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Abstract 

The Korteweg-deVries (KdV) equation is solved numerically using bivariate spline 

collocation methods. Our methods permit one or two collocation points in time 

with an arbitrary number of collocation points in space. The basis functions for the 

underlying spline spaces are B-splines (in space) and Lagrange polynomials (in time). 

Numerical experiments show that collocation at two Gauss points in both space and 

time yields accurate solutions very efficiently. There is numerical evidence for fourth­

order convergence in time (at the mesh points), but this is not proved. Using a suite 

of well known test problems, the methods are compared with the classical method 

of Zabusky and Kruskal, a convenient and frequently used reference standard for 

numerical KdV solvers. 
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Chapter 1 

Introduction 

This work is concerned with the numerical solution of the Korteweg-deVries (KdV) 

equation. We introduce the reader to this equation and to the remarkable solutions 

known as solitons by way of a brief historical sketch, relying primarily on the r.ec­

ondary sources cited. We then continue the introduction by showing how the equation 

can be derived for a physical system. 

In Chapter 2 we present some analytic results for the KdV equation that will be 

useful for testing numerical methods. Chapter 3 gives a short overview of numerical 

methods for partial differential equations (PDEs) in general, and then surveys some 

methods that have been used for the KdV equation. 

The heart of the present work is contained in Chapter 4. There we construct a 

numerical solution based on the method of collocation in both space and time. We 

then demonstrate the accuracy and efficiency of our methods in Chapter 5 a.nd finish 
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with our conclusiot•B and some directions for further work in Chapter 6. 

1.1 Brief Historical Sketch 

The first recorded observation of a solitary wave or soliton is undoubtedly that of 

J. Scott Russell in 1835. Though oft quoted, his description [78] of the event is an 

enthusiastic one, and I am pleased to include it here. He writes: 

I was observing the motion of a boai which was rapidly drawn along a 

narrow channel by a pair of horses, when the boat suddenly stopped­

not so the mass of water in the channel which it had put in motion: it 

accumulated round the prow of the vessel in a state of violent agitation, 

then suddenly leaving it behind, rolled forward with great velocity, as­

suming the form of a large solitary elevation, a rounded, smooth, and well 

defined heap of water, which c0ntinued its course along the channel with­

out change of form or diminution of speed. I followed it on horse back 

and overtook it rolling on at a rate of some eight or nine miles an hour, 

preserving its original figure some thirty feet long and a foot to a foot 

and a hal£ in height. Its height gradually diminished, and after a chase 

of one or two miles I lost it in the windings of the channel. Such, in the 

month of August, 1834, was my first chance interview with that singular 

and beautiful phenomenon which I have called the Wave of Translation, 

a name which it now very generally bears. 
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Here then, according to Russell, was a. newly observed phenomenon in search of a 

theory, for his wave had not yet bE!en shown to be predicted by the equations of fluid 

mechanics. Such a theory was [78] " ... still wanting, a worthy object for the enterprise 

of a future wave mathematician." The British mathemeticia.n Airy, however, was 

"not disposed to recognize this wa.ve as deserving the epithets 'great' or 'primary' 

... " [4], and disagreed with RusseU on the speed of the wave. Furthermore, Airy 

was of the opinion that " even when friction is neglected long waves in a rectangular 

canal must necessarily change their form as they advance, becoming steeper in front 

and. less steep behind." [56, footnote, page 422). Nevertheless Boussinesq in 1872 [10] 

was sufficiently enterprising to find a partial differential equation admitting a solitary 

wave solution, with speed of propagation agreeing with Russell, as was Rayleigh, 

independently, in 1876 [73]. 

By 1895 the controversy was still alive. Apparently Airy's views were still promi­

nent [56, 14], and it was "the desire to settle this question definitively ... " that led 

Korteweg and deVries to " ... the somewhat tedious calculations at the end of our 

paper" [56]. Unlike Boussinesq, Korteweg and deVries begin by considering waves 

moving in one direction only, and end with a simpler equation. Miles [64] suggests 

that "the primary contributions of Korteweg and deVries, vis-a-vis Boussinesq, were 

in working directly with unidirectional waves, the simpler form of their evolution 

equation ... and their direct solution of that equation for both solitary and periodic 

waves." 
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In suitably scaled coordinates the KdV equation can be written as 

ltt + UU.;r + ltr.r.r = 0. 

Kruskal (57] observes that this is "arguably the simplest pa.rtial differential equation 

not covered by classical methods, and by virtue of that property alone deserved 

attention . . . ". Nevertheless, it was not until it play•ed a h:ading role in the birth of 

soliton theory (some seventy years after its derivation) that the equat.ion obtained a 

high profile [57, 64, 67, 33, 31]. 

It was the Fermi-Pasta-Ulam problem that provided the setting. Around 1950, 

Fermi, Pasta, and Ulam [32) were investigating the evolution of a one dimensional 

lattice of equal masses with weak non-linear nearest-:neighbour coupling. They we.re 

expecting that the energy from long wavelength initial conditions would become par­

tioned equitably through the system, but found instead long time near-recurrences 

of the initial condition. Zabusky and Krusl<al, further investigating this phenomena, 

found that the governing equation was equivalent to a discretised KdV equation [99]. 

With a numerical model [100], they found that their smooth initial condition soon 

separated into several well defined solitary waves which would interact with each 

other, nonlim:nrly, and emerge from the interaction intact, leaving only a small phase 

shift as evidence of the interaction. Hence in [99] Zabusky writes " The remark­

able stability induced us to call them 'solitons' for they seemed to have an intrinsic 

identity" . 
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There followed a numht!r of analytic results, including an infinite hierarchy of 

conservation laws (68] and the invcT'!>C scatfu·ing method (39, 40) for the analytic 

solutic·n of the initial value problem for the KdV equation. See the review article by 

Miura [67], which also contains some personal anecdotes on his contributions to the 

theory. 

Meanwhile, the equation wa.s being derived virtually everywhere that long wave 

phenomena existed. In connedion with ~:hallow water waves we find derivations for 

systems with fewer resl;rictions on geometry and flow (46, 84, 38, 53, 8, 54]. On a 

planetary scale, the KdV equation is found to model Rossby waves in the atmosphere 

and ocean {18, 74, 11). New application areas included ion acoustic waves in plasmas 

[97] and hydromag.netic waves (41]. Other equations were also being found to have 

soliton solutions. Among these the nonlinear Schrodinger equation has been applied 

to solitons in optical fibrt~s (48] a.nd tlte sine~Gordon equation [261 page 14] ha.s found 

application in nonlinear field theory. More examples can be found in such works as 

[3'i', 52, 67, 83, 26, 33, 58, 59, 61). 

In chapter two below we will revisit some of the analytic results mentioned above, 

and in following chapters we discuss tlte numeri<:al solution of the initial value prob­

lem, taking the Zabusky-Kruska.l model [100] as our starting point. Our focus will be 

a solution by the method of collocation. The remainder of this chapter is devoted to 

deriving the KortE!Weg-deVries equation in a physical system. 
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1.2 The Korteweg-deVries Equation in a Physical 

System 

We derive the Korteweg-deVries equation in a system similar (but neglecting surface 

tension) to that considered by Korteweg and deVries, namely plane gravity waves in 

shallow fluid in an infinitely long channel with flat bottom and uniform rectangular 

cross-section. The derivation is indeed somewhat long and tedious, but it is also 

instructive to relate the canonical form of the equation to an equation derived from 

physical conside1·ations. The exposition here follows closely that of Dodd et al. [26], 

but see also those of Lamb [59] and Whitham [98]. After finding the non-dimensional 

equations of motion we expand the dependent variables in terms of a small perturba­

tion parameter. Time and space are then rescaled, and the KdV equation results from 

consistency of kinematic and dynamic conditions on the free surface. This process 

has been formalized and called 1·rdnrli11r. pcr/.urbation theory by Taniuti and Wei [90]. 

Our lab coordinates will be ;r: 1 along the channel, ;r2 across the channel, and :; 

measured vertically from the bottom. If h is the height of the undisturbed surface of 

the fluid and 11 is the departure of the surface from its undisturbed position, the free 

surface can be given by::: = h + 17(x, t), where x = (a;t, x2f· Our fluid will be inviscid 

and incompressible, undergoing irrotational flow. To further simplify matters, assume 

negligible surface tension and constant pressure at the surface. 
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If u denotes the velocity of the fluid, then for irrotational flow 

curl u = 0 (1.1) 

which implies 

u =grad 1> {1.2) 

for some velocity potential <jJ • Conservation of mass demands 

Pt + div (pu) = 0. 

For constant density, this reduces to div u = 0, which combined with equation 1.2 

leads to Laplace's equation div grad rjJ = 0, commonly written as 

(1.3} 

From Newton's second law we have 

Du 
(I Dl = -grad p - pg, (1.4) 

where p is the pressure in the fluid, g is the acceleration due to gravity, and the 

material derivative D I /Jt = a I tJt + u . grad indicates how the time rate of change 

of a field, following a particle of fluid, is due to both time variation of the field and 

the positional change of the particle within the the field. Thus equation 1.4 can be 

written 

au 1 
--::1 + (u · grad)u =--grad p- g. 
ut p 

{1.5} 

Now use the vector identity 

grad (u · u) = 2[uxcurl u + (u · grad)u] 
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to obtain 

(u · grad)u = (1/2)grad(u · u) 

when curl u = 0. Then, using (1.2), (1.5) becomes 

D 1 . 1 
-:-) (grad¢)+ -grad (grad <I>· grad¢)== --grad p- g. 
(/ 2 p 

Now write g = grad (g::) and recall that p is constant, grad is a linear operator, and 

(gt·ad d> )1 = grad ( rpt) to get 

grad ( d>t + igrad <P ·grad</;+ ~p + gz) = 0 

whence 

1 1 
r/>1 +-grad <P ·grad 1> + -p + gz = A(t). 

2 p 

where A( t) is an arbitrary function of time only. It is convenient to take A( t) = 

p0 / p + B( l ), where l'o is the pressure at the free surface (assumed constant), and 

incorporate B( l) into </> via the mapping </> 1--+ <P - .( B( I. )dl., so that 

1 1 
<Pt +-grad¢· grad <P +- (p- p0 ) + gz = 0. 

2 p 

Then at the free surface :; == rr(x.l) we have 

(1.6) 

Since the fluid must always be within its own boundaries, the normal fluid velocity 

at a boundary must be equal to the normal velocity of the boundary itself. The flat, 

impervious lower boundary is stationary, so at z = 0 we find 

<P:: = 0, (1.7) 
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while applying the condition at the free surface leads to 

Using the operator \lu = rJjfJ.r.1 + ()/ih:2, this can be written as 

Gathering together the equations of motion and boundary conditions established 

above, we have 

0 < = < h + 1/ 

rf>t + ~(\7¢' \7</J) = -gTJ, Z = h + TJ 

d>:: ='It+ V'wp · \llf7J, = = h + 17 

tf>z = 0, Z = 0. 

(1.8) 

(1.9) 

(1.10) 

{1.11) 

To obtain the motion of the free surface 11, we now solve Laplace's equation in 

the fluid, subject to the boundary conditions. To this end, first scale the variables to 

eliminate physical dimensions. Thus define the new length cordinates 

z - z/h (1.12) 

x - xfl (1.13) 

1J - 17ja, {1.14) 

where a is a typical wave amplitude. 
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We will use a linearized phase speed to determine an appropriate scaling for time. 

First linearize the free surface conditions (1.9) and (1.10): 

on the free surface. Note that <1>11 = -g¢=· Now apply the linearized conditions on 

:; = h: 

"V'2rb = 0, 0 < :: < h (1.15) 

(1.16) 

¢: = 0, = = 0. {1.17) 

Seek oscillatory solutions of the form ¢ = A(::)exp[i(k · x- wl)]. From (1.15) we 

require A" - fl A = 0, where we have put ~·'l. = k · k. Solving with (1.17) yields 

A = .d cosh(~·.; ), where /J is an arbitrary constant, so the oscillatory solution is given 

by 

¢ = ;J cosh(b)exp[i(k · x- wl)]. 

Now use (1.16) to obtain the linearized dispersion relation 

w = Jg!.: tanh(kh) (1.18) 

and hence linearized phase speed 

w I ta.nh(kh) 
r. = k = g '· kh . 
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Note that 

li 
tanh( kh) 

m =1 
kh-o kh 

so for small l.:h, that is for waves long compared to depth, the linearized phase speed 

c ~ JYTi. At this speed a wave of length I has period T = l / .fijfi., so we can now 

adopt the scaled time 

1. = tfT = tj;hjt. (1.19) 

To scale the velocity potential¢, use the above seatings in the dynamic free surface 

condition ( 1.9) to get 

On dividing by ag the coefficient of f/J; is 1/( agT) = Jiili/( agl) = cf ( agl). This gives 

our final scaling 

• c 
rjJ = -¢. 

agl 

The transformed dimensionless equations are then 

~: = o, 

where a = ajh, S = hfl. 

