CORROSION AND WEAR OF PLATES IN THE
PRODUCTION OF REFINER MECHANICAL PULP

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(WITHOUT AUTHOR’S PERMISSION)

DAVID W. RIDEOUT
CORROSION AND WEAR OF PLATES IN THE PRODUCTION OF REFINER MECHANICAL PULP

BY

David Walter Georgé Rideout, B.Eng., B.Sc.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland
April 1984
St. John's Newfoundland Canada
We, Fromanual Book of ASTM Standards, being the copyright holder of the material described below:

do hereby permit the inclusion of the described material in the thesis entitled:

Corrosion and Wear of Plates in the Production of Refiner Mechanical Pulp

written by Mr. David Walter George Rideout and submitted in partial fulfillment of the requirements for the degree of Master of Engineering at Memorial University of Newfoundland.

We further permit the National Library of Canada to microfilm this thesis, including the material to which we retain copyright, and to lend or sell copies of the film.

DATE: May 22, 1984

SIGNATURE: Telex enclosed
(Valerie Scurria)
ABSTRACT

Disk refining has become an increasingly important process for the manufacture of mechanical pulp for the production of newsprint and other "groundwood" specialty papers. The history of the development of chip refiners beginning with their use in pulp property modifications in the early 1900's and their use for semi-chemical and mechanical pulping processes at present is briefly reviewed.

Disk refining, as a pulping process, has in spite of its promise to replace chemical pulp not been without its technical difficulties; the major ones being the high energy inputs required as compared to stone groundwood, variations in quality and inadequate plate life. Each of the variables associated with these difficulties is reviewed in an extensive literature review.

Since refiner plate wear and refiner plate corrosion both involve loss of plate material and are critical factors in plate life, the review of literature was extended to cover these variables. Although literature on wear and corrosion of refiner plates is extensive, little was found directly pertaining to refiner plate life. Because of this deficiency of information in both these important areas, experimental work was conducted on both the wear and corrosion of Ni-hard refiner plates.

The wear of refiner plates run on a Sprout Waldron 42-1B refiner at Price (Nfld.) Pulp and Paper Company
Limited, Grand Falls, Newfoundland, was monitored using a systems analytical approach coupled with standard metallurgical techniques. The refiner plates after use were found to have worn in sharply defined annular zones at randomly defined radii. In each zone the wear was asymmetrical, with one of the opposing plates wearing more than the other. The location of the wear zone and the disk experiencing wear (rotor or stator) were found to be random.

At first, it was believed that this unusual wear pattern was the result of plate clashing and/or damage by foreign material. Metallurgical and electrochemical studies of the plates within the framework of systems analysis clearly showed that this was not the case, and that the metal removal patterns observed were indicative of that produced by a process not dissimilar to electrochemical machining.

The corrosion characteristics of Ni-Hard plates were analyzed by potentiostatic polarization methods using an intact refiner plate as the working electrode. A potential was impressed upon this electrode causing it to corrode. The resultant current density as a function of applied potential was plotted giving a polarization curve for Ni-Hard. The procedure followed was based upon ASTM Standard Method G5, modified such that an intact refiner plate could be used. No attempt was made to duplicate the temperature and consistency conditions in the refining zone of a commercial refiner.
because of the experimental difficulties involved and the fact that these conditions are still not well understood. In spite of this limitation, the results gave some interesting insights into the effect that additives have in extending refiner plate life. Results showed that corrosion rates were lower when dissolved oxygen was high, bringing into question the belief that the role played by Na₂SO₃ in enhancing refiner plate life is via a mechanism of oxygen scavenging. The potential for extending refiner plate life by corrosion control techniques is discussed. These include:

1. control of O₂ content,
2. alloying of plates,
3. anodic protection,
4. cathodic protection.
ACKNOWLEDGEMENT

The author is very grateful to his supervisor, Dr. R.M. Hopkins, Professor of Engineering and Applied Science, for his guidance, encouragement and continuous support during the course of research and for his careful review of the manuscript.

The author also wishes to express his appreciation to Dr. John Molgaard for his help and keen interest in the area of wear of refiner plates.

The financial support offered by Memorial University of Newfoundland is gratefully acknowledged.

Special thanks are due to Dean Aldrich, School of Graduate Studies, and Professors El-Hawary and Chari, Chairman, Graduate Studies Committee, for their constant advice and encouragement.

The author would like to thank the personnel at Price (Nfld.) Pulp & Paper Co. Ltd. for their help. Particular thanks go to Mr. Che's Mills.

Finally, the author wishes to specially thank his wife for her continuous encouragement, understanding and patience.

This work was supported in part by the Natural Sciences and Engineering Research Council.
CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>x</td>
</tr>
<tr>
<td>NOTATION</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

Historical Development of Refiner Groundwood for Newsprint Manufacture

1.2 Present Day Problem Areas

1.3 Objectives of Thesis

CHAPTER 2: FACTORS INFLUENCING PLATE LIFE:

A LITERATURE SURVEY

2.1 Introduction

2.2 Plate Pattern

2.3 Running Clearance - Plate Taper (Profile)

2.4 Plate Material

2.4.1 Hardness of Plate Material

2.4.2 Conditioning

2.5 Different Plate Patterns on Rotor and Stator Disks

2.6 Consistency

2.7 Additives and pH Control

2.8 Reversal of Plates

2.9 Refiner Speed

2.10 Steam Generation and Removal

2.11 Optimum Timing of Refiner Plate Replacement

2.12 Plate Wear

2.13 Corrosion

2.14 Summary

CHAPTER 3: THE APPLICATION OF SYSTEMS TECHNIQUES TO THE STUDY OF THE WEAR OF REFINER PLATES

3.1 General Problem Statement

3.2 I Technical Function of the Tribo-System

3.3 II Operating Variables

3.3.1 Type of Motion

3.3.2 Duration of Operation

3.3.3 Load \(P_n(t) \)

3.3.4 Velocity \(v(t) \) (fpm)

3.3.5 Temperature \(T(t) \) (°C)

3.3.6 Other Operating Variables

3.4 III Structure of the Tribo-System
3.4.1 Volume Properties (Geometry/Dimensions/Volume) of Tribo-Element [1] and [2] 64
3.4.2 Volume Properties (Geometry/Dimensions/Volume) of Tribo-Element [3], the Lubricant 65
3.4.3 Volume Properties - Chemical Composition of Tribo-Element [3], the Lubricant 66
3.4.5 Volume Properties - Phys.-Mech. Data - Tribo-Element [3], Lubricant 67
3.4.6 Surface Properties - Other Data 68
3.4.7 Contact Area A(t) 68
3.4.8.1 Residence Time (Retention Time) 70
3.4.9 Tribological Transactions 71
3.4.9.1 Field 1. Tribo-Element [1] - Stationary Refiner Plate (Condition A - No Clashing) 72
3.4.9.2 Field 2. Tribo-Element [2] - Rotating Refiner Plate (Condition A - No Clashing) 73
3.4.9.3 Field 3. Tribo-Element [3] - "Lubricant" (Condition A - No Clashing) 74
3.4.9.3.1 The Ineffectiveness Factor 76
3.4.9.4 Field 4. Tribo-Element [1] - Stationary Refiner Plate: Tribo-Element [3], "Lubricant" (Condition A - No Clashing) 78
3.4.9.5 Field 5. Tribo-Element [1] - Rotating Refiner Plate: Tribo-Element [2], Stationary Refiner Plate (Condition A - No Clashing) 79
3.4.9.6 Condition B - Clashing 80
3.5 IV Tribological Characteristics 83
3.5.1 Changes in Properties of the Elements 83

3.5.2 Friction Data 84
3.5.3 Wear Data - Analysis of Work Refiner Plates
 3.5.3.1 Metallurgical Investigations 86
 3.5.3.2 Electrochemical Machining 90

CHAPTER IV CORROSION TESTING OF REFINER PLATES 93
4.1 Production of Refiner Plates - A History 93
4.2 Experimental Procedure and Apparatus 95
4.3 Comparison of Standard Potentiostatic Analysis Techniques (ASTM G5) and Experimental Research Techniques
 4.3.1 Derivation of Standard Curve and Reproducibility of Results 99
4.4 Analysis of Experimental Results 100
 4.4.1 pH Test Results 101
 4.4.2 Addition of Na₂SO₄ - Test Results 102
4.5 Metallurgical Investigations of Plates 105
4.6 Corrosion Mechanisms 106
 4.6.1 Formation of Ridge Groove Pattern 110
4.7 Conclusions and Recommendations 113

TABLES AND FIGURES 117

REFERENCES 209

APPENDIXES

Appendix A: Details of Electrochemical Machining (ECM) 214
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Effect of Plate Profile on Pulp Quality and Furnish Cost</td>
<td>117</td>
</tr>
<tr>
<td>2.</td>
<td>Used Tapers</td>
<td>118</td>
</tr>
<tr>
<td>3.</td>
<td>First Plate Material Experiments</td>
<td>118</td>
</tr>
<tr>
<td>4.</td>
<td>Uddeholms' B-Material</td>
<td>118</td>
</tr>
<tr>
<td>5.</td>
<td>Data Used to Compare Plate Life Associated Costs</td>
<td>119</td>
</tr>
<tr>
<td>6.</td>
<td>Effects of Chemical Treatment</td>
<td>119</td>
</tr>
<tr>
<td>7.</td>
<td>Standard Refining Conditions</td>
<td>120</td>
</tr>
<tr>
<td>8.</td>
<td>Temperature and Pressure at Different Motor Loads and Throughput</td>
<td>120</td>
</tr>
<tr>
<td>9.</td>
<td>Temperature vs. Distance at Different Consistencies</td>
<td>121</td>
</tr>
<tr>
<td>10.</td>
<td>Calculated Thrust for Different Hydraulic Pressures</td>
<td>122</td>
</tr>
<tr>
<td>12.</td>
<td>Volume Properties of Lubricant (Element [3])</td>
<td>123</td>
</tr>
<tr>
<td>14.</td>
<td>Experimental Conditions for First-Stage Refining</td>
<td>125</td>
</tr>
<tr>
<td>15.</td>
<td>Bauer-McNett Classification of Accepted Stock Produced at Various Points Through the Refining Zone</td>
<td>125</td>
</tr>
<tr>
<td>16.</td>
<td>Segment Weight Loss After 518 Hours</td>
<td>126</td>
</tr>
<tr>
<td>17.</td>
<td>Experimental Potentiostatic Results</td>
<td>127</td>
</tr>
<tr>
<td>18.</td>
<td>Experimental Potentiostatic Results (cont.)</td>
<td>128</td>
</tr>
<tr>
<td>19.</td>
<td>Experimental Potentiostatic Results (cont.)</td>
<td>129</td>
</tr>
<tr>
<td>Table No.</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>20.</td>
<td>Experimental Potentiostatic Results (cont.)</td>
<td>130</td>
</tr>
<tr>
<td>21.</td>
<td>Experimental Potentiostatic Results (cont.)</td>
<td>131</td>
</tr>
<tr>
<td>22.</td>
<td>Variation of Corrosion Characteristics with pH</td>
<td>132</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Basic Plate Pattern</td>
<td>133</td>
</tr>
<tr>
<td>2.</td>
<td>New Exponential Refiner Plate, Model FPPRI</td>
<td>134</td>
</tr>
<tr>
<td>3.</td>
<td>Freeness vs. Energy Consumption with Different Plate Tapers</td>
<td>135</td>
</tr>
<tr>
<td>4.</td>
<td>Q-Value vs. Energy Consumption with Different Plate Tapers</td>
<td>135</td>
</tr>
<tr>
<td>5.</td>
<td>Shives Content vs. Energy Consumption with Different Plate Tapers</td>
<td>136</td>
</tr>
<tr>
<td>6.</td>
<td>Plate Life Associated Cost vs. Plate Life; Stainless Steel Plates; Ni-Hard Plates; Ni-Hard with pH Control</td>
<td>136</td>
</tr>
<tr>
<td>7.</td>
<td>Plate Life Associated Costs - Effect of Additives</td>
<td>137</td>
</tr>
<tr>
<td>8.</td>
<td>Converging-Diverging Plate Design to Permit Super Sonic Escape of Steam</td>
<td>138</td>
</tr>
<tr>
<td>9.</td>
<td>Long Fiber Content vs. Freeness</td>
<td>139</td>
</tr>
<tr>
<td>10.</td>
<td>Principal Design of Refiner Operation and Plate Condition Control Graph</td>
<td>140</td>
</tr>
<tr>
<td>11.</td>
<td>The Effect of Normal Plate Wear on Freeness and Power: Three-Stage Refining</td>
<td>141</td>
</tr>
<tr>
<td>12.</td>
<td>Effect of Normal Plate Wear on Percentage Mullen and Power: Three-Stage Refining</td>
<td>142</td>
</tr>
<tr>
<td>13.</td>
<td>Effect of Normal Plate Wear on Tear Factor and Power: Three-Stage Refining</td>
<td>143</td>
</tr>
<tr>
<td>14.</td>
<td>Effect of Refining Consistency on Burst Factor</td>
<td>144</td>
</tr>
<tr>
<td>15.</td>
<td>Effect of Refining Consistency on Tear Factor</td>
<td>145</td>
</tr>
<tr>
<td>16.</td>
<td>Effect of Refining Consistency on Freeness</td>
<td>146</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>17</td>
<td>Effect of Refining Consistency on Specific Volume</td>
<td>147</td>
</tr>
<tr>
<td>18</td>
<td>Effect of Refining Consistency on Shive Content</td>
<td>148</td>
</tr>
<tr>
<td>19</td>
<td>Effect of Refining Consistency on Specific Scattering Coefficient</td>
<td>149</td>
</tr>
<tr>
<td>20</td>
<td>Effect of Plate Wear on Freeness</td>
<td>150</td>
</tr>
<tr>
<td>21</td>
<td>Effect of Plate Wear on Burst Factor</td>
<td>151</td>
</tr>
<tr>
<td>22</td>
<td>Effect of Plate Wear on Tear Factor</td>
<td>152</td>
</tr>
<tr>
<td>23</td>
<td>Effect of Plate Wear on Shive Content</td>
<td>153</td>
</tr>
<tr>
<td>24</td>
<td>Plate from Reject I Refiner after 383 hours; Uddeholm; 48 Co 23; Taper 2%</td>
<td>154</td>
</tr>
<tr>
<td>25</td>
<td>Plate from Sawdust I Refiner after 320 hours; Hi-Moly; 48154; Taper 3%</td>
<td>154</td>
</tr>
<tr>
<td>26</td>
<td>Wearing Plate from Reject I Refiner; Bauer 488</td>
<td>155</td>
</tr>
<tr>
<td>27</td>
<td>Illustration of Heidemeyer's Theory: Mechanical Action Reduces Amount of Thermal Energy Necessary to Cause Corrosion</td>
<td>156</td>
</tr>
<tr>
<td>28</td>
<td>Plate from Sawdust I Refiner after 307 hours; X-Metal; 48154; Taper 2%</td>
<td>155</td>
</tr>
<tr>
<td>29</td>
<td>Effects of Sodium Sulfite and Soda Ash on Brightness</td>
<td>157</td>
</tr>
<tr>
<td>30</td>
<td>Tribological Systems Data Sheet</td>
<td>158</td>
</tr>
<tr>
<td>31</td>
<td>Tribological Systems Data Sheet with Information</td>
<td>159</td>
</tr>
<tr>
<td>32</td>
<td>Graph of Horsepower Days/O.D.T. over Life of Set of Refiner Plates</td>
<td>160</td>
</tr>
<tr>
<td>33</td>
<td>Graph of Position (from Center of Refiner) versus Speed</td>
<td>161</td>
</tr>
<tr>
<td>34</td>
<td>Dependence of Temperature on Distance from Center of Refiner</td>
<td>162</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>35</td>
<td>Pressure Dependence with Distance from Center of Refiner</td>
<td>163</td>
</tr>
<tr>
<td>39</td>
<td>Bauer C-906 Refiner Plate Segment</td>
<td>167</td>
</tr>
<tr>
<td>40</td>
<td>Representative Sample of Black Spruce Chips Employed in Refining Experiments Showing the Size and Shape Distribution of the Feed Material</td>
<td>168</td>
</tr>
<tr>
<td>41</td>
<td>Material Sampled After Passing Through the Breaker Bar Section Alone</td>
<td>169</td>
</tr>
<tr>
<td>42</td>
<td>Material Sampled After Moving a Radial Distance of One Inch from the Breaker Bar Section</td>
<td>170</td>
</tr>
<tr>
<td>43</td>
<td>Material Sampled After Moving a Radial Distance of 2.5 Inches from the Breaker Bar Section</td>
<td>171</td>
</tr>
<tr>
<td>44</td>
<td>Material Sampled After Moving a Radial Distance of 4.0 Inches from the Breaker Bar Section</td>
<td>172</td>
</tr>
<tr>
<td>45</td>
<td>Material Sampled After Moving a Radial Distance of 5.5 Inches from the Breaker Bar Section</td>
<td>173</td>
</tr>
<tr>
<td>46</td>
<td>Material Produced by Full Refiner Plate</td>
<td>174</td>
</tr>
<tr>
<td>47</td>
<td>Cumulative Frequency Curves of Minimum Fragment Thickness of Material Produced at Various Points Through the Refining Zone</td>
<td>175</td>
</tr>
<tr>
<td>48</td>
<td>Graph of Contact Area Vs. Time</td>
<td>176</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>49</td>
<td>Plot of Specific Energy vs. Feed Rate in a Series of Refining Experiments</td>
<td>177</td>
</tr>
<tr>
<td>50</td>
<td>Plot of Specific Energy vs. Retention Time</td>
<td>178</td>
</tr>
<tr>
<td>51</td>
<td>All Possible Tribological Interactions Between Three Tribo Elements</td>
<td>179</td>
</tr>
<tr>
<td>52</td>
<td>Model Chip Breakdown - Sequential Disintegration in Discrete Steps Through the Refining Zone</td>
<td>180</td>
</tr>
<tr>
<td>53</td>
<td>Model Chip Breakdown - Isomorphic Pattern which Ends When Single Fibers are Liberated from Bundles of Four</td>
<td>180</td>
</tr>
<tr>
<td>54</td>
<td>Depiction of Forces on Chip from Stationary Plate as Reference</td>
<td>181</td>
</tr>
<tr>
<td>55</td>
<td>All Forces at Work on Rotating Tribo-Element</td>
<td>181</td>
</tr>
<tr>
<td>56</td>
<td>Friction Mechanism - Elastic Deformations in Wood Chip Transmit Stress to be Dissipated into Plates or Pulp</td>
<td>182</td>
</tr>
<tr>
<td>57</td>
<td>Resultant Forces and Events if Both Plates were Flat</td>
<td>183</td>
</tr>
<tr>
<td>58</td>
<td>Resultant Forces and Events (on a Microscale) if One Plate were Flat</td>
<td>183</td>
</tr>
<tr>
<td>59</td>
<td>Deformation and Forces Between Two Macro-Asperities</td>
<td>184</td>
</tr>
<tr>
<td>60</td>
<td>Sample Site R-1 I-8 on Top of Intermediate Bar - Chosen Randomly</td>
<td>185</td>
</tr>
<tr>
<td>61</td>
<td>Sample Site R-1 I-8 - 80X Magnification, No Etch</td>
<td>185</td>
</tr>
<tr>
<td>62</td>
<td>Sample Site R-1 I-8 - 300X Magnification, No Etch</td>
<td>186</td>
</tr>
<tr>
<td>63</td>
<td>Sample Site R-1 I-8 - 1000X, Normanski Interference, Etched, - Layer 1 in Focus</td>
<td>186</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>64</td>
<td>Sample Site R-1 I-8 - 1000X, Normanski Interference, Etched, - Layer 2 in Focus</td>
<td>187</td>
</tr>
<tr>
<td>65</td>
<td>Sample Site R-1 I-8 - 1000X, Normanski Interference, Etched, - End of Layer 3, Layer 4 in Focus</td>
<td>187</td>
</tr>
<tr>
<td>66</td>
<td>Sample Site R-1 I-8 Showing Microhardness Marks - 300X, Etched</td>
<td>188</td>
</tr>
<tr>
<td>67</td>
<td>Sample Site R-1 I-8 Showing Microhardness Marks - 300X, Normanski Interference, Etched</td>
<td>188</td>
</tr>
<tr>
<td>68</td>
<td>Tribo-Element [1] (Stator) After Use</td>
<td>189</td>
</tr>
<tr>
<td>69</td>
<td>Tribo-Element [2] (Rotor) After Use</td>
<td>190</td>
</tr>
<tr>
<td>70</td>
<td>Site S-1, I-1 on Stator Bar</td>
<td>191</td>
</tr>
<tr>
<td>71</td>
<td>Site R-1, I-1 on Rotor Bar</td>
<td>191</td>
</tr>
<tr>
<td>72</td>
<td>Site S-1, I-4 on Stator Bar</td>
<td>192</td>
</tr>
<tr>
<td>73</td>
<td>Site R-1 I-4 on Rotor Bar</td>
<td>192</td>
</tr>
<tr>
<td>74</td>
<td>Site S-1, I-3 on Stator Bar</td>
<td>193</td>
</tr>
<tr>
<td>75</td>
<td>Site R-1, I-3 on Rotor Bar</td>
<td>193</td>
</tr>
<tr>
<td>76</td>
<td>Typical Cut Down Area - 30X Magnification</td>
<td>194</td>
</tr>
<tr>
<td>77</td>
<td>Typical Cut Down Area - 120X Magnification</td>
<td>194</td>
</tr>
<tr>
<td>78</td>
<td>Typical Worn Area Showing Partial Layer of Grey Material on an Unworn Area (c) and also a Corner of Grey Material (d) on a Cut Down Area</td>
<td>195</td>
</tr>
<tr>
<td>79</td>
<td>Schematic Arrangement for Electrochemical Machining</td>
<td>196</td>
</tr>
<tr>
<td>80</td>
<td>Multi-Neck Polarization Cell - Standard Equipment</td>
<td>197</td>
</tr>
<tr>
<td>81</td>
<td>Schematic Diagram of Experimental Set-Up</td>
<td>198</td>
</tr>
<tr>
<td>82</td>
<td>Close-Up of Counter and Working Electrodes</td>
<td>199</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>83</td>
<td>Standard Potentiostatic Anodic Polarization Plot</td>
<td>200</td>
</tr>
<tr>
<td>84</td>
<td>Potentiostatic Anodic Polarization Curve of Iron in Normal Sulphuric Acid</td>
<td>201</td>
</tr>
<tr>
<td>85</td>
<td>Anodic and Cathodic Polarization Curves Illustrating Some of the Polarization Terminology</td>
<td>202</td>
</tr>
<tr>
<td>86</td>
<td>Variation of pH with Increased Corrosion Resistance or Passivation</td>
<td>203</td>
</tr>
<tr>
<td>87</td>
<td>Theoretical Curve of Na₂SO₃ Added vs. Increased Passivity</td>
<td>204</td>
</tr>
<tr>
<td>88</td>
<td>Radial Cracks Along Intermediate Bar (6x)</td>
<td>205</td>
</tr>
<tr>
<td>89</td>
<td>Hypothesis for Formation of Ridge-Groove Pattern</td>
<td>206</td>
</tr>
<tr>
<td>90</td>
<td>Anodic Polarization Curves for Ni-Hard Refiner Plate, Buffered with Na₂SO₃ - Solution Agitated</td>
<td>207</td>
</tr>
<tr>
<td>91</td>
<td>Anodic Polarization Curves for Ni-Hard Refiner Plate, Buffered with Na₂SO₃ - Solution Stagnant</td>
<td>208</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>E_{corr}</td>
<td>Open circuit corrosion potential</td>
<td></td>
</tr>
<tr>
<td>E_{p}</td>
<td>The primary passive potential</td>
<td></td>
</tr>
<tr>
<td>I_{corr}</td>
<td>Corrosion current density</td>
<td></td>
</tr>
<tr>
<td>I_{cr}</td>
<td>Critical current density</td>
<td></td>
</tr>
<tr>
<td>i_{pass}</td>
<td>The passive current density</td>
<td></td>
</tr>
<tr>
<td>R_c</td>
<td>Rockwell hardness</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION.
1. INTRODUCTION

1.1 Historical Development of Refiner Groundwood for Newsprint Manufacture

The term refining, as it pertains to the mechanical treatment of papermaking pulps, is of relatively recent origin and appears to have derived largely from the use of disk refiners. Before their introduction into the paper industry about a hundred years ago, disk refiners were extensively employed for flour milling and extraction of oils from vegetable seeds.

