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Abstract

The inferences Tor the order statisties for normal random variables with a general
corrclation structure, where correlations can be unequal or equal. positive or negative
are discussed in this thesis. Specifically, based on a small correlations approach. we,
lirst, develop the joint density function of the order statistics under the general corre-
lation set-np. Weo then, provide an approximation for the distribution of a single order
statistic nnder the same coreelation set-up, Special attention is given to the devivations
for the distributions of the maxima and minima, The computational aspects of the
distribution of the maxima., for example, are discussed in details for the homoscedastic
cqui-correlation, homoscedastic unegual correlations. and heteroseedastic unequal corre-
lations cases, The applications of the proposed small correlations approach to compute
the percentile points ¢ the masima are shown for the homoscedastic correlated nor-
mal variables following a stationary auto-regressive process of order one, and for the
heteroseedastie correlated normal variables following a nonstationary antedependence
iwodel. Farthernore, the small correlations approach for the maxima is compared with
the Bondferroni bonnds approximation for unequally homoscedastic and heteroscedastic

correlated normal variables,
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Chapter 1

Introduction

1.1 Motivation of the problem

Over the last few decades, order statistics inferences for the independent norial variables
have heen widely discussed in the literature, For example. we refer to David (1981).
Galambos (1987). Balakrishnan & Cohen (1991). Reiss (1989). Gumbel (1953). Barnett
& lewis (1978) for such inferences. In practice. order statistics problems arise in many
practical sitnations. for example. in the context of flood control in a given place. Ina
flood control problem, tet Yi V50 00 Y500 00Y, be the yearly water levels of a river for
n vears. where Y, denotes the water level of the river for the jth year. For this kind of
yearty data, it is reasonable to assume that they are mutnally independent. In order to
take any remedialmeasure in preventing the future llood spread. it is important to study
the pattern of the maximunm water level of the viver, On the other hand, if we want to use

the river as a source of electrical cnergy in order to maintain a minimum level, then aar



interest would be to study the patteen of mintimum water level of the river. Tn notations,
the former problem requires to find Pr(Y,y < o), and the watter problem requices to
find Pr{Yyy = 0). where Yo = mae(V U< <)o Yy = mon(Y, b s < myaml o &
b are the speciied water levels,

But. in practice, there are also many situations where the observations may he cor
related but still follow the Gaussian distribution. For example, consider the widespread
production of rice in Hungary (sav), for which a mininmm amount of vainfall per week
is needed, Similarly, consider the production of potatoes i West Alvica (say) where the
production may be afleeted il the daily high temperatures exeeed a maximum amonni
of daily temperature. Hereclet Yo j = 12000000 be the amount of rainfatl in Hhangaey
or the maximum temperature in West Alvica duving the jrh = 12000000 week or
day. It then follows that in the rice production problem one wonld study the pattern

of Yoy = min(Yo 1 < < n) and in the potato production problem one would be

;<% 1), Note, however, that in

inferested to study the patterr of Y,y = mar (Y, | <
both of these problems, as the observations are colleeted suceessively vver fime, week
or day. il is reasonable to assnme that the original observations Yy, Y, 0, are cor
related random variables. . Clonsequently. these problems rednee to the order statisties
problems where observations ave correlated.

Futhermore, under the cases when variables are correlated, most of the order statisties
problems discussed so far in the literature bhelong to equi-correlated case. For saeh
analyses. we refer to Gupta, Pillat & Steck (1961). Gupta. Nagel & Panchapakesan
(1973). Owen & Steck (1962), Hofliman & Saw (1975), Rawlings (1976), among ot hers,
Gupta. Pillai aud Steck (196:1) considered the distributions of a lincar funetion and ratio

of two lincar functions of order statisties from an equally correlated set of normal vandom



vartables, Later on. Gupta, Nagel & Panchapakesan (1973) have studied the distribution
theory of the maxima which arises in the context of ranking and multiple comparison
problems,. More specifically, these authors have diseussed some general distribution
theory for certain order statistics from correlated normal randony variables with a special
correlation structure p,, = p 2 (0. where p,, is the correlation coefficient between Y and
Yoodorall /o j =120 0000 and i # .

The order statistics inferences for the equi-correlated normal random variables, was
also stndied by Owen and Steek (1962).  In their stirdy. they have shown how the
marginal moments and prodiret moments of the order statistics may he obtained (rom
the corresponding moments and product moments for the independence case. p = 0,
Rawlings (1976) studiced the distribntion of the maxima for stch equi-correlated random
viriables, More specifically, Rawlings extended the distribution of the maxima of one
sronp ol k- dimensional equi-correlated variables studied by Gupta (1973) to the case of
m independent groups of k-dimentional equicorrelated random variables.

nlike the above anthors. Hoffman and Saw (1975) attempted to include the negative
cquicorrelated ease in tinding the distribution function of the maxima that requires
certain integrations in the complex domain, which may not be easy in general.

There has @lso been a few studies on the order statistics inferences, where corre-
fations may be unequal. Buat, they were done for very special correlations structure,
For example, by expressing a maltivariate probability integral as a power series of the
univariate probability integral, Greig (1967) has provided an approximation to the dis-
tribntion ol extreme values in corr lated normal population, for a very special situation
when the corvelation inatrix has dominant clements adjacent to the leading diagonal

with p o A0 but p, =0toralli#£j & j#£7 41



With regard to the detection of outliers ina simple regression set up, Ellenherg { 19738,
1976) has used Bonferroni inequtlities approach 1o compnte the limits for the probability
of maxima of standerized feast squares residnals. lere in this problem. the residuals
have unequal correlations based on the structure of the design mateis involved in the
lincar model.

Observe that all the studies mentioned above deal with either equicorrelated or spe
cial types of unequal correlated structures. But, as in reality, the normal variables can
be unequally positively or negatively corvelated, in this thesis, we deal with such gen
cral cortelation stenetures and study the order statistics inferences for sueh eases, he

specific plan of the thesis is as follows

1.2 Objective of the Thesis

I, In chapter two. we provide detailed backgronnd of order statistics problems for

correlated normal data,

2. Chapter 3 concerns the inferences for 1he order statisties obtained from nnequal
positively or negatively correlated normal variables. Tn Section 3.1, based on a
sinall correlations approach. we develop the joint density Tanetion for the order
statistics for correlated normal variables with general corvelation strocture, An
approximate marginal distribution ol & single order statistic is simplilicd in Seetion
3.2, Iu Section 3.3, we provide the distributions of maxima and minima as Lwo

special cases,

3. The computational aspeets Tor the percentile points of the maxiima for normal



ot

vitiables with peneral correlation structares are given. in chapter L for three spe-
cial sitnations. Fist, in Section 120 we disenss the computation of the pereentile
poirts of the masima for homoscedastic cqui-correlated (positive or negative) nor-
mal variables, As o resalts are obtained based on sall correlations approach.,
wee corppare them with the existing resnlts diue to Gupta (1973) for positive eqni-
correlated cases, Our results appear to agree quite well with those in Gupta (1973)
for stiall correlations. Tn Section 13, the pereentile points of the maxima are com-
puted for the hamoseedastic bnt unequally correlated (positive or negative) normal
variahles ease. This we have done in the context of anto-regressive process of order
one. where variances (of the variables) are equal and correlations are imequal fol-
lowing a decaving pattern lov inereasing lags. Next.in Seetion LoLowe disenss the
computiation of the pereentile points of the maxima. for the heteroseedastic but
nueqgually positively or negatively correlated normal viariables case, Unlike the last
ciase, we have done this in the contest of antedependence (nonstationary) models.
To assess the adequacy of our simall correlations approach for the maxiia in this
case, a limited simmlation study s also carried ont,

Frrt hertore. swe conrpare e approach with the well-known Bonferroni hounds

approsimation for hoth homoscedastic 2 ad heteroseedastic cases,

Capter 5 contains the summary of the present work and provides some suggested

topies for further rescarch,



Chapter 2

Background of Order Statistics
Problems For Correlated Normal

Data

In order to make inferences for order statisties from an equally correlated sel of normal
random variables. Owen and Steck (1962) showed that the moments and prodoet mo
mients ol the order statisties for normal variables Tor auy po p being the equi correlation
cocllicient between any two variables. can be obtained from the corresponding moments
and product moments of the order statistics for independent (p = 0) normal variables,
Suppose that X X, L X, are independently and nornally disteibnted random vari
ables with E(X,) = 0 and F(X2%) = 1. forall i = |.2..... . Also suppose that
No is another standardized normal variable bt with E(NG.X,) = O, Tor p — ) and

(XoY)) = —(—p)%/(] - p)l". for p < 0. Let Yioo... ) ST Y., be the nocorrelated

0



random variables such that F(Y,) = 0. E(Y,?) = Land E(Y)Y,) = p.lor all i # j. Now

1o obtain the marginal as well as produet moments of these correlated random variables

LI CRER A i), Owen & Steek expressed Yo (7= 120000, n) as a function of the
standard normal random variables Noo X000 \',.. given by
. Ly Ly .
}(,) = piXp+ (I ——/))1.\‘,’) (2.1)

where X,y and Y,y be, respectively, the ifth ovder statistic of the sample (X0 Ny) and
(V... Y.,). Based on this transformation. they obtained the characteristic function of
Yy as well as the joint characteristic function of ¥; & Y,07 # j. which were then exploited

tu compute

EOy) = (I=p3E(Ny).
EOYE) = p+ (L= p) (NG,
EOG) = 31 =p)2E(Ny) + (1= p)? ECX).
I-,’(Y(,‘,) = 3p° 4+ 6p(1 = p)E(NE)) + (1= p)? E(X).
and YooYy = p+(L=p)E(XNHN)).
These anthors provided the means. standard deviations, and the third and the fourth
cenfral moments of Yg,). in tabular form. for selected values of nand p.
Using the above transformation (2.1). Gupta, Piltai & Steck (1961) have derived the
distvibutions of the lincar function Z = YI_, a;Y(). More specifically. they obtained the

distribution fuuetion of 7 in terms of the distribution function of 321, @; Xy given by
n i
] i L . L o
Pe{z <z} = Pr{d a;Xy < =[p/(l - p)]:(z ai)Xo+z/(1=p)F}  (2.2)
i=1 i=1

for p>0,and



Prlz <z} = II{LH Xy € =[-p/(1 =)= (Lu AN RIS ~-p) o2

=1

[or p<.

There are. however, some practical situations where correlations tmay he dilferent.
For example. in familial analysis. it may be necessary to study the order pattern among,
n family members. where the variable tiwder consideration for those fimily members may
be unequally correlated. Let py; for all 7 # § be the correlation coellicient between #th
& J1h members of the family. Tor such a general sitnation with corvelation strnetnre
ECY:Y)) = p, (0F 7). Gupta et ale (1961) also obtained the dist ribntion netion of the
range W= marY, — minY, of correlated normal random vartables for e 301 hased on
the Vefunction deseribed by Nicholson (1913). For the trivariate cases the distribution

function for 1 was given as

' 01 ! ”
Priil <) = =2V (—. ~—ii) 4 (e )
e f( - 0% ar u,.\/(l i)
n T wl - T w u'().,
M a1~ 0%) TR T )
L, wihy oo Wiy

PV )

“2:! iy sr— ()f, thay i gJ(i :- __”‘n‘)

where V{/ ) is the V-funetion deseribed by Nicholson (1913), and

a; = VIl-p,)
012 = "(l + = e — f’uu)/”le"z:;
Dis = =1+ pay—pre — pra)/ oy

and Op = —(l+ pra—ms — pa)/eisag.



Later on. Gupra, Nagel & Panchapakesan (1973) presented the enmalative distribu-
tion limetion of maxima. but lor equal correlations p > 0. BBased on the transformation
. 1 Lo . . » . . . . .
Yo, =p2 Xod () = p)i Xy, as disenssed above, they derived the distribution function of

Yoy =mar(V, 1 <1< n)as

Fulllip) = Pe{Y., <11} =/_ D {(ypt + 1/(1 — p)F}oly)dy (2.5)

where @(y) and w(y) are. respeetively, the cumulative distribution Tunction and the
density funetion of a standardized normal random variable Y. Further. they provided
thie pereentage points of Y, ). numelyv the values of £ satisfying I5,(H:ip) = 1 — a for
selected values of a4 and p i the form ol tables. Note. however. that this approach doces
tnot permit one to compute the distribntion function of Y,y for p < 0 as well as for
unequal p's.

ta i variate equi-correlated situation. Rawlings (1976) considered the probability
integral for cachi of the s < variates to have magnitude less than b and the remaining
no— s variates to have their magnitudes more than b, Following Gupta (1963) aud
Curnow & Duwnnett (1962). Rawlings ( 1976) computed the probability that ¥ to ¥, fall

below & and Yo to Y, fall above &, given by

~ ~ h h
Ly(hisin—s.p) = /’ /l / / Oulihee o aypip)dyn.. o dy,
SN S - -

'(,.Us+| . d.’/s-}-?- ERE (l.'fu

= [-\ o) d(e)]*[1 = dee)]""de (2.6)
where

Plw) = /n' o(v)de,

I+ pl'.r
(I — /))%

with w o=



1o

Suppose there are m independent groups or clusters with o equicorrelated normal vari
ables in cach.  For example, in a familial data, there may be i independent fall-sih
families each with o sibs having equal corvelation p. hn such sitiations, Rawlings (1976)
has then used he above probability Ly (frison— s0p) e compute the probability density
function for the (ny ~ 1) order statistic. Yo, o). given by

¥

f(yi"(l"‘“”o-”'-f’)] = Z ‘\‘(lh”m-{“r”,)(H:I’u"m-{“;}) (3'7)

J4=1

where ng = nm . and

-
l .II=|
",

Nop (hhy = ‘ e
(et fu) ) Bip+ Lo —=p)Bay, -+ Ton ~au,,,)

I)(.'I:l"“ruv{“j” = “’"(”: ”'n'ﬂ)]m—l'-l [l I.Il.:l Llysn - s ”./-/')I
s [Lewoi (s =ty — Loty )|

with 72(.) as the usual beta function,

!