11 

( 1.20) 

0 <: < 1 + 0'1! (1.21) 

= = 1 + f't'1f ( 1.22) 

( 1.23) 

==o (1.24) 



We now simplify the notation by dropping the hats on the non-dimensionalizecl 

variables and proceed to seek a series solution of the form 

·"'-· 

¢(x,::,t)= L:.:71¢u(x,/). ( 1.25) 
n:O 

Then ( 1.21) yields 

':'.· 

L {11(11- 1):'1-..!011 + li;!:"\7fi¢u} = 0. 
u=O 

which can be rewritten as 

•X· 

L ::;'1 
{ ( 11 + 2)( /1 + 1 )fbu+:.! + 8<!\7f/¢n} = 0 

u=O 

so that 

!:2 
(I 'l 

0,+;!=-( )( )\71/<i>,. n+l 11+2 
(1.26) 

Meanwhile (1.24) yields, on : = 0 

'X• 

L { 11:'1-l ¢n(x.l.)} = 0. 
'1=0 

This can be rewritten as 
1';:(,. 

rf>1 + L {n='~-•,p,~} = 0. 
n=2 

Since this holds on = = 0, the terms in the summation are obviously zero, so we 

have 6 1 = 0 also. Then according to (1.26), rb, = 0 for all odd n. It is now a 

straightforward exercise to show that the recurrence (1.26) has the solution 

!:2m 

( )
m (1 M2m 

02m = -1 -{2 )I v 11 rPo· 
711 • 

(1.27) 
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Thus 

( 1.28) 

where we have put .f = r.~0 • From (1.28) we obtain the expressions 

~3 

(/): = -=fi2'V 2 r + .:_f,·lv·' r + o{~6 ) 1/. 3! /1 , 

~2 

(IJt .ft - ~ 82\7fdt + 0( 8'') 

and observe that for any scalar function t/• 

~2 

\'uri> · \' 11 tl• = \711 f · Vut/• - ~ 82 
[ V' u ( \7f1 f) · Vu t/•] + 0( 84

). 

Using these expressions in the free surface conditions, (1.22} becomes 

:;l 2 '1. 0 ( '1. '}. ) 1 
'I + .ft - 26 'V uft + 282 -;;b \luf 

+% [Y'uf · \lu.f- ='2f.2\7u (Vfd) · Vuf] + 0{84
) = o. 

hence 

+O(fl") = 0 {1.29) 

and (1.23), on dividing by fl\ becomes 

- (1 + 011)\1~/J + ~ (1 + 0'1/)
3 '\71,! 

= ,,, + o [vuf · VH7J - ~(1 + ar7)2 fl2 'Vu (vtf) · '\lu11] + 0(64
) 
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or, on rearranging terms, 

'It+ (1 + o1J)'\7~1 .f + n'\?uf · '\J1f1J 

-~(1 + mJ)
262 [~(1 + ml)\7')1! + n'\?u (\1~1!) · \lu11] 

+0(~4 ) = 0. (1.30) 

At this point it is convenient to recall that we set out to investigate plane waves in 

the channel, and for these there is no dependence on :r2• Consequently we now drop 

the .r2 coordinate, and for ease of notation write ;r for .r. 1• Then (1.29) and (1.30) 

become 

n 2 
1/ + J, + 2 fr 

1 ( 2 2 ( 2 ) ") -2 1 + m1) {J .frrl- nJJ'J' + ofrf:rn· + 0(6 = 0 (1.31) 

1Jt + [(1 + m1)/Jl. 

-~(1 + n7f}2fl2 [~(1 + 0'1/)Jr:r:r:r + nryrf:r:rx] + 0(<5'4) = 0. {1.32) 

Differentiating (1.31) with respect to ;r and then substituting w = fx leads to 

1 2 2 - 2 (1 t 0'7/) <5' (Wrrt- r'IWrW;r,, t atVW:r:~·r.) 

-mfr( 1 t 0'7/ )<5'2 
( Wrt - O'W; t OWW,r..r) + 0( 04

) = 0 (1.33) 

7Jt + [(1 + mJ)wL. 

-~(1 + 0'11)282 [~(1 + 0'1/)Wrx;r + G1J.r.Wxx] + O{cS4
) = 0. (1.34) 
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Now expand rt and w in terms of a small perturbation parameter c, so that 

Since 11 and w must both approach zero as .r. --. oo, we must have rt(o) = w(o) = 0. If 

we now make the coordinate transformation 

~ = (l'(;r- al.) 

where a., P are constants to be determined, we find 

{) p () 

') c r')t ( .t 1., 

a 31' a p D = f --(L(-

iJt ar ae 
and so equations (1.33) a.nd(1.34) transform to 

cl'+l (71~1)- aw~l)) + /'+2 (mv(tlw~l) + T/~'l)- aw~2)) 

+c31'+t (w~t) + ~82aw~a) +higher order terms= 0 

( 1.35) 

( 1.36) 

(1.37) 

cP+t ( -m/~1) + w~'l) + cP+2 { 07/(t)w~l) + 017~1)w(t)- ll1J~'l) + w?>) 

+r3
P+t (11~1 )- ~82wun +higher order terms= 0. (1.38) 

For these equations to hold, the coefficients of each power of c must be zero. Consider 

first the coefficients of cP+t. We have 
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from {1.37), and 

from {1.38). These combine to yield 

(! = 1. (1.39) 

Observe that the coefficients of cP+2 contain no T derivatives, while those of t:3 P+I do. 

To avoid going to terms of order higher than 2, simply set 3P + 1 = P + 2, thereby 

obtaining 

P= ~. 
2 

With these values for P and a, (1.37) and{1.38) become 

(1.40) 

(J/'J. (11(1) w< 1l) + r_r.f'J. (w(ll + otl'(l)w(J) + 1 tS2uPl + ,(2) uPl) 0 e - e r e 2 eee ·,e - e 

r:J/2 ( -7/fl + w~'l) + r!l/2 [7/~Jl + o (71<llw<'l)e- ~t52w~~~- 71?) + w~2)] 0. 

Setting the term in c312 to zero results in 17~ 1) = w~l) . Finally, using 77<1 l = w<1 l and 

adding the terms in rr./2 gives 

(1.41) 

·.::hich is the Korteweg-deVries equation for our physical system. Note that this is in 

a coordinate system moving to the right with velocity equal to our linearized phase 

velocity, for we have put ~ = f~'(;r- at) with a = 1, which corresponds to c = .JijJi. 

in the non-dimensional coordinate system. 
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By the further rescaling 

3n (t) 
ll = -11 2h2 , 

we obtain the standard form 

llt + 61l1L;r + Urrr = 0, 

17 
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Chapter 2 

The KdV Equation: Some 

Analytic Results 

In this chapter we present some analytic results for the KdV equation, which will prove 

useful for testing the accuracy of numerical methods. We begin with a discussion of 

soliton solutions and then move on to conservation laws and some constants of the 

motion. 

2.1 Soliton Solutions 

Since a solitary wave, or single ,<;o/ilon, is a wave of permanent form (as observed by 

Russell), we seek a travelling wave solution to 

1Lt + 6tt1tx + Urrr = 0 (2.1) 

18 



of the form 

tt(;r.,t) = /({), e = .r.- cl, 

where c is the speed of the wave. Putting this into (2.1) yields 

-cf' + 6/ f' + /"' = 0. 

Integrating, we get 

- c J + 3/2 + J" = A, (2.2) 

where A is a constant of integration. For solitary waves, f, f', J" --+ 0 as { --+ ±oo, 

so A = 0. Using f' as an intc~grating factor, a second integration then results in 

with B a second constant. of integration. Again applying the condition J, f' _.. 

0 as { --+ ±oo, we get B = o and we are left with 

(.{')·~ + / 2 {2/- c) = 0. 

Substituting (c/2) sech20 for J, we obtain 

( rlO) 2 
c 

rl( + 4 = 0 

whence 

and 

c '2 [Vc l f = 2 sech 2 (x- x0 - ct) . (2.3) 

19 



Observe that ;c0 determines the position of the peak of the soliton at time t ::;;: O, 

and the amplitude c/2 is proportional to the speed c. Also, the width of the soliton 

pulse is inversely proportional to the square root of the speed, so faster solitons are 

taller and narrower than slower ones. 

Given this state of affairs it is natural to enquire into the evolution of an initial 

condition consisting of the superposition of two solitary waves, a taller wave to the 

left of, and well separated from, a shorter one. With sufficient initial separation, the 

profile near each pulse will not differ significantly from that of a solitary wave, so we 

may expect both pulses to evolve as solitary waves, at least temporarily. E·;~ntuu.lly1 

however, the faster moving wave will encroach on the slower moving one, and they 

will undergo nonlinear interaction. 

The surprising result of this interaction, first observed numerically by Zabusky and 

Kruskal [100] (but also observed experimentally by Russell [78]), is that the solitons 

emerge from the interaction without change of speed or form, suffering only a small 

displacement from the position they would have occupied had no interaction occurred. 

This two-soliton solution, and more generally the N-solilon . .:;o/utiou of (2.1), has been 

determined analytically (95L and can be written as (98, page 583) 

1l = 2(log D)rr (2.4) 

where D is the determinant of a matrix with elements 
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Here 8m,n is the Kronecker delta functio~, o~ = c,t is the speed of the n-th solit.on, 

On = o 71(a:- .r.u- a~t), and the solitons are considered to be ordered from slowest to 

fastest so that o 1 < o 2 < · · · < aN. The total phase shift of the n-th soliton, after 

interaction with the remaining N - 1 solitons, is given by 

(2.5) 

For N = 1, equation (2.4) yields 

(2.6) 

which leads in a straightforward way to equation (2.3) for a solitary wave. 

For N=2 the determinant in equation (2.4} is 

/) 

where we have used 

From D we obtain 

The phase shifts of equation (2.5} can be found from this solution with a little 

asymptotic analysis. First observe that 02 may be written 
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Now keeping 01 fixed (so that we can follow a wave moving with speed n~ to the 

right) and letting t ~ -oo, we find 

which, according to (2.6}, represents a soliton with speed ni and position parameter 

.r 1• On the other hand, letting t -+ +oo, still keeping 01 fixed, we find 

which can be written 

where 

- (1) (n2tn1\
2 

Ot = 01 + log "J = 01 +log } 
j:~ O:l- OJ 

This last expression for u evidently represents a soliton with speed a~ and position 

parameter 

Thus the slower soliton with speed n~ undergoes a backul(lrd phase shift of magnitude 

Similarly, keeping 02 fixed and letting l ~ -oo, we find 

Of/'Jc-02 ""'2c-o2 
1l "" 2 'J. ;J = 2 " 2 . - ' 

- (1+{1c-02):l (l+e-04)2 

where 02 = 02 +log [( o2 + n1 }/( n2 - o 1 W, that is 1t is asymptotic to a soliton with 

speed n~ and position parameter 
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while as t -+ +oo, we find 

a soliton with speed o~ and position parameter ;t2 • Thus the faster soliton with speed 

n~ undergoes a Jm·wa1·d phase shift of magnitude { 1/ o2) log [( 02 +fit)/( n2 - at)f 

A typical two soliton solution, on the domain [-20, 20] x [0, 2] is shown in figure 

2.1. The preservation of soliton identity is striking, and the phase shifts are evident. 

The latter can be seen more clearly in the accompanying contour plot in figure 2.2. 

2 

X 

Figure 2.1: Analytic solution of Korteweg-deVries equation on [-20, 20] x [0, 2). Initial 
condition satisfies equation (2.7) with c1 = 4, c2 = 16, x 1 = -c1 - t:l.t/2, ;c2 = 
-c2 + A2/2. 
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Figure 2.2: Contour plot showing soliton trajectories for analytic solution of 
Korteweg-deVries equation on [-20, 20] x [0, 2] . Initial condition satisfies equation 
(2.7) with ('t :::: 4, r·l:::: 16, .r1 = -r.1 - tl.t/2, .r 'l:::: - c2 + A'l/2. 

2.2 Conservation Laws 

A conservation law is an equation of the form 

(2.8) 

where '/', the conserved dcn:-;ily, and X, the jlu.r, are functions of ;z:, l, u(:r., l) , nr, 

rt.~·.r• .... Integrating (2.8) over all :r:, we get 

iJ j "" 1' I ( "]oo -;-) ( .r :::: ,'\ - no 
( l -•x• 
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(assuming the integrals exist). If now X --+ 0 as :1: -+ ±oo, the term on the right 

vanishes and 

{"'' ./_"<> Ttl:r ~ constant. (2.9) 

The integral in (2.9) is a t•onsfaul of !he moliou for the evolution of 11(.1:,l). 