Disk refiners consist essentially of two counter-rotating, concentric disks fitted with toothed abrading plates. After adjustment of the plate separation by a predetermined amount, feed material is fed from the center of one disk and is reduced in size as it passes through the refining zone to the peripheral gap. The surface of the abrading plates consist of a series of bars—breaker bars, intermediate bars and fine bar zones, with each performing a specific task in the refining process. The refiner plates are characterized by three basic variables: pattern, profile, and material.

It was just over fifty years ago that precision engineered disk-mills were successfully introduced into the paper and board industry. This led to serious consideration of their potential application in the whole field of stock preparation. The rapidity with which disk refiners have been adopted and continue to displace other types of stock
preparation equipment is, as Steenberg (1) has noted, mainly attributable to the efforts of equipment manufacturers. Disk refiners were employed first as on-line stock preparation units ahead of paper machines, then, in quick succession, for the treatment of semichemical pulps and screen rejects in the pulp mill (2-7). It was probably inevitable that they would be modified eventually for use as primary units for mechanical pulp production using residual sawmill based materials which could not be pulped by conventional stone groundwood methods. Pioneering work in this field was carried out by Eberherdt (8-10), Textor (11), and de Montmorency (12).

Textor (11) started work on refiner mechanical pulp in the Bauer Brothers laboratory during the period of 1954-56. It involved short runs on a commercial size 36-inch (500 h.p.) refiner and consisted of all mechanical reduction of chips followed by classification and cleaning of the refined material. This basic work, reported by Eberherdt (8-10), resulted in patents by Textor and Eberherdt. The first commercial pilot-plant, capable of making 30-minute runs, was installed by Crown Zellerback in their Camas Research Division in 1958, using a 40-inch diameter 800 h.p. double disk refiner. The early work indicated that this refiner did not have enough capacity to be practical for large installations and a larger 48-inch disk refiner capable of
using 3,000-4,000 h.p. was designed and installed at two locations—Crown Zellerbach Mill at West Linn, Oregon, and Publishers' Paper Mill at Oregon City, Oregon. Both these installations were single stage refining systems. A second large refiner was installed in the Oregon City Mill in 1962 giving rise to the first two-stage system.

In 1962, Holzer, Henderson, West and Byington (13) reported the advantages of refining wood chips at consistencies in excess of 15 per cent. Low consistency refining was characterized by very high power usage and feeding difficulties. Their studies were not only a precursor to the development of high consistency refining technique, but also a major evolutionary step in the development of refiner mechanical pulping.

During the same period, 1955-63, a number of other investigators were also working in this field. Fundamental studies were being carried out by Atack and May (14) at the Pulp and Paper Research Institute of Canada. Forgacs (15) was doing work on the characterization of mechanical pulps, while Beath and Neill (16) were working on a commercial system at Kenogami, Quebec, evaluating equipment and investigating pulp latency. Stewart (17) was working on a commercial plant pulping sawmill residuals at Powell River, B.C., while Dorland, Holder, Leask, and McKinney (18) were doing laboratory pilot plant studies in the central research
division of Abitibi Paper Company. Jones, with Consolidated
Bathurst Company, was also working on the consistency
problems and did much preliminary plate design work (36). At
Manistique, Michigan, Hoholik was studying grinding followed
by refining.

1.2 Present Day Problem Areas

Although commercial experience has shown that
refiner mechanical pulping of chips produces a substantially
stronger pulp than stone groundwood and permits a reduction
in the amount of chemical pulp used in newsprint, the process
has not been optimized and considerable work and research
remains to be done. Power requirements for refiner
mechanical pulp are much higher than for stone groundwood,
and the escalating price of energy is a cause of concern and
must be overcome if the process is to develop further.
Refiner plate costs are high and plate life must be increased
without any serious adverse effect on pulp quality. Since
there is pressure on newsprint producers to reduce energy
requirements, a design of plate capable of maintaining pulp
quality at reduced levels of power consumption will have a
major impact on the economics of newsprint manufacture.

In response to the need to reduce energy
requirements, improve pulp properties and increase plate
dlife, development work by equipment suppliers and pulp and
paper manufacturers is on-going. A large amount of detailed
data, particularly on plate life, has been gathered; and
there is also much data on specific energy consumption,
effect of additives, and plate pattern. Unfortunately, much
of the data which has been gathered has not been correlated
with measured plate parameters, and, no systematic approach
to the problem has been published in the literature (with the
possible exception of work done by Holzer (13) and Atack (20)
on plate taper).

Further improvements in plate design to reduce
energy consumption and improve pulp properties would seem to
hinge on solving the following problems:

1. How to characterize plates.

2. Development of methods to correlate energy
 consumption and pulp properties to measured
 plate parameters.

3. The maintaining of the desired plate
 characteristics over the life of the refiner
 plate.

4. The interrelationship between plate parameters
 and other refiner variables such as specific
 energy, consistency, power density and speed.

A systems analytical approach to the problems and
data collected on the basis of statistically designed
experimental techniques would help achieve the twin.
objectives of improved mechanical pulp at reduced energy cost. For this reason, a systems analytical approach was demonstrated in this thesis to analyze the refiner and refiner plate system with respect to wear.

The evaluation of plate life data is not a simple matter. For example, the data can be from two sources:

1. normal operation, one in which the plates have never been in physical contact; and
2. clashed operation, one in which the plates have been damaged either through plate to plate contact or because of the passage of some hard, usually metal, material through the refiner.

Since clashing will invalidate any design measurements made with respect to the plate geometry and surface characteristics, it is important to recognize when clashing has occurred and that clashed plate data not be confused with data from normal operation. It is difficult to distinguish between a normally run plate and a clashed plate and, in fact, as outlined in Section 3.5.3.1, this can only be done in many cases by microscopic metallurgical examination.

Plate design programs cannot be run in isolation from the production process since the type and condition of the refiner and auxiliary equipment, and such factors as tram, runout, condition of bearings, feed evenness, and steam and pulp removal arrangement, are important. Since pulp
quality depends not only on refiner plate design, but also to a large extent on refining consistency, feed rate (production), stability of feed, type of refiner, type and quality of feed material when plates are being designed for a particular installation, all of these factors must be considered.

1.3 Objectives of Thesis

In summary, there is a need for a systematic approach to the design of refiner plates if progress is to be made toward improving pulp properties while decreasing costs. A systems analytical approach is needed. For these reasons the objectives of this thesis were set as follows:

1. To review the literature on the design and operation of the disk refiners, with particular emphasis on factors important in the design of refiner plates for extended plate life/power reduction/pulp quality improvement.

2. To monitor the wear of refiner plates run on a Sprout Waldron 42-18 refiner at Price (Nfld.) Pulp and Paper Company, Limited, Grand Falls, Newfoundland, using a systems analytical approach coupled with standard metallurgical techniques. From this study to elucidate the wear mechanisms involved and to propose solutions to the wear problems.
3. To study the corrosion characteristics of Ni-Hard refiner plates using potentiostatic polarization methods with particular emphasis on identifying the role played by sodium sulfite in the extension of refiner plate life. Knowing the role of sodium sulfite and the mechanism by which it extends plate life to propose measures to stop or inhibit more completely the corrosion process.
CHAPTER 2

FACTORS INFLUENCING PLATE LIFE: A LITERATURE SURVEY
2. FACTORS INFLUENCING PLATE LIFE: A LITERATURE SURVEY

2.1 Introduction

During the early stages of development of the refiner mechanical pulping process, circa 1960, the prime concerns were not with plate life, but with increasing the strength of the pulps produced whilst maintaining reasonable power consumption. Helleur and Jones (19) summarized the difficulties typically encountered. At low consistencies, in the range of 8%, very high strength pulps could be produced but at an energy consumption up to three times required for stone groundwood. Raising the consistency improved strength and reduced energy consumption but caused difficulties in feeding and maintaining motor loads. Holzer et al (13) and Attack and Wood (20) describe some of the work done during that period to overcome the problem. Eventually, it was recognized that the introduction of a small amount of taper between the plates resulted in sufficient self feeding which enabled consistencies to be increased to the 30% range and energy consumption to be reduced to 100-120 HPda/ODT.

The main factors identified in the literature as having an influence on plate life in addition to taper, were plate geometry, hardness, the addition of chemicals such as sodium sulphite and sodium carbonate to control pH and such operating variables as plate clearance, disk speed and whether or not the direction of rotation is reversed over the
life of a set of plates. The effects of plate wear on pulp properties and on power consumption are well understood and have been commented upon by several investigators notably Dorland et al (18), Mihelich et al (21), Nystrom and Okell (22), and Beath et al (23). As the plates wear, at any given level of specific energy consumption strength properties deteriorate and debris content increases. Very little, however, appears in the literature about the causes of plate wear.

2.2. Plate Pattern

Refiners, of different size and power inputs used for different end results, need different refiner plate patterns. Each plate pattern is used for a specific purpose and the use of an alternate pattern invariably results in shorter plate life or clashing. The plate pattern involves length of each refining zone, width and height of bars and grooves, taper (Section 2.3), and the symmetry or asymmetry of bars.

Holzer, et al. (13) describe work done on two basic refiner plates illustrated in Figure 1. In general, their findings were that a plate which had a relatively fine radial bar, narrow grooves, and numerous intermediate dams, was the most satisfactory for their type of operation. The difference in the two plates studied was in the width of bars.
and grooves. Their work indicated that with wider bars and grooves, horsepower requirements were reduced; high consistency could be attained; and throughput was increased at the same freeness level. Holzer stated, "it is obvious that the field of plate pattern study offers good possibilities of significant improvements, and undoubtedly, investigations in this area will continue for some time."

A few years after Holzer's work [1966], Mechanical Pulping Manufacture (24), reiterated the point that the ideal plate configuration would differ with wood species, chip pretreatment, rate of feed, consistency, installed horsepower, and disk velocity. It also commented on the usual symmetry of plate patterns, so that the refining action would be the same irrespective of direction of rotation. The effect of the plate grooves which had been discussed by Holzer, et al. (13) and Atack and May (14) was also given in the report. Atack and May stated that,

... it appears that the grooves are rapidly plugged by a mass of shives, which becomes so hard that it can only be removed by manual cleaning with a suitable tool. Still, the plates thus plugged perform much better than plates with grooves as shallow as the remaining grooves in plugged plates. This is explained by the resilience of these "wood

fillings" in the grooves. The particles are evidently pressed down each time a bar of the other disk passes and therefore less damaged.\(^2\)

It was also seen that for full utilization of the refining area, the radial velocity of the pulp particles should really decrease exponentially with the distance from the disk center, which is, of course, not so easy to arrange. Photographic studies by Atack (25) on a double disk refiner have indicated that in some cases as little as 20 per cent of the plate area was actively doing refining work at any one time. This is an important refining variable, which is controlled by plate design and which is manifested by non-uniform plate wear as well as inability to load a refiner to full capacity.

Three publications reflect the importance of plate pattern. Arnesjö and Dillén (26) [1975] state that at Hallsta paper Mill, Sweden in cooperation with Defibrator, they have run and are still running a substantial evaluation program to find the most suitable material and patterns for their purposes. Their aim is to use plates which allow a high energy input at high disk clearance. They believe that high energy input is achieved if the space between the plates:

is well filled and the impact frequency exerted on the fibers is high.

Some work from Norway by Hoydahl and Bauan (27) [1975] on comparison of results from small refiners in evaluating full scale systems pointed out the importance in comparing the smaller refiner results to a larger refiner of the plate pattern. For various reasons, they stated, that the plate pattern in the small and large refiner is not the same since each type of refiner has its own special designed pattern and taper. Although similar in principle, the operation of different refiners will be influenced by the total disk area, total power applied, feeding system, speed, and whether the refiners is a single disk or double disk machine.

The third, and perhaps the most important paper to date on plate pattern, is by Mannstrom (28) working with the Finnish Pulp and Paper Research Institute. Basing research work on May's (29) model of exponential chip breakdown, he states that

"The influence of refiner plate design upon the quality of the pulp in a one-stage process, is decisive. In the preliminary comparisons that were made with plates available on the market, stone-groundwood quality was attainable. In a one-stage RMP-process with cold chips, these plates were less suitable, and accordingly another plate was developed. As a starting point for this, there was taken an approach put forward by W.D. May in 1971 (29). Mathematically, it is assumed that chip-splitting is explicable by a exponential function, which would imply that the number of bars should
rise radially in agreement with the same function. However, with regard to the quality of the pulp, simultaneous consideration should be given to the bar width, the contemplated degree of filling in the refiner zone, the plate material, and the necessary taper. Fig. 2 illustrates a compromise between all of these factors. The refining plate is divided up into five sections. In section 5 the number of bars is 252, and that in section 1 is 792.

With this plate, it became an easy matter to obtain RMP pulp of high quality, and the shive content of the pulp also being low. Moreover, the strength properties were without exception 30 per cent superior to those of stone groundwood of standard quality. It is evident that a plate of this type operates with considerably less cutting than does a standard radial pattern. However, a more interesting point was that the new plate behaves with respect to loading in a way different from that of standard plates available on the market. The loading curve for multi-sectioned plates is more linear. This could be taken to indicate that the refining energy released in a radial direction occurs more evenly. Consequently, May's model appears to be correct.

The literature points out the importance of plate pattern but says little except that a different pattern is needed whenever any refiner variable changes. Careful study must be made of the relationship between changes in plate pattern and changes in refiner variables to lead to correct patterns for increased pulp quality, production economy, and maximum plate life. Mannström's (28) research may hold the key to much progress in the area of plate pattern.

2.3 Running Clearance - Plate Taper (Profile)

Plate taper or profile has been found to be extremely important in plate pattern evaluations. It is one of the basic factors of plate design and is critical in regard to maintaining pulp quality and extending plate life.

Holzer, et al. (13) published some of the first data on plate taper at West Linn, Oregon. The initial plate sets (evaluated) were all ground with a standard plate taper of 0.005 inch per inch. These initial plate sets exhibited very short life (100 hours) largely due to deep tongue and groove scoring in the periphery—the apparent area of contact between the opposing new plates. Upon reducing the taper stages to 0.002 inch per inch, the peripheral wear was reduced significantly. They surmised that the reduction in plate taper increased the amount of refining surface available for use on new plate start-up and caused the available power to be more evenly distributed over the entire plate surface and not concentrated at the periphery. This increased normal plate life to 500 to 600 hours. Kurdin (50) reiterated that for uniform pulp quality the power input per square inch of ground plate surface must remain constant.

Great Northern Paper Company, Millinocket, Maine (30) experimented with several types of plate designs in the late 1960's and found that a Bauer Pattern proved best for their use. This plate pattern had a relatively large taper
which allowed the stock to distribute more uniformly towards the outer periphery, which had a flat area of approximately three inches. They found that plate clearances were at their closest in this area and it was there that they believed most of the refining action took place.

Extensive information on plate taper has appeared in papers from Sweden and Finland. Bergstrom's work (31) contains an evaluation of different plate tapers and different widths of the outer flat zone. They found that a poor quality pulp was obtained if too much work was put into the chips in the feed zone of the primary refiners (Table 1). This suggested that the wood particles have to be warm and susceptible to the intense treatment in the flat outer zone. Their results indicated that a large intermediate zone taper and a nearly flat outer zone produced the highest quality pulp.

Peterson and Dahlquist (32) dealt with single disk and double disk refiners in different arrangements, and the effect of the arrangement on pulp properties and energy consumption. Peterson notes that all sampling took place after "all plates were ground to the optimum taper, which was essential for a correct assessment of the performance of the refiners..." Figures 3-5 show the effect which an

the effect which an incorrectly chosen taper grinding had on
the energy consumption; an increase in energy consumption,
but no corresponding improvement in pulp quality.

Nurminen, et al. (33), Rauma-Repola Oy Paper Mill,
Rauma, Finland, have experimented with refiner plates in
their refiner installation. They have worked on plate
tapers, and now have 0-1.5 per cent at the fine bar section
and 1.5-5 per cent for the intermediate section (Table 2).
They have also made comparisons between sawdust refiner
groundwood made with different plate tapers and found tearing
to increase, and breaking length to decrease with an
increasing taper. At the same time as taper trials, plate
wearing profiles were examined and no systematic information
could be obtained.

Work on plate taper [1975] was done also by Beath
and Mills (34) who initially reported they experienced the
same wear as Holzer, et al. (13). Their plates had a uniform
taper but "were found in the end to have developed parallel
faces over the outer 2 to 4 inches of their radii. The
refiner had told us that some parallel surface was wanted."5
From there the extreme was tried, flat-ground plates—"a
serious overshoot of a logical change."6 Flat-ground plates

5 C. Mills, and L.R. Beath, "Single Stage Groundwood from a
12,000 h.p., 1,500 and 1,800 r.p.m. Refiner." (Paper
6 Ibid., p. 57.
would not permit feeding above 8,500 h.p. (on a 12,000 h.p. refiner). They found that their best combination was flat-ground plates running against plates having a taper of 0.005 inch per inch with the outer fine bar section flat.

In his work on disk misalignment, May (35) considers the running clearance between the surfaces of opposing plates as a critical parameter that determines the performance of disk refiners. For a given throughput of chips, he maintains, this clearance determines the amount of energy expended per unit weight of the material and in turn the "character" and "quality" of pulp produced. A variation of plate clearance from the inner section of the refining zone to the outer periphery is usually provided by a carefully designed taper that may have one or more steps to it. May states that this taper was thought to promote self-feeding in the refining zone and also to control the quality of stock.

Plate taper is necessary to enable maximum feeding of the refiner (34,35). Too much taper places excess wear on small areas—probably the outer edges—of the plates. An observation here is the feasibility of determining correct and optimum tapers through a study of the wear on the plates. A first approximation is that

\[\text{Wear} = \frac{\text{h.p. days}}{\text{BDT/in.}^2}. \]
If this were true then the numbers could be used to set correct plate tapers. If the plate taper is not optimum the flux of energy dissipation will vary over the plate. Early experiments by Consolidated Bathurst (36) on Sprout Waldron refiners with retaining rings should be reevaluated.

2.4 Plate Material

One of the earliest reports [1966] on plate material is contained in Mechanical Pulp Manufacture (24) which names the two most frequently used plate alloys in chip groundwood manufacture as Ni-Hard and M-alloy containing molybdenum and nickel but no chromium. With very corrosive pulps X-alloy, a stainless steel alloy, is used but is considered too soft for other applications. With the advent of more efficient methods for heat treatment of the plates for increased hardness and wear resistance, it is surmised that better pulp quality and process economy might result one day.

Bergstrom, et al. (31), at the Swedish Cellulose mill in Ortviken, Sweden, have evaluated plate alloys. In their studies they have developed two alloys (a martensitic stainless steel and a high chrome cast iron) which proved to be very suitable material for the 1,500 r.p.m. Sunds-Bauer 488 refiner with the stainless steel alloy showing very little wear after 1,600 hours of operation. They state that
"a good plate material can almost eliminate quality variations and give a much longer plate life than standard Ni-hard type materials". From personal correspondence they state (37) that plate material "is certainly one of the main factors in plate design".

Nurminen and his group (33) describe various start-up problems associated with new refiner installations at Rauma, Finland, especially with the durability of the refiner plates in the beginning. Five plate materials were tried (Table 3), but none could exceed a 400 hour run due to heavy corrosion, which resulted in poor quality pulp and imbalance in the refiner causing vibration. The corrosion process was still unsolved at that time but believed to be a combination of steam cavitation, chemical corrosion and mechanical wearing.

They eventually found a material that is fairly resistant to cavitation and chemical corrosion and the age of the plates was subsequently doubled, and even tripled, depending on refiner position. The material was designated Uddeholm B; a summary of the plates is given in Table 4.

8 Personal correspondence from V. Peterson, May 27, 1977, Sundsvall, Sweden.
Specifications as to the chemical analyses, heat treatment, etc., are unavailable for the new material.

In the design of refiner plates, plate material is one of the extremely important factors to be considered. Conditions must be known or determined within the refiner and suitable materials selected to minimize corrosion and wear based on these conditions, i.e., pH, temperature, additives.

2.4.1 Hardness of Plate Material

The structure of the working surface of refiner plates is determined by the material. It is known from the work of Beath and Mills (34) that a good plate material can almost eliminate quality variations and give much longer plate life than standard Ni-Hard type materials.

Holzer, et al. (13), in 1962, evaluated three basic plate patterns, and three plate materials of varying hardnesses, 350, 450, and 600 Brinnel. They found that several basic factors of plate design were critical in regard to maintaining pulp quality and extending plate life. Plate alloys seemed to affect groundwood quality significantly in most cases. In general, better quality pulps had been produced using 350 Brinnel plates rather than the harder alloys, although the 600 Brinnel had shown some promise. The softer plates were readily conditioned (Section 2.4.2), i.e., the sharp edges were worn from the radial bars soon after start-up and were replaced by a rounded edge of small radius.
It was not known how the harder alloy plates conditioned, but if conditioning did not occur the quality was generally poor because of the excessive cutting action of sharp plates.

The use of softer alloy plates for refining was reiterated by Graham (38) of CIP Gatineau at a meeting [November, 1976] of the Mechanical Pulping Committee of the CPPA. He stated that CIP in their new TMP mill were using Japanese stainless steel alloy plates which are a soft stainless (Rc 48-50). They have used different alloys but found the softer ones to be the best; anything over Rc 50 was too hard. They found that the softer plates would, once they were ridged (from contact clashing), smooth out and still be very good but the harder plates, once ridged, deteriorated. No signs of erosion or corrosion were seen on the plates but they were worn down after 1,300-1,500 hours (even wear-down on bars).

Tyralski (39) suggests that to obtain a durable inclined surface the refiner plates should be made of materials of different hardness, to create a scale of wearability along their width. As a condition for uniform wear over the whole working surface area, the pressure should decrease radially in the direction from the axle to the periphery of the disks, since the peripheral speed increases in that direction. Usually, as wear sets in, the gap at the external diameter becomes larger than at the internal
diameter of the disk, and this results in a higher pressure at the internal diameter and a reduction of pressure at the external diameter. This favors fiber shortening at the internal diameter and fibrillation at the external diameter, i.e., highly unfavorable conditions which become worse as the ratio of the internal to the external diameters decreases. At the same time there is reduction of efficiency because the working surface is utilized only partially. An increase of the ratio from the usual 0.45-0.5 to 0.6-0.65 can remedy this situation, but at the expense of reducing the width of the beating surface and in effect still reducing the efficiency. According to Tyrański (39) this drawback can be eliminated by constructing the disk's operating zone of at least three circular concentric zones of different hardness, e.g., 600-400 Brinell for the external zone, 300-220 for the middle zone, and 160-200 for the internal zone. This would maintain uniform wear and improve efficiency at a ratio of diameters of 0.45 or even 0.35-0.4.

The point to be stressed is that pulp quality and characteristics must be maintained over the life of the plate. Hence, soft plates subject to wear are considered more likely to change away from the shape designed in the plate and that present at start-up. Indications are that there is an optimum hardness necessary to prevent excess
cutting of fibers and maintain pulp quality and characteristics.

2.4.2 Conditioning

Whether refiner plates condition or not may not be considered a very important factor in attempting to prolong plate life (with associated good pulp quality). Holzer et al. (13) state that softer plates are readily "conditioned," i.e., the sharp edges are worn from the radial bars soon after start-up and are replaced by a rounded edge of small radius. The harder alloy plates may or may not condition in the same manner (Section 2.4.1). A set of plates, however, which conditions will continue to show an increase in the wear radius of the radial bars and if this wear becomes excessive, refining power will rise and throughput will drop, leading to early plate removal. All plates, however, produce inferior pulp during a wearing in period caused by the cutting action of the sharp edges on pulp fibers (24).

Beath, et al. (21) made an interesting observation regarding plate wear under high consistency operation (25-30%). They stated that it "is unnecessary, and may even be undesirable, to 'condition' new plates just after installation."9 They do not, however, elaborate on the

observation. The factor of plate conditioning may therefore be important if it were able to be quantified with respect to rate of wear and decline of pulp quality.

2.5 Different Plate Patterns on Rotor and Stator Disks

A factor which may be very important in refining and may lead to improved plate life is that of the use of different plate patterns on the rotor and stator disks of a refiner. This technique is mentioned by Arnesjö and Dillén (26) and by Beath and Mills (34). A concept of the refining action in a double disk refiner has arisen that the wood particles are mainly stationary in the refining zone but spinning around their axis under the action of the two counterrotating disks. In normal commercial refining, however, the particles tend more to follow one or the other disk around, preferentially the one with the central entry ports, the rotor, while being pounded by the other one.

