fails, it is essential to
ensure the proper operation of the algorithm. Failure of control circuit may lead
to an unsafe fatal failure. To achieve this feature, control circuit can be provided
with active redundancy. The assumption of sequential failures (faults occurring one
at a time) is made to simplify the modelling of the algorithm. This algorithm can
tolerate simultaneous multiple failures if the failures are not in adjacent columns.

It is assumed that the occurrence of a failure is reported to the eentral processor
before the arrival of next clock edge. This can be ensured by making the clock period
slightly longer. The time between the occurrence of a failure and fault reporting
depends upon the number of rows in the array. Therefore for an array with small
number of rows the speed reduction due to extended clock will be very little.

The above algorithm is modified to accommodate the link failures too and the

modified algorithm is discussed in the next chapter.
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Chapter 4

ALGORITHM FOR PE AND
LINK FAILURE TOLERANCE

The basic principle of this algorithm is the same as explained earlier: a bottom row
of spares is provided to the array of size (m x n) and if PE; ; fails, PE;; is replaced
by PE,,; if PE,,; is available.

A link failure for the link Lﬁg:f” is detected by PE;; by using parity bit checks.
To tolerate the link failures, each link is duplicated.

Here, the following assumptions are made:

Assumptions:
o the faults are occurring one at a time;

e the link failures are detected by PEs (here even an intermittent data error is

taken as link failure);

e switches perform self-test only for the control circuit (they do not test the
actual switching circuitry because any fault in a switching circuit results in a

data error, which is detected by PEs);
e once a PE fails, it detects the self-fault;
¢ the control circuitry of a PE never fails;

¢ the self-testing blocks of PEs and switches never fail;
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e acentral processor provides input and clock to the array and it receives output

and fault occurrence signals from the array;

e the occurrence of a failure is reporied to the central processor before the

arrival of next rising clock edge and

e the central processor provides clock pulses (CLKs) to switches also, if any

PE fails.

4.1 Data Routing

As explained earlier, the algorithm (for PE failures) needs one vertical and two
horizontal links between PEs; consequently now two vertical and four horizontal
links are provided (link redundancy). The vertical and horizontal data routings are

discussed separately in the following subsections.

4.1.1 Vertical Data Routing Path (for PE and Link fail-
ures)

The network for vertical data is shown in Figure 4.1.

The input links from the central praocessor and output links to the central pro-
cessor are also duplicated. Each PE has two vertical inputs (I¥g and I})
and two vertical outputs (O, and OF,) as shown in Figure 4.1. Similarly,
each vertical switch is a 3 x 3 switch (with three inputs, 1%, I¥,, 1% and three
outputs OY%,, 0%,,0%). To support the algorithm, a total of eight states of the
vertical switches are provided as shown in Figure 4.2. Initially, all switches S',-‘.’ f
(0<i<m—1;0<j < n)are in state STy , switches S, ; (1 € j < n) are in STy
and switches SY.,, (1 <j < n) are in state ST (see Figure 4.1). The switches,
S¥ o and SY._, , arein STy . The vertical input to the array is applied through the
1%, and IY, ports of the switches So,; (0 < j < n). The output O appears at 0%,

of Smerj41 (0 £ j < n) in the case of no output link failure.
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4,1.2 Horizontal Data Routing Path (for PE and Link
failures)

The network is shown in Figure 4.3, The horizontal inputs and outputs of the PEs
and switches are also shown in Figure 4.3. Each PFE has two pairs of horizontal
inputs (IBgq, IHgy and Ifg,, Ifgs). To support the algorithm, a total of two states

of the horizontal switches are provided as shown in Figure 4.4. Initially all the

horizontal switches are in state ST.

\
A
\_/
/2

ST sTf!

Figure 4.4: Horizontal Switch States (Combined PE and Link failure)
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Figure 4.5: Switch Stale Changes (Combined PE and Link failure)

In the next section, handling of link failure is explained.

4.2 Handling of a Link failure

Normally, PE;, processes the data available at its ¥z, and fHg, ports and when
it detects a fault in the data, the PE selects port IFg, for horizontal input (in
the case of a horizontal data fault). For a vertical data fault, it checks the switch

S5Y 4y and if Si‘.}j+l is in state STy, it selects the vertical input port [¥g,. For an

output OJ‘-’ fault (as stated earlier, the central processor detects this fault), switch

Sy o141 is checked and since it is in state STy, it invokes a reconfiguration of

vertical switches because here, it cannot use the data available at I¥g,. In this

case, A'S',‘,:4_,"IJ-+l and S}v:.jﬂ change the states of S&Hd and SY . from STy & STY

to STy and from STy & STY to ST7 respectively. These switches SY,,,; and

SV change the states of SY , and SY ._ again and so on, until .S’,‘,’lﬂ.y finds a

M, m+1,j- J-

switch S¥ | _, in state STy or in ST} (here the algorithm assumes that though

m+l,y-

is faulty, the switches S,‘,:'y, S,‘,’H,l'y and link Lg:::"” may not be

the link L?:‘;’;’,,:-, pel

faulty).
If in the array, shown in Figure 4.5, O fails, the algorithm changes the states
of S¥ 4120 Smgry and S¥oi o to STY and switches SY, ,, 5%, and SY 4 are brought

to state STy and outputs O} (0 < j < 2) are taken through the second output
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port.

Next, when Oy becomes faulty. it changes the states of 8%, (2 < j < 4) o
STy and S}, ; (2 < j < 1) to T3 and outputs O} (2 < j < ) are taken through
the second port.

The PE failure and the link failure algorithius are comibined in the next section,

4.3 Combined PE and Link Failure
Here PE and Link failures are discussed separately for the sake of clarity.
4.3.1 PE Failure (in presence of faulty Links)

As explained earlier, a P 2 failure is handled in two stages.

Vertical Data Routing - A PE;, failure affects the states of switches S}
(i £ £ £ m+1). These switches can be in any of the states ST, ST, STY
and STY depending on the occurrence of carlier fanlts (they cannot be in stales
STy and STY because these states can be reached only if there is a failed 11,
(0 £z £ m — 1), in which case the algorithm fails now due to the non-availability
of a spare cell).

When a PE;; fails at ¢, it starts the re-routing, which is done in Lwo stages.
The changes required for the interiediate stage and the final stage are listed below:
Intermediate stage - all switches SY ) (i £z < m+ 1) change state depending
on their current state. .S'XH_, changes from STY o STV or from STV 1o STY. If
it is in STy, it stays in STy . Other switches 57, (i € < m+ 1) change from
STy, STY and STY to STY, from ST to §77 and from STy o $7Y. 1f SY;,,
is in STY, it stays in S7Y. When a switch .5',-‘;"-“ (il > @) is in state STY or in
STY, the partial result of the PE;;_z; does not reach PF;; by above changes.
So when a switch S ., is in state ST/, the algorithm checks the switches S
(0 < z <) and finds a switch S} ; (0 < j1 < j) (nearest to S ), which is not
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in ST (when 911+l is in ST, the algorithm checks S} ;and if S ,isin ST}, the

algorithm checks S Again, if $% _, is in ST7, the algorithm checks SY _,.

1hg—-1
In this way, the algorithin goes towards S}y ; and finds S¥ |, which is not in ST3").
Lemma 4.1 - The switch SY |, cannot be in §7Y,STY, STY and STY; so it can
be only in one of the states STY, STV, STY and STy .

Proof - If a switch 5], is in ST}, the algorithm checks S . _; as specified in
the algorithm and S}, is not defined as S}

th e il,51°

When a switch S}y | is in STy or STy, it means that S, ,, is in ST} and
then SY ;41 would be taken as SY 1 and the algorithm will not check Sjy g

The switch, S ;; cannot be in STy, because it is assumed that failures occur
one at a time (and a switch can be in STY only during the intermediate stage of
re-routing). ‘ i
Corollary 4.1.1 - The switch, Sj{_, ;, cannot be in states 57}, ST and STy .
Proof - When a switch, S}_, ;_ is in ST or STY, it means that S}_, ; ., is in
STy and then SY | ., cannot be in STy (as will be shown in Lemma 4.2). So, here
the algorithm will take SY¥ ;. ,, as S}, and it will not check S} ;. This proves
that the switch, S{_, ;; cannot be in ST} or in STY. S}_,;, cannot be in STY
because only one failure occurs at a time. ]
Corollary 4.1.2 - When the switch, Sif ;, is in STy, S}_,;, must be either in
STy orin STY.
Proof - If S}{_,;, is in ST, it would require S} ;1 to be in STy, which is not
possible. Similarly, S} -1, cannot be § Ty or STy , because these conditions require
S} 1 to bein STV,

So, S,-‘,'_,.jl must be cither in STy or in ST . 0
Corollary 4.1.3 - When the switch, S ;; is in STV, Si{_; ;; can be only in STy .
Proof - When SY ;, is in STV, the switch, S}, ;, would be in 5Ty. So, S¥_, ;

cannot be in STY or ST} because in a column only one switch can be in §7} and
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STY (as will be proved in Lemma 4.2). The switch §}_, | cannot be in 873 or
STy, because it would require S} ;, to be in ST}

So, S}, ,1 must be in ST} ]
Corollary 4.1.4 - When the switch, Sy is in ST} or in 879, S,-p, must be
in STy . 0

If the switch SY | is in state STy or §T), the switches 8y (j1 < ¢ € j)
change state from ST} and S73 to STy} or from STV to STy and switches SY_,
(71 € y £ ) change state from STy and ST) to ST¥ or from ST} to ST, AL
the same time PE,, (j1 < y < J) start using the second vertical input port I},

If the switch 8§ is in state ST} or §T¢ (meaning that SY | is in ST}
and the link, Lig:l'.’i.,. is faully), the switches S'-‘,"y (J1 < y < j) change state from

STy to ST and switches SY_, , (j1 < y < J) change to STy Here it assumes

PBll,Jl
PEG g1

that though the link L is faulty, the switches SY_, 11, S0 and link

Si1,y141

Su’ioier May not be faulty. At the same time, Pl (j1 <y < j) select their

sccond vertical input port. If after selecting the second port, any PE detects an

inpul error, a fatal failure occurs.

Final Stage - At the next clock edge, ¢ 4 1, the algorithm does the following:

It changes Sz‘:,.j+l (i+2<c<m+1)from STY 1o ST, from ST 1o ST or
from STy to STy and in the case of a change from STy to ST} of switch SY .,
if i1 > i+ 1, the switches S| , and SY,, , (y was defined earlier in the intermediate
stage) are brought back to the states in which they were before intermediate re-
routing. S,-‘;-H does not change state during the final stage and S¥, ,,, changes
state to STy if it were in STy .

Lemma 4.2 - In a column j, only one switch .S"-‘:, can he in state S7Y.

Proof - Switch S,VJ goes to state ST\ if and only if vertical data routing path

requires bypassing of PE; ,_,.
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When column (5 — 1) of the PEs does not have any faulty PE, the spare cell,
PEn,-1, is bypassed by bringing SY, ; to ST and Sk, . to STY.

When column (j - 1) of the PEs has a faulty cell, PE;;_;, then this PE is
bypassed by bringing 57, to ST} and Siy; 1o STY. In this case the spare cell,
PEm, -1 becomes an active cell and switches S, ; and S,",:H'_,- go to STy . Now, if
another switch, S 5 is in ST, it means that PE;, ;. is faulty and it implies that
column (j — 1) of P13 has two faulty cells. Since the algorithm can tolerate only
one PF failure in a column, this condition lcads to a fatal failure.

So, in a working array, only one switch in a column can be in STV . o

Corollary 4.2.1 - In a column j, only one switch can be in state STY . O
Corollary 4.2.2 - In a column 7, only one switch can be in state ST:,V.
Proof - As shown in Lemma 4.2, column (§ + 1) can have only one switch, SXJ-H in
state STY . In this case, S}, ;,, would be in ST} and these two switches provide
the link LpE#14) (vortical data path between PEi_y;y and PEiyyjor; PEijoy is
bypassed).

At this stage, when PF,,, ;- detects vertical data error (vertical input link
failure), the algorithm brings S,VJ to STY (which will be discussed in the next
subscction - link failure handling). When SY; goes to §7Y, S, ; goes to ST{ and
these two provide an alternative data path between PE;_, ;_; and PE;4 ;. Since
in a column (j + 1), only one switch §}},, can be in ST, column j can have only

one switch §Y; in ST}, a

The following three corollaries can be proved similarly.