The KdV equation (2.1) can be written in the conservation law form 

Itt+ (3rt:l + ltn.)r = 0 

and so (at least for soliton solutions) 

j
fX\ 

url.r = constant. 
-'X> 

(2.10) 

A second conservation law can be obtained by multiplying the KdV equation (2.1) 

by u to get 

llllt + 6n2
rtr + 1L1L.rrr = 0 

which can be written 

(!u·2) + (2u.:1 + 11.1lu- !u;) = 0 
2 1 2 J ' 

leading to 

l'"'' 2 
• -oo u d.r. = constant. {2.11) 

Our third conservation law for the KdV equation can be obtained by multiplying 

equation ( 2.1) by 3u 2 and then subtracting the product of 1tr and the .r.-derivative of 

(2.1). Thus 
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On adding llull •.. ,.3. - llulln•· = 0 to the above equation, the result can be written 

( 
:\ 1 '.!) (9 •I '}. '2 1 2 ) 

ll - -1/.r + -tl + 3u llrr- 6tl1Lr- 1Lrllrrx + -ttrr = 0 
2 1 2 2 r 

and so 

rx· ( :) 1 '.!) 
·'-·:-. · 11 - 2''lJ. d.r =constant. {2.12) 

For water waves the three conservation laws 2.10, 2.11, 2.12 correspond to con-

servation of mass, momentum, and energy, respectively. Miura, Gardner and Kruskal 

[68] have shown that there arc an infinite number of conservation laws for the KdV 

equation, but it appears that only the first three have physical significance. 
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Chapter 3 

N urnerical Methods 

3.1 Introduction 

Analytic solutions for the KdV equation provide a convenient reference standard 

for measuring the accuracy of numerical methods designed to solve its initial value 

problem. We can then reasonably expect that methods accurate for the KdV equation 

will also be accurate for other wave equations with similarly smooth solutions [24]. 

Our first problem in solving the KdV equation numerically is to restrict the com­

putlttion to a finite spatial interval, say [a, b]. Then, given an initial condition on 

[a~ b] at time l = 0, we aim to find an approximation U(x,l) to the analytic solution 

tt(.r, l} for .r E [a, b] and l E (0, T], for some future time T. The restriction of the 

space interval introduces boundaries at x = a and :r = b. In order to mimic the 

solution on the entire real line, we would like these to be invisible to the solution. 
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In particular, we don't want the solution on [a, b] to be contaminated by reflections 

from the boundaries. A simple way to achieve this is to choose (a, b] sufficiently large 

that the solution remains essentialy zero at the boundaries during the time interval 

of interest. (Recall that for soliton solutions, u and its space derivatives go to zero as 

l.l'l ---+ oo ). Other approaches include the use of periodic boundary conditions (100, 35] 

or absorbing boundary conditions. These latter may be designed to absorb incoming 

waves through dissipation or to match the solution at the boundary to that at the far 

field. Surveys and examples can be found in [9, 76, 77, 15, 92, 44, 55] and references 

therein. Moving grids that follow the solitons have also been used [80, 36]. 

Our next problem is obtaining the approximate solution lf(x, t). We briefly con-

sider finite difference and spectral methods. 

In finite difference methods the approximation is obtained by replacing the partial 

derivatives of u in the PDE by differences in the approximating function U, and then 

solving the resulting set of difference equations. Here U is a discrete function, and the 

solution to the system of difference equations yields the values of U a.t the mesh points 

where it is defined. The differences that approximate the derivatives are obtained from 

truncated Taylor's expansions. For example, the Taylor's formulae 

rt(.r + h, l) 

tt(.r- h, l) 

u(.r, t) + hrL;,.(;r, l) + ~: ttrx(x, t) + 0 (h3
) 

u(;r, I)- htt;,.(;r;, l) + ~: ttxx(x, l)- 0 (11 3
) 
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combine to yield 

llx(.r,~ t) = _!_I [u(x + h, t) - u(.r.- h, t)] +C) (h2
) 

21. 

so that if l! is defined on the set of spatial grid points 

XM = {:r.m: :r.m =a+ mh, rn = 0, ... , M. h = (b- a)/M}, 

then 

with error 0 (h2). 

1 
-
1 

[U(.r,m+l, t) -lf(xm-lo i)]:::::; «x(Xm,l) 
2 I 

(3.3) 

The approximation (3.3) is an example o£ a centred difference. One-sided differ-

ences are also available. Thus the series (3.1) yields the forward difference 

1 
«r(:r., t) = h [u(:r + h, t.)- u(x, t)] + 0 (h) (3.4) 

while {3.2} gives the backward difference 

1 
llx(:r., t) = -

1 
[u(:r., l)- 1t{.r- h, t)] + 0 (h). 

/, 
{3.5) 

Differences for higher order derivatives can be found in a similar way. These will 

involve function values U at more than two grid points. 

Similar differences are also available with respect to time. We discretize [0, T] 

with th,! set of points 

TN= {tn: ln = 1lT, n = 0, ... , N, T = T'/N} 
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and then, given U on XM at time t,1, we solve for U on XM at tn+t· Thus if we 

have an initial condition l!(.-rm, 0), m = 0, ... , /It/, we can recursively solve for U on 

A complete finite difference scheme, then, consists of all derivatives in the given 

PDE replaced by the chosen differences. To illustrate, adopt the notation lf~d = 

l! ( .1'111 , 1. 11 ) and consJd-~r two schemes for the advection equation u 1 + ctt3• = 0 : 

! (u(n+l) - u<nl) = -~ (u(n) - u<nl ) 
T m · m 2, m+l m-1 (3.6) 

and 

~ (rr<n+l) - (f(ll)) = -~ (u(n+l) - u<n+l)) 
T m m 2h m+l m-1 (3.7) 

These two schemes differ only in the time level at which the approximation to 1l:r. is 

taken. Thus (3.6) yields an r,r.l'lifil expression for U,~;~+t) in terms of known values of 

{I at time 1,11 while (3.7) is iml'lirit, combining three unknown values of U at time 

level u + 1. The result is a system of simultaneous equations to be solved for U. 

Rearranging (3. 7), we find the m-th equation in the system is given by 

where we have used r = cr/(2h). The time stepping schemes of (3.6) and (3.7) are 

known respectively as r:rplir'if Euler and impliril Euler, regardless of the particular 

spatial discretization used. 

More details on finite difference schemes and their properties can be found in 

works such as [6, 63, 75, 85]. Before leaving the subject, however, it seems fitting 
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to remark here that explicit schemes are subject to restrictions on the size of the 

timestep T relative to the space step h. To see this in the present context of the 

advection equation, note that this equation has analytic solution f(x- ct), which has 

constant values along the lines .r- cl = constant in the .r, t plane. These lines, called 

characteristics, have slope c- 1 and represent paths for the propagation of information 

[1]. Figure 3.1 shows the characteristic through the point (x 1111 l11 ). This characteristic 

also passes through the point ( o, 0) and so knowledge of u( o, 0) is required for later 

knowledge of u(.r111 , ln)· But this knowledge is available to the explicit finite difference 

scheme (3.6) only if o is inside the interval [:r111_ 111 :rm+nJ, that is only if the slope of 

the characteristic is at least as large as r / h, or 

r $ h/c. (3.8) 

The interval [:r111 - 111 .r.m+nl is known as the numerical domain of dependence for U,\:'l 

with respect to the scheme (3.6). If the analytic domain of dependence is not com-

pletely included in the numerical domain of dependence (as in figure 3.1), required 

information is unavailable and there is consequently no bound on the possible error 

in U,~~~l. Equation (3.8) is known variously as a stability criterion, or a CFL criterion 

after Courant, Friedrichs, and Lewy (19]. 

In spectral methods the solution is represented as 

d 

l/(;r., t) = L Wk(t)¢k(x) (3.9) 
k=l 

where the¢~., ~: = 1, ... , dare basis functions for ad-dimensional subspace of a normed 
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0 

n .r"' 

:t'igure 3.1: Domain of Dependence for u(.r.," l.n)· The characteristic through (;r~111 , t,) 
passes through ( n, 0), but this point is outside the interval [:r111 _ 11 , :r.m+n] of information 
available to the numerical method. Consequently the error in ll at (.r111 , l 71 ) is not 
bounded. 

linear space of functions, such as L2(a, b], the space of Lebesgue integrable functions 

on [a. b). The basis functions may be a subset of a complete orthonormal set, as is 

the case when (3.9) represents a truncated Fourier series, or they might be a basis for 

a polynomial spline space, such as the B-splines to be introduced in chapter four. 

In order to determine the coefficients wk( I.) of the linear combination of basis 

functions in {3.9), the approximation is made to satisfy some condition that is also 

satisfied by the analytic solution. Let's consider equations of the form 

llt = Cu, 

where [, is a spatial differential operator. Clearly the KdV equation has this form, 

with Ctt = -6uttx - tt:rrx· 
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The Galerkin approximation is obtained from the requirement 

(ll (U, ¢k) =(CU. ¢k). ~: = 1, ... , d, 
d 

{3.10) 

where ( w, o) = I: wm/;r.. Petrov-Galerkin methods are similar, but allow the lr.sl 

functions to be different from the basis or f1'ial fuucfirms: 

d 
-( ll, 1/!k} = ( £.(!, 1/•k), 1.: = 1, ... 'd. 
dt 

(3.11) 

A more general and thorough view of trial and test functions, as well as the Galerkin 

and Petrov-Galerkin approximations, is given by Morton [69]. See also Mitchell and 

Wait [66]. 

The collocation approximation is obtained from the requirement that the approx-

imation satisfy the given PDE at some prescribed set of d points, say .\', so that 

l11 = .CU for all .r E .\'. (3.12) 

Note that the collocation method does not require the evaluation of integrals, making 

it an attractive alternative to the Galer kin methods. Useful introductions to the 

method of collocation can be found in Brunner [12] or Prenter [72), while Gottlieb 

and Orszag [43} discuss a variety of spectral methods. 

There are computational benefits when the basis functions have compact support, 

that is when they are identically zero outside a relatively short interval extending 

only a few gridpoints. In this sit.uation the systems of equations for the coefficients in 

the linear combinations have a narrow band structure, thereby yielding considerable 

savings in computing resources. 
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Equations {3.10), (3.11), and (3.12) all represent systems of ODEs. These must 

be solved in order to complete the numerical method. The time integration can be 

implemented by finite differencing, and often is [35, 24, 43], but spectral methods [29] 

can also be used. In chapter four we will develop a method using collocation in both 

space and time. 

Given an approximation l I ( .l\ l) to the exact solution u( .r., t) of a partial differential 

equation, there are a number of important associated properties. Here we simply 

introduce the ideas and for more details refer the reader to the works of Ames [6), 

Gottlieb and Orszag (43], Hall and Porsching [47), Richtmyer and Morton [75], Smith 

[85], and references therein. It will be convenient to write the PDE in the form 

A.: u = 0, where A.: is an evolutionary partial differential operator, and to represent the 

numerical method by f:.:11 = 0. 

The discretization error c at a point (.1: , t), or simply the error, is the difference 

between the exact solution and the numerical solution: 

r(.r, l) = u(.r., t)- U(;r, l). 

If r goes to zero (at a fixed point) as the space and time steps h, r go to zero, the 

numerical method is said to be convergent. Convergence may depend on h, r obeying 

some relationship as they are made smaller, as we might expect with our ea.rlier 

explicit finite difference scheme for the advection equation. 

The local truncation error r· is the residual obtained when the exact solution u is 
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substituted for the numerical solution l! in the numerical method: 

1·(x, t) :::;:: Ku(x~ t) (3.13} 

If r· goes to zero as h ~ T go to zero, the numerical method is said to be consistent. 

An estimate of the local truncation error t' can often be found by expanding u in a 

Taylor's series in (3.13). If the method is convergent with a local truncation error 

r :::;:: 0 (hr+t, rq+t ), the method is said to be p-th order accurate in space and q-th 

order accurate in time. 

Finally, a numerical method is said to be stable if U(.r.m, tn) remains bounded 

as n increases. For consistent approximations to linear PDEs, stability is equivalent 

to convergence. Authors appear to agree that proving stability or convergence for 

nonlinear problems is often intractable, and so the analysis is confined to linearized 

versions of the equations. We will see several examples of this in the following survey. 

3.2 Survey of Methods Used with the KdV equa-

tion 

In this section we tour some of the methods that have been used to solve the KdV 

equation numerically. Our aim is not to be exhaustive, but to visit a representative 

sample of th.e variety of methods in use. 

