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ABSTRACT 

Activity budgets and energy expenditures were measured simultaneously us1ng 

doubly labeled water and activity timers on 1Q free-living Northern Gannets (Sula 

bas sa nus) rearing chicks at Funk Island, Newfoundland, in 1Q84-1Q85. Gannets 

expended a mean of 5140+777 kJ·d-1 (n=30 sample intervals), or 6.Q x basal 

metabolic rate (B:MR), about twice the level predicted from allometric equations. 

Daily energy expenditures (DEE) increased with the proportion of time spent 

away from the nest ('foraging'). Multiple regression analysis indicated a nest-site 

metabolic rate (EMR) of 112+36.5 kJ·h-1, a flying metabolic rate of 382+115 

kJ·h-1 and a surface swimming metabolic rate (including resting on water) of 

15Q+Q6.5 kJ·h-1. Time budgets were approximately evenly divided among nest 

attendance, ·swimming and flying; 1Q+8% of DEE was expended in nest 

attendance, 25+10% swimming and 56+12% flying (n=11). Study birds spent 

1Q% less time in nest attendance than control animals, and time spent resting on 

water was probably inflated due to handling. Gannets obtained a mean of 

2.5+0.7 kJ of food per kJ expended foraging. Thermoregulatory requirements 

and high costs for plunge-diving could help to explain the high energy 

expenditures. It is hypothesized that the 4 x B:MR maximum sustainable level of 

energy expenditure for free-living animals may actually be closer to 4 x standard 

metabolic rate. DEE did not differ between sexes and decreased with chick age, 

probably due to decreased foraging demands on the parents. Chick-feeding in 

gannets may be constrained by energy expenditures and/ or digestion as opposed 

to time budgets or food shortages. 
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INTRODUCTION 

Many calculations 1n ecological energetics indicate that seabirds consume 

substantial tonnages of marine prey, and that competition may exist between 

seabirds and commercial fisheries (Furness 1982, Wiens 1984). The accuracy of 

such estimates depends largely on measurements of time and energy expenditures 

and population sizes of the species modeled (Furness 1978, Wiens 1984). Nest-site 

time budgets have been studied ln many species or marine birds (reviewed by 

Dunn 1979), but there are few data on time budgets of seabirds away from 

colonies, where, until very recently, detailed meaurements were impossible (Prince 

and Francis 1984, Kooyman et al. 1983, Cairns et al. in press a). Estimates of 

energy expenditures have also tended to be inaccurate, relying on extrapolations 

of laboratory measurements to field situations (e.g. Arnason and Grant 1978, 

Furness 1982, Wiens 1984, Gaston 1985, Birt and Cairns in press). These 

laboratory data involve small sample sizes and limited numbers of species, and are 

therefore insensitive to inter- and intra-specific differences in morphology, 

behaviour, breeding requirements and environmental conditions. For example, 

high latitude (cold water) birds tend to expend much energy on thermoregulation 

(Weathers 1979, Ellis 1984), and pursuit divers, such as murres, tend to expend 

more energy than aerial foragers, such as terns (Roby and Ricklefs 1986). Very 

few studies have simultaneously measured time and energy expenditures of free

ranging seabirds (e.g. Nagy et al. 1984, Costa and Prince in press). 

Researchers have recently been enabled to study the at-sea activities of free

ranging animals through the development of self-contained, lightweight activity 

timers that continuously and cumulatively measure time spent flying and 

swimming (Kooyman et a/. 1983, Wilson and Bain 1984, Cairns et a/. in press b). 

The doubly labeled water (DLW) technique has also become widely applied to 

measure energy expenditures of free-living animals (seabird studies reviewed by 
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Ellis Hl84, Roby and Ricklefs 1986). In the present study, these two technological 

advances are integrated to investigate time and energy expenditures in a large, 

cold water, upper trophic level seabird, the Northern Gannet (Sula bassanus). 

DLW is used to measure turnover rates of carbon dioxide and water, the end

products of oxidation of body fuels. Lifson et al. (1949) demonstrated that the 

oxygen of CO
2 

is in equilibrium with the oxygen of body water through atomic 

exchange with carbonic acid: 

(1) 

If water labeled with oxygen-J--- e8o) and either tritium or deuterium (*H) IS 

introduced into an animal's body, 180 will equilibrate with metabolic C02 and 

leave the body as both C 1800 and H2
18o, whereas *H will leave the body only as 

*HHO. The difference in turnover rates of these 2 isotopes is therefore equal to 

the rate of C02 production. If the proportion of lipid, protein and carbohydrate 

in the diet is known, the rate of C02 production can be directly equated to energy 

expenditure. The DLW technique has been tested on a variety of vertebrates and 

found to yield energy estimates within 8% of values determined by respirometry 

(Lifson et al. 1955, McClintock and Lifson 1958a, b, Lee and Lifson 1960, 

LeFebvre 1964, Lifson and McClintock 1966, Little and Lifson 1975, Nagy 1Q80). 

Northern Gannets are aerially foraging seabirds that feed on large, surface

schooling fish, such as mackerel (Scomber scombrus), and squid (fllex spp., Nelson 

1978, Montevecchi et al. 1984), and nest in large colonies. One egg is produced per 

pair, and chicks are brooded/guarded and fed by both parents until fledging at 13 

weeks (Kirkham 1980, Montevecchi and Porter 1980). Parental investment 

hypotheses concerning monogamous birds predict that males and females should 

expend equal amounts of energy on offspring (Trivers 1972), but previous activity 

studies on gannets indicate that relative expenditures vary at different stages of 

the breeding cycle, and that, overall, males may invest more than females 

(Montevecchi and Porter 1Q80, Montevecchi and Kirkham 1Q81, Montevecchi et 

al. 1Q84). Twinning experiments also indicate that Northern Gannets can 

successfully fledge 2 chicks (Nelson 1964). 
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In the present study, data from DLW, electronic activity timers (Cairns et a/. in 

press b), closed-chamber respirometers (Ricklefs et a/. 1Q84) and nest watches are 

integrated to investigate time and energy expenditures of a large number of 

breeding Northern Gannets. The major objectives of the study are 1) to determine 

activity-specific energy expenditures during flying, surface swimming and nest 

attendance; 2) to compare energy expenditures of males and females during chick

rearing; and 3) to compare time/energy budgets of gannets with other seabirds 

and with allometric equations from the literature to gain insight into factors 

limiting parental care. 
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Doubly Labeled Water 
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METHODS 

Energy expenditures were measured using DLW at Funk Island, Newfoundland 

(49°46' N, 53°11' W , 6075 site-holding pairs, D.N. Nettleship and G . Chapdelaine 

unpubl. data) on 10 breeding gannets from 10-17 August 1984 and on 30 gannets 

(10/wk) from 23 August-9 September 1985. Birds were caught either by hand at 

night using bright lights, or with a leg-hook and movable blind during the day. 

Birds were given pectoral injections of 1.02 mL of 3Irn180 containing about 95 

atom% 180 and 2.9 mCi·mL-1 3H (1984), or .93 mL 3Irn180 containing about 95 

atom% 180 and 1.7 mCi·mL-1 3H (1985). Gannets were held in canvas bags for 4 

h to allow the DLW to spread throughout the body, and then were bled from a 

brachial vein (3-10 mL), weighed, banded, given individual head markings with 

colored airplane dope and released. Birds were recaught up to 3 times between 1 

and 7 days after injection and were bled and weighed again. Blood samples were 

kept cold in the field by storage in seawater (,...__,5°C, 1984) or dry ice ( -70°C, 

1985). 

Blood samples were vacuum distilled (Wood et a/. 1975) and 2 or 3 100 ILL 

aliquots of water (10 ILL in 1984) transfered to 10 mL scintillation fluid for tritium 

analysis in a Beckman LS7500 scintillation counter. One to 4 mL C0
2 

were added 

to the remaining water (generally 1-2 mL) and the oxygen isotopes allowed to 

equilibrate between the water and C0
2 

in a shaking water bath at 25°C for 

42-46 h (Eq. 1). The C0
2 

was then isolated and the 180 fraction measured in a 

Micromass 203E mass spectrometer, with output in 8 values (ppt, 8 180 = 
1000·[(R 1 /R t d d)-1], where R = 180/160). 8 values were corrected for samp e s an ar 

fractionation during equilibration in the water bath ( -40.5 ppt at 25°C) and 

converted to atom % using the equation 
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atom% = 100 (.0019974 [(8 I 1000) + 1] 
1 + .oo19974 [(8 1 1ooo) + 11 

(2) 

(derived from Hayes 1982). Background isotope levels were measured on 1 bird in 

1984 and 5 in 1985. Standards were prepared by diluting 10.0 J.LL 3Ini18o in 20.0 

mL distilled water, and were analyzed in triplicate. 

Average daily metabolic rate (ADMR, mL C0
2
·g-1d-1) was calculated for each 

bird for the interval between successive captures assuming that changes in body 

water between captures were small (Nagy 1980): 

ADMR = 25.93 W ln(01H2I02H 1) 

M. t 
(3) 

where 25.93 converts days to hours and mL H20 to mL C02 at standard 

temperature and pressure (STP, 0°C and 1 atm), W is total body water (mL), 0
1 

and 0 2 are initial and final 180 fractions corrected for background (atom % 

excess), H 1 and H2 are initial and final 3H activities corrected for background 

( dpm), M is minimum body mass (g), and t is time between blood samples (d). 