Mills and Beath (34) have described single stage groundwood production from a 12,000 h.p., 1,500 and 1,800 r.p.m. double disk refiner. They commented after various plate design trials that "over a span of time, the best combination has proven to be flat ground plates running against plates having a taper of 0.005 inch per inch with the outer fine bar section flat."
In describing thermomechanical pulping at Hallsta Paper Mill in Sweden essentially extend on the idea above of particles following a disk. Their aim was to use plates which allowed a high energy input at high disk clearance. They believed that high energy input was achieved if the space between the plates was well filled and the impact frequency exerted on the fibers was high. Their idea resulted in the use of patterns with rather narrow-spaced and thin bars especially in the stator plates, "the main task of which is believed to be to 'hold' the material in the refining zone." On the rotor plates a somewhat more open pattern with some cross bars, which prevent a too rapid radial transport of the materials, might be used.

2.6 Consistency

In 1962, Holzer, et al. (13) showed that newsgrade mechanical pulps produced by refining hemlock chips were definitely stronger than hemlock stone groundwoods of equivalent freenesses provided that the refining was

conducted at a consistency in excess of 15 per cent. Low consistency refining requires relatively large volume throughput at a given tonnage rate; this means a reduced retention time for chips and a low shear force allowing random positioning of chips. On the other hand, in high density refining, a pulp pad of significant thickness is established between the plates making the shearing force between the plates more effective for defibering and developing the groundwood fiber.

Chip refining installations in the late 1960's operated at 20 to 25 per cent consistency, which appeared to be the practical optimum, although energy consumption dropped up to 30 per cent consistency, which was the maximum feasible consistency. The difficulty above 20 per cent consistency was in maintaining constant consistency and stable flow. Beath and Mills (34) have conducted refining trials at discharge consistencies ranging from the low 20's to over 60 per cent. They found, in general, that pulp quality improved steadily with increasing consistency up to 50 per cent or a little higher. Above the 55 to 60 per cent discharge consistency range pulp quality diminishes. Consistency fluctuations result in nonuniform flow, fluctuating load, lower pulp quality and may contribute directly to plate clashing. Stothert and Crotaigo (40) showed from the work of Snow and Coosney (41) that low consistency refining, where
the grooves of the plate are not filled with stock, has a detrimental effect resulting in a considerable amount of fiber cutting.

Refining consistencies in the range from 3 to 35 per cent were investigated on a reject refiner by Wild (42). He found that the refining operation was improved when refining at the highest consistency where load swings were least, ± 5 per cent of load, and also the refiner could be brought to full load faster than at low consistency. Wild also found that the high consistency refining resulted in much longer plate life on Ni-hard plates; at 30 per cent, plate life was averaging 900 hours as opposed to 400 hours at 15 per cent, and only 150 hours at 6 per cent. He contributed most of the decline in plate life to extreme water-erosion at lower consistencies.

It appears that higher consistencies contributing to thicker pads and less water erosion lead to much longer plate life. There is also the possibility that thicker pads reduce the risk of clashing, again contributing to longer plate life.

2.7 Additives and pH Control

The major portion of reported data on the use of additives and pH control is from Beath, et al. (23,43). They have reported (43) that in the manufacture of refiner
groundwood at high refining consistencies, Ni-Hard refiner plates "wear" largely as a result of corrosive attack by wood acids. By the addition of about four pounds of soda ash per ton of chips, which raised the pH from a normal 4.8-5.2 range to about 6.4-6.8, they showed that plate life could be almost doubled.

In their original work, Beath, et al. (23) report that the use of soda ash with Ni-Hard plates gave a very substantial cost reduction (Figure 6). In part, this reduction resulted from an extension of economic plate life, but the more important benefit of the soda ash treatment came by way of slower loss of refining efficiency and consequent savings in specific energy and production capacity. The best results were obtained by increasing the pH from 4.8-5.2 to the range 6.2-6.6.

Beath, et al. (43) also compare sodium sulfite used in one refiner with soda ash used in another. Sodium sulfite is a readily available chemical which can also be used to adjust pH. Additionally, it is known to react with wood and the literature (44,45) reports that effects other than those resulting from the pH change are obtained. Tables 5 and 6 give the results of their work and the figures shown in Table 5 were used to compare plate life associated costs for three conditions: (1) no treatment; (2) sodium carbonate; (3) sodium sulfite. Results are shown in Figure 7. Some related
data from Figure 6 is summarized in Table 6 which shows that plate life costs are lowered by $1.20 per ton by the use of sodium carbonate and by $3.55 per ton by the sodium sulfite. The sodium sulfite also has a substantial pulp brightening effect. Good plate protection and balance of other factors suggest 20 to 25 pounds per ton as a good rate of addition. At that rate a brightness increase of 4 to 5 units is obtained.

Sodium carbonate is a fairly strong base so only four pounds per ton is required to increase the pulp from pH 5 to pH 6.5 where substantial protection against plate corrosion is obtained. However, small increases above that level raise pulp pH to the point where the well known yellowing effect of caustic occurs strongly and substantial loss of brightness results. Nurminen, et al. (33) found, however, that the addition of sodium carbonate to keep pH between 6 and 6.5 did not reduce chemical corrosion and no prolonging in the life of the plates could be established.

2.8 Reversal of Plates

In conducting early laboratory tests, Dorland, et al. (18) in 1961 reversed the rotation of plates every 500 passes (10 to 12 pounds of chips per pass) to insure uniform wear and thus obtain comparable pulps. Holzer, et al. (13) found from semicommercial tests run in the early 1960's that
periodic reversal of motor direction helped maintain a relatively high throughput during the first half life of the plate. Beyond this point they found that reversal did not appear to help to any great extent. This reversal was helpful on plates which conditioned (Section 2.4.2) and showed increases in wear radii of the radial bars, since if the wear became excessive, due to nonreversal, refining power would rise and throughput would drop.

Plate patterns were usually symmetrical at first (24) so that the refining action would be the same irrespective of the direction of rotation and motors were often reversed once a week to avoid a one-sided blunting of the plate pattern. As stated, however, this practice was being questioned since all plates produced inferior pulp during a wearing period, and a similar pulp quality could be expected at each reversion of rotation.

Great Northern Paper Company, Millinocket, Maine, started up a modified rejects refining system in 1963 (45) and found it necessary to reverse refiner motors weekly to even out plate wear and to improve refiner efficiency and quality. Upon initial start-up of their new refiner plant in 1969, Price (Nfld.) Pulp and Paper Company, Limited, Grand Falls, Newfoundland, initiated plate reversal on a trial basis but apart from the detrimental fact, that ammeters and other instruments on the refiners were not reversible, there
were not enough benefits indicated to continue the practice of plate reversal.

R.J. Scott (46) of Carter Oji Kokusaku Pan Pacific Limited, New Zealand, stated that they found it essential to reverse the direction of the disks at least every 200 megawatt hours of operation or the plate life was drastically reduced and the feeding ability of the refiner deteriorated rapidly. Based on their reversal of direction of disks at approximately every two days, they were able to get a plate life of somewhere near 1,000 hours or 3,500 megawatt hours, at a production rate of 140 A.D.M.T. per day. In their opinion, also, blow black conditions in refiners were closely associated with the reversability of the refiner and the ability to feed evenly into the refining zone.

This facet of extending plate life via periodic plate direction reversal seems today to have become a much neglected practice. Some very serious study and experimentation is quite evidently needed to validate claims of benefits from the practice and to determine parameters to decide the optimum times of reversal if indeed reversal is beneficial.

2.9 Refiner Speed

The peripheral velocity of refiner disks lies in the range 12,500-20,000 f.p.m. and for double disk refiners,
the relative disk velocity is probably what counts, with the top velocity being 30,000 f.p.m. The exact effect of velocity changes on refining and pulp quality has not yet been determined.

Ludhe (47) reported 50 per cent decrease in energy consumption but also lower strength when going from 1,200 to 1,800 r.p.m., but these experiments were made at an early stage [1962] in the history of chip refining. Henderson (48), by increasing the velocity from 1,200 to 1,800 r.p.m., got a much lower freeness and a correspondingly higher strength at a given energy consumption. The early opinion [1966] seems to be that the pulp quality increases with the velocity but that the effect is small compared to other variables, which have to be controlled. If, however, a higher velocity makes it possible to put more horsepower into a given refiner, this will have a major effect on the capital cost.

Bergstrom, et al. (31) report the replacement of Sund-Bauer 480 Refiners (1,000 r.p.m.) with Sund-Bauer 488 Refiners (1,500 r.p.m.) in 1968 with the increased rotational speed changing refining conditions considerably. The new refiners had a much higher capacity than the previous model and could refine first-stage pulp to a lower freeness level, even at higher production rates. They discovered, however, that the refiner-plate material and plate design, which had
given satisfactory results at 1,000 r.p.m., were not suitable at the higher speed. A study of pulp quality in relation to plate wear revealed that the plates were breaking down much faster than in the 1,000 r.p.m. refiners, and that pulp quality was deteriorating at a correspondingly high rate. As a result, a program to develop entirely new refiner plates was started.

An interesting analysis of the effects of an increase in speed has come from Beath and Mills (34) on the operation of a Twin-50 inch double disk refiner at both 50 Hz (1,500 r.p.m.) and 60 Hz (1,800 r.p.m.). After solving start-up problems on 60 Hz operations,

... the refiner was started on 50 Hz power using the plate pattern which had worked well at 60 Hz. Abnormal vibration occurred and the machine shut itself down due to overload on a load sensing conveyor. On opening the refiner the breaker bar section of the plates, and the ribbon conveyors, were found solidly filled with chips. This end result was reproducible. The problem was clearly due to the speed reduction from the prior 1,800 r.p.m. to 1,500 r.p.m. While only 16% in speed, the change was 30% in terms of the maximum breaker bar impact on chips. The breaker bars at the lower speed would not reduce chips to the small sizes needed to leave the breaker bar space at the rate of chip feed; that space then filled and the plug built back along the ribbon conveyors. The process ended, when the load sensing conveyors, having no free volume into which to discharge chips, filled and stopped on overload.12

The solution was "to restore the loss of breaker bar impact, the plates were changed with the new plates having a longer breaker bar section".13 It is not known whether Beath and Mills predicted trouble in changing from 60 Hz to 50 Hz, but it can be readily seen that as the refiner speed changes so does the necessary plate pattern to accommodate changes in throughput.

2.10 Steam Generation and Removal

Dana et al (49) have given a detailed description of steam generation in the refining zone of disk refiners. They also state that:

The direction of flow of steam in the refining zone and the pressure gradient developed there become critical factors in both the stability of operation and the quality of pulp produced in the refiner. They are themselves determined by the geometry and speed of the refiner, the plate pattern and plate taper, and the operating conditions of throughput, motor load, and the inlet consistency and temperature of the feed material.14

In their description of single stage groundwood from a 12,000 h.p., 1,500 and 1,800 r.p.m. refiner, Beath and Mills (34) discussed the egress of steam from various plate

13 Ibid, p. 59.

patterns. Plates (S.W. D20A031) which have relatively wide, deep grooves which extend to the outer periphery made steam egress easy, and the pressure build-up needed to force its removal, small. Steam escape with those plates was so easy that all steam left by the periphery for loads up to 10,000 h.p. The same plate pattern, but with a complete peripheral dam, gave only 65 per cent as large a power increase per unit hydraulic pressure increase; they considered that this was due to more difficult steam escape resulting in a higher proportion of the hydraulic pressure increments being used to balance increasing steam pressure. Another plate pattern (S.W. D20A001) used by Beath and Mills had a band of fine, shallow grooves at the periphery which were a restraint to steam outflow. Those plates normally had a back flow of steam at loads of 7,000 h.p. and up.

In their study of steam flow and self-presurization in chip refiners, Dana et al. (49) used a standard refiner (conditions listed in Table 7) to investigate the effect of the operating and design parameters on the distribution of pressure and the flow of steam (ignoring presence of wood) by progressively changing each variable in turn while the other remained fixed. Both operating parameters and design parameters were studied; motor load, consistency, feed inlet temperature, inlet and
outlet pressure, plate gap, plate taper, disk rotational speed, disk diameter, roughness of plate surface.

From their work they predicted that the pressure in the refining zone of a chip refiner was likely to be sensitive to plate clearance, plate taper, plate roughness, inlet consistency, inlet pressure, disk diameter and motor load, and insensitive to changes in inlet temperature, disk speed, and reduction of outlet pressure below atmospheric. The back flow of steam was likely to be very sensitive to disk diameter, inlet temperature and inlet pressure, and insensitive to plate taper, plate roughness, disk speed, inlet consistency and reduction of outlet pressure below atmospheric. This work demonstrates that correct plate design is necessary (disk diameter, etc.) to insure proper steam egress and alleviate problems caused by back flow of steam which could lead to blowback and clashing.

Conventional refiners assume uniform taper from entrance to exit preventing steam from exceeding supersonic velocities which, according to Dana et al (49) may cause the occurrence of shock waves. This may also prevent refiners from clearing—the net result of which is self-pressurization, increased retention time, excess pressure on fine bar sections, excess wear and reduced plate life. In addition, power requirements are increased. A proposed solution is the use of converging-diverging plates (nozzle
effect—Figure 8) to enable steam to clear. The results should be closer plate clearances without excessive pressures, lower shive content and less energy for the same pulp properties. Earlier waveline plates investigated by such companies as Consolidated Bathurst in the early 1960's should perhaps be reviewed.

2.11 Optimum Timing of Refiner Plate Replacement

Longer plate life is not necessarily optimum plate life. In the pulp and paper industry, as in all others, costs associated with production must always be optimized to maximize profit. Therefore, it is imperative to remove refiner plates when they have surpassed their optimum plate life based on costs. This section is a discussion of the method of arriving at this optimum time. It is also worthwhile to note here that if for some reason the plates give excellent quality pulp with no increased energy consumption, then it would be senseless to remove them purely on the basis of statistical data.

One of the earliest books dealing with refiner mechanical pulping (24) noted that the timing of refiner plate replacement was chiefly determined by the increasing difficulty of feeding the refineries. As the plates got worn, the screw feeder would consume more power and eventually an increase of the feeder speed would have no effect on this
refiner load. At the same time, the shive content would rise and general quality of the pulp would drop—partly due to plate wear, partly due to fluctuating feed rate (also dependent on wear of the plates). This meant, therefore, that the output of pulp at a given freeness and probably the quality would start dropping while the specific energy consumption would increase. At some point, they concluded, there would be a minimum total cost of refiner plates and refining energy per ton of pulp. Of course, requirements of production or quality might necessitate plate replacement before this point was reached.

A paper by Freeman (30) at the 6th International Mechanical Pulping Conference described the Great Northern Refining System at Millinocket, Maine. In describing their experimentation with refiner plates he noted that "plate life is generally a result of pulp quality and refiner efficiency, when both drop off, the plates are changed."15

Beth, Mihelich and Wild (23) present a very complete and extensive paper on the optimum plate replacement time. They state, "that refiner plates are a substantial cost item in making refiner groundwood. It is often thought desirable to minimize the cost of plates, per ton of

groundwood, by keeping them in service as long as possible. This is a naïve viewpoint. Plates should be kept in service only until the sum of all costs associated with plate life has reached a minimum.¹⁶ As Beath has said, "an optimum program for frequency of refiner plate changes requires that the sum of all costs (per ton of pulp) which are affected by plate life is minimized. The essential point is not the amount of such costs, but that the amount be minimized."¹⁷ Among the costs considered by Beath were power costs which, while affected by plate wear, were largely independent of it. Thus, they noted that the figures obtained for total plate life associated costs had no absolute validity such as would have permitted them to have been used in comparing costs between two refiner groundwood plants. However, within a given refiner groundwood plant, they provided a realistic basis, he maintained, for: (1) establishing optimum plate change intervals; (2) selecting the most economical type of refiner plates; (3) selecting the most economical refining conditions.

Beath, et al. (23) arrived at the total plate life associated costs by considering many factors. They derived

¹⁷ Ibid, p. 74
from these factors the total tons, Q_T, produced to T hours of plate service and subsequently the plate life associated costs, S_T, to T hours of plate service. The average plate life associated cost per ton of 92 B.V. (Beater Value) pulp over the period to T hours of plate service would then be:

$$\frac{S_T}{Q_T} = W_T$$

Equation (1) can be used to calculate plate life associated costs (W_T) for various plate service life times, T. Values of W_T can then be plotted against plate service time (as in Figure 6); the optimum time of plate change is that corresponding to the cost minimum of the curve.

Beath, et al. (23) provided several case histories and showed the variation in plate life associated with service life. The curves (Figure 6) showed that, typically, costs decreased to a minimum from which they slowly, but steadily increased. The curves were usually fairly flat near their minima and the optimum time for plate change was therefore not critical. From Figure 6, Beath showed that the long potential life of stainless steel plates, with its promise of low plate costs per ton of pulp, was misleading and that the minimum value of all costs associated with plate life was somewhat higher than it was for the less durable Ni-Hard. The use of soda ash with Ni-Hard plates also gave a
very substantial further cost reduction. In part, this reduction resulted from an extension of economic plate life, but the more important benefit of the soda ash treatment came by way of slower loss of refining efficiency and the consequent savings in specific energy and production capacity.

Arnesjö and Dillén (26) in a paper on TMP at Hallstà Paper Mill in Hallstavik, Sweden, explain when and why they change their refiner plates. They state that, "equally important as the selection of proper plate design (in TMP production) is a careful control of the condition of the plates in the refiners." They have found that damaged or too much worn plates in only one of the refiners was sufficient to cause a severe quality drop in the entire production from the plant. Therefore, an intensive control of the plates was essential. It was, however, they noted, also important to let the plant run as stable as possible and frequent shut-downs of the refiners were highly undesirable. Thus, they concluded that plate condition control could not be based on visual inspection of the plates but rather on quality evaluation of the pulp from each individual refiner.

In their plant they used a graph of Long Fiber Content (i.e., Bauer McNett + 30 mesh fraction) versus Freeness for this purpose. As indicated in Figure 9, the effect of closing the disks could be generalized into two straight lines in such a graph. At high disk clearance a long fiber reduction of 0.6-0.7 per cent was obtained for each 10 ml freeness drop, indicating that fibrillation was the main reason for the freeness drop. At very narrow refiner gaps, however, the long fiber was reduced by 2-3 percent from each 10 ml freeness drop, which was an indication of severe fiber cutting. Their aim was to operate close to the point where the slope was changed. Therefore, they have divided the graph into different areas as indicated in Figure 10. When the plates go into the "area indicating bad plate condition or other operational disturbances" they must be removed.

This section points out the extreme importance of removing the plates, not necessarily only when the quality starts to drop or the life is long, but when the total plate life associated costs have reached a minimum, as demonstrated by Beath et. al (23). Beath's method of determining plate life at minimum plate life associated cost seems to be very neglected and little is said elsewhere in the literature.

19 Ibid., p. 101.
concerning it. Most refiner plates are removed when the "blue glass" shows excess shives and the refiners will not load up to their maximum production rates. Beath's and Arnesjö's methods need to be studied more fully and put to use to prove or disprove their validity.

2.12 Plate Wear.

A considerable number of papers comment on the wear of refiner plates and associated problems caused by it. This section deals with and summarizes the available literature while Chapter III of this thesis deals with an actual case study of refiner plate wear.

An early attempt to characterize wear came in a book entitled Mechanical Pulp Manufacture (24). It stated that plate wear was of three types: a pitting of the surface, which resembled cavitation; abrasion, which often resulted in deep circular grooves; and metal to metal wear, mostly close to the periphery, where the plates would just meet. Both pitting and metallic wear could be avoided by operating with proper plate clearance. This meant maintaining an adequate rate of flow, since the refiners were in practice set according to the motor loads, not according to plate clearance. It was assumed that the pitting was caused by steam trapped between the plates. The book stated that the circular grooves were the result of nonuniform
distribution of the refining work done by the plates (see Chapters III and IV). The solution was to taper and shape the plates so that the stock was more uniformly distributed and each part of the refining area did about the same amount of work.

An important comment made was that, "there has been no evidence of any effect of a normal, gradual plate wear on power consumption and plate quality." All plates produce inferior pulp during a wearing-in period. In the future, they assumed that more efficient methods for heat treatment of the plates for increased hardness and wear resistance, might result in better pulp quality and process economy. Wear of the plates seemed to be directly related to plate clearance (i.e., feed rate) and the ease of steam escape.

The first recorded attempt to determine the effect of normal plate wear on the pulp quality and power relationship was conducted by Nystrom and Okell (22) at Crofton Pulp and Paper Limited, British Columbia. The study commenced with new Ni-Hard plates in all refinners. The effect of normal plate wear on power consumption and freeness relationship (Figure 11) showed that at any given plate age, the freeness decreased as the power consumption increased. As the plate wore, however, the power consumption versus

20 Mechanical Pulp Manufacture, Chapter 14, p. 197.
freeness curves shifted upward. Therefore, in order to maintain a constant freeness, the power consumption increased as the plates wore.

Similarly (Figures 12, 13) at any given plate age, the tear factor and per cent mullen increased as the power increased. These curves shifted downward as the plates wore. Therefore, to maintain a constant per cent mullen or tear factor, the power requirements increased with plate wear. This investigation emphasized the importance of plate condition on quality, power efficiency, and production rate, and provided an incentive for the development of longer-lasting refiner plates.

It is widely accepted, as noted by Kurdin (50), that the refiner plate serves a screening function at the transition between breaker bars and the intermediate refiner bars. The clearance of the plates determines the size of wood particles passing between the refiner bar sections. If the particle size is not reduced sufficiently, permitting materials to pass on to the next bar zone, excessive wear normally results at this transition point. Therefore, it is necessary if uniform pulp quality is essential, to maintain constant power input per square inch of ground plate surface. Refiner plates, therefore, with a high ground taper naturally result in wear causing a flat section at the outer diameter.
of the plate requiring an increase in the total power to maintain this pulp quality.

The wear of refiner plates has been dealt with in much detail by Beath, et al. (23) who stated in their paper on costs associated with plate life that progressive wear of refiner plates during their service life resulted in one, or more of: decreasing pulp quality, decreasing production rate and increasing specific energy. The direct effects of plate wear, by erosion and corrosion, on various pulp qualities was shown by Mihelich, Wild, Beaulieu, and Beath (21). The differences between new plates (16 hours) and worn plates (227 hours with no pH adjustment) and the effects obtained by them are seen in Figures 14-19. Figures 20-22 show typical results obtained at varying specific energy inputs, when operating continuously at approximately 27 per cent discharge consistency and no pH adjustment in the refining zone.

Figure 20 showed that, for given specific energy inputs, new plates tend to produce higher freeness pulps than worn plates. They noted that most of their other data showed this trend, but "there were instances where worn plates produced pulps of equal or higher freeness than when they were new. We attribute these exceptions to wood quality changes and/or plate damage."21

Figures 21 and 22 from Mihelich's work (21) showed that there was a continuous deterioration in pulp strength as the plates wore. When the plates became extremely worn, short-term motor load variations increased and it became increasingly difficult to fully load the refiner, which was then producing a short-fibered, choppy pulp. Figure 23 shows that shive production was very sensitive to plate condition. As is now widely accepted, they advocated that quality deterioration with plate age could be reduced considerably by increasing refining zone pH.

Actual case histories of plate life were discussed by Nurminen, et al. (33) from their new refiner installations at Rauma, Finland. They found that the durability of the refiner plates was a big problem in the beginning. Over a two year period they tried five plate materials (Table 3) but none of them could exceed a 400-hour run. The cause of this was determined to be heavy corrosion, which resulted in poor quality pulp and an imbalance in the refiner causing vibration. They have been unable to solve the corrosion process, but believe it is a combination of steam cavitation, chemical corrosion, and mechanical wearing. Examples of this mechanical wearing are seen in Figures 24 and 25. In Figure 25, the plates have been touching each other, whereas in Figure 24 there have been hard particles between the plates.
In their opinion, the particles loosened from the wearing plates (Figure 26) were causing this kind of corrosion.

Arnesjö and Dillén (26) stresses the point that as important as selection of proper plate design is, equally important is a careful control of the condition of the plates in the refiner. They have found that damaged or too much worn plates in only one of seven of the refiners in their plant is sufficient to cause a severe quality drop in the entire production from the plant. Therefore, they stated, that an intensive control of the plates was essential. It is, however, also important to let the plant run as stable as possible and frequent shut-downs of the refiners are highly undesirable. Thus, plate condition control cannot be based on visual inspection of the plates, but rather on quality evaluation of the pulp from each individual refiner.

Laliberte (51), in discussing corrosion problems in the pulp and paper industry, states that the wearing of steel refiner plates in chip-refining constitutes the most visible problem in the mechanical pulping section of the mill. He notes that "the abrasive action of the chips, high temperature, and localized boiling of the water in the refining zone rapidly attack the refiner plates."22

The literature on the wear of refiner plates is quite extensive, yet without much detail. The mode of wear, its causes and probable cures, have not been expounded on at all and thus there is a very urgent need for research work on the wear of refiner plates. Some recent investigations have been conducted and these are reviewed in Chapter III.