Historically, the earliest numerical scheme for the KdV equation was that of 
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Zabusky and Kruska.l [100). They used the finite difference scheme 

lf(n+ I) 
Ill 

u<n-l)- 6. 2 . m+l + m + m-1 m+t - . m-t 
( 

{ r<n) £!(") l/(n) ) ( u(n) u(n) ) 

m T 3 2h 

-2T m+2- m+l + m-1 - m-2 ({
/(tt) 2{/(n) 2£/(n) (/(n) ) 

2h.:3 

which has a local truncation error 0 (h 2 , r 2 ). The use of the three point average 

better conservation of (discrete) momentum than does the use of the more simple 

approximation l /,~:'). The scheme conserves discrete mass exactly provided that uJ"1 = 

fl1~~ 1 and f!~n) = UA~'), as is the case for periodic boundary conditions or for th~se 

boundary values set to zero. 

The time stepping derives from a centred difference and is known as a lcapfro,q 

scheme. It combines function values a.t the current and previous timesteps to generate 

the function values for the next time step. To get the method started, two initial 

conditions are required. This isn't physical and can give rise to a separation of the 

solution into the so-called physical and computational modes. Discussions of this 

phenomenon and its control can be found in [63, 35, 7]. Given the initial condition 

U,~~~, 111 = 0, ... , M, at l = 10 , the obvious way to get the solution at the next time 

step I = 1. 1 is with the explicit Euler step 

(J!ll 
111 
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Vliegenthart [94] obtained the stability criterion 

for the linearized equation, where u0 may be taken as the maximum magnitude of 

u(.r, t ). The factor of h3 is characteristic of explicit methods, and represents a severe 

restriction on the timestep. If, in the interests of accuracy for example, the space 

step is reduced from h to o-1 h, for some a > 1, the number of time steps required to 

integrate on [0, T] increases from Tfr to o 3 Tfr . Then if lV(m) is the work required to 

compute the approximation to 6rw 1• + 1t.rrx for m gridpoints, the total work required 

increases by the factor n=3W(n-J\I)fW(i\J), where Ar/ = (b-a)/h is the original number 

of mesh intervals. For the Zabusky-Kruskal method, W is a linear function, so the 

work increases as o'1• The consequences for cpu time can be seen in table 5.4. 

Greig and Morris [45] used a Hopscotch method consisting of the equations 

uCn+t) 
. Ill 

{3.14) 

{3.15) 

Equation (3.14) is explicit and used for those gridpoints for which nl+n is even, while 

equation {3.15} is implicit and used for those gridpoints for which m + n is odd. 
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Assume the solution is known at a time level for which 11 is even, as at the 

beginning of the integration when 11 = 0. Then (3.14) gives the solution at the next 

time level 11 + 1 for points with m = 0, 2, · · · , AJ; M assumed even. To obtain the 

solution at points with odd values of m, we rearrange (3.15) as 

All of the terms on the right are known. The solution for time level n has already 

been found and those terms at time leveln + 1 are all known from (3.14) since that 

equation is applied at points having m = 1. 3, ···,AI - 1. This yields the tridiagonal 

system 

1 1' 

_,. 1 ,. 

-r 1 1' 

-1' 1 

l ( n) 
Jl 

where r = r /(2ha) and 11!;,1 ) is the right side of (3.2). Similarly, when n is odd, (3.14) 

gives the solution for odd 111 which are then used in the right side of a tridiagonal 

system for even m. 

The scheme is found to have truncation err•1r 0 ( r 3
, rh2 ) under a linearized sta-

hility condition r < h3 
/ I 2 - llmtrrh

2 I . 
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Fornberg and Whitham [35] combine a Fourier transform in space with a leapfrog 

time step. For convenience, the spatial domain [n., f1] is normalized to [0, 211"} and 

discretized by the M + 1 equidistant points~~~~ = m271' / M, m = 0, · • · , M; M assumed 

to be even. The KdV equation 111 + 6uur + llJ·.r.r ::: 0 transforms to 

'J 
1•1 + 611, Pe + 11· ''(ee = 0 

where rr = 271' /( b- a), ~ = 11(.r- a), and ' '(~. t) ::: u( .1', f). 

Now the vector v!111 of function values n(em, t,J, 111 = 0, • · · , M, is transformed to 

the vector w in discrete Fourier space by 

,\t -1 

( r I ) I "" 1,( n)r-imk2"/.\T W ,.. • .,, = J'M /_..- m • 

m=ll 

k ::: o, ± 1, · · · . ±M /2 

and the inverse transform v = F- 1 
( w) is given by 

.un-1 
1,(n) ~ 1 ~ w(k I. )c'mk'ltr/M 

ttl "7M ~ ' •JI . , 

k:-,\1 /2 

m = 0, 1, · · ·, 1\I. 

Using the transforms, we havevr = :;:-t {i~::F(v)} and Vrrr = .r- 1 {(i~·f1J'(v)}. With 

a leapfrog timestep and an aproximation V to v, the numerical scheme to solve (3.2) 

is then 

Fornberg and Whitham then modify the last term and use 
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in order to better preserve accuracy at high wave numbers. 

The method has high spa·~ia.l accuracy [34], requires 3 fast Fourier transforms per 

time step, and is subject to the stability criterion 

where h = (b- a)f.\1. 

Taha and Ablowitz [89] consider the inverse scattering transform to develop a 

"global" method which in turn leads them to the less complicated "local" method: 

t·f,+l I = {'I'd 
rtt lll 

+ _r (/'(11+1) _ 3 f ' (u+l) + 3{~{11+1) _ (!(u+l)) 
2J, ' "' - I "' ' "' + I m + 2 

+ _r (/'{"). _ 31/(11) + 3( ;(11 ) _ /.r(u) ) 
·u1 • m-:.1 m-1 '" m+l 

_ :l r [(f !(11)):.1 _ {f.'I>~+I)):.IJ 
lh m rn 

with truncation error 0 {lt 2
• r 2

) [88}. They compare their methods with those of 

Zabusky and Kruskal (ZK), Greig and Morris (GM), Fornberg and Whitham (FW), 

and several others [42, 91, 88], finding their local scheme to be the fastest for a given 

accuracy requirement. On their most difficult test, a simulation of two solitons with 

amplitudes 0.5 and 2.5, interacting on [-20, 20] x [0. 2.4], and requiring a solution 

with error less than 0.02 in max norm, the relative computing times for the local, 

FW, GM, and ZK methods were 1, 1, 27.5, and 62.6 respectively. 

See Nouri and Sloan [71] for a comparison of the Fornberg and Whitham scheme 

with several other Fourier pseudospectral methods using different time discretizations. 
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They use the same tests as Taha and Ablowitz, so all of the methods in the two studies 

are compared to the FW method. 

Abe and Inoue [2] use a Fourier expansion method. They put 

'X; 

u(.r., I.) = L ak(t)r:ir.kr 
k=-'-"' 

into the KdV equation to obtain 

The sum is then truncated at 1.· = /.·max, and the equation integrated by the (fouth-

order) Runge-Kutta-Gill method. The linearized stability condition is 

Note that the shortest wave (with largest wavenumber) that can be resolved on a 

grid with space step h has length 2h, or wavenumber 1r/ h.. Putting this in the above, 

the stability condition becomes r ~ h3 frr 6
• They obtain accuracy improvements on 

Zabusky-Kruskal and Greig-Morris in their numerical experiments. 

Christov and Bekyarov [17] map the infinite interval into [ -1, 1] via an algebraic 

function. They then use the complete orthonormal Sl.~ of Chebyshev polynomials to 

represent the solution as 

00 

u(:1:, t) = I:ak(t)C~.:(x) 
k=O 
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and at each timestep t 11 require it to satisfy ( cf equation (2.2)) 

-Cll + 311 2 + llr.r ::;::: 0. 

The resulting infinite system of (nonlinear) algebraic equations for the unknown co-

efficients ak(lu) is then truncated to some finite number /\ . 

For the case of the solitary wave, they obtain good agreement with analytically 

computed coefficients and with the soliton shape. Unfortunately, they do not report 

on phase error or multiple soliton interactions. 

Alexander and Morris [5] use a Petrov-Galerkin finite element method proposed 

by Wahlbin [96]. The approximate solution u(.1:, l) is represented as 

f!(.r, I)= l:n j(l )4>j(;1:) 
j 

using smoothest cubic spline ba&is functions 4>1(;r:) having compact support on an 

interval of length 4h. 'I'he solution is then required to satisfy 

where h is the uniform space step, q is an arbitrary dissipation parameter and 

(!,g)= I:. f(.r)g(;r.)d;r:. 

The resulting system of ODEs was solved using an IMSL library routine. 

Their analysis for the linearized equation (which ha.s tt replaced by a constant 

in the quadratic term) shows an accuracy of order 6 (more generally, of order 2 p 
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for splines of degree p ). The paper is concerned with the effect of the dissipation 

parameter and presents results for the case q = 0, but does not make comparison 

with other methods. 

Sanz-Serna and Christie [79] use a Petrov-Galerkin method with different trial 

and test functions. The solution is approximated by 

The "trial" functions c/J;( ;r:) are piecewise linear with compact support (the well known 

11hat" functions). The unknown functions l!i(t) are determined from the system of 

ODEs: 

where this last equation has been obtained by multiplying the KdV equation by the 

twice differentiable function tpj{;c;) and integrating by parts. The "test" functions r/Jj 

are piecewise cubic with support on an interval of length 4h. 

The scheme is shown to be fourth order accurate in space and is integrated in 

time by the second order accurate Crank-Nicholson method (trapezoidal rule), using 

a Newton iteration to solve the resulting nonlinear system of algebraic equations. 

Numerical experiments with a solitary wave show improved results over Zabusky­

Kruskal, Greig-Morris, and Alexander-Morris. 

Mitchell and Schoombie [65] modify the method to permit the use of piecewise 

linear test functions for second order accuracy. Third order accuracy can be obtained 
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using quadratic splines. 

Frutos and Sanz-Serna [24] present an implicit method with fourth order accuracy 

in time. If F(U) is a spatial discreti?ation of the KdV equation, where U is an [\' 

component vector of the approximate solution at the grid points, it is necessary to 

solve U1 = F(U). Finding U(tu+t) = U(lu +r) from U(tn) proceeds in 3 stages, each 

of which involes the solution of an N dimensional system of equations to compute 

auxilliary vectors that are meant to approximate the solution u at times tn + /31 r, t,1 + 

(tit+ /:l2)r , and 1,1 + (!"lt + t/2 + 83)r = 1,1 , where fit = (2 + 2* + 2-t )/3, th = 1- 2{3,, 

and 13:>. = /:It · Note that .i:lt + 1"]2 + !3:>. = 1 and also /~iJ + {3~ + B[j = 0. 

Using the spatial discretization of Sanz-Serna and Christie [79], a space step h = 

0.1, a time step r = 0.0125, and an initial condition taken from the one soliton 

solution 11(.r.l) = 2sech2(.r- 4t) at t = 0, they integrate from l = 0 to l = 2 on 

the interval [-20, 20], obtaining an error of 3.4 x 10-'• in max norm. The simulation 

required 480 matrix factorizations and the solution of 967 linear systems. 
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Chapter 4 

Collocation Solution of the 

Korteweg-de Vries Equation 

We now turn to the development of a bivariate spline collocation approximation to 

the solution of the KdV equation. Our approach follows that of the well known 

Method of Lines, first discretizing in space to obtain a system of ODEs with time 

as the independent variable, and then discretizing in time to obtain a fully discrete 

numerical scheme. We begin the discussion with a review of some useful results from 

approximation theory. 

4.1 Mathematical Background 

Definition 4.1 ( Polynomial Spline Space ) Let n~) : (L = X o < X t < ... < 

;r; M = /1 be a partition of the inte1'lla/ n := (a, b), with n,l := (:r.m, Xm+d, hm := 
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.rm+l - .r. 711 , and h := ma:r{hm}• m = 0, 1, ... , .M -1. Denote by 1rp the space of t'fal 

pnlynomia{,q with drgl'fr at mo.c;f p. and let 1 $ 6 $ p + 1. Then 

"·p-6 (n(.r)) { ( ) c·p-l! I } .. 11 At := V :r : 1J E j V Orn E 71"11 

is lhr polynomial ,c;p/inr: spacr r.ou.c;i.r.;fiug of polynomial . ., of degl'cc a/ mosl p and haviug 

Jl- 6 ('01/fillllO!LS dcrillatiiJCS Oil f2 . 

