
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Permission)

ON-LINE RECONFIGURATION

OF SYSTOLIC ARRAYS

By

@ Karunesh Pratap Singh, B. Tech.

A thesis submitted to the School of Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Engineering

St. John's

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

June, 1992

Newfoundland Canada

1+1 National library
of Canada

Bibliotheque nationalo
du Canada

Acquisitions and Oireclion des acquisitions ct
Bibliographic Services Branch des services bibliographiqucs

395 Welhnglon SHeet
Ottawa, Ontano
KlAON-1

395, rue Wr.l'1ngton
Ottawa (Ontario)
K1AON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L'auteur a accorde une licence
irrevocable et non exclusive
permettant i1 Ia Bibliotheque
nationale du Canada de
reproduire, prater, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a Ia disposition des
personnes inb~ressees.

L'auteur conserve Ia propriete du
droit d'auteur qui protege sa
these. Ni Ia these ni des extraits
substantiels de celle-ci ne
doivent etre imprimes ou
autrement reproduits sans son
autorisation.

ISBN 0-315-78121-1

Canada

ABSTRACT

Various existing reconfiguration algorithms for array proces8ors cannot be used

efficiently for on-line reconfiguration of the array because they require a ccntml

processor to initiate and control the rcconfiguration. In nddiLion, most of the

existing algorithms assume that the switching network is operationally fault-free.

This report presents an on-line reconfiguration scheme for array processors.

The proposed algorithm can tolerate both processing element failure and switching

network failure. The processing elements and switches are of a self-testing Lypc and

link failures are detected by the processing elements (by using parity bi L checks).

The array is provided with a bottom row of spare cells and when a processing

element detects either a self fault or a link failure, it invokes the rcconHguration. A

downward global shift (for the particular column) is performed to accomplish the

reconfiguration. A number of reconfiguration requests are generated by the pro·

cessing elements and switch modules to facilitate the rccoufiguration. The network

is modified and links for propagation of rcconfiguration request arc added. This

scheme makes full use of non-faulty partial results and it blocks the faulty partial

results.

The reconfiguration in the case of a processing element failure is completed in

two stages while the reconfiguration in the case of a link failure is completed in a

single stage. The links are duplicated to achieve redundancy and in the case of a

link failure the spare link is used.

II

ACKNOWLEDGEMENTS

I arn grat.dul to Dr. H.. Venkatcsan for his guidance and constant encouragement

throughout. the duration of my program.

I wish to thank the School of Graduate Studies and Faculty of Engineering,

M<!rnorial University for the financial support during my program.

I am indebted to Dr. G.H. George for his invaluable help in making this thesis

more readable and presentable.

Finally, I would like to thank my wife, Ranja.aa for her support and help during

my sl.ay in Sf.. John's.

iii

Contents

ABSTRACT

ACKNOWLEDGEMENTS

List of Figures

List of Tables

List of Symbols

1 INTRODUCTION

1.1 Thesis Organization .

2 LITERATURE REVIEW

2.1 Concept of Systolic Arrays

..
II

...
Ill

vii

X

xi

4

1

2.1.1 Broadcast inputs, move results and weights stay 7

2.1.2 Results stay, inputs and weights move in opposite dircr.t.ions H

2.1.3 Weights stay, results and inputs move in opposite directions !)

2.2 Fault Detection Schemes

2.2.1 Matrix Encoding Methods

2.2.2 Recomputing with Shifted Operands (RESO)

2.2.3 Triple Data Redundancy

10

10

II

2.2.4 Comparison with Concurrent Redundant Computation (CCRC) 15

2.2.5 Double Calculation in the Same P E

iv

3

2.3 Reconfiguution Schemes

2.3.1 RC Cut (Row Column Cut) Method .. .

2.3.2 RCS (Row, Columrt Slanted) Cut Method

2.:1.3 Kuo-Fuchs Method . . .

2.:3A Diogencs Method

2.:1.5 Fault Stealing Methods

2.:u; CFS (Complex Fault Stealing) Method . .

2.3. 7 FUSS (Full Usc of Suitable Spares) Method

2.3.8 Local Redundancy Methods

ON LINE RECONFIGURATION

3.1 On-Line Rcconfiguration Scheme

3.2 Implementation
3.2.1 Loading of Weights

3.2.2 Handling of Partial Results
3.2.3 Switch Module ,
3.2A Network I I t I I
3.2.5 Processing Element
3.2.6 Switch

3.3 Operation of the Algorithm ..
3.4 Concluding Remarks I I I I t I I

I t t t t

17

22

23

23

25

26

29

29

32

34

35

37

39

43

47

54

55

58

61

63

4 ALGORITHM FOR PE AND LINK FAILURE TOLERANCE 85

66 4.1 Data .Routing ,

4.1.1 Vertical Oa.ta Routing Path (for PE and Link failures) . . . 66

4.1.2 Horizontal Data Routing Path (for PE and Link failures) . . 68

4.2 Handling of a Link failure

4.3 Combined PE and Link Failure ..

v

69

70

4.3.1 PE Failure (in presence of faulty Links) .. iO

.t.3.2 Link Failure (in presence of faulty PH~) iH

4.4 Implementation ~>I
~~

4..1.1 Network ~:1

4.4.2 Processing Element :-l·l

4.4.3 S•...-itch Module .. !JI

4.5 Operation of the Algorithm I tll

4.6 Concluding Remarks 1 0·1

5 Algorithm Evaluation 105

.5 .I Analytical Results ... •••••••••••• t •• I Oti

5.1.1 Probability of Survival After a P E Failure IOfi

5.1.2 Probability of Survival After a /.,ink Failure IOH

5.2 Analysis of Simulation Results ... I IU

5.2.1 Simulation Software Outline Ill

5.2.2 Confidence Level of the Simulation 11:!

5.2.3 Probability of Failure . 11·1

.1.2.4 Simulation Results I J!i

5.3 Concluding Remarks IIX

6 CONCLUSIONS 110

7 SUGGESTIONS FOR FURTHER RESEARCH 122

A Program Structure 126

B Probability of Survival 129

vi

List of Figures

2.1 Finite State Machine 5

2.2 Reduced Memory Interaction 5

2.3 Systolic Array Representation 6

2A Design I; Broadcast inputs, Results move and Weights stay . 7

2.5 Design 2; Results stay, Inputs and Weights move . . 8

2.6 Design 3; Weights stay, Results and Inputs move. . 9

2.7 Matrix Encoding Method. 10

2.8 Recomputation with Shifted Operands 11

2.9 .Multiplier with Ripple Carry Adder . . 12

2.10 Triple Time Redundancy 14

2.11 Comparison with Concurrent Redundant Computation (CCRC) 15

2.12 CCRC: Comparison Schemes. . 16

2.13 Recomputation in the same P E 17

2.1'1 Data Flow Diagram (for recomputation in the same PE) 18

2.15 Direct Replacement and Global Deformation 21

2.16 Row Column Cut Method

2.17 Row Column Slanted Cut Method ..

2.18 Kuo-Fuchs Method

2.19 Diogen<."S Method .

2.20 Simplest Fault Stealing Method

2.21 Modified Fault Stealing Method

..
VJJ

22

24

24

26

27

28

2.22 Complex Fault Stealing Method

2.23 FUSS Scheme

2.2·1 Interstitial Rcdund<:.ncy Scheme

3.1 Proposed On-Line Reconfiguration Scheme

3.2 Staging Latch Position in Normal Arrays .

3.3 Pipeline, Before and After reconfiguration

3.4 Modified Staging Latch Position

:n

:w
3.5 Block Diagram of P E (with emphasis on Coefficient. Loading Cirwit) ·10

3.6 Output Latch Block for Random Coefficient Loadiug ·ll

3. 7 Block Diagram of P E With Two Static Coefficient Latches . •I ~

3.8 Basic Array with Switch Modules . ·H

3.9 Vertical and Horizontal Data Paths •J.l

3.10 Vertical Partial Result Handling . . .1()

3.11 Horizontal Partial Result Handling •Hi

3.12 Vertical Data Routing Path •!8

3.13 Network for Vertical Data Handling during Reconfiguration . ,18

3.14 States of Vertkal Switches (For PE failure algorithm). 11!)

3.15 Horizontal Data Routing Path 51

3.16 Network for Horizontal Data Handling during Rcconfiguration .11

3.17 States of Horizontal Switches (For P E failure algorithm) . . . 52

3.18 Horizontal reconfiguration for P EiJ in presence of faulty P Bil,j-1 !):J

3.19 Horizontal reconfiguration for P Ei,i in presence of faulty P Bit,j+t 5:1

3.20 Modified Network (for supporting P E failure algorithm) 56

3.21 Control Lines for PE and Switches (P E failure algorithm) 5f)

3.22 Complete Block Diagram of Modified PE (PE failure algorithm) . . .57

3.23 Control Circuit of PE (P E failure algorithm)5!)

3.24 Signal Waveforms (Output of the PE13 control circuit) 5!}

viii

3.25 Reconfiguration Request Propagation (for P E failure algorithm) ..

3.26 Block Diagram of the Switch module (for P E failure algorithm) ..

3.27 State Transition of The Switches {for P E failure algorithm)

4.1 Vertical Data Path (for PE and Link failures)

4.2 States of the Vertical Switches {For combined PE and Link failures)

4.3 Horizontal data Path (Combined PE and Link f:!!lure)

4.4 Horizontal Switch States (Combined PE and Link failure)

4.5 Switch State Changes (Combined PE and Link failure)

4.6 Vertical switch State Changee (Combined PE and Link failure) .. .

4. 7 Link failure Reconfigurations

4.8 Various Clock Signals I I I I I I I I I I I I I I

4.9 Network for Combinoo PE and Link Failure .•..

4.10 Processing Element Lines for Combined PE and Link Failure

4.11 Block Diagram o£ the Processing Element (combined PE and link

failure algorithm)

4.12 Schematic of the RR generating Circuit (combined P E and link fail-

60

61

62

67

67

68

68

69

75

78

83

85

86

87

ure algorithm) . 89

4.13 Timing Diagram of the RR generating Circuit 90

4.14 Data and Control Lines for a Switch (combined PE and link failure

algorithm) . 92

4.15 Block Diagram of the Vertical Switch (combined P E and link failure

algorithm) . 94

4.16 Block Diagram of the Horizontal Switch (combined P E and link

failure algorithm) • . • 100

4.17 Operation of the Algorithm (combined P E and link failure algorithm) 101

5.1 Normal Density FUnction • • . . 113

ix

List of Tables

4.1 State changes for Intermediate Stage !)()

4.2 State changes due to 1\1 and 81 !Hi

4.3 State changes for Final Stage !Hi

4.4 State changes due to clock edge us
4.5 State changes using set-reset inputs . HH

4.6 Generation of Ao e t • I I I ns

4.7 J - /(Hip flop inputs at t2 • 102

4.8 J- /(flip flop inputs due to A1 itnd B1 JO:J

4.9 J - [(Hip flop inputs at t + 2 10:1

5.1 Estimated Values of Probabilities of Survival (Array Sizc='l x 4) . I If)

5.2 Estimated Values of Probabilities of Survival (Array Sizc=1 x 4) . 117

X

List of Symbols

PB Processing Element

1/ p Input

O,IP Output

1/0 Input/Output

Horizontal input of row i to the array

Vertical input of column j to the array

Horizontal output of row i from the array

0~
]

Vertical output of column j from the array

Static Coefficients

pg.
I,J P E with physical index (i, j)

P E with logical index (i, j)

It
X Input of P Ez: at timet (when only one input is there)

at
X Output of P Ez: at time t (when only one output is there)

Ill t r I Horizontal input of PEr at time t

/ 1' t r I Vertical input of PEr at time t

0 11 t r ' Horizontal output of PEr at time t

0\' t r 1 Vertical output of PEr at time t

Jlf
P/~Ot

Jlf 1'E11 Jf!E2 Horizontal input ports of P E

•\' !\' lpf;o, PEl Vertical input ports of P E

0 11 au au
1'E01 PElt PE2 Horizontal output ports of P E

xi

Vertical output ports of P E

w·. '•J Static coefficient (weight), corrcspomling t,l) JJ /~i,J

S· . I,J Switch module with index (i,j)

S!l.
t,} Horizontal switch module with index (i,j)

sr.
1,] Vertical switch module with index (i,j)

[II
SOl Ifft' !£, I£ Horizontal input data ports of switches

I¥o, IXp IX2 Vertical input data ports of switches

au
SO'

au
Sl' O'j2, 0!/3 Horizontal output dat.a ports of switches

oro, o¥., o¥2 Vertical output data ports of switches

£Y
:z: Link, connecting the output of x to !I

RRY :z: Reconfiguration request, generated by x and fed l.o !J

CLJ(pE Global clock to the PEs

CLI<s Clock pulses to the swit.ches

State x of the horizontal switches

State x of the vertical switches

FP Fatal Failure

Error in logic circuit

SPE Signal to the spare cells

Link failure signal, failure dctcct.cd by x a.mJ reported l.o !J

ErH Error in horlzontal input

Erv Error in vertical input

xii

Chapter 1

INTRODUCTION

Von Neumann architecture restricts the speed of a memory based hardware system

because of the limited number of interconnections. The system speed can be in­

creased by reducing the number of memory interactions. Systolic arrays accomplish

this and thereby improve the system performance. Here, the interaction with the

outside world occurs only at the boundary cells of the array and once the data are

fed to the array, the intermediate results are not passed on to the memory devices.

A systolic array is an array of similar processing elements, where every element

performs th~ same basic operation.

Systolic arrays can be classified under various categories depending on the data

flow inside the array. The most common type is that of moving result, static

weights. In this type of arrays, the partial results move in a pre-specified way and

the weights stay in the processing elements. The various types are described in

Chapter 2.

These arrays have a number of similar processing elements, so some spare cells

can conveniently be introduced. In the case of a cell failure, the spare cell can

replace the faulty one, thus improving the system reliability.

Various reconfiguration schemes (described in Chapter 2) have been proposed

for the reconfiguration of th~e arrays in the event of a fault occurrence. Most of

the proposedreconfiguration schemes use hardware redundancy (spare cells) and in

1

I •· ·.
; .

'
~· ·

c·
I' , . . .
t.

~
\
I

f.
J:
I

~·
' i

(.
!

case of a fault detection, the reconfi.guration algorithm is performed on the array by

a.n external central processor (which maintains information about the operational

effectiveness of processing elements). The external processor is capable of changing

the data routing. The rcconfiguration algorithm changes the data routing paths

and makes the array operational if the algvrithm is successful. The reconfigured

array is flushed to clear the partial results and the array can then be used again.

Since the array is flushed after every fault occurrence, these reconfigura.tion

a.lgotithms cannot be used effectively during run-time. In addition, these algorithms

assume a. fault free routing network, which is difficult to achieve. These two major

shortcomings restrid the use of the above algorithms to production time yield

improvement.

An on-line reconfiguration scheme should preferably be capable of utilizing those

partial results which were not affected by the fault occurrence (referred to as non­

faulty partial refmlts in this report). In addition, the faulty partial results should

be blocked by the algorithm to ensure the proper operation of the array. 1£ a faulty

partial result is passed on to the next processing element, it would make the final

results erroneous.

An on-line reconfiguration algorithm is presented in this report which accom·

plishes the above-mentioned tasks and, in addition, tolerates switching network

failures. This algorithm requires an additional row of processing clements, called

spare cells (and this row is the bottom most row of the array). When a processing

element failure is detected, the spare cell of the corresponding column is used lo rc·

place the faulty cell. Similarly, redundant links are provided to ensure the tolerance

of link failures.

The processing element and switch modules are redesigned to accomplish the

generation of above system. Each processing element performs a self-test and in·

vokes reconfiguration (by generating reconfiguration requests) when it detects a self

2

fault.

It is assumed that a central processor is linked to the array, which is capable

of controlling the clock pulses to the array. In the event of a detected failure, the

central processor is informed about the failure and it delays the clock pulses (as

wilJ be explained in chapters 3 and 4).

The processing element which detects the fault informs the neighbouring pro­

cessing elements and switches about the fault occurrence. These neighbouring ele­

ments and switches generate reconfiguration requests again (if required) and inform

the other elements and switches. The reconfiguration request keeps on propagating

in this manner until it reaches the central processor.

1.1 Thesis Organization

The thesis is divided into six chapters. This chapter gives an introduction to the

research topic. Chapter 2 gives an overview of systolic designs and explains various

existing reconfiguration schemes and fault detection schemes. In this chapter it is

shown that most of the existing reconfiguration schemes cannot be used effectively

during run-time. An on-line rcconfiguration algorithm for processing element fail­

ures is proposed in Chapter 3. In addition, chapter 3 describes the changes (in

the design of processing elements, network and switch modules) required for the

implementation of this algorithm. In this chapter it is proved that the recom·

mended changes are sufficient to facilitate the reconfiguration. Chapter 4 explains

the reconfiguration algorithm for failures in processing elements and links. Various

control circuits (for PEs and switches) are designed in this chapter. The proposed

algorithm is evaluated in Chapter 5 and conclusions are presented in Chapter 6.

3

Chapter 2

LITERATURE REVIEW

In this chapter, Section 2.1 explains the basic concept of systolic arrays. Section 2.2

describes various fault detection schemes for these arrays a.nd Section 2.3 gives a

summary of various well-known reconfiguration schemes and compares them.

2.1 Concept of Systolic Arrays

When memory-based hardware is used, typical Von Neumann bottleneck comes

into the picture because of the limit~d number of interconnections which can be

supported by conventional electronics based technology. In memory-based systems,

the memory-access time restricts the speed of the system. This can be further ex·

plained with the help of the classical finite state machine, show!l ir. Figure 2 .l.a.

This machine consists of several storage elements, M, a logic unit, inputs (1/P),

outputs (0/P) and interconnections. In this scheme all the memory elements am

updated and/or read simultaneously in parallel without any addressing. This con·

figuration is not feasible if the number of memory elements is large. So addressing

is used to reduce the requirement of parallel lines. This scheme is shown in Fig·

ure 2.1.b. Here additional address lines are used and data is fetched in paraHel to

all the memory elements by a bus and, similarly, a bus carries the output from the

memory to the logic circuit.

Here, the number of required lines is reduced but the system performance has

4

LOGIC

I/p CIRCUIT ~-----~ O/P
-~----.Jr--+

a b

Figure 2.l: Finite State Machine

MEMORY

Figure 2.2: Reduced Memory Interaction

degraded because now only one memory element can be addressed at a time; as well

an address is required to access the memory locations. This results in an increased

memory-access time [1].

The Von Neumann problem can be solved by reducing the number of memory

interactions. To explain this, we will consider a processing element which requires

at least two memory interactions per operation. If memory access time is 100 ns,

we would get a maximum of 5 million operations per second (assuming that the

processing element takes negligible time compared to the memory access time).

But, if the data are returned to the memory after n such operations, the speed

becomes 5n miltion operations per second (see Figure 2.2).

All computations can be classified either under the compute bound category

5

(- PEs
,

Jf_

Figure 2.3: Systolic Array Representation

or under the 1/0 bound category of computations. Compute bound computations

involve more computations than the required I/0 operations (such as matrix-matrix

multiplication). In 1/0 bound tasks, the number of computations is less than the

1/0 requirements (such as matrix addition).

Systolic arrays reduce the number of memory interactions. In a systoHc array,

once data are taken out from the memory, they arc pumped through a number of

processing elements before the final result goes back to the memory. The flow of

data. in a. systolic array resembles the blood flow in the body and the term systolic

shows the analogy with cardio-vascular biological system. The term array is U!!cd

to show the resemblance of the systolic array to a grid, as shown in Figure 2.3, in

which each. junction point represents a processing element and the lines represent

the links between the processing elements.

SystoUc arrays consist of a set of interconnected processing elements, each cl­

ement capable of performing some basic operations. The data flow in a pi pelined

manner within a systolic array and communication with the outside world occurs

only at the boundary cells [2]. The memory requirement is reduced because the

intermediate results are not passed on to the memory. Other than the reduced

memory requirements, we get the following advantages:

• modular expandability

• regular and simple data. flow

6

B ~output

Figure 2.4: Design 1; Broadcast inputs, Results move and W~ights stay

• use of simple and uniform cells.

Systolic arrays can be of many types (the types are defined based on the movement

of data. through the array). Some of the basic types are discussed in the following

subsections. Consider a simple computation, given below:

(2.1)

where w's are the pr~rspecified weights and x's are the input data sequence. Here

we would tnke k=3 for simplicity. So,

(2.2)

Many types of systolic arrays can be designed to accomplish this task [2).

2.1.1 Broadcast inputs, move results and weights stay

The systolic array with this design and basic eel! operation are shown in Figure 2.4.

In this design, one of the basic criteria of systolic designs is not satisfied, still it

works on the same pr~nciple that the intermediate results are stored in the array

itself. The inputs are broadcast to all the cells at the sa.me time, which is not

acceptable for systolic arrays. Due to this shortcoming, this design is classified as

semi·systolic design.

7

w~

~ Zin Zoul

J, I 1 ,..Y..., ,.-'i.-, ,..v ...
I t----JII t-• · -- 1-~
I. • • .I I- - - . I L - - .I

Wouc =Win

Figure 2.5: Design 2; Results stay, Inputs and Weights move

The data move at the tick of the clock pulse. The data present at the check

points A, Band output (shown in Figure 2.4), with reference to the clock arc lislcd

below:

CLK. A B Output

0 Wt:Z:l W',tXt 1L'3Z1

1 Wt:Z:IJ WtZJ + w2.r2 W2Zt + W3Z2

2 WtZ3 WJZ2 + W2Z3 WtZJ + W:z%2 + W3Z3

3 WtZ4 WtZ3 + W2Z4 WtZ2 + W:z%3 + W3Z4

4 WtZS WtZ4 + w,xli WtZ3 + W:zZ .. + W3Z5

5 WtZ6 WtZs + W2Z6 WtZ4 + W:zZs + W3Z6

6 WtZ7 WtZ6 + W2Z7 Wt Z5 + W:zZ6 + W3Z7

We notice that from clock 2 onwards we get one correct output per clock cycle.

There are many variations of semi-systolic designs but for the sake of brevity we

will not discuss them here.

2.1.2 Results stay, inputs and weights move in opposite
directions

This design is shown in Figure 2.5.

It is difficult to implement the previously explained semi-systolic design if the

number of cells is large, because of the global broadcast bus requirement.

In this design, consecutive z's and w's are separated by two clock cycles to get

the proper results. When Zi a.nd Wi meet at a cell, the cell multiplies them and

8

Y1

Y~c Yin w,
Zin Zouc

Yout = Y. + Wj ,X in
tn

Figure 2.6: Design 3; Weights stay, Results and Inputs move

adds the result to the previously stored result. When w1 reaches a cell, it outputs

the stored values in the cell to the latch (shown below the cell in Figure 2.5) and

resets the cell before getting multiplied by xi. Here the path (shown by broken

lines) is used for collecting the final outputs.

Usually, the results a.nd inputs move and the weights stay in the array. This

type of array is discussed next.

2.1.3 Weights stay, results and inputs move in opposite
dir-aciio~fJ

This array is shown in Figure 2.6 and here the results and inputs move systolically

in opposite directions. This type of design is most suited for on-line arrays and it

is used when the same set of coefficients is used to operate on different input data

(for example: recursive filtering, polynomial division etc.).

The other types a.re not discussed here for the sake of brevity.

Systolic arrays can be used for a number of processing operations. These ar­

rays ensure multiple computations per memory interaction. They are particularly

suited for FIR, IIR filtering, convolution operations and various matrix operations,

like matrix transpose, matrix vector multiplication, matrix matrix multiplication,

matrix inversion etc. [2) to (5). These arrays can be used for any compute bound

problem, which is regular (that is, one where repetitive computations are performed

on a large set of data.).

9

[A] X [n] [c]
- -c c

h h
t! t
c e A X B k c k
• • u u
m m
'- .__

c:heckawn checbum 10
Figure 2.7: Matrix Encoding Method

2.2 Fault Detection Schemes

Systolic arrays are almost always designed to perform special purpose computations,

so algorithm based fault detection schemes can be applied to them with very little

hardware and time overheads. Some fault detection techniques are discussed in the

following subsections.

2.2.1 Matrix Encoding Methods

In this scheme, the matrix is encoded by adding some checksums. Consider the

matrix·matrix multiplication shown in Figure 2.7. During encoding, a checksum

row is added to matrix A and a checksum column is added to matrix B. After the

multiplication, the result matrix, C would have a checksum row and a check:mm

column. An example of this is given below:

3 2 4 X 2 4 6 = 19
[

2 4 1 1 [1 2 { 3 }] [13

{5 6 5} j 3 1 4 {32

Here, the checksums are shown in curly brackets.

This method can be used for those matrix multiplication arrays where the re­

sults stay. An error is detected by t:hecking the checksums and it is located at

the intersection of the inconsistent row and inconsistent column. For an n x n

multiplication, an (n + 1) x (n + 1) array is required (overhead of (2n + 1) cells) [6].

10

z-----~
{at to)

z-
(at It)

Figure 2.8: Recomputation with Shifted Operands

2.2.2 Recomputing with Shifted Operands (RESO)

Though many oodes are available for concurrent error detection in addition a.nd

subtraction arrays, they cannot be used for multiplier and divide arrays because

they unduly increase the complexity of the circuit.

For such arrays, RESO is an efficient scheme. The basic concept of this scheme

is shown in Figure 2.8. First the function f (which is the required operation on the

operands) is performed on the data x and the result is stored. The data z is then

encoded by c and f is performed on this encoded data. The final result is decoded

by c-1 and the decoded result is compared with the stored result. Any mismatch in

these two values shows the error [7] (8). Here, the coding cis performed by shifting

the operands.

If many operands are used as inputs, then it may not be possible to shift all

the input operands equally. In this case the operands can be assumed to be shifted

by k1, k1 , k3 ••• and the result obtained by using these shifted operands would be

shifted by r bits. This scheme is known as RESO (k1,k2 , ... ,r) [9).

If Eo and Et are the set of all possible erroneous outputs of !F(:t) and JF(x)

respectively due to a fault F after the computations, where J(x) is the required

function, then the errors are detectable iff Eon E 1 = t/J (which means that any

possible output of the repeated step, /f.(x) must not be an element of E0).

The potential error set (as explained in [8)) of the first unshifted computation

11

:to Y'l Xt Yo l'o Yt xo Yo

0

Figure 2.9: Multiplier with Ripple Carry Adder

can be written as:

Eo= {±2i x qjq = 1,2, ... ,u},

where i is the minimum of the bit slice index of the fault mouulc artd u is the

maximum error factor (which reflects the integer value of the affcd<!d output. bit

due to the fault). To make it more clear, we can consider the circuil. shown in

Figure 2.9.