2.13 Corrosion

Corrosion has as great an effect upon plate life as wear. Many times these two factors are considered identical and at times it is very difficult to distinguish between them. Each is a separate entity but may contribute so extensively to the other that they are inseparable. Heidemeyer (52) notes that mechanical work on a surface (i.e., due to contact between rotating refiner plates) may actually increase rates of corrosion considerably. His theory is illustrated in Figure 27. The introduction of some mechanical energy (via contact rubbing) reduces the activation energy necessary for chemical reaction and thus increases corrosion rates. Therefore, in the case of refiner plates, the wear process, although it may seem very insignificant when no serious contacts occur (clashing), may be contributing significantly to the rate of corrosion. This area presents itself for research and may provide some
excellent insights into the relationship between wear and corrosion.

Corrosion is, as we have stated, an important contributor to the decline in the life of refiner plates. Minimizing the fact of its importance is the lack of published literature on causes and cures, especially with respect to refiner plates themselves. Research has been conducted on the corrosion of refiner plates by such groups as Bergstrom et al. (31), but is unpublished.

Laliberte (51), while discussing corrosion problems in the mechanical pulping section of a mill, said regarding refiner plate corrosion that "the corrosion problem involves the action of erosion accelerated by the corrosive environment, as well as cavitation caused by localized flashing of water to steam." 23

Some paper companies have stated that they have corrosion problems and are working for solutions or else have overcome their problems but give no details. Two papers [1973] have given information on work in an effort to combat corrosion. Nurminen, et al (33), in describing their new refiner installations at Rauma, Finland, have stated that the durability of refiner plates was a big problem in the beginning. Rive plate materials had been tried (Table 3) 23

23 Ibid, p. 9.
during two years but none of them could exceed a 400-hour run. The reason was heavy corrosion which resulted in poor quality pulp and an imbalance in the refiner causing vibration. Their corrosion process is still unsolved, but they believe it is a combination of steam cavitation, chemical corrosion, and mechanical wearing. Steam cavitation can be seen from their photographs (Figures 24 and 26) and they also stated its influence was partly the reason for the defects they have pictured in Figure 28.

Chemical corrosion—which they stated resulted from organic acids released from wood—has probably caused the damage shown in Figures 25 and 28. They attempted to reduce chemical corrosion by adding sodium carbonate in order to keep the pH between 6 and 6.5. However, they could establish no increase in the life of the plates. They eventually found a material fairly resistant to cavitation and chemical corrosion. The age of the plates were doubled, and even tripled, depending on refiner position. This material was Uddeholm B, no details of its composition or formation are provided.

Beath, et al. (43) also concluded that in the manufacture of refiner groundwood at high refining consistencies, Ni-Hard refiner plates wear largely as a result of corrosive attack by wood acids. Beath (23) earlier reported on this phenomenon and showed that plate life could
be almost doubled by the addition of about four pounds of soda ash per ton of chips, which raised the pH from a normal 4.8-5.2 range to about 6.4-6.8. Figure 29, however, shows the detrimental effect of sodium carbonate when being used to extend plate life.

Because sodium carbonate is a fairly strong base, Beath, et al. (43) found that only four pounds per ton was required to increase the pulp from pH 5 to pH 6.5 where substantial protection against plate corrosion was obtained. It was found, however, that small increases above that level raise pulp pH to the point where the well-known yellowing effect of caustic occurs strongly and substantial loss of brightness occurs (Figure 29). Beath also found that the use of sodium sulfate had a substantial pulp brightening effect.

They found that good plate protection, and balance of other factors, suggests 20 to 25 pounds per ton as a good rate of addition. The use of Na₂SO₃ and sodium carbonate additives and their effect on plate life is discussed more fully in Section 2.7 and Chapter IV of this thesis.

2.14 Summary

This literature survey shows that many factors are important in refiner plate design. External refiner factors (variables) such as disk parallelism, vibrations and refiner feed rate although not reviewed are extremely important.
Each of these must be adjusted before the refiner is started and must be kept under control for the life of the set of plates. Two internal refiner variables considered are consistency and additives (pH control). The literature indicated that consistencies in excess of 25 per cent produced much stronger pulps than low consistency pulps at equivalent freeness. Throughput was also higher at higher consistencies and the amount of fiber cutting was decreased considerably. It is also significant to note that high consistency refining results in much longer plate life on Hard plates.

The literature on additives and pH control used to prolong plate life attests to the extreme importance of reducing chemical corrosion. None of the reports attempt, however, to determine the types or modes of corrosion involved and indeed no experimental work directly related to the corrosion and wear of refiner plates has been reported. Also, no specific details on the role of the additive sodium sulfate is known, making it an area of necessary research.

Two other factors directly related to the actual refiner operation are the reversal of plates and refiner speed. Extension of plate life by means of periodic plate direction reversal seems to be a much neglected practice. Some very serious study and experimentation is evidently needed to validate claims of benefits from the practice and
to determine parameters to decide the optimum times of reversal, if indeed reversal is beneficial. The exact effect of velocity on refining and pulp quality is not known either with certainty; the early opinion [1966] seems to be that the pulp quality increases with the velocity but that the effect is small compared to other variables, which have to be controlled. The only valid aspect known is that as the refiner speed changes so does the necessary plate pattern to accommodate changes in throughput.

Running clearance or taper, plate pattern, different plate patterns on rotor and stator disks, and steam generation and removal are all factors contributing to a correct refiner plate geometry. The running clearance between the surfaces of opposing plates is a critical parameter that determines the performance of disk refiners and is necessary to enable maximum feeding of the refiner. A carefully designed tapered plate clearance is thought to promote self-feeding in the refining zone and also to control the quality of the stock. Each plate pattern is used for a specific purpose and the use of a different pattern invariably results in shorter plate life or clashing. Careful study must be made of the relationship between changes in plate pattern and changes in refiner variables to lead to correct patterns for increased pulp quality, production economy, and maximum plate life. A factor which
may be extremely important in plate design and may lead to improved plate life is that of the use of different plate patterns on the rotor and stator disks of refiners. This concept is only mentioned twice in the literature but suggests itself to some much needed research.

The direction of flow of steam in the refining zone and the pressure gradient developed there, are critical factors in both the stability of operation and the quality of pulp produced in the refiner. They are themselves determined by the geometry and speed of the refiner, the plate pattern and taper, and the operating conditions of throughput, motor load, and the inlet consistency and temperature of the feed material. To insure proper steam egress and alleviate problems caused by backflow of steam which could lead to blow-back and clashing, correct plate design is necessary.

Refiner plate material factors such as composition, hardness, and conditioning, are all inherent properties of the actual plate production, the casting techniques and heat treatment. Plate conditioning is not considered an important factor in attempting to prolong plate life, but could be extremely important if it were able to be quantified with respect to rate of wear and decline of pulp quality. The actual conditioning process appears dependent on plate hardness which in turn must be optimized to prevent excess cutting of fibers and maintain pulp quality and
characteristics. Plate hardness is in turn dependent on the material composition which is one of the very important factors to be considered in the design of refiner plates. Conditions have to be known or determined within the refiner and materials selected to minimize corrosion and wear based on these conditions, i.e., pH, temperature, additives, etc.

One of the most important considerations in discussing factors influencing plate life is that longer plate life is not necessarily optimum plate life. The importance of removing the plates, not only when the quality starts to drop or the life is long, but when the total plate life associated costs have reached a minimum must be re-emphasized. Various methods of determining the end of useful plate life have developed in the industry—blue glass showing excess shives or inability to load up refiners to their maximum production rates—but a much more scientific approach, such as that of Arnesjo and Dillén (26) using graphs of long fiber content, or Beath's (23,43) graph of minimum total plate life associated costs must be re-introduced and given serious consideration in the timing of refiner plate replacements.
CHAPTER 3

THE APPLICATION OF SYSTEMS TECHNIQUES TO THE STUDY OF THE WEAR OF REFINER PLATES
3. THE APPLICATION OF SYSTEMS TECHNIQUES TO THE STUDY OF THE WEAR OF REFINER PLATES

A literature study on the wear of refiner plates has been presented in Section 2.12. As was stated there, a shortage of information concerning the wear of refiner plates exists. There is no literature indicating any experimental research performed to determine modes and rates of wear of refiner plates in different environments. The author has conducted some testing using new refiner plates supplied by Price (Nfld.) Pulp and Paper Company, Limited, Grand Falls, Newfoundland. These plates were examined and measured before use, put in use in the refiner plant at Price (Nfld.), and removed and re-examined after use. This chapter presents an analysis of the wear of these refiner plates during the production of mechanical pulp from chips, based on this actual case history.

The study was undertaken using the systems approach of Czichos and Mølgaard (53). A tribological systems data sheet (Figure 30) developed by Czichos (53,54,55) was used to analyze completely the refiner plate/pulp/refiner plate system. The principles of system analysis and their application to tribology and also the systemanalytical data sheet are explained fully in two papers by Czichos (54,55). A further paper on the application of systems techniques to
the study of wear by Mølgaard and Czichos (53) was the guideline followed to conduct this case study on refiner plates.

Each section of the systems data sheet (Figure 30) will be considered separately with detailed information, where available, being included as part of this chapter. The section numbers relative to each portion of the data sheet are indicated on Figure 31.

3.1 General Problem Statement

The tribological data sheet is intended to serve as a guide in the analysis of wear problems to insure that all relevant data is taken into account. It was used here to determine if it can indeed serve this purpose in the severe wear problem encountered on refiner plates. The actual problem statement is to characterize a 42-inch single rotating disk Sprout Waldron refiner in operation.

3.2 I. Technical Function of the Tribo-System

Stated simply, the technical function of the tribo-system being characterized was to convert wood chips into refiner mechanical pulp.
3.3 Operating Variables

3.3.1 Type of Motion

We have considered the case of a 42-inch single rotating disk refiner. One disk is moving (1,800 r.p.m.) while the other remains stationary. In the macro system of the two sets of 42-inch diameter disks with attached plates, the motion is that of rotation. On a micro scale, however, where we consider part of one bar on the rotating disk moving past a part of another bar on the stationary disk the motion is designated sliding.

3.3.2 Duration of Operation

In the case considered here the duration of operation was in the order of hundreds of hours (in some cases up to 1,500 hours or more) and might well be considered continuous.

3.3.3 Load $F_n(t)$

The only data available on the applied loads on the refiner disks are the charts of the applied horsepower over the life of the set of refiner plates. The charts for the complete life are available but only a representative printout is shown here (Figure 32). As can be seen, there is some fluctuations of applied horsepower with time.

The power consumption of a disk refiner may be separated into three principle components: the power required to revolve the disk in a fluid medium—disk
friction; the power imparted to the stock - effective work; and the power required to accelerate the stock to exit velocity from the plates - pumping losses. According to Herbert and Marsh (56) an expression for the total power consumption, which has been verified, to some extent, by experimental laboratory work with a commercial-size disk refiner, is:

\[h_{p_t} = K_d N^3 \left(D_0^5 - \frac{2}{3} D_1^5\right) + K_e N D_1 \left(D_0^2 - D_1^2\right) + K_p Q N^2 D_0^2 \]

(2)

where

- \(h_{p_t} \) = total brake horsepower applied;
- \(K_d \) = disk friction constant, which is directly proportional to the density of the fluid handled and varies with plate geometry;
- \(N \) = rate of revolution, rpm;
- \(D_0 \) = outside diameter of refiner plates, ft;
- \(D_1 \) = inside diameter of bar and groove circle of the refiner plates, ft;
- \(K_e \) = a constant which includes the coefficient of friction between fibers and plate and fiber and fiber as well as average separating pressure between plate "contacting" surface;
- \(K_p \) = a constant which includes the gravity constant and the density of the fluid;
- \(Q \) = quantity of fluid pumped out between plates.
Herbert and Marsh (56) then present an expression for torque, \(T \), based on the coefficient of friction \(f \),

\[
T = \pi n f p_{\text{max}} r_1 \left(r_0^2 - r_1^2 \right)
\]

(3)

where
- \(f \) = coefficient of friction (fiber to fiber and fiber-to-plate)
- \(n \) = number of friction areas
- \(p_{\text{max}} \) = maximum pressure between plates, lb/in\(^2\) (at \(r_1 \))
- \(r_1 \) = inside diameter of plates, in.
- \(r_0 \) = outside diameter of plates, in.
- \(T \) = torque, in.-lb.

Letting

\[
N = \text{speed of rotation, r.p.m.}
\]

\[
\frac{NT}{12} = \text{ft.-lb./min.}
\]

and

\[
\frac{NT}{12} / 500 = \text{h.p.} \quad \frac{NT}{6600}
\]

\[
T = \frac{6600 \times \text{h.p.}}{N} \quad \text{(ft.lb./min.)}
\]

(4)

Therefore, knowing the applied horsepower and speed developed by the refiner for this applied horsepower, the thrust developed between the tribo-elements [1] and [2] are determined. Some tables of the thrust (Tables 8, 9, 10) developed by the refiner and steam produced are reproduced here from the work of Attack and Stationwala (57).
3.3.4 Velocity \(v(t) \) (fpm)

The velocity of the rotating (sliding) refiner disks is shown in Figure 33. This shows that the velocity of the rotating disks is not time dependent but distance (from center of disk) dependent, i.e., \(V(x) \) where \(X \) is the distance from center of the refiner disk.

3.3.5 Temperature \(T(t) \) (°C)

The temperature dependence of the disks during their life is seen in Figure 34. This is reproduced from the work of C. Mills (58) in determining if an open discharge refiner was self-pressurizing. The figure shows that the temperature increases from 100°C at the refiner disk’s inner periphery to a maximum of 138°C near its center and back to 100°C again at the outer periphery of the refiner disk.

3.3.6 Other Operating Variables

There are three primary control variables in most types of refiner mechanical pulping operation. They are dilution water flow rate, throughput and refiner plate gap setting. In turn, these variables, or some combination of them, control discharge consistency, specific energy and motor load. The latter variables may be termed secondary control variables and are the ones invariably used by the operator to control pulp quality.

Another variable which may be considered as an operating variable and of direct effect on the tribological
system is the pressure developed between the refiner plates. Pressure is directly related to the temperatures developed by the saturated steam (Figure 34) and is shown in Figure 35. This figure shows that as much as 36 psig pressure is developed near the center of the refiner plates.

3.4 III. Structure of the Tribo-System

Some of the information on the structure of the tribo-system such as designation of element and material, chemical compositions, topography descriptors and surface layer data are included on the tribological systems data sheet (Figure 31). The tribological system under consideration is composed of three elements: (1) the stationary refiner plate; (2) the rotating refiner plate; and (3) the pulp solution. Figure 36 is a photograph showing tribo-elements [1] and [2].

3.4.1 Volume Properties (Geometry/Dimensions/Volume) of Tribo-Element [1] and [2]

Table 11 shows the dimensions of tribo-element [1] and [2]. This refiner plate is actually one-twelfth of tribo-element [1] and [2]. The total system consists of a circular 42-inch disk of twelve plates which rotates against another stationary disk of 12 plates, with tribo-element [3] between them.
3.4.2 Volume Properties (Geometry/Dimensions/Volume) of Tribo-Element [3], the Lubricant

As can be seen from Figure 31 tribo-element [3], which in other systems is a lubricant, consists in this system of water, steam, Na₂SO₃ and wood chips. The wood chips and water enter between tribo-elements [1] and [2] and exit as pulp and steam. Table 12 gives the volume properties (Volume) while Figure 37 gives the actual profile dimensions of tribo-elements [1] and [2] and thus the volume properties (dimensions) of element [3], the "lubricant". Figure 38 also gives a graph of effective cross sectional area through the tribo-elements based on circumference and separation between plates at that circumference.

The wood chips which constitute an integral part of the lubricant [3] are of different sizes. A typical classification of chips entering between tribo-elements [1] and [2] is as follows:

<table>
<thead>
<tr>
<th>Size (in.)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in.</td>
<td>15%</td>
</tr>
<tr>
<td>3/4 in.</td>
<td>20%</td>
</tr>
<tr>
<td>1/2 in.</td>
<td>25%</td>
</tr>
<tr>
<td>1/4 in.</td>
<td>24%</td>
</tr>
<tr>
<td>1/8 in.</td>
<td>30%</td>
</tr>
<tr>
<td>< 1/8 in.</td>
<td>30%</td>
</tr>
</tbody>
</table>
3.4.3 Volume Properties--Chemical Composition of Tribo-Element [3], the Lubricant

The "lubricant" is a mixture (Figure 31) of water, Na₂SO₃, and wood chips being converted to pulp and steam. The data in Table 13 is typical for the "lubricant" used at Price (Nfld.) Pulp and Paper Company, Limited, Grand Falls, Newfoundland.

Tribo-elements [1] and [2], the refiner plates, were cast at 2,600°F using the green sand casting (no resins, etc.) technique. After casting they were cooled to ambient temperature either outdoors or to room temperature. The plates were then shaken out of their moulds and could have been left for a week or more before further treatment.

A stress relieving operation was next performed on the plates; heating for two hours at 500°F and then air quenching. This caused a mechanical change in the grain structure—austenite to martensite. The purpose of this treatment was to give a Rockwell hardness, Rc, of 54-58. The chemical composition of the Ni-hard plates was as follows:

3.40-3.65 C, 0.35-0.50 Mn, 0.55-0.70 Si, 2.40-2.70 Cr, 4.20-4.50 Ni, 0.20-0.30 Mo, 0.05 P, < 0.120 S (usually 0.15-0.20), balance Fe.
3.4.5 Volume Properties—Phys.-Mach. Data—
Tribo-Element [3], Lubricant

This section deals with the breakdown of the wood chips (a component of the lubricant) as they advance between tribo-elements [1] and [2] and also with steam production and removal. The generation and removal of steam from between the refiner plates was discussed in Section 2.10.

The process of chip breakdown through tribo-elements [1] and [2] was discussed quite extensively by Attack and May (14). They demonstrated that the chips changed into match-stick-like material, to slender pin chips, to large fiber bundles, to smaller bundles, and finally separated fibers. The refiner used was a commercial-sized double disk refiner (Bauer Model-400) with plates of the type shown in Figure 39. Table 14 gives the experimental conditions for first stage refining using the C-906 plates (Figure 39) while Table 15 shows the classifications of material through the refiner plates. These conditions, refiner and refiner pattern are not the same as the refiner used in our study, but the breakdown of chips is probably in the same sequence although not necessarily dependent time wise. Figures 40-41 reproduced from the work of Attack and May (14) picture the breakdown that occurs between the refiner plates and shows the size and type of particles through the plates. These pictures show the changing physical aspect of the wood chip component of the lubricant.
3.4.6 Surface Properties--Other Data

The surface properties (topography descriptors and surface layer data) of tribo-elements [1] and [2] are included on Figure 31. CLA (centre line average) values (surface roughness) were measured along the bars before use and it was found that the breaker bars had an average value > 400, the intermediate bars, 80, and the fine bars, 120 (micro-inches).

3.4.7 Contact Area A(t)

Opposing disks do not normally contact each other directly but interact through the pulp between them. Due to the motion of one disk relative to the other, the bars on one set of plates move pass the bars on the other set.

The details of "contact", i.e., the alignment of the bar surfaces on two opposing plates, was investigated by placing two transparent photographic prints of a plate on top of each other and moving one print relative to the other. Assuming that the refiner is moving at a maximum speed of 1,800 r.p.m., the fraction of maximum possible contact can be related to time and distance travelled. From this the contact area has been determined as one plate moves completely over another plate. From these figures we can also determine the stress field over a complete refiner plate. The graph of contact area over a full plate from our
case study using Sprout Waldron Ni-hard plates, type D13A001, is given in Figure 48.

The contact pattern essentially repeats itself over each one-quarter of the plate pattern—the first quarter repeats itself but in reverse for the second quarter. The second half is the same as the first half. The heights of the sawtooths are not quite as high near the center of the plate due to the interference caused by the bolt holes. After the first 0.6 inch of circumference (less than 1/10 of plate), from 0.60 inch to 4.90 inches the pattern oscillates to give an average contact area of about 0.5. The exact nature of this oscillation is not established precisely but is assumed to be sawtooth. From the tracing of the refiner plate being contacted by successive plates the pattern in Figure 48 was obtained.

3.4.8 Element [3] ("Lubricant")—
App. Lubrication Mode

Element [3] consists of dilution water, Na₂SO₃ and wood chips. Both the dilution water and Na₂SO₃ are metered into the eye (entry) of the refiner and then mixed with the wood chips. The chips are metered in via a belt and from there by a screw conveyor into the center of the disks (i.e., gravity feed).
3.4.8.1 Residence Time (Retention Time)

A very important physical property of element [3] (the "lubricant") is its residence time between the refiner plates. How long does it take a chip to pass through the entire refining zone and exit as pulp fibers? Yan (59) in his work on the kinetic theory of mechanical pulping has derived a retention time, \(\tau \), in a refiner based on the fiber length reduction (on a weight basis). The result was:

\[
\tau = \ln \frac{\langle x \rangle_2 - 0.263}{\langle x \rangle_1 - 0.263}
\]

where \(\langle x \rangle_1 \) and \(\langle x \rangle_2 \) were the weight-average lengths of fiber samples entering and emerging from the refiner. He found that the specific energy (in h.p. day/ton) was a linear function of \(\log \tau \) (similar linearity can be found in collision theory and the Arrhenius equation).

When pulp was refined at given plate age, pattern, and separation at constant consistency, Yan noted that the log of the feed rate \(R \) (in ton/day) of pulp was inversely proportional to specific energy (h.p. day/ton) (Figure 49). Yan also related specific energy to retention time (also known as residence time). Extrapolating his data (Figure 50) to a value of 90-100 h.p.d./ton (similar to case study refining conditions) we get a residence time of 0.25-0.47 second.
Gavelin (60) noted that the residence time of the fibers in the refining zone was an important variable, which was determined by the centrifugal force, the screening process (of chips and fibers between the plates) and the speed with which the particles were broken down. It was normally 0.3 to 3 seconds with the indication being that the pulp quality increased with shorter residence time.

Assuming, therefore, a residence time of 0.50 second and the appropriate inlet and outlet conditions, the amount of fiber between the plates (tribo-elements [1] and [2]) at any instant can be determined. From the calculations there is 3.58 pounds of fiber between the plates at any instant.

3.4.9 Tribological Transactions

The possible interactions between the three elements of the system can be broadly classified in the form of a matrix as in Figure 51. The fields in the matrix are numbered in the order in which they are dealt with in the following sections. An analysis of the transactions represented by the matrix is an iterative process involving both a consideration of all possible processes and the evidence obtained from examining the elements of the system, particularly the surfaces of the solid elements and the composition of element [3]. The diagonal fields, 1, 2 and 3 relate to processes solely within elements [1], [2], and [3].
respectively, typically those such as deformation, which alter the physical nature of parts of the elements and those such as corrosion, which transform the material of part of the element to a material of a different chemical composition. The off-diagonal fields numbered 4, 5, and 6 relate to transactions between elements. Our primary concern is with transactions of fields 4 and 5 which remove material from elements [1] and [2], respectively, and transfer this material to [3], the volume between these plates. We are also concerned with transactions in field 6 which relate to the transfer of metal or corrosion products from one plate to an opposing plate, i.e., between elements [1] and [2].

In the case study under consideration two possible routes must be considered and therefore two separate sets of interactions. Tribo-elements [1] and [2] may not clash (CONDITION A) or else may clash (CONDITION B) during their useful life.

3.4.9.1 Field 1. Tribo-Element [1] — Stationary Refiner Plate (Condition A - No Clashing)

A detailed photographic and metallurgical analysis of the used plates is given in Section 3.5.3.1. The only change in tribo-element [1] will be one of transformation since corrosion and wear of the refiner plates are known to occur. The actual mechanisms of corrosion and the contributing factors have been investigated (Chapter IV).
The corrosion process is believed to be due to stress corrosion cracking (Sections 4.5 and 4.6).

3.4.9.2 Field 2: Tribo-Element [2]—Rotating Refiner Plate (Condition A — No Clashing)

Tribo-element [2] may be considered in essentially the same way as [1] except for one dissimilarity. The plates on the rotor disk (tribo-element [2]) lost approximately 65 per cent more material than those on the stator disk (tribo-element [1]) (Table 16). The modes of wear do not, however, seem to differ. This loss may indeed be due to the mechanics of the disk refiner but for all purposes the two sets of plates should be similar. One possible reason for a difference may be different rates of heat loss from each set of plates due to structural differences in their mounting. The backing arrangements for rotor and stator plates are different. These backing arrangements may also cause different vibrations in rotor and stator plates which in turn could cause different amounts of wear. There is also the possibility of differences in electrical potential due to stray or induced currents passing through the rotor arm and not the stator, contributing to more wear on the rotor plates. Finally, the work done on the chips in converting them to pulp is through the rotor and not the stator. It would be beneficial to check the wear on plates removed from Twin 50's or other double rotating refiners to see if there
is any significant difference in amount of wear on the plate sets.