"(l —-/:)5
woo= LA
"\T5,

ind I /(L)

1l

tt; be the number of variates in subset j which are preater than g and pis the number of
subsets having af least one variable greater than g, o his paper. he talmlated the expee
tations of order statistics in correlated samples of o independent sets of & equicorrelated

multinormal variates for selected (410 1o and p.
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For handling negative equicorrelations, Hoffman and Saw (1973) provided a compu-
tationally feasible method for finding the cinmnlative distribution of the rih ranked of
a setof equicorrelated normat variables. More specifically, they computed P(Yy < h).
ro== 1,20 00 o based o Tehebychev-Tlermite and Legendre polynomial. The probability
was piven by

n

Poalhop) =PY,y<h) = Z di(ron) e (hep) (2.

k=0

e
o
N

where

2k 4+ 1)
(200 +hk+ 1)
and S (hop) = /ﬁ Le[2P{a 4+ Ou) = 1]z (u)du

~

di(ron)

TOk(rn)

with o = h/(1=p)2.0 = pr. =(u) being the standard normal ordinate. (e n) being the
it order ‘T'ehebychev-llermite pols-nomial on re {001, 1 }osealed. Li(v) being the
Fth order Legendre polynomiial in o0 and £(a + fu) being a suitable complex function
where 0 is complex. Note that the probability obtained as above by Hoflman & Saw
(1975) is also valid for equal positive correlations. For 0 < & <10 and r = 1 = 10.
they tabulated the values of di(ron) aud Ji(5.p) for selected A and p. Using these val-
nes. they obtained Pyg (00 —1/9) = 0.000000: Pyp10(0. 1/8) = 0.008939: Pp10(2.1/8) =
0L.809761: Pyggo(l. 1/2) = 0160560 Prow(21/2) = 0.866909,

For a very special case of general (equal or unequal) correlation structures, Greig
(1967) developed an approximale formula for the moments of the smallest values in a

correlated normal rawdom variables swith £(Y; Y1) = piig # 0, and E(YY;) = 0, for all



12

i £ j & #1141, Sinee the application of the normal multivariate integral to calenlate
the exact moments of the minima is cumbersome. Greig provided liest an approximate

expression for multivariate probability integral @, in ters of ¢) as

| Y
Oy ..oy piy) = / / on(tye oty o duy oo duy,
U i

n—1
L
a Dy () TTUU= (8 = pren) T(1 =0y ()] (2.9
=1
where @, (v, ccuipyy) ts the multivariate normal density, and
POy (y) = / ) (2.10)
Ju

with or () as the density of a standard normal random variable, Utilizing this expression,
the author. then obtained an approximate result Tor the moments for the minin as
n—| :
faw 2 TIU = (0 =pus) 200 = p12))] {(Z.11)
i=1
where g, is the sth moment of the smallest and ge! = 0 [ 77 o () {0 (y) Yy, The
above approach taken by Greig (1967) does nol appear to be realistic, This is hecanse,
in reality. the other off-diagonal elements may not be negligible, althongh they were
neglected in this approach.
Note that order statistics inference is also essential in the linear regression analysis,
mainly. ior the detection of outliers or influential observations, For example, consider

simple linear regression model
Y o= X4 (2.12)

where ¥ = (Y}, Yoo . ¥ s a nox 1 response variable, X s a known design matrix of

order n x &, Jis a k x | vector of unknown parameters aned ¢ isa 10 2 | ervor viviable



distributed as « ~ N(O.a2l,). £, being the n < identity matrix. Totest for the presence
of a single ontlier in a linear regression model. the maximum studentized residual test
statistic defined as 2, = maa | o fs, [is widely used, Hereo ¢ = i — .\';"3. X s
the 7/th (F = 120000 0) row of the design matrix X, 3= (XTX) "Xy is the least
sqnare estimate of 4 | and <2 s the /7th diagonal element of Vi) = (I, = V)62, the
estimated variance-covariance matrix of the residuals. with ¥ = X(XT.X)™' X7 and
A= Tl — k)= g7 (L =V )yl (n—k).where ¢ = (cocge . o,)T is the p o+ Uresidual
veetor, This £2, statistic is recommended for use in situations where the variances of
the individual residuals are expected to vary a great deal among themselves, There is
another statistic, namely, the maximuom normed residual test statistic defined as Ry =
{n/(rr = k)}Trmar | ¢, /& | whieh is also frequently used but for the situations when all
residuals have a common variance, Note, however, that the exact critical values for these
two statisties are not available,

FHenberg (1973, 1976) has wsed the first Bonferroni bounds in approximating the
critical valtes of the maxinnm studentized residual test statistic R, = max | & |. where
&= fs (F = 1.2 .. on)is the standardized least squares residuals. These Bonferroni

bounds may be simplified as

nPr(1 &> Cu) =D Prl & 1> Co | & > C)
i<
S Pr(mar | &> Ca) <ulr(| &> Cy) (2.13)
with ', as any critical constant. For the maximum normed residual test statistic 17,
Stefansky (1971, 1972) devoloped the hbounds for the percentage points and it was shown
how suceessive improvenents could be made to the initial upper and lower bounds. It

was also shown that in many situations the first upper (or lower) bound is either equal to

or extremely elose to the exact pereentage point, the first upper bound for the 100(1-a)



R

pereentage point of 77 is heing given by [(n = &YF/(n ~ & — L+ F)]F. where £ 3s the
100(1 — a/n) percentage point of the 7 distribution with 1 and n - & - 1 degrees of
freedom,

In small sample cases. these I8, and £ tests are not equivalent. [t has been shown
in Sutradhar (1996) [see also Sutradhar & Cha (1995)] through a simulation experiment
that the maxtmum normed residual test is more powerful than the maxinnm studentized
residual test, irrespective of the situations whether outlier arises duce to slippage of the
mean or inflation of the variance of the data, Consequently, between the bwo tests, it was
recomnended in Sutradhar (1996) to use the maxinm normed residual fest statistic
for detecting a single mean-shifted or vaviance-inllated outlier in the linear models with
fixed designs. Note, however, that as discussed in Sutvadhan and Cha (1995), the fivst
upper (or lower) bound for the eritical value of 127 Tound in Stelansky (1971, 1972) may
be quite liberal inapproximating the exaet eritical valne of this statistic itsell, espeeiadly
when the residuals are heteroscadastic for certain choices of the design matrix,

It then follows from the above findings that in certain sitnations when variances of

the random variables under consideration are unegual and when one is interested to

n?

find the p-value of a test statistic similar to If7, the application of the first. Bonferroni
bounds may not be a good approximation to the exact p-value. Consequently, it seenis
quite appropriate to seek for alternative ways to calealate the eritical value for the
test statistics such as maxima, minima or general order statisties for normal correlated
variables with unequal (or equal) variances. Motivated by this, we, in the present thesis,
generalize the distributions of order statistics for the eqni-correlated (Cas well as vertain
special case of nnequally correlated ) normal variables [ ¢f. Gupta, Pillai & Steck (196:1),

Greig (1967), Gupta, Nagel & Panchapakesan (1973), Rawlings (1976), among others |



to the case where heteroscadastic normal variables have positive or negative unequal

corrclations. We adopt a sinall correlations approach to achieve this goal.



Chapter 3

Order Statistics From Unequal
Correlated Normal Variables : A

Small Correlation Approach

3.1 Joint Density Function

Let Y1, Y5, ..., Y, be normally distributed with mean zevo and variance covarianee -

trix N, where Y = DiRDE

16
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Wi”l I = fa e | R L3 "”d l) = 0 0 0'2, e ]
\ /’H] /'142 /’1,.‘1 PR l \ 0 0 D sae fJ’fl

where p,, in the it matrix is the correlation coefficients between ¥; & Y. and o7 in
the diagonal mateix £ s the variance of ¥, Now we assume that p;'s are simall in
magnitude, This assumption about the simall correlations is reasonable for many prac-
tical sitnations, for example. in clusterd vegression problems, where the within cluster
correlations are usnally small. In such cases ( for example in familial data). the sample
size i 1w usnally small too,

Lot Yo Yeye oo Yooy be the order statistics of the random sample Y3030,
The primary goal of this chapter is Lo dervive the general marginal distribntion of the rih
()l"(l('l' statistic, Y (r = (.20, n). Inorder to do this, we require the joint probability
density function of the order statisties ¥y, Y2). ... Yy which we will derive diveetly
from the joint p.dd, of the original variables Y7, Yoo . Y, under the assiimption that
s are small for all i # 4. Tor the derivation, we. first. approximate the joint probability

density funetion (p.d.l) ol the original random variables Y7.¥5,.... Y,

| Lyiom ye
. : ) = VR :
-, (”l‘!/)""‘!/ll"-‘) [277]"/21.\_”‘/2(\ (3‘1)
where Yo = (gt oy, s & no x 1 random vector, by its Taylor's series expansion

abont p;, = 0. More speciflically, for small p;;%s, thie Taylor's series expansion of the joint

pabf. of the original variables, [, ..o g0 E). when evaluated at p; = 0. s given
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Sy ... i d)) = e T
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. .}
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ik = Ty
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with D =diag(et.ai,....0%).

Let Yy < oo € Yy be the correlated order statisties of Yy Yoy Then, piven
the realizations of the order statistics 1o be gy £ 000 €y the original vaiiables
Yo (7 = 1,200 0n) are constrained to take on the values gy, which yvields the same
expression for the similar terms in equation (3.2) for all »! perimtations (4,64, .. .. 1,)

of (1,2,....n). Consequently, we may obtain the joint probability density funetion

G (Y ey - - - Y S)of Yy Yigp oo vy Yiuy as given in Theoren 3.1,



Vg 18 given by

"

- . - - - 2 " 2 2
) (.’/(I)' Jzy-vo - Yiny: \“) = [[ Wt ’)n 2_, Haodon — (Ju Z!/(l) + 5, Yo
<y =1 <y

I n

SR TR VTR S M SR RS )
APk e

I , (l/“)l[[z) ..... Yy I)) (33)

\\"l('l'('

(" = nll,

Dyo= 2 =250,
<7

1 L

) = 2(u—-l)!;\,

Seo= (=2,
1<

Tro= 20 =3 > Wk
(EIER

and Moo= =D DT W

tFaEREL

Cuc Vo VW T and TS Deing given by (3.2).
Derivation of Theorem 3.1 ¢ For simplicity, we start with » = 2, [t follows by
(:3.2) that for n = 2, the joint p.d.l. for the original vartables Y71.Y; is given by

I, . l.. .
;“l.’lf - :,“2!!2

X[ (gya: D) (3.1)

g 1 . . l . I
Ty X)) > [l s+ Ve + Wiy -
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where
* ‘ 1y 4391
Nt )y = "’—_‘—‘—-—’f-j) h=h
/(/l ) (-,"")l 3 ||/-
- Pis
[ 2 = l + —:'Z"
I
v, = A
n'lfr-.)
‘I — /’f.’
a7
‘.I = E
. .,
ilIl(' ” 12 = —!:'—57)-'

Now., consider the set o4 which is the union of the two mutually disjoint sets L1,

{tn-u2)in < ya} and Ay = {0y < i) There are two of these sets beeanse we
can arrange . ye i precisely 28 = 2wavs. Let 13 he theset of the order statisties defined
as 12 = {(yy- v oy <yt I follows that there egists one-to-one translomations
that map cach of Ay e onto the set B Inversely, inoset B0 yay =y g2 Tor the
points in Ay and gy = g2 g2y = i for the points in Ay The absolute valne of the
jacobian of the nndertaking translornmation for cach set of s 1. Thus the joint polf.

of order statistics Y. Yiz) may he written as

. . | 0o .. [, .
g5 (.’/(l)-.‘/('.'): v) =~ [l 2+ Vg + “” i — 5! Vit - ;;‘2!1('!-.')]

oL

xf ("/(n Yy “) + [y + Viawenywoy + —” u'/("-g)!/f.,

N N
—5 Vi - ,z\'z.f/(.,],l (!/(2)-!/(!)5 “)

(2 -1 [SL -
= [)'f s 222 "u'[(:)'/(z) - '—“) { “}L""’

[

(2 = 2y wiy LS (.'/m.y(z,; ”)



2 2 2
= US4+ D53 mawy — Qs v+ S50 uiyi
1<y i=1 i<y
< f (ny- vy l)) (3.5)
where
v; = 20,
2
D; = 2=, =22 =2y 1
i<y
N ) [
Q; = ——>_ V.
= i=1
2
and S = (2= =220 1Yy
i<y

Simifarly. for 1 = 3. the joint p.df. of Y1, Y, Y5 obtained from equation (3.2) is given

by
' B 13_2]:1.22
FeynysX) = (a4 3 Viway, = 5 20 Viwd + 5 2 Wiy
1<y ==l “ gy
3
+ D Wangiyiulf (y1s yaoysi D) (3.6)
i#i#k
where
[y u ) = l e=3VIPTY
LA A S (2r)372| D'
' l 3 )
I'.‘) = |+;Z[),‘j
= i<
(- 5
Vi = — | prij— PikPyk
7:0, KEA]
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)
Wy = Lo
A
aiol
. gk
and Wip = ——
0‘;‘0’.,0';‘.