Corollary 4.2.3 - In a column j, only one switch can be in state ST} . O
Corollary 4.2.4 - In a column j, only one switch can be in state STy . 0
Corollary 4.2.5 - In a column j, only one switch can be in state STY . o

Lemma 4.3 - In the cvent of an active PE;; failure, switch .5',"",-_H can not be in

state STy, before the reconfiguration starts.
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Proof - Since before the reconfiguration starts, PL,, is active and it is getting
data from PE;_; ; and providing the partial results to PE 4., the switch, S,, 4
cannot be in state ST} 0
The following corollary can be proved similarly.

Corollary 4.3.1 - In the casc of an active PE,, failure, switch S, ;| can not be
in STY, before the reconfiguration starts. W

Some representatives cascs of P failure handling are discussed next (see
Figure 4.6).

Case-A shows the array reconfiguration, where the column (j + 1) of switches
provides all data links required by the intermediate and final stages. Here, before
the failure, the switches, S, | (i < i, < m)are in STY, S} | is in ST and
Swstjer is in ST,

When S, is in stale ST} (Case-B), then also all the paths are made available
by changing S,-‘;H to STY¥ and other switches to ST7 for the intermediate stage and
then by changing S%, 4, to §77 from ST and other SK,H (i+2<r<m+l)
from STY to §7y for final stage.

But when a switch, Si{ ;,, (il > i) is in state STy, the path L;:g::'_’,., cannol,
be provided by the switches in the column j 4+ 1. So other switches in row i and
i — | zre modified.

In Case-C, P& ; fails and the intermediate stage requires a link hetween Pl -y,
and PE;, j, which cannot be provided by the switches in the (5 + 1)th colnmn. So
the algorithm finds S} ;, in state ST, Duc to an earlicr PI5,_; ;- failure, S}_, |
is in STY and S}{; isin ST7. For intermediate stage routing, Sy, -, and S\7_,
are brought to STy and S¥ ;, and SY; are brought to STy .

Case-D is similar to Case-C, but here SY j, is in 57). So, Y ;; is changed 1o
STY. The other changes are the same as written for Case-A.

Case-E is another variation of Case-C, here S _, ;, isin STy. Si_, j, is changed
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to STY and other changes are same as written in Case-A.
In Case-F, S}_,,, is in ST3 and Sk is in STY. Nere Su-ry is changed to

STY and SK'J- is changed to ST} . The switches S} _, |, and SY.1 arein states 87

and ST} because PEY ,, detected a link failure earlier (and P-4y was faulty

Hﬂ.;-l

Eu-1,,-1 18

that time). The latest reconfiguration assumes that though the link l;:

sol.;
Snl—l.)

Sl‘.j

suo, ® fatal failure oceurs.

faulty, link L is not faulty. In the case of faulty L
If the links, which arc newly generated by using the switches of columns j,
(jz < ), are required by the final stage (when il = i 4 1), the algorithm does not
change the states of the switches generating these links. Otherwise at £ 4 1, these
switches go back to their prior-to-f)-state.
Horizontal Data Routing - This is exactly similar to the horizontal data routing
explained in the previous algorithm (only PFE fail algorithm). The reconfiguration,
invoked due to PE; ; failure, chauges the states of the switclies S,",'_) (1 < ip < mf-1),
cither from ST to ST or from ST to ST} during the internmediate stage of

rerouting. During the final stage, the states of the switches, S,','.JH (1<i, <m+1)

is changed, either from ST} to ST or from ST to STY!.

4.3.2 Link Failure (in presence of faulty PEs)

As explained earlier, each link is duplicated here. When a PE detects an error in
the data, available at its first input port, it invokes a reconfiguration and selects
the second input port. If a PE is using second input port, input data error leads
to fatal failure. The vertical and horizontal data paths are discussed separately.

Vertical Path - When a PE;; detects a fault in its input data (at port 1), it

does the following:

o if §;y isin STy, STy orin ST, , then the PE;; simply sclects the other

input port (I%g,),
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o clsc if S, is in ST, ST¢ or in STY, then the algorithm checks S)) and
if it is in $7Y, the algorithm checks SY;_; and so on, until it finds a switch
S,"’, (0 € z < j), which is not in state STY (here, S¥, would be in one of the

3T

states STY, STV, 8TY or STY, lemma 4.1 shows this) and then:

- if 8Y, is in ST, it changes all 8, (z < y £ j) from ST} to STy,
from STY to STY or from ST} to ST} and changes all S}, (z < y < j)

to STY from S73 and STY or to STY from ST} and select input port

I¥g forall PE;, (z <y <),

— else if Y, is in STV, it changes S, , to STy, 87, to ST} and changes
all S¥.,, (z <y < j) to STY from STV, to STY from STY and all 5},
(2 <y <j)to STY from STY, to STY from STY and select input port
g for PE;, (x <y £7),

- else if $Y, is in state STY or in ST}, it changes SY, (z <y <j) to
STy from STV, to §7¢ from ST} and all S}, (z < y < j) to ST{ from

STY, 8T from ST and sclect input port Ipg, for PE;, (z <y < j).

Some link failure reconfigurations are shown in Figure 4.7. Only the paths,
which are modified, are shown.

In Case-A, link failure is detected by PE; ;, but since the switch S}, is in STy,
no reconfiguration is done, P E;; simply selects the other input port. Similarly, in
Case-B, Si‘.,n-l is in 8T}, so no re-routing is done and the second input port is
selected.

In Case-C, link failure is detected by PE;; and the switch S}, is in STY due
to the carlier failure of PE;_, ;. Now the algorithm finds S};_, in STy and modifies
S¥jo1 SLy;to 8TF and SY_,, 5';“'5 to STY.

Case-D is similar to Case-C, but here SY., ;_, is in STV, so it is brought to

ST&’.
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In Case-E, PE,, detects the link failure and SY),; is in STY, so the algorithm
finds SY,_, in STY and changes it to ST . The states of S,V_,Ij_l, SY,, are changed
to STy and S, is changed to STY,

In Case-F, S¥,, is in 7} and $Y,_, is found in ST, Here. SY; is changed to

PE!—I,J—‘

STY and .5',‘{_,'_, is changed to STY. It is assumed that though the link Lpg

is faulty, the link, Lg:;‘., is not faulty. If this link is also faulty, PE;; would again

detect vertical input error and it would cause a fatal failure.
Horizontal Path - When a PE;; detects a fault in its horizontal input data,

it performs the following operations:
o il it is using 7}, it selects g,
e clse if it is using /M, it sclects If,,
e otherwise the algorithm fails and fatal failure occurs.

Theorem 4.1 - The cases shown in Figure 4.6 represent all the possible combina-
tions of vertical switch states, in the case of PE; ; failure.

Proof - The reconfiguration, in the case of PE;; failure reroutes the vertical data
hy changing the states of the switches in column (j +1). The states of the switches
in column (j + 1) depend on earlier PE and link failures in column (7 + 1) of PEs.
There are only four combinations of failures in column (j + 1) of PEs and these

are listed below,
. Column (j + 1) of PL's has no faulty PE or no faulty link,
2. column (j 4+ 1) of PEs has a faulty PE,
3. column (j + 1) of PEs has only link failures and

4. column (j + 1) of PEs has both PF and link failures.
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The effect of each of thesc failures on the reconliguration (which is invoked due to
PE., failure) is discussed scparately.
Column j + 1 has no faulty PE or no faulty link - here. colunm (§ + 1)
of switches would be in its initially set state and this corresponds to Case-A of
Figure 4.6.
Column j + 1 has only one faulty PFE - here also, column (f + 1) of switches
would be in its initially set state and this corresponds to Case-A of Figure 1.6.
Column j + 1 has only link failures - here the output links may be or may not
be faulty. When the output link is not faulty, column (7 + 1) of switches would not
be disturbed by thesc link failures and this is covered in Case-A of Figure 1.6,
When the output, link is faulty, S}, .., would be in STy and 8%, ., would
be in STY. In this case, the link L?}Em_u (the link that carries the vertical result
to the central processor from Pfpy ;) is not provided by the switches in column
(j + 1). Here, all switches, .S',‘,:H'j’ (0 € jr < J+1) would be in STV (as explained
in the subsection 4.2). This corresponds Lo Case-F of Figure 4.6, Here j1 = J, so

no switches would change state, The only difference here is that for Case-F, it was

El!—?,jl
4
I"ll.)l

) . s,
is faulty, link I,S::'j'm

assumed that though the link, L;: is not faulty, but
now this assumption is not required hecause SY +1,; did not reach STy due to the
link failure detected by column j of switches.
Column j + 1 has both faulty PE and faulty links - in this case, the failnres
affect column (j + 1) of switches only if Pfiip,4) fails and vertical input error is
detected by PEizqy41- It brings 5%, to STy and 5%, ., lo STY.

When (i2 < i—1), the swilches, SY ;,q (1 € iz Sm+1) are not aflected by the
above mentioned failures. This condition corresponds to Case-A of Figure 4.6,

When (i2 = i — 1), the switch, S¥, ;.| would be in ST} and SY;,, would he in

STY . This condition corresponds to Case-B of Figure 4.6.
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When (12 > 1 — 1), one of the links required by the intermediate stage (namely
link L,.E:"“) would not be provided by the column (j + 1) of switches. Here,
switch S%, 1,4 is renamed as S 5, for the sake of clarity and it can be either in
$TY orin STY. Cnce the algorithm finds S 4110 STY orin ST/, it checks 5',-,‘1-
and if it is in §7%, the algorithm checks SY,_, and se on, until it finds a switch,
S¥ 1» which is not in ST, Clearly all switches, S¥ . (j1 < j- £ j) would be in
STy and SY_, ;. would be in ST, The switch, SY ;) can be in any of the states
STy ,STY,81Y and ST} (as proved in Lemma 4.1).

When SY{ , is in S7Y, Sy 1,1 can only be either in STy orin STY (as proved
in Corollary 4.1.2) and these two conditions correspond to Case-C and Case-D of
Figure 4.6 respectively.

When S}, is in STV, SH_, ,, would be in 8Ty (as proved in Corollary 4.1.3)
and it corresponds to Case- I of Figure 4.6.

When SY j1isin ST or in §1¢, 8 _, ;; would be in STY (as proved in Corol-
lary 4.1.4) and it corresponds to Case-F of Figure 4.6. D
Theorem 4.2 - The cases shown in Figure 4.7 represent all the possible combina-
tions of vertical switch states in the case of a vertical link failure detected by PE, ;.
Proof - When a vertical link failure is detected by PE;;, the reconfiguration de-
pends on the state of switch S,.“;H. It can be in any state depending on the occur-
rerice of earlier faults.

When S, is in STy, ST or in STY, it means that PE;; is receiving the
input from PE;_,; and it corresponds to Case-A of Figure 4.7.

When S,-‘; +1 is either in STY or in STY, PE;; is faulty and no reconfiguration
ts invoked.

When SY;,, is in $1y, STy or ST} (here it can be in ST} because the inter-

mediate stage of rerouting always instructs the PEs to use the switches of column

(j + 1) and it may have faulty links before the failure of PE;;), PE;; receives
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vertical input from PE;_,; and in this case an alternative vertical data path is

required. For this, the algorithm checks the switch, S} and il it is in 87}, the
algorithm checks SY;_,. If 8!_, also is in 81, the algorithin checks 8, and
so on, until it find a switch, 8}, which is not in ST} (Si,1 can be in any of the
states STy, ST), STV or STY, as proved in Lemma 4.1).

When §7;, is in STy, 57, |, can be cither in T3 or in ST} (Corollary 4.1.2),
and these conditions correspond to Case-C and Case-D of Figure 1.7 respectively
(switch, SY., | is shown in STy; when it is in ST} or T3, the changes wonld be
the same).

When SY;, is in S7), SY.,,, would be in §7y° (Corollary 4.1.3) and it corre-
sponds to Case-E of Figure 4.7.

When SV .y is in ST or in STY', S,-‘f_,.j, would be in 7Y (Corollary 4.1.4) and
it corresponds to Case-F of Figure 4.7. m]

In the next section, a scheme for implementing this algorithm is proposed.

4.4 Implementation

A scheme is proposed here to itnplement the above algorithm for combined P K
and link failure handling. The proposed scheme uses an external clock (C'LK's) for
the switch state changes in the case of PE failures. Reconfiguration in the case
of a link failure does not need any external cloch., but when there is a PF (ailure
at {; (see Figure 4.8), two clock pulses are provided to the switches and the next
clock edge t + 1 is delayed. At ¢4, the first clock edge is applied to the switches Lo
complete the intermediate stage of reconfiguration. The on-time of ¢, depends on
the time taken by the PEs to check their inputs. If input checking time is L., then
the on-time of ¢,, ¢,,, = l. + 6L, where 8t depends on RR— propagation time and
switch settling time. This is done to ensure the proper routing of vertical dala in

the case of a vertical link failure detection between intermediate and final stages of
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Figure 4.8: Various Clock Signals
PE failure reconfiguration (due to an earlier link failure). At ¢+ 1, the second clock

edge arrives to the switches and completes the fina! stage of the reconfiguration,
The next pulse t + 2 to the PEs is also delayed to accomrmodate the switch settling
time,

In the case of a link failure at |, the next clock edge, t + 1 to the Pls is
delayed and no separate clock is given to the switches. Various changes required
in the network, processing element and switch module are given in the following

subsections.