3.4.9.3 Field 3. Tribo-Element [3]---
"Lubricant" (Condition A - No Clashing)

The different components of the "lubricant", water, steam, Na$_2$SO$_3$ and wood chips, are transformed as they progress through tribo-elements [1] and [2].

When wood is impregnated with sodium sulfite (Na$_2$SO$_3$) it will react with the lignin and with the organic acids present and thereafter proceed with the reactive carboxyl groups, a process of saponification resulting mainly in the formation of sodium acetate and sodium hydrogen sulfite. If the reaction is allowed to continue, the acidity of the pulp will drop to about pH 4.5, the acidity of sodium hydrogen sulfite. When all sodium sulfite is consumed, the pH will drop further to the acidity of the predominant organic acid present, acetic acid. The pH may then stabilize in the region 3.2 to 3.4. The Na$_2$SO$_3$ is also known to remove dissolved oxygen from the system.

The energy requirement to reduce chips to single fibers has been determined by May (61) and indicated that approximately 0.2 h.p. days per ton of energy was used. This would produce a temperature gradient of only about 1°C over the whole disintegration (i.e., from chips to single fibers, Section 3.4.5). The discrepancy between these figures and the much larger energy consumption and temperature gradient
observed in chip refining has led to the postulation of a refining parameter which has been called the ineffectiveness factor (Section 3.4.9.3.1). May (61) has assumed a model of chip breakdown where disintegration occurs in discrete steps through the refining zone (making it readily amenable to mathematical treatment). Figures 52 and 53 show his model breakdown (see Section 3.4.5).

The primary tribological function in field system "3" is one of alteration. The destruction of chips may be treated as an alteration process, to change wood chips to wood fibers. In a disk refiner, chips are broken down by fracture along the grain in fairly well defined stages. They are first split into matchstick-like material, and then, as they move toward the periphery of the refining zone, into more slender pin chips, then large fiber bundles, smaller bundles, and finally into separated fibers.

It is apparent that a radial temperature gradient exists through the refining zone of a refiner (Figure 34) because chips, entering the machine cool, emerge as hot pulp, accompanied by a copious quantity of steam. The heat has originated from a conversion of the mechanical energy provided by the rotating disk into thermal energy in the refined material. One possible source of this conversion is the disintegration process itself, for disintegration cannot be achieved without a certain minimum dissipation of
mechanical energy as heat. Thus, when a fragment breaks, energy necessary to strain the material to the breaking point is present as stored strain energy in the specimen. After it breaks, the deformed fragments spring back to their unstrained shape and most of the stored energy is converted into heat within the material. The fragments are thus hotter than the parent material, and as disintegration proceeds, the radial flow of the material results in an increasing temperature outwards through the refining zone. The temperature gradient is also enhanced by energy dissipated by viscous mechanisms in the wood during the deformation leading to failure. Additional data on chip breakdown is contained in Section 3.4.5.

3.4.9.3.1 The Ineffectiveness Factor

Of the 90 horsepower days per ton of energy consumed in a normal refiner groundwood operation, a reasonable guess might be that about 20 to 40 horsepower days per ton are used to achieve separation of the fibres, and 50 to 70 horsepower days per ton to produce fines and internal surface area. The figure 20 to 40 horsepower days per ton is one to two hundred times as great as the energy loss calculated above as unavoidable for the complete separation of the fibres. This ratio has been called the "ineffectiveness factor".
The rapid passage of the projections on the refiner plates, about 15,000 per second in the centre of the plates, 1,000 per second at the breaker bars, and the repeated collisions and interactions between particles that must take place, suggests that for every deformation of a fragment that results in disintegration, the fragment is subjected to many unsuccessful deformations. While these may fail to produce disintegration, they nevertheless must consume energy. The energy dissipated over all unsuccessful attempts at disintegration could account for the total energy needed in practice to separate the fibres. The number and magnitude of these per disintegration could vary widely from moment to moment. From the point of view of consumption of energy-of-rupture, however, they can be considered equivalent to a specified number of deformations of equal magnitude, each of which dissipates the same energy as a successful deformation, but which fails to produce disintegration. The number of these is then equal to the ineffectiveness factor. This constitutes a physically real definition of the ineffectiveness factor, from which its mathematical definition as the ratio of two energy values automatically follows.

The ineffectiveness factor is therefore a measure of the lack of efficacy of the refiner plate pattern, and will of course vary between different plate designs and
different refiners. The greater the ineffectiveness factor, the more heat is dissipated in unsuccessful deformations and the greater the temperature difference between successive disintegrations. It follows that the number of fibres broken at each disintegration, and consequently the number in the final pulp, will be a function of the ineffectiveness factor.

The ineffectiveness factor defines the mechanical energy pumped into the fragments between successive disintegrations, and therefore the increase in heat content. The temperature rise in the material produced by this will depend on the consistency of refining, for the amount of water accompanying the material must also be heated. Hence the temperature at each disintegration becomes a function of the consistency, so that the number of broken fibres also depends on the refining consistency. It is also apparent that it will depend on the original temperature of the chip feed, which determines the starting point of the temperature gradient. 24

3.4.9.4 **Field 4. Tribo-Element [1] - Tribo-Element [3]; Stationary Refiner Plate - "Lubricant" (Condition A - No Clashing)**

The only possible action here is one of transmission or transfer. There is the transfer of

mechanical work and also of corrosion products and metal in the attrition process, from [1] to [3]. The transfer from element [3] to element [1] involves heat (entropy), chemicals, e.g. water in corrosion process, and wood in grooves. Attack and May (14) demonstrated that the wood remains in the grooves after they fill up. The same processes occur in Field 5 which involves interaction between Tribo-Element [2] and [3], the rotating refiner plate and the "lubricant".

3.4.9.5 Field 6. Tribo-Element [1] - Tribo-Element [2]; Stationary Refiner Plate - Rotating Refiner Plate (Condition A - No Clashing)

In this system where there is no clashing (i.e., direct contact), the "lubricant" is a transmission or dissipative medium. The system has mechanical energy entering through elements [1] and [2] in the form of work and has heat coming off. The dissipative mechanism (in the lubricant) transforms work to heat as rotational energy of the plates is imparted to break up the chips. By all external appearances, no work is done by the stationary plate (Figure 54).

Figure 55 demonstrates an instance of kinetic friction of the lubricant since all the dissipative processes, producing entropy from work, occur in the lubricant. The main cause for the production of entropy from mechanical work seems to be in the mechanism of viscous
deformation of the lubricant, under the action of shear forces (based on the work of J. Mølgaard (62)). In our case study there is little difference between the two surfaces (I) and (II); tribo-elements [1] and [2]. The transformation of work, \(D(W+S) \) may take place on the stationary plane; the work would then be transmitted (Figure 56). The force may pass into the stationary plate, return again and be dissipated in the lubricant (Figure 56), in which case both the plates and the lubricant heat up.

3.4.9.6 Condition B—Clashing

When tribo-elements [1] and [2] come into contact with each other or "clash" the resulting interactions are the same for Fields 1 and 2 as when there was no clashing (see Sections 3.4.9.1 and 3.4.9.2). Field 3, tribo-element [3] (the "lubricant"), however, is different. With contact of plates during refining the refining process is invariably going to be rougher or more severe (compare Section 3.4.9.3). There will be more cutting of fibers due to plate to plate contact and less fibrillation (production of intact fibers). There will also be more turbulence between plates since the volume will be decreased for the same throughput (when no clashing occurs)—and more steam cavitation.

Fields 4 and 5, the interactions between tribo-elements [1] and [3] and between [2] and [3] respectively,
are also the same as for the no clashing condition (see Sections 3.4.9.4 and 3.4.9.5).

Section 3.4.9.6 considers tribological interactions when there is some evidence of clashing between the plates (CONDITION B). Clashing means that the two refiner plates or tribo-elements touch (Figure 57) with no pad of lubricant between them (refer to Sections 3.4.9.1 to 3.4.9.5 for the case of no clashing). Clashing could lead to plastic deformation of the surface (W-C) but since the bars on the refiner plates are in actual fact asperities on a macro scale the result is seen in Figure 58 if one plate were flat. If surface I (tribo-element [1]) were flat the asperity would move as shown by the dotted line in Figure 58 but since surface II also contains macro-asperities the result is as shown in Figure 59.

Therefore, each bar could be experiencing a cycle of events in which the asperity (macro scale-bar) is initially deformed elastically during a short period in which F_H (Figure 59) moves to the left at a greater rate than F_A moves to the left. If there is no movement of A_1A_2 then the net work done on the bar is stored in the bar (macro asperity). If the work is stored this may lead to oscillation of the asperity, in turn to vibration and finally
transmission of the work into the plate itself. The total process may therefore be a sum of all the individual cycles of deformation and vibration at each of the asperities on both surfaces.

This analysis is quite interesting and needs to be considered in much greater detail. Indeed, all of the friction mechanisms listed in Table 2 of Molgaard's paper (62) (on which this previous analysis is based), (1) viscous deformation of fluid between two solids, (2) plastic deformation of solid surface layers, (3) alternating elastic deformation and oscillation, and (4) alternating union and separation, may be present between the refiner plates as the plates invariably touch and retouch during their life.

In considering the wear patterns of the plates the previous analysis may be very important and may indeed explain the wearing-in mechanism of new plates and subsequent wear. For example, it may explain which of the wearing paths 1 or 2 below is involved in the wearing-in process. Is only the corner removed (1)? Or is the corner plus the top of the bar removed (2)?

Do plates wear 1 or 2?
Also, it is quite likely that there will be increased corrosion in this situation due to contact of plates making surface layers more susceptible to corrosion as noted by Heidemeyer (52). The corrosion products, oxides, etc., which constitute the surface layers are removed much quicker than in the case of no contact, facilitating increased corrosion again. At points of contact the temperature increases, often quite considerably, leading to a weakening of the bars.

From the observation of the used plates, there appears to be some wedge formation which may involve transmission of material from [1] to [3] and the reverse. Detailed wear data is contained in Section 3.5.3.

3.5 IV. Tribological Characteristics

Some of the information pertaining to part IV of the systems data sheet is given in Figure 31.

3.5.1 Changes in Properties of the Elements

An important change in property is the change in hardness of the plates after use. No hardness tests were conducted before use but some micro-hardness measurements were made after use. A sample was removed from the top of an intermediate bar (positions chosen for study were selected using a random number process). The sample removal site is shown on Figure 60. Figures 61 and 62 also show the sample at 80 X and 300 X magnification with no etching.
with mixed acids in glycerol and using the Normánski interference on the Reichert Metallograph (a microscope with camera attachment) revealed four layers near the surface. This is seen in Figures 63-65. A series of micro-hardness tests were performed across the sample and revealed a harder surface layer (Figure 63) with no visible structure, possibly suggesting a white layer. This is a layer altered by considerable and rapid temperature changes, possibly along with some mechanical deformation (usually featureless in microscopy). Figures 66 and 67 also show martensitic and austenitic areas.

Property changes in tribo-element [3] are described in Section 3.4.5.

3.5.2. Friction Data

Some of the ideas concerning friction between the elements is discussed in Sections 3.4.9.5 and 3.4.9.7. The only available data is a graph of horsepower days consumed per oven dry ton of pulp produced (Figure 32) for the life of the set of plates used in this case study.

3.5.6. Wear Data - Analysis of Worn Refiner Plates

The only wear data of value that is available is that from an examination of the plates after use. All of the plates were weighed before use and again after use to determine weight loss. By a random process (area divided and random numbers used to determine areas to be studied) ten
(10) areas on the fine bar section and ten (10) areas on the intermediate bar section were chosen to be examined. These areas were analyzed and photographed.

As shown in Section 1.2 data with respect to plate life may come from either of two sources, (1) normal operation, one in which the plates have never been in physical contact, and (2) clashed operation, one in which the plates have been damaged either through plate to plate contact or because of the passage of some hard, usually metal, material through the refiner. Clashing will invalidate any design measurements made with respect to the plate geometry and surface characteristics of the plates and will invariably destroy much wear data from normal operation.

The refiner plates after use were found to have worn in sharply defined annular zones at randomly defined radii. In each zone the wear was asymmetrical, with one of the opposing plates wearing more than the other. The location of the wear zone and the disk experiencing wear (rotor or stator, element [1] or [2]) were both found to be different for other sets of plates. Figure 36 shows a typical unused refiner plate while Figure 68 shows tribo-element [1] (the stator plate) after it is worn, and Figure 69 shows tribo-element [2] (the rotor plate) after it is
worn. As seen from these photographs elements [1] and [2] interlock, i.e., the unworn part of [1] fits perfectly into the worn part of [2] and vice versa.

At first, it was believed that this wear pattern was the result of plate clashing and/or damage due to foreign material. The typical appearance of tongue and groove scoring had always signified clashing to refiner operators. There was evidence of the transfer of metal from element [1] to element [2], smearing of surface layers, and some wedge formation. These again seemed to indicate clashing.

Metallurgical studies of the plates and the metal removal patterns, however, clearly showed that this was not the case.

3.5.3.1 Metallurgical Investigations

To help refrain from analyzing portions of the worn plates that looked interesting but not representative, the intermediate bar section (Figure 36) of the plates were divided into three hundred (300) blocks of one square centimeter (1 cm²). Ten (10) of these blocks were then chosen for study using a system of random numbers with each of these areas being photographed and studied using a Reichert Metallograph (a microscope with camera attachment) capable of a magnification of 2000X. Figures 70-75 show typical sites that were studied. Figure 70 (stator) shows a surface layer of deposited metal while Figure 71 (rotor)
reveals a surface with very little damage apart from some radial cracks and blunting of the edges of the bars. On the right side of Figure 73 (rotor) are seen cut down areas with cracks at the bottom of the cut down pieces but most of the bars still have little wear - the surface appears as if it were only etched by an alkaline or acid medium (see Figures 71, 73, 75). Matching or interlocking with this are the bars from the stator plate seen in Figure 72. On the left side of this picture are the cut down areas corresponding to the almost unworn surface of Figure 73. In a side view we have the following:

STATOR PLATE

![Diagram of cut down areas and minimal wear on the stator plate]

ROTOR PLATE

The last two photographs, Figures 74 and 75 showed many cut down areas with a side view as seen below.
surfaces with minimal wear (etched appearance)

very narrow rounded edges

It was found from these that narrow bands of metal were left between some cut down areas and that all the cut down areas had rounded edges. These facts did not indicate clashing or momentary harsh mechanical contact.

To study this further cut down areas from used plates were mounted, polished, etched and studied using the Reichert Metallograph. The results of this are seen in Figures 76 (30X) and 77 (120X). Both pictures show the rounded and smooth surface of the cut down area and also the unchanged Ni-Hard grain structure near the surface. These facts again attest to the wear as resulting from a nonclashing or normal operation. It is also interesting to note in Figure 77 the presence of a crack at the base of the worn down area. This may have been an original surface crack that progressed, causing or aiding the wear process, or it
may have resulted either directly from the wear or from stress corrosion cracking (s.c.c.). Of the cut down areas studied more than 75% had cracks at their base and it is possible that the other 25 per cent had cracks also that were removed as the wear progressed.

Further microscopic examination of the intermediate bars, after polishing and etching with 5% Nital, revealed that a majority of the corners of the cut-down areas were made of a grey structureless material as seen in Figure 78 parts (a) and (d). Some of the areas that were not cut down or worn also had a complete or partial covering of this grey material; none, however, was found on the bottom of any of the cut down areas. Microhardness tests performed on this grey material revealed hardnesses of Rc 62-65 whilst the base metal had hardnesses of Rc 52-56. None of the layers underneath this grey material show any different microstructures from the parent material. It is possible that these areas such as are seen in Figure 78(d) came about because of momentary contact between higher macro-asperities on rotor and stator bars. The covering, such as is seen in Figure 78(c) near microhardness mark 7 could also have resulted from transfer of metal and/or the same type of momentary contact. The dark area with microhardness marks 5 and 6 (Figure 78(c)), however, appears to be part of the
original material and may have been formed during the casting process.

This analysis clearly shows that the plates were not clashed and that the metal removal patterns observed were indicative of that produced by a process similar to electrochemical machining.

3.5.3.2 Electrochemical Machining

Electrochemical machining (E.C.M.) is a process in which metal is removed without the use of mechanical or thermal energy when an electric current is combined with a chemical to form a reaction of reverse plating. A schematic arrangement for electrochemical machining is seen in Figure 79 and Appendix A contains details of the machining process. It is postulated that an E.C.M. process is occurring between the opposing refiner plates and it is this process which is responsible for the relatively short plate life and the unusual wear patterns observed. On an industrial macro-scale a direct current of relatively high amperage and low voltage is continuously passed between the anodic workpiece and cathodic tool (electrode) through a conductive electrolyte removing metal at rates in the range of 1.64 to 2.29 cm³/1000 amp. min. In the refining process it is believed the electrochemical machining is on a micro-scale since removal rates are in range of 4.59-7.37 x 10⁻³ cm³/min. (based on weight losses from Table 16 and plate life data). Because
the operation is continuous over a 600-1,000 hour time scale the total amount of material removed, 3-5 kilograms per set of plates, which is equivalent to 25-40 per cent of all the intermediate and fine bars, is large and contributes significantly to loss of refining area, thereby decreasing plate life.

With reference to Appendix A we find various points concerning E.C.M. to be verified from our microscopic metallurgical examination. The worn surface of the tribo-elements contained no burrs or striation marks and as seen in Figure 77 did not reveal any metallurgical damage. We also found that the surface causing the wear (the tool, Figure 73) did not experience any wear. Also, the refiner plates used were made from Ni-Hard which is a white cast iron containing about 4 per cent nickel and 2 per cent chromium. Ni-Hard has been used in refiner plate manufacture because of its erosion-corrosion resistance in near neutral solutions such as pulp slurries. This resistance of most nickel alloys, however, to chemical attack does not seem to retard electrochemical solution during electrochemical machining and indicates that it is quite possibly occurring.

From Appendix A we note that a current is necessary for electrochemical machining. Where does this current originate between the plates? Some possible sources are local potential differences with much of the current going
through the opposing metal plates, thus yielding a very low resistance. There are possible potential differences due to differences in temperature, ion concentration, and dissolved oxygen. All of these factors may relate to the manner in which the wood chips move, at times perhaps, more or less stationary relative to one surface while sliding at high speed upon the other.
CHAPTER 4

CORROSION TESTING OF REFINER PLATES
4. CORROSION TESTING OF REFINER PLATES

4.1 Production of Refiner Plates - A History

Commercial refiner plates are bulky, difficult to handle, and not easily broken or cut into manageable test samples. Therefore, a non-destructive testing procedure was developed so that a plate after testing could be used in commercial operation. Prior to describing the test procedure developed for use in this study, the following is provided as background information on the manufacture of refiner plates.

The Ni-Hard\(^{25}\) refiner plates used in this study were cast at 2600°F using a green sand casting technique which uses no resins. After casting, the refiner plates were cooled to ambient temperature, shaken out of their moulds and may have been left for a week or more before further treatment. Since each plate was shaken out at a different time and temperature each of the twelve plates in a set could have slightly different metallurgical properties. A stress relieving operation was next performed on the plates; heating for two hours at 500° F followed by air quenching. This

\(^{25}\)Ni-Hard is a white cast iron with a Brinell hardness of 550 to 725 containing about 4% nickel and 2% chromium. Ni-Hard has found wide application where erosion-corrosion resistance is needed in near-neutral and alkaline solutions or slurries. White cast irons such as Ni-Hard have practically all of the carbon in the form of iron carbide. To guard against graphitization, which is related to the rate of chilling from the melt, the silicon content is kept low.
caused a mechanical change in the grain structure—austenite to martensite. The purpose of this treatment was to give a Rockwell hardness, Rc, of 54-58.

The fine and intermediate bar sections of the plate surfaces were then wet ground and all edges were dry ground. On plates with fine bars there was 100% clean up of surfaces, that is the grinding stone went over 100% of the surface. A degree of flatness of 60 thousandths of an inch was a quality control standard during the production of the plates. Also, an integral part of the quality control standards was a stress relieving process which was automatically programmed and controlled.

The final process on the plates was that of balancing. A Microfoise Balancing Machine similar to ones used on airplane impellors and jet engines was used to dynamically balance a complete set of plates. The machine, which was programmable, indicated where, and how much, molten lead had to be poured into holes on the back of the plates to balance them.

This history indicates that each refiner plate may be different metallurgically. Because of this it is extremely desirable that a plate be tested before use and then examined metallurgically after use. The testing includes:

1) photographing and weighing (before and after use),
ii) Magnaflux testing for determination of cracks and checks from casting and surface grinding (before use);
iii) Reichert Metallograph inspection for high magnification photography (2000X) of surface characteristics (before and after use); and
iv) electron probe microanalyzer inspection for verification of chemical composition and metallurgy as compared to material specifications.

4.2 Experimental Procedure and Apparatus
A set of unused refiner plates were obtained from the Price-Newfoundland Ltd. mill at Grand Falls for preliminary examination. Each segment of the set was weighed, photographed and specific areas, selected by a random process, were subjected to microscopic examination using a Reichert Metallograph capable of a magnification of 2000X. Magnaflux testing was also conducted to detect flaws in structure such as cracks. The plates were then returned to the mill for use in a 2500 HP 42 1B Sprout Waldron refiner. When removed from the refiner, the plates were cleaned of pulp, reweighed and rephotographed.
The corrosion characteristics of the plate material were determined using a modified version of ASTM G5-72 as described in Appendix B. A detailed analysis of the wear characteristics of the plates is given in Chapter 3.
Since the ASTM Designation G5-72 polarization cell (Fig. 80) could not be used in the experimental set-up, a cell had to be designed. The following were criteria considered in the design: (1) cell volume; (2) electrode arrangement within the cell; (3) the nature of the electrodes used; (4) the proposed application of the cell; (5) the facility for addition/removal of electrolytes, gases and electrodes from the cell; and (6) the power output of the potentiostat.

The cell volume could not be too large since very large resistances would result when poorly conducting electrolytes were being tested. Small volumes were also to be avoided since rapid depletion of reagents or accumulation of reaction products could occur. It was decided the cell would be an open four (4) litre beaker containing 900 ml. of electrolyte. Addition or removal of the electrolyte from the cell was necessary to prevent undue dismantling of the system and therefore a suction side arm was added to the beaker. Temperature control of the electrolyte was made possible by the use of a suitable immersion heater. Aeration of the electrolyte was made possible by bubbling in air or oxygen directly through a sintered glass-ended tube and de-aeration by the addition of nitrogen as opposed to hydrogen.

The ratio of electrode area to solution volume (A/V Ratio) must be as large as possible (2.54 cm. dia. electrode used). The cell capacity or volume of electrolyte in the
cell is also important according to Gresse (63) since the
decay rate of the initial current is exponentially related to
the ratio of electrode area to the electrolyte volume.

4.3 Comparison of Standard Potentiostatic Analysis Techniques
(ASTM G5) and Experimental Research Techniques

The method used in this experimental research
differed significantly in several aspects from the method
outlined in the standard reference method for making
potentiostatic anodic polarization measurements, ASTM Method
G5 (Appendix B). The testing method developed for use on Ni-
Hart plates, however, has given results which are equivalent
to the standard method results and are also reproducible
(Section 4.3.1).

Use of the ASTM method requires standard samples
made to fit standard equipment. The hard and brittle nature
of the Ni-Hard refining plates, however, made the fabrication
of such samples extremely difficult without alternation of
the physical and chemical properties of the Ni-Hard itself.
It was also beneficial to have a non-destructive testing
method for several reasons:

i) ASTM methods limited testing to plates that were unfit
 for further use;

ii) It is very advantageous to be able to test corrosion
 characteristics before and after the plates are used in
 commercial operation.
The most significant difference in our experimental method from ASTM method G5 was that the specimen or working electrode was still an integral part of a whole refiner plate isolated via a teflon disc and epoxy resin as seen in Figure 81. Also the standard polarization cell was replaced, as described in Section 4.2, with an ordinary four litre open neck beaker. A 2.5 cm diameter hole was cut through the base of this beaker which fit, with the aid of epoxy resin and a teflon disc, directly onto the refiner plate. The area of the refiner plate thus exposed as a working electrode surface was not prepared with SiC paper (although grease and surface dirt was removed by scrubbing with both acetone and ethyl ether), but left as it would be under working conditions in a refiner. It should be noted that the standard procedure of preparing surfaces with 240/600 - grit SiC paper was not necessary since each refiner plate would be different in both surface characteristics and chemical and physical composition (this is inherent in the manufacture of the plates described in Section 4.1).

