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Abstract

This “hesis presents a systematic study of the parametric identilication and
arobability description of ship roll motion. A new method for parametric identihi
cation using modulating function technique is proposed. The method provides an
casier way of solving a wide range of ship roll parametrie identification problems
mncluding parametric identification from free roll decay data, forced roll data and
randomly excited roll data. Another advantage is that it can he used to estimate
the parameters of nonlinear damping moment, nonlinear-time-dependent. restor-
ing moment and the strength of excitation from measured roll response without,
necessarily knowing the excitation. This makes the prediction of ship dynamie
stability possible because the ship roll parameters can be oblained from only the
roll response of a ship. Furthermore, the new method avoids a main souree of
computational error which results from the numerical differentiation of the mea-
siired data which is used by many current parametric identification methods, and
therelore it can produce more accurate results,

The second part of the work deals with the probability description of roll
motion. From estimated roll parameters, the joint probability distribution of roll
angle and velocity as well as probability distribution of peaks of roll motion are
derived using the Markov approxiimation.

The method has been validated by applying it to analyse several ship roll

data including the lollowing, (1) experimental roll data of four ship models; (2)



i

anerieally simulated roll data: (3) measured roll data of a full scale ship at sea.
I all the above applications, the proposed method has been found o produce
more satisfying results.

The probability distributions of the roll angle. roll velocity and peaks of roll
motion obtained by a numerical approximation also show a good agreement with
the relevant histograms of the experimental data. Al these results suggest that

the proposed method is a suceessful approach for the ship roll motion study.
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Chapter 1

Introduction

1.1 Ship Roll Motion

The study of ship motions atl sca is very importaut for ship stability and
safety.  Of all ship motions, the roll motion is the most crucial and the most
ditficult one to predict, The roll motion of a ship, in some situations, may rcach
dangerousty large amplitudes and can result in capsizing of the ship. Modern
hydrodynamic theories based on potentizl flow assnmptions can give reasonable
prediction of the ship motions with the exception of the roll motion, The roll
damping is mainly cansed by the viscosity of water which is not accounted for
in the potential flow. One way for estimating the ship roll characteristics is to
employ parametric identification m~hods. In these methods, the roll motion s
assumed to be governed by a second-order differential equation whose parameters
are to be determined. These parameters can be estimated from free roll deeay
test or, in a more resonahle way, from measured roll data of a ship traveling at
s¢a,

The main purpose of the present study is to find a method which can estimalte

roll parameters of a ship at sea. The estimation by the method shonld only
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depend on the measured roll angle records, because other information, such as
the excitation from waves, is difficult to be obtained. From the estimated roli

parameters, the ship stability can be assessed.

1.2 Parametric Identification of Ship Roll
Motion

The pioneering work of Froude [1] marked the start of ship roll parametric
estimation. Many studies followed which ranged from simple to complicated ap-
proaches and from a linear approximation to nonlinear approach. Most carly
studies were focused on the estimation of roll parameters from free roll decay
tests, which is relatively simple. The deficiency in the early work is that the pa-
rameters estimated from free roll tests in calm water may change when the ship
loading or otlier conditions change. Only in recent years, more attention is being

paid to the estimation of roll parameters from forced roll data.

1.2.1 Parametric Identification from Free Roll Decay
Data

Different methods can be used for the analysis of free roll decay test data
to estimate roll parameters. Froude [1] proposed an energy method to obtain
damping parameters by equating the energy loss of the damping to the work done
by the restoring moment. Since the estimation relies on the slope of the decay
vurve, this makes the method sensitive to the precise amplitude at the start of
the curve.

Roberts developed the Froude method to a new energy method [2], which can

handle the noulinear restoring moment terms in the roll equation. Improvements



are still needed for applying this method to the measured roll data with noise,
because it is "critically dependent on the success of the faiving process™ of the
experimental data {3].

The DEFIT method and the energy approach proposed by Bass and Haddara
[1] show an advantage, that the information of whole roll curve, not only the peak
values, can be used for the estimation. Thus the roll parameters can be estimated
from a relatively short record.

[n reference {5] (Bass and Haddara), a particular study was presented for ship
roll damping identification of some small fishing vessels, The investigations inchude
not only the roll damping but also the roll-sway coupled damping,

Onc of the main sources of error in the estimation, in many current meth-
ods, is the process of the numerical differentiation of experimental data. The
method proposed in this thesis uses numerical integration instead of numerical
differentiation to handle the roll equation, so the accuracy of the estimation can
he improved.

The analysis of the experimental roll data for three ship models by the pro-
posed method is presented in Chapter 4. Using the estimated parameters, the
linear relationship between the natural {requencies of roll mation and the values
of metacentric height as well as the relationship between maximum amplitudes of

roll angle and the damping parameters are demonstrated.

1.2.2 Parametric Identification from Forced Roll Data

Forced roll motion usually refers to the roll motion with a single sinusoidal
wave cxcitation, such as the roll motion of a ship in regular beam waves. As

mentioned before, it is not certain whether the parameters obtained frorg free roll



deeay test in ealm water can be used to provide accurate predictions of the roll
motion of a ship at sea. At least it is true, that the restoring moment of a ship at
sea will change when the ship loading changes. It is desirable to develop a method
which can estimate the ship roll parameters from the dynamic response of a ship
under certain excitation.

Sponge [3] compared three methods which are available for the analysis of
foreed roll experiments, from which the model’s nonlinear roll damping parame-
ters can be determined. The three methods are a quasi-linear method, an encrgy
method and a perturbation method. ‘The third method was found impractical.
The other two methods, which are only slightly different, produced betier results.
However, becanse hoth methods are based on the equivalent linear approxima-
tion, even for numerically simulated data, the estimation for nonlinear damping
paramieters by these methods is not accurate enough.

A method using system identification techniques was proposed by Gawthrop
et al [6]. The method can be used to estimate roll parameters from forced roll
motion, where the excitation moment is composed of some concatenated sine-
waves. It is inconvenient to apply this method to the case of roll motion with a
single sine-wave excitation such as the excitation from regular beam waves. The
reason is that the method is based on the linear estimation scheme. A single
sine-wave excitation can not provide erough information for the estimation of all
roll parameters by this scheme,

The energy method developed by Haddara (7] can also be used for the analysis
of forced roll data. An example was given for the identification of roll parameters

from numerically simulated roll data with a single sine-wave excitation.
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The method propose . by Zhang and Haddara [8] shows some advantages over
other available methods. Such as, it can be used to estimate the parameters of the
nonlinear restoring and damping moments as well as the strength and phase of the
excitation moment from measured roll response only. Moreover, the estimation
scheme allows the excitation to be a single sine-wave, a sumn of sine-waves or in
other forms. Other important improvement is on the accuracy of the estimation
due to the high efficiency of the modulating function technique.

In Chapter 3, this method has been tested by applying it to the analysis of
numerically simulated roll data and roll data measured from ship model tests in
regular beam waves. In both cases, the incthod give very good estimation of all
roll paramecters. rom the numerically simulated data, the nonlinear damping and
nonlinear-time-dependent restoring moment characteristics as well as the ampli-
tudes and phases of two sine-wave excitations are estimated at the same time with

a high accuracy.

1.2.3 Parametric Identification from Random Roll Data

It is a complicated problem to estimate the roll parameters from random roll
data. The difficulty is due to both the nonlinearitics in the roll equation and the
random excitation. Kountzeris et al [9] employed the same system identification
method used in reference [6] to solve the problem. Because the method needs
wave elevations in the vicinity of the ship as an input data for the parametric
identification, it is difficult to apply it in praclice.

Roberts [10] proposed a method based on the Markov property of the energy
envelope process to solve the same problem. In the method, white noise excitation

and light damping assumptions are used. Moreover, the energy envelope used



in the method is caleulated from the roll velocity, the accurate value of which
is very difficult to be obtained from easured roll data with noise. For some
numerically simulated roll dala, the method produced reasonable but not very
good estimation. No examples are found to apply this method to the analysis of
experimental data.

‘The randon decrement technique has been used sucessfully in the damping
identification of lincar systems. Haddara [11] developed this technique using the
concept, of Markov approximation and made it applicable to nonlincar systems
arising in the ship roll problems. The basic assumption underlying the Markov
approximation is that the dynamic system has no memory. The equation for
random decrement has the same form as the frec decay roll equation. This con-
tribution is very useful because the parametric identification from random roll
motion can be handled in the same way as the parametric identification from free
decay roll motion.

Reference [12] (Wu) presents some work of the parametric estimation from
random roll data using the random decrement technique. The white noise excita-
tiott assumption is also used. The equation for the random decrement used in the
study can be considered as the first order approximation of the random decrement
equation used in the present work.

All of the above methods work only in limited range of roll problems. No
method exists in the literature which can be used for the estimation of the roll
parameters from the roll motion of a ship in random oblique waves.

lu this thesis, an equation derived from the original roll equation is used for the

parametric identification. This equation may be an equation for autocorrelation
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of roll angle or an equation for rardom decrement of roll angle, The advantage
of this transformation is that the study of a random differentiad equation can be
shifted to the study of an ordinary differential equation without introducing any
approximation.