4.4.1 Network

The network is made capable of:
¢ informing the central processor of the occurrence of PE and link failure;
¢ informing the central processor of the occurrence of fatal failure;

e invoking the reconfiguration,
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e providing the clock pulses to the switches and
e initiating the switches.

The central processor provides horizontal and vertical data inputs, P E-clock
(CLKpg) and switch-clack (CLKg) to the array and it receives reconfiguration
requests and output from the array. It provides a signal called SPE (Spare PE) to
the PEs of the bottom-most row. This signal brings the switches 5y, . and 87, .
{0 < j < n) o states STV and STY initially.

The network is shown in Figure 4.9.

4.4.2 Processing Element

Various control and data lines for a processing element are shown in Figure 4.10,
Fach PE gets four horizontal inputs (IHg,, I8, IHg, and IHg,) and two verti-
cal inputs (I} g and }p,). Similarly each PE has four horizontal output ports
(0¥ 0, O¥ 5, OF gy and O}l;,) carrying the same data and two vertical output ports
(O} and O}, ) carrying the same information.

Fach PE;; gets two control signals, RRggffw and SV L5 RR,’:g;jm is the

Sigtt
PE;, . .
g 2 is the command for sclecting

reconfiguration request from PEi_y; and SVIg

the proper vertical input port, There is no such SV control input for horizontal
input selection because the horizontal input port selection is done by the PE itself.

PE;; issues various control signals (reconfiguration requests) to other switches
and PEs. It generates LFg}'}{;“'J (link failure for vertical data) in the case of a
detected vertical input data error and it is sent to S;;+1. Another signal LF, EE’;".J is
sent to the central processor in the case of an input error (vertical or horizontal).
The central processor delays the next clock edge, t + 1 to the PEs after receiving
this signal. This declay time depends on the time required for RR propagation
and switch settling time. If PE;; detects a self fault, it sends RR,SJ‘E:; to Sij+1s

RREE 10 Siprger, RREE to Sirj and RRpE*™ to PEiy1;.
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Figure 4.10: Processing Element Lines for Combined PE and Link Failure

The block diagram of PE; ; is given in Figure 4.11. I8¢, and I¥g, inputs to PE; ;
come from Siy1; and /Hg, and JH;, come from S;; (see Figure 4.9) and depending
on the earlier reconfiguration either one of the pairs (IFgg, INg, or I¥g,, IH:.) is
selected by using MUX ~ C. Initially, PE;; receives horizontal data from S, .
using Ifg, input port and when it detects a horizontal input error, its Epy (error in
horizontal input) line becomes high and PE;; selects I¥g, in place of I8, Now,
if PE;; reccives RRpg:? ,,,» the H line is reset and H§ is made high, which selects
port Ifg, for horizontal input.

Once either I, or I}, is selected, Ery becomes 0 because the new data
are correct (it is assumed that only one failure can occur at a time), but Hg re-
mains high. Next, if the same PE detects another horizontal input error, it again
makes Ery high and the RR generating circuit (shown in Figure 4.12) generates a

fatal failure signal.
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Y0 and I%g, come to MUX — D and if vertical input error is detected. £y
becomes high and it is passed on to S ;41 as LFg'é:_‘:', which changes the switon
stales, if required, As explained previously, a PE failure may also require other
PIs to select their other vertical input port. This is done by the switch S, ;4.

Si;+1 generates S V!é"’;+’l, which is used by the PE to select the proper vertical

PE,,

S, oy s low, I¥ 5o is selected and a high SV selects I¥g,) .

input port (when SV /[
If a vertical input error is detected while SV [ is high, fatal failure occurs.

When the testing block of a PF detects a fault in PE’s logic circuit, it gencrates
an crror signal, £pog1c (Lhis signal remains valid until the array is taken off-line)
which is used to generate the Ri2s.

After loading the cocflicients, the central processor sends a signal, SPE (spare
PI’) 10 the PEs of the bottom most row (to spare cells), which is latched as SPEL.
SPE makes RR';'E:]’ and I?I?f;f’ lines high for some time, so that C'LKs brings

Swiand Sy (0 < j<n)toSTY and ST} respectively. SPEy is used to ensure
that no RRs arc generated by a spare cell, when it detects a self-fault or input
error,

The RR- generating circuit is shown in Figure 4,12. Various inputs and outputs
arc shown in the block diagram and the timing diagram of the output control
signals is shown in Figure 4.13. Figure 4.13.a shows the RRs generated by PE;;
when it fails at time ¢, and Figured.13.b shows the RRs generated by PE;; when
it receives RR:g:fw at {; duc to failure of PE; ; (i1 < i). When a faulty PE;,
receives RRSE::{‘_,, it generates fatal fatlure signal.

l'igure 4.13.c shows CLKpg, LFEE  and LFSE.":’ in the case of link failures.
At !, a horizontal data crror is detected and the central processor is informed but
no information is sent to &, jy;. At ty, a vertical data error is detected and both

the central processor and S; 4+, are inforined about this failure. All RRs are reset

at time ¢ + 1.
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4.4.3 Switch Module

As explained earlier, cach switch module, 8§, is a pair of switches, S,'.g and \.‘J
which are used to route the horizontal and vertical data respectively, Various data
and control lines for a switch module S, are shown in Figure 114, 1t gets L }"j\.‘};’..'_l
and RRggg, , from PE, . RREA_ | from PE_y,_, RRYR . from PE.y,.
RRi:z” from Sy, and Rh’:::::“ from S,,41 as control inputs and based on Lhese
data, it changes the switch state and generates RR::::;"’, I?.R::::;‘ aml b‘\'l_(-:_’;"""".

If PE;, fails at ¢; (sce Figurc 1.14), the central processor providos two elock
pulses to the switches by using a global switch clock line at ¢, and ¢ + 1. Av ¢,
the intermediate stage of the rerouting is completed and at £ 4 1 the final stage is
completed.

The delay, t,—t; depends on the switch settling time and the number of columns
in the array, because the RRs go from S, ,41 to Sy (i1 > §), if a switeh .S',‘,'_JH
is in STY (as explained in the algorithm). Similarity, (¢ + 1) — ¢, depends on the
PE processing time and switch settling time. The next clock edge to the PEs,
t + 2 is also delayed to allow for the switch settling time during the final stage of
reconfiguration. After ¢ + 2, the elock resumes its normal speed.

If a link fails at {3, next clock edge, t+ 1 to the PEs is delayed by a pre-specified
time to provide sufficicnt time for RR propagation and swilch seitling and after
t + 1, the clock resumes its normal speed.

Vertical and horizontal switches are discussed separately.

Vertical switch - It has two sub-circuits: the control circuit and the switching
circuit. The control circuit, changes the states of the switches and generates vari-
ous RRs, while the switching circuit provides the proper input-outjput conncctions
based on the state-data made available by the control circuil. Varions switch state

changes are described in the algorithm and to achieve the proper changes, the block

diagram shown in Figure 4.15 is proposed for the control circuit. For the sake of
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clarity, various signals are renamed as shown below:

A= RR3? do= RRY
Bi= RRS? Bo= RIS

C= RRpE_ ., D= RRG .
E= LFgg X= SV 1f.’," -

Once a PE;; fails at {,, various RRs are generated. If a link fails, & arrives
and it is latched as /5. which generates an Ag signal, if L,; is in ST orin STY.
Ly is reset at the next falling edge of the switch clock (C LK g) for the switeh S, ),
if S is in the intermediate stage of rerouting duc to PFE,_y ;- failure. Otherwise
it gets reset at L + 1, when £ goes low.

A; appears at S, ,. if S; ;41 nceds the state change of S, ;. In the block diagram,
82889 inform the present state of the vertical switch.

In the case of PE,, failure, the changes required by the reconfiguration algo-
rithm depend on the index of the switch. These changes are listed in Table 1.1,

X represents that the switch cannot be in this state. No switeh S7) can be in
states STY or ST without an carlier PE failure in colurn j, which canses fatal
failure new. Similarly, S} ., cannot be in ST, or STY (Lemma 4.3), because if

there is no previously failed #E in column j, only 5% ., would be in ST and

m.p+
only S¥ m+1,5+1 Would be in ST . In this case, only the failure of PI2,, , would find
S, j+1 in state STY and since PE,, ; is the spare cell, no reconfiguration is invoked.
Similarly, Sit1,j41 cannot be in STY (Corollary 4.3.1).

When 5 ;,, (i1 > i) (which is cither in ST} Vorin §TY) receives D, it generates

Ao. After receiving A;, S¥ . changes state cither to STY from STY & ST or to

il
STY from STy and it issues Bo to S¥_,;, which causes S¥_,  to change state
cither to STY from STy & STV or to ST from STY. I S% , is in STY, it again

generates Ag and RR propagates towards ;0 in this manner until a switeh, .S'x'],
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is found, which is not in ST}, S;;;; does not generate 4o and at the same time
Siy (j1 <y < Jj+ 1) instruct PE; -1 lo use the second vertical input port by
setting SV'1 signals. Ap and Bp change the state of the switches without using
the external clock. This is the reason behind delaying ¢, after ¢, so that all the
switches, which need to generate Ap and Bo can generate these signals and A; and
B; get sufficient time to change the state of the switches (because at t,, the switch
S j+1 changes state and Ao generated by this may not stay after that).

A; and By are latched as Fy, at the falling edge of CLKg and I, is used to
bring the switch in its prior-to-t-state, if the final stage requires so. I these
newly generated paths (gencrated by A; and By) are required by the final stage of
reconfiguration (when iy, =i 4 1), S,-‘f,H, resets Ap at ¢, and [, remains low,

A and By change the states of the switches according to Table 4.2, The next
clock edge ¢ + 1, to the switches brings the changes, listed in Table 4.3 (the states
of the switches before ¢ + 1 is taken from Table 4.1).

At { + 1, switches having Iy, = 1 go back to their prior-to-t,-state. At (¢ 1)Y
the reconfiguration is complete and all the RRs are resel.

In the case of a link failure communicated hy PE; ; to S; j+1, Ao is generated by
SV ifit is in STy, STY or $77. This Ao propagates towards Sip and gencrates
Bgo as explained earlier, until it finds a switch S,-"’j,, which is not in ST, The
changes caused by A; and B} arc listed in Table 4.2.

Since the changes depend on the physical index of the switch in the case of a
PE;; failure, Br,C and D are used to decode the position of the switches, For
Sij+1, Br and C are low and D is high (i.e. By C D is high). For Sipy 41, B C D
is high and for Siy,j+1 (i1 > i+ 1), By C D is high.

Three J — K flip flops (s3, sy and 3y) arc used to store the cnrrent state of the
switch and 3 D-latches (s21, 951 and son) are used to store the previous state of

the switches.
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Table 4.1: State changes for Intermediate Stage

State State after ¢,
hefore ¢4
Sii+1 | Sit1,41 Siin
(1y >i+1)
f} 1 7 7
1 X T 7
2 X X 7
3 3 6 6
4 5 5 5
5 X 5 5
£ X X X
7 X X X |

Table 4.2: State changes due to A; and By

Stale before the arrival
of A; and By

. State after the arrival
Of A[ a.nd B[

Due to A7 | Due to B;

P T B B e Cn e
DL G o o o L

Table 4.3: State changes for Final Stage

State State after ¢ + 1
before ¢ + |
Sig+t | Sirrg+l Sinj+1
(i1 >1+1)
0 X X X
1 1 X X
2 X X X
3 3 X X
4 X X X
) 5 4 4
6 X 6 3
T X 2 0

96




q

\
!

For bringing the switches to their prior-to-t,-state, reset and set inputs of the
flip-flops are used. For all the otlier changes the switches are clocked into their
new states. Since the external switch-clock, CL Kg comes only in the case of a
PE;; failurc and is supposcd to modify the switches of colunmn (j + 1) only, it is
AND-ed with D. A; and B; work as clock for all the switches S;y0 (J1 # J + 1)
So, D« (A; + By) is dclayed and OR-cd with D - CLKs to get the final clock to
the switches. D - (A; + By) is delayed to cnsure the presence of proper input at
flip-flops’ inputs before the clock cdge, C L Ny appears.

