AN INVESTIGATION OF THE VAN BIELE
 LEVERS OF THNKTNG M GEOMETRY AT

THE BEGINNNG OF THE NINTH GRADE

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED
(Without Author's Permission)

WIIBERT ARTHUR BOONE

0

-

ABSTRACT

This study was motivated by the controversy which exista over the approach to teaching geometry in grade nine.; Which approach should be used to teach geometry at this grade level: inductive or deducEive? This has been an'issue of concern in Newfoundland and Labrador during the last five years.

The main purpose of the study, was to investigate the level of thinking of grade mine students in geometry at the beginning of the school year. A second important aspect of the study was related to the text : materials used to teach the geometry strand in grade eighto Also, it' was attempted to determine if the mental development of grade nine students in geometry in Newfoundland and Labrador differed from those of students in the United States.

The sample consisted of 1004 grade: nine students at the beginaing of the school year. in Newfoundland and Labrador. However; 75 students were elfminated from the sample because they were repeating grade nine (46) or using an alternative textbook series (29): Consequently, 929 students were included for data analysis:

The students were required to provide information relative to their grade last year, the textbook used to study geometry in grade eight, and placement in grade nine this achool year: advanced, academic, or practical. This information was utilized in data analysis:

The students were administered a.modified version of the evan Hiele Geometry Test. This test included four levels of multiplemofice
Six

Guestions.
Recognition, Analysis, Ordering, and Deduction. There were five questions at each level for a total of 20° questions,
: . The students were classified according to the van Hiele theory of mental deveilopment in geometry. Each student wis assigned a level: Recognition, Analysis, ${ }^{\text {Ordering, or }}$, Deduction. 'It was possible to classify 88.7 percent of the sample using' a criterion of 3 out of 5 items'correct at each level: When a criterion of 4 out of 5 items correct at each level was applied, it was possible to classify 95 percent into vañ Hele level. In the case of 3 out of 5. the majority of students were at the recognition and analysis levels of the van Hiele theory: In the case.of 4 out of 5 , the majority of students were at the recognition level or below recognition level. The mafor finding of the investigation was that students at the beginning of grade aine are not prepared for deductive reasoning according to the van Hiele model.

The second major conclusion related to the textbooks used to teach geometry in grade eight. and the level of thinking of students at the beginning of grade nine. It, was found that the level of thinking of: students in geometry at the beginning of grade nine was independent of the textbook used for gedmetry instriction in grade eight when a criterion of 3 out of 5 was applied. However, fignificant difference was found when the 4 out of 5 criterion' was used... The level of thinking in geometry was dependent on' the text used for geometry instruction.

The third major conclusion related to homogeneous populations and levels of mental development 'in' geometry. There was a aignificant difference in the level of mental development in geometry of grade nine
students in Newfoundland and Labrador and those in the United States. The "level of cognitive development in geometry was higher for students in the United States.

$$
\cdots
$$

s

ACKNOOWLEDGEMENTS

Sincere thank is extended to all of those tho provided assistance - ${ }^{*}$ and c^{-}-operation in conducting and reporting this investigation.

Gratitude is expresped to my advisor, Dr. Frank Riggs; for the impopvements resulting from his suggestions and criticisms: Thanks are 4) expressed to the other comittee members, Dr: Lionel Pereira-Mendoza and Dr . Dale Drogt.

Appreciation is expressed to the Mathematics/Science Program Ca-ordinators in the various School Districts for their cooperation during the collection of the data for the study. As well, sincere gratitude is extended to principals and teachers in the various schools.

A special thank you is extended. to the Division of Instruction (Curriculum Section) för the cooperation and interest in this investigation. In particular, appreciation is expresged to Mrs. Geraldine Walsh for typing thia report.

A special word of thanks goes to wy wife, Maureen, and children, Donna, Dorene and Daflene, for thair support and patience which made it possible to devote the time necessary to complete the ingestigation.

CHAPTER
 page

1 Question 1 $\cdot 33$
Question 2 $3{ }^{\circ}$
Questron 3 34
IV. : THE•RESULTS OF THE INVESTIGATION. 36
Question 1 38
Question 2... 44
Question 3 47
Summary51
v. SUMMAR DISCUSSION AND IMPLICATIONS, AND RECOMMENDATIONS 52
Summary of the Investigation fo.......... 52
Sample 52
Instrumentation 53
-Concluaions.54
Discussion and Implications of the Findings 54
Recommendations for Further Research 58
BIBLIOGRAPHY 60

appendix a': behaviors at each van hiele level Identified by the CDASSG project 63
APPENDIX B: VAN-HIELE GEOMETRY TEST with . instructions and ANsWER SHEET 69

LIST OF TABLES

TABLE

PAGE

(2)

I. Breakdown of the sample by textbook used
for geometry instruction in grade eight

* , and placement in the ninth grade
$.37^{\circ}$
II. Nümbers and percentages of gtudents at each van Hiele level using a 3out of 5 criterion40
'FII. Numbers ands percentages of students at each van Hielle level using a 4 out of 5 criterion 42
IV. Crosstabulation of students fitting van
Hele levels with 3 out of 5 criterion and the. 4 out of 5 criterion 43
V. Contingency table for 3 out of 5 criterion to test fidependence 45
VI. Contingency table for 4 out of 5 criterion
to test Andependence 46
VII. Contingency table for 3 out of 5 criterion
to test homogeneity 49
VIII. Contingency table for 4 out of 5 criterfon to tes't homogeneity 50

CHAPTER I

To some minds this "urge" comes early; to others it comes late; to a few it. comes not at all. jail it comes, however, the pupil can profit but little from, the study, of demonstrative geometry: (Reeve; 1930, p. 111) "
-Reeve (1930) identified $\left\{\begin{array}{l}\text { two types of geometry: informal, which }\end{array}\right.$ includes intuitive and experimental geometries, and demonstrative geometry which, is a desire or urge to prove. \because fifty years ago, mathematics

マ educators were interested in developing a mirognosic test in demonstrative geometry" to determine who could profit by deductive thinking: (p. 14) .

When do students reach a stage in their mental development where they can reason deductively? Piaget indicated a; transition between the stage of concrete operations and the formal operational stage. He stated that the child enters the stage of adult reasoning or formal operations near the age of eleven or twelve: (Adler; ${ }^{\circ} 1971, P_{0}, 214$)

Deductive reasoning is considered to be a sophisticated behaviour: This ability is the final form of all. mathematical reasoning. The geometry component in seyfor high school, mathematics courses requires deductive thinking. Students aye expected to be 'able to write a formal proof or synthesize: U'siskin. (1982), tatar: Geometry proof is a high level task Which would seem to make cognitive demands in the areas of spatial reasoning, abstract reasoning, and problem solving:'. (p. 8ठ̀).

There is bome concensus among mathematics educstors that geometry 1s á basic skil $\overrightarrow{1}$ at the junior high achool level (Sanders and Deqnis, 1968 ; Peterson, 1979 ; Sherard, 1981 , \therefore In grades' seven and eight, the geometry strand is informal and inductive. However, thete is some uncertainty at the, ninth grade level regarding the approach to the teaching of geometric: concepts, and properties. What réasoning should be used in geometry wh th these -students - inductive or 'deductive?' it. seems that some students "in this grade go, through a transitoty period from inductive: to deductive reasonfing In the "ninth "grade, the geometry" studied shoưld geflect the student's mental development as it relates to geometric thinking. Despite their chronological age, the med development of many ninth graders may not be sufficient to reas on deduct'fely. The degree of emphasis given to the teaching of informal geonetry in earlier.grades is a critical variable In terme of student success in grade nine.

In Newfoundland ahd Labrador; the geometry component of junior: high school mathemstics has been a focal point for much discussion since September'1981. Xhere have be"en two, main issues: '(1) the approach used in ninth 'grade' geometry - inductive and'\% deductive' and (i1) the quality of
informal geometry being taught before grade nine, etpecially grades seven and eight: An overviéw of the current junior high mathematics curriculum, as 腎ll as some background, is necessary.

The junior high mathematics curriculum currently has two distinct sttuctures', one degfgned for "grades seven and eight and another for grade nipe. In grades seven and elght, there are core units at each grade level ' 1 with enrichment and introductory topica. There jare two units of geometry In the core for each grade., In grade nine, there are three courses designed for different levels of"mathematical ability': advanced, academic; and practical. In the adyanced and academic courses; geometry is 50 percent of the prescribed mathematics curriculum with the major difference being in the approach.

The advanced course was designed for students with above average ability in mathematics. The students are introduced to an apstract mathematical system early in the ninth grade; The treatment of geometry is rigorde and proof-oriented. Stúdents are expected to prove triangles congruent by the end of grade nloer The textbook; Geometry (Moise and Downs, 1975), authorized for this course was written, for tenth grade students.in the United States who study geometry, In a single year. At the end of the ninth grade, the attrition rate in a number of classes is above what inlght be considered normal.

The academic course was designed for studentre wh average ability In mathematics. . The course is studied by: the majority of students in Newfound land and Labrador and in. many all-grade achools, it is the only courte offered. The geometry .portion of this course uses the inductive ,
approach to establisi geometric concepts and properties of geometric 'figures. The new text authorized for' academic students is Math Isy Geometry, Book I (Ebos et al, 1981).

In "'Sep ember 1979, two: text series were. authorized for" grades seven and eight:. School Mathematics and Math Is.' When these texts were umplemented; schools had the option to seleçt one or the other depending on the ability of the students and the grouping policy of the school homogeneous versus heterogeneous. At that time, it was suggested by pilot teachers that the Math Is series was more suited for students with average. or above average ability in mathematics. Also, it was suggested that the School Mathematics series was more appropriate for average or below average ability in mathematics. There are some differences in the textbook serles Which have had añ impact on: their use in the classroom.

Thè School MaZhematics series, was written' in the United States in : the early 1970's. However; in 1974, these texts were Canadianized and metricated for use "in Canadian schools.. .The sevies is a continuation of" the mathematics program , pged "th . the elementary achooi with the same teaching strategies being recommended. The texts were teacheworlented with a detailed teacher's., editiono: $A s$ well; the texts aeemed more appropriate for , heterogeneous. grouping in mathematics or the all-grade schools since the texts contain graded exercises. Consequentily, in 1979, the majority of schools adopted the Schpol'Mathematics seriles.