This method does not need the Markov approximation and the assumnption of
white noise excitation, so a more realistic narrow-band excitation is used in the
study. [13]

In Chapter 5, the method has been used for the analysis of a series of ship
roll data: the roll data of three ship models subjccted to random wave excitation,
the numerically simulated roll data with a narrow-band random excitation, and
the measured roll data of a full scale fishing vessel at sea. Both autocorrelation
equation and random decrement equation are used lor the parametric estimation,
The calcnlated results indicate that the present, method is asimple yet an efficient,

estimalion procedure.

1.3 Parametric Identification Method Using
the Modulating Function Technique

The ship roll equation is of the same form as an equation of a single input.-
output system popularly seen in automatic control engincering field. Our para-
metric identification method is also developed from a system identification method
using modulating function technique [14], which has been known for some time
in the fiel1 of automatic control engineering. This method is dusigned for the
parametric identification from a lincar system using both input and output sig-

nals. Similar to Fourier transform, it can transform a differential equation to



an algebraic eruation, so the differentiation of the measured data in the system
equation can be avoided. It also shows other merits such as linear, no iteration
and no cutoll error. In the ship roll problem, the input signal representing the
wave excitation moment is unknown, so some extensions are necded to apply this
method. The solution is Lo model the real excitation moment by a numerically
generated excitation moment with the condition that the assumed excitation mo-
ment should have a similar spectrum density distribution and strength as that of
the original excitation moment. The strength of this assumed excitation moment
is Lo be determined from the roll response data.

It is the first time, to the author’s knowledge, to introduce the system identi-
fication method using modulating function technique into the ship roll problem.
The present method is the only known method which can estimate nonlinear
damping, nonlinear-time-dependent restoring parameters and the strength of ex-
citation moment from the roll response only.

More details aboul the derivation of the method and the modulating function

technique can be found in Chapter 2.

1.4 Probability Description of Ship Roll
Motion

If the extretne values of roll angle can be predicted, many ship losses may be
avoided by taking appropriate precaution. To predict the probability distribu-
tion of roll angle, roll velocity and peaks of roll motion from the estimated roll
parameters is another part of the present study. For such a nonlinear random

vibration problem, the exact solution is only available for a limited number of



simple cases. Therefore, considerable efforts have gone into the development of
approximations and numerical methods. The most powerful method for deter-
mining the probability structure of the response of a nonlinear system is based on
the Markov approximation with the assumption that the input is a white noise.
In this case, the transition probability of the response satisfies the Fokker-Planck
equation {15]. The exact solution of this equation can be found only for a few
cases [16]. To avoid solving this equation directly, Haddara {17 has derived a set
of approximate equations for the mean and variance of roll angle and velocity.

[ this thesis, the Galerkin Method is used to solve the Fokker-Planck equation
[18]. Using estimated roll parameters, the solutions give the probability distribu-
tion of roll angle, roll velocity and peaks of roll angle. The caleulated resulls are
then compared with the analytical solutions of a special case and good agreenent
is ohserved. The calculated results are also compared with the histograms of roll
motion extracted from the experimental data of ship models and the mncasured
data of a {ull scale ship, and good agreement is also obtained.

More details about this work are presented in Chapter 6.



Chapter 2

System Identification Using the
Modulating Function Technique

2.1 Problem Formulation

The roll motion of a ship subjected to an excitation moment M({) can be

described by the following second-order ordinary differential equation:

19 +C (@) +D(e,t) = M(1) (2.1)

where [ is the virtual mass roll moment of inertia of the ship and ¢ is the roll
angle. C(¢). D(,t) are nonlinear damping and restoring moments, respectively.
A dot over the variable means the differentiation with respect to time.

The damping moment has been classically represented as follows,

C(P) = v . + Bplél (2.2)

The restoring moment. D{p, t) is usually expressed as an odd polynomial in
the angle of roll ¢(t). To include the effect of time variations in the restoring

moment caused by oblique or following waves, we write the restoring moment as:

10
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D(p.t) = (1 + 8sinfwt))(juy + pog” + pay®) (2.3)

where pty, fta, ps are linear and nonlinear coeflicients of restoration terms; § and w
are, respectively, the amplitude and frequency of the time-dependent variation in
the restoration. In this expression, the roll motion is considered to be decoupled
with other motions of the ship.

Dividing equation (2.1) by 7, the governing equation of roll motion hecomes:

&+ Bop + B1o|ol + (1 + Ssin(wt))(Aop + A1p” + Agp®) = KM (1) (2.4)

where

Bo'—" B|=

(2.5)

~i®

R T . R A
Ao—— I A|-—I A)—[ I I

-~ R

The main objective of this work is to find a method for the prediction of the
variables in equation (2.4) from the measured record of roll angle ¢(¢). Oneof the
methods that can be used for this purpose is the Energy Method [19]. However,
a major disadvantage of this method is that it depends on the calculation of the
roll velocity from the roll angle record using numerical differentiation. ‘This is
a drawback when dealing with noisy records similar to the one shown in Figure
2.1. Methods which depend on numerical integration instead of numerical differ-
entiation in the formulation of the prediction cquations usually provide superior
results. Another factor that should be observed is that the prediction equations

should provide sufficient information for the estimation of all unknown parameters
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at hand (see Gawthrop [6]). The modulating function technique discussed in the

next section has these advantages.
2.2 Modulating Function Technique

The modulating function technique is used to solve the equation of linear
systems in the realn of automatic control engincering using input and output
data [14]. In this work, it is applied to a nonlincar system. A further extension is
Lo use this technique to predict parameters from the measured output data only.
Wave clevations representing the input data, in the case of ship motion at sea, are
difficult to obtain,

Similar to Fourier and Laplace transforms, the principle of the modulating
function technique is to converl the system differential equation into a simple

algebraic equation. The modulating function operator is defined as:

Wae(t) = [ A (2.6)

where A"(t) is the modulating function and ¢(t) is the output signal of the system.
Il A™(l) is chosen to be e~™, the modulating function operation is simply
the Fourier transform. In this work, A™(t) is chosen to be the weighted Hermite

function defined as:

n dn —
e

“fe

AMl) = e~ THA(8) = (1) ) (2.7)

where H,(t) is a Hermite polynomial of order n, given as:
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I(1) = (~1)"e%’(11% =) (2.8)

Using cquation (2.7), one can show that the rth-order derivative of A" can be

expressed as:

d A ' Antr
= (=1A + (2.9)

The modulating function operation on the derivative of o(f) is given as:

de © dp . .
V(S5 = /_w Lara (2.10)
Because A™(£o0) = 0, integrating equation (2.10) by parts gives,

d 0
Va(F = [ partd = (p) (2.11)

=00

Similarly, for higher order derivatives, one has,

dr
Un(ZE) = Yase(0) (2.12)

In this way, a differential operator is converted to an algebraic operator,

Consider a linear system given by

Z Ay —m——— = Zd.'M;(l) (21")
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where M, (1) is the input to the system.
Applying madulation function operation to each side of this equation, one gets

the following algebraic equation:

L K
Y g Waga(9) = D diWa(M;(L)) (2.14)
=1

m={)

Without loss of generality, a;, can be set to unity. Letting n change from 1
to L + IV, the unknowns [ag, ay,....a,—1,d). day......dg] can be obtained from the

L 4+ I independent simultancous algebraic equations:

l.—1 Iy
Z ”m‘ym+n(‘r’) - Z di‘pn(“!i(t)) = —'\pL-HI(‘P) (2'15)
m=() =1

(n=1,2., L+K)

Inspection of equation (2.15) shows that no differentiation of the output func-
tion (t) is needed. The known coefficients in the above equations are modulating
function integrations on the recorded data.

In practice, it is impossible to get an infinite record. The finite integration
limits can be used because A™(t) approaches zero very fast as |t] increases (see

Figure 2.2). A limit T, can be given such as:

Ta
" TTT <1078 (2.16)

where m = mar[n], and n is the highest order of A™(t).

This means when T = Ty, A™(¢) will be less than 1078,
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In this work, a coordinate transformation is adopted. The modulating function

operation is defined as:

T
(o) = [ enan(nd (2.17)

doy _ [Tdp
Ua(Z2) = /0 = A ()

= T (o)) + o(T)AYTL) = @(0) A (=T) (2.18)

w22 = [T
= Tl (D) + i an(1,) - Pl
FTp(T) A (T, = (0) A (=) (2.19)
where
F=TA—T, T =i 7 T

and T is the length of the record (1).

T., T, can be chosen by the user in order Lo move the weight on o in the
integration. TFor example, in the case of free roll, the first several cycles are
considered to be more accurate, so Ty can be set to zcro and 7, = 7... This
means that the largest weight is put on the part at the beginning of the record.
(see Figure 2.3 ). If Lhe boundary values of ¢ and ¢ are unknown or unimportant,

T, and T, can be assumned equal to T\, (see Figure 2.4 ). In Lhis caye:

d
w,,(g"f) = T, Wi () (2.20)
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LA
Un(=E) = (1) Wnsa(v) (2.21)

"T'he modulating function technique has the following advantages:

I. Generalization : The method can be used to estimate parameters from
a genceral form of ship roll equation provided that the unknown parameters are
not. associated with time {. For example, if one of the terms in the equation is
Apsin(wl 4 8), Ag and & can be casily predicted using this method but prediction
of w is difficult.

2, Accuracy and Stability: because the method is based on the integration of
measured data , the results are less sensitive to the noise in the measurements or

to the errors introduced by a numerical differentiation.