Here, when one.. adder cell i fails, it tries to change the value of the output. The

ith adder chip failure can result in an error in the ith sum bit or the carry hit (which

affects the (i + l)th bit). So, there are two possible bits which can be affcded aiUl

these bits have weights 2i and 2i+l. This gives four possible cornbinat.ious:

1 both bits correct; error = 0,

1 bit 2i has error, 2i+1 correct; error = ±2i,

• bit 2i+1 has error, 2• correct; error = ±2i+t,

12

So, the result is in error by any one of the error set {0, ±2', ±2i+l, ±3 x 2'}

So, for an adder, u=3. In the earlier discussion, we neglected the element 0 of

the set, because this identifies a correct output.

In the recomputation step, the result is shifted left by r bits with respect to the

original unshifted result. So potential error set of the recomputation is:

E1 = {±2i-r X qfq = 1,2, ... ,u}. (2.4)

Now, the disjointness of E0 and E1 can be ensured by making sure that the

maximum element in E1 is less than the minimum element in E0 • l
"'

Using this strategy, arrays can be designed, whose faults can be diagnosed by

RESO method [9].

2.2.3 Triple Data Redundancy

This scheme uses the basic modular property of systolic array (that all the process­

ing elements, PEs, perform the same operation) to detect {a.nd mask few) errors.

It is suitable. for one dimensional arrays.

In this scheme, three PEs perform the sa.me co:nputation on the same data at

a time and they pass on their results to the next 3 PEs, which compare these 3

results and then perform the computation on the majority-voted input. Since this

scheme uses three PEs to perform the same operation on the same data, it can

mask the presence of a single fault and detect double faults [10].

The input is given to PEt, P E2 and PEa simultaneol!:;ly (Figure 2.10) and

they perform their portion of work on this data and then

• PEt passes on the result to P E2, P E3 and P E4,

• P E2 passes on the result to P E3 and P E,. and

• P E3 passes on the result to P E2 and P E4•

13

I . ..

Figure 2.10: Triple Time Redundancy

So, at the next dock pulse, P E2, P E3 and P E4 get three identical inputs (if no

fault is present) and each one of them votes on the data and then performs the

computation on the voted data.

In the case of a detected error, the P E which detects the error informs the

central processor that the data output from P Ez is wrong. After receiving this

messa.ge, the central processor attaches a flag (indicating a fault in the P E) to

P Ez and ignores any further information about PEr's health. In add ilion, the

central processor maintains a table of the health of all P E's. Whenever it receives

an error message, it checks the table and if the faulty P E falls within a distance

of 2 from another faulty P E, reconfiguration is done by removing 3 PEs from the

array. Each reconfiguration removes three PEs from the array. If in the array,

shown in Figure 2.10, all PEs are working properly initially and then P En-2 fails,

the central processor marks it in the table and next if either PEn-t or PEn fails,

the reconfiguration removes P En-2, PEn-t and PEn from the array. Similarly, if

in this case (with P En-2 as first failure) either P En-3 or P En-4 fails, the reconfig-

uration removes P En_4 , P En-3 and P En-'2 from the array. So a reconfiguration

removes exactly 2 faulty cells and 1 non-faulty cell from the array. The reconfigu­

ration reduces the array size and this necessitates a restructuring of the algorithm

executing on the array. So, after every reconfiguration, the full array is flushed and

the restructhring algorithm is run. This is done by the central processor [10).

14

input ••• ~Output

Figure 2.11: Comparison with Concurrent Redundant Computation (CCRC)

2.2.4 Comparison with Concurrent Redundant
Computation (CCRC)

This scheme can be used for those systolic arrays, in which the results move and

t.hc weights stay in the PEs [11]. Here, the same computation is done by P Ei and

P Ei-l at the same time and the results are compared (Figure 2.11). This algorithm

assumes that only one P E fails at a time, so if P E; is faulty, it will be detected by

comparing Yi and Yi-1·

To implement this, the same input is given to the array twice. This can be

done in many ways. One of the methods is shown in Figure 2.11. Here, PEE is

t.he extra. P 15, which is used to introduce the proper delay and calculate the first

partial result.

The comparison can be done in two different ways. The scheme, shown in

Figure 2.12.a, assumes that even when P E; is faulty, its comparator is working.

This condition is difficult to achieve. The scheme, shown in Figure 2.12.b, docs not

assume this, but it requires an additional link between the PEs.

This scheme generates an asynchronous error signal, which is necessary. In

this case th~ fault is detected even before the error propagates to the output and

corrupts the next stage of the system [11].

2.2.5 Double Calculation in the Same PE

This scheme is suitable for the systolic arrays, where the results stay in PEs and

the coefficient and data streams move [12]. In such systolic arrays, the partial

15

------------ ------------ ------------ ------------1 I I I 1 I I I

1/P: I

1
~----"1 E- CI'I'Or

L.~------ - --J

a b

Figure 2.12: CCRC: Comparison Schemes

results stay in the PEs and when final result becomes available, it is passed on to

the output register from where it is scanned out.

Now, consider an FIR filter:

where N is the number of PEs.

N

Yn = ~ ajXn-i,
i=O

(2.5)

To implement this filter, we have to separate the adjacent coefficient terms

and data terms by two cells. This cell separation feature can be used to get fault

tolerance. To add this additional feature, some extra. hardware is required. Without

fault tolerance, the normal P E looks as in Figure 2.138.. A second accumulator is

added to store the results of a second calculation, Figure 2.13.b. Each accumulatf;r

RA, feeds the adder and accepts its output during alternate clock cycles. So two

independent calculations can be performed in each P E. When the calculation of an

output term is completed, the adder output is sent directly to the output register

Ro, while the accumulator containing the parallel result is reset.

Data flow is shown in Figure 2.14. Two boxes ~~ore shown for each P E and the

coutent of each box represents the content of an accumulator in the P E. In the

figure, ij means Xi.a;; for an example, 32 would mean X3.a:z.

16

----------------------1
I

1,..

I I I I
I I I I

~-------------------1 L--------------------l
a b

RD : Data resJater

RA : Accumulator

Rw : Weight regiater

Ro : Output Regiater

Figure 2.13: Recomputation in the same P E

It is clear from this flow diagram that every output is available from two different

PEs. These outputs can be compared to detect a fault.

Here, it is not possible to locate the faulty P E, because only 2 copies of the

result are available, but whenever a fault is detected, the faulty P E can be located

by running some exhaustive checking algorithm.

2.3 Reconfiguration Schemes

Fault tolerance is incorporated in a systolic array to achieve two basic goals:

• to improve the system reliability and

• to improve the yield of VLSI and WSI chip production.

To improve the chip denRity it is required that the physical dimensions of the

transistor level circuitry be reduced making the manufacturing process more error-

prone.

17

l=t ~Zt J I. [j I.~::· ill11.J.,,
I=• ~ Xt 11 0 I. :I 11 0 I.:· t I 0 [:: J Ji3 [., ,
l=

3 ~ x, ll. t:' ll J :~ t I J ~.l J~; t :: ,
I=· ~J 1~:: lJ.t:: J~IJ:~ J~t~t:: ~

xz X 1 X · I ...
t=s 11

a3
22

a2
12 22

a2
12 02 - "• 23 33 23 13 03 13 03 -13

~

X I .. "?'

21 21 II
32 a2 32 22

a2
12 22 a• 12 02

a1 --- 23 33 23 13 03 13 03 -13

Xt
20 ~>-

31 21 31 21 II
32 42

a2
32 22

al
12 22

UJ
12 02 ao 23 33 23 13 03 13 03 -13

l-
X 4 X 4 X 3 3 ·2

30 30

t:s 41 41 31 21 31 21
32 42 a, 32 22 at 12 22 ao 12

ao 23 ~'13 23 13 03 13 03 0 -- -L_y3 -r YJ
X 4 X 4 X 3 X 3

<10 •10 ~

l=9 41 51 41 31 31
32 42 a1 32 22 ao 22 ao a3
23 33 23 13 0 13 0 33

'Lt 1~Y4
xs 5 X 4 X 4 X •3

50 50

r 41 51 41
32 42 ao 32

1-E-ao a a 33 La:~ 23 33 23 0 43 0 43

l=to

I Ys I y 5

Figure 2.14: Data Flow Diagram (for recomputation in the same PB)

18

For a typical bulk CMOS process, the following is a brief list of common defects:

• Photolithography Defect: it causes missing or extra patterns on a mask layer.

Common sources of this are mask defects, dirt particles and uneven etching.

• Contact and Via Defects: these are the windows between different layers for

providing interlayer connections. The defects in these can result in shorter /larger

window area causing the shorting of other connections.

• Gate Oxide Defect: charge trapping in gate-oxide regions of MOS devices

results in threshold voltage shifts which can lead to reduced noise margins

and malfunctioning of gates.

Because of these reasons, the production of VLSI/WSI chips does not always give

a. yield at an accept~ble level. To improve the yield, the chip is designed to be

fault-tolerant (13].

To achie\'e fault tolerance we have to provide redundancy, which can be of two

types:

• hardware redundancy: in this case, spare cells and the corresponding inter­

connection network are provided and in the case of a fault, reconfiguration is

done.

• time redundancy: here, the processing elements are provided a number of

processing states. Working elements perform the functions of faulty cells if

any fault occurs. In this case, the number of elements does not increase

but the interconnection network becomes very complex. Also, the processing

speed decreases drastically, so it is not suitable for systolic arrays.

Usually, harJware redundancy is provided in an array and in case of a fault, re·

configuration is done. The goal of the reconfiguration is to achieve 100% spare

19

•· '·

utilization (i.e. if N spare cells are available, the array should survive up to N

faults).

In discrete system architecture, 100% spare utilization is possible and also de­

sirable because here the cost of the processing element is much higher than that of

interconnection network and usually in this case each processing element is a CPU,

so the re-routing can be performed by one of the working PEs. If the CPU iM an

extremely simple device (which can not perform the re-routing), the reconfiguration

is not needed because in this case the reliability of the system wi\1 be extremely

high due to the simple CPU design.

In the case of a systolic array, though the utilization of spare cells is still im­

portant, it is also necessary to maintain the locality of interconnections. Here, it

is essential to use simple routing devices to minimize the time delays and silicon

area. (it has been proved that excessive increase of chip area due to fault tolerance

related circuits has a negative effect on overall device reliability).

So, for a systolic array, the reconfiguration process has to provide a compromise

between the reconfiguration-effectiveness and algorithm complexity. This compro­

mise depends on the approach adopted for the reconfigura.tion, namely:

• static reconfiguration, performed at production time,

• dynamic reconfiguration driven by a host computer at run time and

• dynamic reconfiguration, performed on-chip at run time.

Static reconfiguration is uniquely determined at production time and . for this

the testing is performed externally (so no on~chip control circuitry is required). The

complexity of the reoonfiguration algorithm is not a critical issue because it docs

not affect either circuit complexity or operation speed.

For the second case, it is assumed that the external host can perform rcconfiguration·

controlling actions on the basis of the available error information.

20

1/P. 0/P

DIRECT REPLACEMENT GLOBAL DEFORMATION

Figure 2.15: Direct Replacement and Global Deformation

The third case introduces additional costs for self testing and self reconfigura-

tion.

For all the dynamic reconfiguration algorithms, the problem of error-latency

(defined as the time that passes before the array is operational again after the oc­

currence of a fault) has to be considered. Any reconfiguration approach involves

two problems: the first problem is that of routing data. through the rec"nfigured

array. It involves introduction of redundant links and routing devices. The local­

ity of the interconnection network is maintained by using the global deformation

technique in place of the direct replacement technique. In the global deformation

technique if cell i is faulty (see Figure 2.15), cell (i+ 1) assumes the role of cell i and

cell (i + 2) performs the functions of cell (i + 1) and so on. The spare cell performs

the function of cell N. In the direct replacement technique, the spare cell has to

perform the function of cell i and this disturbs the uniform data flow assumption

of the systolic array.

The second problem is that of the reconfiguration computation as related to fault

distribution. It involves the implementation of the reconfigura.tion algorithm [14).

An M x N faulty array is said to be reconfigurable into an m x n array iff m

horizontal and n vertical data flow paths can be achieved by reconfiguration.

There are two major types of reconfigura.tion schemes:

• Set Switching Schemes: here, a faulty cell is replaced by logically removing a

set of cells (row, column, block etc.), that contains the faulty cell. It is easily

21

C-cut C-cut
I I

R-cu\ --€}--$-- -{I)--8-
I
I

0 <:> ~ 0
I I

0 <P $ 0
I I

0 ~ Q 0
I
I

0 : GOOD CELL ® : FAULTY CELL

a

h; +h·
Vj

Losic Circuit

b

Figure 2.16: Row Column Cut Method

implemented but the waste of non-faulty cells is laz:;e.

h.,

L: Latcbes

• Processor Switching Schemes: here the replacement scheme proceeds in a

chain fashion such that a faulty cell is replaced by (shifted to) an immediate

neighbour and so on until the spare cell is reached [15].

Various reconfiguration schemes are discussed in the following sub-sections.

2.3.1 RC Cut (Row Column Cut) Method

A cut is defined as a set of cells, such that bypassing them leads to an array with

one less data. flow path. A horizontal (vertical) cut remov~ one horizontal (vertical)

data. flow path from the original array. Horizontal (vertical) cut is also called row

(column) cut.

In this method, for a. faulty cell all the cells in the same row/column arc taken

to be in a cut. So, in the array, shown in Figure 2.16.a, one horizontal and two

vertical paths are involved in-cuts. This results in a reconfigured 3 x 2 array from

a. 4 x 4 array.

22

The routing arrangement is shown in Figure 2.16.b. It is clear from the figure

that any cell can be bypassed by simple switch controls. The architecture and path

generation are simple but this algorithm wastes a large number of non-faulty cells.

Particularly, for a large array (suppose a 10 x 10 array), the failure of just one cell

removes a large number of cells (in this case 10) from the array (16].

2.3.2 RCS (Row, Column Slanted) Cut Method

This is also known as Kung and Lam approach. Here, the cells contributing to a cut

may not be from the same row or column but they satisfy the foliowing conditions:

• a cut must contain one cell per row (vertical cut) or one cell per column

(horizontal cut) and t,!le slope of the line containing the cells in the cut must

be non-negative ~nd

• the inclination of the line connecting the cells in the cut between the successive

columns must be 0 or 45 degrees for horizontal cuts and 90 or 45 degrees

between successive rows for vertical cuts.

One such vertical cut is shown in Figure 2.17 .a. Here, the 4 x 4 array (used as

an example in RC-cut subsection) is reconfigured into a 4 x 3 array. The routing

arrangement for an RCS cut is shown in Figure 2.17.b. It is clear that the utilization

of cells is improved in this method, but the routing complexity is ;,t,}so increased. It

is difficult to get an optimum cut in this method and for fewt~r faults this scheme

also wastes a large number of non-faulty cells [16).

2.3.3 Kuo-Fuchs Method

Now, consider the (7 +2) x {9+3) array shown in Figure 2.18.a. Here (7+2) x (9+3)

means that it is a 7 X 9 array, having seven rows, R1 through R1 and nine columns,

C1 through C9, with two spare rows, SR1 and Sm, and three spare columns, Sc1, Sc<J

and Sc3). Only faulty PEs are shown in the figure.

23

h, v,

C-5 cut
h2 *"' v2 . v,,

I

0 0 0 ~ ho Vo hl h2 Vt v2 ,..
0 0 ~ 0

I

0 0 $ 0
;-'

... --
0 ~ 0 0

Logic Circuil

0 : GOOD CELL l8) : FAULTY CELl,

R1
R2
R3
R4
Rs

Rs
R1

SRi

SR2

a b

Figure 2.17: Row Column Slanted Cut Method

C!t C!2 Ca q4 C:li ~6 C,1 C,s C? Sc,t S~2 5_ca
0 • • 0 • • • • • • •

• • • • 0 • • • • ' 0

...... '"®· .. : : .. ·® .. - ~ ~ .. . - ~ : ... ® ... : : :
• • 0 • • • • • • • • •

: : : : : : : : : : : : ··· ··· ····· ··· ·· ····· ·· ········ ··· ··· ····· ········ ··· ······· ·· ····· ····· ·· ·· • • 0 • • • • • • • •

• • : • 0 • • • • • 0

..... .. ·®· .. : : ~ ~ ~ : : ~.' .. : : ~
• • • • • • • • 0 • • •

... ~ ~ - .. ~. ·$... ~ ... - ~ · · ·$···: :···. ~-· .. : .. . ·["
o o I I 0 o 0 I 0 0 o o
0 o I o o 0 I 0 0 o o ····· ·· ········· ·· ··· ·· ' . . . '
0 0 0 o 0 o 0 I 0 o o 0

: : : : : : : : : : : : ··· ··· ·· ····· ··· ·· ······ ··· ····· ·· ·· ··· ···· ··· ···· ·· ·· ·· ········ ········ ·· ·· • • • • • • • ' • • • 0 . . : . . . ' ' . . .
. . . '' '' .. . : ~ . ' .. : .. ·!8!· .. : : ~ ... ': .. ·!8!· .. ~ : ~

• 0 • • • • • ' • • • •

• • • • • • 0 • • • • •

• • • 0 • • ' ' • • •

o o , o o o o o o o o o o o o o o o o o I o ~ o o o o , o o • o o o o , o , o , o o • o , o o o I • • • o • o o •
• • • • • 0 ' • • • •

o o o o o o o o o I o •
• • • 0 • • • • • • • •

· ··· ·· ····· ··· ········ · ······ ••o •• ·· ·· ·· ·• •oooooooo•• · · ·· ·· · · ·· ·· · ······ ··· · • • • • • • • • 0 • • •
: ! ; ; ; ; : : : !

a

Figure 2.18: Kuo-Fuchs Method

24

J, : l.atchr.~~

b

A general set replacement algorithm replaces faulty rows/columns by proceeding

from left to right and top to bottom- so, rows 1 and 3 would be replaced by the spare

rows and columns 3, 4 and 7 would be replaced by the spare columns. Obviously,

it docs not. reconfigure the array.

In the Kuo-Fuchs method, the rows/columns that contain the maximum number

of faulty cells arc replaced first. To implement this, the array is modelled as a

bipartite graph, whose two sets of nodes are array rows and columns that contain

faulty cells. Edges of this graph refer to the faulty cells. The bipartite graph of the

(7 + 2) x (9 + 3) array is shown in Figure 2.18.b.

This method first chooses the nodes with maximum number of branches and re­

places them. II ere, first R1 and R4 arc replaced with spare rows and then C1, C4 and

Co are replaced with spare columns. This achieves a successful reconfiguration [17).

ln all the above-mentioned schemes the utilization of non-faulty cells is very

poor. Next, some processor switching schemes are discussed, where an available

spare cell directly or indirectly replaces a faulty ceil. Because of this, for these

methods, the rcconfiguration efficiency is good.

2.3.4 Diogenes Method

In this approach the array is laid out in a line with bunches of wires, called bundles,

running above the line (the PEs need not literally lie in a line), as shown in

Figure 2.19.

Each P E has some number of lines entering it (connecting it to the PEs, that

lie to its left in the line) and some number of lines leaving it (connecting it to the

PEs, that lie to its right in the line). These entering and leaving sets of lines are

connected to the bundles through switches that are set by external control. The

PEs arc scanned in a row and the faulty PEs are not connected to the bundle.

So, the utilization of the spares is maximized.

25

Figure 2.19: Diogenes Method

D CELl.

FAUt;t'Y
C:ELI.

D SWITCII

S\\'ITCII
(open)

In this method, the PEs are tested first and the outcomes of the tests n.rc

available to the buses via control lines GOODi that mdicatc the presence or absence

of fault in the ith P E. If P Ei is fault free, the corresponding control line would

be high and P Ei would be hooked to the bundle. A P B is hooked to the bundle

only if the corresponding line, GOODi is high. This feature facilitates the lcsti11g

also. Any P E can be isolated and tested by setting its GOO Di line to '1' and other

GOODi lines to '0'.

This scheme requires a large silicon area for the switch bus that might ilsdf fail.

In the presence of consecutive faulty PEs, logically adjacent PEs can be far apart

physically, reducing the system speed [18].

2.3.5 Fault Stealing Methods

These are also known as index-mapping schemes. Here, for an array of M x N

cells, the spares are organized along the (M + l)th row and the (N + 1)1h column.

Reconfiguration is performed by mapping the array functions ont.o t.hc working

cells by means of a global renaming process. Whenever a given algorit.hm docs not

complete this mapping onto correctly working cel1s, a fatal failure condition is said

26

Figure 2.20: Simplest Fault Stealing Method

to occur.

In this scheme, the physical and logical indices arc defined first for each cell.

The physical indices (i, j) denote the position in the physical array consisting of all

cells and the logical indices (i',j') denote position in the logical array consisting of

working cells only and implement all the functions required by the array.

Consider the simplest case, in which a spare column is added. If a cell (i,j) is

faulty, it is bypassed and logical indices (i',j') are associated with cell {i,j + 1) for

cells (i,J:), k > j. Figure 2.20 shows the result of one such reconfiguration. The

fatal failure condition is reached whenever there are two faulty cells in a row. This

problem can be overcome by adding one spare row and one spare column to the

array and slightly modifying the algorithm. The modified algorithm is as follows:

• the array is scanned from top to bottom

27

Figure 2.21: Modified Fault Stealing Method

• if in row ·i there is only one faulty /stolen cell, rightward rcconfigura.Lion is

performed for that row,

• otherwise, the rightmost faulty or stolen cell invokes rightward reconfigum­

tion, while all other faulty or stolen ones steal the functions of cells in t.bc

corresponding positions of row (i + 1) making them stolen cells. Stealing hy

(i,j) implies associating logical indices (i,j) with the stolen cell.

Figure 2.21 shows one such reconfiguration.

In this case, a fatal failure condition is reached when a stolen cell is faulty. The

locality is high in this case also. Here, a faulty cell (i,j) can be shifted t.o a. fault.

free cell (i, j + 1) or (i + 1, j) The set consisting of cells (i, j), (i, j + 1) and (i +I, j) iH

referred as an adjacency domain. This adjacency domain can be ext.end(!d and t.he

algorithm can be modified to get more spare utilization. The modified approach is

28

called complex fault stealing (14].

2.3.6 CFS (Complex Fault Stealing) Method

In this scheme, a spare row and a spare column are provided to the N X N array

and the algorithm is as follows:

• assume that in row i, lsisN there are faulty or stolen cells (i, kl), ... , (i, k,)

• for each k;, 0 < i < s :

a- if (i + l,ki) is fault free, (i,k) is shifted to it,

b- else, if (i + 1, k; + 1) is fault free, (i, k) is shifted to it,

c- otherwise, (i, ki) is shifted right.

• if no cell is shifted right along the row as per the previous rule, then (i, k,)

is shifted right. Otherwise (i, k,) is shifted downwards to either (i + 1, k,) or

{ i + 1' k, + 1).

An example of this algorithm is shown in Figure 2.22. Here, (1, 2) is shifted

twice, first to (1, 3) and then to (2, 4). The interconnection links required by this

algorithm are very complex [15] [19].

2.3.7 FUSS (Full Use of Suitable Spares) Method

This scheme uses an indicator vector, called the surplus vector to guide the re­

placement of faulty cells in an array. In its ideal case, FUSS achieves 100% spare

survivability. In FUSS-C, the array is an M x (N +C) array, where Cis the number

of spare columns (spare rows are not used). First, the surplus vector of the array

is computed. Let /i be the number of faulty cells in row i. The surplus vector

(S-vector) is defined as

29

Figure 2.22: Complex Fault Stealing Method

i

where s; = l:(G- /i) is the surplus of row i.
j=l

Next,

• if s; > 0, then the sum of spares in rows 1 through i is greater than the number

of faulty cells in row 1 through row i; so row i ha.s extra. cells available for usc

by faulty cells in rows i + 1, i + 2, ... M,

• if s, < 0, then row i has a deficit and needs to usc available cells from row

i + 1, i + 2, ... , M,

• if SM < 0, then the total number of spares in the array is less than the number

of faulty celJs. In this case the array is not rcconfigurable and fatal failure

occurs.

In FUSS-C, an unavailable cell (i,j) can be shifted down to (i + 1, j) if Si is negative

or shifted up to (i- l,j) if s,_1 is positive.

30

011000
011100
000000
Ol0l01

ARRAY

011000
011100
030200
010101

B- MATRIX

S-vec:tor

0
-1
+1

0

~ ~

~ ~ ~

Figure 2.23: FUSS Scheme

After each step the corresponding entry in the surplus vector is readjusted to­

wards zero. Its effect can be described as a cell migration from regions having most

faulty ceJls to regions having less faulty cells.

Consider a 4 x (4 + 2) array shown in Figure 2.23 (FUSS-2 Scheme), where

'0' represents a. good cell and '1' represents a. faulty cell. The reconfigura.tion is

executed as follows:

• scan the array downwards. When Si < 0, shift a number equal to jsi J of

unavailable cells to row i+ 1 a.nd when successful, reset Si to 0. Here, s2 = -1,

so one cell (2, 2) is shifted down from row 2 to row 3 and this is assigned a

status code of 3,

• scan the array upwards. When Si > 0, shift lsil unavailable cells in row i + 1

to row i; .si is reset to 0 when all s; cells are shifted successfully. Here, S3 = 1,

so one cell from row 4, cell (4,4) is shifted up to cell (3,4) which assumes the

status code of 2; s3 is readjusted to 0.

Now, the surplus vector is 0, which means that the fault shifting is successful. The

31

Figure 2.24: Interstitial Redundancy Scheme

status matrix (B-matrix) has the status codes that guide the cell interconnection

phase of FUSS. Entry bij has the following meaning:

• b;; = 0, if (i,j) is fault-free

• bij = 1, if (i,j) is faulty

• b,; = 2, if (i,j) replaces (i + l,j) and

• b;; = 3, if (i,j) is replacing (i- l,j).

Now, since the status of the cells is known, it is eMy to derive the intercon­

nection between the cells. In this algorithm, the probability of survival improves

and fewer cells are wasted. However, the algorithm becomes more complex anu the

interconnection requirement is increased.

2.3.8 Local Redundancy Methods

In these schemes, the array is partitioned into smaller arrays, each of which can be

reconfigured independently. The main objective of these schemes is the minimiza­

tion of the interconnection delays. One such scheme is discussed next.

The scheme is called interstitial Tfdundancy and it maintains short interconnec­

tion links.

32

The array is divided into a. number of subarrays (clusters) and one spare is

allocated to ea.ch cluster. The array shown in Figure 2.24 has 25% redundancy.

Ea<".h cluster is independent and it can tolerate one faulty cell. The spares are

physically close to the faulty cell they replace [20).