The Mathris iseries was written. In Canada by indigenous "authors in ; the mid-1970's. The series extends from grades seven to, tivelve' and useg a 'problem soiving' approach. The texts; are student-orlented with very
little direction for the teacher. The filtst edition of these books did not contain graded exercises. It was adopted in very few schools and mainly by those which had a homogeneous grouplag policy in grades seven and eight.

It is important to note the idcation of the geometry in the two 'textbook serfes. In School Mathematic's, the geometry modules are located at the end of the textbooks. In Math Is, the geometry chapters are integrated throughout the textbooks. If mathematics is taught using, the textbook approach; there may not be enough instructional time to teach geometry' in School Mathematics.

Since September 1981, WIth the implementation of Math Is/Geometrys Book 1, the're has been much. discussion on the suitability of the geometry cantent in School Mathematics and Math Is," as a preṛequisite to grade nine academic mathematics:, Teachers have found the geometry in Math: Is to be more applicable as a pyerequisite. Many schools have moved to implement the Math Is texts in grades seven and eight. Currently, approximately 70 percent of students are using Math is in this propince. This eeries is being used in both homogeneous and heterogeneous groups as well as all-grade schools.

In sumary, the, geometry portion of the academic mathematics course at ithe grade nine level was modified to accommodate teachers' concerns that the preyious courge was too proof-oriented. This shift frbm, deductive, reasoning to the 'inductive approach at this griade level has been controverdial:' There are some teachers who feel that deductive reasoning should. remain in gyadenine deapita their students having limited success. The introduction of a new geometry course in gade nine: has raised
fundamental questions relating to the student's mental development in geometry and the quality of geometry taught in the previoús grade using different textbooks.
i. rurpose of the study

Geometry is part of the core requirements in the funior high mathematics program in Newfoundland and Labrador. Students should be provided with experiences which are appropriate to their. level of thinking. In this study answers to three questions relating to students ${ }^{\circ}$ mental development in the ninth grade are sought.

Question 1: Are students at the beginning of the ninth grade prepared for deductive reasoning?

Question 2: Are there any differences between the van Hiele levels of mental development in geometry of grade ine students who were * taught using the textbooks: Math Is/2 and School Mathematics 2?

Quéstion 3: Are there any differences between the van Hiele levels of mentsl development in / geometry of grade nine students in Newfound- 2 land and Labradot and those of atudents in the United States?

II. LIMITATIONS OF THE STUDY

This study was conducted in the province of Newfoundland and Labrador in the fall of 1983. The following, delimitations were imposed: .
$1 . \therefore$ Students sampled were enrolled in grade oine for the first time In Stptember 1983. Students repeating grade nine were eliminated from the sample.
2. Students sampled were taught geometry in.. grade eight. from School Mathematics 2 or Math Is/2. Stuidentsistaught using other textbooks were elfminated from the sample.
3. The study did not attempt to determine the amoúnt of instructional time spent on geometry in grade eight.
4. The researcker is the Mathematics Consultant with the Department of Education.

III. SIGNIFICANCE OF THE STUDY

Over the next two years; the junior high school curriculum in Newfoundland and Labrador will be reorganized. There are a number of implications for'mathemstics, especially at the grade nine level. Hence, this research eshould hav an impact on the design of the mathematics program in funior high achool and, in particular, the geometry component. The level of thinking in geometry should be an important consideration in curriculum developmant.

Freudenthal (1973) examiṇd the role $\begin{gathered}\text { fif } \\ \text { geometry in the mathematics }\end{gathered}$
curriculum. He stated that: "Geometry is not only deductivity" (p. 402). He suggested that some students. will never build deductive systems, but they must still. learn mathematics. He maintained that some are pushed to a higher. level in the learning process too eapily and aided by algorithms (p. 416).

Hoffer (1981) suggested that geometry includes more than proof. He identified five skills in geometry - visual, verbal, drawing, logical, and applied: : Further, he maintained that informal activities and Investigations in each of these skill areas would be beneficial before writing out a proof. He suggested that formal. proof be postponed until the students are prepared to work with a deductive system.
... by beginning formal proof q too early in a geonetry course, we may not account. for those students who have not yet reached a sufficiently high level of mental development to enable them to function adequately at the formal level. (Hoffer, 1981, p. 14)

In September 1983, the Department of Education, Division of Instruction (Curriculum), appointed a Junior High Mathematics Curriculum -
Committee. One, of the terms of reference is to develop a teaching guide for junior high school mathematics. How much geopmetry should be included at each grade level? What teaching approaches should be used at each grade. level?

The authorization of textbooks is also of considerable sigaifi-
cance. The most appropriate text materials should be used in developing geometric concepts and principles. The geometry component in the various texts should match the student's level of thinking. Should textbooks authorised for grade nine atudents include material on deductive reasoning?

F

In summary, the junior high mathematics is being revised and restructured to consist of grades seven to nine, a new junior high mathematics curriculum guide, is/beíng developed and new textbooks will be authorized for September 1984. Hence, the major significance of this study is using the results in curriculum development at the junior high school level.
IV. THE EXPERIMENTAL SETTING

The following is an overview of the experimental design. A more detailed account is reportéd in Chapter III.

The population from which the sample was drawn consisted of all grade nine students in Newfoundland and Labrador. Twenty schools were randomly selected giving a sample of 1004 students. However, there were 46 students repeating grade nine who were eliminated from the sample. Also, there were 29 students who studied mathematics in grade eight using an alternate textbook. Consequently, only 929 studenta were auftable for data analysis.

The students were administered a modified veirsion of the van Hiele Geometry Test in Septeaber 1983 (Appendix B). The test contained 20 multiple-choice items based on writings of the van Hieles. "The items required different levels of mental development in geometry: Recognition, Analysis, Ordering, and Deduction.

Data were collected with respect to the students' status at the time of teating. They were asked to indicate their grade last year, the
textbook uged 'to study geometry in grade eight, and their placement in grade nine mathematics courses. These data are sumarized in tables in - Chapter IV*.

V. OUTLINE OF REPORT

A'review of related research is presented in Chápter II. In Chapter III, the design of the study, the ingtrumentation, testing procedures, and methods used to analyze the data are discussed. The . results of the data analyses, interpretations and conclusions are contained In Chapter IV. In the fimal chapter, a gummary' of the study, a discusaion of the results and implications, and suggestions for further research are provided.

REVIEW่ OF RELATED RESEARCH

This chapter contains a review of related literature on the van Hiele theory of mental dëvelopment in geometry. A short historical overview of the theory is presented. The theory and its properties are described in detail. A summary of three major research projects in the United States on the theory is presented. Finally, implications of the theory are discussed.
\qquad

* I. HISTORICAL OVERVIEW OF. THE VAN. HIELE THEORY

The van Hiele theory was developed in the late 1950's by two high school teachers, Dina van Hiele-Geldof and her husband Pierre Marie van Hfele in the Netherlands. P. van Hiele (1957) formulated the'scheme and paychological principles, while D. van Hiele-Geldof (1957) facused on the didactics experiments to raise a student's thought level. (Hoffer, 1982, p. 4)

Freudenthal. (1973) described the theory in some detail, especially the work of D. van Hiele-Geldof. Hence, it was brought to the attention of mathematics educators in Western Europe. However, the theory received littie, attention in North America, ...in particular the United States, until the mid-1970's. Wirszup (1974) formally introduced the van Hiele theory to American audiences. He described breakthroughs in the taaching of geometry

In Russia and the van Hiele theory. Hoffer (1982) maintained that it was Wirszup's presentation that attracted the attention of American educators to the van Hieles! Work (p'. 11). Therefore, the theory has been the focus of research in geometry during the last decade in the. United States.

II. OVERVIEW, OF THE VAN HIEIE THEORY

The van Hiele theory deals with cognitive development in geometry. The theory provides a rationale for describing why many atudents have difficulty with geometry, as well as identifying some solutions in relationship to curriculum development and classroom instruction. Both Uaigkin (1982) and Hoffer (1982) identified three main components of the van Hiele model. The components consist of (1) existence of levels; (1i) properties of the levels; and, (1ii) phases of learning.

Existence of Levels

The vani Hieles identified five levels of mental development in geometry. Wirszup, (1976) gave a detailed description of the levels which were used in the Russian research. Also, he pointed out the various. descriptions of behaviour given by Freudenthal (1973), as well as the descriptions given by P. M. van Hiele in 1959. Hoffer (1981) deacribed the levels after visiting with P. M. van Hiele in the Netherlands. Usiskin (1982), Geddes (1982), and Burger (1982) gave descriptions of these behaviours. A number of source documents of the van Hieles' writings were examined to find quotes that described behaviours of students at a given
level. Geddes (1982) referred to them as "descriptors of van Hiele levels" (pp. $\bar{j}-10$). Burger (1982) identified certaitr reasoning phenomena which he. referred to as "level indicators" (pp. 23-25). Wirszup (1976) described - the levels in detail, while Hoffer (1981) gave the descriptions names for . each of the levels.

Level I:' Recognition (Hoffer, 1981, P. 13)
'f.
This initial level is characterized by the perception of geometric figures in their totality as entities. Figures are judged according to their appearance. The pupils do not see the parts of the figure, nor do they perceive the relationships among components of the figure and among the figures themselves. They cannot even compare'figures with common properties with one another...The children who reason at this level distinguish figures by their shape as a whole. They recognize, for example, a rectangle, a aquare, and other figures. They conceive of the rectangle, however, as completely different from the square. When a six-year-old is shown what a rhombus, a rectangle, a square, and a parallelogram:are, he is capable of reproducing these figures without error an a. "geoboard of Gattegno", even. In difficult arrangements. The child can memorize the names of these figures relatively quickly, recognizing the figures by their shapes alone, but he does not recbgnize the square as a rhombus, or the rhombus as a parallelogram. To him, these figures are still completely distinct. (Wirszup, 1976, p. 77)

Leve1 II: Analyais (Hoffer, 1981, p. 14)

The pupil who has reached the second level begins to discern the components' of the figures; he also establishes relationships among these components and relationships between individual figures. At this, level, he is therefore able to make an analysis of the figures. perceived. . This takes place in the process (and with the. help) of observations, measurements, drawings, and modelmaking. The properties of the figures are established
experimentally; they are described, but not yet formally defined. These properties which the pupil has established serve as a means of recognizing figures. At this stage, the figures' act as the bearers of their properties, and the student recognizes the figures by their properties. That a figure is diectangle means that it has four right angles, that the diagonals are equal, and that the opposite sides aredequal. However, these properties are still not connected with one another. For example, the pupil notices that in both the rectangle and the parallelogram of general type the opposite sides are equal to one another, but he does not yet conclude that a rectangle is a parallelogram. (Wirszup, 1976,.pp. 77-78)

Level III: Ordering. (Hoffer, 1981, P. 14):

Students who have reached this level of geometric developpent establish relations among the properties of a figure and among the figures themselves. At this level Ehere occurs a logical ordering of the properties of a figure and of classes of figures. The pupil is now able to discern the possibilitty of one property following from another, and the role of definition is clarified. The logical connections among figures and properties of figures are established by definitions. However, at this level the student still does not grasp the meaning of deduction as a whole. The order of logical concluaion is established with the help of the textbook or the teacher. The child himself does not yet understand how it could be possible to modify this order, nor does he see the possibility of constructing the theory proceeding from different premises. He does not yet' understand the role of axioms, and cannot yet see the logical connection of statements. At this level deductive methods appear in conjunction with experimeptation, thus permitting other properties to be obtained by reasoning, from some experimentally obtained properties. At the third level, a square is already viewed as a rectangle and as a parallelogram. (Wirzsup, 1976, p. 78)

LEVEL IV: Deduction (Hoffer, 1981, Pe 14)

At the fourth level, the students grasp the significance of deductionas a means of constructing and developing all geometric theory. The transition to this level is assisted by the pupils understanding of the role and the essence of axioms, definitióng, and theorems; of the logical structure of a proof; and of, the analyais of the -logical relationships between concepts and statements.