If the first rising cdge of CL Ng is blocked from reaching the J — K (lip flops

\‘ck(or the switch, SY, ;, il it is in STY, then various state changes (at the clock edge)

can be listed as in Table 4.4 (for generating this table, tables 4.1, 4.2 and 4.3 arc
combined). When SY ;, is in ST, the first edge of CLKs is blocked by using a
J — K flip flop and two gates. This circuit allows only the second rising edge of
CLKjs to appear as CL K gpp, if the switch is in STY.

At t + 1, Fr, brings the switches to their prior-to-f,-state using sel-resel inpuls
of the flip flops. £}, uscs the outputs of D-latches, sy, 3y, and sop, for bringing
the switch to prior-to-i,-state.

“or the J IK-flip flops, sel-resel inputs are listed in

Equation 4.1.

T?;= Fr-CLKs - sy, Sy= Ny,
Ri= F.-CLKs- sy, Si= Ry, (4.1)
Ro= FL -CLKs- sy, and So= R

The set-reset inputs go through tri-states to the flip flops and the iri-states are

activated only when these changes are required.
enableyistare = Fr, - C LK. (4.2)
Similarly, J — K inputs are derived and written in Equation 4.3.
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Table 4.4: State changes due to clock edge

State before State after the clock edge
the clock edge
BCD|B CD|BCD|DA| DB
0 1 7 7 4 3
! ! 7 7 5 3
2 X X 7 4 6
3 3 6 6 X 3
4 5 5 5 4 X
5 5 | 4 5 X
6 X 6 3 X 6
7 X 2 0 X X

Table 4.5: State changes using set-reset inputs

State State after the change
FL‘CLI\'S A[.E,Sg.sl.SO E.B;.sg.sl.so

0 X X

1 goes X X

2 lo X X

3 X X

1 prior-to X X

5 Ly X X

6 stale X X

7 5 6

Table 4.6: Generation of A

State | B; CD | BiICD | BiCD | A/D | EL,
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 1 1
3 0 0 0 0 0
4 0 1 1 0 0
5 0 * 1 0 0
6 0 0 0 0 0
T 0 0 0 0 1
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Jo= K, =JKR, BIED(EE + 828150) + B1C D57 + 8¢) +-Ij.‘1;(:ﬁ'_g‘) + TJBI(TS.\‘}IE)

Ji=Ki=JK, = B;CD(E; 51) + BiCD(57 57+ s28180) + DAy(s) + DBYED)
Jo=Kp=JKp= E; -C.‘-D('b—f )+ B[.C‘.D(ST Jp + Fasy + 9gsp)+

BiCD(ST S5+ 81 + 83)+ D B3 o)
(1.3)

Bg is gencrated, whenever C or A; is there, therclore:
Bop = C+ Ay, (1.-1)

Ao is generated depending on the switch state and various inputs. In the case
of PE;; failure, Ap is gencrated by the switch 8,40 (11 < 2), which is cither
in state STY or in STY. When a switch, which is in ST} or ST, reccives Ay,
it generates Ap. Any Ap generated by Sy (i1 > @ + 1), stays high b 141,
so that [y, stays high for bringing various switches Lo their prior-to-t,-state, if
required. Various comnbinations for generating Apy are listed in Table 4.6, The
entry for B;+C - D, corresponding to state 5 is marked as **', because this condilion
generates Ap, which stays high only until the rising edge of C' LK g arrives (even
though the switch remains in STY).

Consequently,

Ao = Aoi + o2,
Aog; = B[ED(SQF{SQ) - high from ¢, to (, and

Aoz = BrCD(s;57 %) + B1CD(s357) + Ar(3331%) + F1(539135 + 9251 50).
(4.5)
S Vfgf""" is generated by S); and it is used by PJ;;—, for selecting the proper
vertical input port. If PE;;-, is using input port [} and input error is detecled,
SVIgf""' is made high and 7Y, is selected. Now, if SY; receives D, it resets

S'VI;.F;""”" and again I, is selected. When SY; isin STy or in $17 and alink
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Figure 4.16: Block Diagram of the Horizontal Switch (combined PE and link failure
algorithin)

failure signal arrives, Ap is generated, which moves towards S; o, until it finds S,-"’J-,,

which is not in STY . In this case, it SVI§ " is high, it means that PE;, is using
¥, due to carlier link failure. In this case, during the final rerouting, SVI;f::’I
is nol reset.

Horizontal Switch - This also has two sub-circuits: control circuit and switch-
ing circuit. The block diagram of the control circuit is given in Figure 4.16.

When S7! reccives RRp,_, , it toggles either from ST to ST/ or from ST¥
to STi'. Similarly, when D - By is ‘1°, the t + 1 edge of CLK s toggles it from one
state to the other. For this, D - B; is latched at the falling edge of CLKg and the
latched signal is AN Ded with CLK's to generate the clock for the flip flop.

The testing block of the switches tests the logic circuit of the switches and the

F'F signal is gencrated, when a faulty switch receives any reconfiguration request.

The operation of the algorithm is shown in the next section.

4.5 Operation of the Algorithm

Consider the array, shown in Figure 4.17, which has no faults at ¢;, at which time
P E;; detects a vertical input error. Immediately, PE; ; generates LF] EE’;" , (which

delays the next rising edge, { + 1 of CLKpg) and LF, ,f;;{j‘ When §; ;4. receives
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Figure 4.17: Operation of the Algorithm (combined PE and link failure algorithin)

E, it makes Ey, and X high. X is fed back to PF;;, which selects I}, in place of
I¥po and it resets E, because the second link is non-faulty.

Let us assume that at i, PE;_,,; fails and various RRs are generated, S;_y 4.
receives D, §; ;41 receives By & D and S;, ;41 (1 < i < m+1) receive By, C & D,
Once S; ;41 receives D, it resets X and PE; is forced to select 1), again. 13),C & D
change the inputs of J — K flip flops and the new inputs are listed in Table 4.7.

At ts, the positive edge of CLK s arrives and the switches change their states

depending on the J — K inputs. These changes are listed helow:
o SY 41 goes to ST and
¢ SV (i<iz <m+1)goto STY.

At ty, PE;, ; (i—1 £ i, € m) generate RR,S,'E“{:", which brings S¥ (i <i, <m +1)

Fiy 41,
B,

to STH (required for the horizontal data intermediate stage routing). Rli’,;:
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Table 4.7: J ~ K flip flop inputs at ¢

Flip-Flop Inputs at ¢,
Inputs | S, 0 | Shin _ St 4 Smi+1 | Smar541
1<iz<m
JIK, 0 1 1 1 1
J K 0 1 1 1 0
J Ky 1 1 1 0 1

[

makes P F;_4,; select the other horizontal input port pair (here it selects “IF, and

1.7,
Since the carlier vertical input error was detected by PE; ;, it rcappears again at
Ly (after the re-routed data are checked). There are two possibilities of its detection
and they are written next (if the catlier line failure was due to switching circuit
failure, it would not appear during the intermediate stage because the switch has
changed state and a different path is in use).
Case A - If the first vertical input error was due to the failure of link L,S,‘g-f_‘,d,
then PE;;,; would now detect a vertical input error at 3. In this case, at i3,
PEi4.,; generates LFSE +1, (Which delays the next CLKpg and C LK edges) and
LI",f'é'.:'::’. Once Siy1,j41 reccives E, it latches it as £, and generates X, which
makes Py ; select [¥, in place of [¥gy. At the same time, Siy ;41 generates
Ag, which is passed on to Si;1,, which in turn gencrates Bg and feeds it to S; ;.
Ay and By change the inputs of J — K flip flops of S}, ; and S}; respectively. The
ncw inputs are listed in Table 4.8. These A; and By appear as C LKpp after a
delay (which ensurcs the presence of proper information at the flip flop inputs) and
it changes the states of S}, ; and 8} to ST, and STy respectively. The previous
states get latched in the D-flip flops. (A + By) gets latched as Fr, at the falling
cdge of CLKs (at t4). Here, (A7 + B;) would be high at t4, because Ej gets reset

at t+2 and Ag (of Sip1,j41) is high at t4.
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Table 4.8: J ~ A llip flop inputs dueto A7 and 13

Flip-Flop | lnputs due to 4y and 13
Toputs | Sk ¢, sY
Iy 1 0
JI 0 1
JKy 0 1

Table4.9: J -~ K {lip flop inputs at £ 42

Flip-Flop Inputs at (+2
SLijrt | Sin Si 541
t<i, K m+l
J K, 0 ! 1
J K, 0 0 1
J Ky ¢ 0 l

Case B - If the first vertical input error occurred due to the failed link Lg.ﬁ';’l,
then PE;; will report vertical input error again and the same changes occur, which
are explained earlier in Case A, but here A; + B; would not stay as Iy, till [+ 2,
because Ey, gets reset at {y and it resets Ag (of Sij41).

At t}, the J - K inputs of the flip flops change again due to a changein the
switch state. Thenew inputs are listed in Table 4.9. At £ 42, the next clock edge of
CLK's appears and it completes the final stage of reconfiguration by changing SY; 4 |
to STY and SY .., (i <i: < m+1) to §T). At the sametime, if the previously
explained Case-A is valid, 5, , ; and SY; are brought back to STy (because Fy, is
high at {42, which enables the sel-resel tri-states and these asynchronous inputs
of the flip flops load the previous states in these flip flops) and X (of S\y541) is

reset by Ap - CLKs. Thereis no change in the states of Si}, , and Sy, for Case-1B
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at ¢t + 2. Clock edge ¢ + 2 changes S{:'j“ (i—1<i;<m+1) to STH nowand it

completes the total reconfiguration.

4.6 Concluding Remarks

in this chapter an on-line reconfiguration scheme for PE and link failures was
discussed. Here an extra row of cells (called spares) is provided to the array and
in the case of a detected PE failure global shift is performed for the corresponding
column. The links are duplicated to provide link redundancy and link failures
are detected by checking parity bits. The redundant vertical link is taken through
different data path than the original link because in this configuration, the complete
failure of a awitch block will have lesser effect on the overall reliability. When a
horizontal link fails, the PE automatically selects the other horizontal input port
and when a vertical link fails, the PE informs the neighboring switch about this
failure. The neighboring switch invokes the switch state changes and commands
the P E {0 select the other vertical input port.

The control circuit for the P Es and switches were designed and the network was
modified to support the algorithm. It was proved that the proposed eight states
of the vertical swilches and two states of the horizontal switches are sufficient to
support the algorithm.

Here it is assumed that the link failures are detected by the P Es by using parity
bit checks. The number of parity bits can be chosen depending upon the reliability
requiremnent. With one parity bit only odd number of bit errors can be detected.

The algorithm is evaluated in the next chapter,
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Chapter 5

Algorithm Ewvaluation

The reconfiguration algorithms are evaluated based on the following criteria [19]:

o probability of survival - defined as the probability of correct reconfigurations
in the presence of z faults, z < S, where S is the number of spare cells in the

array,
e locality of interconnections,
o time complezily of reconfiguration algorithm and

o area complezily of the switching and routing circuits.

These features are conflicting. It is possible to develop an algorithm which is
simple and maintains high locality, but the probability of survival degrades in this
case for an increasing number of faults.

The proposed algorithm maintains high locality by allowing only one downward
shift in the case of a failure. The algorithm introduces very small time delays when
a fault occurs. It is assumed that the central processor provides the clock pulses to
the PEs and switches, When a PE fails, the central processor reduces the clock
speed for next two clock periods. This can be achieved by simply blocking the on-
period of the clock, when the delay is required. If this method is used, the failure
of any PE would introduce a delay of 2 clock periods in the operation and a link

failure would introduce a delay of | clock period in the operation.
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‘The increase in the complexity of the switching circuit is not large for the only
PE failure algorithm, but the switches and the network are slightly more complex
for the combined PI. and link failure algorithm.

'The probability of survival is derived analytically first and then simulation re-

sults are presented,

5.1 Analytical Results

We consider a4 x 4 active array, which needs a physical array of size 5 x4. The array
has 4 spare cells, 20 vertical active ".uks and 20 horizontal active links (including
input and output links).

The PE and link failures are considered separately in the following subsections.

5.1.1 Probability of Survival After a PE Failure

The above mentioned array cannot tolerate more than four PFE failures, because it
has only four spares. As explained carlier, each column can tolerate only one faulty
PE,

One Failure - The probability of survival in this case is 100%, because the first
fault is always tolerated.