In these schemes, if reconfigura.tion is not possible within a block, the system

fails unless the faulty block can be replaced by a functional one. To avoid this, the

array can be organised in a hierarchical way. One such scheme is CHiP (configurable

highly parallel) architecture, made up of building blocks, each of which is a two

dimensional CHiP array [21).

The cut methods are simple but they are not efficient. In the slanted R-S cut

method, sometimes it is difficult to get an optimum cut. The switching scheme is

very simple for these methods.

The fault stealing and FUSS methods are very efficient but their algorit hms and

switching structures are complex.

Some of the above schemes cannot be used effectively during run-time because

every time a. fault occurs, the full algorithm has to run and it may completely

change the previous reconfiguration. These algorithms are suitable for improving

the production time yield.

In the next chapter an on-line reconfiguration scheme is proposed for P E fail-

ures.

33

·,

Chapter 3

ON LINE
RECONFIGURATION

On line reconfigurat. m is performed to increase the reliability of the system for the

full duration of a mission. Here, in the case of a fault detection, the array is not

flushed as required by the previous algorithms.

The reconfiguration scheme should be capable of:

• fault detection: if the fault is not detected, the array fails and this failure

cannot be detected by the central processor; this is an unsafe failure;

• fault location: the fault location is important in order to replace the faulty

P E by a non-faulty P E;

• re-routing: the scheme should be capable of mapping the new logical index

on to the physical index and

• fault blocking: to ensure that the faulty data are not passed on to the next

P E, otherwise all the further computations would use the faulty data and all

the results would be faulty.

A major concern for an on-line reconfiguration is complete use of non-faulty par­

tial results. During reconfiguration the fault-free partial results should be handled

properly.

34

\

The reconfiguration scheme should have following attributes:

• simplicity of algorithm: the algorithm should be simple, so that it causes little

disturbance in the array. Here, disturbance refers to the total number of PEs,

for which the logical index changes.

• minimal additional hardware; any additional capability requires some extra

hardware, which depends on the algorithm. The algorithm should use min­

imum additional hardware otherwise the additional hardware would bring

down the array reliability instead of improving it.

• use of fault-free partial results: in systolic arrays, partial results are passed on

to the next cell as input. In the case of a fault-occurrence, the faulty partial

results should be blocked and the fault free partial results should be ideally

utilized to best advantage.

• locality: the locality of the data is one of the major attributes of systolic

arrays and the reconfiguration algorithm should maintain it. It is maintained

by using the global deformation instead direct replacement.

A scheme is proposed in the following section for on-line reconfiguration that has

these attributes.

3.1 On-Line Reconftguration Scheme

This scheme does not perform any on-line testing, so self-testing PEs are required.

When a P E detects any fault, it invokes the reconfiguration. The follo~ing as­

sumptions are made.

Assumptions:

• the faults are occurring one at a time;

• the links and the switching network are fault-free;

35

• once a fault occurs, it is detected by the P E;

• the control circuitry of PEs never fails;

• a central processor provides input and clock to the array and it receives output

and fault occurrence signals from the array and

• the occurrence of a failure is reported to the central processor before the

arrival of the next rising clock edge.

The array is provided with an extra. row of PEs {called spares) and these spares

do not perform any useful operation during the normal operation. These cells do

only self-testing and remain non-active for other operations. Once a P EiJ (P Ei,j

denotes the PE whose physical index is (i,j) and P Ef; denotes the P E with !ogical

index {i,j)) detects a fault, it marks itself as bad and the reconfiguration is done

as follows:

• if P E,,j is a non-active spare, no shift is done;

• if a working P Ei,j fails and the spare cell, P Erow,j, is available, P EiJ invokes

a dOWIIWard shift;

• else a fatal failure occurs.

For example, if in the array shown in Figure 3.1, P E 3,2 fails, no shift is performed

but it is marked as a bad P E. But when P E2,1 fails, it checks the availability of

spare cell, P E3,1, and since this spare is available, the reconfiguration is done and

a downward shift is performed for all P Ez,l, where i ~ x ~ row - 1 (here, i=2

and row=3). After this failure, if any P E fails in column 1, the algorithm cannol

tolerate the fault and a fatal failure occurs.

Similarly if a spare, such as P E3,1, fails first, then any further failure in column 1

would result into a fatal failure.

36

PUT IN

GL OGK

0 ACTIVE CELL

©) SPARE CELL

Figure 3.1: Proposed On-Line Reconfiguration Scheme

atagin~ logic 1- stagin{J logic r- .. stagin!J logic r-----0
latch ckt. latch ckt. latch ckt.

~ t t
l -- l

Figure 3.2: Staging Latch Position in Normal Arrays

3.2 Implementation

UTPUT

In most systolic arrays, staging latches are provided at the input end of the P E, as

shown in Figure 3.2.

The clock is applied to these latches for propagation of data. When a dock

edge arrives, P Ei latches the data from P Ei-t and it is available to P E, for the

full duration of a clock pulse.

Now, consider the one-dimensional pipeline shown in Figure 3.3.

During normal operation, each P Ei gets input from the output of the previous

P Ei-t• Here, inputs and outputs are written as I! and O!, meaning that J! is the

37

CLOCK
~:-Ba

a

___n_r
* I • * I I
I I

t tl t-H.

CLOCK
CLOG I<

b

Figure 3.3: Pipeline, Before and After reconfiguration

input of P E:e at time t and O! is the output of PEr at time t. Similarly, I!,L and

O!.,L denote the input and output of P E~ at time t respectively. For the pipeline,

shown in Figure 3.3, at any time t, If = 0~, I~ = 0~ ... and so on. At any time

t1 (t < t1 < t + 1), each P Ei is processing the data., which was available at its

input at time t. Since we have the staging latches at the input end, the failure of

P E; at time t 1 makes the data available on link L~+l (the link between P Ei and

P E;+t) erroneous. If a spare is available at the rightmost position of this pipeline, a

rightward global shift is performed and the pipeline would look as in Figure 3.3(b).

Now, PEa+t acts as PEf and since the partial result generated by PEi is faulty

at time tlt it must be recomputed by P Ef. For generating a:•, P Ei+l requires the

same input, which was available to P Ei at time t, but this data is not available at

ft because at time t it was generated as 01_1 by P Ei-l and after the clock edge the

P Ei-l receives new input Jf_1 and changes the output.

To overcome this problem, the staging latches are shifted from the input side

to the output side and the new pipeline is shown in Figure 3.4.

38

IN PUT logic stagin~ 1- logic stagin~ .. logic staging _,.o UTPUT

r.kt. latch ckt. latch ckt. latch

l f t
OCK 1 I -- I CL

Figure 3.4: Modified Staging Latch Position

In this case, the links and output ports never carry the faulty data, because the

moment a. fault is detected by any PE, the PE requests the central processor to

block the clock. Here, in the case of P E, failure at time t1, 0!_1 is available at the

output port of P Ei_1 and it can be used by the P Ef. Once P Ei changes its logical

index, it has to use the weight (static coefficient), which was being used by P Ei-1·

This is discusRed in the next subsection.

3.2.1 Loading of Weights

When an array is implemented, it is not possible to connect all the static coefficient

latches to the external ports {which are used to connect the array and the central

processor) due to extensive link requirements. So usually the input line is used to

load the static coefficients in the array before the array begins processing data. In

most systolic arrays, one of the data streams (either vertical or horizontal) passes

through the array without getting modified and this feature is used to load the

static coefficients. In the following discussion, it is assumed that the vertical data

stream is not modified. This can be generalized to the horizontal data stream also.

A simplified block diagram of aPE is shown in Figure 3.5.

We can use either of the following two methods for loading static coefficients in

the array.

39

. lnputJCoef f
Clock

----- -----------------------------I I ,
. . ~ I

I I

LOGIC IV-OUTPUT I I
__'!_ I

BLOCK LATCH J I
I _tw I
I

STATIC i_ H-OUTPUTl I
L._. COEFF. ~ LATCH J

LATCH
Load

~-Aiib-R:Ess i
L-~~i?-~~~J I)

I L----J

t I I

I I I

,...I -~"'-- ---J-------------------------- --·-· L---------------------------------J
Address

(required only for random loading)

O"

Figure 3.5: Block Diagram of P E (with emphasis on Coefficient Loading Circuit)

Method 1 (Sequential Loading) -

Here, the coefficients, Wi,j are loaded into P E1,j by presenting wi,j on vertical input

line 1r in sequence Wm-t.;, Wm-2J ••• and after m - 1 clock pulses (m is the total

number of rows in the array, one bottom row of spares is added • making the total

number of rows m + 1), each PEiJ would have its static coefficient Wi,j at its input

port. Now the input/coefficient line is made valid for coefficient (informing the PEs

that the data. available at their vertical input port is the static coefficient) and the

clock is applied once. The clock causes the PEs to store the data available at the

vertical input port into the static coefficient latch.

Method 2 (Random Loading) -

In this meth\ld, some extra hardware is added in the PE and an additional address

bus is provided which carries the address of the P E, to which the static coefficient

available on the input port (Ij) belongs (see Figure 3.5).

40

V-DATA
--r- LATCH ~ -~.--

I

-~a ---. lnpul/Coef f

X-DATA
y - LATCH ---

H- -

Clock

Figure 3.6: Output Latch Block for Random Coefficient Loading

A multiplexer is used in the output latch block to bypass the output latch (see

Figure 3.6), when coefficients are being loaded. In this case, each P Ei.; (0 < i ~

m; 0 ~ j < n) gets the same data which is available on input port I[. Firstly,

weight w1,j is put on port 1r and then the address of P E;.J is put on the address

bus and clock is applied to store wi,j in P EaJ· This scheme requires extra hardware

and random loading is not essential in most cases, so it is rarely used.

When the array is operational, it is not possible to load the static coefficients

without losing some information available in the PEs, because the P E' s output

ports carry the partial results. So when a shift is performed in the case of P Ei,i

failure, it is not possible to load the new weight Wz-l,j in P Ex,j (i < x :5 m) without

losing some of the partial results. To overcome this problem, one more static

coefficient latch is added in the PEs and the]a.tches are called static c~efficient

latch 'O'anJ static coefficient latch '1'. lnitit1lly the PEi,j uses the static coefficient.

latch '0' (carrying WiJ) and in the case of a P Ei,j failure, the P E::J (i < x < m)

start using the static coefficient latch '1' (carrying Wzo-l,i). An additional line select

0/1 is used to help the p:toper st<.Jring of static coefficients. This avoids the need

41

RR

lnput/Coef f
Clock

Select0/1

~--------------------------------------
I ' ' I
I Load'O' STATIC STATIC
I COEFF. r COEFF. I

' Load'l' LATCH '0 LATCH '1 ~ I

+1 ~ I _tV OUTPUT
I
I SELECT 011 J I LATCH
I ~ t
I BLOCK
I LOGIC -!-I

~ I CIRCUIT I
I I
I

·- I I I
I I
I t

....L-
I I

I I

L--------------------------------------1
Figure 3.7: Block Diagram of P E With Two Static Coefficient Latches

to reload at the time of reconfiguration. The block diagram of PEs is shown

in Figure 3. 7. RR (Reconfiguration Request) is a signal, which comes to P Er,i

(i < x ~ n) in the case of P Ei,j failure (it is explained in next subsection).

In this case the coefficients are loaded initially using method 1 (explained ear­

lier). Initially select 0/1 line is made valid for latch 0, so at clock m - 2 (because

there are rn active rows in the array, namely row 0 through row (m- 1) and clock

pulses are counted from pulse 0), Wi,j is loaded in PE,,j (0 ~ i < m) and Wi,i

(0 s; i < m) appears at the input of P Ei+t,;· At this point, the line select 0/1

is made valid for latch 1 and the next clock pulse, m - 1, loads wi-t,j in P Ei,j

(0 < i ~ m).

During reconfiguration, rerouting of data is done, so a switching network is

added to facilitate the rerouting. For an active array of size m X n, a physical array

of size (m+ 1) X n (PEo,o through PEm,n-t) is required and to support the routing,

a switch array of size (m + 2) x (n + 1) (So,o through Sm+t,n) is required. The

complete array is shown in Figure 3.8. Ii" and IJ represent the horizontal input

42

of row i and vertical input of column j from the central processor respectively.

Similarly, Of' and Of represent the horizontal output of row i and vertical output

of column j from the array respectively.

Each switch module shown in Figure 3.8 is a pair of switches (one is used for

vertical routing and the other for horizontal routing). For the sake of clarity the

vertical and horizontal paths are shown separately in Figure 3.9.

In the next subsection a scheme is proposed for proper handling of partial results

in the case of P E failure.

3.2.2 Handling of Pru·tial Results

Consider the array shown in Figure 3.8. When a P Ei,j fails, it invokes a downward

shift (if the bottom row spare is available) and th~ logica~ index of PE:r:J (i < x <

m) changes from (x,j) to (x- 1,j). For the sake of clarity, vertical and horizontal

partial result handling are explained separately.

Handling of Vertical Partial Result

At any time t1 (t < t1 < t + 1; shown in Figure 3.10), the PEs are processing

the data which a.re available at their input ports at time t1 because the data were

latched by the output latches of the previous cells at timet and they remain there

till the next clock edge, t + 1 comes. I{!/ and I'j' denote the horizontal and vertical

inputs of P EiJ at timet respectively and O~' and o'(:l represent the horizontal and

vertical outputs of p EiJ at timet respectively. Similarly, I/:;·.1, r[J~L' o~.'L and Oi.i!L
denote the horizontal input, vertical input, horizontal output and vertical output of

PE{J (PE with logical index (i,j)) at timet respectively. When PEi,i fails at time

t17 it inunediately generates a Reconfiguration Request {RR) and passes it to the

central processor, which delays the next clock edge, t+1 for a pre-specified duration

(which depends on the time taken for the switch settings and the processing time

43

..

So,o

D
0 0 °~

1

0 0 c(If 'b QPEo,o O

0
0 0 OF

0 0 c(
0- PE

0 0 0 0
0- Switch

Figure 3.8: Basic Array with Switch Modules

Horizontal Data Routing Vertical Data Routing

Sobooo
-t1Dtr[ttJ
LJuDu
UotJ'otJ'otJ
tl'trb_a'd

Figure 3.9: Vertical and Horizontal Data Paths

44

vf each P E). RR.s are written as RR)c, which means that the RR is generated

by X and it is fed to Y (for examplet RR~~iJ denotes the reconfiguration request

generated by P Ei,j and it goes to switch SiJ+l). Since the logical index of P E:c,j

(i < :z: :5 m) has changed from (z,j) to (z -l,j) at tt, the PE:c,j (i < x :5 m) has

to process the same data, which P Ez-l,j was processing at time t1; for instance,

after t 1, P Ei+IJ ahould get OJ'.:'1,;, P Ewl,j should get or} and so on, meaning that

I V,c oV,c IV,c oV,I d "' li h th' . t d' t t t i+IJ = i-l,jt i+2J = i,j an so ou. J.O accomp s 1s, an m erme 1a e s a e

of the vertical path is provided (shown in Figure 3.10), which is called the first ot

intermediate stage of rerouting. At t11 the switches S~rJ+I (i $ z S m + 1) are

set to provide this routing and the next clock is applied at t + 1, which causes the

intermediat~ results t.o appear on the output ports of the PEs. At this time the

switches S:c,j+I (i < x ~ m + 1) are set again to get the final reconfigured vertical

th (h · F' 3 to) Art fi a1 t' Iv,c ov,c (Iv,e ov,t) pa s own 10 1gure . . er n rou mg i,j,L = i-tJ,L iHJ = i-l,j ,

and so on.

The horizontal partial result handling is explained in the next subsection.

Handling of Horizontal Partial Result

After the PEid failure at t17 each PEs:,; (i < z < m) has to work as PE~-1 ,;

and each P E:cJ (i < x ~ m) has to get the same horizontal input as P E:c-lJ wa~

tt. t t' t . IH.tt I"·c oH,c lu.tt - Iu,c - o"·' d ge mg a 1me 1, I.e., i+t,j = i+t,; = i,j , i+2,j - i+2J - i+l,j an so on.

To accomplish this, a.n intermediate horizontal routing is done at t1 (as shown in

Figure 3.11) and at t + 1 the final routing is done to get the final reconfiguration,

so that each PE:cJ+t (i ~ :z: < m) gets horizontal partial result from PE111+1d·

Lemma 3.1 - Reconfiguration in the case of aPE failure requires a maximum of

two stages of rerouting.

Proof- There are only two combinations of P E failure: either a. spare P E fails or

a.n active P E fails .

45

PE1-1J

-____n_n__jL.
4. • 4
t t I I

fttt+lt+2
(normal clock}

0 4
I

44 4
I I I

tttt+lt+2

(Clock after failure)

(Normal working) (1st stage (Final reconfiguration)
of reconf.)

Figure 3.10: Vertical Partial Result Handling

PE· · .. ,

-- normal routlns

- - - - let. •ta&e routlr~~

.. final chan&e

Figure 3.11: Horizontal Partial Result Handling

46

1. When a spare P E fails, it docs not invoke any reconfiguration and

2. when an active PE fails, it invokes the reconfiguration and as explained ear·

lier (in vertical and horizontal partial result handling subsections), any such

failure requires two stages of rerouting (intermediate stage and final stage).

0

In the next subsection switch modules are discussed.

3.2.3 Switch Module

As explained earlier, each switch module consists of two switches. One of them is

used exclusively for horizontal data routing and the other is used for vertical data

routing. Both of them are discussed separately in the following subsections.

Vertical Data Routing Switch

Consider the array shown in Figure 3.12 (only vertical data paths are shown).

Here, 1:, 1r, If ... are the input data from the central processor to the a.rray and

Oci, or, Of ... form the final output from the array.

At timet~, P Ei+I.i-l has already failed (and has been reconfigured) and P Ei,j

fails at time t1 causing the first stage of rerouting to be done. So in this figure, col­

umn (j -1) of the switches shows the vertical data path, which is fully reconfigured

and column (j + 1) of the switches shows the vertical data path in the interme·

diate stage. To support the reconfiguration, the network shown in Figure 3.13 is

provided.

It is clear from the network that the swit.ch modules S:r:,o (O ~a:~ m + 1) need

not have the vertical data routing switch. Each switch is a 2 x 2 switch, the inputs

are denoted a.s IIo, 1¥1 and the outputs are written as oro and 0~1· The vertical

input of the array, I'! is given to the 1%0 input of SJ'.z+t (0 ~ z < n) and the I'!t
of these switches is not used. Final vert.ical output, O!' is taken from the array by

47

JV
l

JV
'l if I\'

·I IJ'
__fl_Il__J

A A A A
I I I I

t t, t + l t + :!
(Normal Clock)

___n__n__r
A A A A
I I I I

t t l l+l t+2

(Clock nft.cr fa.i lure)

0 Act.ivc PE
(0) Spa.rc PE

® Faully PE
06 ov ov at· ov or 1 2 3 ·I

Figure 3.12: Vertical Data Routing Path

. Tci [V
I

[V
.2

[V
. 3

D
D f.~o If,

D
D

0~ ov or or oro OstV
1

Figure 3.13: Net.work for Vertical Data Handling during Rcconfigura.lion

48

;;

o¥o 0¥1
S1;Y

Figure 3.14: Stat.cs of Vertical Switches (For P E failure algorithm)

OX0 of S!:+l,x+l' In order to get all the required connections, the vertical switches

have two states (shown in Figure 3.14).

[nit.ially, all the switches SlJ (0 ~ i ~ m- 1 and 0 ~ j ~ n) are in state STl,

the switches SiJ (m :5 i ~ m + 1 and 0 ~ j ~ n) are in state STt and when a

PBi,j fails at t., it changes the states of switches s~j+l {i ~X~ m- 1) from STo

to S'/'1. At t + 1' switches s~j+l (i + 2 ~ X ~ m + 1) arc brought back to state

57~'.

Lemma 3.2 - The two proposed states (ST6 and STt) of vertical switches are

sufficient to support the algorithm.

Proof~ As shown in Lemma 3.1, aPE failure requires two stages of rerouting so

a vertical data path can be in either of the following three states:

I. the particular data path doesn't have any faulty P E;

2. the particular data path has a faulty P E and the reconfiguration is in the

intermediate stage or

3. !.he particular data path has a reconfigured faulty P E.

The data paths required by these states are shown in Figure 3.12. Since P E1+1,j-2

has been reconfigured completely, column (j - 1) of the switches shows the data

49

paths required by final stage. P E,.; failure has gone through the first stage of

rerouting only, so column (j + 1) of switches shows the data paths required by

the intermediate stage of rerouting. Other columns of switches show the normal

data routing. It is obvious from Figure 3.12, Figure 3.13 and Figure 3.1-1 that

the proposed two states of the switches provide all the required data paths. For a

column z of PEs, if no P Eit.z (0 S i1 ~ m - 1) is faulty, the spare P E, P Em,:r

is bypassed by bringing switches S~..-+t and S~+t.z+t to STr. Other switches of

column (x + 1) would be in STci. P Ei+tJ-'J failure is reconfigured completely and

the data paths, required for this are provided by bringing 8~1.;_ 1 and 842.;_1 to

srr. Other switches of column (j- 2) stay in ST:. P EiJ failure is in intermediate

stage and data paths are provided by bringing switches s~.j+t (i ~ il s m + 1) to

STt. Other switches of column (j + 1) stay in STci. o

Horizontal Data Routing Switch

The horizontal routing is shown in Figure 3.15. At lt, P Ei,;-2 has already failed

and has been reconfigured completely and P Ei,; fails at this point, causing the

first stage of reconfiguration. The network, illustrated in Figure 3.16 is provided to

support the algorithm. It is clear that the switches So,; (0 ~ j < n) need not have

the horizontal switch. The horizontal input to the array, JiH comes to the Il~ port

of switch Sft,.1,0 for all (0 ~ i < m) and the output 0[1 is taken from the OY0 port

of switch Sf.n. The various switch states for a switch S!,~ are shown in Figure :J.17.

When a P Ee,j fails at t 11 it changes the states of S!~; (i < z < m + 1) from

ST0" to STfl and at time t + 1 next clock edge is given which changes the swi tchc!l

S~Ht (i < x ~ m + 1) from ST0H to ST[i. At the time of switch settings, the PEs

are informed to use the proper input port, on which the correct data is available.

The above scheme is valid when for a PEe,j failure, there is no faulty PEH,j-1

50

'"D D D D D D 0 0/!

~ ~
I

Reconfigured
I

After 1st
fault re-routing

M A A
II I I

t lt t + 1 t + 2

(normal clock)

*
~

I
t + 1

I

t + 2

(clock after failure)

0 active PE

© spare PE

f8! faulty PE

Figure 3.15: Horizontal Data Rotlting Path

0/!

QH
1

JII so QII so

Figure 3.16: Network for Horizontal Data Handling during Reconfigur(ltion

51

Jffo

I ll
51

Qll
St

]II
Sl

au
St

Figure 3.17: States of Horizontal Switches (For P E failure algorithm)

or P E;1,;+1 present. In presence of any such faulty P E, the algorithm is changed.

Both of these cases are explained below:

a. PE;1,;_1 Faulty: the array is shown in Figure 3.18. After the intermediate

rerouting at t1 , PE~.; (i :5 x ~ m; which is PEz+1,;) should get data from PE~i-l

{which is p Er+t,j-t}, so the switches s:.j-1 (i < X ::; m + 1) change state cith('r

from STf' (caused by previous reconfiguration due to PEit,j-l failure) to STJ1 or

from ST0
11 to ST1

11 • The final reconfiguration at t + l changes the states of the

switches s:.i+l (i < :r: :5 m + 1), from ST0
11 to ST/1•

b. P E,1,;+t Faulty - the array is shown in Figure 3.19. Here, at t1 a.ll the switches

Sf;-t (i < :r: :5 m + I) change state from ST0
11 to ST1

11• After the rerouting at

t + 1, PE:J+l (i :5 :r: ::; m) should get data from PE:J. To achieve this, at t + 1

the switches s:,;+t (i < X ::; m + 1) change state either from STJ1 to STf1 or from

ST[I to STJI.

Lemma 3.3- The two proposed states (ST0
11 and ST/1) of the horizontal switches

are sufficient to support the algorithm.

Proof - Horizontal data routing, in the case of a P E;,; failure depends on earlier

failures. There are only four combinations of this occurrence, which are listed

below:

52

DDDDD
A A A A
I I I I

t t, t + 1 t + 2

(normal clock)

* * I I

t + 1 t+2

(clock after failure)

Figure 3.18: Horizontal rcconfiguration for P EiJ in presence of faulty P Eit,j-t

© b . . · ©
DDDDD

---- links before t1
-------- links after 1st reconfiguretion
... links changed during

2nd re-routing

Figur<.' :J.l9: Horizontal rcconfiguration for P EiJ in presence of faulty P Eil,j+l

53

1. no P E in columns (j - 1) and (j + 1) is faulty;

2. column (j -1) has a faulty P E (P EitJ-d and it has been reconfigured (it is

assumed that faults occur one at a time);

3. column (j + 1) has a faulty PE (PEit,j+t) and it has been reconfigured and

4. both columns {j- 1) and (j + 1) have faulty cells (PEit,j-t and PE12,j+t

respectively).

As shown in Lemma 3.1., only two stages of rerouting are required in the case

of a P E failure reconfiguration. For horizontal data rerouting, in the case of P Ei,;

failure, the intermediate stage requires modification of data links between PEs

of column (j- 1) and PEs of column j and the final stage of rerouting requires

modifications of data links between PEs of column j and PEs of column (j + 1).

Cases 1, 2 and 3 are shown in Figures 3.15, 3.18 and 3.19 respectively and it is

clear that the proposed two states of horizontal switches are capable of providing

all required data links. Case 4 is the combination of Case 2 and Ca.<Je 3 and since for

horizontal data rerouting, intermediate and final stages of rerouting arc mutually

exclusive (the intermediate stage requires state changes of switches in column j and

the final stage requires state changes of switches in column (j + 1)), the intermediate

rerouting in this case would be similar to that of Ca.<Je 2 and final rerouting would

be similar to that of Case 3. So the proposed two states (STJ1 and ST{1) would

provide all horizontal data paths required by the algorithm. 0

So, in the case of a P Ei,i failure at t., the switches S£~;-t (i < z ~ m + 1)

change state either from ST0H to STf1 or from ST(I to STJ1 at t1 and at l + 1

switches s~j+l perform the same.

The switches are finite state blocks. In the next subsection various changes in

the basic network, processing element and switch modules are explained.

54

3.2.4 Network

The network is modified to implement. the algorithm and it is shown in Figure 3.20.