In this case. the realizations yy. gz ya of the original vrandom variables ave rearvanged
in ascending order of maguitude in 3! = 6 ways, Now. let £ and I denote two sets,
one for the original variables and one for order statisties respectively, where the set [
is the union of the six nmtually disjoint sets as By = {(nomaom)imn < ye < g} &y =
(o) < o < s By = Uueonas)im < oy < b Eoo= e o)ius <
o <ipte Ino= {(eyeysky: <y <t & Fe= {(yeyzamdion < g <ogds and
Fo= {(yoy vy v voy < w < gente Similar to the case no= 20 we can make an
one-to-one transformation from cach disjoint set of £ onto the set Fand | |= 1 for
cach set of L. For simplicity, we, first, compute the ordered function for cach ternn in
equation (3.6) considering the above transformations for cachi disjoint set of . So, for

Uy [ g2 32 D) in equation {3.6), we obtain the ordered function as
m(ay v ven: D) = Us[Tags v ey DY 4 TQrey oy iegs 1)
+ gy ey vy D) + Ty e vays 1)
+ ey vy iy DY+ Ty ey vons 1)

S (ay ey D) (3.7)

The ordered functions for the first term ol Z:fq Vi, S yzs wsi D) = (Vo - Vianya
+Vouyays) [y yae ys: D) in (3.6) is given by
hilyoy-yen-en: )Y = Vizlwaowe S sep vens D) + e d (e ways gy D)
+ gy Wy v e ) + geynend ey ey oy )

+ we S ey Yoy wey: )+ yepen S Wy iz vy D))
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= 20> g oy v gy D)

iy

Similarly. we may derive the second and thivd terms as follows

3
(e e Yy DY = 2Via 3wy S (o vy vy D)
i<y

3
and (o Yo v Y = 280> sanan Moy vey- ey D)
i<y

Combining the Jast three expressions, we obtain the ordered function of Z",-’q Viiuiyj

AS (s g2y D) s

gy ey oueys ) = Iy ey ey PY 4+ ooy yes ey )

+halimy g2y Yen)

3 3
= {Z "'},} = uiyond Wy Yy yens D) (3.8)

i<y i<j
Similarly, we obtain the ordered function for cach term of }:",’,(J Waoukud [y gz ys: D) =

(Weentys + Wiayiys + Waaydyi)FGne yae gt D) in (3.6) as

3
Iyay s ek ) = 280D vl Mo ey wey P)

i<y
3
gy ey gy P) = 2”'I32.'/iz;').'/.é)f(y(l)!.’/(‘2)1.’/(3):1))
i<y
3
and By e D)= 2Wa Y udid S ey wep D)
i<y

respectively, vielding the ordered [unction of Z'?q ""'ij!/?!/ff(y].y‘)» ya, D) as

gy e DY = flyays ey vey: DY+ 0oy ey veys P)

+in(yys Y2y dys )

3 J
2 {Z H '.-j} Y utwia S oy vey- vy D) (3.9)

i<j i<j

1l



In the manner similar to the derivation of (L3) & (3.9). the ordered Tunctions for cach
term of 37 Vind fOn p2. e D) = Vi + Vans 4 Vi) (e peyse DY in (3L6) are ob-

tained. respectively, as

Aoy e ) = Win oy s vy D) + vin I ey gy iy D)
Fuin L oy tens ey D)+ win S ey ey gy D)
+'l(;)/('/(;) wybens D) i d (ren ey s D)

= 21 Z'I(,] By Yeays sy D)
1<y

4
Jalnys e tign D) = 28003 gy Maas yens sy D).
1<y

i
and j:;(!l(l)-!l(-z)-!l(:n: D) = 2"?;2!1.(‘;;./'(!/(|)-!/(2)~!I(:;)i ).
<)

which are exploited to compute the combined ordered funetion of )_‘,\ Vintfp oy D)

as

Jmy v D) = 0oy e e D)+ Qoo ey vy D)
+isl iy Yy ¥eny)

= {Z‘ }Z'l(.)f (o ey yes D) (3.10)

=1
In the similar way. we also obtaiu the ordered funetion for cach term of ):’,’Q Wk irie, u
S ey ) = Wzaytveys + Wosiydus + Wy S (i 2. 4 D) in (3.6), ve-

spectively, as

kl(!’(l]ﬁ”('))sy(:i); D)y = Wllz:s[.'lﬁ).‘I(Z).‘I{:s)f(.'lu)-.'I(z)e!l(:s)',’))



FyinyoysS e yays gy D)

+yinyeyent oy vy v D)
+yiayenynd ey wesy yiy: )
+yinyeat ey woy e D)
+'/(;)'I(z)'/{|)/('/(s) o)

= )“nuz Uiy r i S - ey e D),
i<y

3
’-'z(!l(l)-!l(z)-!/(:s)é D) = '-3”"'12232!/f,‘)!/(,)!/(k)./'(!/(1)-.fl(2)~!/(:;)i/))-
<y

3
and ks(roy g v 1) = 2W s 0 wdiuo s S oy ve- et D)
i<y

By nsing the above expressions. we obtain the ordered function of Z,Q Vioky2y, ux

£ (e ya gt D) as
Eyay gy e D) = kil ke gy D) + k2o 9e- ey D)

+halyay Y2y vimy)

3 3
= 2 {Z ”]‘.‘jk} D iy oy ye ey D) (3.11)

i<y i<y

Next, combining the results of equations (3.7)-(3.11) for the five terms in equation (3.6},

we obtain the joint p.dl of Yy Yoy Yi) as

M1 3 H 3
gyl ey e X) o~ (60U + 2 {Z 1".-,-} Z Yoy — o {Z‘ }Z '/f.-;

1< j i<y =1 i=1

3{2”,,}2'/(:1'/(1) {Z ”'”k}

i<y 1<y i#i#k

lvl——

3
X > ubyrouel (o ey v D)
£ AR

= (U5 + D; Z'I(:)'/(J)"Q Z'/m+ “?Z”w"m

i<y i<)



]
+ I: Z .’/(’,).”(,:).‘I(A')]."(!l(l)-.'I('.')-!I(:‘)i ) (3~l'-!)
1#%k
\\']N‘l‘(‘
5 = 3%
i 3
Dy o= 23 0, =2 =),
1<) 1<y
l N
= = 2 — [}
Q; = 3 _Z = (; l)L\
=1
l R
S5o= 52y ,J_(s—’)Lll,,
= 1<y
3 3
and 175 = 2 Z BV = 2(8 = 3)! Z Wk
1#1Ek ey
As done in the last case. we now start with w = L. For n = L. the joint pulf. of the

original variables Y7, Y, V5. ¥, by (3.2) is

b -
TOnyzeysoyeY) ~ (U0 n+L\.,u,u,-— —L\ U D D LI

1<y 1<

+ Z Wkl ok + Wisatn Yoty

i#)Ek
X[z sy D) (3.13)
where
! —Lyin-ty
f(.’/l-.‘/'l~.'l.'h W45 D) = mf 2
LI
(’| = | + ;— Z ,)IZJ
“ gy
y e Z
o= iy — [k gk
7ic, kit
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-1

2

W, = —Lu
oo 2.2
U‘O'J

Piilik
Wyop = ——
L ﬂfUJﬂk
Prepse -+ papa + paps

TV T304

and Wiy =

Now, similar to the cases for n = 2.3, we consider Y1, Y, ¥i Yy and Yy Yo). Yy Yy as
Lhe sets ol original and ordered variables respectively. Here the set of original variables is
the union of the 21 mutnally disjoint sets because of 1t = 21 permutations of (1.2,3,1).
By making one-to-one transformation from cach disjoint set of original variables to the
sel. of order statistics. we can obtain the ordered function lor cach term of (3.13) in the
way similar to that for the case n = 3. Alter a straightlorward algebra. the ordered fune-
tions for Uy [ (e e yas D) i Vigidi [ One o yse yas D)0, ViR T (e, s yas D),

fe, Watu FCne s s s D) and 0 Waiikw2u, 06 T On - y2o g yas D) aves respectively,

sinmplified as

(g e v gy D)= R0 (oo geys v -y D) {(3.14)
a4 K]

R Cray- meay wen-yey: DY = ~I{Z"'},-}Z.r/m!/m
i<y i<

X Sy w2y sy eays D) (3.15)

1 K|

J oy ey aeys DY = (i{zH}):.l/f;).l'(.r/(.)-.r/u)-.r/(:;)-.f/(.n; D) (3.16)
i=l

=1
-1 1 .
s ey deraai D) = 08 Wy S il
i<y i<y
X (1) Ye2ys W3)s Yeays D) (3.17)
4 q
and R (yoy Yep e gy D) = 2{ > ”"’}uk} > uiYi
ik itk
X [(y0) Yoz yenyan: D) (3.18)

For the last term Wl nyaysyaS (i, yae ysya: D) in equation (3.13). we get the same
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product function of the set of order statistics Yy, Yoy Yy Yooy Tor cach disjoint set of
original variables ¥y, Y. Y5, Yy which are exploited to compute the ordered funetion of

this last term as
Py ey Yeway )= 2lymaeueian S oo ey ey D) (3.19)

Based on the equations (3.11)-(3.19) for the six terms in equation (3.13), we then obtain

the _i()'lll( [)-(l.f. of )"(”. Yi')}. Y(,';)- )'i.i) gi\'('n I)\

1
i

14 1 A 1
= 1 r - I N o . - )
9 (!I(|)~.ff(z)-!/(:s).!l(-niL) o~ 21+ {E :".',} > U — ;h{ ‘.} > Uiy
= A

1<y i<y =1 =1
l
')' {ZHIJ}Z‘/(;],,(,) { L ”luk}
= 1<y 1<y IFITIS
4
X Z .’If,‘).’l(_,).’/(k) + 3'[”'1-‘.:3;!1(1)!I(-.').’/(:c)!/(nl
i#g#k

< oy ey venyens D)
1

fi) n
- - - X2 XN 2
= (U574 D3 wawoy — Qy 2 uiy + 55 Do wiymi
=1

i<y 1<)
4 ] _l,
+17 X v + M7 Y2 vwsnmsmsn)
igj#ER vk A
x [ (.’/(1)- 2y Ve Jys /)) (13.20)

where

Us = 2000 =
it} |
Dy = A3V, =201=2)3"V,
i<y I’J
l 4
Q= 56 Z ',-: (4= 1) Zv
S o= —sZu,,— (41— 2y ZW,,
2 i<y 1<y
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'I'; = 2 Z “u_; 1'_ ”‘ Z ”n_;l».
#1#k i# sk
4
and M7= 20W = 20— 0 YT 1V,
igykh#l

IMinally, following the patterns for Lhe joint probability density functions in the equa-
tions (3.5), (3.12) & (3.20) for n = 2,3 & 4 respectively. one may casily obtain, in

general, the joint p.dill of Yy, Yigy. .o, . Yiuy as given in Theorem 3.1,

3.2 Approximation to the Distribution of a Single

Order Statistic

We now turn to the distribution theory of a single order statistic nnder the assumption
Lhat pi;'s are small. An approximation to the distribution of Yi,y (1 < r < n). the rth
order statistic, is provided i Theorem 3.2,

THEOREM 3.2, Let Y4y, Y{z).. ... Yy be the order statistics with joint p.d.f. as
given in Theorem 3.1, Then the marginal density funetion of the rth order statistic, Y,
is piven by

n

) & TR0+ D)3 A () = Q0 3 A () + 83 57 A ()
i< i=1 1< j
n

+ Ty Z M)+ 5 Y A un), —o Sy oo (3.21)
1k ik

where U5 D5,Q0. 85T & My ave defined as in Theorem 3.1, Further in (3.21),

Slon) Sl F) ™ 1 = Pl )

I
(r—D)n -

with (i) /y(,, J{x)de. [(x) being the p.d.d. of normal variable.