The students can now see the various possibllitiea for developing a theory proceeding from various premises. For example, the pupil fan now examirie the whole syistem of properties and features of the of : the 'parallelogram by using the textbook definition of a" parallelogram: A parallelogram is a quadrilateral in which the opposite sides are parallel. But he can also construct another system" based, say, on the "following definition: A parallelogram is a. quadrilaterala two opppsite .sides of which are equal and parallel. (Wirszup, 1976, p. 78)

This level of. intellectual development in geometry corresponds to the modern (Hilbertian) standard of rigor. At this level; one attains an abstraction from the concrete nature of objects and from the concrete meaning of the relations connecting these objects. A person at this level develops a theory whout making any concrete Interpretation. . Hera geometry acquires. a general character and broader applications. For example, several objects, phenomena or conditions serve as "points", and any set of "points" serves as a "figure", and so.on. (Wirazup, 1976, p. 79)

Properties of the Levela-

The van Hieles identified properties of the levels, Usiskin (1982)
and Hoffer (1982) described these propertlas and asaigned names,
Prpperty 1: (Fixed Sequence) A person cannot be at yan Hiele level n without having gone through level n-l.

Phasea of Learning

This aspect of the theory is considered by the van Hieles to be of special significance. They believed that cognitive development in geometry Is difectly related to quality and quantity of instruction. Usiskin (1982) stated: - Van Hiele (1959) is more optimistic than Piaget, believing that cognitive develdpment in geometry can be acceierated by instruction. ${ }^{\text {w }}$ (p. 5) Also, Geddes (1982) observed: " "Progress from one level to the next, assért the van Hieles, is more dependent upon instruction than on age or biologicad maturation, and types of instructional experiences can affect progress (or lack of 1t)." (p, 6)

The "van Híele model is" baśed. on instriuctional
time rather than $5=$ biological growth of the child: The writings of the van Hieles indicate a considerable amount of instructional time is necessary to move from one level to the next. Usiskin (1982) reported the resulss of Dins van

Hele-Geldof's didactics experiments. He stated:

> Dina van Hiele (1957) reports having been able to lead students from level 1 (Recognition) to 3 (Ordering) in 70 lessons, 20 lessons to go from level 1 (Recognition) to level 2. (Analysis) and 50 more leasons to go from level 2 (Analysis) to level 3 (Ordering). (Usiskin, 1982, p. 39)

Hoffer (1982) observed that the van Hieles proposed "a prestription for organizing ingtruction". (p : 2). He described in some detail the process of movement from one level to the next (pp, 5-6),

TPhase 1. Inquiry. The teacher engages the students in conversations about the objects of the 'study to be pursueds. The teacher learns how the students. interpret the "words and gives the students some understanding of what topic is to be studier. . Questions; are raised and observations made that use the vocabulary and objects of t : the topic and set the stage for further study.

Phase-2! Directed orientation. The teacher carefully sequerices activities for student exphoration by which s tudents begin to realize what direction the study is taking, and they become familar with the charafteristic structures. Many of the activities in Cthis phase are one-step tasks which elicit specific responses.

Phase 3. Expliciting. The students wh minimal prompting by the teacher and building on previous experiences refine their use of the vocabulary and express their opinions about the faherent structures: of the study. During 'the phase; the students begin to form the system of relations of the study.

Phase 4. Free Orientation. The students noy encounter multi-step tasks or different ways. They gain experience *n finding their own way or resolving the tasks. By orlenting themselves, many of "the relations between the objects of the study become explicite.to the atudents.,

Phase 5. Integration: The stridents now review the methods at their disposal and form an overview. the objects and relations are unified dand internalized : into a new domain of thought: The teacher aids this process 'by providing global surveys of what "the students already know being careful not to present' nev or discordant ideas.

The fan Hieles maintained that the student must go fhrough these phases of learning before attaining the next level of "thaught. Hoffer (1982) stated: "At the'close af the fifth phase the new' level of thought is attained ${ }^{4}$ (p. 6).

Other Aspects pf the van Hiele Model

Abstract

Usiskin (1982) and Hoffer (1982), Adeptified other characteristics of the van Hiele theory. Usiakin (1982) "refercred to elegance, comprehensiveness; and:wide applicabilfty (p.i6).. Hoffer (1982) proposed that the van Hiele theoty could be applied fo toptcs other than. geometry. For example, he organized logic, gëometric transformationg, and real mumbers into levels of thought (pp. 30-32). He also stated: "In the Netherlands the levels have been. used to structơre courses In chemistry and ecoinomics". (p. 30). Further, he maintalned 'that the model provides: us with a "blueprint", to interpret each topic that we wank students to learn (p: 36). Mayberry (1983) suggested that the levels were oherarchical and discrete with respect to"different, toplces (p. 68).

'III: research on the van hlele theory

Coxford (1978) ptovided direction for three, research projects to better understand the van Hiele model in geometry and cognitive structures, Since 1979, there have been 'three major studies conducted in the United States'. . Hoffer . (1982) milintained, that all three reacarch projecté
contributed to the needs identified by Coxford. Also, he identified each study as they relate to Coxford's suggestions. (pp. 18-19)
(1) The gathering of data to compare cognitive structures and developinental stages - The 'Chicago Project
(11) An analysis of the effects of instruction on cognitive structures:- The Brqoklyn project
(iii) Longitudinal case studies - The Oregon Profect

The Chicago Project: Cognitive Development and
Ach1evement in Secondary School Geometry

The Cognitive Development and Achievement in Secondary School Geometry (CDASSG) project was the most comprehensive of the three projects. il It began in 1979 as a three-year study conducted by Usiskin and funded by the National Institute of Education (NIE). P. It was completed in June 19 at the University of Chicago. "

The fundamental purpose of this project is to test the ability of the van Hiele theory to describe and predict the performance of students in secondary school geometry. (Usiskin, 1982; p. 8)

The CDASSG project was a classical experiment involving a sample of 2699 students in 99 classes in 13 schools in 5 states. All of the otudents were enrofis in a one-year geometty course in the tenth grade.

The project used four. tests which wëre administered in September 1980 and May 1981. One test whidh is of special interest is the van Hiele

Geometry. Test constructed by the staff of the CDASSG project. This is a multiple-choice test dealing directly with the van Hiele levels. This test was designed from quotes of the van Hieles themselves regarding student behaviours. It was used to determine the $s t u d e n t ' s$ van Hiele level at the beginning of geometry in the tenth grade. The test was given to students in the fall and again in the spring in order to determine changes in van Hele levels after a year's study of geometry.

Usiskin (1982), the CDASSG project's principal investigator, arrived at a number of important conclusions regarding the van Hiele theory and geometry. The most significant ones are identified below:-

The theory can be, used to classify students into van Hiele levels of mental development in geometry. Usiskin (1982) concluded: "Over two-thirds and perhaps as many as ufne-tenths of students respond to test items in ways which make it easy to assign them a van Hiele level." Jp. 80)

The CDASSG project revealed a great variability in the amount of change in van Hiele levels from fall to spring after eight months instruction in geometry. Usiskin (1982) stated: "... About a third of the student's stay at the same level or go down (1), about a third go up one level, and about a third go up two or more levels". 〈p. 81 λ,

Usiskin (1982) found evidence to support the claims of Wirszup (1976) and Hoffer (1981). They claimed that the majority of high school studenta who have difficulty in high school geometry are at the first level ** of development in geometry". They maintained that the course that the students were studying demanded the fourth level of thought. They further
stated that their prerequisite experiences in elementary and junior high school may be insufficient background to enable' them to write proofs. Usiskin (1982) stated:

Taken together, Conclusions 7 and 9 support the claims of Izaak Wirszup and Alan Hoffer that many if not most students in the United States enter geometry at van Hiele levels that are too low to insure success and that the geometry course, as presently taught, does not improve their understanding (as measured by van Hiele levels) enough to get that success." (Usiskin, 1982, p. 84)

Usiskin (1982) indicated that many students are not learning even the simplest geometry notions in junior high school. Some students entering the high school geometry course could not identify aimple figures such as triangles, squares, rectangles, and parallelograms. Furthermore, he" concluded that many students leave high schooi wh very little knowledge of geometry.

The CDASSG project provided guidance for future research. Uaiskin (1982) confirmed that the use of the van Hiele theory can explain why many studenta have trouble learaing and performing in the geometry classroom. Furthermore, he indicated that half of the atudents tho enroll in deductive geometry experience very little or no success with proof. (p. 89)

This study confirms the need for systematic geonetry instruction before high school if we desire greater geometry knowledge and proof-writing success among our students. (Usiskin, 1982, p. 89)

The Brooklyn Project: Geometric Thinking Among
Adolescents in Inner City Schools

This project began in November 1979 and was completed in January 1982. It was conducted by Geddes and sponsored by the National Science Foundation (NSF). The main part of the study involved a ciinical investigation on a one-to-one basis with 40 inner city adoles'cents for eight 45minute sessions using four instructional modules developed on the van Hele model. The modules were patterned after the experiments in Dina van Hiele's thesis.