Differences in body mass on successive weighings were assumed to be due to the 

presence of unassimilated fish in the gut (see Discussion), so minimum body mass 

was taken as the best estimate of true mass. Total body water was estimated from 

H2
180 dilution space; i.e. from the fractional dilution of the injection solution in 

the initial sample of body water: 

W = (05 - 0 0 )(V0 /V5)(V1) 

(Oo- OB) 

(4) 

where 0 5, 0 0 , 0 0 and OB are 180 fractions in the standard, distilled water, body 

water following injection and background water samples, V 0 is the volume of 

distilled water in the standard, V s is the volume of H2
180 in the standard, and V1 

is the volume of 3Ini180 injected into the bird (Nagy 1983). 

Conversion of ADMR to daily energy expenditure (DEE, kJ·d-1) depends on the 
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lipid, protein and carbohydrate composition of the diet (Table 1). Gannet diets 

vary both seasonally and annually depending on relative abundances of mackerel, 

capelin (Mallotus villosus), herring (Clupea harengus), Atlantic saury 

( Scomberesox saurus ), sanc;lance (Ammodytes hexapterus) and short-finned squid 

(flex illecebrosus, Kirkham et al. 1985). Samples of regurgitated food were 

collected from gannets E.t Funk Island at the time of heavy water studies in both 

years and the percentage by mass of different fish species estimated (Table 2). 

The nutrient compostion of each fish species was obtained from Montevecchi et al. 

(1984). It was assumed that assimilation efficiencies were the same for all 

nutrients. A conversion factor of 0.02609 kJ·mL co2-
1 was used for birds in 1984 

and 0.02615 kJ·mL co2-l in 1985. 

Measurements of energy expenditures using low 180 enrichments, such as in this 

study, are highly sensitive to errors in background 180 readings and may become 

artificially elevated as body water turns over and final 180 fractions approach 

background (Nagy 1983, Roby and Ricklefs 1986). To correct for this source of 

error, the number of half-lives of body water between injection and final capture 

(H) was calculated for each bird and regressed against AD:MR. Sample intervals 

involving large H's were successively eliminated until AD:MR became independent 

of H (p > .25, see also Roby and Ricklefs 1986). These data points were excluded 

from further analyses. 

Res pi rome try 

Oxygen consumption was measured volumetrically in 1986 on 4 non-labeled 

breeding gannets at Funk Island and 6 at Cape St. Mary's, Newfoundland 

(46°50'N, 54°10'W, 5085 site-holding pairs, D.N. Nettleship and G. Chapdelaine 

unpubl. data). Gannets were caught at night and placed in large (62 L) air-tight 

barrels which contained a layer of Drierite and soda lime to absorb H20 and C02, 

respectively. Birds were left in the dark for 30 min or until quiet before barrels 

were connected to a Yellow Springs Instrument thermister and a water-filled 



7 

Table 1: Conversion factorsA used in calculating daily energy expenditures 

and energy intake for Northern Gannets at Funk Island, including J·mL 

co2- 1, kJ·g dry matter-1 and mL metabolic H20·g dry matter-1 for protein, 

lipid and carbohydrate. 

CONVERSION 

J. mL co - 1 
2 

kJ·g dry matter- 1 

A) From Nagy 1983. 

PROTEIN 

24.8 

17.8 

.392 

FACTOR 

LIPID CARBOHYDRATE 

27.7 20.8 

39.3 17.6 

1.07 .666 
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Table 2: Percent by mass of prey species in regurgitated food collected from 

Funk Island gannets in August 1Q84 and September 1Q85, and organic 

compositions of prey. 

FISH SPECIES 

1984 1986 H
2

0 PROTEIN LIPID CARBOHYDRATEc 

Mackerel 23 27 62.3 16.2 18.6 0.9 

Capel in 2 0 78.4 14.9 3.3 1.4 

Sandlance 0 2 63.6 19.6 8.9 0.8 

Atlantic Saury 72 67 70.1 19.6 7.6 1.2 

Herring 3 4 62.9 20.0 13.6 0.9° 

TOTAL 

1984 68.3 18.7 10.2 1.1 

1986 67.6 18.7 10.8 1.1 

A) Montevecchi unpubl. data. 
B) Montevecchi et al. 1984. 
C) 100 - IH 2 0 - lprotein - llipid - lash. 

D) not available - value for mackerel. 
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manometer (Ricklefs et al. 1984). Temperature and pressure readings were taken 

for 8 to 15 min. Assuming that all water vapor and C02 were absorbed by the 

Drierite and soda lime, the change in air pressure in the barrels was converted to 

0
2 

uptake at STP using the equation 

mL 0 2 = 273 P {61670 - V) {5) 
d 1033 t T 

where 273 is 0°C on the Kelvin scale, 1033 is mean sea level air pressure (em 

water), P is the change in air pressure in the barrel (em water in the manometer), 

61670 is the volume of the chamber (mL air), V is body volume (mL), t is trial 

duration (d) and T is mean chamber temperature (°K, Ricklefs et al. 1984). Body 

volume was estimated from body mass assuming a body density of 1 g·rnL-1, and 

0 2 uptake was converted to kJ using a factor of 0.0201 kJ·mL o2-1 (Dawson 

197 4). Because birds were in the rest (nocturnal) phase of their daily cycle, 

inactive, thermoneutral (16-21°C) and approaching a post-absorptive state {3-8 

h since dusk and last possible feeding), this measurement was used as an estimate 

of basal metabolic rate (B:MR). 

Activity Budgets 

Continuous dawn-to-dusk nest-watches were carried out on all birds injected 

with DLW to record arrival and departure times. The times of day when gannets 

first began flying at the colony in the morning and stopped flying in the evening 

were recorded, and, because gannets do not fly at night (Nelson 1978, pers. obs. ), 

the interval between was used as an estimate of available foraging time. This 

period varied by up to 2 h according to date, cloud cover, moonlight and wind. 

The activities of gannets away from the nest include flying, diving, surface 

swimming (including sitting on water) and sitting on land. Diving comprises a 

small fraction of a gannet's foraging time (Nelson 1978) and, due to their strong 

nest tenacity, breeding gannets are not thought to spend significant amounts of 

time on land away from their nests (Nelson, 1978). The amount of time that 
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gannets are neither at the nest nor swimming may therefore be assumed to be 

spent flying. Specially devised timers which cumulatively record time spent on 

water (Cairns et al. in press b) were attached to the legs of study gannets in 1985. 

'Complete' activity budgets, including nest attendance, surface swimming and 

flying, were obtained by combining data from timers and nest watches. 

Foraging Efficiencies 

Data on time and energy expenditures of individual gannets can be used to 

calculate foraging efficiencies. Gross foraging efficiency (FEG) is the amount of 

energy acquired per unit energy expended foraging (daylight time away from the 

nest). Assuming that 1) gannets balance their daily budgets and 2} males and 

females each provide half the daily energy requirements of the chick (Montevecchi 

and Porter 1980), then 

FEG = EA = (DEEA/.80) + 0.5 (DEEc/.76) 

EE E ·D D a 

(6) 

where EA and EE are energy acquired and energy expended during foraging 

(kJ·d-1), DEE A is adult DEE (kJ·d-1), .80 is adult assimilation efficiency (Ricklefs 

1974), DEEc is chick DEE (kJ·d-1, derived from Montevecchi et al. 1984), .76 is 

chick assimilation efficiency (Montevecchi et al. 1984), E 0 is foraging metabolic 

rate (kJ·h-1), and Dais daylight time away from the nest (h·d-1). 

Daylight time away, and therefore FEG, includes both surface sw1mm1ng and 

flying; net foraging efficiency (FEN) involves energy expended in flight only: 

(7) 

where EF is flying metabolic rate (kJ·h-1) and TF is time spent in flight (h·d-1). 
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Energy Expenditures and Reproduction 

Gannets were sexed according to head coloration and behavioural characteristics 

(Nelson 1978). Wing lengths (wrist joint to tip of longest primary) and body 

masses were measured on chicks of study birds after final capture. Chick age (d) 

was calculated from winglength (em) using Kirkham and Montevecchi's (1982) 

equation: 

Age = 3.969 + 1.805 Winglength (8) 

Twinning experiment 

An additional egg or chick was added to each of 6 nests at Funk Island on 22 

August 1985 to produce 1 nest with 2 eggs, 1 with 2 hatchlings, 1 with 2 1-week 

old chicks, 2 with 2 2-week old chicks, and 1 with 2 3-week old chicks. On 28 

August, 2 additional nests were created with 2 2-week old chicks and 2 3-week old 

chicks. Adults were given 1 to 2 weeks to adjust to these changes before energy 

expenditures were measured. 

Evaluation of the DLW Procedure 

The accuracy of the DLW technique has been verified by several researchers 

(Lifson et al. 1955, McClintock and Lifson 1958a, b, Lee and Lifson 1960, 

LeFebvre 1964, Lifson and McClintock 1966, Little and Lifson 1975, Nagy 1980). 