S0
and for example. for 7 < r & j b >

16,00 . Looot’ b .
’\u(kl)(/(')) = ./(.’/{r))'\:[‘,ki) (.‘/(r)) J'(,u”('l(:)) ity =12

G40 N ool ! 1,00 .
’\ukj(lk) () = TN e\l < e =102
andfori<r.j=r&k>r
\r t) U()(' ) = 1 / A toont” 000w .l =1.2
M \Yy) = /(,) () i(gk) (U(ry)- (i,,A-m.(.'I(,-)) el =1a
r.r tx0 — ty o \li oot \mmu ol oide = 1.2
,JA({) (’l(:)) = .’l(,.).’(!l(v ) i(jkl) ('(r))’ A-(,",”[,(.f/(r)) s Bl = 1os

with

2.r
18,0087 : o Y Fe s o
Nidn (W) = / IT v ey la= V2 0ora=ij  (3.22)
a=1(1)r=1

Sl =U0Tore £,

lflU , Nt o 0oy
Nk () = / I oo Wierra) s egrage fa= 12 Hor a =i, j H(3.23)

“lamn(-tFE
Clo=0Jorasd gk

—_—y

2, . . 8 7 .
where [#" and [, _ represent the multiple integrals [Z0 ... [Z0 and [0 T MO L

speetively and

-y = Ty W) - Tie-n)

I = Ha) I Wa-1) - Syey)
‘I.’/[|.r—1] = d.'/(l)”!/('l)'-"I.’/(r-i)
(I!I[r+l.n] = (/.'I(u)(/!/(u-l) con (/.'I(:--H)

Derivation of Theorem 3.2 : We start with the approximate joint probahility

density function of all n order statistics in (3.3) and then integrate ont the variables
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Yoo oo Yooy Yeeayeon o Yoy inorder to derive the marginal density funetion of the

rth order statistic, Y (1 < e <) as

2,r
gileny) = / /;_l.(l-(.'/(l) ----- Yoy S Yepr.a) )

2.r " . .
= / / ,[”.7 + 153 i — @ Z Yo + 55 Z YV
* = <y i<y

n
ria 2 -
+10 S whwoe + MY wawaden]
iZiEh iZ A

X ’('/(l) Yezys - Hin)s I)}(l.'/[r+I.n](l.'/[l.r—l] (3.21)
Now, by computing the integration for cach term in equation (3.21). we obtain the
probability density funetion as in the theorem. The steps lor the integrations are given

helow, For the fivst term. we simplify the integral as

2
/ / o gy Yy DAY e -y
2.r ', ‘ ‘
= {/ ./(!I[l.r-l])‘l!l[l.:-«-l]} {/” ./(!I[r+|.n])fl!/[,..H,,,]}j(y(,.))
I -
BERTRST! el [' = Flye))" " M) (3.25)

which is @(y(). as defined in (3.21).

Next, for i < rand j > ro the integral in the second term may be expressed as

/ / '/( )'/(”f rI(l) .’/(n): I))(,.'/[r+l.n](l!/[l.r—l]

= [(u) {/ oS- pdup., -—l]} { [m_l ./.(.'/[r+l.n])d.’/[r+l.n]} (3.26)

Now, by using /; = 1.4, = 1 and /, = U for « # i, j. the integral in (3.26) may lurther

he expressed as

/ / '/(,)f/(,)f Jirye o v o (n) /))‘/.f/[r+|.u](".f/[l.r~l]
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= [l { /‘h H .'/:,‘:).l‘(”[l.r——l])‘l.’/[l.r--I]}

n=1{Lyr=1

X {[ - H !l(’::)./.(”[r}l.u])‘/!/[/'lI.u]}

u:n(—!)m

. 1oun” 1000
= ,/(.”(r))'\[(‘,k{) (.’I(r))'\,(:kl)l,(!I(.-))

which is ,\}_"(‘;ff)(y(,-))-

Similarly. for 7. j < r. we obtain

2
. . E
/ [n_l oy (ays -+« Yos Nupeerdup =y = Flog) A e Nz, ()
Fioo
= A (o)
and for i < rand j = ro we obtain
ar . 1 oot
/ / I.l/m.f/(_,).l(y(n ----- Yoy Dy = 0l SOy (o)
ooy
e (uI:!)I.(”h))
(i
= '\r.l(;:l)(”("))

In the manner similar to the computations of the above integral, we may obtain the

expressions for the remaining integrals in (3.21).

3.3 Special Cases : Distributions of Maxima and

Minima

The maximum and the minimum order statisties in samples of size o are of special

interest in nmmerons practical applications. Aw approximation to the distributions of the



praxitain and tuininmm order statisties follows from equation (3.21). The probability
density Tunctions of the maxima and minima are. respectively, given by

"

nlig) o Urotgu) D032 NGy ) = Q,,Z\f{',‘i‘bf'/(n] )+ S0 2 A )
(X}

=1 <y
I Z: \:,'A'[',’, Yoy) + M Z \”” (#ony)e —x <y < x (3.27)
tfpfk T IFAF3

and

ir

aituay) ~ U latuy) D)0 A a0)) - (J,,L\ffﬁ.':')('lm Sy N )

ey r==1 1<y
A0 3 A o)+ 0 YT N gy <y < x (3.23)
thatl ENEIE2
In cquation (3.27).
!
'-"(.’/(,,)) = G“_—"“[/ (I/(n))] '/(n])-
and Tor example. for g b - n
I £ torout .
. ”(“'("(ul) = ’(H(,‘})\”( L) (](”,) ’I'I,[ = I._Z
L . NN ]
'\,,*'(Ik, Grgmy) = ,,(."‘n])’\,'l[‘-([; (!l(n)). Lot he=1.2
and fov i b v & f=n.
r 1,00 - oo .
Addnton) =y g NGy ren ). 1t = 1.2
\fefatat .
,4({; (/(u)) = '/( ),(U(n)}\,;‘(,) (’I(u)) ’i-’,.u-lk: (.2

with

AU
'\lr(‘\” (’I[“) )

Il

/- T v Mupm-g)dpamy. o= L2 for e = i.j (3.29)

a=l()n=1

& f,=0 for a# 4]
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for example,

Stnilarly, in equation (.28}, we hiave

l . n—= *
oyy) = —‘—“'_,{l - o)l 1./(!!(:)}-
(n—1)
and Tor example. for . j &k > 1,
100,60 . 00 .
'\,'J(’L-()(!/(l)) = ./(.‘/(l])'\,.,(im,(.’l(l))- bty == .2
L0 . tot 10 )
'\,_,L-l([‘) (.’/(l)) = ./(!/(!))’\,_,L-'“L)/,(.‘/(I))- l,. [, 1y == 1.2
andfor j=1 & ich> 1.
1,00 4 o, , .
Ay Giny) = !/(f,,f(!/m)'\:(f,);,.’;')/_(!/(r))- liol, =1.2
ot 0 ! . ' ) .
Aoiy ) = .’/(;).l(!/(lb)'\:;‘-'('_','[';[,(.'/(I)]- Lol b= 1.2

with

Ny = /, I TG 1= 12 ora =ik (330)

! a=n{-~1)2
& ly=0 tor a ficg ok
for example.
Note that in the manner similar to that of (:3.29) and (3.30). one may write the itegrals
for the remaining A's in (3.27) and (3.28). Farther note that i (3.29) and (3.30), we
just have expressed the speeifie A's in teris ol integrals which we now simplily in the

following section.



3.3.1 Computation of the Integral in (3.29) for general ¢,

In practice. one requires the exact expressions for the above probability density functions

of maxita and minima in equations (3.27) and (3.28). In order to do this, one needs to

tod oot

compute the integrations for A 4" (ye.) and ,\z'/i{(’,‘)';l(y(",) in equations (3.29) & (:3.30)

respectively for peneral £, For the sake of simplicity. we show the integration technique

. . f’ . ops . .
below to obtain the result for ,\:'I:}\(,’;’ (#(my) only Tor (3.29). More specifically. in this

subsection, we compute the integral of the form

n
I(‘[(n)) = / H .‘I‘E:,‘).f(y[l.u-l])(I.'/[I.n—l]- (‘;:”)
’ a=j(1)n-1

for general 1,
3.3.1.1 Aids to Compute (3.31)

As shown in the following seetion. we need to evaluate two integrals

nlr) = / ' "3 du (3.32)
i gl u) X
anel &z) = / =T e (3.33)
for .2 € R to solve the integral in (3.31). In (33.32) and (3.33). ¢ can take values 0 or

Lor 2, 0 <d<as, and 1" is the sum of suitable number of 1. We. now. first solve these
two integrals as in the following for positive . and =
ot

[tis well known that the incomplete gamma funetion [, = fI's""1¢="ds may be

expressed in the form of a partial sum as

M . ~ Hr( -n
l, = / ST s = 1'(a) Z
Juo

N
r= ,'
[ ef. Gupta (1960, 1962) and Prescott (1971) | which may be rewritten as

:+u -

I
u"'l(” Z i'(f

—l)



Now. . > 0, direet exploitation of this result vields

- it i L+ o l‘(!’-}?l") 2rbtal - th
”(‘1) - (-I) 2rer l (T) ,=‘,QT*'—;E(F]:7-}_5_!' A s

(}(/.(Tz) -+ Z (u'(/.ﬂ'": I').l""l+l+!( —3!;-3

r=U
where
Q(l.o-‘*') = (-1 )’2"}',,'“ 1 Lf)..l )
o

4 -2' . —_
G(toay) = DrAbgle(p g LELY

and for z > (.

g L=l s v . ot g .
E(-) o (_])'1'2“ ¢ I(II+LF')_ Z | l(lf-l- Lj') .'-'('llr){l'H(
) \"“M’I—I_l ,_=”2"'“((I' -+ L_:—I' + ")! )

= QUL TA™) 4 SOGUL TV )T =50

=0
where

o S g g
Qud. T V") = (_])l (d + =1=)

S
V(- -’——:tl)
(4 D!

Gld. T V) =

Next for o < 0 and = < 0. by similar operation. we have

) = QU.aty+ 3 (Gt ate )V
r={)
where ((tootr) = (=1 o)

) = QULT V) + S G T )2 T =

r=l)

K

(L

Qv

(3.35)

(436}

(3.47)



with ATV ) = (=0T T V)
The above integrat ions lor 1(r) and E(z) are done for general £.a%.d. 7 and V7. But. the
integration in (3.31) requires the integration results for these functions for all possible

Looald T and Voo o accomodate all these cases. we define

Quw = QUia?). i=12....n—1
(l',u”\ = (l'(f,'.t’f;-zll'k). Lh=1.2.....n —1

oy, = (-1, . ik=12.....n=1

where
. - L+
QUid?) = (=12 T = )

I'(Lkl)
' 2 . 4+
ratlann iy, 4 4!

(I’(l,. O'fi I'k)

as i (a31).

Also deline

Qu, = QUiT, V) =120 e =1i= 12 on=2

.

Gy = Gl TN o) Joh =120 00— 10 i= 1.2, 00 =2

e = (=G jh =12 =1 =120 0 =2
=1
T = Y (4141, j=1L2.... n—1l.i=12....0 =2
k=j—1
=]
1',,- = + Z ;;—2+—';7 J=1l2 . ..on=1.i=012.....0n—2
k-_—_}-—[ k i
t
and ., =

(2w | D |5



where, as in (3.35),

i thl"{l""jﬂ—ll‘ | (TRl
(‘_)({I‘.-I““‘. ‘.'.:) — ('—l)]‘” (‘rl J‘ 2} )
. . ‘-‘,1'4._)_'1.._.
g

IV NOAREEE RSy

2k (d, 4 L gy

G T \:,:-: ry) =

with
1
di = Z"h r=1.2.....n =2
fr=1
wheve #f (b = 120,00 00) s the ndex value of ¢ nnmber of ry's used in the preceding

consequtive (7 function ina particular product. For example, for € Q 2, Gl (2 vy«
of Quq, and Quq, Tunetions ave rpand ry respectively, and for €Fyo, Gugy e, Quaody 1y
and dy = r; + 1y
Further. for positive Y7 (/= L. .. on) Cimplying .o > Gin (3310 and 2 - 0 10 (3.35)) and
. wml?2) ' . . . . N [P
for 2y > nylet ™70, G) denote a single combination of the produet ol (7 fune
tions and ny — 1y Q" hanctions, As (Cand Q Tunctions can he arvanged in "V, - o),
(say) possible ways to make siuch a produet, for convenience of sommation of all these
* H n PREY 0 ny aal i} ‘ "y PR
product combinations. we label themas "l (Q. () ... (Q.CH.....m 1l

fuy oy

(Q. 7). For example. for 1y = 3 and 1y = 2, all possible combinations arc
4 Ill"m( Q.C) = Quliwe, (e,
* H.;'m((}.(:') = (e, Q2 Ciir,
and  BI(QG) = G Gan, Qi

Note that without any lose of generality. one may label the second produet €7y, Qa, €y,

by HHQ.GYyor PH(Q. ).
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In this case, dp = rpody = 4y andin "’II,"“'(Q.(,'). Clsayry, = Gy Tar Vi)

aneed for iy = Land ny =4 all pessible combinations are

1 H,"m( Q.G) = Qs (rya, .,
! H-j'm( Q.0) = Qulraor, G, (Faon,
THNQ.G) = G Qo Caory Quay

A0

& ,I‘; ( (2. (l.) = (‘)ll!("'ZUm (".'M] r (J-Mfg

«l2)

TEET(Q.UGY = Crun ClaaynQsa, Quo

{2)

and  MT(Q.G) = (o @ 20, Qi q0r,

Heve dy may be ry or ryody =y 4 1y and in "l/,'”(Q.(:'). Clatyry, = Gy T Viira).
Note that any (.., or g, function will appear in the produet combination only if
it is preceded by a 67 function., More specifically, in any produet combination. (7, .,
Mmnction will be preceded by (5 = 1) “Q7 or "¢ functions and 7 number of ¢ functions.
Sitnlarly, inoany produet combination. (g, function will also be preceded by (j - 1)
(27 or G Tanctions and fneesher of GG olunetions, Further, note that. for the case when
smaller order statistices take negative values, that is, ¥, <0 (implying .« < 0 in (3.36).
and = <0 in (387)). the (¢ functions ineach term will be replaced by corresponding €™
Mnetions.
3.3.1.2 Expressions for (3.31) for n=2,3 and 4

In this subsection, we discuss the integration technique in details for special cases
with o =2.3 and 1. By using the notations in (3.22). for n = 2, it follows fromn (3.31)

that

)
[y = / .tf('i,f(!/u))dyu)
-



. LB —.(
= (l / f]“’f l(ll[(”

where
. |
Cr= =1
(27{)-‘0’[
Notice that in (3.38). the ntegral is of the form of p(r) given in (3.:32). Now,

the result for () from (3.31). we obtain

S "lif:'..l_
Hywy) = CiQu+ Z("umU(']‘mH i
ry =1
N Sk T AR
rp=0
where
A = i Qw
and v = e,
with Qw = Q.07

(.'(!‘.nf:r'\)

ﬂ"(l (l'"’“

Similarly, for 2 = 3. by using (3.22). the equation (3.31) yields

3 e ) .
Hyg) = ./..w /_\ .'I“)!I('-j).l(!l(l))./(!I(z))'/!/m'/!l(zl

2 2
"y 2y

. i 2y iy 3
= (2/ / 1/":)( v dyqy y{.i){ “2lyey

o g

where

1

(3.38)

by using,

(3.39)



1=-z=Y
(T+1) K+ =145+ = 14
| Rk d

1

=€

7 ]

™~

JINM

n=lap=1tu
G ()
(@r¢) '.".n;;— 1+ (P Ip)e (1)'1‘ K Z +
n=Hh

FOF for Mppaeril 'O "( + @V =

(L(.’"