2.3 Choice of Modulating Functions

I'irst, the algebraic equations for the solution of parameters must be indepen-
dent. This condition is satisfied if the modulating functions were orthogonal to
cach other,

The modulating functions A™ chosen in this work satisfy the following orthog-

onality condition:

(n=m)

(ntm %

-0

/°° e AN (D)AWL = bumV/TTn! b = { (1)

Second, if the exact values of the output data ¢(t) at the ends [0,T] of the

record can not be casily obtained, it is desirable to have the following condition:
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A"(0) = AY(T) = 0 2.23)

The present modulating function also satisfies this condition.

Other properties are also needed. For example, a function of the form

AMt) = m'n(mr;;—'; (2.2:1)

satisfies the orthogonality condition, but it is not a good choice as a maodulat-

ing function. The reason is that when n is very large this function is a highly

oscillating function, and the intcgration

T t
]0 (1) sin(nrr-,}-,)dt (2.20)

approaches zcro.

The modulating function technique has been known in the field of automatic
control engineering for some time. It is essentially used to predict the parameters
of linear systems through relating the input Lo the output of the systems. The new
approach in this work is to use this method to predict parameters in the nonlinear
roll equation using only output information. No information about the input
is needed. More details about this approach will be discussed in the following

Chapters.
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Figure 2.2: A™(t) function
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Chapter 3

Estimation of Ship Roll
Parameters from Forced Roll

Response

3.1 Method of Solution

The equation of ship roll motion in regular oblique waves can be obtained from

equation (2.4) by substituting the following expression for the exciting moment:
KM(t) = Dysin(t + 1) (3.1)

where Dy is the moment amplitude, 2, is the wave frequency of encounter and -,

is the phase of the excitation moment.

If the excitation is caused by irregular waves, the excitation moment can be

expressed approximately as:

KM(t) = i D;sin(Q:t + i) (3.2)

Substituting this expression into equation (2.4), we have

@+ Bop + Biplg] + (1 + bsin(wt))(Aop + Arg” + A2p°)
=Y Disin(Qit + &) (3.3)

1=1

20



The above equation can also be written as:

S+ Bod + Bidll + Ao + Agsin(wt)y

+ 410" + Apsin{wt)® + Aap® + Aysin(wt)®

= E[C.-sin(ﬂ.t) + Sicos(§2,¢)] (3.1)
i=1
where
Ag = Aob (3.5)
A = A8 (3.6)
Ay = A6 (3.7)
Ci = Djcos(-) (1.8)
S; = Disin(7y;) (3.9)

If all the parameters By, By, Au, A1, Az, Ao, A}, A4, C,, Si are known, a solution
of equation (3.4) yields ¢(t) for cach €; and w.

Applying the modulating function operation on equation (3.4) and letting the
order of modulating function operation n to vary from 0 to L, (where L = 2m+7),

a set of algebraic equations are obtained as:

Woar2(9) + BoWnsa () + BiWa(2101) + AoWale) + A1Va(p®) + A2V a(e’)
+AoWa(sin(wt)) + A Wa(sin(wt)p®) + AW, (sin{wl)e®)

= )_rn:[C.“IJ,.(sirz(Q.-t)) + S:¥,.(cos(%L))) (n=0,1,2..,1) (3.10)

1=0
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where

V(o) = /;cp(l n(Tul — T))dt (3.11)

Tonle) = [ AT~ T

= Tleui(9) +@(TIANT) - o(OAN=T)  (3.12)
— T
Toal?) = [ SEANTL- T

/I
= '1;2w,.+2<¢>+;§lmﬂ('zz) o AN(=T,)

dt
FTp(T) A (T) = p(0)A™ (=T,)] (3.13)
and
T.+ T,
T, =
T

Fquation (3.10) can also be written in a matrix form:

A0=B (3.14)
0 is the vector of unknown parameters given as:
0= [BOQ BI,A‘)’ Ah 1'12’7{;;;{!-171;1 Ch sy Cmv Sh"' ,Sm]T

The expressions of A, B can be found in Appendix A.
If more quations are used, that is, letting the order of modulating function
to vary from 0 to A, M is greater than (2m + 7), then the matrix A is of

( (M +1)x(L+ 1) ) order. In this case, a least squares technique can be used.
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All elements in matrix A except the second column are modulating function
integrations on the measured records. They can be calculated using any numerical
integration method, such as an ordinary Simpson numerical integration method.

The second columu is modulating function integration on the noulinear damp-
ing term, which includes the derivatives of the measured record. As mentioned
before, it is not easy to accurately calculate the derivatives from measured records
containing errors. We have successfully avoided to deal with the terms ¢, ¢ in
the roll equation. This is the only term left which includes derivatives.

Three approaches for calculating this term are discussed in the following sec-

tion.

3.2 Improvements of Solution Accuracy
3.2.1 Numerical Integration

Define a function F(t) as

F(t) = -[)t o(u)lp(u)|du + Constant (3.15)

then the modulating function operation on nonlinear damping term becomes,

H

d
[ etwmpoiaede= [F S ar(r
= F(T)A™T.) — F(0)A™(- +T/ (A (r)dt (3.16)

Un(plel)

where

r=(T.+ T2 - T,

!/T
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(1) can he calculated from the measured data in the following way.
Near the ith point of the measured data, the roll angle can be approximated

as:

@i(t) = a;t* + bt + ¢ (3.17)
Then we have

ol = .';‘ign((,.'o'-)(da?t2 + da;b;t + b7) (3.18)

[",'([) = sign(c,'o,-)(%a?ta + 2a.~b.'t2 + b?t) + Fi_y (Fo = 0) (319)

where the coefficients a;, b; can be determined from the values of ¢;_;,¥;, ¥is1-
The sign function tmeans that the expression should has the same sign as the

viriable.

Because the nth modulating function operation on a constant is equal to zero
whenn > 0 and T, = T,, we set [y to zero.
1o verify the improvement of the present modification, two expressions for

W, (Plo]), given in (3.20) and (3.21), are evaluated using order n = 1, namely

W= [ GORIA (e (3.20)

I, = F(T)AY(T.) = F(0)AY(~T,) + T, /0 TRnAY D (321)

The following two expressions for ¢(t) are used in the evaluation of the two

integrations.
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Table 3.1: Comparison of two integrations

A B
Accurate Values | 42803364 | 4.6153510
I A.2451878 | 1.607H177
{5 4.2800570 | 4.6153095
First expression (A): (1) = ¢ sin(81) (3.22)
Second expression (B): () = sin(8t) (3.23)
and
2.5
T = ;” T, =T, =6

From the discrete data, the derivatives in equation (3.20) are caleulated using
a two-point central difference formula.

Theoreticaly, the two integrations should give the same result. However, be-
cause of the difference in the numerical crror, {y gives more accurate results as
shown in Table 3.1. The “Accurate Values” in this Table are obtained by numer-
ical integration on the exact ¥(2) using very densely spaced diserete data.

The reason of this improvement is that () is the integration of nonlinear
damping while the numerical integration gencrally has higher accuracy than nu-
merical differentiation of the same discrete data. If there is noise in the (8) data,

this timprovement will be more evident,

3.2.2 A More Efficient Difference Formula

In order to climinate the random noise, a smooth-difference formula is devel-



uped.
Lotting o,(8) = a,i® + bt + ¢; at the vicinity of a point ¢;. The coeflicients
iy, by, e, can be determined from the values of (@;_9, wi_1, Wiy Pir1y Pigs) using

a least squares approach, The derivative of this function is

G,(2) = 2a;t + b; (3.24)

or
{6804, + 2l — b, — 130,y = T0;_,) 0%
i = 31041 (3.23)

Figure 3.1 shows the comparison between the derivative (dashed line) calcu-
lated using above formula and the derivative (solid line) calculated using two-point
central difference. 1L is obvious that the above formula gives more smooth and

accurate representation of digital data.
3.2.3 Linear-Angle-Dependence Nonlinear Damping

As mentioned in reference [19], there are several expressions for the nonlinear
roll damping. If a linear-angle-dependent nonlinear damping is adopted, the roll

damping is,

C($) = Bo + Bipl¢| (3.26)

Applying modulating function operation on the nonlinear damping term re-

sulls,

. ’I. )
Vallple) = [ lelpAn(r)dt



T .2
= sign(e) [ AT

= .s'iyn(k,:')(x\"(‘r,)%—l’r - -“"("ll‘v)%‘h))

. . bl 0o
+.~=1gn(np)lr‘11,,.;.,(—.—)-—) (3.27)
In this way, no derivatives of the roll angle are needed.
In our calculation, the first two approaches give similar results which are better
than the results calculated by the direct numerical differentiation method. The

third approach has not been tested yet.

3.3 Examples and Results

3.3.1 Numerically Simulated Data

The first test case is on numerically simulated data, A roll motion eqnation
(3.28) is integrated by a standard 4th-order Runge — Kutla algorithm with two

sets of given coefficients (sets A and B in table 3.2).