To determine the precision of the laboratory assays, 3H activities and 180 

fractions were measured in duplicate or triplicate on 13 blood and water samples 

ranging from 0.20614 to 0.25471 atom %. 180 fractions were also measured on 6 

fractional dilutions of 0.5202 atom % H2
180 in distilled water (0:5, 1:4, 2:3, 3:2, 

4:1 and 5:0) to check the calibration of the mass spectrometer at high 

enrichments. As a further check on 180 readings, percent body water (as 

estimated from 180 dilution space) was calculated and compared with values 

obtained by other researchers: 
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Water turnover rates 
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Water turnover rates (WTO, mL·kg-l.d-1), measured by the rate of depletion of 

hydrogen isotopes only, can be used to calculate total energy intake of an animal 

if the energy:water ratio of the diet is known. WTO of gannets on Funk Island 

were calculated using Nagy and Costa's (1Q80) equation for animals with constant 

body water: 

WTO = 1000 W In (H1/H2) 

M · t 

(10) 

where 1000 converts g to kg. The amount of energy ingested per mL H20 turned 

over depends on the nutrient and water compositions of the diet. The nutrient 

composition of the gannets' diet was determined from the proportion by mass of 

fish in the diet and nutritional data for each species. Total water content was 

calculated as the sum of preformed water and metabolic water formed on 

catabolism of the dry matter (Davis et al. 1Q83). A conversion factor of Q.OO 

kJ·mL H
2
o-l was used for the 1Q84 ~iet and Q.30 kJ·mL H2o-l for the 1Q85 diet 

(Tables 1, 2). 

Statistics 

Statistical tests were run using SPSSX and Minitab statistical packages and are 

described as they are used. Means are reported + 1 standard deviation. 
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RESULTS 

Energy Expenditures 

Eight of 10 study gannets were recaptured a total of 9 times in 1984, and 22 of 

30 birds were recaught 37 times in 1985. ADMR for all sample intervals was 

correlated with both final 180 fraction (r=- .49, n=46, p < .001) and number of 

half-lives of body water between injection and final capture (Appendix A, Fig. 1, 

r=.68, n=46, p< .001, see also Roby and Ricklefs 1986). After samples for which 

more than 4.0 biological half-lives of H20 had elapsed were discarded (5 in 1984 

and 11 in 1985), ADMR was independent of final 180 fraction (r=.11, n=30, 

p=.29). E-1ergy expenditures of the remaining 19 gannets (n=30 sample intervals) 

averaged 2.83+.42 mL C02·g-l.d-1 or 5140+777 kJ·d-1 and were highly variable, 

ranging from 1.70 mL co2·g-1d-1 or 3542 kJ·d-1 to 3.77 mL co2·g-1d-1 or 6960 

kJ·d-1 (Appendix B). Minimum body masses averaged 3.11+.23 kg (n=19). 

Basal metabolic rate 

BMR's of gannets at Cape St. Mary's and Funk Island were not statistically 

different (t=1.95, n=lO, p=.09) and averaged 696+127 kJ·d-1 (range=525-984 

kJ·d-1). Masses of study birds averaged 3.03+.14 kg. 

Simultaneous Time and Energy Budgets 

Overall, gannets spent a mean of 9.3+3.0 h in nest attendance (39+13% total 

time, N=25), 14.7+3.0 total h·d-1 away from the nest (61+13% total time) and 

9.6+2.2 daylight h·d-1 away ('foraging', 40+9% total time). DEE tended to 

increase with total time away from the nest {r=.26, n=25, p=.11), and increased 

significantly with daylight time away (D , h·d-1, Fig. 2, DEE = 4060 + 109 D , a a 

r=.35, n=25, p=.042). The y intercept of this equation (4060+596 kJ·d-1 or 

169+24.8 kJ·h-1
) is the predicted metabolic rate of a 'non-foraging' bird, and the 

slope {109+60.4 kJ·h-1) represents the cost of foraging. If the cost of foraging is 



Fig. 1 Average daily metabolic rates (ADMR, mL C0
2
·g-1d-1) and daily energy 

expenditures (DEE, kJ·d-1) of gannets as a function of number of half-lives 

of body water between injection and final capture (H). 
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assumed to be additive to non-foraging metabolism (Flint and Nagy 1984, Nagy et 

al. 1984, Tatner and Bryant 1986), then foraging metabolism is 278+85.2 kJ·h-1. 

These 25 gannets therefore expended a mean of 2672+618 kJ·d-1 or 53+12% of 

their daily energy budget in foraging (Table 3). 

'Complete' time and energy budgets were obtained for 11 gannets in 1985. 

These birds spent a mean of 8.6+2.9 h·d-1 in nest attendance {36+12% of total 

time), 7.9+2.7 h·d-1 surface swimming (including sitting on water, 33+11% of 

total time) and 7.5+2.1 h·d-1 flying (31+9% of total time). Time spent flying 

accounted for 57% of variability in DEE (Fig. 3, r=.75, n=11, p<.008); flying 

and swimming together accounted for 60% of variability in DEE (r=.77, n=11, 

p=.027, DEE= 2694 + 270 TF + 47.1 T 5, where TF is time flying and T 5 is 

time swimming in h·d-1). The y intercept (2694+877 kJ·d-1 or 112 +36.5 kJ·h-1, 

Table 3) is the predicted metabolic rate of a bird at the nest site (0 time flying, 0 

time swimming) and may be considered to be an approximation of existence 

metabolic rate (EMR, the metabolic rate of a caged bird, including costs of 

digestion, thermoregulation and limited activity, Kendeigh 1970), although the 

nest site metabolic rate also includes costs of nest defense and other activities. U 

the costs of flying {270+78.6 kJ·h-1) and swimming (47.1+60.0 kJ·h-1) are each 

assumed to be additive to EMR (Flint and Nagy 1984, Nagy et al. 1984, Tatner 

and Bryant 1986), then flight metaboiism is estimated to be 382+115 kJ·h-1 and 

swimming metabolism, 159+96.5 kJ·h-1 (Table 3). These 11 gannets therefore 

expended a mean of 19+8% of their daily energy budget in nest attendance, 

25+ 10% swimming and 56+ 12% flying. 

Foraging Emeieneies 

Gross foraging efficiency of study gannets averaged 3.04+.84 (n=22) and was 

highly variable both between and within individuals (Appendix B), ranging from 

1.9 to 5.5. Efficiency did not differ between sexes or years (t-test, p > .10) but 

increased with adult mass (r==.38, n=22, p==.039), chick age (r=.50, n=22, 

p=.009) and chick mass (r=.46, n=21, p=.02). 



Fig. 2 Daily energy expenditures (DEE, kJ·d-1) of gannets as a function of daylight 

time spent away from the nest (Da, h·d-1). 
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Table 3 Estimates of activity-specific metabolic rates, including nest 

attendance, flying, surface swimmin~ and foraging!3, for gannets breeding on 

Funk Island in 1Q85. 

ACTIVITY N METABOLIC RATE 

xBMRC xSMR0 xEMRE 

NEST ATTENDANCE 11 112 3.6 1 . 9 1.0 

FLYING 11 382 12.3 6.6 3.4 

SURFACE SWIMMINGA 11 169 6.1 2.7 1.4 

CFORAGING· 8 26 278 9.0 4.7 2.6 

TOTAL 11 212 6.8 3.6 1.9 

A) including sitting on water . 

B) daylight time away from the nest. 

C) 31.0 kJ·h- 1 (Lasiewski and Dawson 1967). 

D) 68.9 kJ·h- 1 (1.9 x BMR. Johnson and West 1976. Ricklefs and 
Mathews 1983. Roby and Ricklefs 1986). 

E) 112 kJ·d- 1 (nest-site metabolic rate). 



Fig. 3 Daily energy expenditures (DEE, kJ·d-1) of gannets as a function of time 

spent in flight (T F' h·d-1 ). 
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Net foraging efficiency of the 11 gannets for which simultaneous time and 

energy budgets were known averaged 2.6+.47 (range=l.9-3.6) and was not 

significantly different from FE0 (t-test for paired observations, n=11, p=.45). 

Energy Expenditures and Reproduction 

Male and female gannets did not differ in ADMR, DEE, total time away from 

the nest or daylight time away ('foraging time', t-tests, p > .10). DEE for both 

sexes decreased significantly with chick age (Fig. 4, r=-.37, n=26, p=.032) and 

chick mass (r=-.46, n=24, p=.012). These relationships appeared to be linear, 

and the regression slopes of the sexes did not differ. Daylight time away for both 

sexes tended to decrease with chick age, although this trend was not significant 

(r=-.33, n=22, p=.067). 

Twinning experiment 

Three adults from 2 experimentally twinned nests were injected with DLW but 

only 1 gannet was recaptured. This bird had 2 2-3 week old chicks and was 

found to expend 2.81 mL co2·g-l.d-1 or 5523 kJ·d-1. It spent 14.5 total h·d-1 and 

8.0 dayiight h·d-1 away from the nest and had an FE0 of 3.10. These values are 

within the ranges for other gannets with small chicks. 