(Z)

=t

(”"ff) |.r‘_l§__v l+”J+(?l+l1(r;?) ?"I'?:)“()l,) z )+

n=h

eyt + b D pepiitionnigy 8 T2 5 - pIey, ) =

N

1

=

r
n="qau

(“{ Talpg -
[”“51’7’“' L (Za4 ) n < H
=

=72 =l
ey Lenty) Z )4 ¢ 2 l+q+::j?)[,'1r|z“')' Z 4 YOIy = ()
o~ AN ¥
ute)qo om (egrg) pue (1) duisn
L Apmonbosuoy)y (§e0g) W pouyop ()7 WMoY oyl Jo S Eorin puosos o)) puw (7ig)

up () noy oty o SU (g = 4 s osed o) Ul su) agoqur jsang o) Hgfeg) 1oy oo

I o=l
(0r°€) ®ip l.?\(r 1?,]+l(jz]h u:)r/ ) z It
b ]
®ip ¢, .)(gl){;‘ /mf)z‘.) =

), " Gy
td

(= e

(?']""[)_éu_a_j(g;)ﬁ % l+‘;+i(:?7)"' 'J”l.') z + 0182 ,w./ 2, = (“’”")I

(2] m
2 zr.

0} ST [RIFo UL sUp) S(Qg0g) A fmoy
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.“,2) = (20wQ2 =( 2H Quw

i=1
€ ;m = C3Qulizor, = (2 X Uy,
0;7 = Callon,Qua,
\l‘(,'l) = CCwnGoayr, = o H('J!, e o =08 dy =y

=l

\\'“ll (22() = (2(’2‘”3!)
Quay = Q1. Ty V)

and Gy, = Gl Ty V)
Now. lor the case n =1, by (3.22). we write the integral from (3.31)

vy e pie
Hywy) = /_ / / U Ctind oo e T e duqyd gy gy
"2 yd ot

M) My ) ——;,- 7‘;"}‘- o~ L",‘
- ("/ / / l/(l) i (l'/(ll‘/(g) "”’.’/(‘.!} .’/(;()‘ . "[.’/[!t)

where
]

_
(2m)imyou0y

!

Now. in the mauner similar to that of n =2 and 3 and by nsing the results of y(e) and

£(z) in dillerent steps. we obtain

s iy
[yen) = CQ10Qulu + Oy Z {Q1Q20 s, ‘/(z:ll'Hl+| T Qo e Qo
r =0
<> _ "l 1)
+Chor, Qo Qo } + Cy Z z (€ 10m Qan, (":mu'l(z;f AL
Fp=Uryz=l

. . 2h+ra )+ Tukl ...1.\" , ,
+(ﬁ)l(l('20r|('li'!;rz'll e " ' woA- (‘I()r;(’2ll|r,(g)'ir',]

' ' ' ) 20y pry) b H..”’l' -
+C Z Z Z ('IUJ'|('2r1|r1('-'$vfgrgu|1 e braltl (-i."v‘)

ry=0r;=0ry=0
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R 2r|+f -H

ry=0

A 4 Z
QN E () 2k )+Tarb s
+ 30D Doy T

ry=0r,=0) ry=0

llej s .
i +Z(), }-}- S50 By

r1=0r,=0

(3.114)

wheoroe
! | | =
A S -
e e R Dl
. | | | l pat S
Vi = E%‘*"{;g'*a—f—o—_g'i*k szf
31
Py o= Is+tatl=l4+ > (l+1)
k=31
31
Ty = i+l +h + 1 =13+ z {le +1)
k=32
3
AP = (4Q1uQu@s0 = O TT Qo
=1
(_);w = (3¢ 10Qu(r30,, = (':;3(12)(":mr.
07" = (4Quain Quay = CoA Gaar, O,
(")-Zm = (z('luu(.,)m,(.,)su—( 1('wr,Qz,1..l|l)
\1'(|3] = C3GClronCladyry Gisagry, = C ]:[(Fr,,(J iy - do=10
i=
(71
and () = 3 MIETQ.LG)
i=1
with s = :;('2 =1
_'J_fl}
and  UIEQUG) = PQ, Gyttt
3“5(“((3'(") - :1”5‘2.)(2)((2. (;) [)gl|+rg)+l\|+l _

3.

Q.G



A1

where

A

311; ((J.(l') = ("Il)r| ((.)'..'l“{":ll)l'_v

(2)

HETQ.G) = Qoo Gaa,r,
UEQUG) = Grom Cate, Oy

with Q:q() = Q( ’-"* (T“:)

Qua, = QUi Ty V)

Qui, = QldaTaliy)
("ZM“') = (I'((I!. '.I;”, ‘-;l: ['.",)
and Gy, = ({cds. T, “."t‘;z: ry)

Here dy and dy will be ryp and ry + ry respeetively.
3.3.1.3 Expression for (3.31) for general n

It, now. follows from subsection 3.3.1.2 that for general n, one obtains

2.n
l(!/(n)) = / H .'/(r::)./(.’/[I.n—-l])(l.’/[l.n—l]
' a=1{1)n=1
7 1 "(Jl) "2"‘”
, Y 2) -ar — S
= (-t / f TR ey Tty iy
J=n -0
) )
~ " "=
' - =1 PIIE NP T A T
= (,,,..lA({' Y + Z (-)l )(I', ),I]:";H be ¢ et -+ L ("), ,(l'|)
ri=0 1=
NN ‘ ~ “
ST O ey A S S T e )
r =0 ry=t ry =0 ron =1}
[ e} N ) e B l
+ Z oo Z "_lf.f-("-‘z)(l'l,...,I',,_z)+Z e L ‘l»‘(,'“ )(I'l,...,l',,-])
ri=0 rp—2=0 ry= rp-1=0

nt
71 (T SIS N PR | R LN 13 g g
"/(")n n (n=1jln=2) ( 2 {n=y)n=1) (,i_;’,‘,)



where
) I
Cumy ——=T T
@)= (D
n—1
Al = ol TT Qo
=1

n—1

‘p(lu—”("la- KR "n-l) = ("ll—l H ("_/'l,..“-} \\'i”l llu ={
=1

tn—=1}) rn—1) I

' n=l)=1) ~ 1,
(I'|) ('u—l'A(l(l s )('[(ll—l)~l+|]()rl [(2[(11—1)—-I+2]v1|] l[A:n—l)-l+3

i

o

with 1, =0 if (n=1)=142>n-1and I;, = |, otherwise. Similavly /,, =0
if(n—1)y=14+3>n~=1and [, = 1. otherwise. urthermore. in (3.15). for 1 =

Do o =20 we have

‘In—1
11-![;-(110)(’.' ..... "m) —_ ("n—l Z ”_lll,'-(m)((2~(")
i=]
with
In-tm  — n-1 ( 'm
( ’ ) . L] L] res ’izﬂl r ,"‘
and CUETNQGY = QUG [yl T e
wel?rr)

where #¢; = 1 il the product function "= is ended by a (¢ fiunction (cf. section

A38.0.0) and Ie; = 0, otherwise. For the case when I = 1, &, 0=, T and V™ in the

square bracket [ ] are replaced by dor. T and V', respeetively, where the latter funetions

are taken from the last ¢ function in "~ H"N(Q. ().

Nole that one may exploit the integration result in (3.15) to obtain any A's necessary in
., 0007

(3.27) by putting appropriate values of £,. For example, for Ajdgy (y) in (3.29), we

require to put 4, = L2 fore=1.j and ¢, =0for all ¢ # i.J in equation (3.43).



Chapter 4

Computational Aspects and

Applications

4.1 Computation of Percentile Points of }/,,

In this chapter. we provide several exact percentile points of the disteibution of the
maxima for the correlated normal variables under three different sitnations. I the fiest
sil uation. we compute pereentile points of the naxima lor the equi-correlated (positive or
negative) normal variables with zero mean and equal varianee a0 Our results for positive
correlations are verifted with the results provided by Gupta (1973) among, others. Also
owr results for negative correlation will supplement some of the results provided by
Hoffiman and Saw (1973), In the second sitnation. we provide the pereentile points of
the maxima for the homoseedastic hut unequally (positively or negatively) correlated

normal variables. T'hese dist ributional vesults for the homoscedastic anequal corvelated

16
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pormad variables case may be applied to certain repeated measures data. for example.
o any dati sets, where the correlations of the data follow the correlation structure of a
stalfomary Ganssian proeess, sayve AR(L). T the last situation. we compute the pereentile
points of the maxima for the unequal positively or negatively correlated normal variables
with heteroseedastie varianees, T this chapter. we also compare the performance of the
Bunferroni bounds approximations witls our small correlations approach in computing,

the pereentile points of the maxima for both homuoscedastic and heteroscedistic cases.

4.2 First case : Homoscedastic equi-correlated (pos

itive and negative) normal variables

Bascd on the transformation as in the equation (2.1). Gupta (1973) provided tables for
the (1 a} percentile points of Y,y for seleeted values of 1. o and positive p. where
Yoy 15 the maxima of the n standardized normal random variables Y1, Yy, ... Y, having
correlation matrix pJ, — pl, with J, as the n % nounit matrix and {,, as the n x n
identily matrix. This type of transformations is not suitable to handle the negatively
cqui-cotrelated normal variables cases. Further more. this approach requires a difficult
imtegration (el. section 2.1) to compute the percentile points of the maxima. Instead of
solving this integral, Gupta (1973) has used a numerical approximation to resolve this
probilem, To examine the performance of our approach. we exploit onr method discussed
in the last chapter and compare the pereentile points ol ¥,y for a = 0.05.0.025 & 0.01
and p = 00001250200 & 0.250 with those given in Gupta (1973).

For the equi-correlated normal variables Y., 00, with E(Y;) = 0, E(Y?) = o2,
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forall / = 1.2..... wand EQYY)) = polorall i # j. we obtain the probability density
finction of the maxima by putting p, = p forall i & jand o =a* for /= 1.2.....0.

in (3.27). The density is given by

gnlyyp0?) = Uroly,. o )+“,,L\.','(‘i‘:’; Yy —Q,.L\a‘!‘i‘z', (#(me )
1(_)

rn 2200 '. 2
+-“,.Z \f]((kl)('/(“)‘ + 1, L \uk(l)('/('l)‘”)
i<y 1# Ik

it

+‘”; Z ’\;I_,'Lvlll(.‘/(n)*"rg) ( ll)
i# fh#l

where

e = n!{l+én(u~— Nty

!
D, = wl{p—(n-=2)p}—
T
|
- 2
Q. = nln=1)p e
o 2
wo= s
. 2 |
I,: = .N![Jz-—l
p
y |
- . 2
;‘111 = .‘"!/) ;T
m(.’/(n)-gz) = ’ii’(.'f[u)) |n‘:...=n,—’,:n"s

and for example,

\t 00

{100
,J(u)('l(u) '7) A

,‘J(k[)(”(n)) Inf:...:nf,:nl ) IM l_j - qu

with é(y(,)and :\u(”)(!j(”))ﬁd‘s incequation (3.27). Notethat the coeflicients 2,0 ()

[7al

S

s Troand M7 in (L) are the special cases of the coefficiemts defined in (3.27),
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Next, to compute the pereentile points of Yy, namely. the values of b we may casily

cormpute the distribition funetion of maxima from (1.1) as given by

(" (hop,a?) =
+
_l.
where
with

And for example,

I 1,00

Ay (- )

with

ln equation (1.3). for i, < n.

tt,

Nk (h)

pi'{}'i,,) <}
h "
/. .’/n(”(u)'a "f’)"’.’/(n)

{ ‘I’(I" 0' + [)n z \III!((;};) (ﬁ)aaz \flurtz(i)) )

i<y
n
SNBSS A2 (o
i<y 1#EEL
My 3y A (he?) (-1.2)
tEi#Ek#L
. ll .
b(h.o?) = / Oy )l
[
= / C’(”(n})(,!/(n)
S f:‘—‘...:.‘rf.:f‘l’2
= (l)(l' Iﬂ iz =adza?
h
‘l)(h) = / (‘)(.'/(u))(l.'/{n)
of -
i
= —[I'(H)]" 1.3
n![ (’] ( )
I
ft,00 .
- /_.t,’\min('/(n)-02)‘1.'/@) o lidp=1.2
h L,
= / ’\,,(u)(‘/(n))d’l(n) ,
T mi=,  =gd =a?