In this figure, global clock line (CLKps), inputjcoef ficient line, select 0/1

line (used for loading the coefficients initially), reset line (used for resetting all the

flip flops initially) and fatal failure line (explained later) are not shown. Various

control lines for a P E and switch module are shown in Figure 3.21.

R~PEE~+a,, is the reoonfiguration request from P Ei 1· to P Ei+t 1· and RRp5;s1'' 1 is
t,J t t I,J

the reconfiguration reqnest from P Ei,J to switch Sit,jt· F F is connected to the fatal

failure line, which indicates the occurrence of fatal failure. Once a P E fails, the

reconfiguration starts and it is done based on the information available on these

lines. When a faulty PEi,; receives an RR from PEi-t,j, it generaten FF (fatal

failure signal) and puts it on the FF line, which carries it to the central processor.

3.2.5 Processing Element

The block diagram of the processing element is shown in Figure 3.22. Each P Ei,i

has two static coefficient latches and two horizontal inputs (1/!Eo and 1~~1) and the

selection is done by using the signal select011 line, which becomes high when P Ei,i

. R...PE;,
rccetves .Up£;~1 .,.

The SP E (spare P E) signal is applied to the spare cells initially and it is

latched to derive SPEL, which is used to ensure that the spare cells do not invoke

reconfigura.tion. The P E test circuit checks the state of the P E and when it

detects a fault in the logic circuit, it generates Ewarc, which remains high for the

full duratiou of the array operation. The block diagram of the control circuit is

given in Figure 3.23 and timing diagram of various ~ignals is shown in Figure 3.24.

Once a fault is detected by the self-test circuit of P E,d, it passes this information

on to the control block of the P Ei,j using the line EwaJC. When the control circuit

of P Ei,i receives this Ec..oaw (see Figure 3.24.a), it generates RR~~~+J,;, RRp5j~~ 1
t,J •·J

I/!
'

[II
1

... ...

Jll
2

... ...

rv 1:' [\' \ '
0 2 /3

c;J,
' ' ' '

'~-
" " ... "

'
'

'q-..
.... "

'
' ... '

'~-
.. · " : ·. ...

.... " "

or \' ! or 0\' :
0 0 o. 0 D :1 0

SPE v SI'E v Sl'f: v Sl'f: v
' ----------------,; ----------------'

/l/l.s to central processor

Vertical data ----- Ilori;~,ontal <.lata <:OIIt.rol I i III!S

Figure 3.20: Modified Network (for supporting /J 8 failure a.lgorit.hrn)

pg .
1,)

v

I)/)''>', I
t •• ,,,.

:.~•-1 . 1

0"'·'

..

Figure 3.21: Control Lines for PE and Switches (PI~ failure algorithm)

56

()II
(I ..

()II
I

"

O.~'
,

I ll
/'EO

I ll
p[;;l

RRI'B,,1
P ,.. I .

1!11- ,J Vertical Input

----------------------- ----------------- · I
I

I

Static - I
I

·=- Codf. I

~ I

Lat.ch '0' M I

LOGIC ~ OUTPU'l u ~
StalJc

X CKT. ., Cocff. ~ ~ LATCH f--

Latch '1'
-r-

t I MUX I

I
I
I
I

PE TEST CIRCUIT J I
I

~LOGIC I •eleclo/t
I
I L-

~ CONTROL CIRCUIT
~--- -}-.--- -~----- ~-----{----- -~---- -t------- --

Figure 3.22: Complete Block Diagram of Modified PE (P E failure algorithm)

5i

all
PE

I

~ .

(
i ,.

t· ..
·. .,

~
!
I
'•

and R~'£,1~1 • These R& are reset at t + 1, but Ewarc stays high. Now, if I' f.:i,j

receives RR~~:~.oJ, it would generate the F F signal (because this indicalcM two

faulty PEs in the same column).

When PEiJ receives RR~~:~,,, at t1 (see Figure 3.24.b), it generates RR~~:;:•·,, H u~·;~.~,'

and RR:J,t·, at t1 and at the next clock edge, t+ 1 it resets these RRs and gt•rwratcs
I,J

R/t.,PiE+t,J+t, which is reset at the nex:t falling edge of the clock, at t'l. In this ms<•, if
I,J

P Ei,i fails at t3, it generates F F.

3.2.6 Switch

The block diagram of the switch module is given in Figure 3.26. Each swil.d1

consists of three basic circuits: one control circuit, one horizontal switch (used for

horizontal data routing) and one vertical switch (used for vertical data routing).

The control circuit is very simple in this case and the horizontal switch toggle:~

from one state to the other, when either RR~~ 1 or nlt.,5··.', comes. The vertical
1- ,J I ,J

switch goes to state ST{' when RR~·~ •.
1

_
1

comes and it goes back to S7'J at the

. al f RR5
'•j arnv o PE,_

1
,
1

_
1

•

Consider a portion of the array as shown in Figure 3.25. When P Ei,i fails at t1,

various RRs are generated. The control circuit (shown in Figure 3.23) is used to

generate these signals. The RKop~m+t,, of the bottom row of cells is conn(!ded to
m,J

the central J,rocessor, which delays the next rising edge (t + I) of the clock. ThiM

delay is the sum of the switch settling time and the processing time of a P 1!:. The

arrival of pulse t + 2 is also delayed by the same amount of time and after that the

clock resumes its normal speed.

The central processor gives a signal called SPE (spare PE) to the spare PE.~

and it is used to bring S~.i and S~+l.i to ST.V initially. SPE is latched a.<i SPL~r.,

which is used to ensure that no RR is generated, when a spare cell detects a. self­

fault. The RR~:~1 •1 input of switches, Sm+&,J (0 ~ j < n) is pulled low and it is

58

r--~-----------------------------------,
I I

~-----,-------t'l_. se/edo;1

t---~ FF
r----------------' .. RRS•+I.J+I

PE, ,1

I ______________________ _ _______________ J

Figure a.2:J: Control Circuit of PE (P E failure algorithm)

·--------J'
RR1?::,,,

TE,_,,1 -------------J

FF - ,--
/l/?.~'~ 1 '1 I I I,J

~ I /Ul1,E:,+I., -
PE, ,, * * * * * * * lllls •. ,+• it t + ll2 t'J it t + ll2 l:J

PE,,1

ll Rs, +, I.J+ I
P£,,1 n

A B

Figure 3.24: Signal \Vaveforms (Output of the P E' s control circuit)

59

~ ·Y ·9 -{J Q r··r·······.::::'c§_-··· ····T·······.·.·:.·.'er···· .. · f· ···· · ···:::~cj·;~ i _._._. .. b.... :

l-~·· · · · · ·~·-··:~·-····~··:~······~-·.:~·-·······.~·· ·:9
j~·····":·. A .. ···· ·:-.. A .. ····:·· .. A :·. t

i ~ : ··:::y ~ ··:::y \ ··:::~~ ~· :::\=)

r~·r. ···:~::.9···;· ·· ·· :·* ·-~··········~.· · :*:9:' :* ..
: ... : .·· ... :· : .··· ... : .. ~.J
\ , .. / ~··· ·· , i····· ; ~..... , .. / t...... ~r
: 0 ' : 0 ' : 0 SPE. : 0 ' : 0
: SPE :. SPE . : SPE · ..

"' ,V ~ V V. FF ----------------,,----------------'
RRs to central processor

--- Vertical data ----- Horiwntal data · control lines

Figure 3.25: Reconfiguration Request Propagation (for PE failure algorithm)

called RR!"'+1
'
1

• SP ELand R~m-u,, ensure that S:.!+t .i (O $ j < n) do not change

state (the~e switches always remain in STJ1).

The switches are finite state blocks as shown in Figure 3.26 and the states of

the switches: depending on the RR lines, are shown in Figure :1.27. Case A shows

the vertical switch state change for switches SlJ+t and Si~l.i+l in the ca.'fe of P Bi,j

failure at t 1• At t 11 these switche~ go to ST.V and stay tlu!rc. Case B shows the

vertical switch state changes for switches sr.,i+l (i + I < iz < m), in the cas<! of

P Ei,j failure at t1• At t 1, these switches go to STt and come bade to ST[at t + 1.

Case C shows the state transition of switches sf:.i (i < iz :5 rn). These switches

toggle from one state to the other at t 1 and remain in this state. Case D shows the

state transition of switches Sf~J+t (i < ir ~ m). These switches toggle from one

state to the other at t + 1 and remain in that state.

In the next section, the full algorithm is detailed.

60

nltn··l R~·-•,J
PEo-I,J-1 I,J

~---------------J~·--------------

RR5
''1

PBo-I,J Or STf horizon.

I: STf' awildl

RR
5

''1
S,+I,J

o: STav vertical

RRs,,, 1 , sr
1
V awitch

PBo,J-l 1

RR
5
''1 ~'----------"' PBo-I,J-11 1

L--------------------------·----~

Figure 3.26: Block Diagram of the Switch module (for P E failure algorithm)

3.3 Operation of the Algorithm

Consider a.n m x n array (with m active rows of PEs, 0 through m - 1, and n

active columns of PEs, 0 through n -1).

Initially, all the horizontal switches s~ and vertical switches SK; (0 :5 i :5

m + 1 ; 0 S j ~ n) are brought to state STJI by applying a pulse at the global

reset line. Then the static coefficients are loaded in the array by using vertical

input and inputfcoef ficient lines as explained in the subsection 3.2.1 (PE;,; (0 S

i < m; 0 :5 j < n) contains the static coefficient of PE{J in accumulator '0' and

of PEf-1.; in accumulator '1'). Spare PEs, PEm,j (0 < j < n) do not have any

valid data in accumulator '0' and accumulator '1' contains the static coefficient of

PE~-tJ·

Next, the vertical switches, sr; (m :5 i :5 m + 1 ; 1 :5 j < n) are brought to

state STt by giving a pulse to the S.P E in puts of the spare cells. S P E gets latched

as S PEL· This prepares the array for operation.

When a P E;J (i :/: m) fails at t~t it issues RRs to S;,;+t, S;+tJ+t, S;+t,; and

P Ei+tJ· After receiving this request P Ei+tJ generates RRs to switches and to

61

, .
r

CLJ\pE
(no f&ilurel

CLI\pE
(with failure) --

A A A A
I I I I

t It t + 1 l2

RR
8
'·' PEo-I,J~I-------------

vertical sw~_:h _j

A

__ _j
horizontal switch OR --r.__ __ _

c

A A A A
I I I I

t l 1 I+ t l ·z

__ _I I

n

B

__ n __
__ I

on

J)

Figure 3.27: State Transition of The Switches (for P B failure algorithm)

62

P EiHJ. [n this way the reconfiguration request goes from P Ei,j to the spare,

P EmJ. If on its way it encounters a faulty cell, a. fatal failure occurs and the F F

signal is given to the central processor. When a. switch, Si,jy receives RR~~.-1 ,1 _1 it

generates nlfs::•·' to Si-~.j, which is used to decode the relative location of Sc-t,j

with respect to the failed P E.

Once the reconfigura.tion request reaches P Em.;, P Em.; generates RR~~=~1 '1 ,

which is given to the central processor. The central processor delays the next

CLKpE edge, t + 1. Each PEzJ (i < x :5 m) generates the RRs to the switches

and the switches are reconfigured in two stages:

1. At tl' the vertical switches, s~j+l (i ~ X :5 m- 1) are brought to state ST.V'

S!:,j+l and S!:+t,j+l remain in STt and the horizontal switches, s:,; (i < X < m+ 1)

toggle either from state STJ1 to STt or from ST1" to ST0H. At the same time, P Ez.;

(i < x :5 m) '.!tart using the static coefficient latch '1' and select the horizontal input

port 1/1E1 for use.

2. At t + 1, the vertical switches, s~Hl (i + 1 <X ~ m + 1) change state from

ST.V to STl and the horizontal switches, s:,j+l (i <X :5 m + 1) toggle either from

state ST0H to ST{' or from ST1" to ST/!. This completes the reconfiguration and

then the normal clock speed is resumed.

3.4 Concluding Remarks

In this chapter an on·line reconfiguration algorithm for P E failures was discussed.

Here an extra row of cells (called spares) is provided to the array and in the case

of a detected P E failure global shift is performed for the corresponding column.

The staging latches were shifted from the input side to the output side to fa.

cilitate the full use of non· faulty partial results. The PEs are provided with an

additional static coefficient latch to avoid reloading of static coefficients in the case

of a P E failure. The testing circuit and control circuit are added in the PEs to

63

detect the fault and generate the reconfiguration requests. In addition. the control

circuit selects the proper input data ports after the rerouting.

The network is modified to support the algorithm and switches arc designed as

finite state machines. It was proved that the reconfiguration requires a maximum

of two stages of rerouting and the proposed two states of vertical and horizontal

switches provide the required data paths.

It is assumed that the control circuit of the PEs never fails, it is cssenti<tl t.u

ensure the proper operation of the algorithm. Failure of control circuit may lead

to an unsafe fatal failure. To achieve this feature, control circuit can be provided

with active redundancy. The assumption of sequential failures (faults occurring one

at a time) is made to simplify the modelling of the algorithm. This algorithm can

tolerate simultaneous multiple failures if the failures are not in adjacent columns.

It is assumed that the occurrence of a failure is reported to the central processor

before the arrival of next clock edge. This can be ensured by making the clock period

slightly longer. The time between the occurrence of a failure and fault reporting

depends upon the number of rows in the array. Therefore for an array with small

number of rows the speed reduction due to extended clock will be very little.

The above algorithm is modified to accommodate the link failures too and th~>

modified algorithm is discussed in the next chapter.

64

Chapter 4

ALGORITHM FOR PE AND
LINK FAILURE TOLERANCE

The basic principle of this algorithm is the same as explained earlier: a bottom row

of spares is provided to the array of size (m x n) and if P EiJ fails, P Es,j is replaced

by P Em,j if P Em,j is available.

A link failure for the link L~~:~ .. J is detected by P Es,j by using parity bit checks.

To tolerate the link failures, each link is duplicated.

Here, the following assumptions are made:

Assumptions:

• the faults are occurring one at a time;

• the link failures are detected by PEs (here even an intermittent data error is

taken as link failure);

• switches perform self-test only for the control circuit (they do not test the

actual ~witching circuitry because any fault in a switching circuit results in a

data. error, which is detected by PEs);

• once a P E fails, it detects the self-fault;

• the control circuitry of a P E never fails;

• the self-testing blocks of PEs and switches never fail;

65

• a central processor provides input and dock to the array and it receives output.

and fault occurrence signals from the array;

• the occurrence of a fa.ilure is reported to the central processor before lh(:

arrival of next rising clock edge and

• the central processor provides clock pulses (CLKs) to switches also, if any

PE fails.

4.1 Data Routing

As explained earlier, the algorithm (for PE failures) needs one vertical and two

horizontal links between PEs; consequently now two vertical and four horizontal

links are provided (link redundancy). The vertical and horizontal data routing!! a.rc

discussed separately in the following subsections.

4.1.1 Vertical Data Routing Path (for PE and Link fail­
ures)

The network for vertical data is shown in Figure 4.1.

The input links from the central processor and output links to the central pro­

cessor are also duplicated. Each P E has two vertical inputs UXEo and Jtl!:t)

and two vertical outputs (O~EO and o~E.) as shown in Figure 4.1. Similarly,

each vertical switch is a 3 x 3 switch (with three input.s, /f0 , lffu IX~ and thrt>c

outputs OX0, OX1, 0~2). To support the algorithm, a total of eight states of the

vertical switches are provided as shown in Figure 4.2. Initially, all liWtt.ch<~s 8i~i

(0 ~ i ~ m- 1; 0 ~ j ~ n) are in state STl, switches S~.i (1 ~ j ~ n) a.re in S'l't

and switches S~+l.i (1 $ j ~ n) are in state ST2v (sec Figure 4.1). The switches,

s~.o and S!:+I,O are in sr:. The vertical input to the array is appli~d through lhe

Ira and Jf2 ports of the switches So,j (0 ~ j ~ n). The output Oj appears at 0~0

of Sm+IJ+t (0 < j < n) in the case of no output link failure.

66

PE INPUT/OUTPUT

0~ or or or
SWITCH INPUT/OUTPUT

Figu rc 4 .1: Vertical Data Path (for P E and Link failurcu)

STY 0 STr STi ST[

c;rv ... 4 ST[ST[srr
Figure 4.2: States of the Vertical Switches (For combined PE and Link failures)

6i

'·

I ,,

I ll so
I ll

S\

u o'! .. /p E:t I /~.\

!J!r::'l~~/ Of!,_.~
I ll ../ o" /'El l'l~'t

/ If Qll
I'EO l ' l~'u

0 11
so

0 11
.... 1

o.~!.J
o~,

Figure 4.3: Horizontal data Path (Combined PE and Link failure)

4.1.2 Horizontal Data Routing Path (for PE and Link
failures)

The network is shown in Figure 4.3. The horizontal inputs and outputs of l.he PBs

and switches are also shown in Figure 4.3. Each P E has two pairs of horizontal

inputs (IJ!Eo 1 If!s1 and I/fE2, If!s3). To support the algorithm, a total of two sta.tcll

of the horizontal switches are provided as shown in Figure 4.4. Initially all the

horizontal switches are in state STJ1•

STJI S'J'fl

Figure 4.4: Horizontal Switch States (Combined PE and Link failure)

68

s . m,J

or or Of 0~

Figure 1.5: Switch State Changes (Combined PE and Link failure)

ln t.hc next section, handling of link failure is explained.

4.2 Handling of a J..Jink failure

Normally, P E;,1 processes the data available at its /~Eo and if! Eo ports and when

it detects a fault in the data, the P E selects port IJ!Et for horizontal input (in

t.hc case of a horizontal data fault). For a vertical data fault, it checks the switch

srJ+l and if siJ+I is in state S1't' it selects the vertical input port J~Bt· For an

output Oj fault (as stated earlier, the central processor detects this fauiL), switch

S~+l.itl is checked and since it is in state STt, it invokes a reconfiguration of

vertical switches because here, it cannot use the data available at /~El · In this

"
ca:;c, S,~+t?,Jtt and S~.i+l change the states of S~+t.i and S~.i from ST: & STt

to ~n:,V and from STJ' & STt to S1j respectivc•ly. These switches .5'~+tJ and

S,~,J change the states of S~+l,j-l and S~J-l again and so on, until S~+L!I finds a

switch 8~+1 ,11_ 1 in state ST;' or in ST[(here the algorithm assumes that though

t.he link L~t::!_, , r-' is faulty, the switches S~,11 , S~+l .11 and link £;::1
'
11 may not be

faulty).

lf in the array, shown in Figure 4.5, or fails, the algorithm changes the states

of s~+l,2! s~+l,l and s~+l.O to ST[and switches 5~,2! s~ .• and s~.o are brought
,. v

to state ST3 ' and outputs Oi (0 ~ j ~ 2) are taken through the second output

69

..
l
.' .
·'

port.

Next, when or bccumcs faulty, it changes the stalt'S of S,~;t·I.J l:! < .i ~ ·I) '"

""'Tv d .,\' (" ·) ('07•\' d \' ~ 4 an ~m.j - < J :S ·l to,::. 3 an outputs 0 1 (~ < j :S ·I) an• takl'n thruu~h

the second port.

The PE failure and the link failure algorithms arc combined in t Itt• llt'XI. !it't'l iuu.

4.3 Combined PE and Link Failure

Here PE and Link failures arc discussed separately for the sakt~ of darit.y.

4.3.1 PE Failure (in presence of faulty Links)

As explained earlier, a P E failure is handled in two stage:;.

Vertical Data Routing - A p Ei,J failure affects the stales of swit.clws s·;:J t I
(i $ X $ m + 1). These switches can be in any of the sl.<ttes S'l;~·. S'(~ ' ' srr
and srr depending 011 the or.currencc of earlier faults (they l'illlllot. IH~ irt sl.al.f'S

STJ' and ST[' because these states can be reached only if then! is a failt!d /' 1~'1 • .)

(0 $ x $ m- 1), in which case the algorithm fails now due t.o the JJoH-availahilit.y

of a spare cell).

When a PEi,j fails at. t 1, it. starts the re-rouliug, which is done in t.wo st.a~t !S.

The r.hanges required for lhe iul.crrncdiate stage and the final si.Hge aw lisl.1 ~d lwlow:

Intermediate stage- all swit.cbcs s;,J+l (i :::; X :::; TTL + I) chauge sl.itl.l! "' ' JH ! rtditt~

on their current state. Si~+l changes from 5'7'~ to STt or from S"J:Y l.o .',"/ ~:' . Jf

it is in ST;'' it stays in S'Tj . Other switches s;:j+ I (i < X ~ m + I) dlaltgl: fl'olll

ST;{, sTr and STi to STi I from ST'j to S'lri and from .S''/~v l.o s'l:.Y, If s:,j-t I
is in ST[, it stays in ST[. When a switch sg.i+1 (il > i) is iu stat.!! .cn:1v or irt

ST;', the partial result of the P Eit-2,; docs not reach P Bi1 ,; hy ahove c:!tanges.

So when a switch si\;.i+l is in state STt, the algorithm checks t.he swit.dti!S s.~ .r.

(0 X j) and finds a switch sg,jl (Q :5 j} $ j) (nearest to 5'1~,Jtd' whir.b is 1101.

70

in S1i (when s.~.;+ I is in S1~v' t.hc algorithm checks si\;,j and if s,v;,J is in S7~\' ' the

algorithm checks 8,~ .1 _ 1 • Again , if S.~.1 _ 1 is in srr, the algorithm checks S,\.1 _ 2 •

In this way, the algorithm goes towards S,"';,O and finds sx.)l, which is not in 57~\').

L'.!mma 4.1 - The switch S,~,11 cannot be in S1i, STj, ST[and S1~'; so it can

he only in one of t.hc states STci, ST.V, sr.r and ST[.

Proof- If a switch Si~.1• is in S1~v, the algorithm checks Si~.iz- 1 as specified in

the algorithm and S',~;,Jr is IIOt defined as sg,jl'

When a swit.ch s.~.1 .. is in STj or sr:, it means that Si~.iz+l is in ST." and

tflcn S',~,j~+l Would be taken as Si~,JI and the algorithm Will not check Sj~;.iz'

The switch. S,\;,11 cannot be in srr, because it is assumed that failures occur

one at a time (and a switch can he in ST;' only during the intermediate stage of

re-routing). 0

Corollary 4.1.1 - The switch, S,t1•11 cannot be in states srr, srr and ST;'.

Proof- When a switch, sJ;_ 1,1I is in STJ' or S7f, it means that Si~-l.iz+l is in

STi and then Si~.1 .. +1 cannot be in ST{' (as will be shown in Lemma 4.2). So, here

the algorithm will take Si~.iz+t as SX.it and it will not check Si~.iz' This proves

that the switch, sg_ 1,11 cannot. be in STt or in STt, sg_t,jt cannot be in ST1

hccause only one failure occurs at a time. 0

Corollary 4.1.2 - When the switch, sK.jl is in STri, SX-t,jl must be either in

S'J~' or in STi.

Proof - If S,~_ 1 .; 1 is in ST;v, it would require Si~.it to be in STi, which is not

possible. Similarly, Si~-I .il cannot be STj or ST[, because these conditions require

Sil;Jt to be in S1'J.

So, Si~-t,jt must be either in ST[or in ST[. o

Corollary 4.1.3 - When the switch, SK,jl is in srt, si~-l,jl can be only in ST[.

Proof- When sg,jl is in sr.v, the switch, SK+l,jl would be in STi. So, Sft-t.jl

cannot be in ST.V or S1;v because in a column only one switch can be in ST.V and

71

ST[(as will be pro\'ed in Lemma 4.2). The switch S,_ 1.) 1 cannot. be in s·(~ · or

sr:'' because it would require sl;,jl to be in sr~·.

S S\l b . ''7•\' o, i+IJl must c m ::_. 0 . lJ

Corollary 4.1.4 - When tht.• switch. s.\.;1 is in srr or ill S'/~~ · . ·"''.t-1 ,; 1 lllliSI lit'

. S'f.',. m 3. [J

If the switch Si\;.; 1 is in state S7~· or ST,'', the swit.cht.•s S,\,11 (j I ~ !I s j)

change state from S'l~· and STi' to ST~· or from 87\v to ,'-i'/r ;uul swit.du·s S,'; _1, ,
1

('l < < ') h f c-7•V . I ..,,1,\' '-"J'V f "/'\' "/'\' \ J _ y _ J c angc state rom .::" 0 anu :::t 1 t.o ,} 3 or rom .':i .1 l.o ,"i ,; • 1 I.

h \' t c same time P E,~,11 (j I < !J ~ j) start using the sccotul \WI.ical input port 1 1 • 1~ 1 •

If th 't h l"\' • C"l'',. L''J'V (• J co\ ' • • e•/•\' C SWI C .::'lit.;! IS Ill slate ,-, ,1 or.::" :; IIWC\1\IIIg!. lilt. ._,,l,;l-l IS Ill ,, 'l

and the link, L~~::~~.)l is faulty), t.hc switches si\;,11 (j 1 < y $ j) ch;Lngt• st.al.e from

STi to ST;' and SWitches S,~-l.l1 (j} < y ~ j) change lO 8'/~'. JINI! it. i\SSIIIIII!S

I' T:'
that though the link L,,~::~~.)l is faulty, t.he switches s.~-1.;1+1• ·"'.\.;1 H and liuk

L~::~:~:+t may not be faulty. At t.hc same time, Ph:, 1,1J (jl < y 5 j) sl'lt~d tlwir

second vertical input port. If after sclcctiug the second port., iLIIY / 1H dl't.c·rls an

input error, a fatal failure ocr.urs.

Final Stage - At the next clock edge, t + 1, the algorithm clocs t.lu~ followiu~:

It changes s;:i+ 1 (i + 2 $ X ~ m + 1) from S'l'i' t.o ST~ I r rolll ,"J"/~~, l.o ,t.,"/ :r or

from STl to STl and in the case of a change from ST[t.o S'l-;' of swit.ch s.~ .)t I'

if il > i + 1, the SWitches Si\;, 11 and Si~tl,y (y WrlS defined earlier ill t.he int.c:rmediat.c!

stage) are brought back to the states in which they were hcforc iul.«!rntedial.c! re­

routing. S]J+l does not change state during the final stage and si~I,J+I dmnges

state to STi if it were in STi.

Lemma 4.2 - In a column j, only one switch Si~ can be in slat.c STt.