Fig. 4 Daily energy expenditures (DEE, kJ·d-1) of gannets as a 

function of chick age (wk). Broken lines connect data points for 

the same adult. 
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DISCUSSION 

Aetivity-Speeine Energy Expenditures 

ADMR and DEE of gannets at Funk Island were high compared to other 

seabirds studied with tritiated or doubly labeled water (Table 4, Fig. 5). Many 

equations are available in the literature for estimating activity-specific energy 

expenditures of free-living birds, and estimates for basal, standard, existence, 

surface swimming, flying a.nd daily metabolic rates of gannets are compared with 

observed values in T&.ble 5. Table 6 summarizes measurements of activity-specific 

energy expenditures on various seabirds. 

Basal metabolic rate (BMR) 

There was generally close agreement between measured BMR and values 

predicted by allometric equations, although BMR was low compared to some 

estimates and to some other seabirds (Tables 5, 6). 

Existence metabolic rate (EMR) 

EMR of gannets at Funk Island was 2 x higher than Kendeigh et al. 's (1977) 

prediction of 1262-1318 kJ·d-1 for a 3.11 kg bird at 5-10°C during summer 

(Table 5). This discrepancy may be due in part to thermoregulatory costs 

additional to those for low temperatures alone. The weather at Funk Island in late 

August and September is wet, cloudy and windy, and these three factors all incur 

energy costs (Ricklefs 197 4). The frequent, energetically-expensive aggressive 

activities of nesting gannets could also raise estimates of EMR (Nelson 1978). 

Davis et al. (1983) found that metabolic rates of Macaroni Penguins (Eudyptes 

chrysolophus) brooding chicks at South Georgia were 1.2 x higher than predicted, 

and they suggested that this was due to climate and/or aggressive activity. 
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Table 4 Masses, water turnover rates (WTO), average daily metabolic rates (ADMR) and daily energy expenditures 

(DEE) or seabirds studied with tritiated and doubly labeled water. See Appendix C for scientific names. 

SPECIES I MASS 

Gentoo Penguin 6 8200 
Kine Penguin 3 13000 
Macaroni Penguin 3 3800 
Little Penguinc 4 108i 
Jackae• Penguin 10 3170 
Grey-Headed 

Albatro••c 8 3707 
lander1nJ 

Albatro•• g 8417 
ledge-Tailed 

Shearwater 10 384 
lil•on•• 

Sto~Petrel 13 
Leach•• 

Sto~Petrel 6 
South Georgia 

DiTing Petrel 10 
Co.-on DiTing 

P.trel 13 
Jorthera Gaaaet 30 
Sooty Ternc 6 
Brown loddy 9 
Co.-on Murre 4 
Thick-Billed 

Murre 6 
Black Guillemot 8 
Lea•t Auklet 24 

A) M•a•ured Talu•• 

42 

46 

117 
3110 

187 
- 1i6 

834 
420 

84 

166 
usg 
184 

82 
91 

181 

616 

888 
168 

442 

874 

B) La•hw•ki and Daw•on (19&7) prediction. 
C) Mean of at-••• and ne•t-•ite ratee. 

ADWR 

0 . 88 

2 . 48 

&.12 

4.4& 

8.63 

1.14 
2.83 
2.12 
2 . 81 
3.18 

2 . 75 
2 . 37 
&.&9 

3800 
8320 
2830 

798 
1940 

1726 

3364 

814 

DEE 

1.7 

1.8 

4.8 

123 2.8 

484 4.2 

667 4.1 
6140 7.4 

241 2.1 
362 6.2 

178i 3.0 

1420° 2 . 3 
818° 
368 3 . 1 

o> DEE= aL co 2 · 1 - 1 ·:~~.- 1 x 24 :~~. · d- 1 x o . 0268 tJ ·aL co 2 -
1 x M. 

E) Cited ia Roby and Rictlefe (198&) . 

3 . 1 D&Ti8 et al. 1983 
3. 0 Kooyau et al. 1982 
3.4 OaTh et al. 1983 
2.1 Co•ta etal. 198& 
2.8 lacY et al. 1984 

2.0 Co•ta a Prince in pr••• 

3.7 Elli• 1984 

4.8 B. Obet unpubl . E 

3. 6 Ricklef• et al. 198& 

7 . 0 Roby a Rictlef• 1988 

1.1 8obJ a Ricthh 11M 
e.g pr .. ut etlaCly 
2.6 Fliat a •acr 1tl4 
3.6 Elli• 1984 
6.7 O.K . Cairn• unpubl. 

4.9 A. J. Gaeton unpubl.£ 
3.6 A. J. Ga•ton unpubl.£ 
8.6 Roby a Rictlefe 198& 



Fig. 6 Daily energy expenditures (DEE, kJ·d-1) of seabirds studied with tritiated 

and doubly labeled water as a function of body mass (M, kg). See Table 4 

for references. Symbols denote foraging mode: circles = pursuit-diving, 

triangles = gliding flight, squares = flapping flight. 
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Table 6 Equations for predicting activity-specific energy expenditures of birds according to body mass, estimates for 

a 3.11 leg gannet {3.03 leg for BMR and SMR estimates), and ratios of observed to predicted values (0/P). 

EQUATION UNIT OF EHERGY 0/P SPECIFICATIONS SOURCE 
WASS kJ "d- 1 

BASAL METABOLIC RATE (696 ltJ . d- 1) 
BWR = 328 .. . 723 ltg 731 1.0 Laeiewelti a Dawson 1967 
BWR = 2 . 1S .. . 717 g 674 1.0 Kendeigh 1!~69 

BWR = 308 .. . 734 kg 69S 1 . 0 night Aschoff a Pohl 1970 
BWR = 381 .. . 729 kg 864 0 . 8 day Aschoff a Pohl 1970 
BMR = 2.37 w· 728 g 811 0.9 eu.aer night Kendei&h et al. 1977 
BWR = 382 .. . 721 kg 849 0.8 seabirds Ellie 1984 
BWR = 417 .. . 804 ltg 1016 0.7 peleeanifora birds Ralul. a l'hittow 1984 
BWR = 397 .. . 744 ltg 90S 0.8 seabirds Rahn a l'hittow 1984 

STAJfDARD METABOLIC RATEA 

SWR = 14 . 0 w· 628 g 949 1.48 0°C Kend•i&h 1969 
bc· 0= 9.2 tE 903 1.38 S°C (949 - s b) 

8S7 1. 28 10°C (949 - 10 b) 
SWR 11.ow · 671 g 1069 1.S8 0°C Kendeip et al. 1977 
be = . 270 ... 673 g (26. 7) Kendeigh et al. 1977 

936 1.38 S°C (1069 - s b) 
802 1.28 10°C (1069 - 10 b) 

EXISTEMCE METABOLIC RATE (2694 ltJ. d- 1) 
EWR = 2.26 w· 766 g 980 2.7 30°C Kendei&h 1969 
EWR = 18.1 w· 630 g 128S 2.1 0°C Kendei&h 1969 
bc· 0=10.1 tE 1234 2 . 2 S°C (1286 - 6 b) 

1184 2 . 3 10°C (1286 - 10 b) 
EWR = 4 . 47 w· 554 g 932 2 . 9 30°C, eu..er Kndeigh et al. 1977 
EWR = 17 . 3 w· 644 g 1374 2 . 0 0°C, IUIIIIler Kendeigh et al. 1977 
b8 =-1.16 .. . 282 g (11.2) Kendeigh et al. 1977 

1318 2.0 6°C (1374 - 6 b) 
1262 2.1 10°C (1374 - 10 b) 

FLYING METABOLIC RATE (9168 ltJ . d- 1) 

EF 29 .S ... 73 g 10460 0.9 all birds Hart a Berger 1972 

EF 7.31 y1 . 0 

' 22726 0 . 4 at speed of lowest Tucker 1973 
cost of traneport 

EF 16.2 X BMR 10679 0 . 9 all bird• Xing 1974 

EF 31.7 .. . 5118 g 8690 1.1 for bird• < 1 ltg Kndeigh et al. Ul77 

DEE (6140 JtJ ·d- 1) 
DEE= 1329 w· 706 ltg 2957 1.7 King 1974 

DEE= 13.1 .. . 50 6 g 1700 3 . 0 laleber& 1983b 
DEE= 14 . 2 .. . 507 g 1872 2.7 aerial foragers only laleber& 1983b 
DEE= 4 X BMR 2784 1.8 Drent a Daan 1980 

A) Lower critical te~~perature = 47 . 2 w· · 1 81 = 11 °C (Kndeigh et al. 1977. W in g). 
B) SWR I BMR (aeaeured) . 
C) Teaperature coefficient= JtJ · 0 c- 1 . 
D) DeriTed froa Kendeigh'e (1969) eetiaatee for SWR at 0°C and 30°C aeeuain& a linear increase 
in aetaboliea with deer•••• in te~~perature. 
E) Te~~perature (°C) . 
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Table 8 Masses, BMR's and activity-specific energy expenditures of various seabird species. See Appendix C for 

scientific names. 