The general purpose of this phase is to determine whether the van Hiele model provides a reasonable structure for describing and understanding geometry learning as it takes place in the context of formal schooling. (Geddes, 1982, p. 2)

The instructional modules were intended to facilitate movement through the van Hiele levels. Hoffer (1982) stated: "The instructional modules that were developed by the Brooklyn project did cantribute to student movement through the lower levels on certain topics".. (p. 26)

The Brooklyn profject evaluated several school textbook series for their geometric content and their relationship to the van Hiele model. This evaluation provided some insight into the quality of geometry which students are learning in grades 1 to 8. Geddes (1982) found some "gaps". existed in van Hiele terms. She found level, one recognition axperiences to be sufficdent, but a lack of extensive level two - analysis experiences. (p. 22)

There are also frequant gaps in level in individual text pages, where the exposition is at a higher level than the exercises required of the student. Tests are usually at the lowest level. (Geddeg̈, 1982, p. 23)

The Oregon Project: Assessing Children's Development in Geometry

This project began in September 1979 and concluded in February 1982. 'It was conducted by Burger and also sposnored by the National Science Foundation (NSF). The study used clinical interviews involving students in grades 1 to 12 in three states. The tasks and scripts were administered to over 70 students in two $45-m i n d i t e ~ s e s s i o n s . ~$

The study described here is an investigation of children's reasoning processes in geometry and of the usefulness of the van Hiele levels in describing their reasoning. (Burger, 1982, p. 1)

The project staff developed two sequences of tasks and companion scripts. One set of tasks related to triangles and the other to quadrilaterals. The, triangle activities were: drawing triangles, identifying and defining trianglea, and sorting triangles. The quadrilateral activities included: drawing quadrilaterals, identifying and defining quadrilaterals, sorting quadrilaterals, identification of a mystery figure" from its properties (What's my 'shape?), and establishing the logical equivalence of severg1 geometrical definitions. (Burger, 1982, p. 1 and C1)

Burger (i982) identified "level indicators" from the interviewso In other words, certain reasoning phenomena were observed that could be interpreted as indicators of a particular van Hiele level of reasoning (p.23):

Hoffer (1982) described the regon project in some detail since he was a staff member: He stated: "The van Hiele model provides us with a peephole 'through which we can use our mathematical eye to view children's

Abstract

7 interaction with mathematics" (p. 19). As well, he made some observations relating to all three projects. He diacussed the language used by the students in geometry, in particular, the middle grades through funior high school. For example; many students have difficulty identifying and naming triangles. He examined the students' perceptions of geometric figures in relation to orientation and textbook position. It seems that the textbook position plays an important role on the students' perceptions of triangles and rectangles. He observed the students' ability to reason in geometry. He stated: "Students are for the most part unable to contrast definitions, postulatès, and theorems" (p. 24). He concluded that there are many Instances of disharmony in the teaching and learning of mathematics. There are levels of communication that differ between children, teachers, and. textbooks.

IV. IMPLICATIONS OF THE VAN HIELE 'THEORY

The van Hiele model provides direction for curriculum development and classroom instruction in geometry at all grade levels from Kindergarten to senior high school. It is a comprehenaive theory wich can be applied to the whole of teaching and learning geometry.

Curriculum Development
I

The var Hiele levels provide a plan for organization of geometric content at the various grade levels. The fixed sequence property suggests
that students must go through the sequence of levels in a specific way. Therefore, it appears necessary for students to recognize geometric figures; analyze the properties of geometric figures; and, logically order geometric figures and their relationships before beginning deductions. Consequently, activities which require the first three. levels should be included in the mathematics curriculum before senior high school. For example, primary mathematics might contain recognition activities using concrete materials; elementary mathematics might contain informal geometric activities which require analysis of figures; and, ordering activities might be the main focus of junior high. school geometry. As a result, students might be better prepared for proof-writing or deductive reasoning in senior high school mathematics.

It seems that each topic must be examined separately in relation to the van Hiele levels. A student may be at one level in studying triangles and a different level for quadrilaterals. Therefore, it is essential to examine each topic in geometry when planning the curriculum.

The adjacency and distinction properties provide some criteria for textbook selection for different grade levels. The adjacency property indicates the activities should be organized in a contiguous manner.. Activities which are implicit at one level become explicit at the next level. The distinction property provides an indication of the level of difficulty of the material in relationship to van Hiele levels. This type of activity would imply that the individual should be familiar with the van存
Hele theory in order to select appropriate geometric materials.

Classroom Instruction

The separation property of the van Hiele theory has implications for classroom instruction in geometry, Levels of comunication in the geometry classroom are an'important consideration. If the atudent is operating at one level and the teacher at a higher level, there will be a lack of understanding. The student cannot understand the language of the teacher.

The attafnment property provides the teacher with an approach to ingtruction in' geometry. The phases of learning indicate how the teacher .should operate to lead students from one level to the next. These phases have implications for instructional time in geometry at all grade levels.

SUMMARY

The van Hiele theory was developed in the late 1950's by two high school teachers in the Netherlands. The theory was applied to curriculum changes in geometry in both the Netherlands and the Soviet Union.

The theory relates cognitive development and thinking in geometry. There are three main components of the theory: Existence of levels, priperties of the levels, and phases of learning. The theory is based on the quality and quantity of instruction in geometry.

The theory has the potential to explain why many students have trouble with geometry and, in particular, deductive reasoning. Students must receive instruction in three prior levels of thinking before deduction 1
*

is understood. A considerable amount of instructional time is required to move from one level to the next level in the sequence.

The van Hiele theory has received considerable attention in the United States since Izaak Wirszup introduced the theory to mathematics educators in 1974. Burger, (1982), Geddes (1982), Hoffer (1982), and Usiskin (1982) ihave conducted extensive reisearch in the United States on this theory ${ }^{\prime}$ ir in 1979, after visiting P. M. van Hiele, Hoffer wrote a secondary school geometry text, Geometry, A Model of the Universe, which Incorporated the van Hiele theory.

The van Hiele model can be used to examine cognitive development in geometry of students in Newfoundland and Labrador. To date, research on the theory in North America has been limited to the United States with the exception of a study by Taaffe (1983) in this province. The theory has wide applicability and can be used to examine levels of thinking in geometry of ainth grade students. The results of the study, can be used to determine appropriate geometric experiences for* students at this grade level.

School Mathematics 2 (Fleenor et al, 1974). There are two core units of informal geometry prescribed. There is also a geometry strand from Kindergarten to grade eight.

SAMPLING 'PROCEDU̇RES

A. sample of 1004 studentg was randomly selected from 20 schools in 20 school districts. . However, only students who studied grade eight the previous year and studyed geometry from Math Is/2 or School Mathematics 2. were used for data analysis. 'Consequently, there were 46 students repeating grade nine wich were eliminated from the. sample. There were 29 students who studied mathematicg in grade eight, using..an alternate textbook; and these students were also eliminated from the data analysis.

The sample contained students from both "rural and urban communities In Newfoundland and Labrador; As weli; it contained. studqnts from different administrative organizationis: 10 central high schoolsi(i)-12); 3 junior high achools (7-9); and 7 all-grade schools (K-12).

The sample was stratified into two categories, text uged in grade eight for geometry and placement, in grade nine mathematica. The students were required to check three questions at the top of the answer sheet. They are as follows:

1. Which grade did you study last year?
(a) Grade 8
\ldots (b) Grade 9
2. Which text did you have for geometry last gear?
(a) Math $I{8} / 2$.
\qquad (b) School Mathematics 2
\qquad (c) Math Is/Geometry, Book 1
\qquad (d) Geometry - Moire and Downs

(e) Mathematics for Daily Use
\qquad (f) Other texts
3. 'Which mathematics class are you enrolled this year in -grade' 9 ?

(a) Advanced
(b) Academic
(c) Practical

IL. ins trumentation
*.
In this section the major instrument used to answer the questions stated in. Chapter I is described.

THE VAN HIELIE GEOMETRY TEST

The original van Hiele Geometry Test developed by CDASSG staff consisted of 25 multiple-choice items whit 5 items at each legal Reconaition, Analysis, Ordering, Deduction, and Rigor. The questions for each level were based on quotes of the van Hieles themselves regarding student behaviours to be expected at each level. A total of nine works were examined by the CDASSG staff. A list of the behaviours indicative of each van Hiele level as identified in the CDASSG project are presented in Appendix A. (Usiskin, 1982, pp. ${ }^{\circ}+12$)

The var Hiele Geometry Test was designed to be administered in a 35-minute time limit. It was piloted and used extensively in the CDASSG project (1980-82). It was constructed for use with seventh to twelfth grade students, but 56 pericent of the sample in the CDASSG project was in the tenth grade. Ages of the students ranged from 11 to 20 with 96 percent of the students between' the ages of 14 and 17% (Üsiskin, 1982, p. 16)

The major, instrumbt used in the current study was a modified veraion of the "van Hiele, Geometry'Test developed by thé CDASSG project in 1980. The modified van Hiele Geometry Test consisted of the first 20 items on the original test; that is, the items dealing with the first four levels: Recognition, Analysis, Ordering, and Deduction : The last five items on the original test, were excluded since the existence and/or "testability of level 5 (R1gor)" had been questioned. (Usiskin, 1982, p. 79) A copy of the modified van Hiele Geometry Test is contained in Appendix B with appropriate instructions and answer sheet.

III. PILOT STUDY

A pilot study of the firat 20 items of the van Hiele Geometry Test, involving, 40 students in gradia eight, was ćonducted in March 1983. Tine purposes of this pilot study were to examine the following:
i. the necesaity of including fitems $16-20$ on Deduction.
2. the length of the test. It was-important for administration of the test, to determine if 30 miautes was a suitable time period for completion of the tes't.

On, the basis of'this pilot atudy; it was decided that the items at the deduction level would be included and the time limit for the test would be 30 mínutes.

iV.. |est administration

.The 'van Hiele Geometry.Test and apswer sheets were sent', to Mathematics/Science Cóordinators" and. Assistant Superintendents tesponsible for Matheratics on August 31, 1983. The following instructions were given 'to the school district persopnel :'

1. They were asked to adminlster the fest before the end" of September 1983.
2. The test was to be administered to all grade 9 students (Advanced, Academic, ard Practical) in the schools identified in the random sample.
3. The students were given a gehool number to place at the top of the answer sheet.