@ + Bop + Byl 4 (1 + Srsin(wil) + dasin{unt) Ao + Ayp™ + Ayp”)
= Disin(Qt + ) + Dasin(Qyt + 72) (3.28)

Two sets of simulated data @(2,) are plotted in Figures 3.2 and 3.3. Since the

hould have the same

time-dependent restoring moment is cansed by waves, it
frequencices as those of the waves. This is the condition in data set A, However, i
data set B, we use different values for the frequency of waves and the frequency

of the restoring moment.
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For the integration interval 7' = 10 sec. with a uniform time step At = 0.012,
X34 points of p, are obtained. From these data, the parameters are estimated
using the mentioned medhod. Table 3.2 shows the comparison between the true

values and the estimated values of these parameters. The agreement is seen to be

very good.,

3.3.2 Roll Motion in Regular Beam Waves

Fxperitnental data were obtained from ship model tests in the wave tank at
Memorial University of Newfoundland, The model used in the tests is a small
fishing vessel Model 367. Its particalars can be found in Appendix C. The model
was subjected to regular waves gencrated by a piston type generator. The waves
have o wave height of 6 emn and a frequency of 0.45 Hz,

A total of 601 data points are recorded in 10 seconds. Table 3.3 shows the

estimated parameters from the roll equation:

9+ Bog + Biglg| + Aoy + A’ = Disin(ut + 7) (3.29)

Using these parameters, the o(t) curve is reproduced by numerical integra-
tion of equation (3.29). Figure 3.4 shows a very good agreement hetween the

reproduced curve (solid line) and experimental curve (star marks).
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2: Comparison between estiinated parameters and their true values

B: 0 =20 =25 =22 =26
Para. 13 3 Ao A A, & &, Dy D, T Y2
A | Guoeen | 800100 | 0.7000 | 9.0000 | 1.0000 | 1.0000 | 0.6000 | 2.0000 | 1.0000 | 3.0000 | 0.4000 | 0.2000
A FEstio 10.0395 | 0.7002 | §.9968 | 1.0001 | 0.9915 | 0.5998 | 1.9999 | 1.0001 | 2.9999 | 0.4000 | 0.2002
7V Ghiren | 0.0500 | 0.5000 | 8.0000 { 1.0000 | 2.0000 { 0.1000 | 0.5000 | 2.0000 | 1.0000 } 0.2000 | 0.3000
1 Esti. [0.0500 1 0.5000 § 8.0001 | 1.0031 | 1.9956 | 0.1000 | 0.5001 | 2.0001 | 1.0000 | 0.1999 | 0.2998

Table 3.3:

Iistimated parameters from experimental data

By

B, Ao A, D, T

0.13718 { 0.

58831 | 9.86965 | -28.53927 | 0.27710 | 2.16352
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3.4 Discussion

The above results show that the present method gives good estimation for
hoth simulated data and experimental data. Moreover, the present cstimation
does not need a very tong record. This will lead to less computation time, which
is an important factor in an “on-line” processing program. This also means that
it can open up the possibility of continuously monitoring all relevant ship roll
parameters and displaying up-to-date information to the captain.

In a conventional way, to estimate all the parameters in the roll equation
one needs two experimental runs. In the first run, the ship is restrained while
excitation moment from waves is measured. Then the ship is set free and the
response is measured, To obtain the relation between the input and outpul, the
combined two sets of data are required. The difficulty of doing this is that it can
not. be insured that we have exactly the same condition in the two test runs. The
present method allows us to estimate all the parameters in the roll equation in

one experimental run.
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Chapter 4

Estimation of Ship Roll
Parameters from Free Roll
Decay Curves

4,1 Analysis of Free Roll Decay Data

For the parametric identification from free roll decay data, the only problen
is how to improve the accuracy of estimation. The work in this Chapler will
show the viability and accuracy of the method mentioned in Chapter 2 for the
paramctric identification using free roll decay data. Morcover, the parameters
estimated from the free roll decay data can be used as a comparison to the results
estimated from the random roll data for the same ship model. From the analysis
of experimental data, the relationship between the damping coeflicients and the
amplitude of roll motion, and the relationship between GM values (Metacentric
height ) and the linear natural frequency are obtained.

Letting the coefficients é, A in equation {2.4) be zero, Lthe governing equalion

of free roll motion can he written as:

&+ Bogp + Biglgl + Aup + M9’ + Agp® =0 (4.1)

33
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Table 4.1: Comparison between estimated and given parameters

Parame.ers By 3, Ao A Aq
(fiven 0.20000 | 0.05000 | 10.00000 | 5.00000 | 3.00000
lstimaled | 0.20002 | 0.04999 | 10.00018 | 4.99997 | 3.00030

After applying the modulating function operation to equation (4.1}, the roll

parameters can be obtained from the following algebraic equations:

Vur2(9) + BoWuri(9) + Bi¥a(@1g]) + AoWa(p) + Ar¥a(p’) + Az¥a(e”)

=) (n=0,1,2,3,1) (4.2)

4.2 Examples and Results

4.2.1 Simulated Data

From the data obtained by numerical integration on equation (4.1) with some
given parameters, the estimation of these parameters can be obtained by the
present method. Table 4.1 shows a very good agreement between the given pa-

rameters and estitmated ones.
4.2.2 Experimental Data

The experimental data is obtained from ship model tests in the way » tank at
Memorial University of Newfoundland. These tests are carried out while the ship
models have varied GM values and constant masses. The GM values are changed
by moving the position of the center of gravity. More details about the ship model
tests can be found in reference [12]. The ship models used in the tests are Model

363, 365 and 366. The information about these models is given in Appendix C.



Table 4.2: Parameters estimated for Model 363

GM | Initial Angle By 125 Ao A, Ay

3.81 5.29 0.09222 | 0.00082 | 7.95503 | -1.18495 1 -0.16614
3.381 9.10 0.10241 | 0.00704 | 8.07450 | -L.OG7G37 [ -0.185G5H
3.81 11.68 0.12617 | 0.00636 | 7.95503 1.26964 0.05040
3.81 14.48 0.16615 { 0.00734 | 8.09178 | -1.11603 | -0.044:31
3.81 17.35 0.15339 | 0.00941 | 8.19669 | -0.23513 | -0.00934
3.81 -6.20 0.07548 | 0.01254 | 7.95503 | -11.4909] 045619
3.81 -9.53 (.10630 | G.03266 | 8.07450 | -2.6:4188 | -0.10188
3.81 -11.13 0.11113 | 0.03016 | 7.988%9 | -1.15493 | -0.04385
3.81 -14.59 0.14763 | 0.00419 | 8.19669 | -1.27408 [ -0.05053
3.81 -17.26 0.15348 | 0.00104 | 8.19669 | -0.69947 | -0.02777
3.10 3.76 (.15260 | 0.01509 | 7.39584 | 18.35989 1049547
3.10 6.67 0.22587 | 0.00648 | 7.50284 | -1.24522 | -0.10821
3.10 9.67 0.27992 | 0.00728 | 7.50284 1.60828 0.139/6
3.10 12.33 0.32414 | 0.02644 | 7.61218 | -6.33183 | -0.55024
3.10 3.80 0.17117 [ 0.01801 } 7.61218 | -46.89713 | -4.07536
3.10 -4.70 0.20942 | 0.00716 [ 7.61218 | -1.17260 { -0.10190
3.10 -4.75 0.20038 | 0.00742 | 7.50284 | -9.18292 | -0.79800
3.10 -10.10 0.27492 | 0.04291 | 7.50284 | -12.48622 | -1.08505
3.10 -13.29 0.33421 | 0.03276 | 7.61318 | -3.37972 | -0.29370
3.10 -16.89 0.34245 | 0.0688! [ 7.50284 | -1.12257 | -0.09755
2.51 4.31 0.23447 | 0.00581 | 4.96678 | -83.80376 [ -12.27725
2.51 745 0.33619 | 0.00407 | 4.93466 | -9.57852 { -1.40325
2.51 9.63 0.38084 | 0.01874 | 4.86645 | -7.43730 | -1.08956
2.51 13.19 0.44143 | 0.00232 | 4.93466 | -11.51711 -1.68726
2.51 17.02 0.51126 | 0.04270 | 4.93466 | -1.84884 -0.27086
2.51 -4,52 0.23193 | 0.03935 { 4.86645 | -1.60779 | -0.67504
2.51 -7.16 0.32367 | 0.02099 | 4.86645 | -4.53098 | -0.66511
2.51 -10.30 (.41464 | 0.00376 | 4.86645 | -19.58479 | -2.86917
2.51 -13.99 0.42565 | 0.01039 | 4.93466 | -18.005H70 | -2.63784
2.51 -17.22 0.51793 | 0.03937 | 4.86645 { -6.29363 [ -0.92202