Proof - Switch S'G goes to state STt if and only i£ vertical data routing pa.t.h

requires bypassing of P Ei,J-l •

72

When column (j - I) of the P B3 does not have any faulty P E, the spare cell,

P Em,1 - 11 is bypassed by bringing s::a.i to STt and s::a+t.i to ST.t

When column (j - I) of the PEs has a faulty cell, P Ei,j-l, then this P E is

hypa<;scd hy bringing 8,~1 to S'l't and sr+-t,i to ST[. ln this case the spare cell,

P/~',.,1 _ 1 becomes an active cell and switches S~.i and S~+t.i go to ST0\'. [';ow, if

another switch, S;~.i is in STt, it means that P Eit,i-t is faulty and it implies that

mlumn (j- I) of P 1.;8 has two faulty cells. Since the algorithm can tolerate only

one PI~ failure in a col11rnn. this condition leads to a fatal failure.

So, in a working array, only one switch in a column can he in ST(. o

Corollary 4.2.1 - Inn column j, only one switch can be in state ST2v. 0

Corollary 4.2.2- lu a column j, only one switch can be in state STj.

Proof- As shown in Lemma ~1.2, column (j + 1) can have only one switch, sti+t in

state STt. Jn this case, 5,\:t.j+t would be in STi and these two switches provide

the link t/?~•+J.t+l (t' I d t tl b t PE d PE PE . 1 ~:,,_ 1 ,1 _ 1 ver .tea a a pa. 1 c ween i-t,j-t an i+l.i-1; !.i,j-l ts

hypassrd).

At this stage, when P Bi+J.i- 1 detects vertical data error (vertical input link

failure}, thl.! algorithm hrings Si~ to STj (which will be discussed in the next

subsection - link failure handling). 'When sri goes to S1'j, S4. 1J goes to ST.[and

these two provide an alternative data path between PEi-I,j-1 and PEi+t,j-t· Since

in a column (j + 1), only one switch sri+ I can be in STt, column j can have only

· h sv · -.Tv one swttc i,j m ~ 3 • 0

The following three corollaries can be proved similarly.

Corollary 4.2.3 - In a column j, only one switch can be in state ST[. 0

Corollary 4.2.4 - In a column j, only one switch can be in state ST'[. 0

Corollary 4.2.5 - In a column j, only one switch can be in state ST'[. 0

Lemma 4.3 - In the event of an active P Ei,i failure, switch Sl:i+l can not be in

state srr t before the reconfiguration starts.

73

f•
j

i ,.
)

(.
l

!

>, ,

'• ,.
i:

Proof - Since before the rcconfiguration starts. P /!.',,_, is art in• and it. i~ p;t•l tin~

data from PEi-l,i and pro\"iding the partial results t.o Pf~+tJ· lht• switrh, ,o;,·,,Jtt

cannot be in sta.te STt". 0

The following corollary can be proved similarly.

Corollary 4.3.1 - In the case of an acth·c P E,,J failure, swit.ch S,1~,,J .. 1 ciln not ht•

in S1i', before the reconfiguration starts. [)

Some rcprcsentati\'l'S cases of P Ei,j failure h;mdling arc disnlsst•d lll'Xt. (st•t•

Figure 4.6).

Case-A shows the array rcconfiguration, where the column (j + 1) of switdiC's

provides all data links required hy the intermediate and final slag<$. Here, bdort~

th f 'I th 't I .:-V (. < . <) . "'1'1' (>\" • • L"/'l' I e as ure, c sws c tes~ ..:o,~,J+I 1 _ lr nz arc 111 .J 0 , ''"' •Jt-l IS 111 ,, 1 i\llt

Sv .. ST.''
m+l,j+l IS In 2 ·

When si~j+l is in stale STY (Case-B), then also all the paths a.re made il\'ililahh~

by changing si~J+I to S'/~~ and ot.her switches to STi for t.he intermediate Sl.4tge and

then by changing s~I.J+I to S'l~' from S1~' and other s~J+I (i + ~ ~ r $., + I)

from srr to S1'd for final stage.

B h t coV ') • • "'J'\' I I / P/~·, 1 1 ut w en a switc 1, ,:~ii.J+• (il > z 1s sn stateS .1 , t U! pal. 1 , 1,1::,,·_1
•
1

t:ca1111ol.

be provided by the switches in the column j + I. So other switches in row i and

i - l ae modified.

In Case-C, P Bi,i fails and the intermediate stage requires a link hdwem1 JJ l~'is-'J ,1

and PEi1,j, wbkh cannot be provided by the switches in the (j +I)lh c:olunm. So

the algorithm finds sr.,Js in st.atc STci. Due to an earlier PE.s-l,i-1 failure~, s·,~-t ,J

is in ST.V and Si~.i is in STl. For intermediate stage routing, 8,~_ 1 ,1 _ 1 and S,~- 1 ,1
are brought to STi and sK.il and si~,j arc brought to S1~v.

Case-D is similar to Case-C, but here 8{;,11 is in ST.V, So, Si~,; 1 is chang!!d t.(J

ST[. The other changes are the same as written for Ca.c;c-A.

Case-E is another variation of Case-C, here sr. -1 ,jl is in STl. sr. -l,j I is changed

~· S,I,JI

Case-A

Casc-C

Casc-E

Normal route

Case- B

v s, ,J+I

Case-D

Case-F

- -- - Intermediate stage rerouting

Figure 4.6: Vertical Switch State Changes (Combined PE and Link failure)

75

'

f.

. .

l·
'·

r.

'·

r ·,

to ST'[and other changes are same as written in Case-A.

In Case-F, 8;~;_ 1 ,11 is in S1~' and S;';,J, is in srr. Here S'at-t" is rhanw·tl tu

C'T'1 d v . h d C'1''' 'l'h . I "'" J ,,. . .. ,., . ..:- . 3 an ,:~it,j ts c angc to.:~ 4 • c swttc tes ._ 11 _ 1•11 an ~.t.;t arc 111 slal.t•s ."1 :1

and ST,Y because P E~;_11 detected a link failure earlier (and P Ett-t.;H· t was faulty

that time). The latest rcconliguration assunK>s that though tlw link L1,:r.,:,., .1 _
1 is

···-~ -J-1

faulty, link L~;:~I.J is not faulty. In the case of faulty /.~::~ 1 •1 it fatal failure ucrms .

If the links, which arc newly generated by using the switches of colunllts ir

Ur < j), are required by the final stage (when il = i + 1), t.hc algorit.h111 doc's nul.

change the states of the switches generating these links. Ot.ltcrwis<· at. t + I, t.ltc•sc~

switches go back to their prior-to-l 1-statc.

Horizontal Data Routing -This is exactly similar t.o the horizout.al datil routing

explained in the previous algorithm (only PE fail algorithm). The rcnlllfigura l. ion,

invoked due toP Ei.i fail11 re, changes the states of the switches sf:.; (i < ir ~ m-1- I),

either from ST/' to 51~1 or from S'I'J; to STl1 during t.he int.crnwdiat.e sl it!!.<' of

rerouting. During the final stage, the states of the switches, s:!.}t I (i < ir ~ 111 + I)

is changed, either from ST// l.o STl1 or from S7'1
11 to ST// .

4.3.2 Link Failure (in presence of faulty PEs)

As explained earlier, each link is duplicated here. Whcrt aPE dc!l.c!d.s an c ~ rror in

the data, available at its first input port, it invokes a rcconfigural.iuu aud sd•~ds

the second input port. If a P E is using second input port, input data error lmuls

to fatal failure. The vertical and horizontal data paths arc discussed fleparat.dy.

Vertical Path - When a P Ei.i detects a fault in its input data (at port IY,1~0) , it.

does the following:

• if SlJ+I is in STo, STJ or in 81~', then the PE;,j simply selects t.hc other

input port (/~Ed,

76

'·

• dse if St
1
+1 is in ST{' , ST[or in ST.;', then the algorithm checks s .. ~~ and

if it is in :n;v, the algorithm checks S;j_1 and so on, until it finds a switch

s.~z: (0 $X < j), which is not in state STi (here, srr would be in one of the

slates S7'J', S'ft, 5'1~v or STt, lemma 4.1 shows this) and then:

- if S',~r is in 87~', it changes all S;'-: 1,11 (x $ y $ j) from STri to ST[,

from ST.;' to S7t or from ST[to ST[and changes all sr11 (x :S y :S j)

to STt from S'i'J' and ST{' or to STt from ST.;' and select input port

IY,EI for all P Ei,y (x :5 y :5 j),

I 'f sv . . "1'v . h sv ST.v sv S1'v d h - c se 1 i,r 1s 1r1 ..J 1 , Jl c angcs i-l,r to 3 , i,:r to 5 an c anges

all S.."- 1,11 (x < y $ j) to S7'[from STt, to ST[from ST!(and al1 s .. ~11
(x < y :S j) to STt from ST[, to STt from ST.;' and select input port

IY,E1 for P J;;i,11 (x $ y $ j),

- else if Si~r is iu state STt or in ST[, it changes S.."- 1,11 (x < y $ j) to

ST[from S"Jt, to S1'J' from STi and all S[11 (x < y $ j) to ST.;' from

ST{', S1~' from S''/~' and select input port I~Et Cor PEi,11 (x < y $ j).

Some link failure rcconfigurations arc shown in Figure 4. i. Only the paths,

which arc modified, arc shown.

In Case-A, link failure is detected by P EiJ, but since the switch S/j+L is in sr:,
no rcconfiguration is done, P Ei,j simply selects the other input port. Similarly, in

Casc-B, Si~+t is in s1:r, ~o no re-routing is done and the second input port is

selected.

In Case-C, link failure is detected by P Ei,i and the switch SW+I is in ST[due

to the earlier failure of P Ei-i,i· Now the algorithm finds Sw_1 in STJ' and modifies

st .. 1.i-u S[1.i to STJ' and Sw_1, Si'J to ST[.

Case-D is similar to Casc-C, but here S}'_1,j-t is in ST[, so it is brought to

('tr.~'
" 6 •

77

A B

c I)

)~ F

Initial path ----- · Changed path

Figure ·1. 7: Link failure Reconfigurations

~:

78

In Casc-E, PE,,1 detects the link failure and stj+I is in S1~v, so the algorithm

finds .'ii~-t in ST.V and changes it to STt. The states of s,v_t,)-t' SY.. 1,J arc changed

to STj and st, is dtangc!d to S1~v.

In Ca.o;e-F, S,J+J is in ST'[and SG-l is found in ST.,.V. Here. SiJ is changed to

S'Jt and s,v_ 1,J is changc!d to STJ, It is assumed that though the link L~f:::~:-t

is faulty, the link, L~:~'·1 is not faulty. If this link is also (aulty, P Ei,j would again

detect vertical input. error and it. would cause a fatal failure.

Horizontal Path -When a PEi,j detects a fault in its horizontal input. data,

iL JWrforrns the following operations:

·r· .. Jll. I ,u • 1 1t IS usmg Ph'o• 1t sc ccts I'El,

I . r . . . ,u . I Iu • c se r 1l ts usmg PH'2• 11. sc ccts pr;3 ,

• otherwise the algorithm fails and fatal failure occurs.

Theorem 4.1 -The cases shown in Figure 4.6 represent all the possible combina­

tions of vertical swit.c:h stat.cs, in the case of P Ei,J failure.

Proof- The rcconfiguration, in the case of P EiJ failure reroutes the vertical data

hy changing the states of the switches in column (j + 1). The states of the switches

in column (j + l) depend on earlier PE and link failures in column (j + 1) of PEs.

There arc only four combinations of failures in column (j + 1} of PEs and these

arc I is ted below.

1. Column (j + I) of P l~s has no faulty P E or no faulty link,

2. column (j + 1) of PEs has a faulty P E,

3. column (j + 1) of PEs has only link failures and

4. column (j + 1) of PEs has both P E and link failures.

i9

The effect of each of these failures on the rcconliguration (which i~ inmkt•tl dut• to

PE,,1 failure) is discussed separately.

Column j + 1 has no faulty P E or no faulty link • ht•n•. <'olumu (j + 1)

of switches wonlu be in its initially set state and this n>rn~spo!Hls to Cast•· t\ of

Figure 4.6.

Column j + 1 has only one faulty P B • here also, <·olumn (j + I) of switdws

would be in its initially set st.atc and this corresponds to Cast•-A of Figun• -Ui.

Column j + 1 has only link failures - here the output links may lH' or may uut.

be faulty. When the output link is not faulty, column (j +I) of swit.dtt•s would uot.

be disturbed by these link failures and this is covered iu Case-A of Figun• ·Ui.

When the output. link is faulty, s~,j+l would he in S1'j and s~;+l.) H woultl

be in ST4v. In this case, t.hc link l.P1JC (the link thnt. carrif!s the vertical result.
Cm - l,J

to the central processor from P Bm-l.j) is not provided hy the swit.ehcs in wlunm

(j + 1). Here, all switches. s~:+t.j~ (0 ~ ix ~ j + 1) woulcl he in S"J::' (as c~xplailu!d

in the subsection 4.2). This corresponds to Case-F of Figure .J.O. Jl,!re j I = j, so

no switches would change state. The only difrcrcncc here is that. for Case- F, it. was

assumed that though the link, L~:~~::~: '11 is faulty, link 1-~::~: .11 is uot. fmllt.y, hut.

now this assumption is not. required because S~+I,J did not reach STY dnf: to t.hf!

link failure detected by column j of switche:-:.

Column j + l has both faulty P B and faulty links • in this cast~, tlw failnms

affect column (j + l) of switches only if PBi2,J+I fails and verLic:nl i11p11t. error is

detected by PEi2+t,j+1· It brings si~,j+l to STj and si~+I,J+I tu srr.
When (i2 < i- 1), the switches, sl~oi+ l (i ~ iz ~ rn + I) arc not afr<!CLI!d by the

above mentioned faiJures. This condition corresponds to Case-A of Figure tJ .(;.

When (i2 = i- 1), the switch, Sl'-t,i+• would be in S'lj and S1~i+J would be in

ST[. This condition corresponds to Casc-B of Figure 4.6.

80

When (i2 > i- I), cmc of l}w links required by the intermediate stage (namely

link L~~:~~::~) would not be provided by the column (j + 1) of switches. Here,

switch S,~+IJ+I is l'cnarncd as S'i~,j+1 for the sake of clarity and it can be either in

S'lt or in s1:r. Once the algorithm finds Si~.i+l in ST[or in STt, it checks S;~.i

and if it is in ST{', the algorithm checks 5',~,1 _ 1 and sn .,n, until it finds a switch.

Si~.1 ., which is not i11 S1~v. Clearly all switches, Si~,1, (j 1 < ir ~ j) would be in

S'f'[and S,~-t.i6 would he in STt. The switch, S~.i 1 can be in ttny of the states

STri, ST.V, S7'[and S7~Y (as proved in Lemma 4.1).

When S,~.Jt is in 87~, Si~-1.11 can only be either in STri or in ST{ (as proved

in Corollary 4.1.2) a.nd these two conditions correspond to Case-C and Case-D of

Figure 4.6 respectively.

When 8i~.} 1 is in STt, Sil;_~,11 would be in STJ' .(as proved in Corollary 4.1.3)

and it corresponds to Case- E of Figure 4 .6.

When S;~.it is in ST.Y or in S7'[, S;~-t,jt would be in STj (as proved in Corol­

lary 4.1 A) and it corresponds to Casc-F of Figure 4.6. 0

Theorem 4.2 - The cases shown in Figure 4. 7 represent all the possible combina­

tions o~ vertical switch states in the case of a vertical link failure detected by P E,,j.

Proof- When a vertical link failure is detected uy P Ei.J, the reconfiguration de­

pends on the state of switch srj+l. It can be in any state depending on the occur­

rence of earlier faults.

When sri+t is in STJ', STJ or in SJ:Y, it means that P Ei,j is receiving the

input from PEi-lJ and it corresponds to Case-A of Figure 4.7.

When S~+t is either in STt or in ST[, P E,,j is faulty and no reconfiguration

is invoked.

When St'J+l is in S1;v I STJ' or STi (here it can be in srr because the inter­

mediate stage of rerouting always instructs the PEs to use the switches of column

(j + 1) and it may have faulty links before the failure of P Ei,j), P Ei.j receives

81

vertical input from P Ei-2.j and in this case an alternative vertical data path is

required. For this, the algorithm checks the switch. S~.~ and if it is in ST]'. t.lw

algorithm checks Si~J-t· If S/.}_ 1 also is in S1 ;', the algorithm dterks 8~.~- 1 and

so on, until it find a switch, S~;j,, which is not in 5'11' (Si.;t can h<' in '"'Y of t.he

states ST;', srr, sr.r or S'l~·, as proved in Lemma 4.1).

Wh Sv · · ST.v .:..·v 1 . h . S'l'\' ' co'l'\' (C II) en iJl ts m 0 , ,:~i-t,;l can >c etL cr m . 0 or 1t1 '' 2 .oro ary ·1.1.'2.

and these conditions correspond to Case-C and Case-D of Figure ·1. i I'I'SJH'd.iwly

(switch, Si~+ 1 is shown in ST{'; when it is in S1'[or STf', the chauges would ht•

t.he same).

When Si~t is in STt, st_t.11 would be in S'l;r (Corollary ·1.1.:1) ancl it. c:orre·

sponds to Case-E of Figure 'l.i.

When SJ'J1 is in STY or in ST.i', sr_,,i1 would be in S7j (Corollary ·1.1.'1) and

it corresponds to Case- F of Figure 4. 7. 0

In the next section, a scheme for implementing this algorithm is propos<!cl.

4.4 Implementation

A scheme is proposed here to implement the above algorithm for c:ombi11cd P J!)

and link failure handling. The proposed scheme uses an external clock (G' /J A's) for

the switch state changes in the case of P E failures. Rcconfigurat:ou in t.hc cas<!

of a link failure does not need any external clod., but when Uu!re i~ a I' e f<Lilure

at t1 (see Figure 4.8), two clock pulses arc provided to the switches and t.hc next.

clock edge t + 1 is delayed. At l3 , the first clock edge is applied to t.bc switches t.o

complete the intermediate stage of reconfigurat.ion. The on-time of t~ depends 011

the time taken by the PEs to check their inputs. If input checking time ill lc, thcu

the on-time oft., L60" = lc + 6t, where 6t depends on RR- propagation time ani!

switch settling time. This is done to ensure the proper routing of vertical data in

the case of a vertical link failure detection between intermediate and final st.<Lges of

82

PE clock·

(normal)

PE clock
(P E failure at
tt)

Switch Clock
(due toPE
failure)

PE clock

(Link failure
at tt)

A
I

A
I

t,

A
I

A A
I I

t + 1 t+2

A
I

Figure 4.8: Various Clock Signa.ls

PE failure reconfiguration (due to an earlier link failure). At t+ 1, the second clock

edge arrives to the switches and completes t.he final stage of the rcconflgurat.ion.

The next pulse t + 2 to the PEs is also delayed to accommodate the switch sdtling

time.

In the case of a. link failure at t1, the next clock edge, t + 1 to the PBs is

delayed and no separate clock is given to the switches. Various changes required

in the network, processing element and switr.h module arc given in the following

subsections.

4.4.1 Network

The network is made capable of:

• informing the central processor of the occurrence of P E and link failure;

• informing the central processor of the occurrence of fatal failure;

• invoking the reconfiguration,

83

• providing the dock pulses to the switches and

e initiating the switches.

The central processor provides horizontal and vertical data inputs, P E-clock

(CIJI\1,r:;) and switch-clock (CLKs) to the array and it receives rcconfiguration

requests and output from t.ltc array. It provides a signal called S P E (Spare PE) to

t.hc P E.'J of the bot.t.orn-most row. This signal brings the switches S~.i and S~+, .i

(O ~ j $ n) to states S'l;v aud ST[initially.

The network is shown in Figure 4.9.

4.4.2 Processing Element

Various control and data lines for a processing element are shown in Figure 4.10.

Each P E gets four horizontal inputs (If! Eo' IJ!EI, IJfE2 and lf!E3) and two verti­

cal inputs (JY,Eo and If,r:;1) . Similarly each P E has four horizontal output ports

(oj!BOI o:!Et' O#E2 and Of!E3) carrying the same data and two vertical output ports

(Of.Bo and 0Y,E1) carrying the same information.

E h PE 1 • l RRPE; 1 d SVJPE;,J RRPEo.J • f.} Jac i,j gets two contro s1gna s, PE,~1 ., an s;,i+t. PE;-1,
1

ts te

rcconfiguration request from P Ei-t J. and SV J5PE;,, is the command for selecting
I 0 1J+1

the proper vertical input port. There is no such SV I control input for horizontal

input selection because the horizontal input port selection is done by the P E itself.

PEi,j issues various control signals (reconfiguration requests) to other switches

and PEs. It generates LF,~~t 1 {link failure for vertical data) in the case of a
O,J

detected vertical input data error and it is sent to Si 1·+1• Another signal LF#sp is
t , , ,

sent to the central processor in the case of an input error (vertical or horizontal) .

The central processor delays the next clock edge, t + 1 to the PEs after receiving

this signal. This delay time depends on the time required for RR propagation

and switch settling time. If P E; 1· detects a self fault, it sends RR~·~+l to Si,J'+ll
f tJ

l~l~s·+•.,+l t C' l~R5'+"J t S d RRPE,+I., t PE
1. l.f'E 0 ~i+I,i+lt 1. pJ:: o itt,1· an PE o i+l ,J' • '·1 1.) t,]

84

It' It· It'
0 I '.!

' / ' / ' ; ' I '
,

' I ' I ' I ' I ' / ' / '

)J ~
0 Jll 0 o'' 0

c("
0

~
[II 0 ()II 1 /I

SPE I V ; IV 0 SI'E ; I Sl• ~;

' v v v "------------r----------'
llR to the central processor

llorizontalJJath · · > Control line

-------- · Vertical path

Figure 4.9: Network for Combined PE and Link Failure

85

I ll
PE3

[II
PE2

I I{
PEl

/~EO
' \

\

,/ I :
. I . ,

IJ/Eo / / f ~
RRS,+J ,, .t:.•' .• ·· ,' f i

PE;,1 p ! l
Ov ::

\ ...
\ ...

\ ·· ..
\ · .. ' · ..

\ ·· ..
\ ···~ RRSi+J,J+l
~ PE;,j

o~E. PEO , : y
SPE RKnE'+J,,

PE;,;

Figure 4.10: Processing Element Lines for Combined PE and Link Failure

The block diagram of P Ei,i is given in Figure 4.11. If! Eo and If!Et inputs toP Ei,j

come from Si+tJ and Jf!E2 and IJ!E3 come from Si,j (see Figure 4.9) and depending

on the earlier reconfiguration either one of the pairs (If!Eo' If!El or IfJE2, If!E3) is

selected by using MU X -C. Initially, P EiJ receives horizontal data from Sff_1,j

using If!Eo input port and when it detects a. horizontal input error, its E1H (error in

horizontal input) line becomes high and P EiJ selects If!El in place of If!Eo· Now,

if PE,,j receives RR~~:~J,,, the Hs line is reset and H~ is made high, which selects

port If!E2 for horizontal input.

Once either I/fs1 or If!E3 is selected, Em becomes 0 because the new data

are correct (it is assumed that only one failure can occur at a time), but Hs re­

mains high. Next, if the same P E detects another horizontal input error, it again

makes Em high and the RR generating circuit {shown in Figure 4.12} generates a

fatal failure signal.

86

I ll
PE2

I /{
PEl

I ll
PEO

SPE

I'' Iv c;ov IPE,,, RRpt.;,,, ~F J~' 1,;, , J

- - - - P ~~ _P ~~ - -'"_ - -~ ·~ + ~ - - /:~-~ ·~ - ~ ~ - ·:• :' ~ 1

t I

ll' s

1 I

LOGIC

CIHCUIT

T~tiug Hlock

lis
L-......;:;-----+--4-1 0/P

K

~
I
I Em

1..-----

SV l'Ei,)
s•,J+•

FF LFrffl
I,J

Erv

CONTROL CIRCUIT

- - - -I

Figure 4.11: Block Diagram of the Processing Element (combined PI~ and link
failure algorithm)

87

o1!t.::'
o:!E·~
() 1! /~'I
() f! /,'u

IY,Bo and /~Et come to M U X - D and if vertical input error is detected. Ew

becomes high and it is passed on to Si,j+t as LF;E,~ 1 , which changes the swit~n

states, if required. /\s explained previously, a P E failure may also require other

PE.<; to select their other vertical input port. This is done by the switch Si.i+l·

S'i 1·+1 generates SV fsPt~ •• ,, which is used by the P E to select the proper vertical
• '·1+1

input port (when SV ~~~B,,11 is low, lftEo is selected and a high SV I selects lftEd .
I,J+

If a vertical input error is detected while SV I is high, fatal failure occurs.

When the testing block of aPE detects a fault in P E' s logic circuit, it generates

an error signal, ELoGIC (this signal remains valid until the array is taken off-line)

which is used to generate the RRs.

After loading the coefficients, the central processor sends a signal, S P E (spare

PE) t.o the PBs of the bottom most row (to spare cells), which is latched as SPEL.

SPB makes RR~~.:; and RR~~:: ..
1

lines high for some time, so that CLJ\s brings

s,~:.j and s~+l.i (0 ~ j < n) to STIV and STi respectively. s pEL is used to enSllr\!

that no llRs arc generated by a spare cell, when it detects a self-fault or input

error.

The RR- generating circuit is shown in Figure 4.12. Various inputs and outputs

arc shown in the block diagram and the timing diagram of the output control

signals is shown in Figure 4.13. Figure 4.13.a shows the RRs generated by PEi,j

wlwn it fails at time t 1 and Figurc,t.13.b shows the RRs generated by PEi,j when

it receives RR~~:~,,, at lt due to failure of P Eit,j (il < i). \Vhen a. faulty P Ei,J

receives RR~~:~'·', it generates fatal failure signal.

l·'igure 4.13.c shows C Ll\pc, LFpcEp and LFpsfJ+ 1 in the case of link failures. •,J .,}

At l11 a horizontal data error is detected and the central processor is informed but

no information is sent to Si.jtt· At t2, a vertical data error is detected and both

the central processor and Si.J+t arc informed about this failure. All RRs are reset

at timet+ I.

88

~
•.·
·~· ,.

~~
•I

t
i
l
.~·
·,

I'

lis Erv SV IPE •. J RRPE,,1 ELoarc S P E C L I\·,"~ 5,,,+1 PE,_,,, .-.
----------- ____________ t ______ ,

1 I
r

Sf' Er,

I

L---

Figure 4.12: Schematic of the RR generating Circuit (combined P E and link failu re
algorithm)

89

c L/(I'E
(n" failure)

c /.,/(pf~
(fllilurf!)