If ¢¢]
= lf(“) (I') |01'—-...’—rr"~n"

Lty = 1.2 (-1.-1)

h
1,00
- ./:\_’\;J[Jf\'l}(.’/{n])("lj(")

and £, = L2 o a = 1. & 1y = 0 for a # i j. ALES(h)
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is evaluated by using (3.27) & (3.29) given by

h
At = [ NG o)
= / 'I”‘". '(.‘I(u)) { / H .'/:’n“.l.(.'/[l.u-I])‘I.‘/[l.n«l]} ".'/(n) ( 1.5)
v ’ a=1{1)n-1

where t, =0
Next. by using the results of (). £(2) and [(yg) in the equations (3.31), (3.35) and

(3.-13). respectively. we obtain

W . m i <7 dr . ‘Li.r -L R
R Z{,{(—)' ()l T -FL‘"’f( }
rys= =

~ A

+ SN B h) + +L }:"1; )
ry ry Fnr
o~ AW

+ 3.0 By Paet /')+L }_‘l’(")(' ety
[} p—i L]

X l)z(’!"-l-*.r"-l M Tugn—1)#1 4 ‘-!!1_{ "':u'(u—i] ( *-“)

where M. @737 and W are defined as inequation (3. 83) and 1, = 1. 2Hor e = 4. j,1, -2 0
for « £ 1.7 & o = n.in this case. Note that one may exploit the integration result in
(1.1} to obtain any A's necessary in (1.2) by putting appropriate values of 1,

In order to examine the performance of the proposed procedure, we now compute
the probability G==(h. p,o?) given by (1.2) Tor selected values of o = 0.010,0.025 and
0.050. p == 0.100.0.125,0.200 and 0.250 as in Gupta (1973). Without loss of generality,
we consider 2 =1, and # = 2,3 & 1 and compute G2 (h p,a?) by borrowing the valnes
of fi from Gupta (1973). These probabilities along with the cumulative probabilites

computed by Gupta (1973) are shown in the Table 1.1, More specifically. for diflerent.



Table 1.1: The Actnal Probabilities for the maxima of positive equi-correlated normal
variables based on C'TM and SCA for selected o, p and n with o = 1, corresponding to

the Nominal 100(1 — )% probabilities with o = 0.01.0.025 and 0.05.

n==:
Pl o= (L0I0 0.025 0.050
0.100 h 25739 22368 1.9508

C"I'M 0989799 0.978301  0.949506

SCA 09898382 0971685 0.950282

0.125 h 25736 2.2461 19197

CTM 0989301 GL.971801 0.919312

SCA 0989812 0.971728  0.919266

(.200 h 25722 22336 L9156
C'PM O 0.980802  0.971807  0.919809

SCA 0989377 0971877 0.919708

0.250 h 2.5709 2.2311 1.9123

("M 0989802 0.971307  0.919809

SCA 0989906 0.971993  0.9500:15




|
n=313
N4 O = 0.010 (30.025 (.050
0.100 h 2.7105 287 21158
C'I'A 0939301 0971802 0.919303
SCA 0088399 0.9TI6EST  0.01852
0.125 h 2.7099 2,382 2410110
("IN 0.989799  0L97.I805 0919301
SCA 0088551 007806 091023
0.200 h 2.7078 A EA] 20080
CYINL 00849801 0971807 0.919813
SCA  09918T) 0975631 09522108
0.250 h 27058 2.3795 2.1029
C'IND 0989802 GLOTISOT  0.91981
SCA O 0091132 0976198 0951731
n=-|
0.100 h 28011 2.1907 2.22706
CTN 0989801 0971804 0.919806
SCA 0990062 0.975166 0.950091 |
D125 h 2.850:3.1 2,489 2.2200
CTNM (.989799  0.974801  0.91980 1
SCA  0.99082F  0.975913  0.950789
0.200 h 2.7078 2.03829 2. 1080
C'U'NM 0989802 0.9718010  0.91981)
SCA  0.991899  0.975916 0950133
.250 h 2.7083 2,180 22116
C'T N 0.959802  (L.97A807  0.94980 1
SCA  1L994901  0.975926  0.957025

02
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I, Gupta’s and our results are shown under the heading CTM ( correlation transforma-
tion method) and SCA (small correlations approach) respeetively.

It is elear from Table 1.1 that the SCA based actual probabilities are pretty close to
the CTM based actual probabilities of Gupta's (1973), for the cqui-correlated standard
normal variables case for the equi-correfation cocflicients p < 0.250. However, for p >
0.250, our SCA based results will not be the same as Gupta's (1973) CTM based results,
which is expected. This is because, our approximation is devoloped based on small values
ol correlations. We, however, computed some ol the probabilitics for p > 0.300 and find
that for 1 =3 and p = (L300, the SCA yields the actual probabilities 0.996865. 0.950:302
and Q61371 corresponding to 99%, 97.5% and 953% nominal probabilities respectively,
Similarly, for 1 = 1. these actual probabilites were founded to be 0.997539, 0.979913
and 0,96 1389 respeetively, showing the departure from the nominal values,

For negative equi-correlations case, Gupta's (1973) method given in (2.4) is not
siitable to compnte the pereentile points of the maxima. For this case, however, Hollman
and Saw (1975) proposed an alternative method to compute the pereentile poiuts of the
maxima but they did not provide detailed mmnerical results in the paper. While our
main interest is o obtain the percentage points of the maxima for unequally (positively
or negatively) correlated normal random variables, we still computed the percentile
points of the maxima based on our method for several negative small equi-correlations
p = —=0.100. =0.125, —=0.200 and -0.250. The results are shown in Table 1.2, which may
be verilied with the results of Hollman and Saw (1975).

Note that the percentile points shown in table 1.2 are computed by considering the
results lor the positive equi-correlation provided by Gupta (1973) as the initial values.

Morcover, it was found that the results in the above table do not remain the same



Table 120 The SCA based 100(1 == a)% pereentile points of the maxima for negative

equi-correlations and seleeted a and n with o° = |

| nop a= 0010 0025  0.050

2 -0.100 25123 222519 LLUNTS
-0.125 25067 22108 LOTOT
-1.200 20956 2.2897  1L966T
-0.250 28T 22251 LOsIs

3 -0.100 25105 223065 2.0007
-0.125 21799 2.2799  2.0509
-0.200 2ATTS 200829 2.0208
-0.250 22858 21295 1LYS3T \

4 -0.100 2,727 20567 2.2156
-0.125 2.6501 23912 21967 5
-0.200 25178 23360 20613

-0.250 2.1765 22801 2,110
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respective to Lthe results given by Gapta (1973) for the positive equi-correlations case,

4.3 Second Case : Homoscedastic but unequally
(positively or negatively) correlated normal vari-

ables

There also exists a few methods to study certain specific inference problems for the order
statisties of the unequally positively or negatively correlated normal variables. Based
on the V-function deseribed by Nicholson (1943), Gupta et al. (1961) have stadied the
distribution of the range. Yo — Y. of mnequally correlated normal variables for n =3
and 1. For a very special case ol unegnal correlation structures such that (YY) = 0,
for alt 7 #£ j & j # {4 1 and non-zevo L5(YiVie) = piigr. Greig (1967) studied the
distributional properties of the order statistics of the correlated normal random variables.

As discussed in chapter 3, we have studied the distributions of the order statistics
of uncequally (positively or negatively) correlated nortmal random variables. But this
was done for small correlations. The small correlations among normal variables arise in
many practical sitnations, in particular, in the context of cluster regression analysts. [n
cluster analysis, the eluster sizes are usually small. But for generality, we have, however,
provided the theory in the last chapter for general u. For cluster regression analysis with
small p's among the observations within the cluster, we refer to Rao, Sutradhar and Yue

(1993). and Wi, Holt and Hohnes (1988). among others.
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4.3.1 Application to AR(1) Models

We now consider a non-regression set-up where cluster observations may be generated
hy repeatations of measuements of single individual over a period of time. Tn such cases,
it is likely that there will he a decay in the correlation with increasing time lags and the

data may hehave like an autoregressive normal process of order one given by
o= O+ G (L.7)

where ¢ is independently and normally distributed randony vactables with mean zero and
. o2 . . . .
constand variance. o=, and ¢y is the parameterol the autoregressive process ol arder one,
Here Y = [V, ..., Y ] s Jointly normal with £(Y) = Oawd Disp(Y) = o= Y. for
. o . - . . t—t! .
all e = 1,2, .00, T being the o x o non-singutar matrix given by T = (q')', I/(I - i),

Jt -

1= 1.2,....n. Also we have the correlation matrix of Y as corr(Y) = ¢ l S
12000000,

Now. in order to compute the pereentile points of Y,y for inegnally correlated (posi-
tive or negative) normal variables with constant varianees a, we obtain the distribution
function of the maxima from equation (3.27) by putting o2 = a? in the manner similar

to that of (:1.2) and alter some adjustinents in the coellicients, we write the distribution

function as

’l'(}"(,,) <h) = r',','(h,p;_,-.a'z)
~ 20(h,o?) + /);Z Ao —~(J,‘,l1 AL (he?)
i<y 1=
+ s"z A ey + 17 3 AL he?)
i<y i#1#k
+ MY AN (1.8)

1£i#k#



where

(i = n I+T}Z/"u

" iy
D "
by = RS S
1<y i#1#k

("_l)l " n

Q, = DI

i=l g#i
. {(n - ’)' o
,H" = Z/)u
<y
2(n - 3)' .
l!l =
itk
. ‘1!(:1 - &
My = —— L {pimvt -+ pirpyt + pipsi)-
7 11 ERAL

and d(h.a?) and Ah.o?)'s are defined as in eqnations {(L3) and (1.1) respectively.
Next. we computte the 100(1 = o)% pereentile points of maxima for uneqgual positive
or negative correlations {or selected values of o = Q.()IO. 0.025 and 0.050 based on
(3 (hopyyya?) given in (L8). In our numerical co:np.lll,ut‘i(nls. we actually considered
a homoscedastic normal variable case with var(y,) = | for all { but the correlation
structures similar to AR(1D) with ¢, = £0.100, £0.125, £0.200 and £0.250. and n = 3
and 1. TFor specific valne of @y, we may easily obtain the correlation cocefficients pyj =
(/),""" hetween two repeated variables with lag | i —J | according to the correlation matrix
of AR(1) model, Tor example, for o) = 0.250 and n = -1, the correlation coefficients
are @ ma = 0.2500 pi = 00625, gy = 0.0156: peg = 0.250, ppy = 0.0625; and pyy =
0.250. The pereentile points h for this situation along with the correlations are shown
in Table L3, To compute the pereentile points of the maxima for the selected values
of ¢ = £0.100, 20,123, £0.200 and £0.250. the trial and cerror method was applied

where the initial values of i were chosen [rom Gupta (1973) for the positive values of



Table 1.3: The SCA based 100(1 = a)% pereentile points of the maxima for AR(1)

data with unit varvianee and selected o a and n, oy being the parameter of the AR(1)

I)I'O('(‘.’s'.’s'.
N pij i< ij=1.... noa= 0010 0025 0.050
30.100  0.1000  0.0100  0.1000 3151 25078 21858
0.150  0.1500  0.0225  0.1500 BAB5R  2ANOT 2 4T6T
0.200  0.2000  0.0100 0.2000 4250 20701 200623
0.250  0.2500  0.0625 0.2500 30013 24531 20067
10400 0.1000  0.0100  0.0010 30702 25101 22502
0.1000  0.0100 0.1060
0.150  0.1500  0.0225 0.0034 30230 25111 2228
0.1500  0.0223  0.1500
0.200  0.2000  0.0400 0.0080 30080 20918 2207
0.2000  0.0100  ©.2000
0.250  0.2500  0.0625 0.0156 20858 2863 22006

0.2500  0.0625  0.2500

3 -0.100 -0.1000 0.0100 -0.1000 204866 22601 20423
-0.150  -0.1500  0.0225  -0.1500 2.1220 0 2.2208 20078
-0.200 -0.2000 0.0100 -0.2000 23307 2198 L.ON07
-0.250  -0.2500 0.0625 -0.2500 22056 20808 1.9506

4 -0.100 -0.1000 0.0100 -0.001¢ 26863 20156 21600

-0.1000 0.0100 -0.1000

-0.150  -0.1500 0.0225  -0.0031 25071 2.2 2.1567
-0.1500  0.0225  -0.1500

-0.200  -0.2000 0.0400 -0.0080 2571 20009 211
-0.2000  0.0100 -0.2000 ’

-0.250  -0.2500 0.0625  -0.0156 2,556 28720 21209

-0.2500  0.0625  -0.2500
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po= 0.100,0.125,0.200 and 0.250 respeetively. The method was terminated whenever
the actual probability was found to be very close to the nominal probability. The
convergence of the trial and error method was quick. Only three trials provided the
reported percentile points. Note that in computation of the percentile points, it is
necessary Lo compuie several infinite series {cf. equation (1.6)). These infinite series
converged at different rate. TFor exammple. the convergence of the single infinite series
was achieved by considering the first 32 terms. Similarly, convergence achieved for the
double, triple and quadra infinite series by using ry = 21, ry = 25; 1 = 17, 1y = I8, 1y

=20; and ry = 15, rp =17, ry = 19,05 = 21 respectively.