In general the (p + 1 - 6)-th to p-th derivatives of elements of this space are dis-

continuous at the interior mesh points :rh ... , :L'M-h while higher derivatives vanish 

everywhere on n (where they are defined). The integer b, which determines the 

smoothness at the breakpoints, is known as the defect of the spline space. 

Theorem 4.2 7'h polynomial spline .r.;parr s~-6 (n~;?) is a linear 8pacc with dimcu-

·" irm d !I i rw 11 {, !J 

d = M(p + 1)- (M -l)(p- 8 + 1) = M6 + p- 6 + 1. 

Proof: See Schumaker [82, page 110]. 

Having determined that s;:-{1 (n~~l) is a linear space, it is natural to seek a set of 

basis functions. 

Definition 4.3 (Extended Partition) Lrl II~) :a= :r.0 < :r 1 < · · · < :rM = b be ll 

par/ilion of [a, b]. Thc11 the rxlrudrd Jmt·lilion a.'isocialcd with the polynomial spline 
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c•p-6 (rr(r)) . . b .r.;parr •""'r M 1s gwrn y 

II(.t) - { .-r. • 
___M_ - • ·k • .r, = · · · = .rv+t = .ru = a 

:rr+'H(i-1)6 = ... = :r.r+t+ifi = .r.i, i = 1, ... ' AJ - 1 

·~'v+H(M-t)o = · · · = :e2r+2+(M-t)6 = ;rllf = b}. 

Before giving our next definition we introduce some convenient notation for di-

vided differences and truncation functions. First, denote by [:ri, ... , .Ci+m] f the m-th 

divided difference of the function J( .r). Then, for the truncation function, let 

1, ;r ~ .X 

0, :r < :r 

and, for p > 0 

(:r- .r.)~ = { 
0, 

( :-)P .r. - .r , 

.r. <.'f.. 

We can now define our basis functions. 

Definition 4.4 (B-splines) Lr.t s;-s ( II~'fl) be a given polynomial spline space with 

associated extended paT'lition II~) . Then jo1· i = 1, 2, ... , d, the i.-1/1 B-spli11c of order 

7J fm· the knot sequence { x} is defined by 

Usually the degree p is easily inferred from context and we simply write Bi for Bf. 

Our next theorem establishes that the B-splines actually form a basis. 
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Theorem 4.5 (Curry and Schoenberg) The set of 8-splines {Bf(x): 1:::; i:::; d} 

fomu~. a ba.c;i.<; for the polynomial ,c;p/inr. .c;pacr. sr6 (rr~l). 

Proof: See Schumaker [82, page 116). 

The next few theorems review some important properties of the B-splines associ­

ated with s~-h (rr~~l). 

Theorem 4.6 The 8-sp/inrs hatJc ('ompart support: B;(x) = 0 for;,;~ [J!j.:ri+P+d· 

1/rna only p + 1 B-spliurs are non-zero ou a particular inlet·tml Om. 

Proof: See Schumaker (82, page 116] or deBoor [22, page 109]. 

Theorem 4. 7 '/'ltr JJ.,.,p/inc:.<; arr po.<~ilinr on ihcit· tmpport. 

Proof: See Schumaker [82, page 116] or deBoor [22, page 131]. 

Theorem 4.8 The B-splinr.<; form a pat·lilio71 of unity, thai i." L.1=t Bi( x) = 1. 

Proof: See Schumaker [82, page 125]. 

Note that in view of the compact support, L-1=1 Bi(:r.) = L.{=i-P B;(.r.) for Xj :::; ;r, < 

Theorem 4.9 Thr 13-.<sp/inr.'l and thci1' dcrivalivr.s ran be evaluated in a stable way 

by mean.<; of a .1-lcrm rrc1l1'1'Ctu·r rrlation. 

Proof: See deBoor[22, chapter 10] and Cox [20]. 

Problem 4.10 (Interpolation) Gi11cn a set of points :z:;, i = 1, ... , d and a set of 

/unr.tion tlaltte.s fi := /(xi), i = 1, ... , cl, the interpolation problem is to find a spline 
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funrlion .'l(;z:) from a .'l1Litablc d-dime.n.'>ional spline spaceS so thai ,.;(xi)= f(xi), i. = 

1, ... ,d. 

If the spline space 8 has basis functions 'P j{ :r.), j = 1, ... , d, then the required spline 

can be written as a linear combination of these functions. Letting a3 , j = 1, ... ,d 

be the coefficients of the linear combination, we can write 

d 

.<;(.z:i) = L OJ'f'i(;r.i), i = 1, ... , d 
J=l 

Determining .c;(:r.) arr.ounts to solving this linear system for the o j. The system can 

be written in matrix notation as 

Ma= u, 

Our next theorem tells us under what circumstances the matrix M is nonsingular 

when our spline ·" comes from the space sr6 (rr~~l) and we work with the B-spline 

basis. 

Theorem 4.11 (Schoenberg and Whitney) Let ;1: 1 < · · · < S:,1, and let. Bi(.r.), i = 

1, ... , rl br the B-spliur. ba .. ~is /tt11Clion ... fo7' the polynomial spline space s:-6 (n~l). 

Then 

is nonsingular if and only if 

x; E {x: B;(x) -:f 0}, 
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thai i8, if aud only i.f 

Proof: See Schumaker {82, page 167]. 

Problem 4.12 (Collocation) Gi11r11 n ..,rf. of collomlio11 point.." .l:i, i = 1, ... , ri, a 

frwrlion f(.l'), an opr.ralor 'H., and an rqulllion 1-lu = f for uul.:nown funf'lion u(;l'), 

/he f'olloralion problem ron,qisls of jindi11,q a fu11r.lio11 .•:(;r.) from 80111t' suitablr: splinr: 

!>parr ,C.,' ... n /hal 1-f..o.; = .f a/ /he ('()1/omlion points. 

Just as our previous theorem was useful for solving the interpolation problem, the 

following theorem will he useful for solving the collocation problem. In particular, it 

will guide our selection of the collocation points. 

Theorem 4.13 (Karlin) Tht· malri.r M = [13
3

1-'(.i:i)] i," totally positive, 1 .• r. for 
rlxrl 

any inlr,qr·rs 1 S 111 < · · · < ll,j S d and any poiul.r; .i: 1 < · · · < .r.J 

drl [13~ (./'i)] .. ~ 0. 
1 rl xrl 

Fur/hrrmorr, ,o.;/ricl posiliiJily holtf.o; if and only if 

that i.<;, if and (Jill!} if 
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Proof: See Schumaker (82, page 169]. 

We will see that the Gauss points of a partition satisfy the condition for strict 

positivity in theorem 4.13. To introduce these we need to look at quadrature formulae. 

For more details than can be given hPre, see Brunner and van der Houwen, [13], Davis 

and Rabinowitz [21], or Stroud [86). 

A quadrature formula is a formula of the type 

h II j w(.r)j(.1:)d.r = L akf(xk) + E(f) 
n k=l 

( 4.1) 

for the approximate evaluation of definite integrals. The ;l:k. ~: = 1, ... , 11 are called 

the nodes, points, or abscissae of the formula, the ak are the coefficients or weights, 

and E(.f) is the error in the approximation. The function w( ;r) is called the weight 

function. For our purposes it will be the constant function w(.1:) = 1. The formula 

(4.1) is said to have degree p if it is exact for all polynomials of degree :5 p, but not 

exact for some polynomial of degree ]J + 1. 

The following sequence of theorems and definitions introduces Gauss quadrature 

and the Gauss points of a partition rr~l. It is assumed that on the interval of inte-

gration the weight function w(;r) is non-negative, and zero at no more than a finite 

number of points. 

Theorem 4.14 Gi1Jcn any n flisli11ct poinf.<; :r11 ••• , :r:11 , we can find constant.., a1, ... , tt 11 

such lhallhr formula (4.1) i,., cxar.l, i.r. 
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whenever f(;r.) i,., a polynomial of drgrrr :::; n- 1. 

Proof: See Stroud [86, page 107]. 

Definition 4.15 (Orthogonal Polynomial) An n-th degree polynomial P,lr.) i..;; 

said lo be orlho,qonal on [a, bJ, with rcsprcf. lo the wr(qhl June/ion w( ;r), lo all poly no-

111 ia/,c; of rlr,qrcr :5 n - 1 if 

!." w(.t)P,lt)Qn-t(:r.)dx = 0 

" 
for all polynomin[,., Qn-l ( ;1:) of dr,qrcc ~ n - 1. 

Theorem 4.16 P,(:r) alWflJJS c.risls rwd i.'l 1wiqur. 

Proof: See Stroud [86, page 126]. 

Theorem 4.17 The zcro.r; of P11 (;r.) arf' rrn/, dislind, and lie in lhe open inlc1'1Jal 

(a, b). 

Proof: See Stroud [86, page 130]. 

Theorem 4.18 If fhr poinf.c; in fm·muln (4.1} ar·c !hr. zcro.c; of Pn(:r.) and a1, ••• ,a71 

arr such thai the form.uln has dcgrrr. n - 1. then it acfuali') has dcgrrc 2n - 1. 

Proof: See Stroud (86, page 135). 

A formula of the type ( 4.1) for which theo~ ~ .. , ·~ .18 holds is known as a Gauss quadra-

ture formula. 

For the weight function w(:r.) = 1 on the interval [-1, 1], Pn(x) is the Legendre 

polynomial of degree n. We will call the zeros of this polynomial the Gauss points 
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Table 4.1: Gauss points and coefficients on {--1, 1). 

n .T. j , i = 1, ... , n Ci, i = 1, .... n 
1 0 2 
2 -..;3/3 VJ/3 1 1 

3 -J315 0 J3i5 5/9 8/9 5/9 

of order 11 on the standard interval (-1, 1). Table 4.1 shows the Gauss points and 

corresponding coefficients for the first three Gauss formulae on the standard interval. 

More extensive tables can be found in Stroud and Secrest [87) or in Abramowitz tJ.nd 

Stegun (3]. 

The Gauss points on an arbitrary interval Om = [:r.m, .r,+,] are easily obtained 

from those on the standard interval via the mapping .r ....._. :r111 + h( 1 + .r. )/2, where 

h = a:m+l - .r-m. We have already spoken of the set of Gauss points of a partition 

II X';). By this we mean the union over all subintervals of the Gauss points on those 

subintervals, that is 

{.rm,k : ;rm,k! ~: = 1, ... , 11 is a Gauss point on 0 111 , m = 0, 1, ... , A.J- 1 }. 

The Gauss quadrature formulae use only points in the interior of the interval [a, b) . 

If the endpoint b is to be included in the abscissae, then the lladcw II formulae may 

be used instead. The points for these formulae are also derived from the zeros of 

Legendre polynomials, and the formulae have degree of precision 2n - 2. See [13, 

page 60ft') for details. Table 4.2 shows the points and coefficients for the first three 

Radau II formulae. We will not have occasion to use the Radau I points, which 
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Table 4.2: Radau II points and coefficients on [-1, 1). 
r-· 

i = 1. .... I! c;. i=L ... ,n II .l'j. 

1 1 2 
2 -1/3 1 ?./2 1/2 
3 (-1- v'S)/5 ( -1 + J6)/5 0 (16 + v'B)/18 (16 - v'S)/18 4/18 

include the left endpoint of the interval [a. b] instead of the right. 

4.2 Collocation in Space 

We wish to solve the KdV equation in the form 

111 + 6rt!l.r + Ur.rr = 0, I. > 0 ( 4.2) 

subject to the initial condition 

11(.1'. 0) = 6(.r). .r E R (4.3) 

where I.'J('il(.r) ____, 0 as !.rl ____, oo. 11 = 0.1. .... 

We seek l ''(.r.t)::::::: u(.r.l) on [a.b] x [O.T]. The spatial interval [a,b] is chosen 

sufficiently large so that during the tim(' interval of mterest (O,T], the solution and 

its derivatives remain negligibly small at a and b, that is 

11 = 0, 1, ... ; t E (0, T). (4.4) 

We begin with a semi-discretization of the problem, discretizing in space and thereby 

obtaining a system of ODEs having time a.s the independent variable. 
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Let II~) : a = .r0 < .r1 < · · · < .r,\J = b be a partition of the spatial domain 

n = (a, lJ]. Set nm := (.rTII .. l\n+ll and h.,., := .rm+l - .l~m, m = o. 1, ... , :\1 -1. 

The approximation U(.r , l) will have the form 

tl 

U(.r.l) = L 88(.r)w~ (t) ( 4 .5) 
!=I 

where l/13 , ·" = 1. . . . , d, are functions to be determined in C(O, T], and B&(.r). ·" = 

1. .. . . d, are basis functions for the polynomial spline space 

of dimension d = Mf, + (p + 1 - 8). 