Two Failures - If the first fault is in column 0 and second fault occurs in one
of the remaining columns, the array can tolerate these two faults and the total
number of combinations for this occurtence is 5 x 15, because there are five PEs
in column 0 and fiftcen PEs in other columns. Similarly, if the first fault is in
column 1 and second fault occurs in any one of the remaining columns, the array
can tolerate these two faults. Since, the case of one fault in column 0 and the
other fault in column 1 is included carlier (where column 0 has the first fault and
column 1 has the second fault), the number of combinations for the occurrence of

two reconfigurable faults (which arc tolerated by the algorithm), with first fault in

106



column 1is 5 x 10, because there are five PEs in column | and ten PEs in column
2 and column 3. So, the total number of combinations for two reconfigurable fanlts

can be written as:
Suceess, = 5x 194+5x%x 10+ 5 x 5.

. . 20
Total number of combinations for 2 faults is ( o )

The probabilty of survival for two failures is:

P = Successy 754 50 4 25
T 0\ T 190
2

Three Failures - The number of combinations for three reconfignrable faults can

= 0.7895 = 78.95%. (5.1}

be written as:

1. one fault in column 0, one in column | and one fault either in column 2 or in

column 3; 5 x5 x 10 = 250,

2. onefault in column 0, one fault in column 2 and one fault in column 3 ; 5x5x5

= 125 and

3. one fault in column 1, one fault in columnn 2 and one fault in column 3

9 x5 xa =125,
So,
Successy = 250 + 125 + 125 = 500.

The probability of survival in the presence of three faults can be written as:

p, = Suecessy 300, 1ag6 = 43.86%. (5.2)

20 \ 1140
3

Four Failures - The numher of combinations for four reconfigurable faults can

be written as:
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1. one fault in column 0, one fault in column 1, one fault in column 2 and one

fault in colurnn 3: 5 x 5 x 5 x 5 = 625.
So,
Successy = 625.

The probability of survival in the presence of four faults can be written as:

Success, _ 625
20) ~ 4845
4

5.1.2 Probability of Survival After a Link Failure

P4=

=0.1290 = 12.90%. (5.3)

There are 20 vertical and 20 horizontal active links in the array. When an active
link fails, it is replaced by the spare link and the spare is then called the active link.
'The algorithm checks only the active links. So for this calculation, only the active
links are considered. The links are designated depending on their destination. For
example, the link carrying the vertical input from the central processor to PEgyg
is named as V.link (0,0). Similarly, a link carrying the horizontal data from PEZ,
to PE{, is named as H.link (0,1). So, the links can be taken as array elements
and vertical link array ( V_link array) would be a 5 x 4 array with elements from
(0,0) through (4,3). The bottom most row of elements represents the links, which
connect the vertical output of the array to the central processor and since the
switches, providing these links, are in STY and STY, it is assumed that the last
row of links (array elements) can survive only one faulty link (element). All other
array elements can survive one fault. Since in the event of a link failure, the spare
link replaces the faulty link and the spare is given the same index (making that
clement of the array active again), each element of the array can fail twice. The
second failure of any array element leads to fatal failure. Similarly, the horizontal

links can be written as a 4 x 5 array (H.link array), where the elements of column
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4 represent the links, connecting the horizontal output of the array to the central

processor. Here, each array element can survive one failure and the second failure

of the same element leads to a fatal failure.

One Fault - The probability of survival in this case is 100%, because one fault is

always tolerated.

Two fauvits - When clement (0,0) of the V_link array fails first, the failure of any

other element in V.link array and H_link arrayis tolcrated, but the next failure

of element (0,0) of the V.link array leads to fatal failure. The number of the

combinations of two reconfigurable link failures, with V.link(0,0) as the first failure

is:

19 (remaining V.ink array elements) + 20 (H link array elements) = 39

and with (0,0) as the first failure, there are 40 combinations of two failures.
Similarly, when element (0,1) of V_link array (ails first, the number of combi-

nations of two reconfigurable faults would be 18420=38., Failure of clement (0,0)

is not included here as the sccond failure because this combination (failure of {0,0)

and (0,1)), is already included in the first case (where (0,0) is the first failure). The

number of possible combinations of two failures in this case is 39.

So, the total number of reconfigurable two failures is:
Success; = 539 — ¥3 = 774,

where Y3 is the number of combinations of two faults, with both faults in the
- bottom most row of V.link arrey (it is assumed that the bottormn most row can
tolerate only one fa.ulf).

The total number of combinalions for two link failures is 3~ 40 = 820.

So the probability of survival in presence of two faulty links is:

174

Pg=§'2—0'

= 0.9439 = 94.39%. (5.4)
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Three Faults - The number of combinations for three reconfigurable faults can be

derived as follows:

1. when V.link (0,0) is one of the faulty links, the number of combinations would
he ( 329 ) - ( g ) = 735, where ( ; ) is the number of combinations with
two faults in the boltom most tow of V.link array,

2. when V.link (0,1) is one of the faulty links (but V_.link (0,0) is not faulty),

the number of combinations would be ( 328 ) - ( ; ) = 697 and so on.

So, the number of combinations for three reconfigurable faults can be written

as:

39 J8 37 2

Successy = [( 9 ) + ( 9 ) + ( 9 ) + ... + (2)] -~ B and

_ 1 22 21 20 21 20 20
wewox(3) e () (1) (T)+(3) () (T)
where B is t.hé number of combinations of two or more faults in the bottom most
row of V_.link array.

The number of combinations for three faults is:
Combinationsg = Y40 + >39 + 38 +... + L

So, the probability of survival for three link failures is:

Successs 9660
P; = Combination, — 11480 0.8415 = 84.15%. (5.5)

It can be observed that the analysis becomes increasingly complex as the number
of failures increase. Therefore simulation is used to get the values of probability of

survival for a greater number of faults,

5.2 Analysis of Simulation Results

As explained earlier, it is difficult to calculate the probability of survival, for large

number of faults and large arrays using an analytical method. So a computer
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program is written (the basic control flow of the program is given in Appendix A)

to simulate the algorithm with a view to calculate the probability of survival.

5.2.1 Simulation Software Outline

The simulation program injecls the specified number of faults randomly and checks
the outcome of the algorithm. For an example, when the program needs to inject
one PE and one link failures, it generates a random number PE_LINK, which
can be either ‘0’ or *1’. When it is ‘0’, a PE failure is injected in the array. For
this, the index value (i, ) is generated randomly and failure of PE; ; is injected
and reconfiguration algoritlim is performed on the array.

When PE_LINK is '1’, a link failure is injected. Here, another random num-
ber, H_V is generated. When //_V is ‘0’ (‘1'), horizontal (vertical) link failure is
injected by randomly generating the index (Z,j) of the link. This program does not.
assume that the bottom-most row of the V_.link array can tolerate only one fanlt
(as was assumed for the analytical calculation). Instead, here a random nuinber is
gencrated, which provides the information about the outcome of the algorithm for
the failure of O} link in presence of faulty OY (i1 < 7). When O} fails in presence
of faulty O;f'l (71 > j), fatal failure occurs. The program simulates the algorithin
completely by changing the states of the switches, P Es and links and checking the
outcome.

The program injects the specified number of faults for a specified number of
times n (by going in the same loop) and every time it starts with a fresh array
(fault free array).

Every time the program enters the loop (the process is called a trial), it returns
one of the two possible outcomes, success, S or failure, . An outcome of S informs
that the reconfiguration attempt was successful and F indicates the occurrence of

a fatal failure.
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5.2.2 Confidence Level of the Simulation

In this simulation, the trials are independent of each other, because every trial
starts with a fresh array and thus the probability of success remains constant from
trial to trial. These trials are called Bernoulli trials and the random variable X,

which denoies the number of successes in n trials has a binomial distribution given

by p(z) and:

plz) = ( . )-P’-(1-p)""’, z = 0,1,2,...,n
=0

otherwise,

where, p is the probabilty of success of any random trial.

The binomial distribution approaches the normal distribution in the limit as n
becomes large. In general, the approximation is fairly good as longasn-p > 5
andn-q > 5, whereq = (1-p).

The probability density allows one to find the probability that the data would
assume some value within a specified range at any time. A normal density function
f(z) (shown in Figure 5.1) determines the shape of the plot. When the number of
successful trials is X for n trials, the probability of success for a randomly selected

trial can be estimated as:

(5.6)

3>
1l
3 156

where p is called the estimate of p.

Now, two values p; and p; (which are functions of p) can be determined in such
a way that the probability of p lying between p; and p; is (1 — a). That is:
Pp<psp) = 1-a
Therefore (p,,p3) forms an interval, which has the probability (1 — a) of capturing

the true value of p. This interval is called the confidence interval and (1 — ) is

called the confidence coefficient (confidence level) [22].

112



AT,

L AT ST T R e T O TR T

W, TFTUT R 4TRSS

Arca=a/2 Arca=a/2

7}

“Zafr O <af2

Figure 5.1: Normal Density Function

The confidence interval for p can be written as:

X ) X [p-q
— —za2tf — < p < — + za/2\ —, 5.7
n »/2 n =P= n+ o/t n (”)

where p and § are the estimated values of p and ¢ and :,,/2.\/"’7“1. is the margin of

error E in the estimated value. So,

E S zpy 2, (5.8)

&l

2
n> (_a_ﬂ) e (5.9)

which gives Equation 5.9.

E
For the simulation, the number of irials is calculated based on equation 5.9. The

A

maximum value of . § is 0.25, when p = ¢ = 0.5. If we want the confidence

level to be 95% and the half width of the confidence interval to be 2%, then

; Za/2 2
> 25, 5.10
”—(0.02) x 0.25 (5.19)

For a confidence level of 95% (o = 0.05), 2./, = 1.96 (from the cumulative

normal distribution table [22]). So,

> (1%)? .25
n —-(u.oz) X (5.11)

2 2401,

Now, if the total number of trials is more than 2401, it can be said confidently

that the probability of success in any random trial is p & 2%, 19 times out of 20.
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5.2.3 Probability of Failure

The probability of survival goes down with the increasing number of faults but
the probability of occurrence of a large number of faults also goes down. In any
array as the failures can he reasonably assumed to be independent, the binomial
distribution can be used to calculate the probability of occurrence of z failures (the
active array size is m x n).

If we consider the PE failures, total number of PEs in the array is (m+1) x n,

so probability of z PFE failures is,

m+1).n m41)n—z
Pepr = (( x ) ) PPE - QLE hm-z,

where ppg is the probabilty of failure for P Es. llere, the value of ppg would be very
small therefore the Poisson distribution can be used to approximate the binomial
distribution and then

e~ PE.A% E

x!

Prrg =

where \pp = (m+1)-n.ppg.
Similarly, the probability of z link failures is

e~ Mink. A%
x!

Py link =

where Mine = [(m+1) n+m-(n+1)] piink. Here (m + 1) < n is the number of
active vertical links and m - (n + 1) is the number of active horizontal links. It is
assumed that the probabilitics of a horizontal link failure and a vertical link failure
are both cqual to py,.

Since the occurrence of PE failures and link failures are independent of each
other, the probability of 2, PFE failures and z, link failures can be written as:

PI’Ea:,,link:zz = P.‘n,PE' x Pa:g,h'nk

Y A% -Apink.\¥2
=T TPEApg oo BN Nk
:.'1! .1’.‘2! *
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The probability of occurrence of various failures for a «f x 4 array are listed in
Table 5.1 (assumed ppg = 10~ and pj = 107%). The probability of switch and
link failures is less than that of PEs because the PE circuitry is more complex

than that of switches and links in most cascs.

5.2.4 Simulation Results

The results of the simulation program are listed in Table 3.1 for various values of n
for a 4 x 4 array (the maximum number of injected PE faults is four and injected
link faults is three). The first column in the table gives the number of fanlty
PEs (i) and the second column gives the number of faulty links (j). T'he joint
probability of : PE failures and j link failures is listed in column 3. The estimated
probability of survival is listed in the other columns for various values of n. Il can
be seen that the estimated value of p becomes stable, once n becones large. The
complete table of outputs (for n = 3000, arrayv size = 4 x 4, maximum number of
PE faults = 4 and maximurmn number of link faults = 7 ) is given in Table 5.2 and
various confidence intervals are calculated and listed in the same table (for 95%
confidence level). The first two columnns of the table give the number of PFE and
link faults. The estimated probability of survival (p, output of the simulation) is
given in column 3. The confidence-interval is calculated based on i and listed in
column 4.

It can be seen that the analytically calculated values of probabilily of survival
are well within the confidence interval (calculated from the simulation resulls) for
PE failures but they are below the confidence interval for link failures. It is because
of the assumption, that the bottom most row of V.link array can survive only one
fault, which was made for the analytical calculation.