Table 4.3 Parameters estimated for Model 365: First part

(M | InitialAngle By B, Ag Ay Ay

1.31 8.73 0.17965 | 0.00283 | 12.96544 2.66977 | -0.68079
4,31 10.04 0.18785 | 0.00243 | 12.87315 0.56228 | -0.14338
4.3 11.53 0.22226 [ 0.00729 | 12.87316 8.17754 | -2.08527
4.31 13.09 (.23884 | 0.00429 | 12.87316 { -5.76293 | 1.46955
131 17.87 0.33512 ) 0.00373 | 12.87316 | 13.78113 | -3.51419
4.31 -9.02 0.19707 | 0.00229 | 13.10574 | -22.49528 | 5.73630
4.3 -11.7] 0.27018 | 0.00522 | 12.87315 2.06812 | -0.52737
1,31 -133.96 0.22018 | 0.00980 | 12.87315 | -2.94864 | 0.75190
4.31 -16.39 0.30974 [0.00939 | 12.87315 | -5.87162 | 1.49726
1.3 -20.34 0.33879 | 0.00850 | 12.87315 | -6.14638 | 1.56733
3.61 7.02 0.17658 | 0.00600 | 11.59953 | -4.89199 | 1.33062
J.61 10.42 0.221¢1 | 0.00442 | 11.59953 | -6.88459 | 1.87261
3.61 12.51 0.25527 | 0.00324 | 11.44414 1.17918 | -0.32074
3.61 15.24 0.317H64 | 0.00437 } 11.59953 | -9.15257 | 2.48950
3.61 19.30 0.30045 | 0.00936 | 11.59953 4.41370 ] -1.20053
3.61 -9.93 0.18589 [ 0.00922 | 11.40578 5.09182 | -1.38498
3.61 -13.17 0.24773 | 0.00770 | 11.40578 | -0.73706 { 0.20048
3.61 -16.44 0.33494 | 0.00486 | 11.59953 | 15.16715 | -4.12546
1.61 -19.51 0.32476 | 0.00785 | 11.40578 | -3.72252 | 1.01253
1.61 -24.81 0.37223 | 0.00891 | 11.21685 0.33544 | -0.09124
3.26 11.40 0.21760 ) 0.00375 | 10.78216 | -14.62094 | 4.13773
3.26 12.30 0.24855 | 0.00164 | 10.57424 { -3.18194 | 0.90049
3,26 15.15 0.33482 | 0.00237 | 10.57425 0.73226 | -2.75423
3.26 19.80 0.34480 | 0.00526 | 10.37231 0.96148 | -0.27210
3.26 24.06 0.38444 | 0.00513 | 10.37230 | -2.27489 | 0.64379
3.26 -10.22 0.19700 | 0.00205 | 10.57424 | -0.78272 | 0.22151
3.26 -14.99 0.30068 | 0.00530 | 10.57425 | -9.35908 | 2.64862
3.26 -16.10 0.29903 | 0.00368 | 10.57425 | -4.27038 | 1.20852
3,26 -21.39 0.35080 | ¢.00613 | 10.37231 | -0.77780 | 0.22012
126 -27.49 0.39295 | 0.00644 | 10.17610 0.83863 | -0.23733

36



Table 4.1: Parameters estimated for Model 365: Second part

GM [Hiti(ll.‘hlg[ﬂ BO B] .‘iu /h ."'_v_

r 275 Y.88 0.2036-1 1 0.00190 { S.94657 | -3.54136 | 1.08103
2.7 15.40 0.29038 | 0.00138 | §.78932 L7330 | -0.60186
2.75 15.63 0.30361 | 0.00110 | 8.94656 | -5.79450 | 1.76732
2.75 17.72 0.32438 | 0.00047 | 8.78932 {  0.56385 | -0.17197
2.75 20.01 0.37298 | 0.00952 | 8.63619 | -1.62342 1 0.19514
2.79 -1077 (.22089 | 0.00015 | 8.94657 | -6.21391 | 1.89H24
2,75 -14.08 0.25677 1 0.01781 | 894656 | -7.17006 | 218714
2,15 -19.14 0.30960 | 0.00384 | 8.78932 | -2.063G2 | 0.629:0
2.75 -21.81 0.33533 | 0.00964 | B.63619 1.06741 | -0.32556
2.75 -25.53 0.36530 | 0.00828 | 8.63G19 | -0.00293 | 0.00089
2.39 9.58 0.18264 | 0.00716 | 7.66839 | -9.52594 | 3.11.198
2.39 13.70 0.24388 | 0.00034 | 7.18229 0.40787 | -0.13:937
2.39 14.72 0.27573 | 0.00052 | 7.66839 | -21.2:3252 | 6.94303
2.39 17,51 0.28078 [ 0.04286 | 7.54365 | 2.76427 | -0.90392
2,39 22,12 0.32963 |} 0.00304 | 7.51356 | -5.29641 | 1.7319]
2.39 -10.60 0.21592 | 0.00958 | 7.66839 | -4.85985 | 1.H8917
2,39 -14.08 0.26331 } 0.00590 | 7.6368Y | -3.05489 | 0.99895
2.39 -17.62 0.31890 | 0.0U877 | 7.54356 | -0.62392 [ 0.20402
2.49 -18.79 0.33297 ) 0.00533 | 7.48229 | 0.93011 | -0.30415
2.39 -24.13 0.36268 | 0.00181 | 7.33235 |  (.43515 | -0.14229)
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Table 4.5: Parameters estimated for Model 366: First part

M | Initial Angle o By Ao A, A,

5.29 21.42 0.26021 | 0.00506 | 12.01970 | -0.96070 | 0.01739
5.29 26.80 0.31014 | 0.01480 | 12.01968 | -0.30991 | 0.00561
H.29 -6.73 0.10121 | 0.00837 | 12.01968 | -9.24717 | 0.16737
5.9 11,17 0.14490 | 0.00698 | 12.18665 | -17.09653 | 0.30945
5.29 -15.43 0.18455 | 0.00024 | 11.81578 2.19304 | -0.03969
.29 -20.14 0.23614 | 0.00376 | 11.81578 | 4.27914 |-0.07745
H.29 -23.89 0.29464 | 0.00261 | 12.01968 | -2.14368 | 0.03880
.29 10.98 (.13861 | 0.00148 | 11.81578 2.85178 | -0.05162
5.29 15.74 0.16989 { 0.01007 | 11.81577 1.69434 | -0.03067
n.29 19.17 0.25091 1 0.01430 { 12.22893 | -9.12100 | 0.16509
4.91 25.83 0.30985 | 0.00306 | 11.46164 | -1.64868 | 0.01088
4.91 24.93 0.29630 | 0.00775 | 11.42328 | -1.86648 | 0.01232
4.91 -8.46 0.12011 { 0.01664 | 11.21685 9.10805 | -0.06011
4.01 -11.36 0.14603 | 0.00621 | 11.23435 5.18992 | -0.03425
4.91 .77 0.16761 | 0.01535 | 11.23435 4.37853 | -0.02890
1.91 -21.33 (.24510 | 0.00207 | 11.23435 2.54312 | -0.01678
4.91 -27.80 0.31594 | 0.00186 | 11.42328 | -0.49546 | 0.00327
4.91 12.16 0.14375 | 0.00554 { 11.42328 | -4.08950 | 0.02699
1.91 13.23 0.15583 | 0.00165 | 11.23435 3.61592 | -0.02387
1.91 20.23 0.23558 | 0.00704 | 11.23435 1.18446 {-0.00782




Table 4.6: Parameters estimated for Model 366: Second part

GM | [nitial Angle Bqy By Ao A4 i P

3.92 25.27 0.27967 | 0.02086 | 9.12558 LES13S | 0.03824
3.92 28.31 0.3083% | 0.00237 | 9.29153 | -1.79792 | -0.06077
3.92 -6.66 0.10148 | 0.01144 | 9.29153 | -19.52801 | -0.66005
3.92 -0.71 0.12970 | 0.00002 | 9.12559 | -1.51477 { -0.05120
3.92 -17.24 0.21235 | 0.00998 | 9.12558 | -0.22185 | -0.00750
3.92 -18.57 0.23258 | 0.00068 | 9.12558 0.53163 | 0.01797
3.92 -26.81 0.30102 | 0.00357 | 9.29153 6.06672 | 0.20506
3.92 8.6:1 0.13348 | 0.04624 | 9.12559 | -6.79987 [ -0.22984
3.92 14.40 (0.18280 | 0.02483 | 9.12558 | -2.23935 | -0.0756Y
3.92 18.81 0.24906 | 0.00456 | 9.29153 | -4.34618 | -0.1.1690
3.38 22.76 0.24411 | 0.00525 | 7.65439 0.88390 | 0.05838
3.38 29.06 0.32273 { 0.00336 | 7.81385 | -0.95438 | -0.06289
3.38 -10.€9 0.13112 | 0.00231 | 7.65439 277916 | 0.18315
3.38 -12.35 0.13911 | 0.03333 | 7.65439 1.34339 | 0.08853
3.38 -17.65 0.18829 | 0.06357 | 7.81385 | -3.10143 | -0.20438
3.38 -20.02 0.21753 | 0.00062 | 7.81185 | -3.64426 | -0.24016
3.38 -25.47 0.30288 | 0.02275 | 7.81385 | -2.35469 | -0.15517
3.38 12,39 0.14097 | 0.04031 | 7.81385 | -7.43295 | -0.18983
3.38 13.16 0.12797 1 0.00960 | 7.65439 | -3.20050 | -0.21151
3.38 21.52 0.22641 | 0.08064 | 7.97837 | -5.39630 | -0.35562

Generally, the measured data within 2 - 3 roll cycles are enough for the pa-

rameters estimation. Tables 4.2 - 4.6 give the estimated parameters for different,

GM values for the three ship models.

Using these estimated parameters, the curves of roll angle and its velocity are
reproduced by numerical integration of equation (4.1). Figures 4.1 -4} show very

good agreement between reproduced curves (solid line) and experimental ones

(star marks) for the three ship models.
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4.3 Discussion

Irom the physical assumption, the parameter Ay in the roll equation is ap-

proximately a linear function of GM value given by

AGM
Ay = ,‘ (1.3)

where [ s the virtnal mass moment of inertia of the ship about a longitudinal
axis passing through the center of gravity of the ship and A is displacement.