SPECIES MASS 

g 
ENERGY xBWRA SPECIFICATIONS 
Jr:J · d- 1 

Blm 
Adelie Penguin 
Lay•an Albatros• 
Southern Giant Fula&r 
BroYD Pelican 
BroYD Pelican 
Northern Gannet 

EWR 

Macaroni Penguin 
Little Pensuin 
Jaelr:a•• Penguin 
Grey-Headed 

Albatro•• 
Wandering Albatro•• 
Northern Gannet 
Sooty Tern 

FLYING liETABOLIC RATE 
Little Penguin 
Jaelr:a•• Penguin 
Grey-Headed 

Albatro•• 
Wandering Albatros• 
Northern Gannet 
Herring Gull 
Laughing Gull 
Ring-billed Gull 
Sooty Tern 

3600 
3103 
3280 
3610 
3038 
3028 

31500 
11015 
3170 

3708 
7Sl30 
3110 

188 

1200 
3170 

3707 
8417 
3110 

322 
uo 
184 

1682 
1520 

1418 
1106 

8915 
15SJI5 

1739 
151Sl 

1260 

1027 
2416 
215Sl4 

141 

878 
7430 

3132 
4690 
Sl1158 

2114 
18SJSJ 
407 

SWIMMING liETABOLIC RATE (•urfaee) 
Little Penguin 1200 15153 
Little Penguin 1200 1036 
Jaelr:a•• Penguin 3170 2921 
Peruvian Penguin 
Northern Gannet 3110 38115 

FORAGING liETABOLIC RATE 
Gentoo Penguin 
ICing Penguin 
Waearoni Penguin 
Little Pensuin 
Jaelr:a•• Penguin 
Grey-Headed 

Albatro•• 
Wandering Albatro•• 
Leach'• Stora-Petrel 
Northern Gannet 
Sooty Tern 

15200 
13000 

31500 
1072 
3170 

3707 
8417 

45 
3110 

184 

3798 
51508 
28215 

982 
49150 

2390 
3354 

123 
1515715 

340 

2 . 0 
. 8 

1 . 8 feaale 
1.4 
1.2 
1.0 

2 . 1 
1.8 
1.7 

1.2 
1.15 
3 . 15 
1.4 

2.3 
9 .8 

3 . 7 
3 . 0 

12 . 3 
3 . 1 

14 . 15 
10 . 6 
4 . 2 

1.8 
2 .8 
3 . 9 
3.2 
5 . 1 

3.1 
2 . 7 
3 . 4 
2 . 8 
15 . 15 

2 . 8 
2 . 2 
3 . 5 
Sl . O 
3 . 5 

divillg 
diving 

gliding 
gliding 

gliding 
13 • . • - 1 

•hort flight• 
flapping 

re•ting 
<. 5 • . • -1 

A) La•i•••lr:i and Oaw•on (1Sll57) prediction . 

SOURCE 

Rielr:l•f• & Wathew 1983 
Grant & lhittow 1983 
Rielr:lef• & Wathew 1Sl83 
Benedict & Fox 1927 
Ellh 1Sl84 
pr•••nt •tudy 

Dui• et a/. 1Sl83 
Co•ta eta/. 1Sl815 
lagy et a/. 1Sl84 

Croxall 1Sl82 
BroYD and Ad&a8 1Sl84 
pr•••nt •tudy 
Flint & lagy 1984 

Baudinette & Gill 1986 
Nagy eta/. 1Sl84 

Co•ta and Prine• in pr••• 
Ad&a8 et a/. 1Sl815 
pre•ent •tudy 
Baudinette a Sehaidt-Niel•en 1974 
Tuelr:er 1Sl73 
Berger et a/. 1970 
Flint & lagy 1984 

Baudinette a Gill 1985 
Baudinette a Gill 1985 
Nagy et al. 1984 
Hui 1983 in Ellis 1984 
present •tudy 

Oavi• et a/. 1Sl83 
Kooyman et a/. 1Sl82 
Oavh et a/ . 1Sl83 
Co•ta et al. 1Sl815 
lfagy et al. 1Sl84 

Co•ta and Prine• in pr••• 
Adaa~~ et al. 1Sl815 
Rielr:leh et al. 1Sl815 
pr•••nt •tudy 
Flint & lagy 1Sl84 
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Study gannets spent 39% of their time 1n nest attendance (Fig. 6, n=25), 

20-31% less than gannets rearing chicks at other North American colonies in 

previous years (Montevecchi and Porter 1980, unpubl. data). This difference 

probably resuls from disturbance. Jackass Penguins at South Africa, and Grey

headed Albatrosses (Diomedea chrysostoma) at South Georgia also spent more 

time in nest attendance than study gannets (Fig. 6, Nagy et a/. 1985, Costa and 

Prince in press). Gannets were estimated to spend 20% of their energy in nest 

attendance (Fig. 6, n=25), less than estimates of 32% for Jackass Penguins and 

29% for Grey-headed Albatrosses (Nagy et a/. 1984, Costa and Prince in press). 

Flying metabolic rate 

Gannets are capable of prolonged gliding, and consequently were expected to 

expend relatively little energy in flight (Kir~ham 1980). Flying metabolism was 

lower than predicted by several allometric equations (Table 5), but higher than 

estimates for most other seabirds (Table 6). Plunge diving may however incur 

high energy costs (Ellis 1984), and gannets use flapping flight extensively while 

travelling to and from feeding sites (Nelson 1978, pers. obs. ). 

Study gannets spent 31% of their time and 56% of their energy in flight (Fig. 6, 

n=11). Time spent in flight was similar to the amount predicted by Walsberg's 

(1983a) equation: 

% TF = 44.3 M-·603 = 35% (11) 

(M in g), and the proportion of time and energy spent in flight were also similar 

to values of 33% and 60%, respectively, for Grey-headed Albatrosses (Fig. 6, 

Costa and Prince in press). In contrast, Least Auklets were speculated to spend 

only about 5% of their time and 11% of their energy in flight, and 2 species of 

diving petrels, about 9% of their time and 19-23% of their energy in flight (Roby 

and Ricklefs 1986). 



Fig. 6 Proportions of daily time and energy budgets expended in flying or pursuit 

diving, surface swimming, nest attendance and resting on land by Northern 

Gannets, Jackass Penguins (Nagy et a/. 1Q84) and Grey-headed Albatrosses 

(Costa and Prince in press). 
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Sur face swimming metabolic rate 

Swimming metabolism of gannets was 1.4 x EMR and was higher than that of 

any other seabird studied (Table 6). Funk Island is located in the Labrador 

Current, which has surface water temperatures between 0 and 5°C in summer 

(Pickard and Emery 1982); swimming on this water would probably Increase 

thermoregulatory costs above nest-site requirements. 

Gannets spent 33% of their time swimming, requiring 25% of their energy (Fig. 

6). In contrast, Jackass Penguins spent only 10% of their time and 15% of their 

energy resting on water (Nagy et al. 1984), and Grey-headed Albatrosses spent 

18% of their time and 11% of their energy on water (Fig. 6, Costa and Prince in 

press). Much of the time gannets spent swimming probably resulted from handling 

(see below). 

Foraging metabolic rate 

Estimated foraging metabolic rate of gannets was also higher than that of any 

other seabird (Table 6), probably owing to high costs for plunge diving, flapping 

flight and surface swimming. Roby and Ricklefs (1986) proposed that aerial 

foragers would have lower DEE's than pursuit divers, a prediction that is at 

variance with the present results. Gannets spent 40% of their time and 52% of 

their energy away from the nest during the day (n=25). 

Daily energy expenditure 

The high daily energy expenditures of Funk Island gannets probably result from 

high costs for plunge diving, flapping flight and thermoregulation (see below). 

The strong correlation between time in flight and DEE (Fig. 3, r=.75, p=.004) 

indicates the importance of flight in the daily energy budget, and Roby and 

Ricklefs (1986) also suggested that the high DEE's of Least Auklets and diving 

petrels resulted partly from their foraging mode (pursuit diving). Several 
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researchers have found DEE's of seabirds at high latitudes to be 1.2 to 2 x higher 

than predicted by W alsberg's ( 1983a) equation (Table 4): e.g. Common and South 

Georgia Diving Petrels and Gentoo and King Penguins (Aptenodytes patagonica) 

at South Georgia (54°S, Kooyman et a/. 1982, Davis et a/. 1983, Roby and 

Ricklefs 1986), Least Auklets at St. George Island, Alaska (56°N, Roby and 

Ricklefs 1986), and Thick-billed Murres (Uria lomvia) and Black Guillemots 

(Cepphus grylle) at Digges Sound, Canada (62°N, A.J. Gaston unpubl. data in 

Roby and Ricklefs 1986). Birds in more temperate areas often have lower DEE's 

than predicted by Walsberg's (1983a) equation (Table 4): e.g. 0.9 x for Sooty 

Terns (Sterna paradisaea, Flint and Nagy 1984) and 0.8 x for Leach's Storm

Petrels (Oceanodroma leucorhoa, Ricklefs et a/. 1986). Kendeigh (1969) suggested 

that nonpasserines are affected by cold more than passerines, and · the white 

plumage of gannets may be an additional disadvantage in cold climates (Ellis 

1984). 

Foraging Emeieney 

The foraging efficiency of gannets at Funk Island can be roughly compared with 

estimates for other seabirds. FEG was higher than that of Jackass Penguins 

(5c=3.0 vs. 2.1), although the estimate for the penguins does not include either 

energy acquired for the chick or digestive efficiency (Nagy et a/. 1984). FE's of 

these 2 species were considerably higher than those of Little Penguins ( 1.3, Costa 

et a/. 1986), Leach's Storm-Petrels (1.4, Ricklefs et al. 1986), Grey-headed 

Albatrosses (1.4, Costa and Prince in press), Least Auklets (1.2, Roby and Ricklefs 

1986) and 2 species of diving petrels (1.3 and 1.2, Roby and Ricklefs 1986). 