The overall probability of survival for a 4 x 4 array is calculated based on

tables 5.1 and 5.2 and it is 99.903%.
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Table 5.1: Estimated Values of Probabilities of Survival (Array Size=4 x 4)

Number | Number | Probability Estimated value, p (%)
of PE | of link of this
Faults faults occurrence | n=10 | n=100 [ n=1000 | n=2100 | n=5000
@ | ) -
0 9.97 x 10~' | 100.00 | 100.00 { 100.00 | 100.00 [ 100.00
0 1 3.99 x 10~ |100.00 | 100.00 | 100.00 [ 100.00 | 100.00
2 7.98 x 10-'° 1 100.00 | 92.00 95.30 95.00 95.82
3 1.06 x 10~14 | 50.00 | 87.00 88.80 88.76 88.12
0 1.99 x 10~ | 100.09 | 100.00 | 100.00 | 100.00 [ 100.00
1 1 7.98 x 10~% | 100.00 | 100.00 99.70 99.43 99.50
2 1.60 x 10~'2 | 90.00 | 95.00 94.10 95.76 95.38
3 2.13 x 1071 | 90.00 | 86.00 87.80 87.42 87.90
0 1.99 x 10°% | 80.00 | 77.00 77.10 76.86 78.60
2 1 7.98 x 1077 40.00 [ 78.00 78.40 79.19 78.18
2 1.60 x 10> | 90.00 | 72.00 71.00 75.43 74.54
3 212 x 107 | 80.00 | 71.00( 69.70 | 69.62( 67.48
0 1.33 x 10~? | 40.00 { 49.00 43.40 45.00 44,78
3 1 532 x 10~14] 40.00 [ 40.00 41.80 42.43 43.24
2 1.06 x 10-'¥ | §0.00 | 36.00 41.50 40.81 41.02
3 1.42 x 10-8] 40,00 [ 41.00 39.90 35.71 37.40
0 6.65 x 10-13 0.00 | 22.00 14.90 12.71 12.82
4 1 2.66 x 10~17 0.00 | 11.00 12.20 12.90 12.32
2 532 x 107%* ] 20.00 | 14.00 12.00 9.86 12.32
3 7.10 x 10=%" | 30.00 | 10.00 11.50 11.76 10.70
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Table 3.2: Estimated Values of Probabilities of Survival (Array Size={ x 1)

Number | Number Estimated Confidence Interval
of PE | oflink Probability, p n=3000
Faults | Faults | {from simulation) | (Con fidence level = 95%)

0 100.00 100.00 - 100.00

| 100.00 100.00 - 100.00

2 93.77 95.05 - 96.19

0 3 87.50 56.32 - 88.63
4 T7.30 75.80 - 78.80

b 65.80 64.10 - 67.50

6 55.13 53.35 - 56.91

7 d43.47 41.69 - 45.24

0 100.00 100.00 - 100.00

1 99.43 99.04 - 99.62

2 95.17 94.40 - 95.93

1 3 38.10 87.25 - 89.55
4 77.30 75.80 - 78.80

] 64.67 62.96 - 606.38

6 54.80 53.02 - 56.58

7 41.73 39.97 - 43.50

0 79.17 77.71 - 80.62

1 77.77 76.28 - 79.25

2 74.50 72.94 - 76.06

2 3 69.00 67.34 - 70.66
4 61.67 59.93 - 63.41

3 51.37 49.58 - 53.16

6 43.90 42.12 - 45.68

7 35.27 33.56 - 136.98

0 13.47 41.69 - 45.24

1 43.93 42.16 - 45.71

2 42.47 40.70 - 44.24

3 3 37.83 36.10 - 39.57
4 33.47 31.78 - 35.16

5 28.50 26.88 - 30.12

6 24.57 23.03 - 26.11

7 20.53 19.09 - 21.98

0 12.07 10.90 - 13.23

| 12.50 11.70 - 14.10

2 15.20 13.92 - 16.48

4 3 10.40 9.31 - 11.49
" 4 9.80 8.74 - 10.86
5 8.03 7.06 - 9.01

6 7.27 6.34 - 8.20

7 6.13 5.27- 6.99
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Various probabilities of survival for different array sizes are listed in Appendix B

for 95% confidence level,

5.3 Concluding Remarks

In this chapter, the proposed algorithm was evaluated. It was shown that this
algorithm introduces a delay of two clock periods for PE failures and of one clock
period for link failures. Therefore it can be inferred that the time overhead is very
small.

The locality of interconnections is maintained here by using global deformation.
The amount of increase in the hardware is very small for the only PE failure
algorithm but it is slightly more for the combined PE and link failure algorithm
due to complex vertical switch control circuit.

It can be seen that though the probability of survival is less for large number
of faults, the probability of this occurrence is also low. The overall probability of

survival of this algorithm for a 4 X 4 array is 99.903% (assumed ppg = 10~* and

Piink = 107°).
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Chapter 6
CONCLUSIONS

The processing speed of a computation can be increased by ensuring multiple com-
putation per memory access. Systolic arrays accomplish this and in addition these
arrays provide modularity and regular data flow.

To improve the yield and reliability, various fault detection and reconfiguration
schemes are used. In Chapter 1, the concept of systolic arrays was explained and
various existing reconfiguration algorithms were discussed. It can be seen that
most of the existing schemes are efficient for improving the production time yicld
but they are not suitable for run-time reliability improvement because they need
an external processor to run the algorithm. In addition these schemes assume the
network to be always fault-free, which is difficult to achieve. The scheme, proposed
here, does not assume a perfect switching network and it is capable of tolerating
the link failures also.

The scheme proposed in this report can be used efficiently for on-line reconfigu-
ration to improve run-time reliability. The algorithm for PE failures was presented
in Chapter 2. A bottom row of spares is provided to the array and in the case of a
PE failure, a global shift is performed, if the apare cell (for the particular column)
is available. The PEs are of a self-testing type and in the event of a fault detection,
PEs invoke the reconfiguration by generating the reconfiguration requests.

An algorithm for PE and link failures was presented in Chapter 3. Here, each
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link is duplicated and a bottom row of spare cells is provided to the array. In the
case of a PE failure a global shiit is performed if the spare cell (for the particular
columnn) is available. The link failures are detected by using parity bits, the PEs
perform parity checks on incoming data and any error in the incoming data is
taken as the incoming link failure. In the event of a horizontal link failure, the
processing element simply selects the second input port, if it is using the first
input port. If the PE is using the second input port and it detects an input data
error, a fatal failure occurs. In the case of vertical link failure, the PE invokes a
reconfiguration by generating a reconfiguration request. Various states were defined
for the switches and it was proved that the proposed number of switch states is
sufficient to implement the algorithm.

A central processor is linked to the array for providing the inputs and receiving
the outputs. The central processor controls the clock input of the array and when
a fault occurs, the central processor inserts delays in the clock as required by the
reconfiguration algorithm. This algorithm makes full use of non-faulty partial re-
sults after the occurrence of a fault and it does not require flushing of the array
every time a fault occurs.

The probability of survival for this algorithm was calculated analytically in
Chapter 4. Next, the simulation results were presented. The simulation program
injects random faults in the array and checks the outcome of the algorithm. The
probabilities of survival were estimated based on the outcome of the random fault
injection and a 95% confidence interval was defined for each estimated value. The
number of trials was calculated based on a maximum margin of error of 2% and
on the required value of the confidence level (which is assumed to be 95% here).
The simulation results were analyzed in Chapter 4 and it was shown that the
overall probability of survival is approximately 99.903% for a 4 x 4 array (assumed
probability of PE failure = 10~% and probability of line failure = 10~8).
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[t was shown thal the probability of survival after a fault occurrence decreases
with the increasing number of faults but it is overshadowed by the fact that the
probability of occurrence of faults also decreases with incrcasing number of faults.

In the next chapter some suggestions for further research are given,
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Chapter 7

SUGGESTIONS FOR
FURTHER RESEARCH

In this report an algorithm for on-line reconfiguration was presented. This al-
gorithm can be extended in various directions depending upon the requirements.

Some of the extensions are listed below.

e The proposed algorithm uses only one row of spare cells therefore it would
not be very effective for high failure rate of PEs. For such cases a greater
number of spare cells is required. An additional column of spares can be
added and the algorithm can be modified to make effective use of column and

row spares.

o When a spare column and a spare row of PEs are used, each PE requires 3 »r
more static coefficient latches (the exact number depends on the algorithm).
This requirement can be reduced by modifying the algorithm, so that only
two copies of each static coefficient are kept in the array. When a PE fails,
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This requires some additional time for reconfiguration but the hardware is

reduced.
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Appendix A

Program Structure

This program calculates the probability of survival by injecting random faults in
the array and running the reconfiguration algorithm.
The basic flow of controls is given below:

Start, :

Fault :

Trial :

Loop :

PE_fault :

PE_algorithm :

get the array dimensions from the terminal;

gel the number of trials from the terminal;

get the maximum number of faults, (maxfault PE, maxfault_link)
to be injected;

initialize various variables;

start with maximum number of PE faults, fault.PE to be 0 and
maximum number of link faults, fault_link to be 1.

generate arrays; /* one array each for PEs, vertical
switches, horizontal switches,
vertical links and horizontal links */

decide randomly, which fault (P E or link) to inject;
il link fault has to be injected, go to Linkfault;

generate the index (i,j) of the failed PE randomly;
if PE; ; is non-faulty then go to PE_algorithm;
go to PE_fault;

check the success of the algorithm;
if algorithm is successful, go to Successful .PE;
increment the number of attempts for (fault_PE, faultlink);
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go to Next-trial;

Successful _PE :
modify the PE. switch and link arrays;
if number of P£ and link faults, alrcady injected
= (fault-PE, fault _link), go to success;
increment the number of injected PF faults;
go to loop;

Linkfault :
decide randomly, which failure (horizontal link or vertical
link) to inject;
if vertical link failure has to be injected, go to Vertical link;

Horizontallink :
gencrate the index (i,j) of the failed link randomly;
check the success of the algorithm;
il algorithm is successful, go to Successful_link;
increment the number of attempts for (faull_PE, faultlink);
go to Next.trial;

Vertical link :
gencrate the index (i,j) of the failed link randomly;
check the success of the algorithm;
if algorithm is successful, go to Successful_link;
increment the number of attempts for (fault.PE, fanltlink);
go to Next.lrial;

Successfullink :
modify the corresponding switch and link array;
if number of PE and link faults, already injected
= (faull.P E, fault _link), go to Success;
increment the number of injected link faults;
go to Loop;

Next.trial :
resel the number of faults, aircady injected;
increment the number of trials, already attempted;
go to Trial;

Success :
increment the number of successes recorded for (fault PE, fault link);
increment the number of attempts for (fault.PE, faultdink);
increment the number of trials, already attempted;
if number of trials, already atternpted is less than user

127



Next :

Incrementlink ;

Roesel trial :

IEnd :

specified number of trials, go to Trial;

if (faull.P E, fault link) is less than

(maxfault.PE, maxfault_ link), go to Next;
calculate estimated probability of survival for each

combination of (fault_PE, fault_link);

go to End;

If faultdink is less than maxfault.link, go to increment_link;
increment faull.PE;

resct fault _link;

go to Reset _trial;

increment fault link;
resct number of trials, already altempted;
resel number of {aults, already injected;

go to Trial;

Stop.
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Appendix B

Probability of Survival

Here the simulation results are listed for various array sizes. The first two columuns
of the table show the number of PE and link faults corresponding to the particu-
lar row. The other columns give the 95% confidence interval of the probability of
survival (calculated from the simulation results) for different array sizes (numnber
of trials = 3000).