From the estimated results, the values of Ag were plotted against the GM
values in Figures L4 - 4.6. The linear regression curves of these points are also
given.  For Models 365 and 366, the results show a perfect linear relationship.
IFor Model 363, this lincar relationship is not so obvious. This point needs to be
investigated,

In Figures 4.7 - 1.9, the damping parameters By are plotted against the initial
angle of inclination for cach model. It shows a linear relationship as indicated
by the linear regression curves of ther  points. In Figure 4.8, it shows relatively
large scatters in the data points in the area of roll angle whthin 15 to 20 degrees.
The reason may be due to the "trade-offs” between linear and nonlinear damping
parameters, Figure 4.7 shows that the linear damping coefficient Bp is sensitive
to the variation in GM value of the model. However, the effect of GM values on

13y is minor for models 365 and 366 as seen from Figures 4.8 and 4.9.
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Chapter 5

Estimation of Ship Roll
Parameters from Roll Response
in Random Waves

5.1 Introduction

‘The ship roll parameters will change when the ship loading changes. It is very
important to be able to apply the parametric identification method to real ship
responses at sea. A new approach to estimate the ship roll parameters in random
wavces is discussed in this Chapter.

In order to apply our parametric identification method to this problem, the
equation for the autocorrelation or random decrement of roll angle was derived to
replace the original roll equation. The derived cquation has a similar form as the
original roll equation. From the equation of autocorrelation or random decrement,
the roll parameters can be estimated using the method discussed in Chapter 3.

Reference [10] provides a method based on the Markov property of energy en-
velope process to estimate roll parameters with the assumption that the excitation

is & white noise. No attempt has been made to apply this method to experimental
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data. In our method, the assumption of white noise excitation is not necessary, In
order to test the form of excitation moment and the crosscorrelation hetween ex-
citation moment and the roll response, two different excitation moments are used
in the present study. The first one is a random process uncorrelated with the roll
response. The second one is a narrow-band process given by a second-order lnear
differential equation. The results show that the narrow-band excitation moment
will correlate with the roll response but this correlation is relalively weak.

The nethod was first applied to a set of numerically simulated roll data, for
which the true parameters are known. The estimated parameters show a gooil
agreement with the true parameters. The second test case is to apply this method
to the measured roll data obtained from the ship model test in random waves.
Using the estimated parameters, the autocorrelation or decremenl curves were
reproduced by numerical integration. They also show a good agreement with the
relevant, curves calculated from the experimental data.

As expected, the damping and stiffness parameters estitmated from the random
roll motion are very close to the results oblained from the free roll decay test for
the same ship model.

Since the present method only depends on the measured roll data, it is possible
to apply it to full scale ships at sca. The last test case is Lo use this method to
analyse the measured roll data of a full scale ship at sea. Although the measured
data of the real ship are much more noisy than the experimental data of the ship

model, the estimation also gives reasonably good results.



5.2 Parametric Identification

The roll motion of a ship subjected Lo a roll excitation noment M(¢t) is written

I
& + Do + Bolo] + Avp + A1 + Ag® = KM(2) (5.1)

Jquation (5.1) can be considered as a single input-output system. Because
only measured roll response is available while input Af(¢) is very difficult to be
obtained, we can not, estimate parameters from equation (5.1) directly. To solve

this problemn, two approaches are discussed.

5.2.1 Autocorrelation Equation

Assuming the roll response is a stationary process, the autocorrelation of roll

angle is defined as:
R(t) =< o)p(t +7) > (5.2)

where < > means ensemble average on time ¢.

Differentiating f2(7) about r and introducing equation (5.1) gives

R(r) = <o)p(t+71)> (5.3)
R(r) = <o()p(t+71)>
= K <o(t)M(t+7)> =By <p(t)p(t +1) >
=B <o()p(t +7)|@(L + 7)| > —Ao < p(t)p(t +7) >

— A1 < (O™t +T) > = A2 < p(O)D*(t + 7) > (5.4)
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Combining the above equalions. an autocorrelation equation of roll angle is

obtained as:

.

R(T) + B(]H(T) + /10R(T) + Blfl(T) + :1|[]|(T) + .‘1-1/l|(T) = 1\'¢.'1(T) (5.5)

where

Silr) =< (0@ + (L +7)] > (5.6)
g(7) =< (N (L +7) > (5.7)
hi(r) =< @Rt + 1) > (5.8)
er(r) =< (A (L +7) > (5.9)

5.2.2 Equation for the Random Decrement

The randoin decrement operation is the average of some selected segments of
records. These segments have the same length and the same initial value. For

example, the random decrement of roll angle ¢(r) can be expressed as:

1 N
< (p(T) >= N ZIPI(T) 0 S T _<_ Tonnr (510)
i=1

where < > means an ensemble average of the process.

Performing such operation on equation (5.1) results in the following equation:

i(1) + Bopi(7) + Aop(7) + B < 9lg] > +41 < ¢ > +A2 <p° >
=K <M(r)> (5.11)
where p(71) =< o(7) >.

More details about how to calculate random decrement fromn random responses

can be found in references [11] and [20].
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For convenience, Fquations (5.9) and (5.11) can be written in a uniform form:

Yi(r) + BoYi(7) + AdYi(r) + Bifi(7) + Avgu(T) + Aghyi(T)

= Nei(T) (1=1,2) (5.12)

For #itocorrelation equation, @ = 1:

fi(r) =< ()t + 7)ot + 7)| >
(1) =< ()t +7) >
hi(r) <@(t)e’(t +7) >

el(t) =< p(OOM(t+7) >
FFor random decrement equation, ¢ = 2:

Ya(r) = p(7)

far) =< @(7)|@(r)] >
92(r) =< °(r) >
ha(r) =< ¢°(7) >

exr) =< M(7) >

If M(t) is uncorrelated with o(¢), then e,(7) is equal to zero in the autocorre-
lation equation, the parameters can be estimated without knowing the excitation.
Some researchers consider this assumption acceptable or assume M(¢) to be a

white noise. In this thesis, this assumption will be tested by numerical simula-

tion.
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As the wave exciting moment is a narrow-band process, it can be deseribed

approximately by the following equation:
M(t) + yM(t) + W M() = u(t) (5.13)

where 7y is the band width and w is the central frequency of this process. n(t) is
a white noise with unit variance.

The solution of equation (5.13) was used as excitation moment in our study,

5.2.3 Modulating Function Operation

Applying the modulating function operation on equation (5.12) and letting n
be from 0 to L — 1, (where L is the number of unknown parameters), a sel of

algebraic equations for the unknown parameters can he obtained as:

TWnt2(Yi) + BoTr Vg1 (Vi) + Ao¥n(Yi) + ByVa(fi) + ArWalyi) + Ay Wa(hy)
=KU,(e)  (i=1,2) (5.1)

(n=0,1, ... L=1)

To make the problem simple, Ty = T, = T, is used.

From this equation, values for the roll parameters can be solved.
5.3 Examples and Results
5.3.1 Simulated Data

The use of simulated data to validate a method has some advantages. For

example, the values of the test parameters are known in advance. This allows a



Table 5.1: Estimated parameters and their true values

w=J30 ~=0.5
Pura, By By Ao Ay A K
(riven | 0.10000 | 0.10000 | 9.00000 | 1.00000 | 0.00000 { 10.00000
[Ssti.(A) | 0.09869 | 0.10296 | 9.09674 | 0.87521 | 0.00000 | 10.10105
Isti(13) 1 0.10249 | 0.09711 | 9.05609 | 0.88799 | 0.00000 | 9.70994
Fste (C) ] 0.1059% | 0.09628 | 9.00056 | 1.1:3665 | 0.00000 | 10.15320

direct comparison between the estimated parameters and their true values. Sec-
ondly, the daration of the samples can be chosen arbitrarily to show its effects on
the estimation process.

'l generate roll motion samples with a random excitation, equation (5.1) was
integrated numerically with given parameters. In the time length of 400 seconds,
16001 data of roll angle are picked with a equal time interval. M(t) is the solution
of equation (5.13) and u(?) is a white noise which can be generated from a sequence
of independent Gaussian random numbers.

The solution (L) was used to calculate the autocorrelation, crosscorrelation
and random decrement in equation (5.12), from this equation the parameters can
be estimated. Table 5.1 shows a comparison between the estimated values of the
parameters and their true values. Three sets of test results are reported here:
sets A and B are estimated from correlation having a length of 5 seconds and
10 scconds, respectively. All correlation is calculated from roll camples having a
length of 400 seconds. Set C is the result estimated from tl.e same data in set R
using the random decrement equation. The results show + ery good agreement for
all cases. It can also be noticed that there are some ‘trade-offs’ brtween By, By

amed Ay, Ay, Ag



Figure 5.1 shows the variations of roll moment and roll response with time.
Both roll moment and response are in the practical range. Figure 5.2 shows the

spectral density of roll moment and roll respounse.

5.3.2 Experimental Data

The second test case is to use this method to analyse the experimental data.
The experimental data are obtained from model tests in the towing tank of Memo-
rial University of Newfondland on three fishing vessels. Both free roll and ran-
domly excited roll are measured. The random waves are generated by JONSWAP
spectrum.

The ship models are Model 363, 365 and 366. The particulars of these models
can be found in Appendix C. As an example, we focus on the analysis of the
experimental data on mode! 366.