_j

nns;~··J+1 ----;------.-~------
/ E, ,, I --i A

l + l

A · P Ei,j fails

C L[(I'E
(no fAihare)

C Ll\1~1-:
fUnk railures)

I I

t + 1

B · PEit ,J fails (il < i)

Em __fl..__ ____________ _

Ew

l.~F#C __j

A
I

is

C · Link Failures at t1 and t2

Figure 4.13: Timing Diagram of the RR generating Circuit

90

4.4.3 Switch Module

As explained earlier. each switch modult•, S,,J is a pair of switcht•s, ·"'!.~ and S,\,~·

which are used to route the horizontal and vertical data rcspcctivdy. \ 'arious data

and control lines for a switl'h module 8,; arc shown in Figurc·l. l·l. It ••t•ts /, /-'1'~'1:! ' n ... , ,,_,

and RRfj;f: I from JJE.;-1 · HUI~·~- from P/~'•- 1 ;-1· l?lil8''1·~ from/'/·.',_, ,; ,
t ,J- • ""•-1 .)-t ' J

RR;:: •. , from si+l.} and uu~: :~+l from s •. ;+l a:; control inputs and hast•d Oil I.Ju•st•

data, it changes the switch state and generates Rn~·-1.•, uu>~· and 8\ '!~·~~· .. ~- · .
.._ ' •1 o. I .J • I, J

If P Ei,; fails at. t 1 (sec Figure ·1.1·1), the central processor pro\'itl.•s t.wu c·lc .. ·k

pulses to t.he switches by using a glohal switch clock line at 1,, Hltd t + I. ,\t. 1 ••

the intermediate stage of the rerouting is completed awl at. t + I the fi11al st.agt• is

completed.

The delay, t~-t 1 depc11Js 011 t.hc switch settling time and the lltlllllwr of columns

in the array, because the /Vl.o; go from Stl,;+t to S, 1,0 (il > i), if a swil.dt 8,\;.1 ~ 1
is in srt {as explained in tit·~ alp.oritltrn). Sirnila rit.y, (t + I) - t.. di'JWtlll:i 1111 t. lw

P E processing time and switch settling time. The rU'Xl dor:k edge t.o t.lw /1 l~'.o;,

t + 2 is also delayed to all(h'' fnr the switch settling t ime during the rinal stag•! of

reconfiguration. After t + 2, the r·lock resumes its normal speed.

If a link fails at t 2 , next clock edge, t +I to the PEs is delayed hy a pn!- spedfi•~tl

time to provide sufficient time for llR propagation and switc:h sett.liug and afl.t~r

t + 1, the clock resumes its normal speed.

Vertical and horizontal switches arc discussed !icparalely.

Vertical switch - It has two sub-circuits: the control circuit and the swit.chittg

circuit. The control circuit. changes t}JC states of the switdu:s aud gcueral.1!s VilTi -

ous RR.s, while the switching circuit provides the proper input-output c:cmncdiorts

based on the state-data made available by the control circuit. Various switch state

changes are described in the algorithm and to achieve the proper r.hangt!s , t.lw hlor.k

diagram shown in Figure 4.15 is proposed for the control circuit. For thr: sake of

~)I

-- '"\

I
I

1
r--1:{1

~au so
au

Sl

RRs.,
. PE·.

o-I ,J

RRSo,J+l
S,,J

au
S2

au
SJ

'- - - - ,.. Q ~l --~ Hori7.ontal Data

- - -- -> Vertical Data

· · · '· · · · · · ·> Control Line

Controls and Data lines for a Switch

c /; /(pf;
(no railurc

C L I\ n; n __ --J

(with filii;,;) L-

C/.~1\s _jLfl._ _______ _
~
I

i + I

Switch Clock due to P E and Link Failure

Figure 4.1·1: Data. and Control Lines for a Switch (combined P E and link failure
algorithm)

92

clarity, various signals are renamed as shown below:

A,= /lR~' -1
-"• -1+1

Ao== H u~·-J-1
~ ..)

13,= UR~'-1
.S,+ I,J /Jo == R/r~·-··J .s,,1

C= UH.'~·-~
I f-•-1.1-t D= nu~· ·~ I 1~0,] -•

F---- l FSO,J
J 1'1-:,_,_. X= SF/~,,~·,,_,

~' · '
Once a PEi.i fails at t I' vanous Hils arc generated. If a link fai Is, 1·.' arri\'c'S

and it is latched as Et.· which generates an Ao signal, if s.l~ is in S'J:]' ur in ,o.,''J~·.

EL is reset at the next falling edge of t.hl' switch clock (CL/\'s) for t.hc switch ,..,·,,1 ,

if sri is in the intermediate stage of rerouting due to P E,_ 1,1 _ 1 failun•. Ot.hc·rwisc·

it gets reset at t + 1, when E goes low.

AI appears at si,J• if Si,j+l needs the state change of SI,J• In the hlork diclgrarll,

s'2s1s0 inform the present st.al.e of t.hc vertical switch.

In the case of P E,,1 failure, the changes rt!quircd J,y the rt!configmill ion al~o ­

rithm depend on the index of t.he switch. These changes are lisl.c•d in Table! ·I. I.

X represents that the switch cannot be in t.ltis state. No switch S,l:J+l c:an he iu

states ST{ or STi' without <lll earlier P B failure in column j, whic:h causc·s fat.;d

failure now. Similarly, si~~+l cannot be in ST, or S'/~v (Lcrnrna ,1.:1), hl!c.lUISI! if

there is no previously failed PE in column j, only 8~.1+ 1 would be iu .<:."J',v aruJ

only S~+l.j+t would be in 8'11'. In this case, only the failure of J> 8,.,1 would find

Sm.,j+l in state ST.V and since P Bm,j is the spare cell, no nownfiguratiou is iuvok•·•l.

Similarly, Si+t.i+t cannot. be in S1'{' (Corollary ,1.3.1).

When SK.i+l (il > i) (which is either in 8'/~v or in S''/~v) receives/), it. gc :uer:~l.•:s

A0 • After receiving A1, Si~.1 changes state either to S'!f from S'l;Y & 81'!/ or to

srr from ST1 and it issues 130 to sg_,,1, which causes s.~- 1 ,1 to c:haugc stat.e

either to STi from ST;' & S1t or to 5'7~Y from S7f. If s.~.J is in ST{ I it agairt

generates Ao and RR propagates towards S11,o in this manner tmlil a switdt, 8,~,11

!JJ

X

C Bo

r ----r -------------------JL -----------------------:
A1+/Jr ~FL

CLKs--£>o--U
.----------,

SEE
EQUATION 4.

Ao ~,.---<

SJL

Ar

FF ~------~-----------+----------~~s2

~-------~-----------~~ s,

BJ.C.D.C Ll\"s
Br.C.D.E

CLI\"sFF

Figure ·L 15: Block Diagram of the Vertical Switch (combined P E and link failure
algorithm)

9·1

so

"·
i ., ,.
~-

' t;.

...

is found, which is not in S7~'. sil.jl docs not generate Ao and at the Sc\Tl\e tillll'

S;t,11 (jl < y ~ j + l) instruct P E;t,y-t to usc the second vertical input port. hy

setting SF I signals . .Ao and 8 0 change t.he state of the switches without u~iug

the external clock. This is the reason behind delaying (, after I 1• so that. all tht•

switches, which need to generate .4o and Bo can generate t.hcse signals and A1 and

81 get sufficient time to change the slate of the switches (because at. t. .. t.hc switch

S;~.i+l changes state and Ao generated by this may not stay after t.hnt.).

A1 and Br are latched as F'L at the falling edge of C/J/(5 ancl F1, is used l.o

bring the switch in its prior-to-t 1-statc, if t.he final stage requires so. If t.lwse

newly generated paths (gcncrn.tcd by A, and 81) arc required by the final stag•~ of

reconfiguration (when i 1 = i + 1), S;~,j+t resets /\0 at t~ and F1, rcrna.ins low.

Ar and 81 change the states of the switches according to Table •1.2. The rwxt

clock edge t + 1, to the switches brings the changes, listed in Tahlc ,I.:J (t.hc st.at.es

of the switches before t + l is t.aken from Table ~.1).

At t + 1, switches having F'~., = 1 go back l.o their prior-to-1 .. ,-st.at.e. J\t (t + I) ..
the reconfiguration is complete a.nd all t.he nn.~ arc reset.

In the case of a link failure communicated by P Ei,i to Si,j+l! Ao is gcrwra.t.ecl hy

sri+t if it is in ST2v, ST[or ST[. This Ao propagates towards Si,o and generates

Bo as explained earlier, until it rinds a swit.ch sri1, which is not in S"!'J. 'l'lu:

changes caused by A1 and /h arc listed in Table 4.2.

Since the changes depend on the physical index of the switch in the cast! of a

P Ei,j failure, 8 1, C and D arc used to decode the position of t.he switches. For

S;,j+t, Brand Care low and Dis high (i.e. I:Jr CD is high). For Si+t,i+l, /Jr C lJ

is high and for S~t,i+t (il > i +I), Br CD is high .

Three J- K flip flops (s2, s 1 and Bo) arc used to store tltc current stat.e of the

switch and 3 D·latches (s2L, s1L and sot,) arc used to store the previous stat.c of

the switches.

95

,,
. \

Table •1 . 1: State changes for Intermediate Stage ·'

St.atc State after t .• " .,

before l 1

Si,i+t si+t,j+l Sit.i+t
(it>i+l)

0 1 7 7
I X 7 ..

I

2 X X i
3 3 6 6
'1 5 5 5
5 X 5 5
G X X X
i X X X

Table ~1.2: State changes due to A1 and B1

Stale before the arrival . State after the arrival
of A1 and 81 of A1 and Br

Due to Ar Due to 81
0 4 3
I 5 3
2 4 6
a X 3
·l 4 X
.5 5 X
6 X 6
7 X X

Table ·L3: State changes for Final Stage

State State after t + 1
before t -1- I

Si,i+l si+lJ+l Sit,j+t
(it > i + 1)

0 X X X
l 1 X X
2 X X X
:J 3 X X
·l X X X
5 5 4 4
6 X 6 3
I X 2 0

96

For bringing the switches to their prior-to-t~-st.atc, resd and .-;cl input~ of the

flip-flops are used. For all the other r.hangcs the switches art! clocked int.o t.ht'ir

new states. Since the external switch-clock, C Ll\5 comes only in t.hl' rase l>f i\

P Ei,i failure and is supposed to modify the switches of column (.i + I) only, it i:;

AND-cd with D. A, and 81 work as clock for all the switches Sit,Jt (jl -:f. j + I),
So, D · (A1 + B 1) is delayed and OR-ed with /) · CDI\s t.o get t.hc fiual clock t.o

the switches. D · (Ar + BI) is delayed l.o ensure the prcscnc:c of propr.•r input. al.

flip-flops' inputs before the clock edge, C LKn.· appears.

' If the first rising edge of C L 1\s is blocked from reaching t.hc .I - 1\ llip flop~
~~,-..;:

-~or the switch, S~J+t if it. is in S1f, t.hen various state changes (at. t.h<! clock edge)

can be listed as in Table ·lA (for generating this tahlc, tables '1.1, tl.2 and tJ.:J aw

combined). When s~.i+ I is in S7~v' the first edge of c L /{ s is hlock(~d hy usiug a.

J- [(flip flop and two gales. This circuit allows only t.he second rising eclge of

CLKs to appear as CTJKsn·, if t.hc switch is in S7t.

At t + 1, FL brings the switches to their prior-to-l.,-st.at.e using :;d.-re.·H~ l inputs

of the flip flops. FL uses the outputs of D-latchcs, S·2fJ, !:ltJ, and Hot, for hriugi11g

the switch to prior-to-t,-stat.e. For t.hc ./ I<-rtip flops, .'icl-rc!sd inputs are lisl.c ~d in

Equation 4.1.

R2= FL · C LKs · s21., 82= n.l.

Rt= FL . c L /(s . s lf,, SJ= n,,
('l.l)

Ro= FL · C LKs · SoJ. and S'u= u~)·

The set-reset inputs go through tri-states to the flip flops and the l.ri-st.at.•~s an!

activated only when these changes are required.

Similarly, J - /(inputs arc derived and written in Equation 'La.

97

Table ,lA: State changes due to clock edge

State before State after the clock edge
the clock edge

B1 CD 81 CD BI c D D AI DB1
0 1 7 7 4 3
I I 7 7 5 3
2 X X 7 4 6
:J 3 6 6 X 3
4 5 5 5 4 X
5 5 4 4 5 X
6 X 6 3 X 6
7 X 2 0 X X

Table 1.5: State changes using set-reset inputs

State State after the change

fi/,.C LK5 A1.B1.s2.s1.so AI.BJ.s2.st.So
0 X X
1 goes X X
2 to X X
3 X X
4 prior-to X X
5 l ., X X
6 slate X X
7 5 6

Table 4.6: Generation of Ao

State Bt CD B1CD BICD AID EL
0 0 0 0 0 0
l 0 0 0 0 0
2 0 0 0 1 1
3 0 0 0 0 0
4 0 1 1 0 0
5 0 * 1 0 0
6 0 0 0 0 0
i 0 0 0 0 1

98

!'.
~·
l:
)r

~·

'··
~
'·

; . . ~ . '

' ·

' .
~ ·

!~ .•
;;
't

(·I.:J)

80 is generated, whenever C or Al is there, therefore:

(·I.. J)

Ao is generated depending on the switch state and various input.s. In the l'<tl'e

of P Ei.i failure, Ao is generated by the switch Sit,j+I (il < i), which i:-; either

in state sr.r or in ST;'. When a switch, which is in S'J~V or 8'/~', rcceiVI!S A,,

it generates Ao. Any Ao generated by Sit,j+l (il > i + 1), stays high till I+ 1,

so that Ft stays high for bringing various switches to their prior-t.o-t,,-st.ale, if

required. Various combinations for generating Ao are listed in 'J';Lhlc •1.(). Tlu!

entry for Bl · C · D, corresponding to state 5 is marked a.s '*', hcca.use this eo1111it.iofl

generates A0 , which stays high only until the rising edge of CLit's ilrrivcs (eVI!JI

though the switch remains in ST[).

Consequently,

Ao = Aot + Ao2,

Ao2 = BrCD(s2S1 so)+ BrCD(s2sd + Ar(s2St ·~o) + B,,(.~2·~t·'1o + .'12·~,.~o) ·
(1 .. e;)

SV 1;,~;,,-1 is generated by sri and it is used by P l~i.i-t for selecting the proper

vertical input port. If P Ei,j-l is using input port JY,Eo and input error iM dcl,(!r.led,

SV If~;,,-1 is made high and I}:e1 is selected. Now, if S'i~ receives /J, it resets

SV I:.E;,,-1 and again I };g0 is selected. When sr
3
· is in S1~v or in S1i and a liu k

I,J

99

r--------------------------;
I I
I

D .Br ~---1
CLI<s >

RR
5

'·' PB,_,,, I I

~--------------------------~

Figure 1.16: Block Diagram of the Horizontal Switch (combined P E and link failure
algorithm)

failure signal arrives, Ao is generated, which moves towards Si,O! until it finds srjP

which is not in STi. In this case, if SV If~;~~ is high, it means that P Ei,il is using

rr.EI due to earlier link failure. In this case, during the final rerouting, sv /;.~:~~
is uot. reset..

Horizontal Switch - This also has two sub-circuits: control circuit and switch-

ing circuit. The block diagram of the control circuit is given in Figure 4.16.

When Sf.~ receives !ll?.~'iL1 ,,, it toggles either from STf to STf1 or from ST[i

t.o ST//. Similarly, when D · Br is '1 ', the t + 1 edge of C Lf(s toggles it from one

state to the other. For this, D · Br is latched at the falling edge of C L/(5 and the

latched signal is AN Dcd with CLI<s to generate the clock for the flip flop.

The testing block of the switches tests the logic circuit of the switches and the

F F signal is generated, when a faulty switch receives any reconfiguration request.

The operation of the algorithm is shown in the next section.

4.5 Operation of the Algorithm

Consider the array, shown in Figure 4.17, which has no faults at t1, at which time

P Ei,j detects a vertical input error. Immediately, P Ei J. generates LF~EP (which
t •• ,

delays the next rising edge, t + I of C LK PE) and LF;~~~. When Si.i+I receives

100

CLJ(pE L

CLKs u L_
A ~ A ~ A A A A

tl t. + 1 l2 l6 l3 1-t t + 2

Figure 4.17: Operation of the Algorithm (combined P E and link failul'e algorithm)

E, it makes EL and X high. X is fed back to P Bi,j, which sclcctM IY,1:;1 in place of

/~Eo and it resets E, because the second link is uon-faulty.

Let us assume that at t2 , PEi-l,j fails and various /iRs arc generated. Si-1,;+1

receives D, Si,j+l receives B1 & D and Sidtl (i < iz ::5 m+ I) receive /JJ,C' & D.

Once Si,i+l receives D, it resets X and PEi,j is forced to select /f.r;u again. IJ,, C & f)

change the inputs of J- [(flip flops and the new inputs arc listed in Tabh! ·1.7.

At ts, the positive edge of C Ll\s arrives and the switches <:hauge thdr st.at.es

depending on the J- /(inputs. These changes arc listed bdow:

• sr_1,i+1 goes to ST.V and

• S~,i+1 (i :5 ix :5 m +I) go to S1i.

At t2, P Eis,i (i-1 :5 i;r: :5 m) generate RR~'£~:·', which brings S!!,J (i $ iz: $ m + I)
to ST1H (required for the horizontal data intermediate stage routing). R!l?~•s+l , , I /,,. ,J

101

Table 4.7: J- /(flip flop inputs at l 2

Flip-Flop Inputs at t 2

Inputs s·v
L • I '+I
·- ,J

sY.+I I,J SY '+I lr1) s~.j+l s~+l.i+l
i < ir < m

J/(2 0 1 1 1 1
J /(1 0 1 1 1 0
JKo 1 1 1 0 1

makes P Eis+l.i select the other horizontal input port pair (here it selects 1'Ij!E2 and

I ll ") /'BJ •

Since the earlier vertical input error was detected by P Ei,j, it reappears again at

t3 (after the re-routed data. arc checked). There are two possibilities of its detection

and t.hcy arc written next. (if the earlier line failure was due to switching circuit

failure, it would not appear during the intermediate stage because the switch has

changed state and a different path is in use).

Case A - If the first vertical input error was due to the failure of link L~;s-:.!.1 ., ,

then P Ei+t.i would now detect a vertical input error at t 3 • In this case, at t3,

P Bi+t,i generates LFpck+ (which delays the next C L](PE and G LI<s edges) and
I J,J

LF~~~~!~1 • Once Si+t,j+l receives E, it latches it as EL and generates X, which

makes p Ei+t,j select IY,Et in place of lfoEo· At the same time, si+I,j+l generates

Ao, which is passed on to Si+l.h which in turn generates Bo and feeds it to Si,i·

Ar and Br change the inputs o£ J - [(flip flops of S,V+I,j and SlJ respectively. The

new inputs arc listed in Table 4.8. These A1 and Br appear as C Lf(FF after a

delay (which ensures the presence of proper information at the flip flop inputs) and

it changes the states of Sl'~ 1J and Sij to STJ and STl respectively. The previous

states get latched in the D-flip flops. (Ar + Bl) gets latched as FL at the falling

edge of C Ll\s (at t.t). Here, (t\1 + Br) would be high at t4, because EL gets reset

at t + 2 and Ao (of Si+t.j+.) is high at t4 •

102

Table ·LS: .1- H llip flop inputs due to A, anti 131

Flip-Flop Inputs due to A, ctnd Ill

Inputs \' s .. + •. J
•\' ::;,,j

J /\'2 I 0
.JK, 0 I
J /\o 0 I

Table '1.!): .J- /\' flip llop inputs a.t l + 2

Flip-Flop Inputs at l + 2

··r \' s-r ~i-l,j+l S· '+I I,J '••J+I
i < ir < HI+ I

J /{2 0 I 1
J g, 0 0 1
J Ho 0 0 I --

Case B ~ Jf the first vertical input error occurred due t.o the failctl link IJ51:1~· •• , ,
'·I+ I

then P Ei,j will report vertical input error again and the same changes occur, whic:ft

are explained earller in Case A, but here A1 + B1 would not stay a.~ F,. t.illl + 2,

because Et gets reset at t4 and it resets Ao {of Si,i+d·

At t~, the J- /(inputs of the flip flops change again due lo a cha.nge in l.lu!

switch state. The new inputs arc listed in Tahle tl.9. At t + 2, the next dock c~tlge uf

CI,K s appears and it completes the final stage of rcconfiguration hy changing .S'ti+ 1

to ST;' and Si~,i+l (i < i: $ m t I) to S'l';'. At the same time, if t.hc previously

explained Case-A is valid, sr+ I ,j and srj arc brought bade lo S1;Y (because! Fi. is

high at tt 2, which enables the set- reset tri-statcs and these asynchronous inputs

of the flip flops load the previous states in these flip flops) and X (of s.+J,jtl) iH

reset by Ao · C LKs. There is no change in t.hc states of Si~ 1 ,1 and Si~ for Case- B

103

aL t + 2. Clock edge t + 2 changes Sl!J+l (i- 1 < ir < rn + 1) to ST[I now and it

completes the tota.l reconfiguration.

4.6 Concluding Remarks

In this chapter an on-line reconfiguration scheme for P E a.nd link failures was

discussed. Here an extra row of cells (called spares) is provided to the array and

in the case of a detected P E failure global shift is performed for the corresponding

column. The links a.re duplicated to provide link redundancy and link failures

are detected by checking parity bits. The redundant vertical link is taken through

different data path than the original link because in this configuration, the complete

failure of a RWitch block will have lesser effect on the overall reliability. When a

horizontal]ink fails, the P E automatically selects the other horizontal input port

and when a vertical link fails, the P E informs the neighboring switch about this

failure. The neighboring switch invokes the switch state changes and commands

the P E to select the other vertical input port.

The control circuit for the PEs and switches were designed and the network was

modified to support the algorithm. It was proved that the proposed eight states

of the vertical switches and two states of the horizontal switches are sufficient to

support the algorithm.

Here it is assumed that the link failures are detected by the PEs by using parity

bit checks. The number of parity bits can be chosen depending upon the reliability

requirement. With one parity bit only odd number o£ bit errors can be detected.

The algorithm is evaluated in the next chapter.

104

Chapter 5

Algorithm Evaluation

The reconfiguration algorithms are evaluated based on the rollowing criteria (19):

t probability of suroival- defined as the probability of correct rcconfigura.tions

in the presence of x faults, x::; S, where S is the number of spare cells in the

array,

t locality of interconnections,

• time ct)mple:ity of T'f.configuration algorithm and

t area complexity of the switching and routing circuits.

These features are conflicting. It is possible to develop an algorithm which IM

simple a.nd maintains high locality, but the probability of survival degrades in this

case for an increasing number of faults.

The proposed algorithm maintains high locality by allowing only one downward

shift in the case of a failure. The algorithm introduces very small time delays when

a fault occurs. It is assumed that the central processor provides the clock pulses to

the PEs and switches. When aPE fails, the central processor rcduc.es the clock

speed for next two clock periods. This can be achieved by simply blocking the on­

period of the clock, when the delay is required. If this method is used, the railurc

of any P E would introduce a delay of 2 clock periods in the operation and a link

failure would introduce a delay of 1 clock period in the operation.

105

The increase in the complexity of the switching circuit is not large for the only

P E failure nlgoritltm, but the switches and the network arc slightly more complex

for the combined P E a1lllliuk failu.T'e algorithm.

The probability of survival is derived analytically first and then simulation rc·

suits arc pr<!sented.

5.1 Analytical Results

We consider a 4 x 4 acti\'c array, which needs a physical array of size 5 x ,~, The array

hiL'i 1 spare cells, 20 vertical active · .uks and 20 horizontal active links (including

input and output link:.).

The P E and link failures arc considered separately in the following subsections.

5.1.1 Probability of Survival After a P E Failure

The above mentioned array cannot tolerate more than four P E failures, because it

hiL'I only four spares. As explained earlier, each column can tolerate only one faulty

PE.

One Failure - The probabHity of survival in this case is 100%, because the first

fault is always tolerated.

Two Failures - If the first fault is in column 0 and second fault occurs in one

of the remaining columns, the array can tolerate these two faults and the total

number of combinations for this occurrence is 5 x 15, because there are five PEs

in column 0 and fifteen PEs in other columns. Similarly, if the first fault is in

column 1 and second fault occurs in any one of the remaining columns, the array

can tolerate these two faults. Since, the case of one fault in column 0 and the

other fault in column 1 is iucludcd earlier (where column 0 has the first fault and

column 1 has the second fault), the number of combinations for the occurrence of

two rcconfigurablc faults (which arc tolerated by the algorithm), with first fault in

106

column 1 is 5 x 10, because there are five Pes in column I and ten P 8s in column

2 and column 3. So, the total number of combinations for two n·cotlfigurahlt' faults

can be written as:

S ltCCCSS2 = 5 X 15 f 5 X 10 + 5 X fi .

Total number of combinations for 2 faults is (
2
2
°) .

The probabilty of survival for two failures is:

p. S llCCC.~.':12 75 + 50 + 2.1 Q ~g } ~ It/ , = (2~) = 190 = ,, ! 5 = o8.95,., (!l. l)

Three Failures - The number of combinations for three rc<:onligmahiP faults can

be written as:

I. one fault in column 0, one in r:olurnn I and one fault citht!r iu c:olttnm 2 or in

column 3 ; 5 x 5 x I 0 = 250,

2. one fault in column 0, one fault in column 2 and one fault in column :J; .1 x!)x f)

= 125 and

3. one fault in column 1, one fault tn column 2 and one fault 111 colu11111 :1:

5 X 5 X 5 =125.

So,

Succcss3 = 2.50 + 125 + 125 = 500.

The probability of survival in the presence of three faults <:an be writt.en ilS:

P
_ Succcss3 _ .500 _

0
,.
386

_ ,.,
1 86

u1
3 - (~0) - 1140 - ,., - ·•·•· fl),

Four Failures - The number of combinations for four rcconfigurahl«! faull!l r.an

be written as:

107

1. one fault in column 0, one fault in column 1, one fault in column 2 and one

fault in column 3: 5 x 5 x 5 x 5 = 625.

So,

Success4 = 625.

The probability of survival in the presence of four faults can be written as:

P, = S(cce..)' =
625 = 0.1290 = 12.90%. 20 4845

4

(5.3)

5.1.2 Probability of Survival After a Link Failure

There are 20 vertical and 20 horizontal active links in the array. When an active

link fails, it is replaced by the spare link and the spare is then called the active link.