Number | Number Estimated Probability Confidence Interval
of PE | of link (Confidence level = 95%)
Faults | Faults 5 x5 1 6 x 6 | toxIo | 20x20

0 0 100.00 - 00.00 | 100.00 - 100.00 [100.00 - 100.00 | 100.00 - 100.00
0 | 100.00 - 100.00 | 100.00 - 100.00 | 100.00 - 100.00 | 100.00 - 100.00
0 2 96.35 — 97.58 | 97.57 -98.56 | 99.04 - 99.62 | 99.69 - 99.98
0 3 91.28 - 93.19 | 93.26 - 94.91 97.28 - 98.32 | 98.88 - 99.52
0 4 82.86 - 8547 | 87.60 - 89.86 | 94.33 - 95.87 | 98.37-99.16
0 5 74.03 - 77.10 79.63 - 82.44 .91 -93.76 | 97.88 - 98.79
0 6 61.58 — 65.02 | 71.45 - 7462 | 88.96 -91.11 | 95.37 -96.76
0 7 53.15 - 56.71 63.60 - 67.00 | 83.38 - 85.96 | 95.59 - 96.95
0 8 41.33 - 44.87 60.83 — 64.30 79.7: - 82.53 86.32 - 88.68
0 9 31.65 - 35.02 | 58.78 - 6228 | 75.22 -78.25 | 94.36 - 95.90
0 10 24.56 ~ 27.71 48.28 - 51.86 | 70.22 - 73.44 [ 93.93 - 95.53
0 11 25,67 —28.86 | 29.48 - 32.79 | 0(4.84 - (8.22 | 82.00 - 84.67
0 12 21.20 - 2420 | 21.07 - 2406 | 58.35-61.85 | 86.32 - 88.68
0 13 13.02 - 15.52 15.33 - 18.00 51.85 - HH.42 85.45 - 87.88
0 14 8.48 — 10.58 1212 - 1455 | 48.84 -52.42 | 71.75-74.92
0 15 8.48 - 10.58 8.93 - 1107 | 39.17 - 412.69 | 69.85 - 73.08
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Number | Number Estimated Probability Confidence Interval
of PE | of link (Con fidence level = 95%)
Faults | Faults 5 x5 | 6 x 6 [ 1ox10 [ 20x20
1 0 100.00 — 100.00 | 100.00 — 100.00 | 100.00 - 100.00 | 100.00 - 100.00
1 1 99.08 — 99.65 | 99.55 — 99.92 | 99.46 - 99.87 | 99.64 - 99.96
1 2 96.72 - 97.8% | 96.79 - 97.94 | 98.41 -99.19 | 99.42 - 99.85
] 3 90.33 — 92.34 | 92.76 - 94.51 | 96.57 - 97.76 | 98.84 - 99.49
1 4 81.72 — 8441 | 87.57 - 89.83 | 94.11 - 9569 | 98.14 - 98.99
1 5 73.38 — 7648 | 80.18 - 82.95 | 91.42 -93.32 | 97.61 - 98.59
1 6 6441 — 67.79 | 7246 - 75.60 | 87.95-90.18 | 96.28 - 97.52
1 7 5335 — 5691 | 65.72 - 69.08 | 84.38 —86.89 | 94.11 - 95.69
1 8 4329 — 46.85 | 55.60 — 59.14 | 79.36 - 82.18 | 93.47 - 95.13
1 9 33.19 — 3661 | 46.61 - 50.19 | 74.37 -77.43 | 92.19 - 94.01
1 10 9554 — 28.72 | 39.94 - 4346 | 69.82 -73.05 | 90.01 - 92.06
1 1 17.50 — 2030 | 31.55 - 34.92 | 64.57 -67.96 | 88.82 - 90.98
1 12 13,18 — 1569 | 24.27 - 2740 | 57.58 - 61.09 | 85.31 - 87.75
1 13 994 — 1219 | 21.10 - 24.10 | 54.99 -58.54 | 84.79 - 87.27
1 14 581 — 7.59 1588 - 18.58 | 47.08 -50.66 | 78.57 - 81.43
1 15 4.16 — 5.71 1055 ~ 12.85 | 43.52 -47.08 | 79.94 - 82.73
2 0 82.83 — 8544 | 85.52 — 87.95 80.66 — 91.74 | 95.15 - 96.58
2 1 80.08 — 82.86 | 82.96 - 8557 | 89.21 -91,33 | 93.76 - 95.7%
2 2 7754 — 8046 | 81.14 - 83.86 | 88.33 -90.53 | 93.22 - 94.
2 3 73.60 — 76.78 | 78.16 -~ 81.04 | 88.40 - 90.60 | 93.26 - 94.94
2 4 69.14 — 7230 | 72.91 - 76.03 | 84.17 -86.70 | 92.76 - 94.51
2 5 60.67 — 64.13 | 68.06 —71.34 | 83.03 -8563 | 91.45 - 93.35
2 6 53.59 — 57.15 | 63.29 - 66.71 | 79.08 — 8192 | 90.85 - 92.81
2 7 44,62 — 48.18 | 56.03 - 59.57 | 75.66 - 78.67 | 90.75 - 92.72
2 8 37.52 — 41.01 | 47.31 - 50.89 | 71.72 - 74.88 | 87.98 - 90.22
2 9 27.67 — 3093 | 42.95 — 46.51 68.02 - 71.31 | 87.74 - 80.99
2 10 2267 — 2573 | 33.19 - 36.61 63.16 - 66,57 | 83.52 - 86.08
2 11 1727 — 2006 | 26.20 — 2940 | 59.15 - 62.65 | 83.03 - 85.63
2 12 13.14 — 1566 | 20.65 — 23.62 | 52.95 -56.51 | 81.48 - 84.18
2 13 896 — 1111 | 1727 -20.06 | 49.41 -5299 | 80.63 - 83.37
2 14 4.65 — 6.28 13.02 ~ 15.52 | 45.91 - 4949 | 77.47 - 80.39
2 15 3.24 — 4.63 9.98 - 12.22 | 39.74 - 43.26 | 75.36 - 78.38
3 | 0 | 5048 — 54.05 | 59.15 - 62.65 | 72.91 —76.03 | 86.18 — 88.56 |

3 1 49,61 — 53.19 | 54.80 —58.44 | 7246 — 7560 | 84.62 - 87.11
3 2 48.58 — 52.16 | 56.33 — 50.87 | 70.19 - 73.41 | 84.03 - 86.57
3 3 4721 - 5079 | 52.78 - 56.35 | 69.65 —72.89 | 83.03 - 85.63
3 4 4143 — 4497 | 5028 - 53.85 | 67.89 - 71.18 | 83.41 - 85.99
3 5 30.50 — 43.03 | 47.28 - 5086 | 65.62 - 68.98 | 82.00 - 84.67
3 6 3468 — 3812 | 42.29 - 45.84 | 64.03 -67.43 | 79.49 - 82.31
3 7 28.39 — 31.67 | 39.90 — 43.43 | 60.40 - 63.87 | 80.08 - 82.86
3 8 2433 — 2147 | 3198 - 35.36 | 5741 -60.93 | 79.60 - 8240




Estimated Probability Confidence lnterval
(Confidence level = 95%)

[ 6x6 ] 10x10

[ 20x?20

93.96 - 57.51
50.68 - 5:1.25
19.95 - 53.52
43.85 - 47.42
42.56 - 46.11
36.73 - 10.21
32.94 - 36.34

78.60 - 81..16
77.95 - 80.85
.71 -T77.76
7431 - 77.10
72,29 - THold
70.12 - 73.34
67.038 - 70.98

52.42 - 55.98
50.85 - 54.42
47.98 - 51.56
50.91 - 54.49
47.98 - 51.56
46.18 - 50.05
45.41 - 48.99
42.92 - 46.48
43.22 - 16.78
36.06 - 39.54
36.46 - 39.94
33.56 - 36.98
29.90 - 33.23
27.93 - 131.20
27.57 - 30.83
23.12 - 26.21

71.95 - 75.11
70.94 - 7413
70.70 - 73.90
(9.95 - 73.18
68.22 - 71.51
69.78 - 73.02
(8.06 - 71.34
67.68 - 70.98
66,16 - 69.50
64.61 - 67.99
65.89 - (9.2
64.39 - 66.81
61.71 - 65.16
62.72 - 66.15
58.72 - 62.22
57.58 - 61.09

Number | Number

of PE of link

Faults Faults ax5
3 9 19.48 - 22.39 | 27.80 - 31.06
3 10 15.56 ~ 18.24 | 23.74 - 26.86
3 1 11.03 - 13.37 | 19.90 - 22.83
3 12 8.61 ~ 10.72 | 15.04 - 17.69
3 13 531 - 7.03 | 14.01 - 16.59
3 14 4.65 - 6.28 | 10.33 - 12.61
3 15 281 - 412 | 7.28-9.25

1 0 21.01 - 23.99 [ 30.76 - 31.11

4 1 21.49 - 24.51 | 29.67 - 32.99
1 9 22,98 - 25.32 | 28.46 - 31.74
4 3 21.62 — 24.61 | 26.98 - 30.22
4 4 18.34 - 21.19 | 27.02 - 30.25
4 5 16.82 — 19.58 | 24.79 - 27.94
4 6 14.04 - 16.62 | 21.85 - 24.88
4 I 11.06 — 13.41 | 18.31 - 21.16
4 8 11.22 - 13.58 | 15.82 — 18,52
4 9 10.71 - 13.02 | 16.20 - 18.93
4 10 6.21 - 8.05 | 12.82 - 15.31
4 1 1.99 - 6.67 | 10.49 - 12.78
4 12 3.09 - 4.45 | 8.55- 10.65
4 13 188298 | 7.19-9.15
4 14 2.06-3.21 | 5.00-6.78
4 15 1.15-2.05 | 3.97 - 5.49
5 0 1.65 - 6.28 | 10.61 - 12.92
5 1 468 - 6.32 | 9.63- 11.84
5 2 4.19 - 5.74 | 10.71 - 13.02
5 3 3.76 - 5.24 | 9.66 - 11.88
5 4 3.60 - 5.06 | 9.85 - 12.08
5 5 3.27 - 4.67 | 7.31 - 9.29
5 6 3.30-4.70 | 7.85 - 9.88
5 7 2,75 - 4.05 | 7.22 - 9.18
5 8 2.00-3.21 | 6.93 - 8.87
5 9 1.62-2.65 | 562-7.38
5 10 0.78 - 1.55 | 4.72 - 6.35
5 11 1.35- 2.3t | 3.39 - 4.8
5 12 0.73 - 1.47 | 9.54 - 4.99
5 13 059-1.28 | 1.91-3.02
5 14 043 - 1.04 | 1.59 - 2.6
5 15 0.10 - 0.50

1.15 - 2.0

31.51 - 34.89
30.17 - 33.50
20.80-33.13
28.69 - 31.98
28.79 - 32.08
27.41 - 30.66
27.11 - 30.35
24.40 - 27.54
24.76 - 27.91
22.41 - 25.46
22.11-25.15
19.45 -~ 22.35
19.19 - 22.08
18.11 - 20.95
16.75 - 19.51
14.46 - 17.07

38.85 - 62.35
56.140 - 59.93
56.30 - 59.83
57.01 - 60.53
56.54 - 60.06
H3.92 - 5H7.48
H5.60 - 59.14
H4.29 - 57.84
52.72 - 56.28
54.73 - 58.27
51.85 - 55.42
50.55 - 54.12
18.34 - 51.92
18.61 - 52.19
47.08 - 50.66
45.88 - 19.45
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Number | Number Estimated Probability Confidence Interval "
of PE | of link (Con fidence level = 95%)
Faults | Faults 5x5 | 6x6 | 10x10 | 20x20 |
6 0 0.00 - 0.00 | 1.65 — 2.60 | 15.78 - 18.48 | 45.01 - 48.59
b 1 0.00 -0.00 | 1.50 — 2.50 | 15.91 - 18.62 | 43.59 -47.15
6 2 0.00 -0.00 ! 127—- 220 16.27-19.00 | 43.55 - 47.11
6 3 0.00 - 0.00 { 130 — 2.24 | 13.85 - 16.42 | 42.56 - 46.11
6 4 0.00 -0.00 | 1.38 — 2.35 16.53 - 19.27 {40.20 - 43.73
6 5 0.00 -0.00 | 1.21 — 2.12| 14.56 - 17.17 | 41.06 - 44.60
6 6 6.00 -0.00 {070 — 1.43 | 14.53-17.14 [ 42.46 - 46.01
6 7 0.00-0.00 | 0.75— 1.51|11.89-14.31|40.33 - 43.87
f 8 0.00 -0.00 { 0.64 — 1.36 | 12.79-15.28 | 39.01 - 42.53
b 9 0.00-0.00 | 081 - 1.59{11.00-13.31(40.30 -43.83
6 10 0.0Q -0.00 | 040 - 1.00 | 10.87-13.20 | 36.86 - 40.34
6 11 0.00-0.00 {053 - 1.20}10.45-12.75 { 38.05 - 41.55
6 12 0.00 -0.00 | 040 - 1.00} 8.70-10.83]37.35-40.85
6 13 0.00 -0.00 {022 - 0.71 | 8.42-10.51136.10-39.57
6 14 0.00 -0.00 {027—0.79| 7.94-9.99 |34.81-38.26
6 15 |0.00-0.00 |022-0.71| 7.60-9.60 |34.12-37.55 |
7 D 0.00-000]000— 0.00] 6.62-8.51 [29.31-32.62]
7 1 0.00 -0.00 | 0.00— 0.00{ 6.09-7.91 |29.80-33.13
7 2 0.00 -0.00 | 0.00- 0.00] 5.65-7.42 |28.26-31.54
T 3 0.00 - 0.00 | 0.00- 0.00] 5.31-7.03 [29.51 -132.82
7 4 0.00 -0,00 {000- 0.00] 6.43-8.30 |29.90-33.23
7 5 0.00 -0.00 [ 000-0.00{ 6.81-8.72 |29.31-32.62
7 6 0.00 - 0.00 | 000-0.00| 5.03-6.71 {28.13-31.40
[ 7 0.00 -0.00 | )00 - 0.00 [ 5.06-6.74 |[29.44 -32.76
1 3 0.00 - 0.00 | 000 — 0.00| 5.06-6.74 |[27.44 -30.69
[ 9 0.00 -0.00 §0.00—- 000} 4.59-6.21 |28.03-31.30
1 10 0.00 - 0.00 [ 0.00—- 0.00| 4.68-6.32 [27.47-30.73
[ 11 0.00 -0.00 | 0.00- 0.00 4.13-5.67 [26.16-29.37
[ 12 0.00 -0.00 ] 0.00 - 0.00 | 3.45-4.88 |26.26-29.47
7 13 0.00 -0.00 | 0.00- 0.00 | 3.36-4.77 [24.33-27.47
7 14 0.00 -0.00 | 000~ 0.00| 2.90-4.23 {26.03 -29.23
7 15 |0.00 -0.00 {000~ 0.00| 2.48-3.72 |24.33-27.47
8 0 [0.00-000 [0.00— 000 1.70-2.76 |18.80-21.67|
8 1 [0.00-000 |000-000| 1.85-2.95 |19.28-22.18
8 2 |0.00-000 {000-0.00| 2.00-3.13 |18.18-21.02
8 3 |0.00-0.00 [000-0.00] 1.53-2.54 [17.30-20.10
8 4 |0.00-000 |000-000| 1.44-2.43 |18.31-21.16
| ¢ 5 [0.00-0.00 |000— 000{ 2.06-3.21 {19.02-21.91
8 6 |0.00-0.00 |000— 0.00] 1.47-2.46 |18.37-21.23
8 7 |0.00-0.00 {000 000 1.65-2.69 |18.11-20.95
IL 8 | 8 ]0.00-0.00 |000-0.00| 1.53-2.54 |17.86-20.68
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Number | Number Estimated Probability Confidence Interval
of PE | of link (Confidence level = 95%)
Faults | Faults 5x5 [ 6x6 | 10x10 20 x 20