Estimates for all species except gannets involve energy expended during total time 

away from the nest rather than daylight time, which may account for some of the 

differences. Except for the albatrosses, which were incubating, all these birds were 

caring for young chicks. 

An animal's foraging efficiency depends on feeding mode, individual ability and 

environmental influences. Auklets, petrels and albatrosses are lower trophic level 
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consumers than gannets and penguins, which may explain their lower FE, and 

auklets and petrels are smaller, so must balance higher energy turnovers. 

Gannets also experience little competition either from other seabirds or from 

commercial fisheries (Nelson 1978, Montevecchi unpubl. data). FE also reflects 

food needs: when needs are low birds may loaf or 'play', and their efficiency 

would therefore decline (R.E. Ricklefs, pers. comm. ). This suggests that food 

needs of study gannets were high. Gannet FE was highly variable 

(range=l.9-5.5), and this variability may reflect a large degree of plasticity in 

foraging behaviour, enabling the exploitation of ephemeral prey patches. Many 

more estimates of FE's different seabird species under varying environmental 

conditions are needed before these points can be assessed in more detail. 

Energy Expenditures and Reproduction 

There were no overall differences in parental energy expenditures between male 

and female gannets in the present study, a finding similar to Montevecchi et a/. 

(1984). Several researchers have found that chick energy requirements and 

parental energy expenditures peak simultaneously (Hails and Bryant 1979, 

Ricklefs and Williams 1984, Ricklefs et a/. 1985, Masman 1986): Montevecchi et 

al. (1984) showed that food requirements of gannet chicks are greatest around 8 

weeks post-hatch, but gannets with chicks older than 8 weeks were found both to 

expend less energy and to have higher foraging efficiencies than those with 

younger chicks (Fig. 4). Parental energy expenditures in gannets may be related 

less to the amount fed to young chicks than to the frequency of feeds. Young 

chicks are fed frequent, small meals, and, because adult gannets probably cannot 

slow their digestion, they are probably forced to make frequent foraging trips 

(Nelson 1978, Montevecchi and Porter 1980). Older chicks can consume a 600 g 

(or larger) mackerel in 1 meal and can survive off fat stores for many days, and 

parental feeds are much less frequent than for younger chicks (Montevecchi and 

Porter 1980, Montevecchi et al. 1984). In the present study, a decrease in adult 

foraging demands is suggested both by the _decrease in DEE with chick age and by 

a decrease in daylight time away with chick age, although this correlation did not 

attain statistical significance (p=.067). 
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Ricklefs (1983) proposed that the brooding stage is the most energetically 

demanding for seabirds because potential foraging time is halved. In gannets, 

parents must attend the cnick continuously until fledging, and this may impose 

strong energetic constraints throug-hout chick-rearing. The chick-rearing period is 

also shorter in gannets than in low latitude sulids (e.g. Blue-footed Boobies, Sui a 

nebouxii, Nelson 1978), possibly further increasing parental foraging demands. 

At least 3 other studies have compared energy expenditures of male and female 

birds during chick-rearing. Expenditures of female House Martins (De/ichon 

urbica) were relatively constant throughout the nestling stage whereas 

expenditures of males increased (Hails and Bryant 1979). Female European 

Kestrels (Falco tinnuncu/us) and European Starlings (Sturnus vulgaris) increased 

expenditures between incubation and fledging, whereas the energy investments of 

male European Kestrels remained fairly constant throughout the nestling stage 

(Masman 1986, Ricklefs and Williams 1984). 

Limitations on Parental Care 

Parental care, and therefore reproductive success, may be limited by 1) 

constraints on foraging time, 2) food shortages and/or' 3) metabolic limits on 

energy expenditures (Ashmole 1963, Trivers 1972, Walsberg 1983b). 1) Northern 

Gannets spend 11-15%, of their daylight time paired at the nest rather than 

foraging (Nelson 1978, Montevecchi and Porter 1980, Montevecchi unpubl. data), 

suggesting that their daily activity budgets are not tightly constrained. 2) Even if 

gannets expend twice the energy predicted by allometric equations it is unlikely 

that they would deplete local fish stocks given the seasonally high productivity of 

North Atlantic waters and the mobility of forage fish, enabling rapid renewal of 

local stocks (Ashmole 1963, Nelson 1983). 3) Because gannets are expending much 

more than the suggested maximum sustainable level of 4 x BMR, it is possible 

that they are approaching a metabolic ceiling in DEE and are forced to spend 

much time 'resting' and/or digesting rather than foraging (Diamond et al. 1986, 

Krebs and Harvey 1986). The importance of this time for resting and/or 
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digesting is further suggested by the relatively constant proportion of time mates 

spend paired between years, colonies and breeding stages (Nelson 1978, Kirkham 

1980, Montevecchi and Porter 1980, Montevecchi unpubl. data). 

Despite the high energy requirements indicated in the present study, Northern 

Gannets have been shown to be able to raise 2 chicks to fledging (Nelson 1964, 

c.f. Jarvis 197 4). The high foraging efficiencies of gannets and of Jackass 

Penguins, which generally raise 2 chicks, also supports these findings. A 

physiological limit on energy expenditures may however prevent parents from 

obtaining sufficient food for chicks to lay down the fat deposits necessary for post

fledging survival (W .A. Montevecchi unpubl. data). Heightened energy 

expenditures imposed by raising twins may also decrease adult survival, and in 

long-lived species such as gannets, adult survivorship over a breeding season is 

more important to lifetime reproductive fitness than breeding success (Ashmole 

1963, Nelson 1983). Low fledgling and adult survivorship would effectively select 

against a brood size of 2. 

Evaluation of the DL W Data 

The high metabolic rates and DEE's reported in the present study indicate 

possible problems with the DLW data. To evaluate the reliability of the results, 

several checks were run on both the laboratory procedure and the effects of 

handling on energy expenditures. 

Evaluation of the laboratory procedure 

The mass spectrometer used in the present study was standardized against 

Vienna Standard Mean Ocean Water (SMOW), Standard Light Antarctic 

Precipitation (SLAP) and National Bureau of Standards (NBS) C02 standards. 

Seawater from Logy Bay, Newfoundland, was measured to contain .1983 atom% 

H 2
18o, _which is within the range expected from geographical studies (Craig and 

Gordon 1965, J. Whelan unpubl. data). Fresh water at high latitudes is generally 
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depleted in H 2
180 compared to SMOW (.1997 atom %), and accordingly, water 

distilled from the St. John's municipal water supply was measured at .1982 atom 

% H 2
180. 180 readings for fractional dilutions of .5202 atom % H 2

18o were in 

close agreement with expected values. These results indicate that the mass 

spectrometer was correctly calibrated for measurement of 180 at the enrichments 

used in this study. Gannet blood averaged .1991 atom % H 2
180, which is within 

the range of values for other seabirds (.199-.203 atom % H 2
180, Nagy 1980, 

Costa et al. 1986, Costa and Prince in press, Ricklefs et al. 1986). Percent body 

water estimated from H 2
180 dilution space averaged 66+4.8% (n=19), and was 

similar both to estimates of 69% determined by drying (Ricklefs et al. 1984), and 

to values of 60-69% for other birds (Kooyman et al. 1982, Davis et al. 1983, 

Ricklefs and Williams 1984, Costa et a/. 1986, Masman 1986, Roby and Ricklefs 

1986). Percent body water estimated from 3llliO dilution space (67 +4.6%, n=19) 

was similar to that estimated from H 2
180 dilution space, and tritium activities in 

standards and initial blood samples were in agreement with values expected from 

quantitative dilution of the injection solutions. 

The maximum difference between H 2
180 fractions for replicate measurements 

on individual blood samples was 3.0%, and differences were generally less than 

1%. Tritium activities showed a maximum difference of 3.5% between replicate 

measurements, but when the amount of water used for analysis was increased

from 10 ttL (1984) to 100 ttL (1985), differences were generally less than 2%. 

These errors probably result from fractionation during distillation, and could alter 

energy estimates by up to 20%. 

ADMR and DEE for all samples were strongly correlated with the number of 

half-lives of body water between injection and final capture (Appendix A, Fig. 1, 

r=.68, n=46, p< .001 and r=.64, n=46, p< .001 respectively), but samples 

involving more than 4.0 half-lives were not used in analyses. Exclusion of samples 

for which more than 3.5 half-lives had elapsed (n=3) did not lower the mean 

estimate for energy expenditure (2.63+.44 mL co2·g-ld-l or 5159+794 kJ·d-1), 
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and exclusion of samples involving more than 3.0 half-lives (n=5) lowered it only 

slightly (2.62+.47 mL co2·g-1d-1 or 5134+809 kJ·d-1). 

The amount of energy released per mL C02 depends on the diet. The conversion 

factors used in the present study were derived from the organic composition of 

food samples collected at the time of DLW studies. Variations in diet produce 

only slight changes in conversion factors. For example, Nagy ( 1983) suggested a 

factor of 0.0258 kJ·mL co2-1 for piscivorous birds; use of this number decreased 

mean DEE for gannets by only 1.3%. If study gannets had not fed between 

captures and burned body fat only (0.0277 kJ·mL Co2-1), mean DEE would be 

5587+929 kJ·d-1, and if they burned only protein (0.0248 kJ·mL co2-1), mean 

DEE would be 5002+831 kJ·d-1. 