4.4 Third case : Heteroscedastic but unequally (pos-
itively or negatively) correlated normal vari-

ables

4.4.1 Application to Antedependence Models

Antedependence models. defined as a more general family of autoregressive models, are
often used in socio-cconomic studies, Tor a set of n variables in a given order, sth
order antedependence is said to hold (¢f. Gabriel (1962)) if cach variable given at least
s prececding variables in the order, is independent of the remaining variables. Note
that due to the finite order antedependence, stationarity restrictions for the first and
second order moments are not at all required. This is quite contrary to the standard

autoregressive models in time series analysis where the restrictions on variances and
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correlations are necessary. Thus, in repeated measurement experiments, inferences on
the parameters of such antedependence maodels can be made. even il nonstationarity
occurs. To illustrate the situation, Albert {1992) considered medical research data where
a growth variable (such as height or weight} is measured on caeh individual repeatedly
over time, For such data. the model often becomes nonstationary as the varianee and
corrclation parameters appearing in such a model can be seen to depend on timee.

Let Y = (Vi Vi 10) ~ NVL(0.800) be a veetor of n-dimentional repeated
observations on a single experimental unit through n time periods, where Xy indicates
the presence of sth (s > 0) order antedependence, The s™ order ante-dependence nodel

is defined (cf. Albert (1992)) as

Y, = oy
Vi o= Z"iyi-l}"i—-f +o o =200 (1.9)
=1

where s; = min(s,i = 1), a1 = 2000000 = Looooos 10>, are antedependent
parameters, &, ¢ = 1.2,..., 0 are n-scale parameters, and the errors g, are independent
and normally distribnted with zero mean and unit variance, The above model (1L.9) may

he expressed as

Y =My
where
A =t0D
with 1™t = | [ =
= =i V#EUES
= 0 ot herwise
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inel 1" = ding(dy..... é,)

I then Tollows that
Disp(V) = Sy = A = D7D 1 (1.10)

To understand the nonstationarity in this an edependence process. let us first con-

sider the special case s = 10 The variance-covarianee matrix ol ¥ in this case reduces to

Ty T2y - Tra(n)

Ty T221) .- O2a1)

M =
\f’um) Tu2A1) v - gnu(l)/
where
Ty(1y = *’f'.,-lf’(n—l)(un)(l)+«5f =120 0000 with =0
Tyy = Uy Oiyenny 1< J

Notive that all the variance and covariances are functions of different scale and antede-
pendent parameters, those may vary with regard to the change in time.  Thus. this
antedependece model does not require any variance or covariance stationarity.,

Similar sitnations as for s = L. will arise for other & > | cases too. For example.
for = == 20 one may write the variance-covariance matrix of Y. Y5 = {g;9}. in terms

of the antedependent parameters showing the non-stationarity of the components of Y,



For the sake of simplicity. we. however. present this for the ease with 0 = 3. From
Feuations (1.9 ). we see that

Yio= &

\:) = "'.‘.I)’l "' (‘2!’2

L4

Ya = agaYy Fana )+ oy

Then it is readily seen that

angy = var(¥y) = NVar(oy) = hf

Similarly. one obtains

ooy = EOY1Y2) = EOYVilap) )+ duipn)) = aay KOYVP) = aaadf,
Oy = (VVR) = E(Vi(a32YeFas V1 48a03)) = aqaoigtaaadie = daaoayd) i o],

4'72-‘;(2) = (7'22(2) = I';()f) = I’.‘((Hz', Y| + (53]/2)2) = “::;.l /"(’]—,) -i- (S::I'.'( r;:,') .. ”':-;.Ihl.' -| l\",!,

and

Faya) = F(OV2Y8) = @y a0y + daaGragz) = daas (07 F83) 4w, 0f

As in the case for s =

= 1. the variances and covariances for the second (s = 2) order
antedependence model also depend ou different seale and antedependent paranicters,
showing the nonstationarity among the components of Y = (Y. Y5 Y5)'s I the similar
fashion. we may show the nonstationarity for the case with i 23 and appropriate s.

In a repeated measnrements experiment, there are many situations where antede
pendence models are used. For example. we consicder the calf data analyzed by Kenwinred
(1987). In this problem. the main objeet is to compare two or more methods for con

troling the intestinal parasites in cattle. During the grazing scason. from spring fo
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antuinn., cattle can ingest roundworm larvae, which have devoloped from eggs previ-
ously deposited on the pasture in the facces of infected cattle. Oncee infected an animal
is deprived of nutrients and its resistance to other disease is lowered, which in turn can
greatly afleet its growth. In order to control the disease. an infected eall was assigned
o a particnlar treatment. For monitoring the effects of a treatment for the disease, the
response of interest, weight, is recorded for an infected calf at n time points and it is
examined whether the maximummn of these weights (g,,)) are less than a standard weight
(h) of an uninfected call of same age (al the initial level of the experiments). That is.
we reqnire to compute the probability Pr(Y(,) < h). for known . which indicates the
failure of the treatinent. Alternatively. one may find the probability Pr(Yyy) = &) to see
whether the treatment is working effectively, Here the observations yy.ga.. ... i will
most likely be a realization of the sample Y = (Y. Y5, ..., Y,) that follow the antede-
pendence (nonstationary) model given in ((L8). as the weights are likely to vary with
repeated time (equally or unequally spaced).

Under the assumption that time points are Tar apart Irom cach other such that the
correlations are small, we may direetly use the probability density function developed in
(1.27) to compute the distribution function of Yi,,). that is. Pr(Yp,) < &) just by using
7 Tor o and pi, lov o,/ (T i 2 ivd = L2000 00 The distribution Tunction

ol Y. i sueh cases, reduces to

'-.(h /,'l‘ 1‘!) > ('v:(l)(l') + l):-r Z ‘\ll_]!(‘il;)(h (b)n Z \f(l:lz(l)) )

i<j
+5 Z A + 15 Z Nk (h)
i<y i£j#k
+M; Z \,’J'k‘,'(la) (-1.11)

i#iEhEl

where the cooflicients U0 Dy @5 S5 Ty and M7 ave defined as in theorem 3.1, and ®(h)

ne n*



and \'s are defined as in equations (-L.3) and (-L6) respectively.
4.4.1.1 Percentile Points of }|,) for antedependence model
4.4.1.1.1 Computation of a correlation structure

Before computing the percentile points of the maxima, that we first compute the
correlation cocflicients among the repeated observations those are generated Tollowing,
an antedependence model of order s = 1 and 2 having the variance-covariance matrix
discussed in the previous section. In this numerical computation, we consider 12 = 3 anel
1. and scale parameters of the antedependence model 8, = 1 Tor all 7. We also consider
the values of the antedependent parameters o, as a,; < 0250 for 7 =2, .. .00 =

-

Fooooosed > so that all possible values of p;, are small, namely, g, =2 0250 for s/ f,
More specifically. the values of p's and variances lor selected values of o's are shown in
Table 1.1, In the next section. we compute the pereentile points of the maxima for this
antedependence correlations set-up.
4.4.1.1.2. Computation of 5% Critical Values of }{,,: An Ap-
plication of Small Correlations Approach

We now compute the 95% percentile points of Yo,y Tor n = 3 and 1 Tor the antedepen-
dent correlation struetures with heteroscedastic vartances veported in Table 1.1 This
computation is done by using the distribution function G57(h, pjoa?) given in equation
(-1.10). T the manner similar to the homoscedastic normal variable cases, the trial and
crror niethod was nsed to compute the pereentile points of the maxima, This trial anel
error method requires the initial values of Ao a eritical value of Y, I seleeting sueh
valnes for the cases where p;; <01 for example, we have chosen I Trom Guapta (1973)
for the case with p = 0.1, The pereentile points are shown in "Table <[5,

Note that the & values computed for py < py generally different. ot fovalues oblained
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Tableb4: The variances ane correlations pattern lor antedependence models {or selected

values of « awd 0o withd, = 1 (i=1,...,n) and s =1 and 2

nos yy BN R ﬂ'f O':f 0’2; Mz 13 P}
14,2 a3 i Ma 24 A
30 0.0679 0.1000 1.0 1.0046  1.0100 0.0677 0.0068 0.0997
0.1500 0.1267 1.0 1.0225  1.0161 0.1483 0.0189 0.1271
0.1765 0.2000 1.0 1O 1.0012 0.1738  0.0346  0.19901
0.2500 0.2301 1.0 1.0625  1.0563  0.2125 0.0559 0.2308
G022 0.1000  0.067h 0.0812 1.0 1.0100  1.0123 0.0995 0.0752 0.0878
0.8278  0.0978 0.1312 1.0 10163 1.0303  0.1268 0.1129  0.1425
0.2000 0.1111 0.1621 1.0 1.0400  1.0169  0.1961  O.1103  0.1832
0204 0,101 0.2308 1.0 .05 1.0789  0.2087 O.1313  0.2195
41 0.087H 0.0657 1.0 L0077 1.0041  0.0872  0.0057  0.0658
0. 1000 1.0101 0.0006 0.0066 0.0997
01175 0.1317 1.0 L.OESS  1.0IS1 0.1167  0.0(57 0.1343
0. 1500 1.0229 0.0023 0.0201 0O.1197
0.2000 0.1765 1.0 1.0100  1.0320 0.1961 0.0317 0.1771
0. 1596 1.0260 0.0056 0.0231 0.i601
0.2156 0.2512 1.0 1.0165 1.0660 0.2108 0.0525 0.2488
0. 1961 1.0409 6.0101  0.0491 0.1981
402 0.1000  0.0671 0.0739 1.0 L0100 1.0118  0.0995  0.0715  0.085)
0.0834  0.0992 1.0181 0.0156 0.0915 0.1059
0.1131 0.0836 0.1371 1.0 1.O0E29  1.0290 O.1127 0.0997 0.1155
0.0078  0.1292 1.0:3006 0.0238 0.1157 0.1432
0.1198  0.0966 0.1371 1.0 1.0224  1.0325 O.1480 O.1154  0.1505
011 0.1792 1.0529 0.0372 0.1395 0.194
0.1563 0.1071 0.1831 1.0 1.0246° 1.0520 0.1519 0.1326  0.1969
.10 0.2292 1.0791 0.0173  0.1561 0.2182
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Table L.5: The SCA based 95% percentile points of the maxima for antedependence

data with order s = 1.2 and selected py, . a" and n

n s O'f 0‘;‘; U‘f U'f M2 Pin Pan I
M 24 P

31 1 10016 1.0100 0.0677  0.0068  0.09497 21598
[ 10225 1.0161 0.1483 00189 0.1271 2,113
| 1.0312 1.0112 ITIS 0.0316 O 19M 201857
I 10625 1.0562 (L2020 0,055 0.2308  2.128%

b2 1 L.O100 1.0123 0.0995  0.0752 0.0878 2,151
I 1.O16Y 1.0303 0.1268 00129 0.1 120 21308
| 1.0100  1.0-16Y QL1961 01108 0U1931 201257
I LO15S LOT3Y 0.2087 0158 02195 2

CIGT

do1 T 10077 1.00-4E 10101 0.0872  0.0057 0.0658 22009
0.0006  D.00G66 0.0997

I LOI3S 1.O18SE 1.0229 0.1167 0.0157 0138
0.0023  0.0200 0.1.197

T L0000 1.0:320 1.0260 0.1961  0.0317 0.177]
0.0056  0.0281 01601

e
e
=

e
I
[ (%
-7
=

1 LOIGHY 1.0660 1.0109 0.2108 0.0525 02480 220138
0.0101 0.0191 0.1981
2 1 10100 LOLES 1.OISE 0.0995 0.0715 0.085 2,248

0.0156  0.0915  0.105)
[ L0129 1.0290 LO306 0.1126 00997 O.1455  2.2226
0,0288  0.1157 001432

I 10220 1.0325 1.0529 01481 0.1153 01505 2.2177
0.0371  0.1395 0,194
I L0246 1.0520 1.0794 0,159 0.13260 0.1969  2.2012

G.0473 0.1561 0.2182
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in Gupta (1973) Tor p = py. More specifically. our calenlations show that for n = 3. the
h's for the cases with unequal correlations are greater than the A's for the cases with
cqual correlatons, On the other hand. for n = 1. some of the i values for the cases with
uncqual correlations are greater than the b values for the cases with equal correlations
and some of them are less than the °s Tor the cases with equal correlations. In the next
section, we examine the performance of the proposed approximation (small correlations
approach) by condueting a simall simulation study.
4.4.1.2 Verification of Critical Values : A Simulation Study
To examine the accuracy of the critical values shown in Table 1A, in this subsection,
we conduet a small stinnlation study. To do this, we generated 3000 clusters ol sizes
o= 3.1 frcm normal distributions with zero mean and the variance-covariance matrix
of the antedependence model of order s = 102 (discussed in section -1.3.1). Note that
in generating, the elusters, we have considered the same mean and the same variance-
covariance matrix that were used to compute the percentile poiuts h given in Table 4.5
for dilferent. cases. We now postulate as the null hypothesis (71y) that the sample does
not. contain any extreme observation. where any observations greater than or equal o
b value (taken from Table 1.5) is constdered as an extreme observation. Uuder a given
set-up that is for a selected 1oand a set of p's for these i repeated observations, we first
observe whether the maximum of y; is greater than or equal to the percentile points
hawvhere g is the ith (0= 1.. . n) observation in the th (I = 1.2,....5000) cluster.
[or a given set-up, we then compute the proportion of the simulation runs which satisly
maayaaliei) 2 b where marigga(yi) is the maxima of the 2 observation in the lth
cluster, These proportions, commonmt, called as the size of the test for testing the Iy,

are reported in column fonr of “Table 1.6 for nominal o = 0.05. Here, nominal a = 0.05



means that h was chosen from Table L3 such that Pr{Y{,y < A} = 095 Note that i
general. the actual size of the test appears to be close to 5% iu almost all selected cases.