All tests were conducted at room temperature, 22-25°C, since the setup disallowed immersion in a controlled-temperature bath. It would be possible, however, to use an immersion type heater in the cell itself. The top of the experimental corrosion cell, the four litre beaker, was not closed nor was the test solution purged with oxygen-free
hydrogen gas, but these and previously described variations did not appear to alter results (Section 4.3.1).

The working electrode (refiner plate) was connected to the reference electrode (Ag/AgCl or Calomel) via an ammonium nitrate (NH₄NO₃) salt bridge. Since the three electrode system (auxiliary or counter/working/reference) was being used the auxiliary electrode (a platinum wire electrode) was centered directly above the working electrode as seen in Figures 81, 82. The appropriate test solution was then placed in the polarization cell and the experimental procedure of the standard reference method (ASTM G5) was used to perform all experimentation.

4.3.1 Derivation of Standard Curve and Reproducibility of Results

Using a standard sample of 430 S.S. obtained from the American Society for Testing and Materials (A.S.T.M.), a standard reference plot for type 430 S.S. (Figure 83) was reproduced using our experimental set-up. The experimental data, as seen in Figure 83, coincides with the standard although the temperature was lower and there was no purging of the solution in the cell. This reproduction of the standard potentiostatic anodic polarization plot confirms that our setup is precise enough to give reproducible standard results and thus results on refiner plate specimens in situ that are also reproducible. This leads to the
. desirable position of testing plates before and after their use in commercial operation.

4.4 Analysis of Experimental Results

Potentiostatic testing was carried out to check the effects of pH, Na$_2$SO$_3$ addition and dissolved O_2 content on the corrosion of Ni-Hard plates. This was done to gain insight into corrosion behaviour of plates spurred by metallographic analysis which showed clearly that corrosion processes were at least as important, if not more important, than clashing and wear. The objectives of the testing were to see if there was any justification for the belief that Ni-Hard is an active-passive metal, and approximately what corrosion rates could be expected.

To pursue these objectives, potentiostatic tests were run on Ni-Hard refiner plates under different conditions. The tests were conducted at varying pH and with the addition of Na$_2$SO$_3$. In each case the test solution was set at the desired pH by the addition of H_2SO_4 and/or NaOH. The anodic polarization curves obtained were compared with the potentiostatic anodic polarization curve of pure iron (Figure 84) in NH_2SO_4 given by Fontana and Greene (64) and

for many of the test runs were found to be quite similar
(Tables 17 - 21). The resulting curves exhibited a distorted
"S" shape. An explanation could be that only the iron in the
Ni-Hard material is actually corroding. The curves are
actually inverted mirror images of the typical "S" type curve
displayed by stainless steel.

The curves obtained had corrosion potentials in the
range of -0.43 to -0.53 volts (versus the Saturated Calomel
Electrode, S.C.E.) and the corrosion current densities were
in the range of 30-250 mA/cm². The Tafel slopes (the volts
per decade slope of the anodic and cathodic polarization
curves, Figure 85), βa and βc, are generally in agreement for
all runs with Stern and Weisert (65) who state that for a
large majority of metal-electrolyte systems βa varies from
0.06 to 0.12 V/decade and βc is greater than 0.06V/decade.

4.4.1 pH Test Results

One of the main objectives of the potentiostatic
testing was to determine the effect of pH on the corrosion
behaviour of the Ni-Hard refiner plates. These tests were
conducted under controlled pH conditions and Table 22 shows
the progression of pH from 2.0 to 7.0. The values of Epp,
Icr and Ipass (See Figure 85) indicate that the corrosion
resistance of the plates is high at low pH (2.0 - 3.0),
decreases quite considerably in the range, 3.0 - 5.0, and then
increases significantly as it approaches neutral conditions.
This is shown in Figure 86 which indicates that there is an optimum pH for maximum corrosion resistance of the Ni-Hard plates. The data collected was incomplete in this respect and therefore no actual value for this optimum pH/maximum resistance was obtained. A pH of 6.5 - 6.8 is used at Price (Nfld.) Pulp and Paper Co. Ltd., Grand Falls, Newfoundland, based on experience. It would be very beneficial if the actual optimum value (if it existed) could be determined with consideration being given to mill conditions with respect to piping materials, paper brightness and foaming problems.

From Table 19 a comparison of the dissolved oxygen content during tests numbered 16-19 seems to show that the larger amount of dissolved oxygen in test 17 (compared to 18) and test 16 (compared to 19), at equivalent pH, aids passivation. This may be extremely important when Na_2SO_3 addition (Section 4.4.2) is considered since this additive, used to extend plate life, is also an oxygen scavenger.

4.4.2 Addition of Na_2SO_3 Test Results

The major objective of the potentiostatic testing was to determine the mechanism by which Na_2SO_3 extends plate life and to determine the amount necessary for optimum protection. From Tables 19 - 21 it can be seen that the sodium sulfite had a stabilizing effect on the pH during each test run. In most of the other tests, with no Na_2SO_3 addition, the pH increased during the run (except under very
acidic conditions, i.e. pH 2.0) indicating the loss (disappearance or transformation) of H⁺ ions.

The results may indicate a complete lack of passivity and corrosion control when a small amount of Na₂SO₃ is added (i.e. ~0.6910 g/900 ml = 1.68 lbs/oven dry ton of wood pulp). It is noted, however, that i_corr at this level is extremely low (5.2 μA/cm²) and the ability to passivate is not essential at this low value. As the amount of Na₂SO₃ is increased (Tables 19, 20), E_corr, i_cr, E_pp and i_pass (see Figure 85) decrease. This indicates that the addition of further Na₂SO₃ increases the corrosion resistance and passivation characteristics of the Ni-Hard samples. More anodic and cathodic combinations need to be run, however, to evaluate i_corr. As more Na₂SO₃ is added (Tables 19 - 21) the passive potential range decreases indicating a lower anodic protectibility region. Again the question of an optimum amount of Na₂SO₃ giving maximum corrosion resistance is raised (Figure 87). More detailed tests need to be run to determine this optimum value if it exists. We must also note that for moderate amounts of Na₂SO₃ (i.e. >6.0 g/900 ml of sample) the dissolved oxygen level fell to zero; the effect of this is detailed in Section 4.6.

As in actual mill operations, the use of sodium sulfite in polarization experiments reduced refiner plate corrosion and extended plate life. The addition of sodium
sulfite to the refiner changes the rate of the cathode reaction, probably by oxygen reduction, which in turn, reduces the rate of metal dissolution. Results showed that corrosion rates were lower when dissolved oxygen content was high, bringing into question the belief that the role played by Na₂SO₃ in enhancing refiner plate life is via a mechanism of oxygen scavenging.

The test results indicate that very small amounts of Na₂SO₃ (0.84 kg/oven dry metric tonne) could reduce plate life and increased amounts (> 8.0 kg/o.d.m.t. of pulp) could extend plate life. From industrial experience it is known that amounts in excess of this were costly and could cause foaming problems. The actual role of the Na₂SO₃ re dissolved oxygen is, therefore, still unclear, as is also its intermittent use. More experimentation is needed to define more precisely the role of Na₂SO₃ in reducing refiner plate corrosion. If it were found that the removal of dissolved oxygen decreased passivation, it might be possible to use an oxidizer or an additive that was not an oxygen scavenger.

Removal of oxygen by Na₂SO₃ inside an actual refiner is in all probability incomplete. Oxygen is likely to be left in crevices, surface cracks and under pulp and chip particles in grooves between bars. This incomplete removal of the oxygen by the Na₂SO₃ will result in oxygen differential cells being formed. These will lead to loss of
material by corrosion resulting in the patterns observed in Section 3.5.3 - wear at sharply defined annular zones at randomly defined radii (Figures 68, 69). Complete oxygen removal, on the other hand, would result in even wear on all bars - this is not seen. This partial de-aeration with insufficient quantities of Na₂SO₃ possibly interferes with passivation in pits and cracks. The Na₂SO₃ seeps into pits, raising the pH within the pit and producing the HSO₃⁻ ion. This in turn could lead to the production of polythionic acids under the right conditions of temperature and pressure. Polythionic acids in turn promote stress corrosion cracking (S.C.C.). (66).

4.5. Metallurgical Investigation of Plates

Metallurgical investigations of wear experienced by refiner plates have been presented in Section 3.5.3.1. It was found that both rotor and stator plates experienced large amounts of metal removal (Table 16) on the intermediate bars (25-40% material removed - see Section 3.5.3.2) forming an interlocking wear pattern. These cut-down areas (see Figures 68, 69), which were believed to have been caused by electrochemical machining (E.C.M.), were examined for evidences of corrosion.

Microscopic examination revealed many radial cracks in the intermediate bars (see Figure 88) also seen on Figures...
60, 71-75); as many as 20 cracks per 10 cm. length of bar on
the rotor plates. There were less cracks on the stator
plates and most of the cracks were found to be transgranular.
Many of these cracks were also visible without the aid of a
microscope (see Figures 68, 69). These cracks are thought to
be due to stress corrosion cracking (S.C.C.), some of which
may have originated at surface cracks and checks present on
the new plates. Residual stresses in the new plates are also
believed to have aided the crack propagation.

4.6 Corrosion Mechanisms

The tests performed indicate that the iron in the
Ni-Hard refiner plates is undergoing corrosion. A possible
set of reactions are

$$2\text{Fe} = 2\text{Fe}^{++} + 4e^- \quad (6)$$

$$\text{O}_2 + 2\text{H}_2\text{O} + 4e^- = 4\text{OH}^- \quad (7)$$

These reactions account for the increase in the pH of
solutions around corroding specimens from the production of
OH\(^-\) ions. We have
The addition of Na_2SO_3 must be considered next. If Na_2SO_3 is used the reaction is

$$2\text{Na}_2\text{SO}_3 + \text{O}_2 = 2\text{Na}_2\text{SO}_4 \quad (8)$$

Note: X's on the previous reactions - these do not occur with Na_2SO_3 present.

This removes O_2 and blocks the move of electrons and thus effectively blocks the corrosion reactions. If this is the dominant use of the Na_2SO_3, to use up oxygen, it will inhibit
corrosion and indeed evidence seems to indicate that this is the dominant mechanism. There is one problem, however, the refiner plates continue to corrode in Na₂SO₃ solution, albeit at a slower rate. Other reactions must therefore be occurring. In aqueous media the following reactions also occur:

\[2\text{Fe} = 2\text{Fe}^{++} + 2\text{e}^- \] \hspace{1cm} (9)

\[2\text{H}^+ + 2\text{e}^- = \text{H}_2 \uparrow \] \hspace{1cm} (10)

Dotted lines represent increasing size of cracks

If \(\text{H}^+ \) forms in surface cracks on the refiner plates the cracks could open up as \(\text{H}_2 \) is formed, extend further and pieces could be removed from the plates. Surface cracks and checks present due to surface grinding and manufacture may lead, due to increased pressures in single stage operation of refineries, to increased clashing via the route of cracks as
anodic sites for electrochemical machining (Section 3.5.3.2). The increased pressures may result in loss of more material, which in turn yields larger cracks and may end in clashing.

The exact role of the Na₂SO₃ is not clear here. Na₂SO₃ as it takes up (scavenges) O₂ raises the pH by reducing the H⁺ ion concentration—a known effect. However, if too much oxygen is taken out of solution, reaction 7,

$$\text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^- = 4\text{OH}^- \quad (7)$$

is inhibited and reaction 10,

$$2\text{H}^+ + 2\text{e}^- = \text{H}_2 \quad (10)$$

is consequently enhanced.

This reaction is one of the dominant mechanisms for electrochemical machining (Section 3.5.3.2, Appendix A). It therefore appears that Na₂SO₃ inhibits the rate of iron dissolution from the Ni-Hard plates but because of its scavenging property also removes dissolved oxygen from the solution. This in turn leads to the enhancing of a mechanism that is necessary for electrochemical machining. It is therefore possible that Na₂SO₃ extends the life of the Ni-Hard refiner plates but also eventually causes their destruction. Since dissolved oxygen appears to be necessary for effective plate protection the use of an alternate additive may be necessary. This alternative would be
selected through potentiostatic testing and could be equally as effective as \(\text{Na}_2\text{SO}_3 \) without the detrimental oxygen scavenging property. This chemical may then lead to even longer plate life than that with \(\text{Na}_2\text{SO}_3 \).

4.6.1 Formation of Ridge Groove Pattern

Metal loss from the plates has been attributed to corrosion by a process similar to electrochemical machining (sections 3.5.3.1 and 3.5.3.2). In electrochemical machining, the part to be machined is made an anode by passing a controlled current between it and the "cutting" tool which serves as a cathode. Electrolyte pumped between the tool and the work piece serves to promote the corrosion reaction and remove corrosion products. A similar situation is believed to have occurred here which explains why the removal of metal was in a ridge/groove pattern as illustrated in Figs. 68 and 69. If the grooves are created by corrosion, these areas must be anodic with respect to the ridges. That is, the corrosion cell consists of an "active" groove which serves as an anode, and a passive ridge which serves as a cathode. The electrolyte is of course the pulp. Figure 89 shows schematically the mechanisms which are believed to govern the process. The sequence of events are considered to be as follows:

1. A groove is initiated on the plate as a result of such factors as clashing, passage of grit, stones or tramp
metal through the refiner, or localized wear due to
entrapment of chips in the spaces between the bars.
Alternately, surface cracks may become localized anodes
due to crevice corrosion.
2. The groove, with less access to dissolved oxygen, becomes
an active site and undergoes corrosion according to the
reaction
\[M \rightarrow M^{2+} + 2e^- \text{ anodic reaction} \]
3. The electron sink for the electrons can be either
\[\frac{1}{2} O_2 + H_2O + 2e^- + 2OH^- \text{ cathodic reaction (at areas adjacent to the groove)} \]
\[2H^+ + 2e^- \rightarrow H_2 \text{ cathodic reaction (within a groove or in a crack)} \]

The oxygen reduction reaction tends to passivate
the areas adjacent to the grooves making these areas
potential ridges. The hydrogen ion discharge within the
grooves tends to promote such processes as stress corrosion
cracking thereby making the groove more prone to attack
through crevice corrosion. It is possible that the former
cathodic reaction predominates when a bar lines up with a bar
and the latter predominates when a bar lines up with a space
between the bars of the refiner plate. It should be noted
that a bar alternates very rapidly indeed from facing a bar
on the opposite disk to facing a space between bars. Thus,
the effective state of the bar surface will be an average of the two situations, so that grooves on a bar surface are exposed to relatively less agitated conditions than is the case for corresponding ridges. Thus, it is believed that the ridges, being more exposed to the pulp, have greater access to buffering solutions such as sodium sulphite and dissolved oxygen which would tend to make such areas cathodic.

Data obtained from the potentiostatic tests carried out on the Ni-Hard refiner plate material can be interpreted to support the above hypothesis. Figures 90 and 91 show that the lowest susceptibility to corrosion as indicated by the anodic polarization curve being on the left, occur under conditions of high agitation, high pH and high levels of dissolved oxygen. This is the situation most likely to approximate that at the ridge areas. Anodic polarization curves on the right indicating, higher susceptibility to corrosion, occur with stagnant solutions with low oxygen content analysis, and with stagnant solutions with high oxygen content along with high acidity. Even higher corrosion rates are indicated for conditions of depleted oxygen in agitated solutions. The situation which may be postulated as existing in the grooves is either less agitation, or a depletion of oxygen, or indeed both factors together.
Once local electrochemical cells are established, the associated reactions and current flow and the pattern of active and passive sites on the surface could be self-perpetuating. The above results can not be taken as proof that a process similar to electrochemical machining is the governing mechanism controlling the wear and corrosion of refiner plates since it is highly unlikely that the data obtained under laboratory conditions reflects the situation in a refiner. However, the fact that a groove/ridge pattern was observed on the plates, that this was not a result of clashing, and that Ni-hard plate material can have greatly different corrosion characteristics depending upon pH, dissolved oxygen and degree of stagnation between plate and electrolyte lends support to the hypothesis.

Indications from the potentiostatic studies are that use of sodium sulphite can have beneficial effects in reducing corrosion in that it increases pH. On the other hand, there is evidence that sodium sulphite, because of its ability to scavenge oxygen, plays a role in making Ni-Hard prone to crevice corrosion thereby promoting the ridge/groove pattern on plates frequently misinterpreted as clashing.

4.7 Conclusions and Recommendations

It is noted here that the experimental testing conducted did not simulate actual refining conditions but was
done to gain some insight into the effects of pH and the role of Na₂SO₃. Experience has shown that the use of Na₂SO₃ at controlled pH conditions does aid plate life extension. The test procedure used did not duplicate what happened in a commercial refiner, but it does cast doubt on the use of sodium sulphite, and suggests that commercial trials should be made without sodium sulphite in order to test the conclusions arrived at. Therefore the following conclusions have been drawn from the wear study and the corrosion testing and analyses:

1. All effects attributed to clashing are not from clashing.

 Clashing does occur but it is not the predominant mechanism in loss of plate life, nor can it always be visually determined. Extensive metallurgical and microphotographic examination are necessary to determine the mechanism of wear and corrosion.

2. The predominant mechanism of wear and corrosion is that of electrochemical machining (E.C.M). Stress corrosion cracking (S.C.C) is also very much in evidence.

3. The quality of new refiner plates with respect to surface grinding checks and cracks is very poor. These cracks make excellent corrosion sites.

4. The role of Na₂SO₃ is not completely understood. It is known to extend plate life but a more beneficial additive may exist.
Considering these conclusions the following recommendations to the paper mills are proposed:

1. 'Trials with stainless steel refiner plates should be conducted. These plates should have the pattern, taper and geometry of Ni-Hard plates that give reasonable life and good pulp.

2. The quality of present plates with respect to surface checks and cracks (corrosion sites) must be considered. The surface grinding process must be under strict control and to a much cleaner surface finish.

3. Mills should have more say, not only in plate pattern but also in metallurgy - both composition and treatment of plates.

4. More potentiostatic testing must be conducted to determine the pH and amount of Na₂SO₃ to give optimum corrosion resistance (Figures 86,87), separately and in combination.

5. Again through potentiostatic testing the role of Na₂SO₃ must be defined more fully especially with respect to dissolved oxygen. It must be determined if the Na₂SO₃ does actually lead to plate failure (via E.C.M.) while at the same time giving extended plate life.

6. Finally, potentiostatic testing must be conducted to ascertain if another additive would be as effective as
Na$_2$SO$_3$ without its detrimental oxygen scavenging property.

If these changes and recommendations do not considerably extend refiner plate life a study of anodic or cathodic protection (possibly in conjunction with the recommendations) should be undertaken.
TABLES AND FIGURES
TABLE 1: Effect of plate profile on pulp quality and furnish cost.
Sund-Bauer BDA 488 refiner (48 in. 1,500 r.p.m., 2,500 h.p. double disk). Average over 400 hr. period (Reference 31, p. 56).

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Material</th>
<th>Width of Flat Outer Zone</th>
<th>Taper of Intermediate Zone</th>
<th>(b) Q-value</th>
<th>Furnish Cost (HPD/Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Energy</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>large</td>
<td>large</td>
<td>0.36</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>large</td>
<td>small</td>
<td>0.34</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>small</td>
<td>large</td>
<td>0.29</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>small</td>
<td>small</td>
<td>0.32</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>large</td>
<td>large</td>
<td>0.35</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Groundwood</td>
<td></td>
<td></td>
<td>0.33</td>
<td>70</td>
</tr>
</tbody>
</table>

(a) Cost of chemical pulp added to increase tear factor to 66. Every % sulfite added to the finish increases the cost by an amount equivalent to about 5HPD/ton.

(b) \(Q = \left(\frac{\text{Tear factor}}{90} \right)^{2/3} \times \left(\frac{\text{Breaking length}}{8000} \right)^{1/3} \times \left(\frac{\text{Scatt. Coeff.}}{800} \right)^{4/3} \)

A - Ni-hard type matl. with increased contents of chromium and nickel
B - Martensitic S. steel
TABLE 2: Used Tapers

<table>
<thead>
<tr>
<th>Refiner</th>
<th>Taper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sawdust I Refiner</td>
<td>X</td>
</tr>
<tr>
<td>Sawdust II</td>
<td>XX</td>
</tr>
<tr>
<td>Chip I</td>
<td>XX</td>
</tr>
<tr>
<td>Chip II</td>
<td>X</td>
</tr>
<tr>
<td>Reject I</td>
<td>XX</td>
</tr>
<tr>
<td>Reject II</td>
<td>XX</td>
</tr>
</tbody>
</table>

XX Main Taper X Sometimes used Ref. 33, p. 10

TABLE 3
First plate material experiments.

<table>
<thead>
<tr>
<th>PLATE MATERIAL</th>
<th>NUMBER OF TRIALS</th>
<th>AVERAGE PLATE AGE (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI MOLY</td>
<td>18</td>
<td>250 - 400</td>
</tr>
<tr>
<td>HI CROM</td>
<td>9</td>
<td>250 - 400</td>
</tr>
<tr>
<td>HI CLEWA</td>
<td>5</td>
<td>150 - 400</td>
</tr>
<tr>
<td>X METAL</td>
<td>8</td>
<td>300 - 400</td>
</tr>
<tr>
<td>MARSITE</td>
<td>1</td>
<td>400</td>
</tr>
</tbody>
</table>

TABLE 4
Uddeholms B-material

<table>
<thead>
<tr>
<th>REFINER POSITION (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1 S_2 C_(1) C_(2) R_1 R_(2)</td>
</tr>
<tr>
<td>5 7 3 3 10 6</td>
</tr>
<tr>
<td>NUMBER OF PLATES USED</td>
</tr>
<tr>
<td>AVERAGE PLATE AGE (h)</td>
</tr>
<tr>
<td>ENERGY INPUT (MILL. kWh)</td>
</tr>
</tbody>
</table>

1) S - SAWDUST-, C - CHIP-AND R - REJECT REFINERS.