Now introduce the collocation parameters 0 ~ c1 < c2 < · · · < C6 < 1. On each 

subinterval n,... m = 0, ... ' i\1 - 1, set .l'm ,i := .t'm + Ci hm. i = 1, . . ' '8. Relabel ,l'm,t 

by .rmb+•• i = 1. ... , <5, m = 0, ... , M - 1, and let X.u = Pr : 1 < 7':::; JJ <5}. We will 

require the approximation (4.5) to satisfy (4.2) on the set oflines X,\1 x [0.1']. This is 

the (spatial) collocation condition, and the elements of XM are known as the (spatial) 

collocation points. Note that we have 6 collocation points in each subinterval. 

The approximation (4.5) will also be required to satisfy the p - 8 + 1 boundary 

conditions 

{) '1U (:z: , f.) p- 8- 1 a = 0 at .r = a , b; for 11 = 0,1, . . . , . 
T~ 2 (4.6) 

Note that this requires p - 8 to be odd. Physical considerations suggest that Uxx.x be 

at least piecewise continuous, so we also require p - 8 > 3. 
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When the approximation (4.5) is put into (4.2) and (4.4) we obtain a system of d 

ordinary differential equations: 

:t. {B.,( .C. )w:(t) + 6 B,(j,.) w,(l)?; a:(.i·. )w.( I)+ a:'(:!, )w, ( t)} = 0, 

r= l, . .. ,Mli (4.7) 

,{ d'1 B., (a ) p - {J - 1 L I w ~ (t) = 0, ,, = 0, ... , 2 ( 4. 8) 
·'""I C ,1''1 

,( d,1 B., (b) p - fJ - 1 L l w .,(l) = 0, 'I= 0, ... , 
2 

(4.9) ··=• ( ;t•ll 
with the initial condition 

d 

L Blrr )w.,(O) = ¢(.i:r), r = 1, ... , JV/6. (4.10) 
-'=I 

The above system can be somewhat simplified by working in a suitable subspace 

of s::-6 (n~~l) whose basis functions all satisfy the given boundary conditions. To 

this end, consider first the B-spline basis 13 := { Bi : 1 ~ i ::; d} for sr6 (rr~l) with 

its associated extended partition 

rr(x) {-__1L = .l:k: .'ft = · · · = .?.v+t =.co= a 

.'fJ>+:.!+(i-1 )~ = ... = ;?.ptl+i6 = Xj, i = 1, ... , .M- 1 

.r,,+H(M-1 )8 = '· · = .r2p+2+(M-1)6' = XM = b }. 

It is easy to show from the definitions of the B-splines that 

i = 2, ... ,cl- 1 

i = 3, ... , cL- 2 
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while on the other hand 

Thus the set of funct.ions formed by removing the first and last (p- 6 + 1)/2 B-splines 

from the above basis B will satisfy the given boundary conditions. The span of this 

reduced basis is the subspace of s·:-5 (n~') defined by 

.S':;-6 ( IT~~l) = { t.'(;r.) : 1' E sro ( nt1) and 

H('ll(.ro) = ul'll(xM) = 0, TJ = 0, ... , r-~-t} 

which has dimension reduced from d to cl = d- (p- o + 1) =Mo. Now by renaming 

according to 

our system of o.d.e.'s becomes 

,[ { ri } ?; B.,( :l:r)tv~(l)+ 6Jjll:r)w .• (t)?; B~(J:r)tvv(t)+ B~"(.i:r)tv3(t) = 0, 

1' = 1, .. . , lv/5 (4.11) 

where tv., = w$+(p+t-6)/2• i = 1, ... , ll, and primes indicate ordinary derivatives. 

It is useful (and somewhat tidier) to write the system ( 4 .11) in matrix notation. 

Let w = (tii1, ... , tiiJf, B =(!hi )Jxr1' where #i.i = B;(xi), and denote by 0 the ele-

mentwise multiplication of vectors, so that x ®y = (x1y11 • • • , Xd11J)T. Then, using the 

convenient subscript notation of partial derivatives to represent ordinary derivatives, 

( 4.11) becomes 

Bw, + 6(Bw) 0 (Bxw) + Bx.rrW = 0. (4.12) 
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The initial condition {4.4) becomes 

Bw = 4> ( 4.13) 

where~ - (¢(.h) .... ,<b(;l:M~))r is the restriction of <b(x) to the set of collocation 

points X 1\1 • 

We now have our semidiscretization of the KdV initial value problem in equations 

( 4.12) and ( 4.13). Our next job is to discretize time and so complete the numerical 

method. 

4.3 Collocation in Time 

Our approximation f/(.1:, l) has the form 

,j 

(!(;~:, l) = L Bs(;r:)w~(t) ( 4.14) 
~=I 

but now, to complete the discretization of (4.12), our functions tu8 (t), s = 1, ... , d will 

be elements of a polynomial spline space, rather t.han the continuous functions of the 

previous section. In particular, we will consider the cases where w = (w, , ... , 1.VJ)1' 

is piecewise linear ( t/Jj E S'? ( nW)) and piecewise quadratic ( Wi E s~ ( nW) ). Here 

n~> : 0 = 1. 0 < · · · < lN = T is a partition of (0, 1'], and it will be convenient to have 

Tn == lu+l -ln. II= o, ... ,N -1. 
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4.3.1 Piecewise Linear Interpolant 

Represent w(t) on [t11 , tn+d by 

( 4.15) 

where a!n) and b(u) are vectors to be determined in Rd, and Lbn) (t), .C\n) (t) are the 

fundamental linear Lagrange polynomials 

{ 

lntl-1 
Inti -In' 

0, elsewhere 

{ 

t-In 
lntJ-ln' 

0, elsewhere. 

These functions form a local basis (equivalent to the B-spline basis) on the interval 

[t,0 ln+l} for the polynomial spline space 8? (rrW). Then on {t11 , ln+d we have 

dw 
dt 

a<n>i.c(n) (t) + b(n>:.!..c(n) (t) 
dt 0 dt 1 

= _ _!_a(n) + _!_b(n). 
Tn Tu 

Introduce the set of time collocation points 

TN:= {in:= l 71 + "YJTn: "Yt E [0, 1), 0:5 7l :5 N- 1} 

and, using (4.12}, collocate at in to obtain 
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Using 

"u(11) (t~ .. 
1

) = r(n) ( ) 
L- • "-o f.u + ltTn -

J0(
1
n) (t~ .. 

1
) = r(n) ( ) ~.- • "- 1 ln + It r,t - 'Yt 

the collocation equation becomes 

( 4.16) 

Note that on [l.n, ln+tl 

= a<ntl) 

which gives the relation 

( 4.17) 

Meanwhile, the initial condition Bw = ~ yields 
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or 

(4.18) 

Assuming that B-1 exists, equations (4.16), (4.17), and (4.18) provide the means for 

recursively computing U(a:,t) on XM x 1'rv: 

Algorithm 4.19 

1. SohJr (4. 18} for a<0 l. 

2. Givru aCn): 

(a) Solve (1.16) forb(n). Then (4.15) gives w(l) on [tn,ln+d· 

(b) Usc (4.14) to obtain U(:r,l) anywhere on n X [tn,ln+d· 

(c) (!.~c (4.17) to obtain a<n+t) fmm. b(n). 

4.3.2 Piecewise Quadratic Interpolant 

Ifw(t) is a piecewise quadratic function, then w1 := dwj(lt is piecewise linear. Conse-

quently we can represent w1 on [tn, t,l+l] in a now familiar way with the fundamental 

linear Lagrange functions, that is 

a<nl b(n) 
- - (tn+t - t} + -(t- tn) 

T11 T11 

( 4.19) 
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For I. E [1 11 , l11+t} we can write t = 1.,1 + M"11 for tJome .<~ E [0, 1]. Putting this value in 

(4.19) results in 

( 4.20) 

which, together with 

gtves 

This evaluates to 

Introducing the collocation parameters 0 ::::; l'l < 12 ::::; 1 and collocating on 

leads from {4.12) to the collocation equations 

where wand w 1 are given by (4.21) and (4.20) respectively. 

From the initial condition Bw(io) = ~ we get 

w{lo) = a-1 ~, ( 4.23) 
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and by putting.~= 1 in (4.21) we obtain 

w(tn+d = w(t" + Tu) 

= w(tn) + ~~ (a(n) + b(nl). ( 4.24) 

Letting TN = { Ln,.• : ,.:; = "Yt. -y2 , 0 $ 11 5 JV - 1} and again assuming B -t exists, we 

can now recursively compute l!(.r.l) on X.\1 x 1N as follows: 

Algorit1un 4.20 

1. Solvr (4.2.'J}forw{lu). 

0 Girlfn w(l11 ): 

(a} Snlrw lh r rollocal ion equal io 11.!1 ( 4. 22) for a< n), b("). Thr11 ( 4. 21) ghJc.<> w{f.) 

(b) {/,<;(' (4.14) lo oblain U(:r., l) auywhcrc on n X [tn, tn+d· 

(<'} lf.c;f (4.24) to obtain w(ln+t ). 

Remark 4.1 The collocation matrix B will be non-singular whenever the set XM 

of collocation points in space is chosen in accordance with the condition for strict 

positivity in theorem 4.13. This condition is satisfied by the set of Gauss points of 

the partition n~l. Collocation at the Gauss points has been used successfully with 

initial vah~e problems for ODEs, yielding solutions converging with accuracy 0 (h26) 
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at the mesh points [23]. For PDEs, similar success has been achieved for elliptic 

boundary value problems [72, 51] and for parabolic initial value problems [29]. In 

view of these successes , we choose the Gauss points as our collocation points in 

space. In the time dimension we will try collocating at the Radau II points as well 

as at the Gauss points. 

Remark 4.2 Recall that the matrix B is order fl = Mli and has entries Hi,; = 

ll;(.'i·i) == B(J•+I-<~")/2+J(.i:i)· Since only p+ 1 B-splines are supported on any subinterval 

0,1 , there are at most 11+ 1 non-zeros on any row of B. The semi-bandwidth is equal 

to p- (p + 1 - ti)/2. The structure of the matrix B is shown diagramatically below 

for I' = 5 and ~ = 2. The asterisks represent the possibly non-zero entries and the 

zero entries are omitted for clarity. 

* :t .j: * 
* * * * 
* * * * * * 
* * * * * * 

* * * * * * 
* * * * * * 

* * * * 
* * * * 

The 111-th block row corresponds to the set of collocation points on the mesh subin· 

terval Slm-t . 

Remark 4.3 The collocation equations (4.16) and (4.22) are nonlinear and will need 

to be solved by an iterative procedure. The systems have order M6 and 2Mfi respec· 

tively. 
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4.4 Implementation Details 

Our Fortran implementations of algorithms 4.19 and 4.20 make use of available soft· 

ware for linear algebra and the evaluation of B-splines . All such software is in the 

public domain and available by electronic mail or file transfer from the NETLIB / 

archive. 

The PPPACI{ software (22) is used to evaluate the B-splines and their derivatives. 

These arc evaluated at the collocation points and stored in compact representations 

of the matrices B, B.r, and B :rrr· 

The equations Bw(t0) = <!» are solved for w(f.0) using LINPACK [27] factor and 

solve routines for general band matrices. The factorization overwrites B, so we keep 

a copy for later use. 

The collocation equations are sulved iteratively for w(lu+l) using a simple Newton 

iteration 

wlk+l) = wlk) _ .J-IF(w(k)) 

with w( 1.11 ) taken as the initial estimate wl0l. Here the vector function F( w) is the left 

side of the collocation equation and J is its Jacobian. The Jacobian is computed afresh 

in each time step, but then held fixed through the iterations, permitting us to solve 

the collocation equations with only one matrix factorization. The Jacobian inherits 

the band structure of the matrix B, and we again use the LINPACK software for 

the factorization and subsequent solves. An analytic expression for the Jacobian can 

be obtained from the collocation equation. This expression, as well as the successive 
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values of F required through the iterations, are computed with the assistance of 

BLAS routines [60, 28}. Our stopping criteria require that the collocation equation 

is satisfied within a given tolerance, and that successive iterates differ by less than a 

(possibly different) given tolerance. The second criterion is included to ensure that 

the method is converging to a solution when the first criterion is met. Experience 

showed that there was little to be gained, and often much to be lost, by the use of 

very small tolerances: see table 5.6. 

At preselected times, the solution is computed at the mesh points and written 

to a file for plotting. At the outset, de Boor's software is again used to evaluate 

the /3-splines , this time at the mesh points. These values are stored in a compact 

representation of a non-square matrix M ::::: [Bj{.ri)](M-t)xJ· The product Mw(fn) 

then gives li(.r 11n1 11 ), 111 = l, ... ,J\I -1, while the boundary values U(.l'o!l 11 ) and 

U(.r~ ,,,,/ 11 ) are taken to be zero. 