8 9 0.00 - 0.00 { 0.00 - 0.00 | 1.21 - 2.12 | 18.73 - 21.60
8 10 0.00 - 0.00 | .00~ 0.00 { 0.95 - 1.78 | 17.95 - 20.78
8 11 0.00 - 0.00 | 0.00 - 0.00 | 0.98 - 1.82 | 16.33 - 19.07
8 12 0.00 - 0.00 | 0.00 - 0.00 | 1.12 ~ 2.01 | 16,72 - 19.48
8 13 0.00 - 0.00 { 0.00 - 0.00 { 0.81 - 1.59 | 17.01 - 19.79
8 14 0.00 - 0.00 ] 0.00 - 0.00 | 0.89 - 1.71 | 16.85 - 19.62
8 15 0.00 - 0.00 | 0.00-0.00 | 1.04 - 1.90 | 11.66 - 17.28
9 0 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.26 | 11.51 - 13.93
9 1 0.00 - 0.00 | 0.00 - 0.00 ; 0.22 -~ 0,71 | 11.73 ~ 14,13
9 2 0.00 - 0.00 | 0.00 - 0,00 | 0.00 - 0.00 | 11.35 - 13.72
9 3 0.00 - 0.00 | 0.00 - 0.00 | 0.38 - 0.96 | 11.54 - 13.93
9 4 0.00 - 0.00 | 0.00 - 0.00 | 0.22 - 0.7T1 | 11.28 - 13.65
9 5 0.00 - 0.00 { 0.00 - 0.00 | 0.15 ~ 0.58 | 10.10 - 12.36
9 6 0.00 - 0.00 | 0.00 - 0.00 | 0.30 - 0.84 | 10.93 - 13.27
9 7 0.00 - 0.00 | 0.00 - 0.00 | 0.25 ~ 0.75 | 11.57 - 1.3.96
9 8 0.00 - 0.00 | 0.00 - 0.00 | 0.13 - 0.54 | 10.07 - 12,33
9 9 0.00 - 0.00 | 0.00-0.00 |{ 0.10 - 0.50 | 10.58 - 12,88
9 10 0.00 - 0.00 | 0.00 - 0.00 { 0.08 - 0.45 [ 9.43 - 11.63
9 11 0.00 - ©.00 { 0.00 - 0.00 | 0.08 - 0.45 [ 9.56 - 11.77
9 12 0.00 - 0.00 | 0.00 - 0.00 { 0.13 - 0.54 | 9.59 - 11.81
9 13 0.00 - 0.00 | 0.00 - 0.00 { 0.13 - 0.54 | 9.69 - 11.91
9 14 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.10 | 8.93 - 11.07
9 15 | 0.00-0.00]0.00-000]0.17-0.63]| 9.24 - 11.42]

10 0 [ 0.00-0.00]0.00-0.00 [0.00-0.00] 6.81-8.72
10 1 0.00 - 0.00 | 0.00 ~ 0.00 | 0.00 - 0.16 | 5.68 - 7.45
10 2 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.10 | 6.18 - 8.02
10 3 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.10 | 6.49 ~ 8.37
10 4 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.26 | 6.31 - 8.16
10 5 0.00 - 0.00 | 0.00-0.00 | 0.00 - 0.10 | 6.02 - 7.84
10 6 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.26 | 6.02 ~ 7.84
10 7 0.00 - 0.00 | 0.00 - 0.00 | 0.03 - 0.16 | 5.43 - 7.17
10 8 | 0.00-0.00]0.00~0.00|0.00-0.00| 562-7.38
10 9 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 6.56 ~ 8.44
10 10 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 5.37 - 7.10
10 11 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.10 | 5.34 - 7.06
10 12 0.00 -~ 0.00 | 0.00 - 0.00 { 0.00 - 0.00 | 6.53 - B.41
10 13 | 0.00- 0.00 | 0.00 -~ 0.00 | 0.00 - 0.00 | 5.46 - 7.20
10 14 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.10 | 5.18 - 6.89
10 15 0.00 - 0.00 | 0.00 - 0.00 | 0.00 ~ 0.00 | 4.81 - 6.46




Number | Number Estimated Probability Confidence Interval "
of Pl | of link (Con fidence level = 95%)
Faults | Faults 5x5 | 6x6 | 10x10 | 20x20 f
11 0 0.00 - 0.00 | 0.00 — 0.00 | 0.00 - 0.00 [ 3.94 - 5.46
11 1 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 2.87 - 4.19
11 2 0.00 - 0.00 { 0.00 ~ 0.00 | 0.00 - 0.00 | 2.51 ~ 3.76
11 3 0.00 - 0.00 | 0.00 ~ 0.00 | 0.00 - 0.00 | 4.13 - 5.67
11 4 0.00 - 0.00 { 0.00 ~ 0.00 | 0.00 - 0.00 | 2.72 — 4.01
11 5 0.00 - 0.00 | 0.00 ~ 0.00 | 0.00 - 0.00 | 4.87 - 6.53
11 6 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 2.60 — 3.87
3 7 0.00 - 0.00 | 0.00 ~ 0.00 | 0.00 - 0.00 | 3.05 — 4.41
11 8 0.00 - 0.00 | 0.00 ~ 0.00 | 0.00 - 0.00 | 2.60 — 3.87
11 9 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 2.93 - 4.27
11 [0 |0.00-0.00]0.00 -~ 0.00 | 0.00 - 0.00 | 2.96 - 4.30
1 11 |0.00-0.00|0.00 - 0.00 | 0.00 - 0.00 | 3.05 — 4.41
1 12 {0.00-0.00 | 0.00 ~ 0.00 | 0.00 - 0.00 | 3.21 - 4.59
11 13 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 2.69 — 3.98
1 14 |{0.00-0.00]|0.00~0.00 | 0.00 - 0.00 | 2.06 - 3.21
11 15 | 0.00 - 0.00 | 0.00 ~ 0.00 | 0.00 - 0.00 | 2.03 - 3.17 |
12 0 0.00 - 0.00 [ 0.00 ~ 0.00 | 0.00 - 0.00 | 2.15 - 3.32
12 1 0.00 - 0.00 | 0.00 - 0.00 | 6.00 - 0.00 | 1.15 — 2.05
12 2 0.00 - 0.00 { 0.00 - 0.00 | 0.00 - 0.0 | 1.15 - 2.05
12 3 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 1.09 - 1.97
12 4 0.00 - 0.00 { 0.00 ~ 0.00 | 0.00 - 0.00 | 0.92 — 1.74
12 5 0.00 - 0.00 { 0.00 ~ 0.00 | 0.00 - 0.00 | 0.95 - 1.78
12 6 0.00 - 0.00 | 0.00 ~ 0.00 } 0.00 - 0.00 | 1.38 — 2.35
12 7 0.00 - 0.00 | 0.00 ~ 0.00 | 0.00 - 0.00 | 1.41 - 2.39
12 8 0.00 - 0.00 | 0.00 - 0.00 | 0.00 ~ 0.00 | 1.01 - 1.86
12 9 0.00 - 0.00 | 0.00 ~ 0.00 | 0.00 ~ 0.00 | 1.04 ~ 1.90
12 10 | 0.00 - 0.00 |0.00 - 0.00 | 0.00 - 0.00 | 0.84 - 1.63
12 11 {0.00-0.00 |0.00 - 0.00 { 0.00 - 0.00 | 0.81 - 1.59
12 12 |0.00 - 0.00 |0.00 - 0.00 | 0.00 - 0.00 | 1.01 - 1.86
12 13 |0.00~0.00|0.00 - 0.00 | 0.00-0.00|0.75 ~ 1.51
12 14 |0.00-0.00 |0.00 - 0.00 | 0.00-0.00}1.24 -2.16
12 15 | 0.00 - 0.00 | 0.00 ~ 0.0 | 0.00 - 0.00 | 0.75 - 1.51
13 | O 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.51 - 1.16
13 1 0.00 - 0.00 | 0.00 ~ 0.00 | 0.00 - 0.00 | 0.48 - 1.12
13 2 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.62 - 1.32
13 3 0.00 - 0.00 { 0.00 - 0.00 | 0.00 - 0.00 { 0.17 - 0.63
13 4 0.00 - 0.00 | 0.00 - 0,00 | 0.00 - 0.00 | 0.32 - 0.88
13 5 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.53 - 1.20
13 6 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.02 - 0.31
13 7 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.27 - 0.79
13 8 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.20 — 0.67
| 13 9 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.43 - 1.04 |
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Number | Number Estimated Probability Confidence Interval
of PE of hink (Confidence level = 95%)

Faults | Faults 5 x5 6x6 | 10x10 | 20x20 |
13 10 [0.00 - 0.00 [ 0.00-0.00]0.00-0.00 | 0.25 - 0.75 |

13 11 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.40 - 1.00

13 12 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.32 - 0.88

13 13 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.45 - 1.08

13 14 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.48 - 1.12

13 15 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.53 - 1.20

14 0 0.00 — 0.00 [ 0.00 - 0.00 [ 0.00 - 0.00 | 0.04 - 0.36

14 1 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.08 -~ 0.45

14 2 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.15 - 0.58

14 3 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.15 - 0.58

14 4 0.00 - 0.00 | 0.00 - 0.00 { 0.00 - 0.00 | 0.10 - 0.50

14 5 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.02 - 0.31
Y 6 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00
14 7 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.17 - 0.63

14 8 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.15 - 0.58

14 9 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00

14 10 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.04 - 0.36

14 11 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.08 - 0.45

14 12 0,00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00

I 14 13 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.06 - 0.41
14 14 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.10 - 0.50

14 15 0.00 — 0.00 | 0.00 - 0.00 } 0.00 - 0.00 | 0.10 - 0.50

[ 15 | 0 |0.00 — 0.00 | 0.00 - 0.00 ] 0.00 - 0.00 | 0.04 - 0.36
15 1 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - .10

15 2 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.26

15 3 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.16

15 4 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.10

15 5 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.10

15 6 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.16

15 7 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.10

15 8 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.26

15 9 0.00 — 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.10

15 10 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.16

15 11 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00

15 12 0.00 - 0.00 |{ 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00

15 13 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00

15 14 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00 | 0.00 - 0.00

Since the probability of ~ccurrence of more number of faults than this is very
small, the Table s truncated here.
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