A total of 8001 samples of roll angle with a uniform time interval of (57) second
were used to calculate the correlation and the random decrement. Four cases are
ccasidered:

(A) using autocorrelation equation. M(t) is a narrow-hand process with a
central frequency w of 3.2 {rad/sec) and a band width v of 0.2.

(B) using autocorrelation equation. M(t) is assumed to be uncorrelated with
the roll response, that is, e;(7) = 0.

(C) using random decrement equation.

(D) estimation from [ree roll data.

The estimated parameters are listed in Table 5.2. The Table shows that the

results in different cases are very close to each other. K is the amplitude of the



Table 5.2: Estimated parameters of Model 366 (GM=4.91cm)

Para. 130 B| Ao A] Az A
A 0.12018 | 0.00361 | 11.39600 | 1.34132 | -0.00832 | 0.22097
3 0.11933 | 0.00446 | 11.39600 | 1.33536 | -0.00828 -
C 0.11496 | 0.00268 | 11.44414 | 2.23575 [ -0.01386 | 0.20912
D 0.12011 | 0.01664 | 11.21685 | 9.10803 | -0.05617 —

excitation. Because there are ‘trade-offs’ between parameters, it is not easy to see
the difference between the different estimation. An alternative way of judgement
iy to make an overall comparison, i.e., to integrate the free roll equation with
estimated parameters Ag, Ay, Ag, By, B, of different cases and then to compare
integrated roll curves. Figure 5.3 shows such a comparison. Because the results
in case A and B are almost the same, only three integration curves are ploted
for case A, C and D. The results indicaie that the estimation obtained from the
antocorrelation equation or from the random decrement equation are very close
to the results obtained from free roll decay test in general. That is just what
we expected. That means it is possible to apply this method for the parametric
estimation from the response of a ship at sea instead of from a free roll decay
test. It can also be noticed that the crosscorrelation between the excitation and
response can be omited. Figure 5.4 shows the comparison of the magnitudes of
autocorrelation and crosscorrelation ( AgR(2) vs. Keq(t) ).

Using estimated parameters, the curves of autocorrelation R(7) and roll angle
w(t) as well as their derivatives were reproduced by numerical integration. Figures
5.5 to 5.7 show the comparisons between the reproduced curves and the curves
obtained from experimental data for cases A, C and D. The star marks represent

the experimental data while the solid lines represent the estimated values. The



Table 5.3: Estimated parameters of Model 365 (GM=1.31cm)

Para. Bo B| .‘l() A 1 ‘ p] N
A 0.18699 | 0.02699 | 12.54371 | -0.90693 | 0.22952 | 0.259:31
C 0.18653 | 0.01548 | 12.4262] | -1.09992 | 0,28043 | 0.25899
D | 0.18702 | 0.02682 | 12.87316 | -1.16877 | 0.29501

Table 5.4: Estimated parameters of Model 363 (GM=3.10cm)

Para. By I Ao Ay Ay K
A 0.18668 | 0.02053 | 7.20389 | -15.85033 [ -0.042%93 [ 0.0820+
C 0.17892 | 0.04002 | 7.07639 | -13.61688 | -1.22499 | 0.080:31
D 0.18466 | 0.02516 | 7.55026 | -15.90525 | -1.06829

=
=

results show a good agreement.

Fromi the test data of the other two ship models, the roll parameters are also
estimated and shown in Table 5.3 and 5.4. There are also good agreement between
the parameters estimated {rom the [ree roll data and that from the random roll

data.

5.3.3 Full Scale Ship Roll Data

More convincing way to test a incthod is to apply it to a practical situation.
For this purpose, the roll data of 2 full scale fishing vessel obtained during a fishing
trip was recorded and analysed using the present method. Becanse of the complex
wave pattern and ship motion at sca, the measured roll data of this case seem much
more noisy than the experimental data. However, the aulocorrelation extracted
from the measured data are still very smooth curves. From these autocorrelation

curves, the roll parameters are estimated and shown in Table 5.5.



Table 5.5 Estimated parameters about full scale ship
Para. | (/ M(m) B() H] Ao A 1 AQ K
A 0.6989 | 0.08716 | 0.00277 | 0.55145 | -2.97636 | -1.88832 | 0.01761
I} 0.7001 | 0.08399 | 0.00870 | 0.57735 |-3.82195 | -1.90828 ! 0.02191
C’ 0.7287 | 0.08072 ] 0.00219 | 0.59571 | -2.23287 | -1.12686 | 0.02214

T'he data of three loading conditions of the ship in the same trip are analysed.
The (/M values of different loading conditions can also be estimated from hydro-
static caleulations [12], which are also included in this Table. Figure 5.8 shows a
approximate linear relationship between GM values ..nd Ay (the square of linear
natural frequency).

Figures 5.9 to 5.11 show the fitness between the autocorrelation calculated
from the experimental data and from the data of numerical integration on auto-
correlation equalion with estimated parameters.

The comparison between estimated data and experimental or simulated data
indicates that:

(1) itis possible to estimate ship roll parameters from measured random roll
responses only,

(2) the present method gives a fairly accurate estimation,

(3) the crosscorrelation between excitation and response can be neglected.

(1) the estimation from random roll motion gives very close results to that
obtained from free roll decay tests, therefore, it is possible to use this method to

estimate roll parameters from the random response of a ship at sea.
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Chapter 6

Probability distribution of Roll
Motion

6.1 Introduction

v the previous Chapters, we have given a detailed report abont how Lo es-
timate ship roll parameters. From these parameters, the ship roll stability can
he assessed. For example, the restoring moment. of the ship can be caleulated
fromn the parameters Ay, Ay, A;. In this Chapter, we will diseuss another way of
assessing ship roll stability. From a statistical viewpoint, if the probability of the
ship roll angle reaching a dangerous degree can be predicted, the ship roll stability
can also be assessed. The objective of the present work 1s to find a method for
the prediction of the joint probability distribution of roll angle and velocity, T'his
can be used to obtain the probability distribution for roll angle, roll velocity and
amplhitude.

The ship roll motion can be modetled as a nonlinear random vibration problemn,
If the excitation can be idealized as a Gaussian white noise, a powerful tool:
Markov vector approach can be used. In this case, the joinl conditional probability

density function of roll angle and velocity can be obtained from the solution of
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a partial differential equation: the Fokker-Planck equation [17). The analytical
solution of this equuation has been found only for very few simple cases. In this
thesis, a numerieal method was used to solve this equation. Irom the solution
of the joint probability distribution of roll angle and roll velocity, the prebability
distribution of the amplitude of roll motion can be derived [18].

The method has been used for the analysis of the roll data from ship model
tests and real ship measurements. The calculated probability distribution of roll
angle, velocity and amplitude of roll motion are compared with the relevant his-
tograms extracted from the measured data. The agreement between measured
and estimated probability distribution is good. The numerical solution is also
compared with the analytical solution for a special case of a Duf fing oscellator.

The agreement is excellent.

6.2 Markov Approximation and Solution

The governing equation of the roll motion of a ship in random waves can be

written as:

3+ N(g) + Q) = KM(2) (6.1)
One can express the damping and restoration as:

N(@) = Bog + Bl (6.2)

Q) = Aoy + Ay° (6.3)

Here M (t) is assumed to bea Gaussian white noise with the mean and variance

satisfying the following conditions [15]:



E(M() =0 (6.1)
E(J”(tl)t‘!(tz)) - (S([[ - fz) ((i.-r))

Let o = y1, ¢ = yq, equation (6.1) can be rewritten as;

Y + G(Y) = F(t) (6.6)

(2}
2
._ [0
ﬁz{KMm}

¢« __ )~
G= { N{yz) + Q1) }

If F(t) is white moise, Y is a Markov vector and its joinl conditional

where

probability density function P satisfys I'ohker-Planck equation:

9 9 e .
+5;;(y21°)—a—y';[(l‘/+@)1 -7 =0 (6.7)

2 iy

il
ol

where
P = Plyi,y2t | ¥10,920)s yio =n(0), v = ya(0)

and P = P(yi,y2,t | 1iovy20) 1s the conditional probability density function with
the condition that ¥; = yi0, ¥2 = y20 when timet = 0.

In the tollowing, we will write P as a short form of P = ’(y),y,1).
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No analytical solution is available for this equation when the damping is non-
linear, so we solve it by an approximate method — Galerkin methad.

IFirst, the variables are norrnalized using the following formulas:

_hn-mi _ Y2 — (i)
- = ai(t) ! aa(t) (62)

fer (8), (), pa(t), o2(L) are means and variances of ¢, ¢ solved from the relevant
linear roll equation of equation (6.1) while Ay = I3, = 0.
The weighted Hermite polynomials used in previous Chapters as modulating

funetions now are chosen as trial functions:

AME) = t:_"i H,(¢) = (-—l)"% e"";') (n=0,1,2, ...... ) (6.9)

T'he advantage of such choice is due to th. {ollowing recurrence and orthogonal

properties of these functions:

Q_ﬁ‘_’_‘__ ntl
Fr A (6.10)

EAM(E) = AM(E) +nd" N (E) (AT = 0) (6.11)

and

/ " ANE) Hu(&)dE =11/ 2x60n (02 0) (6.12)

where §,,, 18 the Kronelker delta.
The next step is to expand the joint conditional probability density function

I’ in terms of a set of trial functions.



m "
(Ui, yaa ) Z S G A& A (n) (6.11)
=0 r=0
in which the coefficients G*7(1) are to be determined.
If equation (6.13) is the solution of the Fokker-Planck equation, it must satisfy

the equation:

[ LG+ e

2D
————[(N +Q)P) - 1_\2_(()) Iz YHL(EV L, (n)dEdy = 6 (6.141)

This cquation means that the residual of equation (6.7) is orthogonal to a set
of linearly independent functions £1,(€), H,(n). As m,n approach to infinity, the
residual vanishes and the Fokker- Planck equation is satisfied.