The algorithm checks only the active links. So for this calculation, only the active

links are considered. The links are designated depending on their destination. For

example, the link carrying the vertical input from the central processor to P Eo,o

is named as VJink (0,0). Similarly, a link carrying the horizontal data from PE~0
to PE~1 is named as H_link (0,1). So, the links can be taken as array elements

and vertical link array (V_/ink array) would be a 5 x 4 array with elements from

(0, 0) through (4, 3). The bottom most row of elements represents the links, which

connect the vertical output o£ the array to the central processor and since the

switches, providing these links, are in srr and STJ' I it is assumed that the last

row of links (array elements) can survive only one faulty link (element). All other

array elements can survive one fault. Since in the event of a. link failure, the spare

link replaces the faulty link and the spare is given the same index (making that

clement of the array active again), each element of the array can fail twice. The

second failure of any array element leads to fatal failure. Similarly, the horizontal

links can be written as a 4 x 5 array (HJink am1y), where the elements of column

108

4 represent the links, connecting the horizontal output of the array to the central

processor. Here, each array clement can survive one failure and the second failure

of the same element leads to a fatal failure.

One Fault - The probability of survival in this case is I 00%, because one f;mlt is

always tolerated.

Two fauits - When element (0,0) of the \!_link army fails first, the failure of <lily

other element in \!_link array aud H_link array is tolerated, hnt the next. failure

of element (0,0) of the VJink array leads to fatal failure. The munber of the

combinations of two reconfigurablc link failures, with V_/ink(O,O) as the first. failure

is:

19 (remaining V_/ink ar-ray elements) + 20 (JLiink array clements) = :m

and with (0,0) as the first failure, there arc 40 combinations of t.wo failures.

Similarly, when element (0, 1) of VJink array fails ftrst, the number of combi­

nations of two reconfigurable faults would be 18+20=38. Failure of clement (0,0)

is not included here as the second failure because this combination (failure of (0,0)

and (0,1)), is already included in the first case (where (0,0) is the first failure). The

number of possible combinations of two failures in this case is 39.

So, the total number of rcconfigurablc two failures is:

Success2 = :L 39 - L: 3 = 774,

where E 3 is the number of combinations of two faults, with both faults ira the

. bottom most row of V_/ink army (it is assumed that the bottom most row c:an

tolerate only one fault).

The total number of combinations for two link failures is :L 40 = 820.

So the probability of survival in presence of two faulty links is:

774 0'/
p2 = 820 = 0.9439 = 94.39 70. U>A)

109

Three Faults - The number of combinations for three reconfigurable faults can be

derived as follows:

as:

I. when V_/ink (0,0} is <me of the faulty links, the number of combinations would

be (
329

) - (~) = 73.5, where (~) is the number of combinations with

two faults in the bottom most row of V_/ink array,

2. when V_/ink (0, I) is one of the faulty links (but V_link (0, 0} is not faulty),

the number of combinations would be (
3
2
8

) - (~) = 697 and so on.

So, the number of combinations for three reconfigurahle faults can be written

s""""3 = [(~) + (;s) + (
3
;) + ... + (~) J - B and

where B is t.he number of combinations of two or more faults in the bottom most

row of V_/ink ar·my.

The number of combinations for three faults is:

Combinations3 = E40 + 2:39 + 2:38 + ... + 1.

So, the probability of survival for three link failures is:

p3 = Success3 = 9660 = 0.8415 = 84.15%. (5.5)
Com&ination3 11480

It can be observed that the analysis becomes increasingly complex as the number

of failures increase. Therefore simulation is used to get the values of probability of

survival for a greater number of faults.

5.2 Analysis of Simulation Results

As explained earlier, it is difficult to calculate the probability of survival, for large

number of faults and large arrays using an analytical method. So a computer

110

program is written (the basic control flow of the program is given in Appendix A)

to simulate the algorithm with a view to calculate the probability of sun·ival.

5.2.1 Simulation Software Outline

The simulation program injects the specified number of faults randomly and checks

the outcome of the algorithm. For an example, when the program needs to inject

one P E and one link failures, it generates a random number P ~~-L [N 1\, whid1

can be either '0' or '1 '. \Vhcn it is '0', a P E failure is inject.cd in the array. For

this, the index value (i,j) is generated randomly and failure of PEi.i is injt~c:l.ed

and reconfiguration algorithm is performed on the array.

When P EJA N K is 'l ', a link failure is injected. Ilcrc, another r<111dom tllllll ­

ber, H _y is gencrat.cd. When II _V is '0' ('1 '), horizontal (vertical) link failure is

injected by randomly generating the index (i,j) of the link. This program docs not.

assume that the bottom-most. row of the V_link army can tolerate ouly one fault.

(as was assumed for the analytical calculation). Instead, here a. random number is

generated, which provides the information about. the outcome of the a.lgorit.hrn for

the failure of or link in presence of faulty 0~ (jl < j). When oj fa.ils in pn~S(~flC:('

of faulty Oft (jl > j), fatal failure occurs. The program simula.t.cs t.hc algoritl11n

completely by changing the states of the switches, P B.~ and links and cheeking t.lw

outcome.

The program injects the specified number of faults for a Hpecifi(!d nurnlwr of

times n (by going in the same loop) and every time it st.arls with a. fresh army

(fault free array).

Every time the program enters the loop (the process is called a tr·ial), it rct,ums

one of the two possible outcomes, success, S or failure, F. An outcom(! of S' informs

that the reconfiguration attempt was successful and F indicates the occurrence of

a fatal failure.

111

5.2.2 Confidence Level of the Simulation

In this simulation, the trials are independent of each other, because every trial

starts with a fresh array and thus the probability of success remains constant from

trial to trial. These trials are called Bernoulli trials and the random variable X ,

which denotes the number of successes in n trials has a binomial distribution given

by p(x) and:

p(x) = (:) .y:.(l-p)n-.2:, x = O,l,2, ... ,n

= 0 otherwise,

where, p is the probabilty of success of any random trial.

The binomial distribution approaches the normal distribution in the limit as n

becomes large. In general, the approximation is fairly good as long as n · p > 5

and n · q > 5, where q = (1 - p).

The probability density allows one to find the probability th~t the data would

assume some value within a specified range at any time. A normal density function

f(z) (shown in Figure 5.1) determines the shape of the plot. When the number of

successful trials is X for n trials, the probability of success for a randomly selected

trial can be estimated as:

where p is called the estimate of p.

X
p = -;' (5.6)

Now, two values Pl and Pl (which are functions of p) can be determined in such

a way that the probability of plying between Pt and P'l is (1 -a). That is:

Therefore (p11 p2) forms an interval, which has the probability (1- a) of capturing

the true value of p. This interval is called the confidence interval and (1 - a) is

called the confidence coefficient (confidence level) [22].

112

·Za/2 0

Figure 5.1: Normal Density Function

The confidence interval for p can he written as:

(fi.7)

where p and q arc the estimated values of p and q and ::,l/'1. ·/¥- is the margin of

error E in the estimated value. So,

E < z.,,jf;!, (5.8)

which gives Equation 5.9.

¥() ,. -

(
.., /2)2

n 2:: E . p. q. (!i.!))

J?or the simulation, the number of trials is calculated based on equat.iou fUJ. Tile

maximum value of p · q is 0.25, when p = q = 0)). (f we want t.hc coulldcru:c

level to be 95% and the half width of the confidence interval to he 2%, t.hcu

n > (Za/2)2 0.2.5
- 0.02 X •

(!;.tO)

For a confidence level of 95% (a = 0.05), Za/2 = 1.96 (from t.hc <:umulat.ive

normal distribution table [22]). So,

(1.96) 2 n 2:: O.ol X 0.25
(!l. I I)

~ 2401.

Now, if the total number of trials is more than 2401, it can be said con fidcnt.ly

that the probability of success in any random trial is p ± 2%, 19 times out of 20.

113

5.2.3 Probability of Failure

The probability of survival goes down with the increasing number of faults but

the probability of occurrence of a large number of faults also goes down. In any

array as the failures can he reasonably assumed to be independent, the binomial

distribution can he used to calculate the probability of occurrence of x failures (the

active array size ism x n.).

If we consider the P E failures, total number of PEs in the array is (m + 1) x n,

so probability of x P B failures is,

Pr,PI:J = ((m: l).n) · PPE · q~~+I).n-r,

where PPB is the probabilty of failure for PEs. Here, the value of PPE would be very

small therefore the Poisson distribution can be used to approximate the binomial

distribution and then

where ApE = (m + 1) · n · PPE·

Similarly, the probability of x link failures is

where Arink = ((m + 1) · n + m · (n + 1)] ·Plink· Here (m + 1) · n is the number of

active vertical links and m · (n + 1) is the number of active horizontal links. It is

assumed that the probabilities of a horizontal link failure and a vertical link failure

arc both equal to Plink·

Since the occurrence of P E failures and link failures are independent of each

other, the probability of x 1 P E failures and x2 link failures can be written as:

114

,.
f
!
I

~·.

...
'

The probability of occurrence of various failures for a ·I x ·l array arc lislcti iu

Table 5.1 {assumed PPE = 10-·l and Plink = 10-6). The probability of switch and

link failures is less than that of PEs because the PI~ circuitry is more complt•x

than that of switches and links in most casl's.

5.2 .4 Simulation Results

The results of the simulation program arc listed in Table 5.1 for various values of 11

for a 4 x 4 array (the maximum number of injected P E faults is four and injected

link faults is three). The first column in the table gives the number of f;udt.y

PEs (i) and the second column gives the number of faulty links (j). Tht! joint.

probability of i P E failures and j link failures is listed in column 3. The cslimiltcd

probability of survival is listed in the other columns for various values of u. It can
. '

be seen that the estimated value of p becomes stable, once n hccomcs la.rgc. The

complete table of outputs (for n = 3000, array size = '1 x 4, maximum nutnhcr of

P E faults = 4 and maximum nurnhcr of link faults = 7) is given in Table 5.2 a1111

various confidence intervals arc calculated and listed in the same table (for !}!)'i{,

confidence level). The fil'st two columns of the tahle give the number of J> I~ and

link faults. The estimated probability of survival (p, output of the simulation) is

given in column 3. The confidence-interval is calculated based on p and lisl.t!d in

column 4.

It can be seen that the analytically calculated values of probability of survival

are well within the confidence interval (calculated from the sirnulat.iou result:~) for

P E failures but they arc below the confidence interval for link failures. It is because

of the assumption, that the bottom most row of V_link array can snrviwJ only oue

fault, which was made for t.he analytical calculation.

The overall probability of survival for a 4 x 4 array is calculated hascd on

tables 5.1 and 5.2 and it is 99.903%.

115

T;Lblc .5.1: Estimated Values of Probabilities of Survival (Array Size=4 x 4)

Number Number Probability Estimated value, p (%)
of PB of link of this
Faults faults occurrence n=lO n=100 n=lOOO n=2100 n=5000

(i) (j) *

0 9.97 X 10- 1 100.00 100.00 100.00 100.00 100.00
0 1 3.!J9 x w-5 100.00 100.00 100.00 100.00 100.00

2 7.~18 x w-w 100.00 92.00 95.30 9.5.00 95.82
3 1.o6 x w- 14 50.00 87.00 88.80 88.76 88.12
0 1.99 X 10-3 100.0{) 100.00 100.00 100.00 100.00

l 1 7.98 X IQ-8 100.00 100.00 99.70 99.43 99.50
2 1.60 X lQ-12 90.00 95.00 9·1.10 95.76 95.38
3 2.13 x w- 17 90.00 86.00 87.80 87.42 87.90
0 1.99 X 10-6 80.00 77.00 77.10 76.86 78.60

2 1 7.98 x to-u 40.00 78.00 78.40 79.19 78.18
2 1.60 X lQ-IS 90.00 72.00 71.00 75.43 74.54
3 2.12 x w-:lU 80.00 71.00 69.70 69.62 67.48
0 1.33 X 10 9 40.00 49.00 43.40 4.5.00 44.78

3 1 5.32 x w-Jol 40.00 40.00 41.80 42.43 43.24
2 1.06 x w-ts 60.00 36.00 41.50 40.81 41.02
3 1 A2 x w-23 40.00 41.00 39.90 35.71 37.40
0 6.65 x w-13 0.00 22.00 14.90 12.71 12.82

4 1 2.66 x w-n 0.00 11.00 12.20 12.90 12.32
2 5.32 x w-:.~:.~ 20.00 14.00 12.00 9.86 12.32
3 1.10 x w-'l·· 30.00 10.00 11.50 1l.i6 10.70

116

Table 5.2: Estimated Values of Probabilities of Survival (Array Si:~.t•=·l x ·l)

Number Number Estimated Confidence lutcrval
of PE of link Probability, p n==:JOOO
Faults Faults (from simulation) (Confidence level = !)5%)

0 100.00 100.00 - 100.00
1 100.00 100.00 - 1 00.00
') 95.i7 95.05- 96. 19

0 a 87.50 86.32- 88.68
4 ii.30 75.80 - 78.80
?) 65.80 6•L10- 67.50
6 55.13 53.35- 56.91
7 43.47 41.69 - ·l5.24
0 100.00 100.00 - 100.00
1 !l9. ~J3 99.04 - 99.62
2 !J?l.li ~HAO -- 95.U:J

1 a 88..10 87.25- 89.55
·I 77.30 75.80 - 78.80
5 6·1.67 62.96- 66.38
6 5·1.80 5:to2 - 56.58
7 111.73 39.97- ·I:L50
0 i9.li 77.71 - 80.62
1 77.77 76.28- 79.25
2 74.50 72.94- 76.06

2 3 6U.OO 67.34 - 70.66
4 61.67 59.93- 63.41
5 .s i.:n 119.58- 5a.t6
6 '13.00 42.12- 45.()8
7 35.27 33.56- :16.!)8

0 :t3.rl7 41.69- 45.24
1 13.93 42.16- 45.71
1 42.47 40.70- 44.24

3 3 :n.8:J 36.10 - :39.57
4 :33.47 31.78- 35.16
5 28.50 26.88- 30.12
6 211.-57 23.03- 26.11
7 20 .. 53 19.09- 21 .98

0 12.07 10.90- 13.23
1 12.!JO 11.70- 14.10
2 15.20 13.92 - 16.48

4 3 lOAD 9.31 - 11.49
4 9.80 8.74- 10.86
5 8.03 7.06 - 9.01
6 7.27 6.34- 8.20
7 6.13 .5.27- 6.99

IU

Various probabilities of survival for difft!rent array sizes are listed in Appendix B

for 95% confidence level.

5.3 Cgncluding Remarks

In this chapter, the proposed algorithm was evaluated. It was shown that thi:?

algorithm introduces a delay of two clock periods for P E failures and of one clock

period for link failures. Therefore it can be inferred that the time overhead is very

small.

The locality of interconnections is maintained here by using global deformation.

The &mount of increase in the hardware is very small for the only P E failure

algorithm but it is slightly more for the combined P E and link failure algorithm

due to complex vertical switch control circuit.

It can be seen that though the probability of survival is less for large number

of faults, the probability of this occurrence is also low. The overall probability of

survival of this algorithm for a 4 x 4 array is 99.903% (assumed PPE = w-• and

Plinlc = 10-6).

118

Chapter 6

CONCLUSIONS

The processing speed of a. computation ca.n be increased by ensuring multiple com~

putation per memory access. Systolic arrays accomplish this and in addition these

arrays provide modularity and regular data flow.

To improve the yield and reliability, various fault detection and reconfiguration

schemes are used. In Chapter 1, the concept of systolic arrays was explained and

various existing reconfiguration algorithms were dtscussed. It can be seen that

most of the existing schemes are efficient for improving the production time yield

but they are not suitable for run~time reliability improvement because they need

an external processor to run the algorithm. In addition these schemes assume the

network to be always fault-free, which is difficult to achieve. The scheme, proposed

here, does not assume a perfect switching network and it is capable of tolerating

the link failures also.

The scheme proposed in this report can be used efficiently for on~ line reconfigu­

ration to improve run-time reliability. The algorithm for P E failures was presented

in Chapter 2. A bottom row of spares is provided to the array and in the case of a

P E failure, a global shift is performed, if the spare cell (for the particular column)

is available. The P E3 are of a self-testing type and in the event of a fault detection,

PEs invoke the reconfiguration by generating the reconfiguration requests.

An algorithm for P E and link failures was presented in Chapter 3. Here, each

119

link is duplicated and a bottom row of spare cella is provided to the array. In the

case of a P E failure a global shift is performed if the spare cell (for the particular

column) is available. The link failures are detected by using parity bits, the PEs

perform parity checks on incoming data and any error in the incoming data is

taken u the incoming link failure. In the event of a horizontal link failure, the

processing element simply selects the second input port, if it is using the first

input port. If the P E is using the second input port and it detects an input data

error, a fatal failure occurs. In the case of vertical link failure, the PE invokes a

reconfiguration by generating a reconfigura.tion request. Various states were defined

for the switches and it was proved tuat the proposed number of switch states is

sufficient to tmplemcnt the algorithm.

A central processor is linked to the array for providing the inputs and receiving

the outputs. The central processor controls the clock input of the array and when

a fault occurs, the central processor inserts delays in the clock as required by the

reconfigura.tion algorithm. This algorithm makes full use of non·faulty partial re·

suits after the occurrence of a fault and it does not require flushing of the array

every time a fault occurs.

The probability of survival for this algorithm was calculated analytically in

Chapter 4. Next, the simulation results were presented. The simulation program

injects random faults in the array and checks the outcome of the algorithm. The

probabilities of survival were estimated based on the outcome of the random fault

injection a.nci a 95% confidence interval was defined for each estimated value. The

number of trials was calculated based on a maximum margin of error of 2% and

on the required value of the confidence level (which is assumed to be 95% here) .

The simulation results were analyzed in Chapter 4 and it was shown that the

overall probability of survival is approximately 99.903% for a 4 x 4 array (assumed

probability of P E failure = 10-4 and probability of line failure = 10-6).

120

It was shown that. the pnlbability of sun·i,·al after a fault ocrnrr~nr~ d~n~a:;cs

with the increasing number of faults but. it is overshadowed hy the fart. t.hat tlw

probability of occurrence of faults alsu dccrcasl's with inrrea:;ing !lltmlwr of faults.

In the next chapter some suggestions for further n~l'('arrh are giwn.

121

I
('

,'

...

.,
,.

Bibliography

[1) A. Huang, "Architectural Considerations Involved in the Dcsigu of an Optical

Signal Computer," Proc. of the IEEE, vol. 72, no. 7, pp. 780-78(i, July I !)8·1.

[2] H.T. Kung, "\Vhy Systolic Architectures?," Computer, pp. :n-•tfi, Jan-

uary 1982.

[3) P.O. Dianne, "Systolic Arrays for Matrix Transpose and other H.cordcrings,"

IBEE Transactions on Computers, vol. c-36, no. 1, pp. 117- 122, .January I !)87.

[4) R.B. Urquhart and 0.\Vood, "Systolic Matrix and Vector Mulliplication Mt!lh­

ods for Signal Processing," lEE Proceedings, vol. 1:11, pl. F, no. (i, pp. ()2:!-G:Jl,

October 1984.

[5) J.C. Ward, J.V. McCanny and J.G. McWhirter, "Bit Level Systolic Array

Implementation of the Winograd Fourier Transform Algorithm," I Bl:./ Pmr.r.r:d-

ings, vol. 132, pt. F, no. 6, pp. 473-479, October 1985.

[6) K.H. Huang and J.A. Abraham, "Algorithm-Based Fault, Tolerance for Matrix

Operations," IEEE Trans. Computers, vol. C-3:J, no. 6, pp. 518-528, ,June I !J81.

[7) J.H. Patel and L.Y. Fung, "Concurrent Error Detection in ALU's by Re­

computing with Shifted Operands," IEEE 1'rans Com]Juters, vol. C-:i}, No. 7,

pp. 589-595, July 1982.

(8] J .H. Patel and L.Y. Fung, "Concurrent Error Detection in Multiply and Divide

Arrays," IEEE Trans Computers, vol. C-32, no. 4, pp. tJ 17-422, April 198:1.

123

Chapter 7

SUGGESTIONS FOR
FURTHER RESEARCH

In this report an algorithm for on-line reconfiguration was presented. This al­

gorithm can be extended in various directions depending upon the requirements.

Some of the extensions are listed below.

• The proposed algorithm uses only one row of spare cells therefore it would

not be very effective for high failure rate of PEs. For such cases a greater

number of spare cells is required. An additional column of spares can be

added and the algorithm can be modified to make effective use of column and

row spares.

• When a spare column and a spare row of PEs are used, each P E requires 3 ~~r

more static coefficient latches (the exact number depends on the algorithm).

This requirement can be reduced by modifying the algorithm, so that only

two copies of each static coefficient are kept in the array. When a P E fails,

the static coefficients can be moved from one cell to the other (if required).

This requires some additional time for reconfiguration but the hardware is

reduced.

122

[9] S.· W. Chan, S.S. Leung and C.-L. Way, "Systematic Design Strategy for Con­

current Error Diagnosable Iterative Logic Arrays," fEE Proceedings, pt. E,

vol. 1:15, no. 2, pp. 87-!H, March 1988.

[I OJ A. Majumdar~ C.S. Raghvendra and M.A. Breuer, "Fault Tolerance in Linear

Systolic Array using Time Redundancy," IEEE Trans. Computers, vol. 39,

no. 2, pp. 269-276, February 1990.

[II] R.K. Gulati and S.M. Reddy, "Concurrent Error Detection in VLSI Array

Structures," JCCD I 986, pp. 188-491.

p 2] R .. J. Cosentino, "Concurrent Error Correction in Systolic Architecture," IEEE

Tmns. CAD, vol. 7, no. I, pp. 117-125, .January 1988.

(13) H.M. Lea and 11.5. Bolouri, "Fault Tolerance : Step Towards WSI," lEE pro­

ceedings, pt. E, vol. 135, no. 6, pp. 289-297, November 1988.

(1,1) H.. Ncgrini, M. Sami and R. Stefanelli, "Fault Tolerance Techniques for Array

Structures Used in Supercomputing," Computer, vol. 19, no. 2, pp. 78-87,

Fcb!'uary 1986.

(15] M. Chean and .J.A.B. Fortes, "A Taxonomy of Reconfiguration Techniques

for Fault-Tolerant Processor Arrays," Computer, vol. 23, no. l, pp. 55-69,

January 1990.

[16] C.W.II. Lam, H.F. Li and R . .Jayakumar, "A Study of Two Approaches for

Reconfiguring FaulL-Tolerant Systolic Arrays," IEEE trans. Computers, vol. C-

38, no. 6, pp. 833-844, June 1989.

11 i] S. Y. Kuo and \V.K. Fuchs, ''Efficient Spare Allocation for Reconfigurable Ar­

rays," IEBE 1Jesigr1 and Test, vol. 4, no. 1, pp. 24-31, February 1987.

124

[18] A.L. Rosenberg, ''The Diogcncs Approach to T<'stablc fallll-Tolcra.nt Arrays

of Processors,'' IEEE Trans. Computel's, vol. C-32, no. 10, pp. tl02·910, Ort.o·

ber 1983.

[19] F. Lombardi, .M. Sami a.nd R. St.cfanclli, "Hcconfiguration of VLSI a.rmys hy

Covering," IEEE trans, CA IJ., vol. 8, no. B, pp. 952-964, September 1 !JH6.

[20) A.D. Singh, "Interstitial redundancy : An Area Efficient. Fault. Tolcra.nce

Scheme for Large Area VLSI l?roccssor Arrays," I EBJ.; 'lhws. Comprtlt!r',.;,

vol. C-37, no. 11, pp. la98-1410, November 1988.

[21] L. Snyder, "Introduction to the Configurablc Highly Parallel Computer,'' JB/~1~'

Computer, vol. 15, no. 1, pp. 47-56, .January H)82.

[22] W. W. Hines, Probability and Sl.atist'ics in Engineering and MantlfJt:mr.nl Sci­

ence, John \Vilcy & Sons, pp. 240-256, 1980.

125

Appendix A

Program Structure

This program calculates the probability of survival by injecting random faults in
f.hc array and running the reconfiguration algorithm.

The ha.sic flow of controls is given below:

Start. :

Fault :

Trial:

Loop:

PK.fault :

PE_algorithm :

get the array dimensions from the terminal;
get the number of trials from the terminal;
get the maximum number of faults, (maxfaulLPE, maxfaultJink)

to be injected;
initialize various variables;

start with maximum number of PE faults, faulLPE to be 0 and
maximum number of link faults, faultJink to be 1.

generate arrays; /* one array each for PEs, vertical
switches, horizontal switches,
vertical links and horizontal links * /

decide randomly, which fault (P E or link) to inject;
if link fa.ult has to be injected, go to Link-fault;

generate the index (i,j) of the failed P E randomly;
if P Ei,j is non-faulty then go to PE_algorithm;
go to PE_fault;

check the success of the algorithm;
if algorithm is successful, go to SuccessfuLPE;
increment the number of attempts for (faulLPE, faultJink);

126

SuccessfuLPE :

Linklault:

HorizontaiJink :

VerticaLlink :

SuccessfulJink :

NexLtrial:

Success :

go to Next-trial;

modify the P E. switch and link arrays;
if number of P B and link faults, already injected

= (faulLPE, fault-link), go t.o :mcce~s;
increment the number of injected P E faults;
go to loop;

decide randomly, which failure (horizontal link or wrt.iml
link) to inject;

if vertical link failure has to be injected, go to VcrtiraLlink;

generate the index {i,j) of the failed link randomly;
check the success of the algorithm;
if algorithm is successful. go to SucccssfuLiink;
increment the number of attempts for (faulLPE, fauiUink);
go to NexUrial;

generate the index (i,j) of the failed link randomly;
check the success of the algorithm;
if algorithm is successful, go to SucccssfuLiink;
increment the number of attempts for (faulLPE, faulLlink) ;
go to N exUrial;

modify the corresponding switch and link army;
if number of P E and link faults, already injedcd

= (faulLP E, faulLlink), go t.o Success;
increment the number of injected link faults;
go to Loop;

reset the number of faults, already injected;
increment the number of trials, already attempted;
go to Trial;

increment the number of successes recorded for (fauiLP E, faulLiiu k);
increment the number of attempts for (faulLPE, faultJink);
increment the number of trials, already attempted;
if number of trials, already attempted is less than mwr

127

Next:

lncrcrncnLiink :

RescUrial :

l~nd:

specified number of trials, go to Trial;
if (fauiLP E, faultJink) is less than

(maxfault_PE, maxfaultJink), go to Next;
calculate estimated probability of survival for each

combination of (faulLPE, faulL.link);
go to End;

If faultJink is less than maxfaultJink, go to incremcntJink;
increment faulLPE;
reset fauiLlink;
go to Reset-trial;

increment fau!Liink;

reset number of trials, already attempted;
reset number of faults, already injected;
go to Trial;

Stop.

128

Appendix B

Probability of Survival

Here the simulation results are listed for various array sizes. The first two columus
of the table show the number of P E and link faults corresponding to the particu­
lar row. The other columns give the 95% confidence interval of the probability of
survival (calculated from the simulation results) for different array sizes (number
of trials = 3000).