If we wish to test the fidelity of the numerical method to our conservation laws, 

we can compute the B-splines and their first derivative at the quadrature points and 

store these values in compact representations of matrices Q and Q.r.. Then at the 

same preselected output times we can compute Qw, and Qrw and combine them as 

required to obtain lf, (!~,and ( f 1 - Ur./2 at the quadrature points. 
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Chapter 5 

Numerical Results 

In this chapter we examine the performance of the methods developed in chapter 

four and compare those methods with that of Zabusky and Kruskal. The simplicity 

of the Zabusky-Kruskal method makes it ideal as a basis for comparison, as it can be 

implemented quickly and efficiently without specialized or arcane knowledge. 

Accurate soliton solutions of the KdV equation present a considerable challenge 

to numerical methods. The greatest difficulty appears to lie with the speed of the 

solitons (see for example [50]), so that the numerical soliton increasingly lags the 

analytic soliton. The growing phase error results in a growing /JOC> (or max) error norm 

until such time as the numeric and analytic solitons completely separate and the L ,::ro 

error norm saturates at the value of the soliton amplitude. It is this interpretation 

of error norm as a measure of phase error that we wish to keep in mind when we 

view the test results below. Recall that faster solitons are taller and narrower than 
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slower solitons. Consequently their profiles have steeper slope and so the Loo error 

norm becomes an increasingly sensitive measure of phase error with increasing soliton 

speeds. 

It will be convenient to have some abbreviated names for the three methods under 

comparison, so we will refer to our implementation of algorithm 4.19 as C1, to that of 

algorithm 4.20 as C2, and to that of Zabusky-Kruskal as ZK. The names Cn, 11 = 1, 2 

are intended as mnemonics for collocation at n points in each subinterval of time. 

5.1 Testing Procedures 

For both of the collocation methods we chose to use a spatial approximation from 

s},"-21 (IT~~1 ). The quintic splines are the splines of lowest degree that permit two 

collocation points in each spatial mesh interval. Use of lowest degree splines results 

in matrices of minimum bandwidth, and convergence results for collocation at Gauss 

points by other authors (see remark 4.1) suggest that two collocation points will give 

us fourth-order accuracy at the mesh points. How accuracy and performance vary 

with different spline space choices remains an open question. 

The tests and comparisons are based on a suite of seven initial value problems for 

the KdV equation. The underlying idea is to choose the parameters of the numerical 

methods, e.g. space step and time step, in such a way that a prescribed accuracy 

requirement is met with a minimum use of cpu time. The time used by the various 

methods can then be compared. 
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The test problems consist of initial conditions that satisfy either the single soliton 

solution {2.3) or the two soliton solution (2.7). In each case the problem domain is 

[-20, 20] x [0, T}, and it is required that the final solution U(x, T) have an absolute 

error less than a prescribed quantity, as measured by the L00 nor.m. All of the two 

soliton problems witness a soliton interaction. 

The relevant problem parameters are given in table 5.1. The first five problems 

are equivalent to those used by Taha and Ablowitz in their comparative study (88], 

and the last two are added to further challenge the methods with faster solitons. The 

typical two-soliton solution that was shown graphically in chapter 2 {figures 2.1 and 

2.2) is the analytic solution to problem 7. This can be shown to be identical to th~ 

frequently cited [30, 59, 67) solution 

( ) 
3 + 4cosh(2:r- 8t) + cosh{4x- 64t) 

u.r,f = 2 [3cosh(x- 28t) + cosh(3x- 36#.)} 

on the domain [-20, 20] x {-1, 1). 

Table 5.1: Initial conditions, domain, and required accuracy for the seven test prob­
lems. u: number of solitons, ci: speed of i-th soliton, ;r;i: position of i-th soliton at 
t = 0. Solution at time T must have error less than Emax in Loo norm. 

problem n CJ .r, c2 :1:2 [O,T] Emn:r 
1 1 2 0 (0, 1] 0.005 
2 1 4 0 (0.1] 0.01 
3 1 8 0 [0, 1] 0.022 
4 2 1 0 2 -2 [0, 3) 0.002 
5 2 1 0 5 -4.8 (0, 2.4] 0.02 
6 2 3 -2.23965400369905 9 -8.56101403435839 [0,2] 0.02 
7 2 4 -3.45069385566594 16 -15.72534692783297 (o, 2) 0.08 
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All timing tests were run on a MIPS R2000A/R3000 33 MHz cpu equipped with 

a MIPS R2010A/R3010 floating point unit and 64 Kbyte data cache. 

We also monitor the evolution of the conserved quantities ! 1, ! 2 , fa given by the 

integrals in equations (2.10), (2.11) and (2.12), respectively. To evaluate the integrals 

for the Cl and C2 methods we used an eight point Gauss quadrature formula, which 

has a zero error for polynomials of degree 15 or less. This includes our approximations 

for U, lf'Z, and {/3 - U'f,/2. Values of Ur were computed directly from the B-spline 

derivatives at the quadrature points. For the ZK method we used Simpson's rule 

(following (88]) on the approximate values at. the mesh points, and approximated U~. 

with finite differences in U. 

For problems 1, 2, 3, and 7 we were able to obtain exact values for the integrals 

using the MAPLE® [16] symbolic computation system. We made use of the fact 

that the solution to problem 7 at time t = 1 reduces to u(.r., 1} = 6sech2.r.. For the 

remaining problems we evaluated the integrals using the eight point Gauss quadrature 

scheme, with analytic values for u and tlr on one thousand intervals of length 0.04 

each. Where exact integral values were available, results from ·lte quadrature agreed 

to nine significant digits or better. The values obtained are shown in table 5.2. 

The importance of conservation in numerical schemes is discussed in some detail 

by de Frutos and Sanz-Serna [25], using the KdV equation for illustration. They 

observe that schemes conserving ! 2 exactly have no error in soliton amplitude and 

only linear growth in soliton phase error, whereas nonconservative schemes experience 
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Table 5.2: Values of the conserved quantities It, 12 , 13 for the seven test problems 

problem integral analytic quadrature 
pl It 2v'2 2.82842712 

12 4/3V2 1.88561808 
13 4/5../2 1.13137085 

p2 It 4 4.00000000 
12 16/3 5.33333333 
Ia 32/5 6.40000000 

p3 It 4J(2) 5.65685425 

h 32/3/(2) 15.0849446 

13 128;s{(2) 36.2038672 
p4 It 4.82842707 

12 2.55228474 
Ia 1.33137084 

p5 It 6.47213593 
/2 8.12022659 
Ia 11.3803398 

p6 It 9.46410161 
/2 21.4641016 
13 51.7176914 

p7 It 12 12.0000000 
/2 48 48.0000000 
/3 1056/5 211.200000 
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linear growth in amplitude error and quadratic growth in phase error. 

5.2 Time Collocation at Gauss Points 

Collocation at the Gauss points yielded favourable results. Table 5.3 shows data that 

is consistent with fourth order accuracy in time, as we might expect from collocation 

at two Gauss points. The fourth column in the table is approximately constant, 

showing that the final error is proportional to the fourth power of the timestep used. 

Table 5.3: Error is proportional to fourth power of timestep for method C2. Data 
was obtained from solutions of problem 7 using a constant space step h. 

h T II Elloo 11Eiloo/r4 

.125 0.75e-2 3.1337e-2 0.9904e+7 
l.OOe-2 7.0979e-2 0.7098e+7 
1.25e-2 3.3144e-1 1.3576e+7 
l.SOe-2 4.9410e-1 0.9760e+7 
1.75e-2 9.8292e-1 1.0480e+7 
2.00e-2 1.6628e-O 1.0393e+7 
2.25e-2 2.5853e-O l.0087e+7 
2.50e-2 3.7038e-O 0.9482e+7 

Table 5.4 shows the elapsed cpu time and the error achieved at times t = 2 and, 

for problems 1 to 5, also at times l = T, where T is the time at the end of the varying 

intervals [0, T] listed in table 5.1 and used in [88). Table 5.4 also shows the space 

and time steps used to satisfy the accuracy constraints. It is clear that in all but 

the simplest problems, the collocation methods outperform the ZK method, and C2 

outperforms Cl. The efficiency of C2 is especially noticeable in problems 3, 5, 6, and 
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7, which have the faster solitons. In these problems the relatively low accuracy of 

ZK demands the use of a small space step to meet the accuracy requirement, and the 

resulting short time step imposed by the stability criterion prevents the method from 

being competitive. 

The table gives the error at only one or two times for a given problem-method. 

A more complete view of the evolution of the error for the three methods for the 

case of problem 7 is shown in figures 5.1, 5.2, and 5.3. 

0.1 

'1 o 
::J 

-0.1 

The growing phase error 

2 

20 

Figure 5.1: Evolution of error U-u for the method ZK for the two soliton initial 
condition of problem 7. 

is clearly visible for all methods. Also visible is a small, nonphysical oscillation for 

the 02 method. This oscillation appears to be characteristic of high order spline 

approximations [5, 79, 81]. However, the oscillation is clearly very small and need not 

be a concern. Figure 5.4 shows the small oscillation in comparison to the solitons. 

The analytic solution to problem 7 was shown earlier in figure 2.1. At the scale of 
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loss during a two soliton interac\\,n· 
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Table 5.4: Cpu times required to achieve prescribed accuracy, and the actual error 
norm achieved at t = 1', where [0, T] is the time domain given in table 5.1, and also at 
I = 2. Also given are the space and time steps that were used, and the total number 
of Newton iterations required to solve t/r nonlinear systems. 

problem method 1\1 h T t II error II cpu itns 
1 ZK 320 .125 7.0e-4 1 .00243432 4.71 

2 .00426564 7.19 
C1 50 .800 S.Oe-2 1 .00344671 13.96 39 

2 .00610313 14.54 75 
C2 80 .500 3.4e-1 1 .00386667 14.56 38 

2 .00481102 15.39 76 
2 ZK 512 .078125 l.Oe-4 1 .00882357 30.19 

2 .01620527 57.81 
C1 64 .625 2.5e-2 1 .00887315 15.34 120 

2 .01126806 16.25 240 
C2 80 .500 l.Oe-1 1 .00681757 15.39 92 

2 .00770105 16.89 184 
3 ZK 1050 .038095 2.0e-5 1 .02144416 299.22 

2 .04183051 580.50 
Cl 200 .20 4.0e-3 1 .01640828 39.35 750 

2 .03218255 64.46 1500 
C2 120 .333 2.0e-2 1 .01161539 26.53 501 

2 .06561467 39.48 1000 
4 ZK 400 .1 2.Se-4 2 .00059953 21.67 

3 .00133025 28.34 
C1 100 .4 S.Oe-2 2 .00047360 16.40 120 

3 .00127573 17.38 180 
C2 50 .800 3.0e-1 2 .00183198 14.49 57 

3 .00166683 14.68 84 
5 ZK 800 .05 4.0e-5 2 .01255676 228.14 

2.4 .01544735 271.62 
C1 200 .2 8.0e-3 2 .00907978 39.73 75 

2.4 .01421134 53.15 112 
C2 100 .4 8.0e-2 2 .01197605 19.38 37 

2.4 .01380330 21.12 45 
6 ZK 2000 .02 2.0e-6 2 .01633522 9439.94 

C1 320 .125 2.0e-3 2 .01488418 200.42 3000 
C2 160 .25 2.5e-2 2 .01267173 49.65 1240 

7 ZK 2560 .015625 l.Oe-6 2 .07626035 27030.62 
Cl 1000 .04 8.0e-4 2 .07409344 1478.94 7500 
C2 320 .125 l.Oe-2 2 .07097909 255.28 3564 
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Table 5.5: Maximum absolute relative errors x 103 found in the conserved quantities 
11, / 2 , / 3 , and the times it, l 2 , b at which they occur. 

problem method J, it /2 t2 /3 t3 
1 ZK 0.17885 1.50 0.03454 1.80 2.53138 1.80 

C1 0.19429 2.00 1.29910 2.00 1.93585 2.00 
C2 0.07227 2.04 0.51879 1.70 1.25293 1.70 

2 ZK 0.12610 1.00 0.02108 1.80 1.96781 1.80 
Cl 2.14937 1.85 7.27753 1.85 9.90836 1.85 
C2 0.67938 2.00 1.53639 1.90 3.06201 1.90 

3 ZK 0.06104 2.00 0.00737 0.70 0.93079 0.46 
C1 0.02734 2.00 0.04781 1.74 0.07963 1.74 
C2 0.33649 1.92 4.02735 2.00 6.80650 2.00 