4: The studentic were to check three questions at the top of the gnswer sheet regarding'thetr grade. level last year, textbook used for, geometry:last year, and jplacement in mathematics this year before beginning thie test.
i: The time allowed for the tést was to be exactly, 30 minutes.
6. The answert sheets, were to be returned immediately after teating wás completed.
7. .The tests could be retained at the District office for future use in other echools.

This study was concerned wh three questions with respect to students' level of mental development in geometry at the beginning of the ninth grade. These questions, along with the corresponding statistical analysis used to test the hypotheses, or describe the data collected, are given below.

Question 1

Are students at the beginning of the ninth grade prepared for deductive reasoning?

This question was answered by administering a modified version of the van Hielf Geometry Test to 1 '004 grade nine students in early September. The students were classified into a van Hiele level using two criteria: 3 out of 5 (60%) items and 4 out of 5 (80\%) items correct at each of the levels.

Usiskin (1982) discussed the probability of Type I and Type II errors and the chofce of criterion. He maintained that the 4 of 5 criterión avoids abóut $\mathbf{- 5}$ percent of cases in which Type I error may be expected to manifest itself. As well, he stated that the 3 of 5 criterion avoids about 7 percent of cases in wich Type II error may be expected to appear (pp. 23-24).

Tables were constructed to show the numbers and percentages of students at various van Hiele levels using each of the 3 out of 5 and 4 out
of 5. criterion. Also, a crobs tabulation matrix was constructed to determine the number of students that met both criteria.

Queation 2

Are there any differences betwean the van Hiele levels of mental develop-2 ment in geometry of grade nine students who were taught using the textbooks: Math Is/2 and School Mathematics $2 ?$

Null Hypothesis: The van Hiele levels of thinking in geometry of grade nine students and the text used for geometry instruction In grade eight are independent.

In order to answer the second question, the null hypothesis was tested using the chi-square test of independence of van Hiele level and text used for geometry instruction in grade eight. Tables were constructed both 3 out of 5 and 4 out of 5 criteria and the 0.05 level of significance was applied.

Question 3

Are there any differences between the van Hiele levels of mental development in geometry of grade aine atudents in Newfoundland and 'Labrador and those of students in the United States?

Null Hypothesis: There is no significant difference in the van Hiele levels of mental development in geonetry of grade aine students in. Newfoundland and Labredor and those of studente in the United'States.
To answer the third question, the null hypothesis was tested using
the chi-square test for homogeneity of van Hiele levels of students in
Newfound and and Labrador and students in the United States. The samples
were considered separate and distinct and randomly selected from
homogeneous populations.
of 5 criteria using the van Hiele levels of students in Newfoundland and
Labrador and those of students in the United States. The fall results of
the CDASSG project were used for the latter group of students. The level
of significance selected was 0.05 in both instances. $*$
${ }^{\circ}$

CHAPTER IV

THE RESULTS OF THE INVESTIGATION

In this chapter the results of the testing are presented. An analysis of the data is utilized to answer the questions which provided the impetus for this study. The van Hiele levels of students in geometry at the beginning of grade nine are examined. The effects of text materials used for geometry instruction in grade eight is analyzed in relation to the students' van Hiele levels. Finally, the van Hiele levels of students in Newfoundland and Labrador are compared with those of students in the United States.

The population in this study consisted of all grade nine students In the province of Newfoundland and Labrador for the school year, 1983-84: Data were collected relative to placement of atudents in grade nine and the textbook used for geometry instruction in grade eight. A breakdown of the sample with respect to textbooks used to study geometry in grade eight and placement in mathematics classes in grade nine is given in Table L.

The mathematics program in grade aine is designed for distinct levels of difficulty: advanced, academic, and practical. The advanced students consisted of 13.8 percent of the sample and studied geometry using the authorized text: Geometry (Moise and Downs, 1975). The academic 8 tudents comprised 74.7 percent of the sample and atudied geometry uging the authorized text: Math $\mathrm{Is}_{8} /$ Geometry, Book 1 (Ebos et al, 1981). Finally, the practical students consiated of 11.5 percent of the sample and

$$
\begin{aligned}
& \text { • } \\
& \text { T ! } \\
& \text { TABLE I }
\end{aligned}
$$

BREAKDOWN OF SAMPLE BY TEXTBOOK USED FOR GROMETRY INSTRUCTION In GRade Eight and placement In the ninth grade.

studied some informal geometry from a practical viewpoint using the authorized text: Mathematics for Daily Use (Hayden et al, 1981).

The breakdown in the percentage of students who used Math Is/2 and School Mathematics 2 in grade eight is'also presented in Table I. Seventy-one and a half percent of the.students studied Math Is/2 and 28.5 percent of the students studied geometry from School Mathematics 2. Fudents enrolled in advanced mathematics in grade nine did not study School Mathematics 2 in gräde eight.

In summary, the majority of grade aine students (88.5 percent) are enrolled in advanced or academic mathematics. In these courses, 50 percent of the instructional time is allocated to the teaching of geometry.

Question 1

Are students at the beginning of the ninth ${ }^{\text {t' }}$ grade prepared for deductive reasoning?

The answer to this question was obtained by administering a modified version of the van Hiele Geometry Test to 1004 grade nine students in early September. However, 75 students were eliminated from the sample because they were repeaters (46 students) or they studied geometry using an alternate textbook in grade eight (29.students). Therefore, the test rests of 929 students were suftable for data analysis.

- The students were classified into a van Hiele jevel of thinking in geometry: Recognition, Analysis, Ordering, or Deduction. A parallel
analysis of data using two criteria: 3 out of 5 (60%) items and 4 out of 5 (80\%) items. correct was applied at each of the levels. These criteria are referred to as the weaker (3 out of 5) and the stricter (4 out of 5) criterion respectively. (Usiskin, 1982, p. 23)

In order to agsign a van Hiele level to a student, it wes necessary to reach the criterion at all levels from 1 to n and at no, other levels greater than n so as to be classified at leveín. Students who did not meet the criterion at the recognition level (level l) were considered as being below, recognition (level 0).

There were a number of students classified as "nofit", meaning that each of thése students satisfied the indicated criterion at some level n but not at all levels below n. The theory requires that the students must move through the levels in a fixed sequence: A person cannot be at level n without having gone through level $\mathrm{n}-1$.

The numbers and percentages of students at each of the van Hiele levels and the textbook used in grade eight for geometry instruction are presented in Table II. Also, the number of students who were below the recognition level, and those who did not fit the theory are included. 'The criterion used in Table II was out of 3 (60%) items correct at each level. It was possible to classify 88.7 percent of the students into a van Hiele level or below recognition level: Only 9 students or less than 2 percent are at the deduction level at the beginning of grade nine. However, using this weaker criterion, approximately 7 percent were at the - ordering level or deduction levels at the beginning of the school year in Newfound land and Labrador.

TABLE II
numbers and percentages of students at rach van hielle level using a 3 out of 5 CRITERION

The numbers and percentages of students at each of the van Hiele levels and the textbook used in grade eight for geometry instruction are reported in Table III. The criterion used in this instance was 4 out of 5 (80\%) items correct at each level. It was possible to classify 95 percent of the students into a van Hiele level or below recognition using this stricter criterion. At the beginning of grade nine there were no students at the deduction level; an indication that they were not ready for deductive reasoning. In fact, there weze only 9 students, or less than 1 percent, at the ordering level at the beginning of the school year.

A crosstabulation matrix of student van Hele levels under the 3 out of 5 and the 4 out of 5 criterion is given in Table IV. Those students whose van Hiele levels are the same under the two criteria are identified on the main diagonal of the matrix. Oaly 43.9 percent of students (408 of 929) were assigned the same van Hiele level under the two criteria. There were no students at the deduction level that met both criteria on the modified van Hiele Geometry Test.

On the basis of the above results, students at the beginaing of grade, nine in Newfoundand and Labrador are not ready for deductive reasoning in geometriy. The majority are at the recognition level and/or analysis level if a 3 out of 5 criterion is applied. Using a 4 out of 5 criterion, the imajority of students are at the recognition level and/or below recognition. Approximately 27 percent can meet both criteria at the recognition level. A disctission of these resulbs found in Chapter V.

TABLE III

numbers and percentages of students at each van hiele level using A 4 OUT OF 5 CRITERION


```
                1
                                    IABLE IV
CROSSTABULATION OF STUDENTS FITTING YAN HIBLE LEVELS WITH
3 OUT OR 5 CRITERION AND THE 4 OUT OF 5 CRITERION
```

	Below Recognition	Recognition:	Analysis	Ordering 0	Deduction	No Fit	Totals
Belou Recognition	66 (7.1)	$0 \quad 1$	0 O	0	0	0	66
5 Recognition	- 289 -	255 (27.4)	0	0	0	0	444
Analyais	38	- 216	81. (8.7)	, 0	0 ,	17	252
Oxdering	3	18	20	6 (0.6)	0	6	53
Deduction	O	1	3	31	0 (0.0)		9
Eo Fit ${ }^{\text {a }}$	43	34	7	0	0	21 (2.3)	105
Totals	339	. 424°	111	9	0	46	929

Question 2.

Are there any differences between the van Hiele levels of mental development in. geometry, of grade nine students who were taught using the textbooks: Math Ie/2 and School Mathemelics 2?

Null Hypothesis: The van Hiele levelis of thinking in geometry of grate nine students and the text used for geometry instruction in grade eight are independent.

The null hypothesis was tested using the chi-square test of independence of van Hiele levels and textbook used for geometry instruction -in grade eight. Tests were conducted for both 3 out of 5 and 4 out of 5 criteria using a two-way contingency table. The level of statistical significance selected for this test was the 0.05 level. The mumer of degrees of freedom. was 5. Therefore, a chi-square value equal to or greater than 11.07 was necessary for rejection of the null hypothesis. However, it must be noted that the expected frequiency should be equal to or greater than 5 in at least 80 percent of the cells and the number of degrees of freedom must be greater than one. (Runyon and Haber, 1971, p." 253)

Table V is a contingency table for the 3 out of 5 criterion to test 1ndependence. The expected frequency was greater than 5 in over 90 percent of the cells. Therefore, the chi-square value was found to be 8.84 which resulted in acceptance of the null hypothesis.