Number Number Estimated Probability Confidence Interval
of PE of link {Confidence lc11el = !l5%)
Faults Faults 5 X 5 6 X 6 10 X 10 20 X ~0

0 0 100.00 - 100.00 100.00 - 100.00 100.00 - 100.00 100.00- 100.00
0 1 100.00 - 100.00 100.00 - 100.00 100.00 - 100.00 100.00 ·- 100.00
0 2 96.35 - 97.58 97.57 - 98.56 9!}.04 - 99.62 !)9.69- 99.98
0 3 91.28 - 93.19 93.26 - 94.91 !)7.28 - !)8.32 !)8.88 - H!).52
0 4 82.86 - 85.4 7 87.60 - 89.86 !)4.:J:J .. !J5.87 !}8.:17 - 99. 16
0 5 74.03 - 77.10 79.63 - 82.14 !)UJI - !J3. 76 !J7 .88 - !)8. 79
0 6 61.58 - 65.02 71.45 - 74.62 88.96 - !H . II !)5.37 - !)6. 76
0 7 53.15 - 56.71 6:1.60 - 67.00 H:l.:J8 - 81).!Jf.i !H>.5H - !J6.m;
0 8 41.33 - 44.87 60.8:1 - 64 .30 79. 7:, - 82.5:1 86.:12 - 88.W-!
0 9 31.65 - 35.02 58.78 - 62.28 75.2:l - 78.2!) 94.36 - !J5.!JO
0 10 24.56 - 27.71 48.28 - .1)1.86 70.22 - 7:1.44 !J:J. 9:J - !l5. !j;j

0 11 25.67 - 28.86 29.48 - :12.79 64.81 - (i8.22 82.00 - 84 .G7
0 12 21.20 - 24.20 21.07 - 24.06 !)8.:JS - Gl.8S 86.32 - 88.68
0 13 13.02 - 15.52 15.33 - 18.00 .11.85 - TJ5A2 85.4.5 - 87.88
0 14 8.48 - 10.58 12.12 - 14.5.5 48.84 - 52.42 71.75 - 74.92
0 15 8.48 - 10.58 8.93- 11.07 :m.t 1 - 42.6!J 69.85 - 7:1.08

129

Number Number Estimated Probability Confidence Interval
of PE of link (Confidence level = 95%)
Faults Faulls ,) X,) 6 X 6 10 X 10 20 X 20

1 0 1 00.00 - 100.00 100.00 - 100.00 100.00 - 100.00 100.00 - 100.00
1 1 99.08 - 99.65 99.55 - 99.92 99.46 - 99.87 99.64 - 99.96
1 2 96.72 - 97.88 96.79 - 97.94 98.41 - 99.19 99.42 - 99.85
I 3 90.33 - 92.34 92.76 - 94.51 96.57 - 97.76 98.84 - 99.49
1 4 81.72 - 84.41 87.5 7 - 89.83 94.11 - 95.69 98.14 - 98.99
1 5 73.38 - 76.48 80.18 - 82.95 91.42 - 93.32 97.61 - 98.59
1 6 64.41 - 67.79 72.46 - 75.60 87.95 - 90.18 96.28 - 97.52'
1 7 53.35 - 56.91 65.72 - 69.08 84.38 - 86.89 94.11 - 95.69
1 8 43.29 - 46.85 55.60 - 59.14 79.36 - 82.18 93.47 - 95.13
1 9 33.19 - 36.61 46.61 - 50.19 74.37 - 77.43 92.19 - 94.01
1 10 25.54 - 28.72 39.94 - 43.46 69.82 - 73.05 90.01 - 92.06
1 11 17.50 - 20.30 31.55 - 34.92 64.57 - 67.96 88.82 - 90.98
1 12 13.18 - 15.69 24.27 - 27.40 57.58 - 61.09 85.31 - 87.75
1 13 9.94 - 12.19 21.10 - 24.10 54.99 - 58.54 84.79 - 87.27
1 14 5.81 - 7.59 15.88 - 18.58 47.08 - 50.66 78.57 - 81.43
1 15 4.16 - 5.71 10.55 - 12.85 43.52 - 47.08 79.94 - 82.73

2 0 82.83 - 85.44 85.52 - 87.95 89.66 - 91.7 4 95.15 - 96.58
2 1 80.08 - 82.86 82.96 - 85.57 89.21 - 91.33 93.76 - 9.1) ·F
2 2 77.54 - 80.46 81.14 - 83.86 88.33 - 90.53 93.22- 94.:
2 3 73.69 - 76.78 78.16 - 81.04 88.40 - 90.60 93.26 - 94.9·t
2 4 69.14 - 72.39 72.91 - 76.03 84.17 - 86.70 92.76 - 94.51
2 .5 60.67 - 64.13 68.06 - 71.34 83.03 - 85.63 91.45 - 93.35
2 6 53.59 - 57.15 63.29 - 66.71 79.08 - 81.92 90.85 - 92.81
2 7 44.62 - 48.18 56.03 - 59.57 75.66 - 78.67 90.75- 92.72
2 8 37.52 - 41.01 47.31 - 50.89 71.72 - 74.88 87.98 - 90.22
2 9 27.67 - 30.93 42.95 - 46.51 68.02 - 71.31 87.74 - 89.99
2 10 22.67 - 25.73 33.19 - 36.61 63.16 - 66.57 83.52 - 86.08
2 11 17.27 - 20.06 26.20 - 29.40 59.15 - 62.65 83.03 - 85.63
2 12 13.14 - 15.66 20.65 - 23.62 52.95 - 56.51 81.48 - 84.18
2 13 8.96- 11.11 17.27 - 20.06 49.41 - 52.99 80.63 - 83.37
2 14 4.65 - 6.28 13.02 - 15.52 45.91 - 49.49 77.47 - 80.39
2 15 3.24 - 4.63 9.98 - 12.22 39.7 4 - 43.26 75.36 - 78.38
3 0 50.'18 - 54.05 59.15 - 62.65 72.91 - 76.03 86.18 - 88.56
3 1 49.61 - 53.19 54.89 - 58.44 72.46 - 75.60 84.62 - 87.11
3 2 48.58 - 52.16 56.33 - 59.87 70.19 - 73.41 84.03 - 86.57
3 3 47.21 - 50.i9 52.78 - 56.35 69.65 - 72.89 83.03 - 85.63
3 4 41.43 - 44.97 50.28 - 53.85 67.89 - 71.18 83.41 - 85.99
3 5 39.50 - 4~.03 47.28 - 50.86 65.62 - 68.98 82.00 - 84.67
3 6 34.68 - 38.12 42.29 - 45.84 64.03 - 67.43 79.49 - 82.31
3 7 28.39 - 31.67 39.90 - 43.43 60.40 - 63.87 80.08 - 82.86
3 8 24.33 - 27.47 31.98 - 35.36 57.41 - 60.93 79.60 - 82.40

130

Number Number Estimated Probability Confidence lnten·a l
of PE of link (Confidence level = 95%)
Faults Faults 5x5 6x6 10 X 10 20 X 20

3 9 19.48 - 2~.39 27 .so - 31.06 53.96-57.51 iS.60 - 81.-lti
3 10 15.56- 18.24 23.74 - 26.86 50.68- 5-l.~5 77.95 -· 80.85
3 ll 11.03- 13.37 19.90- 22.83 49.95 - 53.52 7·l.71 - 77.76
3 12 8.61 - 10.72 15.04 - 17.69 43.85- 47..12 i ·L3·t - 7i ..to
3 13 5.31 - 7.03 14.01 - 16.59 42.56 -· 46.1 1 72.2!} - 7.1.·1·1
3 14 4 .65- 6.28 10.33- 12.61 36.73 - ·10.2 1 70.1:.!- 7:1.:1-1
3 15 2.81 . 4.12 7.28- 9.25 :12.93- 36.;J.t 67 .()8 - 70.98

·l 0 21.01 - ~3.99 30.76 - 3-l.ll 52.42 - 55.98 71.95- 75.11
4 1 21..19- 24.51 29.67- 32.99 50.85- 54 ..l2 70JH - 7-t .1 a
·l 2 22.28- 25.32 28.46- 31.74 47.98- 51.5() 70.70 -- i:UHl
4 3 21.62- 24.64 26.98 - 30.22 50.91- MA!) (i9.!J5 -· 7:L 18
4 4 18.34- 21.19 27.02- 30.25 4 7.98 - 51 .5G ()8.22 . 71.51
4 5 16.82- 19.58 21.79- 27.91 <16.18 - 50.05 6!). 78 -- 7:1.02
4 6 14.0·l- 16.62 21.85 - 21.88 45.-11 - 118.!)!) 68.06 -- 7I.:H
4 ., 11.06- 13..11 18.31 - 21.16 42.92 - 116.48 67.68 - 70.98
4 8 11.22 - 13.58 15.82- 18.52 43.22 - 46.78 66.1 6 - G9.fi0
4 9 10.71 - 13.02 16.20- 18.93 :J6.06- 39.5·1 6·1.61 - (i7 .9H
4 10 6.21 - 8.05 12.82- U5 .31 36.46 - 39.!}4 65.89 - (i!}.2-l
4 1 J 4.99- 6.67 10.49- 12.78 33.56 - :J6.H8 fi:I.3H - (i6 .81
4 12 3.09- 11.45 8.55- 10.65 29.90- :J:J.2:1 61.71 - fifi .]()

·1 13 1.88- 2.98 7.19-9.15 27 .9:J - :11 .20 {)2 . 72 - 66. 1;,
·l 14 2.06 - :3.21 5.09- 6.78 27.57- 30.8:1 58.72 - ()2.22
4 15 1.15- 2.0~ 3.97- 5.49 23.12-26.21 !i7 .. ll~ - r. 1 .on
5

I

0 4.65- 6.28 10.61 - 12.92 :31.51 - :14.8!} .58.8.1 .. fi2.:15

5 1 4 .68- 6 .32 9.63- 11.84 30.17- 33})0 .16.'10 - !)!).na
5 2 4.19- 5.74 10.71 - 13.02 29.80- 33.] :J 56.:10 - !iH.8:J
5 3 3.76 - 5.24 9.66 - 11 .88 28.6!} - :Jl .H8 57.0 I -· fi0.5:J
5 4 3.60- 5.06 9.85- 12.08 28.79 - 32.08 56.54 - fiO.Ofi
5 5 3.27- 11.67 7.31 - 9.29 27.41 - :J0.6fi r,~un - !H A 8

5 6 3.30 - '1. 70 7.85 - 9.88 27.11 - ao.a5 55.60 - !;!}.14

5 7 2.75 - ·l.05 7.22 - 9.18 24..10-27.54 !)4.2!) -- .17.8-1

5 8 2.09 - 3.24 6.93 - 8.87 24.76 - 27 .fJI 52.72 - 5(i.28

5 9 1.62- 2.65 .5.62 - 7.38 22.41 - 25.46 54.7:4 -- lj8.27

5 10 0.78 - 1.5-5 -1.72 - 6.35 22.11-25.1.5 .Jl.8fi - !).).12

5 11 1.35 - 2.31 3.39 - 4.81 19..15 - 22.:J.) !)0.5!) - 54 .] 2

5 12 0.73 - 1.47 :1 .. 54 - 4.99] 9.1 9 - 22.08 48.3-1 . 51.!}2
5 13 0.59 - 1.28 1.91 - 3.02 18 .11 - 20.9.5 48.61-52.19

5 14 0.43 - 1.04 1.59- 2.61 16.7.1 - 19.51 47.08 - 50.G6
5 15 0.10 - 0 .50 1.15 -- 2.05 11.46 - 17.07 4!>.88 - 49.-15

131

Number Number Estimated Probability Confidence Interval
of PE of)ink (Confidence level = 95%)
Faults Faults 5 X ,5 6 X 6 10 X 10 20 X 20

6 0 0.00-0.00 1.65- 2.69 15.78- 18.48 45.01 - 48.59
6 l 0.00-0.00 1.50- 2.50 15.91 - 18.62 43.59-47.15
6 2 0.00 - 0.00 I 1.27 - 2.20 16.27- 19.00 43.55 - 47.11
6 3 0.00-0.00 1.30- 2.24 13.85- 16.42 42.56 - 46.11
6 4 0.00-0.00 1.38- 2.35 16.53 - 19.27 40.20-43.73
6 5 u.oo- 0.00 1.21 - 2.12 14.56-17.17 41.06- 44.60
6 6 0.00-0.00 0.70- 1.43 14.53-17.14 42.46 - 46.01
6 7 0.00-0.00 0.75- 1.51 11.89- 14.31 40.33-43.87
6 8 0.00- o.oo 0.64- 1.36 12.79-15.?8 39.01 - 42.53
6 9 0.00-0.00 0.81 - 1.59 11.00- 13.::!-1 40.30-43.83
6 10 0.00-0.00 0.40- 1.00 10.87-13.20 36.86- 40.34
6 11 0.00-0.00 0.53- 1.20 10.45- 12.75 38.05-41.55
6 12 0.00- 0.00 0.40- 1.00 8.70-10.83 37.35-40.85
6 13 0.00-0.00 0.22- 0.71 8.42- 10.51 36.10-39.57
6 14 0.00- o.oo 0.27 - 0.79 7.94-9.99 34.81 - 38.26
6 15 0.00 - 0.00 0.22- 0.71 7.60-9.60 34.12 - 37.55

7 0 0.00-0.00 0.00- 0.00 6.62-8.51 29.31 - 32.62
7 1 0.00 - 0.00 o.oo- 0.00 6.09-7.91 29.80-33.13
7 2 0.00-0.00 0.00- 0.00 5.65 - 7.42 28.26 - 31.54
7 3 0.00-0.00 0.00- 0.00 5.31-7.03 29.51 -32.82
7 4 0.00-0.00 0.00- 0.00 6.43- 8.30 29.90-33.23
7 5 0.00 - 0.00 0.00- 0.00 6.81-8.72 29.31 - 32.62
7 6 0.00 -· 0.00 0.00- 0.00 5.03-6.71 28.13 - 31.40
7 7 0.00-0.00 d.OO- 0.00 5.06-6.74 29.44 - 32.76
7 8 0.00-0.00 0.00- 0.00 5.06-6.74 27.44- 30.69
7 9 0.00-0.00 0.00- 0.00 4.59- 6.21 28.03 - 31.30
7 10 0.00-0.00 0.00- 0.00 4.68-6.32 27.47-30.73
7 11 0.00-0.00 0.00- 0.00 4.13- 5.67 26.16 - 29.37
j 12 0.00-0.00 0.00- 0.00 3.45-4.88 26.26-29.47
7 13 0.00-0.00 0.00- 0.00 3 .36-4.77 24 .33-27.47
7 14 0.00-0.00 0.00- 0.00 2 .90-4.23 26.03 - 29.23
7 15 0.00-0.00 0.00- 0.00 2.48- 3. 72 24.33 - 27.4 7

8 0 0.00-0.00 0.00- 0.00 1.70-2.76 18.80 - 21.67
8 1 0.00-0.00 0.00- 0.00 1.85-2.95 19.28- 22.18
8 2 0.00 - 0.00 0.00 - 0.00 2.00- 3.13 18.18- 21.02
8 3 0.00-0.00 0.00- 0.00 1.53-2.54 17.30-20.10
8 4 0.00-0.00 0.00 - 0.00 1.44-2.43 18.31 - 21.16
8 5 0.00 - 0.00 0.00- 0.00 2.06-3.21 19.02- 21.91
8 6 0.00 - 0.00 0.00- 0.00 1.47-2.46 18.37 - 21.23
8 7 0.00 - 0.00 0.00- 0.00 1.65-2.69 18.11 - 20.95
8 8 0.00 - 0.00 0.00- 0.00 1.53-2.54 17.86-20.68

132

Number Number Estimated Probability Confidence Interval
of PE of link (Confidence level = 95%)
Faults Faults 5x5 6x6 10 X 10 20 X 20

8 9 0.00 - 0.00 0.00 - 0.00 1.21 - 2.12 18.ia - 21.60
8 10 0.00- 0.00 0.00-0.00 0.95- 1.78 17.H5 - 20.78
8 11 0.00 - 0.00 0.00-0.00 0.98- 1.82 l6.:J:J - 19.07
s 12 0.00- 0.00 0.00- 0.00 1.12 - 2.01 lG. i2 ·- 19.·\8
8 13 0.00- 0.00 0.00- 0.00 0.81 - 1.59 l 7.01 - H). it}

8 14 0.00- 0.00 0.00-0.00 0.89- 1.71 16.85 - 1 H.62
8 15 0.00- 0.00 0.00- 0.00 1.0·1 - 1.90 1·1.66 - 17 .~8

9 0 0.00- 0.00 0.00- 0.00 0.00 - 0.26 11.5·1 - 13.9:1
9 1 0.00- 0.00 0.00- 0.00 0.22 - 0. 71 11.73 ··· I ·1.1 :J
9 2 0.00- 0.00 0.00- 0.00 0.00- 0.00 11.35 - 1 :J. 72
9 3 0.00- 0.00 0.00- 0.00 O.:J8 - 0.96 11 .5·1 - I :U):J
9 4 0.00- 0.00 0.00 - 0.00 0.22-0.71 11.28- 13.65
9 5 0.00- 0.00 0.00- 0.00 0.15- 0.58 10. 10 -- 12.3()
9 6 0.00- 0.00 0.00- 0.00 0.30- 0.8'\ I O.Ba - 1 :t27
9 7 0.00- 0.00 0.00- 0.00 0.25- 0.75 11.57 - 1:J.96
9 8 0.00- 0.00 0.00-0.00 0.13- O.M 1 o.o7 -· 12.aa
9 9 0.00- 0.00 0.00 - 0.00 0.10- 0.50 10.5H - 12.88
9 10 0.00- 0.00 0.00 - 0.00 0.08- 0.45 !l..t3 - I 1.6:1
9 11 0.00- 0.00 0.00- 0.00 0.08- 0..15 !}.56 - 11.7i
9 12 0.00- 0.00 0.00- 0.00 0.13- 0.54 9.59 - I 1.81
9 13 0.00- 0.00 0.00 - 0.00 0.13- O.M 9.69- 11.91
9 14 0.00- 0.00 0.00-0.00 0.00 - 0. 10 8.93- 11.07
9 15 o.oo- o.oo I o.oo- o.oo O.l7-0.6:J 9.24 - 11 .<12

10 0 0.00- 0.00 0.00- 0.00 0.00 - 0.00 6.81 - 8.72
10 1 0.00- 0.00 0.00- 0.00 0.00- 0.16 .5.68- 7.'15
10 2 0.00- 0.00 0.00- 0.00 0.00- 0.10 6.18 - 8.02
10 3 0.00- 0.00 0.00- 0.00 0.00- 0.10 6.49 ·- 8.:17
10 4 0.00- 0.00 0.00- 0.00 0.00- 0.26 6.31 - 8.16
10 5 0.00- 0.00 0.00- 0.00 0.00- 0.10 6.02- 7.84
10 6 0.00- 0.00 0.00- 0.00 0.00 - 0.26 6.02 - 7.81
10 7 0.00- 0.00 0.00- 0.00 0.03- 0.16 5.43 - 7.17
10 8 0.00- 0.00 0.00 - 0.00 0.00 - 0.00 .5.62 - 7.:18
10 9 0.00- 0.00 0.00- 0.00 0.00 - 0.00 6 . .i6 - 8.H
10 10 0.00- 0.00 0.00- 0.00 0.00- 0.00 5.37 - 7.10
10 l1 0.00 - 0.00 0.00 - 0.00 0.00- 0. 10 5.34 - 7.06
10 12 0.00- 0.00 0.00- 0.00 0.00 - 0.00 6.53 - 8.4 1
10 13 0.00- 0.00 0.00- 0.00 0.00- 0.00 5.46- 7.20
10 14 0.00- 0.00 0.00- 0.00 0.00 - 0.10 5.18 - 6.89
10 15 0.00 - 0 .00 0.00 - 0.00 0.00 - 0.00 4.81 - 6.16

133

Number Number Estimated Probability Confidence Interval
of PE of link (Confidence level = 95%)
Faults Faults 5 X .j I 6x6 10 X 10 20 X 20

11 0 0.00- 0.00 0.00- 0.00 0.00- 0.00 3.94- 5.46
1 I 1 0.00- 0.00 0.00- 0.00 0.00- 0.00 2.87- 4.19
I J 2 0.00- 0.00 0.00- 0.00 0.00- 0.00 2.51 - 3.76
11 3 0.00- 0.00 0.00- 0.00 0.00-0.00 4.13 - 5.67
1 1 4 0.00 - 0.00 0.00- 0.00 0.00 - 0.00 2.72- 4.01
1 1 5 0.00- 0.00 0.00- 0.00 0.00- 0.00 4.87-6.53 ,.
I 1 6 0.00- 0.00 0.00- 0.00 0.00-0.00 2.60-3.87
11 7 0.00- 0.00 0.00- 0.00 0.00- 0.00 3.05 - 4.41
11 8 0.00- 0.00 0.00- 0.00 0.00- 0.00 2.60- 3.87
11 9 0.00- 0.00 0.00- 0.00 0.00- 0.00 2.93- 4.27
11 10 0.00 - 0.00 0.00- 0.00 0.00- 0.00 2.96- 4.30
11 11 0.00- 0.00 0.00- 0.00 0.00- 0.00 3.05 - 4.41
(1 12 0.00 - 0.00 0.00 - 0.00 0.00- 0.00 3.21 - 4.59
11 13 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 2.69 - 3.98
11 14 0.00- 0.00 0.00- 0.00 0.00-0.00 2.06- 3.21
11 15 0.00- 0.00 0.00 - 0.00 0.00-0.00 2.03- 3.17

12 0 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 2.15 - 3.32
12 1 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 1.15 - 2.05
12 2 0.00- 0.00 0.00- 0.00 0.00- 0.00 1.15 - 2.05
12 3 0.00- 0.00 0.00- 0.00 0.00-0.00 1.09 - 1.97
~~ 4 0.00- 0.00 0.00- 0.00 0.00- 0.00 0.92 - 1.74
12 5 0.00- 0.00 0.00 - 0.00 0.00- 0.00 0.95 - 1.78
12 6 0.00 - 0.00 0.00 - 0.00 0.00-0.00 1.38- 2.35
12 7 0.00- 0.00 0.00- 0.00 0.00-0.00 1.41 - 2.39
12 8 0.00- 0.00 0.00-0.00 0.00-0.00 1.01 - 1.86
12 9 0.00 - 0.00 0.00- 0.00 0.00-0.00 1.04 - 1.90
12 10 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.84 - 1.63
12 11 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.81 - 1.59
12 12 0.00- 0.00 0.00- 0.00 0.00 - 0.00 1.01 - 1.86
l:l 13 0.00- 0.00 0.00- 0.00 0.00-0.00 0.75 - 1.51
12 14 0.00 - 0.00 0.00- 0.00 0.00- 0.00 1.24- 2.16
12 15 0.00 - 0.00 0.00 - 0.00 0.00-0.00 0.75- 1.51

13 0 0.00- 0.00 0.00 - 0.00 0.00 - 0.00 0.51 - 1.16
13 1 0.00- 0.00 0.00- 0.00 0.00- 0.00 0.48- 1.12
13 2 0.00- 0.00 0.00 - 0.00 0.00-0.00 0.62- 1.32

13 3 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.17 - 0.63
13 ·l 0.00 - 0.00 0.00- 0.00 0.00 - 0.00 0.32 - 0.88
13 5 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.53 - 1.20
13 6 0.00 - 0.00 0.00- 0.00 0.00 - 0.00 0.02 - 0.31
13 1 0.00 - 0.00 0.00 - 0.00 0.00- 0.00 0.27- 0.79
13 8 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.20- 0.67
13 9 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.43 - 1.04

134

;:

·.·
'

' •

Number Number Estimated Probability Confidence Interval
of PE of link (Confidence level = 95%)
Faults Faults 5 X 5 6x6 10 X lO 20 X 20

13 10 0.00- 0.00 0.00-0.00 0.00- 0.00 0.25- 0.75
13 11 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.40- 1.00
13 12 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.32-0.88
13 13 0.00 - 0.00 0.00-0.00 0.00- 0.00 O..l5 -· 1.08
13 14 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.48- 1.12
13 15 0.00- 0.00 0 .00- 0.00 0.00- 0.00 0.53- 1.20

14 0 0.00 - 0.00 0.00-0.00 0.00- 0.00 0.011 - 0.36
14 1 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.08- 0.'15
14 2 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.15-0.58
14 3 0.00 - 0.00 0.00-0.00 0.00-0.00 0.15 - 0 .58
14 4 0.00 - 0.00 0.00-0.00 0.00- 0.00 0.10-0.50
14 5 0.00 - 0.00 0.00- 0.00 0.00- 0.00 o.o2- o.a1
14 6 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.00- 0.00
14 7 0.00 - 0.00 0.00 - 0.00 0.00- 0.00 0.11 - o.n:J
14 8 0.00 - 0.00 0.00-0.00 0.00- 0.00 0.15-0.58
14 9 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.00- 0.00
14 10 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.011 - 0.:16
14 11 0.00 - 0.00 0.00 - 0.00 0.00- 0.00 0.08- 0..15
14 12 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.00- 0.00
14 13 0.00 - 0.00 0.00 - 0.00 0.00- 0.00 0.06- OA I
14 14 0.00 - 0.00 0.00-0.00 0.00- 0.00 0.10- 0.50
14 15 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.10-0.50

15 0 0.00- 0.00 0.00- 0.00 0.00- 0.00 o.o4 - o.:J6
15 1 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.00-0.10
15 2 0.00 ·- 0.00 0.00- 0.00 0.00- 0.00 0.00 .. 0.26
15 3 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.00 - 0.16
15 4 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.00-0. 10
15 5 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.00 - 0.10
15 6 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.00-0.16
15 7 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.00-0.10
15 8 0.00 - 0.00 0.00-0.00 0.00- 0.00 0.00- 0.26
15 9 0.00- 0.00 0.00- 0.00 0.00- 0.00 0.00 -0. 10
15 10 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.00 - o.w
15 11 0.00 - 0.00 0.00- 0.00 0.00- 0.00 0.00- 0.00
15 12 0.00 -· 0.00 0.00 - 0.00 0.00- 0.00 0.00 - 0.00
15 13 0.00 - 0.00 0.00 - 0.00 0.00- 0.00 0.00 - 0.00
15 14 0.00- 0.00 0.00- 0.00 0.00- 0.00 0.00 - 0.00

Since the probability of ,.~ccurrencc of more number of faults than lhis i!i very
small, the Table is truncated here.

135