Water turnover rates 

WTO averaged 156+38.3 mL·kg-l.d-1 and was within the range of rates for 

other seabirds of similar mass (Table 4). Energy intake calculated from WTO 

averaged 4489+1082 kJ·d-1. Assuming an assimilation efficiency of .80 (Ricklefs 

197 4), metabolizable energy (:ME) calculated from WTO averaged 3590 kJ·d-1, 

29% lower than the mean estimate of DEE. This suggests that values of either 

DEE or ME are in error. It is possible that the estimates of DEE from DLW are 

inflated (Nagy 1980, K.A. Nagy and R.E. Ricklefs pers. comm.), however it is 

more likely that estimates of WTO are low because the WTO procedure involves 

more assumptions than the DLW technique (Nagy 1980, Nagy and Costa 1980). 

For example, estimates of WTO and ME would be low if there was incomplete 

isotopic equilibration of body water with gut contents, as may occur in animals 

which regurgitate food to their young. WTO and ME estimates would also be low 

if there was fractional concentration of tritium in the body, e.g. during excretion 

or respiration (Nagy and Costa 1980). 

The equations used to calculate energy expenditure and WTO in this study 

assume that total body water remains constant between captures. Nagy (1980) 
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and Nagy and Costa (1986) reported that use of an inappropriate equation may 

result in large errors in estinates of WTO, but only small errors in estimates of 

energy expenditures. The decrease in body masses of many study gannets (up to 

470g) may have involved a decrease in total body water. For example, Davis et al. 

{1983) found that total body water of 1 Gentoo Penguin (Pygoscelis papua) 

decreased by 6% over a 15% drop in body mass. Such a change may result from 

the presence of unassimilated food in the gut. Nagy (1980) and Nagy and Costa 

( 1980) provide equations for calculating energy expenditures and WTO assuming 

that body water changes linearly between captures as a constant proportion of 

body mass. Use of these equations resulted in a small decrease in estimates of 

DEE (x=-0.8+3.5%, n=30, max.=-8.6%) and an increase in estimates of 

WTO (x=5.3+3.5%, n=30, max.=73%). 

The difference between :ME and DEE in this study may also indicate that study 

gannets were in a negative energy balance (:ME-DEE, Davis et al. 1983). Nagy et 

al. {1984) also found that water turnover rates of Jackass Penguins were 13% 

below the expected rates and explained this on the basis of utilization of body fat. 

Energy balance of study gannets was positively correlated with change in mass 

between captures (Fig. 7, r=.60, n=30, p=.0005). Fat contains about 39.3 kJ·g-1 

of .energy ·(Nagy 1983), so catabolism of body fat could account for much of the 

discrepancy between DLW and WTO data. Some birds that gained mass however 

were also calculated to be in a negative energy balance (see Fig. 7). These 

discrepancies may be accounted for by (i) the presence of unassimilated food in 

the gut, (ii) use of inappropriate conversion equations, and/or (iii) erroneous 

isotope readings. 

DEE and WTO of Common Murres (Uria aalge) have also been measured using 

the same analytical procedure as in the present investigation (D.K. Cairns unpubl. 

data). Mean DEE of these birds was similar both to predicted values and to 

estimates for other seabirds of similar mass (Table 4). Energy intake of murres 

calculated from WTO was 10% higher than DEE (x=1960+168 vs. 1789+265 

kJ·d-1, n=4), indicating that these birds were approximately in energy balance. 



Fig. 7 Energy balance (ME - DEE, kJ·d-1) of gannets as a function of change in 

body mass between captures (g·d-1). 



,.... 
""' I 

~ . 

w 
w 
c 
I 
w 
~ 

500 

I 

• 
• 

-------------------------------------------------r··--·····---·-·-···------- -----------

-500 y=-1337+6.31 X 

r =.60, n=30 
P<.01 

-150 

• 
-400 -300 

• 

-200 

• • 
• 

• • 

' 
• • 

• • • 

-100 0 

Change in Mass 

• 

• • • 
• 

• 

• 

200 300 



44 

Effects of handling on behaviour and energy expenditures 

Recapture rates for gannets were as high as those for other seabird species 

studied with tritiated or doubly labeled water (Davis et a/. 1983, Costa et al. 

1986). 

Ricklefs et al. {1986) and Flint and Nagy {1984) reported that few of their study 

birds lost chicks. In the present study, 6 chicks from 40 study nests died during 

initial handling of the parent, and 2 died shortly after. (Survival of chicks after 

completion of DLW studies was not monitored.) All of these chicks were less than 

3 weeks of age and probably died from exposure. Under normal conditions, chick 

masses increase roughly linearly from hatching to 60 d and then asymptote 

(Montevecchi et al. 1984). Nelson {1964) provides an equation relating chick mass 

to age (d) for this period: 

M = -257.45 + 75.55 Age (12) 

When age-specific masses of study chicks were compared with masses predicted by 

this equation (assuming an asymptote of 4275 g, mass at day 60), there was no 

significant difference (t=.32, n=15, p=.75). 

Study gannets did not differ statistically from undisturbed gannets reanng 

chicks at Cape St. Mary's in 1985 in the frequency of changeovers in nest duties 

(t-test, p>.10, unpubl. data). Most study birds returned to nests within 24 h of 

initial handling, although 1 bird did not return for 46 h (x=14.1+12.1 h, n=28). 

On average, these gannets took longer foraging trips (x=7.8+6.6 h, n=90) than 

undisturbed gannets rearing chicks at other nests at Funk Island and Great Bird 

Rock, Quebec, in 1979 (x=6.3+0.9 h, n=451, Montevecchi and Porter 1980). 

Study gannets spent only 39+13% of daylight time (n=25) in nest attendance, 

20-31% less time than undisturbed gannets rearing chicks at other North 

American gannetries in previous years {Montevecchi and Porter 1980, unpubl. 

data). These discrepancies probably result from study gannets spending large 

amounts of time resting on water after handling. 
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To determine if handling elevated gannet energy turnovers, expenditures of 

birds which lost their chick, spent more than 65% of their time away from the 

nest, or did not return to the nest within 24 h of handling were compared with 

expenditures of less disturbed birds. Neither ADMR nor DEE (t=.61, n=30, 

p=.54 and t=.28, n=30, p=. 78 respectively) differed between these 2 groups. 

Both ADMR and DEE were independent of number of recaptures (t=l.12, n=30, 

p=.28 and t=l.35, n=30, p=.20 respectively), recapture interval (r=-.14, 

n=30, p=.23 and r=-.19, n=30, p=.16 respectively) and use of activity timers 

(t=.435, n=30, P=.67 and t=.234, n=30, P=.82 respectively). Energy 

expenditures may have been elevated by the large proportion of time spent resting 

on cold water. If study gannets had spent the same amount of time in nest 

attendance as undisturbed gannets elsewhere, and only 10% or less of. total time 

on water, and if the estimates of activity-specific metabolic rates given in Table 3 

are correct, then estimated DEE would be up to 8% lower ( 4724-4810 kJ·d-1 or 

6.3-6.5 x BMR). This estimate is still higher than for other seabirds. 

Conclusions 

DEE and activity-specific metabolic rates in different animals are often directly 

correlated with BMR (Ricklefs 1974, Kendeigh et a/. 1977, Drent and Daan 1980, 

Ellis 1984), and several researchers have suggested the existence of a maximum 

sustainable level of energy expenditure, generally around 4 x BMR (King 197 4, 

Drent and Daan 1980, Ellis 1984, Table 4). This energy maximum may be a 

result either of metabolic constraints in the ability of tissues (such as flight 

muscle) to mobilize energy reserves, or of limitations in rates of digestion and 

assimilation (Ricklefs 197 4, Walsberg 1983b, Diamond et al. 1986, Krebs and 

Harvey 1986). Animals engaging extensively in energetically expensive modes of 

transport or living in cold climates tend to have elevated DEE's (Table 4), and 

most also have have high BMR's (Weathers 1979, Hails 1983, Ellis 1984). For 

example, BMR's of Common and Thick-billed Murres in Alaska (Johnson and 

West 1975) and Least Auklets in South Georgia (Roby and Ricklefs 1986) were 1.9 

x higher than predicted by Lasiewski and Dawson's (1967) equation. Gannet BMR 
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was similar to values predicted by most allometric equations, but DEE and 

activity-specific metabolic rates expressed as multiples of BMR were all about 2 x 

higher than expected (Tables 4, 5, 6). The 4 x BMR hypothesis was derived 

largely from observations on birds living in thermoneutral environments. Unlike 

most other cold water seabirds, gannets winter at low latitudes and probably 

evolved in tropical to temperate areas (Nelson 1978), so may have retained the 

low BMR of ancestral stocks. Thermoregulatory costs would therefore be additive 

to BMR, resulting in a more flexible thermoregulatory system than in other high 

latitude seabirds. Thermoregulatory requirements at Funk Island would probably 

ratse standard metabolic rate (SMR, the metabolic rate of a resting, 

postabsorptive animal which is not necessarily in a thermoneutral environment) to 

1.5-2 x BMR (Tables 5, 6). I suggest, therefore, that DEE and activity-specific 

metabolic rates may be a function not of BMR, but of SMR under the prevailing 

weather conditions. Thermoregulation of free-ranging gannets has not been 

studied, but EMR includes thermoregulatory costs, and DEE and activity-specific 

metabolic rates expressed as multiples of EMR were similar to values found in 

other studies (Table 7). If SMR of gannets at Funk Island in late August and early 

September was 1.5 to 2 x BMR, then DEE would fall closer to the expected range 

(3.5-4.6 x). 