Table VI is a contingency table for the 4 out of 5 criterion to test independence. Since the frequencies in the cells for the deduction level wre foth zero, this row was deleced. The number of degrees of

TABLE V

1

- CONTINGENCY TABLE YOR'3 OUT OF 5 CRITERION

GO TEST INDEPERİENCE

0

TABLE VI

CONTINGENCY TABLE FOR 4 OUT OF 5 CRITERION
*TO TEST INDEPENDENCE

freedom was reduced to 4. Therefore, a chi-square value equal to or greater than 9.49 was required for rejection of the null hypothesis. The expected frequency was greater than 5 in 90 percent of the cells.

The chi-square value, was found to be 9.65 which resulted in rejection of the null hypothesis: The van Hiele levels of thinking in geometry of grade nine students and the text used for geometry instruction In grade eight are independent.

In summary, the level of thinking of students waks independent of the textbook used. for geometry instructior in grade eight when classified into a van Hiele level using the 3 out of 5 criterion. However, the level of thinking of stpdents was dependent on' the textbook used for geometry instruction in grade eight when the 4 out of 5 criterion was applied. The percentages of students at recognition, analysis, and ordering levels were higher for those who were taught geometry in grade eight using Math Is/2. As well, the percentage of students below the recognition level was smaller. Some possible reasons for this phenomenon are discussed in Chapter V.

Question 3

Are there any differences between the van Hiele levels of mental development in geometry of grade nine students in Newfoundland and Labrador and thdse of students in the United States?

Null Hypothesis: There is no significant difference in the van Hiele levels of mental development in geometry of grade nine students in Newfoundland and Labrador and those of students inothe United States.

The aull hypothesis was tested using the chi-square test for homogeneity of van Hiele levels and distinct samples of students in Newfoundland and Labrador and students in the United States. Contingency tables were constructed for both 3 out of 5 and 4 out of 5 criteria using the fall van Hiele levels of students in the CDASSG project in the United States.

The level of significance selected was 0.05^{\hbar} in both instances. The number of degrees of freedom was 4. Therefores the critical chi-square value was 11.07 or greater for rejection of the null, hypothesis.:

Table VII is a contingency table for the 3 out of 5 criterion to test homogeneity. The chi-square value was found to be 133.19 which resulted in rejection of the null hypothesis.

Table VIII is a contingency table for the 4 out of 5 criterion to test homogeneity. The chi-square value was found to be 40.88 which also resulted in rejection of the null hypothesis.

In sumary, there was significant difference-in the van Hiele levels of mental development in geometry of grade nine atudents in Newfoundlapd and Labrador and thosf of students in the United States. The percentages of students at the ordering and deduction levels were higher for students in the United States as presented in the CDASSG project using the 3 out of 5 criterion. However, the percentages of, students at the analysis and ordering levels were higher for students in the United States when the 4 out of 5 criterion was applied. Some possible reasons for this Inference are discussed in Chapter 5.

TABLE VII

TABLE VIII

CONTINGENCY TABLR FOR 4 OUT OF 5 CRITERION TO TEST HOMOGENEITY

The data collected in the study relative to the three major questions given in Chapter I have been presented in this chapter.

It was found that the students at the beginning of grade nine were not at the van Hiele deduction level of thinking in geometry. The student's level of thinking in geometry was found to be independent of the text used for geometry instruction in grade eight when the students were clasbified frito a van Hiele level using 3 out of 5 criterion. However, when a 4 out of 5 criterion was used to classify students, the van Hiele level was dependent on the textbook used for grade eight geometry instruction. In particular, students who studied Math Is/2 had slightly higher van Hiele levels. Finally, the van Hiele levels of students. in Newfoundland and Labrador at the beginning of grade nine were significantly different than those of students in the United States as determined by the CDASSG project in 1982. The van Hiele levels of students at the beginning of grade ten in the Uniged States were higher than those of students at the beginning of grade nine in Newfoundland and, Labradpi*. .

A discussion of the findings as vell as implications and recommendations is presented in the final chapter.

SUMMARY, DISCUSSION AND IMPLICATIONS, AND RECOMMENDATIONS

I. SUMMARY OF INVESTIGATION

In this study an attempt was made to determine the van Hiele level of thinking in geometry at the beginning of ninth grade. The relationship between the text materials used to study geometry in grade eight and the student's level of thinking in geometry at the beginning of the ninth grade Was investigated. Also, the levels of mental development. in geometry of students in Newfoundland and Labrador were compared with those of students in the United States.

In order to gather the necessary data a sample of grade nine students was randomly selected and a modified version of the van Hiele Geometry Test was administered in September 1983.
$\frac{\text { SAMPLE }}{0}$
The sample of 1004 grade nine students was randomly drawn from the grade nine population in Newfoundland and Labrador. "However, only students who studied geometry in grade eight using the prescribed texts: Math Is /2 or School Mathematics 2 were used for -data analysis. Also, those students repeating grade nine were eliminated from the study. Consequently, only 929 students ware suitable for the study.

Abstract

It was assumed that these students were representative of grade nine mathematics students in this province. They were enrolled in three different mathematics programs in grade nine depending on their ability to do mathematics. The students came from 20 different schools with three different administrative arrangementa: all-grade, junior high, and central high school.

INSTRUMENTATION

A modified version of the van Hiele Geometry Test was used in the present study. (Appendix B) This test was originally constructed by the staff of the CDASSG project based on the writings of the van Hieles'. (Appendix A) This test was used with 2700 students in the Uaited States. The original test contained 25 multiple-choice items on different levels of mental development in geometry: Recognition, Analysis, Ordering, Deduction, and Rigor. Only the first four levels were used with grade nine students in Newfoundland and Labrador as a result of piloting.

The van Hiele Geometry Test was written by students in the sample in September before geometry was studied.in grade nine. Bach student was classified into a van Hiele level of thinking in geometry using two criteria: 3 out of 5 and 4 out of 5 items correct at each level. Contingency tables were uaed to determine if the level of chinking in geometry is independent of the textbook used for geomet; infmerion in grade eight. Also, contingency tables were constructed to determine if the van Hiele levels of thinking in geometry of students in Newfoundland and Labrador and those of students in the United States are significantly different.

There were three major conclusions reached based on the van Hiele testing at the beginning of grade nine.

1. Students at the beginning of grade nine were not at the van Hiele deduction level of thinking in geometry.
2. The level of thinking of students was independent of the textbook used for geometry instruction in grade eight when classified into a van Hiele level using the 3 out of 5 criterion. However, the level of thinking of students was dependent on the textbook used for geometry instruction in grade eight when the 4 out of 5 criterion was applied.
3. There was a significant difference in the van Hiele levels of students in Newfoundland and Labrador and those of students in the United States. Students in this province were at lower van Hiele levels at the beginning of grade nine than those of students in the United States at the beginning of grade ten.

II. DISCUSSION AND IMPLICATION. OF THE FINDINGS

(The results of this study were presented in detail in the previous chapter as they relate to the three major questions. In this chapter, the findings are discussed.

The first major conclusion indicated that grade aine students are not ready for a study of deductive reasoning at the beginning of the school year. The major of students were at the recognition (47.8 percent) and analysis (27.1 parcent) levels of the van Hiele theory when a 3 out of 5
criterion was used to classify the students into a level. In order to reach the deduction level, the students would have to move through the ordering level. However, only a small number of students (5.7 percent) were at the ordering level at the beginning of the school year. These students with the aid of instruction may reach the deduction level before the end of grade nine.

The results are very discouraging when a 4 out of 5 critaxion was used to classify the students. In this instance, the majority of istudents were at the recognition ($45: 6$ percent) or below recognition (36.5 percent) levels. Even more disturbing was the large number of students below the recognition level in geometry in this province. It seems that these students were entering grade nine wh very little knowledge of geometry. They have difficulty with recognition of shapes which is an gbjective of kindergarten.

From a crosstabulation of results, it was determined that the majority of students were at the recognition level at the beginning of the ninth grade. One apopsible reason for this could be a lack of instructional time allocated to the teaching of geometry from kindergarten to grade eight. Roberts (1979) conducted a study of time spent on teaching geometry 'In the elementary school in. Newfoundiand and Labrador'. He reported that. the mean time spent on geometry to be 2.53 'weeks per year, thus making this reason plausible (p. 63). This study did, not investigate the amount of instructionai time spent on geometry in previous grades. This is an issue which must be given some attention in future by mathematics educators in Newfoundland and Labrador.

The results of this study have implications for geometry instruction in junior high school. The instruction should fit the cognitive level of the student. It would appear that for the majority of students instruction at the analysis and ordering levels would be most appropriate. Therefore, deductive reasoning should be a vertical enrichment topic for some students toward the end of grade nine rather than a major component of a prescribed course such as advanced mathematics.

The second major conclusion related to the, kinds of geometry experiences encountered prior to grade nine. As a result of parallel analysis of results using two criteria, the conclusion is dichotomous. Hence, it is necessary to discuss both aspects of this conclusion.

The student's level of thinking in geometry was found to be independent of the textbook using a criterion of 3 out of 5 items correct at each van Hiele level. Although the percentage of students at the analysis level (28.6) was greater for Math Is/2, it musit be remembered that in some instances these students are average or above average in mathematice ability. The data in Table I indicated that all students enrolled in advanced mathematics in grade nine studied Math Is/2 in grade eight.

When the guessing factor was reduced using a 4 out of 5 criterion, there was a marginal significant difference between the student's van Hiele level ing geometry at the beginning of grade nine and textbooks used for geometry instruction in grade eight. The students who were taught geometry in grade eight from Math is/2 tended to have higher van Hiele levels. The results in Table III indicated that approximately 42 percent of students

Who were taught geometry from School Mathematics 2 were below the recognition level at the beginning of the ninth grade. At the same time, approximately 35 percent of students who were taught geometry from Math Is/2 were below the recognition level.

There is one possible explanation for this lack of knowledge, of geometric terminology. The teachers in grade eight may have taught mathematics using the page-by-page approach. In this instance, the geometry in School Mathematics 2 is x the end of the text whereas some geometry fin Math Is/2 is iocated in the middle of, the text. Teachers may not have had enough instructional tyme to teach geometry.

Furthermore, there is a belief among some teachers of mathematics that geometry begins in grade nine. Geometry is not considered a basic skill from kindergarten to grade eight. It has been considered as the domain of senior high school (Grades 9-12).' This belief has permeated the primary and elementary schools, in particular; where the majofrity of teachers have very little training in teaching mathematics and especially geometry.