2) NEW REFINERS
TABLE 5: Data Used to Compare Plate Life Associated Costs

<table>
<thead>
<tr>
<th>Refiner</th>
<th>Conditions</th>
<th>No. of Sets of Plates</th>
<th>Initial HPD/OBT for 92 B.V.</th>
<th>Energy Increase Per Service Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauer</td>
<td>No Treatment</td>
<td>15</td>
<td>87.5</td>
<td>0.0500</td>
</tr>
<tr>
<td>Sprout</td>
<td>4 lbs. per ton, Na_2CO_3</td>
<td>7</td>
<td>87.5</td>
<td>0.0231</td>
</tr>
<tr>
<td>Bauer</td>
<td>20 lbs. per ton, Na_2SO_3</td>
<td>2</td>
<td>81.1</td>
<td>0.0040</td>
</tr>
</tbody>
</table>

TABLE 6: Effects of chemical treatment

<table>
<thead>
<tr>
<th></th>
<th>NO TREATMENT</th>
<th>4LB/TON</th>
<th>20LB/TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Life Associated Costs at Optimum $/Ton</td>
<td>19.42</td>
<td>18.22</td>
<td>15.87</td>
</tr>
<tr>
<td>Optimum Plate Service, Hours</td>
<td>280</td>
<td>424</td>
<td>923</td>
</tr>
<tr>
<td>Plant Average Capacity, Ton/Day</td>
<td>212</td>
<td>218</td>
<td>243</td>
</tr>
<tr>
<td>Cost Decrease, $1/Ton</td>
<td>---</td>
<td>1.20</td>
<td>3.55</td>
</tr>
</tbody>
</table>
TABLE 7: Standard Refining Conditions

Inlet diameter	558 mm (22 in.)
Outlet diameter	1016 mm (40 in.)
Peripheral gap	.25 mm (.010 in.)
Plate taper	.0075 mm/mm (.0075 in/in.)
Rev/min	1200 (each disk, double disk refiner)
Power	1800 (single disk refiner)
Specific energy	1500 kW (2000 h.p.)
Inlet consistency	6.4 MJ/kg (90 h.p.d./o.d.t.)
Feed inlet temperature	38°C (100°F)
Inlet pressure	101 kPa (14.7 psi)
Outlet pressure	101 kPa (14.7 psi)
Skin friction coefficient	0.1
Slip factor	0.3

TABLE 8: Temperature and pressure at different motor loads and throughputs

<table>
<thead>
<tr>
<th>Throughput</th>
<th>Motor Load</th>
<th>Consistency</th>
<th>Specific Energy</th>
<th>Temperature</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>odt/t</td>
<td>kW/dt</td>
<td>Inlet %</td>
<td>Outlet %</td>
<td>kWh/t</td>
<td>°C</td>
</tr>
<tr>
<td>21.5</td>
<td>19.5</td>
<td>2000</td>
<td>1892</td>
<td>19.6</td>
<td>29.2</td>
</tr>
<tr>
<td>21.5</td>
<td>19.5</td>
<td>1600</td>
<td>119.4</td>
<td>19.6</td>
<td>26.3</td>
</tr>
<tr>
<td>26.8</td>
<td>26.1</td>
<td>2000</td>
<td>1492</td>
<td>23.5</td>
<td>35.0</td>
</tr>
</tbody>
</table>
TABLE 9: Temperature vs. distance at different consistencies

<table>
<thead>
<tr>
<th>Test</th>
<th>Consistency</th>
<th>Differential pressure across hydraulic cylinder</th>
<th>Specific energy</th>
<th>Temperature (℃) at given distance from outer periphery of refining zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inlet</td>
<td>Outlet</td>
<td>psi</td>
<td>kPa</td>
</tr>
<tr>
<td>1</td>
<td>22.4</td>
<td>33.0</td>
<td>850</td>
<td>3310</td>
</tr>
<tr>
<td>2</td>
<td>20.7</td>
<td>33.0</td>
<td>530</td>
<td>3650</td>
</tr>
<tr>
<td>3</td>
<td>17.3</td>
<td>29.3</td>
<td>560</td>
<td>3860</td>
</tr>
<tr>
<td>4</td>
<td>26.0</td>
<td>40.0</td>
<td>550</td>
<td>2780</td>
</tr>
<tr>
<td>5</td>
<td>22.9</td>
<td>33.7</td>
<td>450</td>
<td>2830</td>
</tr>
<tr>
<td>6</td>
<td>19.7</td>
<td>25.8</td>
<td>460</td>
<td>3170</td>
</tr>
<tr>
<td>7</td>
<td>24.2</td>
<td>32.6</td>
<td>350</td>
<td>3210</td>
</tr>
<tr>
<td>8</td>
<td>20.3</td>
<td>30.0</td>
<td>510</td>
<td>3920</td>
</tr>
<tr>
<td>9</td>
<td>17.7</td>
<td>23.8</td>
<td>540</td>
<td>3120</td>
</tr>
<tr>
<td>10</td>
<td>23.8</td>
<td>50.9</td>
<td>530</td>
<td>3650</td>
</tr>
<tr>
<td>11</td>
<td>19.3</td>
<td>27.6</td>
<td>560</td>
<td>3860</td>
</tr>
<tr>
<td>12</td>
<td>18.8</td>
<td>23.9</td>
<td>190</td>
<td>2690</td>
</tr>
<tr>
<td>13</td>
<td>19.3</td>
<td>21.9</td>
<td>580</td>
<td>3920</td>
</tr>
<tr>
<td>14</td>
<td>27.9</td>
<td>34.2</td>
<td>160</td>
<td>2480</td>
</tr>
<tr>
<td>15</td>
<td>27.9</td>
<td>34.2</td>
<td>350</td>
<td>2960</td>
</tr>
<tr>
<td>16</td>
<td>20.4</td>
<td>31.0</td>
<td>480</td>
<td>3310</td>
</tr>
<tr>
<td>17</td>
<td>19.6</td>
<td>27.6</td>
<td>570</td>
<td>3930</td>
</tr>
<tr>
<td>Test</td>
<td>Hydraulic Pressure Opening (psig kPa)</td>
<td>Closing (psig kPa)</td>
<td>Difference (psig kPa)</td>
<td>Hydraulic Thrust (lb. kg)</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1</td>
<td>730 .5033 250 1724 480 3309 22560 10233 13220 5042 9240 4191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>760 .5280 230 1986 530 3654 24910 11399 15410 6990 9500 4509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>770 .5309 210 1448 580 3961 26320 11933 16730 7589 9590 4391</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>680 .4689 290 1999 390 2690 18330 8314 9150 4155 9690 6459</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>690 .4757 280 1931 310 2826 19270 8772 10620 4817 8650 3924</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>710 .4995 250 1752 460 3172 21620 9507 23410 6083 8210 3724</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>720 .5164 240 1655 480 3309 22560 10233 12700 5761 9860 4472</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>740 .5102 230 1586 510 3516 23970 10873 14780 6794 9190 4159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>750 .5172 210 1488 540 3723 25380 11512 16140 7321 9240 4911</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>770 .5309 220 1517 530 3654 24910 11299 15220 6541 10560 4759</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>770 .5309 210 1448 560 3861 26370 11538 12210 6760 8110 3350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>620 .4275 230 1586 390 2689 18330 8314 9650 4377 8690 3937</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>320 .3585 240 1655 280 1930 13160 5959 2100 953 11060 5016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>690 .4682 290 1939 360 2483 16920 7675 10230 4690 6690 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>900 .4826 270 1862 430 2969 20210 9157 12750 5783 7660 3870</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>720 .4964 240 1655 480 3309 22560 10233 15330 6963 7210 4537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>770 .5309 200 1376 570 3933 26790 12152 19050 8641 7740 4611</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 11: Dimensions of Tribo-Elements [1] and [2]

<table>
<thead>
<tr>
<th>Section</th>
<th>Projected Area/Plate</th>
<th>Total Projected Area/ Circle of Plates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Bar*</td>
<td>16.26 in.²</td>
<td>195.14 in.²</td>
</tr>
<tr>
<td>Intermediate Bar*</td>
<td>40.48 in.²</td>
<td>485.7 in.²</td>
</tr>
<tr>
<td>Breaker Bar*</td>
<td>36.46 in.²</td>
<td>437.6 in.²</td>
</tr>
<tr>
<td>TOTAL</td>
<td>93.20 in.²</td>
<td>1118.4 in.²</td>
</tr>
</tbody>
</table>

*Refer to Figure 36

TABLE 12: Volume Properties (Volume) of Lubricant (element [3])

<table>
<thead>
<tr>
<th>Section</th>
<th>Volume/Plate (through bars of plate)</th>
<th>Volume Between 2 Disks (0.010 in. Clearance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Bar</td>
<td>0.5163 in.³</td>
<td>14.3792 in.³</td>
</tr>
<tr>
<td>Intermediate Bar</td>
<td>3.2096 in.³</td>
<td>86.4504 in.³</td>
</tr>
<tr>
<td>Breaker Bar</td>
<td>6.9856 in.³</td>
<td>380.597 in.³</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10.7115 in.³</td>
<td>481.427 in.³</td>
</tr>
<tr>
<td>Component</td>
<td>Inlet Conditions</td>
<td>Outlet Conditions</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Water (Dilution)</td>
<td>Temperature 2–15°C</td>
<td>100°C</td>
</tr>
<tr>
<td></td>
<td>Pressure 1 atm</td>
<td>1 atm</td>
</tr>
<tr>
<td></td>
<td>Consistency 22%</td>
<td>40% (*weight of wood fibers to total weight of slurry)</td>
</tr>
<tr>
<td>Na$_2$SO$_4$ (Additive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood Chips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam (product)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 14: Experimental Conditions for First-Stage Refining

<table>
<thead>
<tr>
<th>Refiner Shaft Speed</th>
<th>1,200 r.p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refiner Plate Pattern</td>
<td>C-906</td>
</tr>
<tr>
<td>Refiner Plate Material</td>
<td>Modified Ni-hard</td>
</tr>
<tr>
<td>Plate Taper (Measured)</td>
<td>0.0046 in. per inch</td>
</tr>
<tr>
<td>Rate of Feed</td>
<td>6 O.D. ton/day</td>
</tr>
<tr>
<td>Refining Consistency</td>
<td>15%</td>
</tr>
<tr>
<td>Nominal Plate Separation</td>
<td>0.005 in.</td>
</tr>
<tr>
<td>Dilution Water Temperature</td>
<td>170°F</td>
</tr>
</tbody>
</table>

Batch Operation using 5-lb. O.D. black spruce chips per run.

TABLE 15: Bauer-McNett Classification of Accepted Stock Produced at Various Points Through the Refining Zone

<table>
<thead>
<tr>
<th>Radial Length Along Refining Zone (in.)</th>
<th>1.0</th>
<th>2.5</th>
<th>4.0</th>
<th>5.5</th>
<th>7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R28</td>
<td>41.2</td>
<td>37.0</td>
<td>30.9</td>
<td>31.0</td>
<td>31.2</td>
</tr>
<tr>
<td>28/48</td>
<td>23.3</td>
<td>23.5</td>
<td>23.6</td>
<td>24.0</td>
<td>23.9</td>
</tr>
<tr>
<td>48/100</td>
<td>14.4</td>
<td>15.3</td>
<td>16.0</td>
<td>15.3</td>
<td>14.5</td>
</tr>
<tr>
<td>100/200</td>
<td>5.4</td>
<td>5.4</td>
<td>8.6</td>
<td>8.1</td>
<td>7.2</td>
</tr>
<tr>
<td>P.200</td>
<td>15.7</td>
<td>18.8</td>
<td>21.6</td>
<td>21.6</td>
<td>23.2</td>
</tr>
<tr>
<td>Accepts (by weight)</td>
<td>19.0</td>
<td>30.3</td>
<td>32.8</td>
<td>45.0</td>
<td>82.5</td>
</tr>
</tbody>
</table>
TABLE 16: Segment Weight Loss After 518 Hours

<table>
<thead>
<tr>
<th>Segment number</th>
<th>Rotor weight loss (g)</th>
<th>Stator weight loss (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>98</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>99</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>109</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>107</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>101</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>124</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>111</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>106</td>
<td>49</td>
</tr>
<tr>
<td>10</td>
<td>180</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>112</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>102</td>
<td>91</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>106</td>
<td>65</td>
</tr>
<tr>
<td>\delta</td>
<td>33</td>
<td>19</td>
</tr>
</tbody>
</table>
Table 17: Experimental Potentiostatic Results

<table>
<thead>
<tr>
<th>RUN</th>
<th>Direction</th>
<th>Curve Shape</th>
<th>(E_m) (V)</th>
<th>pH</th>
<th>Agitation Level</th>
<th>(\text{Na}_2\text{SO}_4) Added (g)</th>
<th>(\text{Corr.}) volt</th>
<th>(\text{Corr.}) ((\mu\text{A/cm}^2))</th>
<th>(i_C) ((\mu\text{A/cm}^2))</th>
<th>(E_{\text{imp}}) volt</th>
<th>(E_{\text{pass}}) ((\mu\text{A/cm}^2))</th>
<th>(E_{\text{rot}}) ((\mu\text{V/dec}))</th>
<th>(E_{j_C}) ((\mu\text{V/dec}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anodic</td>
<td>N.R.</td>
<td>2.3</td>
<td>0.13</td>
<td>0</td>
<td>0.437</td>
<td>250</td>
<td>N.A. 1.5(^4)</td>
<td>0.008</td>
<td>115</td>
<td>130</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cathodic</td>
<td>N.R.</td>
<td>2.3</td>
<td>0.13</td>
<td>0</td>
<td>0.499</td>
<td>250</td>
<td>1.9(^4) N.A. N.A. N.A. N.A. 290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Anodic</td>
<td>N.R.</td>
<td>2.3</td>
<td>0.13</td>
<td>0</td>
<td>0.522</td>
<td>N.A. 1.5(^4)</td>
<td>0.200</td>
<td>85</td>
<td>N.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Anodic</td>
<td>N.R.</td>
<td>2.3</td>
<td>0.13</td>
<td>0</td>
<td>0.527</td>
<td>N.A. 2.0(^4)</td>
<td>0.300</td>
<td>475</td>
<td>80</td>
<td>N.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Anodic</td>
<td>N.R.</td>
<td>2.3</td>
<td>0.13</td>
<td>0</td>
<td>0.468</td>
<td>33</td>
<td>N.A. 1.5(^4)</td>
<td>0.493</td>
<td>80</td>
<td>N.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Cathodic</td>
<td>N.R.</td>
<td>2.3</td>
<td>0.13</td>
<td>0</td>
<td>0.453</td>
<td>33</td>
<td>4.0(^3) N.A. N.A. N.A. N.A. 115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cathodic</td>
<td>N.R.</td>
<td>2.3</td>
<td>0.13</td>
<td>0</td>
<td>0.434</td>
<td>25</td>
<td>6.5(^3) N.A. N.A. N.A. N.A 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not Recorded
** \(1.7 \times 10^4\)
+ Not Applicable
<table>
<thead>
<tr>
<th>RUN</th>
<th>Direction</th>
<th>Curve Shape</th>
<th>T</th>
<th>E</th>
<th>M</th>
<th>D.Oppm</th>
<th>Agitation</th>
<th>NaSO₃ Added (g)</th>
<th>CPOE⁺</th>
<th>CPOE⁻</th>
<th>I_D</th>
<th>I_cr</th>
<th>E_pp</th>
<th>Pass</th>
<th>S_a</th>
<th>E_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Anodic</td>
<td>W.R.</td>
<td>6.0-5.1</td>
<td>8.7</td>
<td>0</td>
<td>0</td>
<td>-0.527</td>
<td>W.A. 1.5</td>
<td>0</td>
<td>1000</td>
<td>100 W.A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Anodic</td>
<td>W.R.</td>
<td>6.0-5.1</td>
<td>8.4</td>
<td>0</td>
<td>0</td>
<td>-0.475</td>
<td>W.A. 1.3</td>
<td>250</td>
<td>160</td>
<td>85 W.A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Anodic</td>
<td>W.R.</td>
<td>6.0-4.3</td>
<td>9.6</td>
<td>0</td>
<td>0</td>
<td>-0.404</td>
<td>W.A. 1.1</td>
<td>1000</td>
<td>3308</td>
<td>70 W.A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Anodic</td>
<td>W.R.</td>
<td>5.0-4.7</td>
<td>9.6</td>
<td>0</td>
<td>0</td>
<td>-0.517</td>
<td>W.A. 1.6</td>
<td>1500</td>
<td>4000</td>
<td>95 W.A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Anodic</td>
<td>W.R.</td>
<td>5.0-4.3</td>
<td>8.5</td>
<td>0</td>
<td>0</td>
<td>-0.482</td>
<td>W.A. 1.1</td>
<td>5000</td>
<td>4000</td>
<td>125 W.A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Anodic</td>
<td>W.R.</td>
<td>5.0-5.2</td>
<td>8.6</td>
<td>0</td>
<td>0</td>
<td>-0.470</td>
<td>N.A. 9.0</td>
<td>500</td>
<td>2400</td>
<td>100 W.A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Anodic</td>
<td>W.R.</td>
<td>5.5-5.8</td>
<td>9.0</td>
<td>0</td>
<td>0</td>
<td>-0.483</td>
<td>N.A. 6.0</td>
<td>1000</td>
<td>2600</td>
<td>125 W.A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 19: Experimental Potentiostatic Results (Cont.)

<table>
<thead>
<tr>
<th>RUN</th>
<th>Direction</th>
<th>Curve Shape</th>
<th>Tension (volts)</th>
<th>MA4O3 (ppm)</th>
<th>pH</th>
<th>Agitation Level</th>
<th>(\Delta \text{mg/L})</th>
<th>Ecorr (mV)</th>
<th>(\Delta \text{cm}^2)</th>
<th>(\Delta \text{cm}^2)</th>
<th>Epp (mV)</th>
<th>(\Delta \text{h/m})</th>
<th>(\Delta \text{mV})</th>
<th>(\Delta \text{sec})</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Anodic</td>
<td></td>
<td>M.R. -4.9 -0.4</td>
<td>0</td>
<td>0</td>
<td>-330</td>
<td>M.A. 4.3</td>
<td>0</td>
<td>330</td>
<td>90</td>
<td>M.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Anodic</td>
<td></td>
<td>M.R. -4.5 -8.2</td>
<td>0</td>
<td>0</td>
<td>-330</td>
<td>M.A. 7.0</td>
<td>0</td>
<td>1500</td>
<td>150</td>
<td>M.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Anodic</td>
<td></td>
<td>M.R. -3.8 -9.4</td>
<td>0</td>
<td>0</td>
<td>-444</td>
<td>M.A. 8.1</td>
<td>0</td>
<td>250</td>
<td>85</td>
<td>M.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Anodic</td>
<td></td>
<td>M.R. -3.8 -3.4</td>
<td>0</td>
<td>0</td>
<td>-440</td>
<td>M.A. 9.4</td>
<td>0</td>
<td>200</td>
<td>70</td>
<td>M.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Anodic</td>
<td></td>
<td>M.R. -3.8 -6.4</td>
<td>0</td>
<td>0</td>
<td>-477</td>
<td>M.A. 6.0</td>
<td>0</td>
<td>200</td>
<td>590</td>
<td>M.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Anodic</td>
<td></td>
<td>M.R. -3.8 -4.4</td>
<td>0</td>
<td>0</td>
<td>-477</td>
<td>M.A. 6.0</td>
<td>0</td>
<td>200</td>
<td>590</td>
<td>M.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Anodic</td>
<td></td>
<td>M.R. -3.8 -7.0</td>
<td>0</td>
<td>0</td>
<td>-587</td>
<td>M.A. 3.5</td>
<td>0</td>
<td>100</td>
<td>120</td>
<td>M.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equivalent to 15.0 pounds per oven dry ton of wood pulp
<table>
<thead>
<tr>
<th>RDM</th>
<th>Direction</th>
<th>Curve Shape</th>
<th>T</th>
<th>E (ppm)</th>
<th>Agitation Level</th>
<th>Na₂SO₃ Added (g)</th>
<th>Ecorr Volts (μA/cm²)</th>
<th>Ip (μA/cm²)</th>
<th>Ip (μA/cm²)</th>
<th>Epass (μA/cm²)</th>
<th>β₀ (μl/dec.)</th>
<th>β₁ (μl/dec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Anodic</td>
<td></td>
<td>3</td>
<td>22.8</td>
<td>2.1-0.1</td>
<td>0</td>
<td>7.157</td>
<td>N.A.</td>
<td>3.1³</td>
<td>.050</td>
<td>110</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.7</td>
<td>0.7-0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(o.d.t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Anodic</td>
<td></td>
<td>4</td>
<td>22.9</td>
<td>2.7-0.2</td>
<td>0</td>
<td>15.36</td>
<td>N.A.</td>
<td>2.5³</td>
<td>.050</td>
<td>860</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.7</td>
<td>-0.2-0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(o.d.t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Anodic</td>
<td></td>
<td>5</td>
<td>22.8</td>
<td>7-0.4</td>
<td>0</td>
<td>0.6910</td>
<td>N.A.</td>
<td>not able to</td>
<td>read 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.4</td>
<td>0-0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(o.d.t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Cathodic</td>
<td></td>
<td>6</td>
<td>24.1</td>
<td>7-0.4</td>
<td>0</td>
<td>0.6910</td>
<td>5.2</td>
<td>3.3³</td>
<td>N.A. N.A.</td>
<td>N.A. N.A.</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.1</td>
<td>0-0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(o.d.t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Anodic</td>
<td></td>
<td>7</td>
<td>22.0</td>
<td>1.8-1.0</td>
<td>³</td>
<td>.5714</td>
<td>N.A.</td>
<td>not able to</td>
<td>obtain from</td>
<td>135</td>
<td>N.A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.4</td>
<td>-5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>graph</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.5-3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Cathodic</td>
<td></td>
<td>8</td>
<td>22.7</td>
<td>7-4.7</td>
<td>³</td>
<td>.6614</td>
<td>3.3³</td>
<td>N.A.</td>
<td>N.A. N.A.</td>
<td>N.A. N.A.</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.8</td>
<td>-4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.4-2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 21: Experimental Potentiostatic Results (Cont.)

<table>
<thead>
<tr>
<th>Run</th>
<th>Direction</th>
<th>Curve Shape</th>
<th>pH</th>
<th>Agitation Level</th>
<th>Na₂SO₄ Added (g)</th>
<th>E cor (volts)</th>
<th>I cor (mA/cm²)</th>
<th>I ppp (mA/cm²)</th>
<th>I ppp (mA/cm²)</th>
<th>f a (mV)</th>
<th>f c (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Anodic</td>
<td>23.3</td>
<td>4.6-6.7</td>
<td>6-8</td>
<td>0.0058</td>
<td>-0.177</td>
<td>0.6</td>
<td>N.A.</td>
<td>not able to obtain from graph</td>
<td>105</td>
<td>N.A.</td>
</tr>
<tr>
<td>30</td>
<td>Cathodic</td>
<td>23.8</td>
<td>5.8-6.9</td>
<td>6.9-8.7</td>
<td>0.0053</td>
<td>-0.202</td>
<td>0.6</td>
<td>530</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>31</td>
<td>Anodic</td>
<td>22.7</td>
<td>7.0-8.9</td>
<td>6-8</td>
<td>0.0041</td>
<td>-0.233</td>
<td>N.A.</td>
<td>not able to obtain from graph</td>
<td>80</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Anodic</td>
<td>22.5</td>
<td>8.2-9.0</td>
<td>6.6-8.6</td>
<td>8.18</td>
<td>-0.569</td>
<td>0.82</td>
<td>1.76</td>
<td>0.650</td>
<td>3.6</td>
<td>65</td>
</tr>
<tr>
<td>33</td>
<td>Cathodic</td>
<td>22.0</td>
<td>1.6-2.0</td>
<td>6-8</td>
<td>0.16</td>
<td>-0.560</td>
<td>0.82</td>
<td>3.0</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>34</td>
<td>Anodic</td>
<td>22.0</td>
<td>2.9-3.0</td>
<td>6.6-8.6</td>
<td>12.2</td>
<td>-0.548</td>
<td>N.A.</td>
<td>2.16</td>
<td>0.350</td>
<td>5.8</td>
<td>135</td>
</tr>
<tr>
<td>RUN</td>
<td>pH after 55 min</td>
<td>(i_{cr}) ((\mu A/cm^2))</td>
<td>(E_{pp}) (volts)</td>
<td>(i_{pass}) ((\mu A/cm^2))</td>
<td>(B_a) (mV/dec)</td>
<td>D.O. (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2,12</td>
<td>9.9 (\times 10^{-3})</td>
<td>-0.050</td>
<td>200</td>
<td>70</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2.8</td>
<td>8.4 (\times 10^{-3})</td>
<td>0.0</td>
<td>150</td>
<td>85</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.26</td>
<td>1.1 (\times 10^{-4})</td>
<td>-100</td>
<td>4000</td>
<td>95</td>
<td>N.R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.56</td>
<td>1.4 (\times 10^{-4})</td>
<td>0.0</td>
<td>4000</td>
<td>125</td>
<td>N.R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4.58</td>
<td>8.0 (\times 10^{-3})</td>
<td>-300</td>
<td>590</td>
<td>90</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.0</td>
<td>7.6 (\times 10^{-3})</td>
<td>-0.050</td>
<td>2500</td>
<td>150</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5.5</td>
<td>8.0 (\times 10^{-3})</td>
<td>-150</td>
<td>2400</td>
<td>100</td>
<td>N.R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.8</td>
<td>6.0 (\times 10^{-3})</td>
<td>-200</td>
<td>2600</td>
<td>120</td>
<td>N.R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6.0</td>
<td>4.3 (\times 10^{-3})</td>
<td>-250</td>
<td>335</td>
<td>90</td>
<td>N.R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(9.9 \times 10^{-3} = 9.9 \times 10^{-3} \)

+ N.R. = Not Recorded
Fig. 1. Basic Plate Pattern
Fig. 2. New Exponential Rrefiner Plate, Model FPPRI
Fig. 3. Freeness vs. energy consumption (KWh per air-dry metric ton) with different plate tapers.

Fig. 4. Q-value vs. energy consumption (KWh per air-dry metric ton) with different plate tapers.
Double Disk two stages (1+1)
Different plate tapes

19 36-41 ADT/D - Taper 5% - Mill A
20 40 ADT/D - Taper 2% - Mill A
21 36 ADT/D - Taper 3% - Mill A

Fig. 5. Shives content vs. energy consumption (kWh per air-dry metric ton) with different plate tapes.

Plate Service Life, 100's of Hours

Fig. 6. Plate life associated cost vs. plate life; stainless steel plates; NiHard plates; NiHard with pH control.
Fig. 7. Plate life associated costs – effect of additives.
Fig. 8. Converging-Diverging plate design to permit super sonic escape of steam (not to scale).
Fig. 9. Long fiber content versus freeness.
Principal effect of changed disc clearance.
Fig. 10. Principal design of refiner operation and plate condition control graph.
Fig. 71. The effect of normal plate wear on freeness and power: three-stage refining.
Fig. 12. Effect of normal plate wear on percentage mullen and power: three-stage refining.
Fig. 13. Effect of normal plate wear on tear factor and power: three-stage refining.
Fig. 14. Effect of refining consistency on burst factor.
Fig. 15. Effect of refining consistency of tear factor.
Fig. 16. Effect of refining consistency of freeness.
Fig. 17. Effect of refining consistency on specific volume.
Approx. Calc. Feed Cons'y

Refiner Discharge, Cons'y, & O.D.