Integrating equation (6.14) and using the orthogonal condition (6.12), one can

get a set of first-order differential equations:

F?EGM t) = ZZ Lok ()G () (6.15)

k=0r=0
(p=0,1,2, ...m, ¢=0,1,2, ... n)
foqkr(t) are known functions and their expressions can be found in Appendix
B. Equation (6.15) can be solved numerically under given initial conditions. If
all coefficients G*7(¢) are solved, the joint couditional probahbility density function

of 41,2 are known,
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A common way of giving initial condition is to set,

P(y1,52,0) = 6(y1 = ¥10)8(y2 = Y20) (6.16)
In this case,

v[-co./ -/117/3, Ilﬂ(f)li‘)(r’)df(h]

= [ [ = v)8(0n = v ) ) 7
dé dp i
=[”p(£)”q('l)dj dya —]le=0 (6.17)

Using the orthogonal condition (6.12), another equation can be obtained:

./ _/ 21y ) E(EY o (n)dEdy

m n

=20 [ [ G AN ) He) )
= 2mplg!GM(1) (6.18)

Comparing equation (6.18) with equation (6.17), we get the initial condition

82

G™0) = = ¢ q(n)"“ e (6.19)

‘The ship roll problem can be consicered as a stationary process. The joint

probability density function of , ¢> can be found when time ¢t approaches infinity:

i aca (Y1420t | Y105 Y20) = (31, 42) = P9, ) (6.20)
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Other useful probability distribution and statistical measnrements can be de-

rived from the joint probability density function,

) 1113
Puroy)dys = Viray S (F Ak
o~ k=0

plw) = ply) =/

@) = ply2) =/_ p(yny)dyy = Ve Y GA(y)

r=i)

and

, [y 4] "
BE) = [ MOE My = 2maim[ (i 4 20

) .
E(®) = / pin)nidys = 2rey oy [GY 4+ 2017
[

6.3 Peak Statistics

(6.21)

(6.22)

(6.2:3)

(6.2.1)

As shown in Figure 6.1, letting v}tdl be the probability of such crossings as

(1) crossing a particular level ¢(f) = a from below to above in an interval of

duration dt, we can sce that if there is a crossing, it salisfies [21]

a—w(t)

T < @(t) <

From Figure 6.2, it shows

[»9] a
vrdt = [T 7 (o, @)body
0 n—pdl

Let dt — 0, we find

vi = [ erla, )

(6.25)

(6.26)
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Further, for a narrow-band stationary random process such as ship roll re-
sponse, the expected number of peaks per unit time above the level ¢(t) =« is
equal to vFo The total expected number of peaks per unit time above the level

A1) = 0is uf . Henee from the relative frequency definition of probability, it

follows that
st

Plp(i) > a) = =& (6.23)
0

T

The probability density fmncetion for peaks is obtained by differentiation

P L dv}

Pala) = o = ——

9
1/0+ da (6.29)

Introducing the expressions (6.13), (6.27) into above equation, we have

= LB T G G ) e 2RO
n - n .
TV ki Lrmo GRETITR(0)H?(0) + 2r F*7-2(0)]
where
e 7
ca o

6.4 Results and Discussion

6.4.1 Duffing’s Equation

To illustrate the results of the previous sections, we first show the solution of

a particular nonlinecar system of the form of



Table 6.1: Parameters used in the ealculation

Cases |m | n 1 By Ao A I N &
A S8t |10]5 2
B 3 S 1 10 | 20 | 2
& 2012001107200 2
o4 Bop + Agp + At = K1) (6.31)

Fquation (6.31) is called Duffing's equation. 1t has an analytical station-
ary solution for the joint. probability density function, from which the analytical
solution of the peak distribution can also be derived [22], [23].

Three test cases are carried onut, The parameters used in eacl case are listed
in Table 6.1,

In case A, the ratio of the nonlinear parameter Ay to the linear parameter
Ap is 1/2. The 8th-order expansions of the joint probability distribution and the
peak distribution give good approximations of the trne solutions as indicated in
Figure 6.3.

When the nonlinear parameter is twice the linear parameter in the case I3,
the Sth-order expansion of the joint probability distribution still gives a good
approximation but the peak distribution approached to the same order is not so
good (sce Figure 6.4).

In the case €, when the order of the expansion is increased to 12 while rll
parameters remain the same as that in the case 2, the both approximations for
joint probability distribution and peak distribution agree very well to the exact

solutions as shown in Figure 6.5.
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6.4.2 Measured Data

Second step to evaluate the present method is to apply it to the analysis of
measured roll data from ship model tests and full scale ship measurements. The
stationary solutions of the probability density functions p(¢) , pl¢), p.(a) are
calenlated using 8th-order expansion of trial functions. The histograms describing
the same probability distribution are also calculated from the measured data.

For the experimental data of the ship model 366, the calculated probability dis-
tribution and the relevant histograims are shown in Figures 6.6 - 6.8. [t shows that
the present. method gives very good approximation of the probability distribution
of ship roll motion.

From the roll data measured on a {ull scale ship at sea, similar work is done.
The good agreement is also observed between the predicted probability distribu-
tion and the histogram of mcasured date, as shown in Figures 6.9 - 6.11.

From these results, we can conclude that the present method is a good Lool
for the prediction of the probability distribution of ship roll motion.

The last problem is to explain why the white excitation assumption can be
used without caunsing notable losses on the accuracy of the prediction. The reason
is that the ship roll response is a narrow band process. For such a process, it only
responses to the excitation with the frequency near ship’s natural frequency, so
the power spectrum of the excitation can be approximated by the constant value
of the power spectrum at the ship’s natural frequency.

I'rom probability theory, if the excitation is nonwhite, but it can be generated
as the response of a lincar ordinary differential equation driven by white noise,

the problem can also be solved by Markov approximation.
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Chapter 7

Conclusions

A new method for the parametric identification of ship roll motion is proposed.
From the estimated roll parameters, the probability distribulions of roll angle, voll
velocity and the peaks of the roll motion are derived and caleutated by nmner-
ical approximation. Thus, a systematic study of ship roll motion based ors the
measured roll data is given.

From the theoretical basis of the proposed method and the results it has pro-
duced so far, this new method shows some advantages over other existing para-
metric identification methods for ship roll problems. These advantages are:

1, The accuracy of the estimation ol this method is higher than some current
methods because it avoids one of the main sources of error, Lthal is numerical
differentiation of the measured data. The numerical integration instead of Lthe
numerical differentiation is used in the new method to formulate the equations
for the parametric solution. As it s well known, the numerical integration can
smooth the noise in the measured data while the numerical differentiation enfarges
it.

2. The proposed method does nol need such assumptions used in some meth-
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ods as light damping, white noise excitation, and equivalent linearization, and
therefore it does not, place many restrictions on the form of roll equation, As long
as Lthe parameters can be separated from the function of time, all the parameters
can be estimated with higher accuracy. The parameters of nonlinecar damping,
nonlinear-time-dependent restoring moment and the strength of excitation can be
estimated at the same time without iterations.

3. The method does not need very long record for the parametric identification.

In addition to above mentioned advantages, the method can be applied to the
prediction of roll parameters of a full scale ship at sea without knowing the wave
measurements, because all estimation is obtained from measured roll response
()llly.

A numerical approach was nsed to solve the probability distributions of ship
roll inotion from the estimated parameters. The calculated results of the proba-
bility distribntions of roll angle, roll velocity and peaks of roll motion indicated

such an approach was also satisfactory.
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Appendix A
A and B Matrixes
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Appendix B

. a ,
Expression for £(GP7)
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Appendix C

Data of Ship Models and Full
Scale Ship
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Table C.1:

Particulars of ship models

Models 363 365 366 | 367
Scale 1:12 1:9.1 1:6.8 a1
LWL(m) 151 | 1336 | 1568 | 1880
Beam({m) 0.507 | 0.542 | 0.506 | 0.192
Draft{m) 0.220 | 0.215 | 0205 | 0.18%
LCB(m) -1.09 -0.052 1 -0.138 1 -0.052
Mass(kg) 80 H 69.5 G4
GM(m) at OG=0 | 0.031 G.033 | 0.045 | 0.038
w(rfs)at OCG=0 | 274 | 327 | 318 | 545
ay at OG=0 1.2832 | -0.3851 | 0.2021 | 1.6068
o, at 0G=0 -1.3293 | -2.5141 | -1.8402 | -2.2615

()



Table C.2: General particulars of a full scale ship

Vessel Naine

Type of Vessel

Leugith Between Perpendicular
Breadth Moulded

Depth Moulded

Summer Load Draft
Displacement at S.L.W.L.
Lightship Weight

Date Keel Laid

Builder

Newfoundland Alert
Fisliing Vessel

J2.80 (m)

10.00 (m)

6.80 (m)

4.01 (m)

673 (Lon)

406 (ton)

February 23, 1988

Marystown Shipyard Limited
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Figure C.5: Full scale ship layout