The third major conclusion related to the van Hiele levels of students in Newfoundland and Labrador and those of students in the. United States. The van Hiele levels of students in the United States were significantly higher than those of students. at the beginning of grade, aine In Newfoundland and Labřador. :

In making such a comparison, there are some important considerations. It must be remembered that 56 percent of the sample in the CDASSG project entered the tenth grade in the fall. Usiakin (1982) also atated:

"In the United States, secondary school geometry is usually studied. in q aingle year, normally in the tenth grade". (p. 1) This is an frportant factor since the students were likely a year older in most.instances.

* Usiskin (1982) found that when 3 out of 5 was uged in the fall and level 5 (Rigor) was excluded, 85 percent of the students could be classified. He also faund 3 percent of the students at the deduction level. ($p .98$) This is" higher than the results for Newfoundland and Labrador, but the studênts may have had some geometry'Ynstruction in grade nine as well as previous-grades.

Uaiskin (1982). found that: "The tougher 4 out of 5 criterion minimizes the chance of a student being at a level of guessing" ($p \cdot{ }^{\circ} 79$). Also, he found in the fall that 92 percent of the students could be classified in a van Hiele level if level 5 (Rigor) was excluded and the 4 out of 5 criterion was applied. In this instance, he found -31 percent below recognition and 43 percont-at recognition.
III. RECOMMENDATIONS FOR FURTHER ,RESEARCH

Student thinking in geometry at the beginning of grade nine in Newfoundland oand Labrador was analyzed iñ, this study. It has been suggested that there may be a number of factors contributing to the extremely. Iow levels of student thinking in geometry at the beginning of grade aine. 'Instructional time spent on geometry, instrúctional strategies and/or text materials utilized for geometry finstruction must be taken into consideration.

The following recommendations for further research"are buggested:

1. That a similar study be conducted at the end of grade nine to indicate, if atudents are prepared for deductive reasoning in the senior high mathematica courses.
2. That a year long study be conducted, with the same sample at a specifici grade level in order, to determine the amqunt of instructional time required to move frof one level of chinking to the next in geonetry. i! . 3. That a study be conducted at the end of the sixth grade using actual 影apes: square, rectangle, triangie; parallelogram, citricle, etc. This research would help to deternine: the appropriate geometry for junior high school.
3. That a stuly be conducted with teachers of mathematics at the primary, elerientary, and juipr high echools to deteraige thair level of thinking in geomotry.

BIBLIOGRAPHY

Adler, I. "Piaget on the Learning of Mathematics". In Aichele, D. B. and Reys, R. E. (Eds.), Readings in Secondary. School Mathematics. Boston, Prindle; Weber \& Schmidt, 1971, 210-221.
 1

Allendoerfer, c. B. "The Dilema in Geometry" The Mathematics Teacher. March 1969, 165-169. .

Brown, R. G. "Making Geometry \dot{A} Personal and Inventive Experience". The Mathematics Teacher, September 1982, 442-446.

Burger, W. F. "Using the van Hiele Model to Describe Reasoning Processes * In Geometry". 'Paper presented at American Educational Research Association, March 1982.

Coxford, A. "Research'Directions in Geometry". In R. Lesh \& D. Mierkiewicz (Eds.), Recent Research Conceraing the Development of Spatial and and Geometric Concepts. Columbus, Ohio: ERIC/SMEAC, 1978.

Ebos; F.et ai, Math Is/Geometry, Book 1. -Toronto: Nelson/Canada Limited, 1981.
\therefore Math Is/2. Toronto: 'Nelson/Canada Limited, 1975.
Fleenọr, C. R. et al. School Mathematics 2. Don M11s: Addison-Wesley Canada Limited, 1974.

Freudenthal, H. Mathematics As An Educational Task. Dardrecht, Holland: D. Reidel, 1973. ?

Geddes, D. "An Investigation of the van Hiele Model of Thinking in Geometry Among Adolescents". Project report' presented at the National Council. of Teachers of Mathematics Annual Meeting, Toronto, Canada, April 1982.

Hayden, M. 'P. et al. Mathematics For-Daily Use. Toronto: Doubleday Canada Limited, 1980.

Hendrix, G. NLearning by Diacovery": The Mathematics Teacher, May 1961, 290-297.
*- "The Paychological Appeal of Deductive Proof". The Mathematics Teacher, November 1961, 515-520.

Hiatt, A. A. "Basic Skills: What Are They' ${ }^{\prime}$ " The Mathenatica Teacher, February 1979, 141-144.

Hoffer, A. Geometry, A Model of the Universe. Menlo Park: AddisonWesley Publishing Company, 1979. - "Geometry Is More Than Proof". The Mathematics Teacher, January 1981, 7-18.

- "Van Hiele Based Research". Eugene, OR: Department of Mathematics, University of Oregon, 1982.

Kane, R. B. "On the Proof-Making Task". The Machematics Teacher, February 1975, 89-94.

Labinowicz, E. "Plaget's Stages - Levels of Children's Thinking". The Piaget Primer. Menlo Park: Addison-Wesley Publishing Company, 1980, 60-95.

Mayberry, J. "The van Hiele Levels of Geometry Thought in Undergraduate Preservice Teachers". Journal for Research in Mathematics Education, 1983. Vol. 14, No. 1, 58-69.

Moise; E. and Downs, F. Geometry. Menlo Park: Addison-Wesley Publishing Company, 1975.

Orleans, J. B. "A Uait of Demonstrative Geometry for the Ninth Year". The Teaching of Geometry. W. D. Reeve (Ed.). 5th yearbook of National Council of Teachers of Mathematics, Nashington, National Council of Teachers of Mathematics, 1930.

Peterson, J. C. . "Informal Geometry in Grades 7-14". Geometry in the Mathematics Curriculum. K. B. Henderson (Ed.). 36th yearbook of National Council. of Teachers of Mathematics, Washington, National Council of Teachers of Mathematics, 1973.

Reeve, W. D. "The Teaching of Geometry". The Teaching of Georetry. W. D. Reeve (Ed.). 5th, yearbook of National Council of Teachers of Mathematics, Washington, National, Council of Teachers of Mathematics, 1930.

Roberts, B. A. "A Study of the Time Spent on Teaching Geometry in the Elementary School and Its Relationship to Teacher At titudes Toward Geometry". Unpublished Masters thesis, Memorial University of Newfoundland, 1979.

Runyon, R. P. and Haber, A. "Statistical Inference with Categorical Variables". Fundamentals of Behavioural Statistics. Menlo Park: Addison-Wesiey-Co., 2nd. Edition, 1971, 242-256.

Sanders, W. J. and Dennis, J. R. "Congruence Geometry for Junior High' School". The Mathematics Teacher, April 1968, 354-369.

Seidlin, J. "A wnit of Demonstrative Geometry for the Ninth Year". The Teaching of Geometry. W. D. Reeve (Ed.).. 5th yearbook of National Council of Teachers of Mathematics, Washington, National Council of Teachers of Mathematics, 1930.

Sherard, W. H. "Why Is Geometry A Basic Skill?" The Mathematica Teacher, January 1981, 19-21.

Smith, S. A. "What Does A Proof Really Prove?" The Mathematics Teacher. May 1968, 483-484.

Taaffe, G. "An Investigation into the van Hiele Levels and Proof-Writing Achievement of Level I Geometry Students in Newfoundland". Unpublished Masters thesis, Menorial University of Newfoundland,
1983.

Usiskin, Z. "Van Hiele Leqvels And.Achievement in Secondary School, Geometry". Report of CDASSG Project. Chicago, The University of Chicago, 1982.

Wirszup, I. "Breakthroughs in the Paychology of Learning and Teaching Geometry". In J. L. Martin (Ed.), Space and Geometry: Papers From A Research Workshop. Columbus, Ohio: ERIC/SKIRAC, 1976.

APPENDIX A: behaviours at each van higle level identified by the CDASSG project

APPENDIX A

behaviours at each van hiele level

In 1979-80, all of the van Hiele writings available to the CDASSG project personnel were examined for quotes that described behaviours of students at a given level. A total of nine wory were examined, four originally written in English, five translated into English from Dutch, German, or French. The following is a list of behaviours, sorted by level. (Usiskin, 1982, pp. 9-12)

Level 1 (theit base level; level 0)
(P.M. . 1958-59)

1. "Figures are judged according to their appearance."
2. "A child recognizes a rectangle by its form, shape:
3. "... and the rectangle seems diferent to him from a square."
4. "When one has shown to a child of six, a six year old child; what a 'rhombus is, what a rectangle is, what' a square is, what a parallelogram'is, he is able to produce those figures without error on a geoboard of Gattegno, even in difficult situations."
5. "a child;does not récognize a parallelogram in à rhombusá". .
6. The rhombus is not a parallelogram. The rhombus appears ... as something quite different."
(P.M., 1968)
7. "when one says that one calls a quadrilateral those four sidea are equal a rhombus this atatement will not be enough to convince the beginning student [from which I^{\prime} deduce that this is his level 0] that the parallelograms which he calla squares are part of the set of rhombuses."

> (P.M., 1979)
8. (on a question involving recognition of a tilted square as a square) "basic level, because you can see it!"

Level 2 (their first level)

y (P.M., 1957)

1. "He is able to associate the name 'isosceles triangle' with a specific traingle, knowing that two of its sides are equal, and draw the aubsequent conclusion that the two corresponding angles are equal."
(Dina, 1957; P.M. and Dina, 1958)
2. "... a pupil who knows the .properties of the rhombus and can name them, will also have a basic understanding of the isosceles triangle $=$ semirhombus."
3. "The figures are the supports (1it. 'supports' in French) of their properties."
4. "That' a figure is a rectangle signifies that it has four right angles, it is a rectangle, even if the figure is not traced very carefully."
5. "The figures are identified by properties. (E.g.) If one is told that the figure traced on the blackyoard possesses four right angles, it is a rectangle, even if the figure is not traced very carefully."
6. "The properties are not yet organized in such a way that a square is identified as being a rectangle.":
(P.M., 1959)
7. "The child learns to see the rhombus as an equilateral quadrangle with identical opposed angles and interperpendicular diagonals, that bisect both at each other and the angles."
8. (a middleground between this and the next level) "Once the child geta' to the stage where it knows the rhombus and recognixes' the isosceles triangles for semi-rhombus, it will also, be able to determine offhand a certain number of properties of the equilateral triangle."

9: "Once it has been decided that a structure is an 'isosceles triangle' the child will also know that a certain number of governing properties must be present, without having to memorize them in this special case."
(P.M., 1976)
10. "The inverse of a function still belongs to the first thought level."
11. "Resemblance, rules of probability, powers, equations, functions, revelations, sets - with these you can go from zero to the first thought level."