Future work 

Several lines of experimentation could help to explain the apparently high 

energy expenditures of Northern Gannets and the discrepancies between DLW 

and WTO results. Heart-rate telemetry could give an indication of the effect of 

dist.urbance on DEE, and SMR measurements at controlled temperatures could 

help to resolve the importance of climatic factors in raising DEE. Simultaneous 

gravimetric and isotopic measurements of energy expenditures of seabirds would 

determine the accuracy of the DLW technique. A cross-validation between our 

results and those generated by K.A. Nagy's laboratory is currently in progress. 



Table 7 Total, flying/pursuit-diving, swimming and foraging metabolic rates expressed as multiples of E"MR for 

seabirds studied with tritiated and doubly labeled water. See Appendix C for scientific names. 

SPECIES 

Macaroni Penguin 

Little Penguin 

Jackass Penguin 

Grey-Headed Albatross 

Wandering Albatross 

Northern Gannet 

Sooty Tern 

DEE FLYING/ SWIMMING FORAGING SOURCE 
DIVING 

1.6 1.6 Davis eta/. 1983 

1.3 1.4 1.1 1.6 Costa eta/. 1986 

1.6 6.9 2.3 4.0 Nagy et a/. 1984 

1.7 3.0 2.3 Croxall 1982 and 
Costa and Prince in press 

1.4 1.9 1.4 Adams eta/. 1986 and 
Brown and Adams 1984 

1.9 3.4 1.4 2.6 present study 

1.7 2.9 2.6 Flint and Nagy 1984 

.,.. 

...., 
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APPENDIX A Calculation of the half-life of body water. 

The H 2
180 and 3HHO fractions in body water decrease logarithmically as body 

water turns over. In this study, 3HHO enrichments were high enough that 

activities were well above background levels for all water samples, with the result 

that measurements of water turnover rates were reliable for all sample intervals. 

A log-log regression of H 2
180 fraction (atom % excess) vs. total water turnover 

(TWTO, mL·kg-1) for all samples gave the equation 

H 2 
180 = .0646 TWTo-·0525 

(r=-.98, n=75, p<.OOOI). The half-life (L) of body water for individual birds 

was calculated as 

L = (o1;2rlf.0525 

.0646 

where L is in mL H 20·kg-1 and 0 1 is initial 180 enrichment corrected for 

background (atom % excess). The number of half-lives of body water (H) 

between injection and final capture was calculated as 

H=TWTO 
L 
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APPENDIX B Energy expenditures and breeding parameters of Northern Gannets studied with doubly labeled 

water at Funk Island in lf)84 and If)85. ..:1T = time between captures; Mass = minimum body mass; ..:1Mass = 

change in mass between captures, %BW = % body water estimated from 3HHO and H2
180 dilution spaces; WTO = 

water turnover rate; ADMR = average daily metabolic rate; DEE = daily energy expenditure ; FE0 = gross 

foraging efficiency . 

BIRD ..:1T 

d 

1984 

WASS 

kg 

9& 1.75 2 . 95 
21 1.98 3 . 32 
24& 1 . 35 2 . 95 
24b 1.07 

1986 
2& 3.89 2.91 
3 3.87 3.02 
6& 1 . 88 2.98 
6b 2.99 

10& 1.62 2 . 90 
10b 2 .41 
13& 1 . 84 3 . 61 
13b 2.70 
13c 1.64 
14& 1.84 2 . 99 
14b 1. 70 
18& 3.63 2.79 
17& 2 . 61 3.11 
17b 3.63 
19& 2.49 3.16 
19b 2 . 97 
20& 2.60 3 . 32 
20b 1. 53 
22 3 . 47 3 . 08 
23 2.46 3.78 
24& 2.46 2 . 91 
24b 1.99 
26& 2 . 47 3.18 
25b 1.96 
27& 2 . 38 3.25 
28 4.38 3.13 

WEAll 
S.D. 
WAX. 
WIN. 

2.43 
0.84 
4.38 
1.07 

3 . 11 
0 . 23 
3.78 
2.79 

- 85 
152 

73 
-352 

-121 
-119 

69 
-137 
- 72 

48 
44 
41 

-189 
-131 
- 63 
- 46 

20 
- 46 
- 92 

20 
58 

- 48 
3 

- 16 
41 
40 
86 

-139 
34 

- 88 

- 3" 
100 

-362 
162 

71.3 
58 . 0 
70 . 5 

88.4 
71.8 
87 . 8 

74 . 3 

89.0 

87 . 8 
82.8 

88.9 

84 . 8 

80 . 5 
66 . 5 
83.3 

83.9 

86.8 
88.2 

85.3 
4.5 

74 . 3 
66.6 

75.4 
70.3 
75.9 

86.4 
89.0 
87 . 0 

84 . 7 

87.4 

88.7 
84.6 

88.8 

83 . 4 

61.4 
68 . 1 
83.8 

86 . 4 

8, . 3 
88 . 4 

56.8 
4.8 

78.4 
65.1 

rro 

157 
155 
151 
102 

174 
121 
198 
146 
179 
215 
102 
205 
117 
130 
239 
179 
170 
101 
106 
183 
11<1 
100 
186 
16" 
138 
211 
13" 
187 
172 
146 

168 
38 

239 
100 

ADWR 

2 . 71 
3.15 
2.43 
3.77 

2 . 86 
2.73 
3.27 
3.07 
3 . 08 
2 . 31 
2.12 
2.,7 
2.153 
2.28 
3 . 11 
2.68 
2.20 
2 . 46 
2.48 
2.78 
1. 70 
2 . 20 
2.37 
2 . 26 
2.46 
2 . 39 
2.36 
3.10 
2.8, 
2 . 81 

2 . 83 
0 . -'2 
3.77 
1. 70 

DEE SEX CHICK FEe 

6014 
5671 
4480 
8950 

6213 
5173 
8124 
6736 
6670 
4207 
4879 
6438 
5804 
-'284 
6831 
4687 
"29" 
"788 
4899 
6603 
3642 
4586 
4643 
6308 
4476 
4382 
4860 
6149 
6788 
6623 

6140 
777 

8980 
3642 

f 
f 

• 

f 

• 
• 
• 
• 

• 
f 
f 

• 
• 
f 
f 

• 
• 
f 

AGE 

wk 

1.7 
2 . 1 
2 . 3 

1.1 

6.2 
6.6 
9.7 
9.9 
7.6 
7.7 
1.1 
6.4 
8.7 
7.8 
7.1 
7.6 
9.0 
9.4 
9.9 

10.3 
2 . 2 
2.6 

4 . 5 
6 . 0 
e.o 
7.8 

2 . 34 
1. 98 

1. 86 

2.36 
2.21 
1.93 
3.30 
1.68 
2.,8 
2.28 
2 . 42 
2.87 
2.23 
3 . 68 

4.81 
2.14 

3 . 06 
2 . 21 
3.38 
3 . 10 

3.04 
1.88 
6.49 
0 . 84 
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APPENDIX C Scientific names of seabirds listed in tables. 

COMMON NAME 

Adelie Penguin 
Gentoo Penguin 
King Penguin 
Macaroni Penguin 
Fjordland Penguin 
Little Penguin 
Jackass Penguin 
Peruvian Penguin 
Grey-Headed Albatross 
Wandering Albatross 
Laysan Albatross 
Southern Giant Fulmar 
Wedge-Tailed Shearwater 
Wilson's Storm-Petrel 
Leach's Storm-Petrel 
South Georgia Diving Petrel 
Common Diving Petrel 
Brown Pelican 
Blue-Eyed Shag 
Herring Gull 
Laughing Gull 
Ring-Billed Gull 
Sooty Tern 
Brown Noddy 
Common Murre 
Thick-Billed Murre 
Black Guillemot 
Least Auklet 

SCIENTIFIC NAME 

Pygoscelis adeliae 
Pygoscelis papua 
Aptenodytes patagonicus 
Eudyptes chrysolophus 
Eudyptes pachyrynchus 
Eudyptula minor 
Spheniscus demersus 
Spheniscus humboldti 
Diomedea chrysostoma 
Diomedea exulans 
Diomedea immutabilis 
Macronectes giganteus 
Puffinus pacificus 
Oceanites oceanicus 
Oceanodroma leucorhoa 
Pelecanoides georgicus 
Pelecanoides urinatrix 
Pelecanus occidentalis 
Phalacrocorax atriceps 
Larus argentatus 
Larus atricilla 
Larus delawarensis 
Sterna fuscata 
Anous stolidus 
Uria aalge 
Uria lomv-ia 
Cepphus grylle 
Aethia pusilla 