Fig. 18. Effect of refining consistency of shive content.
Fig. 19. Effect of refining consistency on specific scattering coefficient.
Fig. 20. Effect of plate wear on freeness.
Fig. 21. Effect of plate wear on burst factor.
Fig. 22. Effect of plate wear on tear factor
Fig. 23. Effect of plate wear on shive content.
Fig. 24. Plate from reject I refiner after 383 hours; Uddeholm; 48Co 23; Taper 2%

Fig. 25. Plate from sawdust I refiner after 320 hours; HI-MOLY; 48154; Taper 3%
Fig. 26. Wearing plate from reject I refiner; Bauer 488

Fig. 28. Plate from sawdust I refiner after 307 hours; X-Metal; 48154; Taper 2%
Fig. 27. Illustration of Heidemeyer's theory: Mechanical action reduces amount of thermal energy necessary to cause corrosion.
Fig. 29. Effects of sodium sulfite and soda ash on brightness.

Pounds per ton of Additive

Tappi Brightness

ADDITIVES

- \(\text{Na}_2\text{SO}_3 \)
- \(\text{Na}_2\text{CO}_3 \)
Tribological Systems Data Sheet

General Problem Statement:

I Technical Function of the Tribo-system

II Operating Variables

- **Type of load:**
- **Duration of operation:**

<table>
<thead>
<tr>
<th>Load</th>
<th>Velocity</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Op. Variables:

III Structure of the Tribo-system

- **Properties of elements:**
 - Tribological interaction:
 - Designation of element and material
 - Geometry/Dimensions/Volume
 - Chemical composition
 - Phys.-mech. data:
 - Hardness
 - Viscosity of fluid other
 - Topography descriptor
 - Other data:
 - Surface layer data
 - All different from volume
 - Contact area A
 - Total contact area A_{T}
 - App. lubrication mode

Tribological interactions:

IV Tribological Characteristics

- **Changes in properties of the material**
- **Friction data**
- **Wear data**

Other characteristics:

- Appearance of wear

Fig. 30. Tribological Systems Data Sheet
Tribological Systems Data Sheet Containing Data for a Single Rotating Disk Refiner
Fig. 32. Graph of horsepower days/o.d.t. over life of set of refiner plates.
Fig. M: Dependence of temperature on distance from center of refiner.
Fig. 38: Pressure dependence with distance from center of refiner.
Fig. 36. Tribo-Element [1] and [2] before use
Fig. 37. Profile measurements of tribo-elements [1], [2] and lubricant [3]. All dimensions are in millimeters.
Fig. 39. Bauer C-906 refiner plate segment. Six such segments are attached to each refiner disk.
Fig. 40. Representative sample of black spruce chips employed in these refining experiments, showing the size and shape distribution of the feed material.
Fig. 41. Material sampled after passing through the breaker bar section alone. The fragments are seen to be quite uniform and the major axis of each is in the grain direction.
Fig. 42. Material sampled after moving a radial distance of one inch from the breaker bar section.
Fig. 43. Material sampled after moving a radial distance of 2.5 in. from the breaker bar section. Note the cylindrical aspect of some of the larger fragments.
Fig. 44. Material sampled after moving a radial distance of 4.0 in. from the breaker bar section. Note the broomed ends of many cylindrical fragments.
Fig. 45. Material sampled after moving a radial distance of 5.5 in. from the breaker bar section.
Fig. 46. Material produced by full refiner plate. This material has taken on the aspect of a papermaking pulp.
Fig. 47. Cumulative frequency curves of minimum fragment thickness of material produced at various points through the refining zone. The horizontal arrow on each curve denotes the minimum plate separation at the point of sampling.
Fig. 48 Graph of contact area versus time (distance plate has travelled)

Note: Only the intermediate bar section has been considered here.
Fig. 49. Plot of specific energy vs. feed rate in a series of refining experiments.
Fig. 50. Plot of specific energy vs. retention time (Extended to 100 hp. day/ton)
Figure 51. All possible tribological interactions between three tribo elements.
The model assumes that chips are sequentially disintegrated in discrete steps through the refining zone. The radial orientation depicted is for clarity of illustration—in reality this is probably random.

The model assumes that a chip breaks into four equal pieces during the first disintegration, and that these and subsequent fragments break in similar fashion to give an isomorphic pattern of breakdown, which ends when single fibers are liberated from bundles of four.
Fig. 54. Depiction of forces on chip from stationary plate as Reference.

Fig. 55. All forces at work on rotating Tribo-element.
Fig. 56. Friction Mechanism--elastic deformations in wood chip transmit stress to be dissipated into plates or pulp.
Fig. 57. Resultant forces and events if both plates were flat.

Fig. 58. Resultant forces and events (on a microscale) if one plate were flat.
Fig. 59. Deformation and forces between two macro-asperities.
Fig. 60. Sample site R-1 I-8 on top of intermediate bar - chosen randomly.

Fig. 61. Sample Site R-1 I-8 - 80X magnification, no etch.
Fig. 62. Sample Site R-1 I-8 - 300X magnification, no etch.

Fig. 63. Sample Site R-1 I-8 - 1000X, Normanski interference, layer 1 in focus, etched.
Fig. 64. Sample Site R-1 I-8 - 1000X, Normanski interference, layer 2 in focus, etched.

Fig. 65. Sample Site R-1 I-8 - 1000X, Normanski interference, end of layer 3, layer 4 in focus, etched.
Fig. 66. Sample Site R-1 I-8 showing microhardness marks - 300X, etched.

Fig. 67. Sample Site R-1 I-8 showing microhardness marks - 300X, Normanski interference, etched.
Fig. 68. Tribo-Element [1] (stator) after use.
Fig. 69. Tribo-Element [1] (rotor) after use.
Fig. 70. Site S-1 I-1 on stator bar.

Fig. 71. Site R-1 I-1 on rotor bar.
Fig. 72. Site S-1 I-4 on stator bar.

Fig. 73. Site R-1 I-4 on rotor bar.
Fig. 74. Site S-1 I-3 on stator bar.

Fig. 75. Site R-1 I-3 on rotor bar.
Fig. 76. Typical cut down area - 30X magnification.

Fig. 77. Typical cut down area - 120X magnification.
Fig. 78. Typical worn area showing partial layer of grey material on an unworn area (c) and also a corner of grey material (d) on a cut down area.

(b) Two sides of cut down area made of harder material (120X)
(c) Partial layer of grey material (120X)
(d) Hardened corner (120X)

minimal amount of wear

(b) (c) (d)

cut-down area

<table>
<thead>
<tr>
<th></th>
<th>Rc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56.0</td>
</tr>
<tr>
<td>2</td>
<td>62.0</td>
</tr>
<tr>
<td>3</td>
<td>63.0</td>
</tr>
<tr>
<td>4</td>
<td>65.3</td>
</tr>
<tr>
<td>5</td>
<td>67.5</td>
</tr>
<tr>
<td>6</td>
<td>65.0</td>
</tr>
<tr>
<td>7</td>
<td>65.7</td>
</tr>
</tbody>
</table>

(a) Sample removed from a stator bar (30X)
Fig. 79. Schematic arrangement for electrochemical machining.
Fig. 80. Multi-Neck polarization cell - standard equipment
Fig. 81. Schematic diagram of experimental set-up
Fig. 82. Close-up of counter and working electrodes.
Fig. 83. Standard potentiostatic anodic polarization plot
Fig. 84. Potentiostatic anodic polarization curve of iron in normal sulfuric acid.
Fig. 85. Anodic and cathodic polarization curves illustrating some of the polarization terminology.
Fig. 88. Radial cracks along intermediate bar (6X)
Fig. 89. Hypothesis for formation of ridge-groove pattern.
Fig. 90. Anodic polarization curves for Ni-hard refiner plate, buffered with Na$_2$SO$_3$ - solution agitated.
Fig. 91. Anodic polarization curves for Ni-hard refiner plate, buffered with Na₂SO₃ - solution stagnant.
REFERENCES

24. MECHANICAL PULP MANUFACTURE, 1968.

37. Correspondence with V. Peterson; May 27, 1977.

47. LUDDE, F., Das Papier 16, (10a): 596 (October 1962).

58. Memo from C. Mills, to L.R. Beath; PPRIC Test to Determine if the Open Discharge Refiner is Self Pressurizing; March 11, 1974.

APPENDIX A

DETAILS OF ELECTROCHEMICAL MACHINING
APPENDIX A
DETAILS OF ELECTROCHEMICAL MACHINING (ECM)

- controlled removal of metal without the use of mechanical or thermal energy
- electric current is combined with a chemical to form a reaction of reverse plating
- direct current of relatively high amperage and low voltage is continuously passed between the anodic workpiece and cathodic tool (electrode) through a conductive electrolyte
- at the anode surface, electrons are removed by the current flow, and the metallic bonds of the molecular structure of this surface are broken
- these surface atoms proceed to go into solution as metal ions
- simultaneously, positive hydrogen ions are attracted to the negatively charged surface, and emitted at the cathode surface to form hydrogen atoms, which combine to form hydrogen molecules
- dissolved material is removed from the gap between workpiece and tool by the flow of electrolyte, which also aids in carrying away the heat and hydrogen formed
- machines surfaces without burrs and without the striation marks left by milling cutters
- freedom from metallurgical damage
- during ECM, hydroxides are generated rapidly, and large volumes of electrolyte are therefore required
- the products of machining are generally metal oxides or hydroxides. They have an extremely small particle size (in the order of 1.0 μm) and cannot be easily filtered
- ECM machining is stress-free and thus only relieves stresses in the part
- major advantages of the ECM process include stress - and burr-free machining, no burning or thermal damage to workpiece surfaces, and elimination of tool wear (since there is no tool-to-workpiece contact)
as a result, undesirable surface defects that can occur with mechanical machining or grinding operations are avoided. Also, the surfaces produced frequently have better wear, friction, and corrosion resistant characteristics than those obtained with mechanical finishing.

Surface finishes produced depend on the metal or alloy being processed, the electrolyte, and the operating conditions used.

Average surface finishes obtained range from 10 to 30 \(\mu \) in. ECM of nickel-base, cobalt base, and stainless steel generally produces smoother surfaces (1 to 15 \(\mu \) in.) than those obtained from iron-base alloys and steels (25 to 60 \(\mu \) in.).

Electrolytes are usually aqueous solutions of inorganic salts such as sodium chloride, potassium chloride, sodium nitrate or sodium chlorate.

Current density, in amperes per square inch of cutting area, is the chief factor in determining the permissible rate of tool feed, as the metal removal process is governed by Faraday’s law.

A change in pH of a salt electrolyte has little effect on its conductivity.

The conductivity of an electrolyte changes greatly with temperature.

Rate of flow of the electrolyte is important because the electrolyte must remove the heat and the products of the chemical reaction.

Rate of flow also has an effect on surface finish and on accuracy of machining. High electrolyte flow rate often improves the uniformity of metal removal with a given electrolyte without reducing the removal rate.

A peculiarity of ECM is the production of striations, ridges or protuberances on the workpiece opposite or near the electrolyte flow channels in the tool or at other points where sudden changes in flow direction cause a stagnant condition.

Microscopic surface defects may be caused by selective attack on certain constituents in an alloy.

The resistance of most nickel alloys to chemical attack does not seem to retard electrochemical solution.
APPENDIX B

ASTM DESIGNATION G5-72 - STANDARD RECOMMENDED PRACTICE FOR
STANDARD REFERENCE METHOD FOR MAKING POTEENTIOSTATIC AND
POTENTIODYNAMIC ANODIC POLARIZATION MEASUREMENTS
Standard Recommended Practice for
STANDARD REFERENCE METHOD FOR
MAKING POTENTIOSTATIC AND
POTENTIODYNAMIC ANODIC
POLARIZATION MEASUREMENTS

This Standard is issued under the fixed designation G-5; the number immediately following the designation indicates the
year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of
last reapproval.

1. Scope
1.1 This recommended practice describes an experimental procedure which can be used to check one's experimental
method and instrumentation. If followed, this practice will provide repeatable potentiostatic and poten-
tiodynamic anodic polarization measurements that will reproduce data determined by others at
other times and in other laboratories.

1.2 Standard potentiostatic and potentiody-
namic polarization plots are included. These
reference data are based on the results from
different laboratories (15 for the potentiostatic
and 12 for the potentiodynamic) that followed
the standard procedure, using a specific ferritic
Type 430 stainless steel in 10.0 N H₂SO₄. Max-
imum and minimum current values are shown
at each potential to indicate the acceptable
range of values.

1.3 Deviations from the standard reference
plots and the causes for such deviations are
discussed in the Appendix.

1.4 Samples of the standard ferritic Type
430 stainless steel used in obtaining the stan-
dard reference plots are available for those who
wish to check their own test procedure and
equipment.

2. Equipment

2.1 Standard Polarization Cell, described
herein, can be used for most polarization
measurements. This cell and its component
parts have been described in more detail by
Greene.1

2.1.1 A schematic diagram of the cell is
shown in Fig. 1. A 1-liter, round-bottom flask
has been modified by the addition of various
necks to permit the introduction of electrodes,
gas inlet and outlet tubes, and a thermometer.

The Luggin probe-salt bridge separates the
bulk solution from the saturated calomel re-
ference electrode, and the probe tip can be eas-
ily adjusted to bring it in close proximity with
the working electrode.

2.2 Electrode Holder (1):
2.2.1 The auxiliary and working electrodes
are mounted in the type of holder shown in
Fig. 2. A longer holder is required for the
working electrode than for the auxiliary
electrode. A leak-proof assembly is obtained by
the proper compression fit between the elec-
 trode and a TFE-fluorocarbon gasket. (Too
much pressure may cause shielding of the
electrode or breakage of the glass holder, and
too little pressure may cause leakage.)

2.3 Potentiostat (Note 1):
2.3.1 A potentiostat that will maintain an
electrode potential within 1 mV of a preset
value over a wide range of applied currents
should be used. For the type and size of stan-
dard specimen supplied, the potentiostat should
have a potential range of -0.6 to 1.6 V and
an anodic current output range of 1.0 to 10³

1 This recommended practice is under the jurisdiction of
ASTM Committee G-1 on Corrosion of Metals.
Current edition approved Sept. 25, 1972. Published
November 1972. Originally published as G 5 - 70, Last
previous edition G 5 - 70.
1 These standard samples are available from ASTM
Headquarters at a nominal cost. Generally, one sample
can be repolished and reused for many runs. This procedure is
suggested to conserve the available material. Request
Adheses No. 12-700050-00.
1 This cell is available from节ded Apparatus Section.
Laboratory Glassware Dept., Corning Glass Works, Cor-
ing, N.Y.
1 The symbol numbers in parentheses refer to the list of
references at the end of this recommended practice.
Many commercial potentiostats meet the specific requirements for these types of measurements.

2.4 Potential-Measuring Instruments (Note 1).

2.4.1 The potential-measuring circuit should have a high input impedance on the order of 10^{11} to 10^{14} Ω to minimize current drawn from the system during measurements. Instruments should have sufficient sensitivity and accuracy to detect a change of 1.0 mV over a potential range between -0.6 and 1.6 V.

2.5 Current-Measuring Instruments (Note 1).

2.5.1 An instrument that is capable of measuring a current accurately to within 1 percent of the absolute value over a current range between 1.0 and 10^6 μA for the approximately 5-cm² specimen of Type 430 stainless steel that is supplied should be used. Many commercial instruments are satisfactory for this purpose.

2.6 Anodic Polarization Circuits:

2.6.1 A schematic potentiostatic anodic polarization wiring diagram (3) is illustrated in Fig. 3. Note that the milliammeter is placed between the potentiostat and the auxiliary electrode. The potentiometer-electrometer combination provides the high impedance necessary for potential measurement.

2.6.2 A scanning potentiostat is used for potentiodynamic measurements. A record of the potential and current is plotted continuously using such instruments as an X-Y recorder and a logarithmic converter incorporated into the circuit described in 2.6.1.

Note 1—The instrumental requirements are based upon values typical of the instruments in the 15 laboratories that provided the data used in determining the standard polarization plot.

2.7 Electrodes:

2.7.1 Working Electrode, prepared from a $\frac{1}{2}$-in. (1.27-cm) length of $\frac{1}{2}$-in. (0.95-cm) diameter rod stock. Each electrode is drilled, tapped, and mounted in the manner discussed in 2.2.1.

2.7.1.1 The standard AISI Type 430 stainless steel should be used if one wishes to reproduce the standard reference plot. This material was prepared from a single heat of metal that was mill-annealed for $\frac{1}{2}$ h at 1500 F (816 C) and air cooled. The chemical composition of the standard stainless steel is shown in Table I:

2.7.2 Platinum Electrodes—Two platinum auxiliary electrodes are prepared from high-purity rod stock. Each electrode is drilled, tapped, and mounted with a TFE-fluorocarbon gasket in the same manner as the working electrode.

2.7.2.1 A platinized surface is recommended because of the increased surface area. This may be accomplished by cleaning the surface in hot aqua regia (3 parts concentrated HCl and 1 part concentrated HNO₃), washing, and then drying. Both electrodes are platinized by immersing them in a solution of 3 percent platinic chloride and 0.02 percent lead acetate and electrolyzing at a current density of 40 to 50 mA/cm² for 4 or 5 min (1,3). The polarity is reversed every minute. Occluded chloride is removed by electrolyzing in a dilute (10 percent) sulfuric acid solution for several minutes with a reversal in polarity every minute. Electrodes are rinsed thoroughly and stored in distilled water until ready for use. Since certain ions can poison these electrodes, periodic checks of platinized platinum potentials against a known reference electrode should be made.

2.8 Calomel Electrode (4)—A saturated calomel electrode with a controlled rate of leakage (about 3 μA/h) is recommended. This type of electrode is durable, reliable, and commercially available. The normal precautions should be taken to ensure that it is maintained in the proper condition. The potential of the calomel electrode should be checked at periodic intervals to ensure the accuracy of the electrode.

3. Standard Experimental Procedure

3.1 Test Specimen Preparation:

3.1.1 Prepare the surface within 1 h of the experiment. Wet grind with 240-grit SiC paper, wet polish with 600-grit SiC paper until previous coarse scratches are removed, rinse, and dry. (Drilled and tapped specimens can be threaded onto an electrode holder rod and secured in a lathe or electric drill for this operation.)

3.1.2 Determine the surface area by measuring all dimensions to the nearest 0.01 mm, subtracting the area under the gasket (usually 0.20 to 0.25 cm²).
3.1.3 Mount the specimen on the electrode holder as described in 2.2.1. Tighten the assembly by holding the upper end of the mounting rod in a vise or clamp while tightening the mounting nut until the gasket is properly compressed.

3.1.4 Clean the specimen just prior to immersion by degreasing for 5 min in boiling benzene (Caution: Use under hood), followed by rinsing in distilled water.

3.2 Prepare 1 liter of 1.0 N H₂SO₄ solution from reagent grade acid and distilled water, using 27.2 ml of 98 percent H₂SO₄/liter of solution. Transfer 900 ml of solution to clean polarization cell.

3.3 Bring the temperature of the solution to 30 ± 1°C by immersing the test cell in a controlled-temperature water bath or by other convenient means.

3.4 Place the platinumized auxiliary electrode, salt-bridge probe, and other components in the test cell and temporarily close the center opening with a glass stopper. Fill the salt bridge with test solution.

Note 2—The level of the solution in the reference and polarization cells should be the same to avoid siphoning. If this is impossible, a closed solution-wet (not greased) stopcock can be used in the salt bridge to eliminate siphoning.

3.5 Purge the solution prior to immersion of the test specimen, for a minimum of 1/2 h with oxygen-free hydrogen gas at the rate of 150 cm³/min to remove oxygen from solution.

3.6 Transfer the specimen to the test cell and adjust the salt-bridge probe tip so it is about 2 mm from the specimen electrode.

3.7 Record the open-circuit specimen potential, that is, the corrosion potential, after 55 min immersion. Record the platinumized platinum potential 50 min after immersion of the specimen.

3.8 Potential Scan:

3.8.1 Start the potential scan 1 h after specimen immersion, beginning at the corrosion potential (Ecorr) for potentiodynamic measurements and then nearest 50-mV increment above Ecorr for the potentiostatic measurements. Proceed through +1.60 V versus saturated calomel electrode (SCE) (active to noble).

3.8.2 Use a potentiostatic potential step rate of 50 mV every 5 min, recording the current at the end of each 5-min period at potential.

3.8.3 Use a potentiodynamic potential sweep rate of 0.6 V/h (± 5 percent) recording the current continuously with change in potential.

3.9 Plot anodic polarization data on semi-logarithmic paper in accordance with ASTM Recommended Practice G 3, for Conventions Applicable to Electrochemical Measurements in Corrosion Testing¹ (potential-ordinate, current-density-abscissa).

4. Standard Reference Plots

4.1 Standard polarization plots based on potentiostatic data from 15 different laboratories and potentiodynamic data from 12 different laboratories are shown in Figs. 4A and 4B (1). The plots show a range of acceptable current density values at each potential. The average corrosion potential is -0.62 V, and the average platinumized platinum potential is -0.36 V.

4.2 These plots were prepared from data obtained by following the standard procedure discussed in this recommended practice.

4.3 Typical deviations from the standard potentiostatic plot are shown and discussed in Appendix A1. Refer to this discussion may be helpful in determining the reasons for differences between an experimental curve and the standard plots.

4.4 The potentiodynamic standard curve shows good agreement with the potentiostatic standard curve determined at an equivalent overall polarization rate.

5. Reproducibility

5.1 It is possible to show excellent reproducibility in the same laboratory when following a set procedure. However, these data may not agree with that in another laboratory. An example of repeatable data is shown in Fig. 5, but the curve does not agree completely with the standard plot in that the secondary current density maximum occurs at a potential of about 100 mV more active than the standard.

5.2 The small spread in data obtained from a number of laboratories and used in the preparation of the standard plot demonstrated that good reproducibility is possible when a stand-

ard procedure is followed.

5.3 The availability of a standard procedure, standard material, and a standard plot should make it easy for an investigator to check his techniques. This should lead to polarization curves in the literature which can be compared with greater confidence than is possible now.

| TABLE 1 Chemical Composition of Standard Type 30 Stainless Steel, Weight Percent |
|---------------------------------|-----------------|-----------------|----------------|----------------|----------------|
| Chromium | 16.51 | Carbon | 0.022 | Manganese | 0.40 |
| Carbon | 0.49 | Silicon | 0.49 | Phosphorus | 0.013 |
| Manganese | 0.40 | Sulfur | 0.009 | Nickel | 0.37 |
| Silicon | 0.49 | Molybdenum | 0.03 | Copper | 0.07 |
| Phosphorus | 0.013 | Iron | balun |

FIG. 1 Schematic Diagram of Polarization Cell

FIG. 2 Specimen Mounted on Electrode Holder.
APPENDIX

A.1 DEVIATIONS FROM STANDARD POLARIZATION PLOTS

A.1.1 High Passive Current Densities (Crevice Effect)

A.1.1.1 Examples of passive current densities which are greater than those for the standard potentiostatic plot are shown in Fig. A1. This effect is attributable to a crevice between the specimen and mounting material (6). The crevice may be the result of the mounting technique or the material used for mounting.

A.1.2 The potential drop along the narrow path of the electrolyte within the crevice between the specimen and the mounting material prevents this area from passivating. Although the face of the specimen passivates, the high current density associated with the active crevice contributes to an increase in the measured current density. Specimen electrodes for polarization measurements must be mounted without crevice sites to avoid such erroneous passive current densities.

A.1.2 Low Passive Current Densities (Instrumentation Effect)

A.1.2.1 The low passive current densities shown in Fig. A2 are undoubtedly the result of instrumental problems. This effect can be eliminated by calibrating the current over the entire range of interest before conducting an experiment.

A.1.3 Cathodic Currents During Anodic Polarization

A.1.3.1 The "negative loop" at potentials between -0.150 V and -0.050 V, shown by dashed lines in Fig. A3, occurs when the total cathodic current exceeds the total anodic current. Such results are characteristics of oxygen being present in the solution (7). This effect can be anticipated if the recorded platinum potential is considerably more noble than -0.26 V. The hydrogen purge should remove oxygen from the system, but there may be an air leak or the hydrogen may be contaminated with oxygen. It is necessary to take extreme care in the design of glassware equipment and to ensure a high order of purity in the gas that is used to avoid oxygen contamination.

REFERENCES