Level 3 (their gecond level)
(Dina, 1957)
1.* "Pupils ... can understand what is meant by 'proof' in geometry. They have arrived, at the second level of thinking."
'(P.M., 1957)
2. "He can manipulate the interrelatedness of the characteristics of geometric patterns."
3. "e.g., if on the strength of general congruence theorems, he is able to deduce the equality of angles or linear segments of specific figures."
(P.M., 1958-59)

4 "The properties are ordered [11t. 'ordonnet']. They are deduced from each other: one property precedea or follows another property."
5. "The intrinsic significance of deducition is not understood by the student."
6. "The square is recognized as being a rectangle because at this level definitions of figures come into play.".
(P.M., 1959.)
7. "the child ... [will] recognize the rhombug by mens of céertain of its properties ... becauge, e.g., it l"e quadrangle, ohosé diagonals bisect each other perpendicularly.".
8. "It [the child] is not capable of" studying geometry in the strictest sense of the word."
9. "The child knows how to reason in accordance with a deductive logical system ... this is not however, identical with reasoning on the strength of formal logic."
(P.M., 1976)
10. "the question about whether the inverse of a function is a function belongs to the second thought level."
li. "The understanding of implication, equivalence, negation of an implication belongs to the second thought level."
(P.M., 1978)
12. "they are able to understand more advanced thought structure such as: 'the pärallelism of the lines implies (according to the signal charadter) the presence of $a \mathrm{saw}$, and therefore (according to their aymbolic character) equality of the alternate-interior angles'."
13. "I the student] can"learn a definition by heart. No level. I can understand that definitions may be necessary: second level."
14. "... you know what is meant by it [the use of 'some' and 'all'] second level:"

Level 4 (their third level)
(P.M., 1957)

1. "He will reach the third level of thinking when he starts manipulating the intrinsic characteristics of relations. Por example: if he can distinguish between a proposition and its reverae" [sics meaning our converse]
(DPna, 1957)
2. "We'can start studying a deductive system of propositions 1.e., the way in which the interdependency of relations is effected. Definitions and propositions now come within the pupils' intellectual horizon."
3. "Parallelism of the lines implies equality of the corresponding angles and vice versa."
(P.M. and Dina, 1958)
4. "The pupil will be able, e.g. to distinguish batween a proposition and its converse."
5. "it (is).... possible to develop an axionatic system of geometry".
(P.M., 1958-59)
6. "The mind is occupied with the significance of deduction, of the converse of a theorem, of an axiom, of the conditions necessary and sufficient."
(P.M., 1968)
7. "... one could tell him (the student) that in a proof it is really a question of knowing whether these theses are true or not, or rather of the relationship between the truth of these theses and of some others.
f Without their understanding such relationships we cannot explain to the student that one has to have recourse to axioms." [I induced the level from the first part of this statement; he never identifies the level.]

Level 5 (their fourth level)
(Dina, 1957)

1. "A comparative study of the various deductive systems within the field (of geometrical relations is ... reserved for those, who have reached the fourth level ...".
(P.M: and Dina, 1958)
2. "finally at the fourth level (hardly attaịnable in secondary teaching) logical thinking itself can become a subject matter."
3. "The axiomatics themselves belong to the fourth level."
(P.M., 1958-59)
4. "one doesn't ask such questions as: what are points, ines, surfaces, etc.? ... Figures are defined only by symbols connected by relationships. To find the specific meaning of the symbola, one must tirn to lower levels where the \quad specific meaning of these symbols can be seen.

APPENDIX B

1. Van. Hele Geometry Test
(Directions)
2. Van Hele Geometry Test
3. Van Hiele Geometry Teat (Answer Sheet)
4. Van Hiele Geometry Test

- (Angwers)

Directions

d.

Do not open this test booklet until you, are told to do so.

This test contains 20 questions. It is not expected that you know. everything on this test.

When you told to begin:

1. Read each question carafully.
2. Decide upon the answer you think is correct. There is oniy one correct answer to each question. Cझps out the letter: . corresponding to your answer on your answer sheet.
3. Use the space provided on the angver gheet for figuring or drawing. Do not mark on this test booklet.
4. If you want to. change an answer, completely exase the first answer.
5. You will have 30 minutes for this test:

Wait until your teacher says that you may begin.
*Thia test is based on the work of P. M. van Hiele.

VAN HIELE GROMETRY GIEST

1. Which of these are squartes?
(A) K only
(B) L only
(C) K onily
(D) L and M only
(E). All are squares.o
 -
2. Which of these are triangleas?

- 1

(A) None of these are triangles.
(B) V oíly
(C) W only
(D) W and X only
(E) V and W only

3. Which of these are rectangles?

(A) S only
(B) "T ouly
(C) S and T only
(D) sand vonly
(E) Ail are rectanglee.

4. In the rectangle GHJK, $\overline{G J}$, arid $\overline{\mathbb{X}}$ are the diagonals.

Which of (A)-(D) is not true in every rectangle?
(A) There are four right angles.
(B) There are four sides.
(C) It "diagonals have the same length:
(D) The opposite sides have the sage length. \&
(B) All of (A)-(D) are true in every rectangle.;
8. A rhombus is a fusided figure with all alden of the same length. Here are thrice examples.

White of (A)-(D) is not true tin ovary shomhual?
(A) The two diagonals have the gam length.
(B) Each diagonal blecete tiro ingle of the rhombus.
(C) The two diagonals are perpendicular.
(i) - The opposite and en have the ante manure.
(B) Ald of (A)-(D) are true is ovary rhombus.
9. An-isosceles triangles is a triangle with two sides of equal length. Here are three examples.

f

\because Which of (A)-(D) is true in every isosceles triangle?
(A) The three miat have the same length.
(B) One side metwive twice the length of another side.
(C) There must be at least iwo angles with the game measure.
(D) The three angles nust have the same masure (
(B$)$ None of (A)-(D) is true in oppry isosceles triangle.
10." Two fircles with centers P and Q intersect at R and S to form 4-aided figure PRQS.

Which of (A)-(D) is not always true?
(A) ' PRQs will have two palris of sides of equal langth.
(B) Puqs will ahve at leatt two angles of equal maasure.
(C) The 11 ner $\overline{P Q}$ and $\overline{\overline{8 g}}$ will be perpendicul Cr_{P}.
(D) Anglec' P and Q wili have the anco masure.
(B) dil of (A) $-(D)$ are true:
11. Here are two statements.

0

Statement 1: Figure F is a rectangle.
Statement 2: Figure Fis a triangle.
Which is correct?
(A) If 1 is true, then 2 is true.
(B) If 1 is false, than 2 is true.
(C) 1 and 2 cannot both be true.
(D) 1 and 2 cannot both be false.
(E) None of (A)-(D) is correct.
12. Here are two staterents.

Statement s: $\triangle \mathrm{ABC}$ has three sides of the sane length.
Statement $T:$ In $\triangle A B C, \angle B$ and $\angle C$ have the same measure.

Which is correct?
(A) Statements S and T cannot both be true.
(B): If S is true, then T is true.
(C) If T is true, then S is true.
(D) If S is false; than T is false.
(E) None of (A)-(D) is correct.
13. Which of these can ba called rectangles?
(A) All can.
(B) Q oniy
(C) B only
(D) P and Q only
(B) Q and R ofly

14．Which is true？
（A）All properties of rectangles are properties of all squares．
（B）．All properties of squares are，properties of all rectangles．
（C）All propertien of rectangles are properties of all parallelograms．
（D）All properties of squares are properties of all parallelograms．
（D）None of $(A)-(D)$ is true．

15．What do all rectangles have that some parallelograms do not have？
（A）opposite sides equal
（B）diagonals equal
（C）opposite sides parallel
（D）opposite angles equal
（E）none of（A）－（D）

16．Here is a right triangle $A B C$ ．Equilateral triangles $A C E, A B P$ ，and $B C D$ have been constructed on the sides of ABC．

Prom this information，one can prove that $\overline{A D}$ ，$\overline{B 8}$ and $\overline{C F}$ have a point ＇In common：＇What would this proof tell you？
（A）Only in this triangle drawn can we be the that $\overline{A D}, \overline{B B}$ and，$\overline{C F}$ have point in common．
 in common．
（C）In any wight triangle， \bar{A} ，宜 and CF have point in com mo
（D）In any triangle， \bar{D} ，存 and $C \overline{7}$ have a point in common．

27. Here are.three properties of a figure.

Property D: It has diagonals of equal length.
Property S: It is a square.
Property Ri It is a rectangle.. 1
Which is true?
(A) D implies S which implies R.
(B) D implies \& which inplies S.
(C) S implies R which laplies D.
(D) R implies D which implies S.
(E) \mathbb{R} implies S which implies D.

18. Here are two statements.

1. If a figure is a rectangle, its diagonals blsect each other.* ,
II. If the diagonals of a figure bisect each other, the figure is a ractangle.

Which is correct?
(A). To prove I is,true, it is enough to prove that II is true.
(B) To prove II is true, it is enough to prove that I is tryof
 diagonale bleact each other.
*". (D) To prove II fis falee, it is onough to find one non-rectangle whose diagomals bisect aach othor.
(B) \& Mone of (A)-(D) is correct.
$\because *$!
\qquad

19. In geometry:
(A) Gpery tern can be' defined and every true statement can be proved true.
(B) E'very term can be defined but it is necessary to assume that certain statements are true.
(C) Some texms must be left undefined but every true statement can be proved true.
(D) Some terns must be left indefined and it is necessaly to have some statements which are assumed true.
(E) None of (A)-(D) is porrect.
20. Examine thene three santences.
(1). Two Hnes parpandicular to the aam line are parallal:
(2) A line that is perperifcular to one of two parallel-lines perpendicular to the other.
(3) If two -Ifnes are equidietant, then they are paralled.

In the figure below, it is given that lines and p are perpendicular - and lines n and p are perpendicular. hich of the above sentences could be the reagon that line m is parallal to line ni
(4) (1) only
(B) (2) only
(C) (3) only
(D) Sithar (1), or (2)
(1) Bither (2) or (3)

Namé of School

\qquad

VAN HIBLE GROMETRY TEST ANSWER SBEET

Cross out the correct anaver.

1.	A	B	C	D	E
2.	A	B	C	D	E
3.	A	B	C	D	E
4.	A	B	C	D	B
5.	A	B	C	D	E