We also verify the pevformance of our small correlation approach in computing the
critical values, as was done in the previous sinlation study, under the alternative hy-
pothesis 11, ¢ there is one extreme observation in the cluster. For the purpose, we fiest
generate 5000 clusters of sizes i fronm norimal distributions with sanmwe mean (zeto) and
the same variance-covariance matrix of the antedependence model of order s = 1,2 as
under the case of Hy. We then add # = -1 and 5 with a pre-selected b (7 = 1....0n)
observation in the [ cluster. More specilically, we generate the new Zth (11 = 1., n)
observation for the {th cluster sueh that y7 = g + 0 fov ' = doand yr =y Tor it L0
When € = 0. the /th observation is not an extreme observation. Now . similar to the case
for the size of the test, we compute the proportion of simudation rans which satisfics
maricica{yn} = hy where marig,<, {i} is the maxima of the n observation in the /th
cluster. These proportions under the different situations with 8 = 1 and 5 are shown,
respectively, in columus five and six of Table 1.6, which, infact, indicate the powers of
the test for testing Hy. that is, there is no extreme observation in the sample. Nofe that

the computed powers for both cases with @ =1 and 5 appear to quite high.

4.4.2 Computation of Critical Values for Heteroscedastic Case:
Small Correlations Approach Versus Bound A pproxi-

mation

In the linear regression analysis, the maxinun studentized residnal test statistic and

the maximum normed vesidual test statistic are wiedely used for the detection of a sin-
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Table 1.6 Sizes and powers of the test at 5% level ol significance for selected i and n for

testing /1 that there is no extreme ohservation in the sample, based on 5000 simulations

nos o h sizes powers for f =5 powers for 0 = |
301 21998 0466 0.94966 0.966 1
20423 00188 0.9970 0.9670
21357 (00501 0.9963 0.9668
L1283 00530 0.9970 0.9672
32 20512 0.0182 ().94980 0.9690
20398 0.0500 (0. 990 0.9698
21257 006 0.9982 0.9706
2167 00510 0.99s2 0.9712
4 2209 0.0536 0.9956 0.9668
L2350 00616 0.9951 0.9661
22216 0.0561 0.9956 0.9663
22043 0.0608 0.9958 0.9630
120 22885 00512 0.9951 0.9662
22026 00532 0.9951 0.9666
2277 0.0559 0.9951 0.9666
22012 (10580 0.9951 0.9672
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gle outlier or influential observation. For these two statistics, the exact eritical values
arc not easy lo compute. Ellenberg (19730 1976) has approximated the eritical valnes
of the maximum studentized vesidual test only by using the first Bonferroni honnds,
Similar to the studentized residual test statistie, Stefansky (1971, 1972) has devoloped
the hounds for the percentage points for the maximum normed residual test statistic
under the assumption that errors in the lincar regression model are homoseedastic, 1t s
known that for this homoscedastic case, these bounds approximation work well, There
is, however, no adequate discussion in the literature about the performance of honnd
approximation lor the heteroscedastic case. Furthermore, the aceurate compntations for
bound approximation require the compntation of the joint probability which may not
be ecasy to compuie, see for example Cha and Sutradhar (1995).

In this section, we compare the performance of bound approximation with onre sinall
corrclations approach. in computing the pereentile points or p-values for the maxima. We
do this for general unequal correlations cases with hoth equal and nnequal varianees, For
this purpose, we conlined our discussion to the nonregression situation, for simplicity,
and we first compute the b values sueh that Pe{Y,, 2 h} = o by using our small
corrclations approach, as in the previous sections. These & values are then nused to
examine the performance of the Bouferroni bounds approximations.  "Fhe upper and
fower hounds, as functions of & values, are defined as follows :

n n
LB(h.at) = S Pr(Yizh) =3 Pe(Y, 2 hY, = h) (1.12)
f=1 i<y

anc UB(h.al)y = Y Pre(Y, 2 h) (1.13)

=

where E(Y?) = a?, and Y] and ¥ are correlated sach that E(YY,) = p,, with F(Y) = 0.



. L3 ’, A .
Now by using Z, for ,’;L we obtain the lower hound as
1

Li3(h.of) ZI: Z, >——-)—-§,:/’ “ >i’" /J_>-—IL)
=] ! 1<) 7
/
Z[l—/( ]—ZI’ '/,J U—') (L.14)

i<y

and Lhe upper bound is given by

Ulth.at) = S — 1"(;—’)] (1.16)

i=! i
; ) I, h e -
with Pr(Z; > ;,4 > ;;) = /;h; /-,i—', T(zioz)spis)dzid=; (-1.17)

which is erinbersome to compute diveetly, Abrahamson (1963) scems to mention abowt

the solution of this integration for selected values of L, 2
L

s and p;; but it’s solution is
¥
not. available from his paper.

Similar to the case when E(Y:2) = af lor all i, we also obtain the lower and upper

bounds, for the cases with (Y3 = o (i=1.2..... n) as
Y ., h o, h
LB(h.a?) = nfl = I }',‘% PriZ; > 2~ Z; > ;)
. h h ‘
= nll -+t (—)] -—Z(i)gf— —. Piy) (-1.18)
i<y
and  UB(he?) = n[l - /«'(;r’-)] (1.19)

lFor ‘l’-_g(ll':‘. '—,' piy)s we obtain an expression provided by Greig (1967) as

Il L i, )
Do~ =) = (= (= pi) () + (1= o) 03S)

L
(1~ l‘(;)]

il

with (I)l(-—)
7

Nestto compute the p-values of pereentile points o such that Pr{Y(,,) 2 h} = 0.05

for general unequal correlations with equal and unequal variance cases,
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Table 1.7: The SC'A based eritical values A for selected p-values and the corvesponding
Bonferroni upper and lower bonnds for selected piy and 2 for homuoseedastic normal

variable case

n oo iz Ir a3 h p-value  LB(h) UB(h)

3 L1000 0.1000 0.0100  0.1000  2.2667 Q051291 0.055770  (L0H9006
0.1500  0.0225  0.1500 2,288 0.049813  0.057373  0.062053
0.2000  0.0400 0.2000 2.1989  0.019611  QLOG16Y9T  QL.OGS TS
0.2500  0.062% (L2500 2.1532  0.048262  0.066191  0.075 1

0.1000 0.0100 0.1000 11297 0.050230 0055812 0,059001
0.1500  0.0225  0.1500 L3918 0048976 0.056985  0,061621
0.2000  0.000  0.2000 131 O.048059  0.060795 0067389
0.2500  0.0625 0.2500 -1.2100 0048583 0.066080  0.07T5H312

Ino
.

—
Z

3,200 0.1000 0.0100  0.1000 6.6001  0.050666  0.055519  (LOHSTI6
0.1500  0.0225  0.1500  6.5012 Q009803 0.053190 0063287
0.2000 0.0100 0.2000 6.:3912 0049611 0.06GEHS  LOGRGDT
0.2500 0.0625 0.2500  6.2591 00488906 0.066:HES  0.075703

4.25 00,1000 0.0100  0.1000  S.7789  (LOS0065  0.0551 12 (LOHS2Y6
0.1500  0.0225  0.1500 85913 0.05075)  0.059898  0.06:18.15
0.2000 0.0100 0.2000 S.1178  QL050188 0063327 0.07026
0.2500 0.0625  0.2500  8.2796  0.050286  0.067605  0.077097
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Table 1.8 The SCA baseed eritical values £ for selected p-values and the corresponding

Bonlerrori upper honnds and p-values for selected pi; and 0 for heteroscedastic case

noat ol ci o fis P h p-value  URB(h)
2 100 3.75 0.100 6.:300-1 0.0192  0.0165
0.150 6,121 0.0191  0.0.133-1

0).200 6.5989 00198 0.0392

0.250 6.8901 0.0191 00331

1.2 9.1H 0.100 01389 0.0193  0.017H

. 120 16.2109  0.0506  0.015:1

().204) 01915 0.0505 0.0108

0.250 10L.8109 00507 0.0355

2000 12.00 ), 100 202169 0.0191  0.0160
0.150 200231 0.0503  0.0141

0.200 200619 0.0506  0.0-103

0.250 21,1832 0.0506  0.0:3-17

30 L0026 250 0,068 0.007  0.100 39368 0.0509  0.0385H
008 0,089 0127 35123 0.04180  0.0808

0171 0,035 0.199 33287 0.0501  0.0958

0.203 0,056 0231 29127 0.0199  (.1305

IO 2,05 3.20 0,100 0010 0100 52731 0.0182  0.0568
0.150 0,023  0.150 L9719 0.0505  0.0705

0.200 0.040 0200 16598  0.0195  0.0787

0.250 0,063 0250 L0900 0.0196 0 0.1021
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we used the distribution functions (57 {h p, . 0?) and (T payeol ) piven in equa

tions (1.8) and (:LY) respectively, For the sanie percentile points b, we also compute the
upper and lower bounds by using the Bonferroni bounds approximations in equations
(1.18) - (1.19) for homoscedastic normal variable cases. In the heteroseedastic norvmal
variable cases. the computation of the lower bound is slightly complivated. Consequently,
we have used the upper hound given by (1L 16) to compare the hound approximation with
our SCA based resnlts. It is interesting to note that our numerical computations show
that in some sitnations the upper bounds are scen to e lower than 0,05, indicating that
the Tower bounds calculations are not necessary o such cases. Inother situations. how
ever, the lower hound calenlations would have heen mnel hetter vepresentative hounds
than the upper bonnds, but they were not caleulated becanse of the technical difficulty
as mentioned above. The results are reported. respectively as in Table LT and Table
1.8 for equal and unequal variance cases.

Note that in this homoscedastic and heteroseedastie normal variable cases. the hounds
for different pereentile points nr based on the Bonferroni approach are deviated from
nominal probability at 0.05. Furthermore, it was found that this deviation inereases as
variances and correlations increase in general, But the corresponding povalne Tor the
satme pereentile point hased on onr small correlations approach were found to he very

close to the nominal probability 0.05.



Chapter 5

Summary and Some Topics for

Further Research

5.1 Summary

Correlated data arise in many applications in statistics. In this thesis. we have discussed
order statisties inferences for normal random variables with a general correlation strue-
ture, where correlations can be unequal or equal. positive or negative. More specifically.
we have provided the distribution of the rth order statistic for any » = 1..... n. n being
the sample size or mumber of correlated variables. Spectal attention was given to the
derivations lor the distributions of maxima and minima. For all of these derivations, we
have adopted a small correlations based Tayvlor’s series approach. that is. our results are
valid for general correlation structures but the absolute magnitude of correlations should

be small (not exceeding, 0.25). This small correlations approach will have applications
8 4 ]

=1
NT}
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to many arcas. mainly in clustered data analysise This is because, as argured w the the
sis. in familial clustered data, the eluster sizes are generally small and the correlations
between the observations are generally small too,

lFor positive equi-correlated cases, our results have been compared with the existing
results due to Gupta (1973). and others. It was found that the proposed approach works
quite well where correlations are small. as expected. For unequal positive and negative
correlated cases. the proposed small correlations approach also works quite well, which
has heen verified by a Hmited simulation stndy, For these unequal corvelations eases,
we have discussed two special sitnations. In the first sitnation, homoscedastic normal
variables with wnequal correlations have been considered and the pereentile points of the
maxima were derived for a well known AR(L) correlation process. Tn the second situaon,
we have cousidered the hetevosceedastie random variables with nnequal correlations and
similar results were derived for antedependence (nonstationary) process.

Note that to compute the pereentile points of the maxima or minima in these cases,
one may also use the well-known Bonlerroni bounds approximation. We have compared
our results with these approximations and found that the Bonfervoni Lonnds approxi-
mation does not work well for the heteroscedastic cases. whereas onr small correlations

approach works well for both homoscedastic and heteroscedastic cases,

5.2 Topics for Further Research

We remark that in the present thesis. we have developed a small correlations approach
1o find the percentile points of the distribution of a single order statistie, swhich has

applications to certain clustered familial data. In practice, bowever, there are other



sibnations, where the correlations amaong the variables may be high (ef. Kenward (1987)).
To develop methodologies to handle high correlations appear to be extremely difficult.
and Turther investigations are needed.

Second, in this thesis, it was assumee that the scale parameters (correlations as well
as variances) are known. For the situations where these parameters are unknown, one
needs 1o oblain consistant estimates of these parameters and carefully stady the effects
ol estimation on the required distributions.

Furthermore, the present methodology may be extended to the analyses of the linear

maodels with several covariates, but this is bevond the scope of the present study.
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