4 ZK 0.03591 0.84 0.01982 1.20 0.93982 2.40 
C1 0.01128 2.70 0.04475 2.65 0.19283 1.70 
C2 0.12904 2.10 0.53118 2.10 0.88042 2.10 

5 ZK 0.03989 0.36 0.01123 0.36 0.98139 2.40 
C1 0.00609 1.06 0.03046 1.04 0.09499 0.80 
C2 0.94744 1.60 1.40225 1.60 4.08813 1.60 

6 ZK 0.00695 0.12 0.00247 1.80 0.27735 1.80 
C1 0.00547 1.44 0.01907 1.46 0.04490 1.00 
C2 0.47937 0.68 0.53827 0.90 1.17842 0.65 

7 ZK 0.02873 1.10 0.00255 0.02 0.30645 0.02 
C1 0.08659 2.00 0.18796 1.98 0.30919 1.98 
C2 0.14376 1.86 0.45491 1.98 2.47116 1.98 
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Figure 5.5: Evolution of conserved quantities for problem 2 by ZK method (solid). 
Top to bottom: /1, / 2 , / 3 • Analytic values shown dotted. 
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Figure 5.6: Evolution of conserved quantities for problem 3 by ZK method (solid). 
Top to bottom: /1, / 2 , h. A11alytic values shown dotted. 
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Figure 5. 7: Evolution of conserved quantities for problem 2 by Cl method (solid). 
Top to bottom: /1 , / 2 , / 3 • Analytic values shown dotted. 
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Figure 5.8: Evolution of conserved quantities for problem 3 by Cl method (solid). 
Top to bottom: / 1, / 2, / 3 • Analytic values shown dotted. 
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Figure 5.9: Evolution of conserved quantities for problem 2 by C2 method (solid). 
Top to bottom: / 1• f.l, /3 • Analytic values shown dotted. 
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Figure 5.10: Evolution of conserved quantities for problem 3 by C2 method (solid). 
Top to bottom: !., 1~ , 13 • Analytic values shown dotted. 
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Figure 5.11: Evolution of conserved quantities for problem 6 by ZK method (solid). 
Top to bottom: / 11 / 2, / 3 • Analytic values shown dotted. 
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Figure 5.12: Evolution of conserved quantities for problem 7 by ZK method (solid). 
Top to bottom: /t, /2, / 3 • Analytic values shown dotted. 
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Figure 5.13: Evolution of conserved quantities for problem 6 by Cl method (solid). 
Top to bottom: / 1• 11• / 3 • Analytic values shown dotted. 
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Figure 5.14: Evolution of conserved quantities for problem 7 by Cl method (solid). 
Top to bottom: It, 12, I:J. Analytic values shown dotted. 
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Figure 5.15: Evolution of conserved quantities for problem 6 by C2 method (solid). 
Top to bottom: lh 12 , Ia . Analytic values shown dotted. 
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Figure 5.16: Evolution of conserved quantities for problem 7 by 02 method (solid). 
Top to bottom: It, 11, Ia. Analytic values shown dotted. 
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5.3 Time Collocation at Radau Points 

Collocation at the Radau II points yielded negative results. We report only one 

experiment with the C1 method on problem 7. Using the Rada.u II points with one 

collocation point means collocating at ln+t when the solution is known at 111 • This 

is equivalent to implicit Euler, which is well known to be dissipative. The result 

is that the solitons lose amplitude as time progresses, and since soliton velocity is 

proportional to amplitude, there is an accompanying deceleration. The effect on 

phase error is naturally greater on the faster soliton, and so the interaction between 

the two solitons occurs later than it should. All of these effects can be seen in figures 

5.17 to 5.19 (compare with the analytic solut.ion in figures 2.1 and 2.2). At the same 

time, the conservation laws are violated, as shown in figure 5.20. 

2 

Figure 5.17: Two soliton solution of problem 7 by the Cl method using Radau II 
points for time collocation. Note tardiness of soliton interaction and decay in ampli­
tude. 
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We note that our experience with both conservative and nonconservative schemes 

illustrate the results of de Frutos and Sanz-Serna [25]. Their figute 5.1 for a single 

soliton evolution under implicit Euler is strikingly similar to our figure 5.19. 
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Figure 5.18: Contour plot of two soliton solution of problem 7 by the Cl method 
using Radau II points for time collocation. Note decay of soliton amplitude. Curved 
trajectories indicate deceleration. 
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Figure 5.19: Two soliton solution of problem 7 at t = 2. Solid: analytic solution . 
.Jotted: Cl method using Radau II points for time collocation. Note phase and 
amplitude errors in the numerical solution. 
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Figure 5.20: Violation of conservation laws using Radau II points. Solid: Cl method 
using Radau II points for time collocation. Dotted: Cl method using Gauss points 
for time collocation. 
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5 .. 4 Some Surprising R.esults 

The search for appropriate parameters to satisfy the accuracy requirements of the 

tests revealed two interesting phenomena. 

The first of these is concerned with the stopping criterion for the Newton itera· 

tion. One naturally expects that use of a wide tolerance results in less work (fewer 

iterations) than a narrow tolerance, but that this should result in a more accurate 

final soluticn to the PDE is an unexpected bonus. Table 5.6 shows that in many cases 

less v. .:>rk leads to higher accuracy. The phenomenon seems to occur mainly when 

the space and time steps are quite large, when the PDE solution is of relatively low 

accuracy. 

The second phenomenon is also surprising: use of too ,c;mall a timestep can give 

rise to unbounded growth of the solution just inside the left boundary of the domain. 

An example of this in its early stages is shown in figure 5.21, where we have plotted 

the negative of the solution for clarity. We have seen few literature references to 

difficulties caused by a small timesteps. Maritz and Schoombie [62) indicate that 

small timesteps suit their purpose in the investigation of parasitic waves caused by 

discontinuities in the initial data. Schoombie [80) and Hedstrom (49} both report 

increased error growth at small time steps when using a cubic Hermite Galerkin 

method. The error is attributed to the presence of a secondary wave induced by the 

splines, and improvement in accuracy is obtained by filtering. However, the errors 

there remained small compared t.o the soliton amplitudes, so the difficulty here seems 
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Table 5.6: Work done and final 1..00 error norm with various stopping criteria for 
solution of collocation equations F = 0. Note that strict tolerance does not necessarily 
beget most accuracy. Iteration stops when II Fll < lol1 and successive iterates differ 
less than lo/2 • 

II h I r I tal, l11ell,1n.r. lll iterations II 
lol2 = lol, * 10-:.s 

0.250 2e-2 le-3 0.9891 4069 
le-2 0.9891 3648 
le-1 0.9896 3126 
le-O 0.9933 2701 

0.125 2e-2 le-1 1.9001 3091 
le-O 1.9031 2650 
le+l 1.9037 2116 

le-2 le-9 0.0751 10907 
le-2 0.0751 5575 
le-1 0.0753 4962 

f.o/2 = lo/1 

0.250 2e-2 le-4 0.9891 3368 
1e-3 0.9885 2888 
le-2 0.9837 2439 
le-1 0.9145 1980 
le-O 1.0279 1567 

1e-2 1e-5 0.3652 5619 
le-4 0.3650 4976 
le-3 0.3641 4260 
le-2 0.3718 3584 
le-1 0.3941 2843 

0.125 2e-2 1e-3 1.9015 2817 
le-2 1.8957 2413 
le-1 1.8460 1936 
le-O 1.1592 1568 
1e+l 1.1607 1096 

le-2 le-4 0.0753 4965 
le-3 0.0748 4315 
1e-2 0.0673 3565 
1e-1 0.0839 2784 

8e-3 le-4 .02285 5718 
le-3 .02289 4952 
1e-2 .03353 3981 
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to be of a fundamentally different nature. At time of writing the phenomenon is 

still poorly understood and awaiting investigation. It is expected that the boundary 

conditions will be found to be somehow implicated in the problem. Fortunately, one 

generally wishes to work with as large a timestep as possible, consistent with accuracy 

requirements, so the phenomenon should not present any practical difficulties. 
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Chapter 6 

Conclusions 

6.1 Conclusions 

We have constructed a bivariate spline co1location method for the numerical solution 

of the Korteweg-deVries equation. Using two Gauss points for time collocation, we 

obtain highly accurate solutions very efficiently. There is numerical evidence for 

fourth-order convergence in time. 

All of the methods tested show some variability in their fidelity to the first three 

laws in the infinite hierarchy of conservation laws for the KdV equation, but do not 

deviate far from conservation in a mean sense. 

Our method, and our code, can be easily adapted to other equations with soli­

ton or soliton-like solutions, for which we can expect the method to show similar 

performance. 
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6.2 Work Remaining 

There is still much work to be done, however. Until now we have considered only 

uniform partitions of space, but th~ method can easily accomodate an adaptive grid. 

Clearly we do not need extremely accurate solutions in a region where the solution 

is uniformly constant, so it makes sense to have a larger step in these regions and 

confine the finer grid to the more interesting neighbourhoods around the solitons. For 

very large problems, such as long time integrations, grids moving with the solitons 

will be essential to save computer memory space. If the grid is simply translated, 

there may be little additional work, but if it is otherwise modified as it moves the 

matrices will need to be reformed and some (or all) of the H-splines will need to be 

recomputed at each timestep. How tlte efficiency of the resulting method compares 

to other methods using similar devices will need to be studied. 

Questions raised by our testing also need to be addressed. We need to confirm our 

expectation of efficient, accurate performance with other equations. Good candidates 

include the nonlinear Schrodinger equation and the sine-Gordon equation, both of 

which have analytically available soliton solutions. Also, recall that we have t.ested 

approximations from only one spatial spline space. It is not clea!" how accuracy and 

efficiency will be affected by a different choice. 

Of considerable interest is the nature of the relationship between the accuracy of 

the approximate solution of the nonlinear collocation equations and the accuracy of 

the approximate PDE solution. How does a more accurate approximation to solution 
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of the collocation equations lead to a less accurate solution to the PDE at the end 

of the time interval? Is this unique to this equation or to these methods, or is this a 

wide ranging phenomenon? 

Also of great interest is the cause of the apparent instability at short time steps. 

Is it caused by an excitation of the small oscillation we saw in figure 5.4? If so, 

what causes the excitation? If we constructed a flow through boundary condition, 

so that any spurious wave was not reflected back into the domain, or if we used 

periodic boundary conditions, would the problem disappear? Pending answers to 

these questions, is it possible to predict the minimum timestep that can be used?. 

Arguably the most important work remaining, particularly in view of the apparent 

instability mentioned above, is a full mathematical analysis of stability and conver­

gence. These problems are difficult, and we confine ourselves to a brief description of 

a possible course for a convergence analysis. 

We propose following the general framework of Verwer and Sanz-Serna [93] for 

convergence analyses of Method of Lines schemes for nonlinear PDEs. In this ap­

proach, the analysis is a two step process, considering first the error resulting from a 

semidiscretization in space and then the error from the time integration technique. 

Let ii(.1:, 1.) be the approximation to u(.r, l) obtained from the discretization in 

space by collocation at the Gauss points of our partition of the spatial interval [a, b]. 

Although 1i(;r, t) satisfies the KdV equation at the collocation points, it does not do 
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so everywhere, and so we find 

- 6-- - (.r)( I) lit+ 111/r + ll.rn· = fl .r., . , (6.1) 

where the residual fl(rl(.r.l) vanishes whenever .r belongs to the set of (spatial) collo-

cation points .\',,1• Introducing the spatia] discretization error 

( (.r ) = ll - ti. 

equation (6.1) leads to 

Thus the spatial discretization error depends on the exact solution u t.o the PDE 

and on the residual p(J'l(.r.l) which depends on the choice of {spatial) collocation 

points and on the approximating power of the spline space chosen for the spatial 

approximation. 

Now let I' ( .r. I) be an approximation to ii( .r , I) tt"sulting from discretization in 

time. Then 

I I, + 61 ! ( !J. + f!u.r = p(.r, I), (6.2) 

where the residual p(.r.l) vanishes whenever (.r, I) belongs to the set of collocati0n 

points X,\1 x 'I\. Introducing the t.ime discretization error 

((I) = li - (1, 

equation (6.2) leads to 

(6.3) 
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where rPl = p- p(rl, Note that p(l) vanishes whenever t belongs to the set of time 

collocation points 'l~v . From {6.3) we see that the time discretization error depends 

on the exact solution ti. to the sytern of ODEs resulting from the semidiscretization in 

space, and on the residual p(t) which depends on the choice of (time) collocation points 

and on the approximating power of the spline space chosen for the approximation in 

time. 

Finally, we note that the full discretization error c is given by 

( = ll- u = 11- ti + ii- {I = ((.r) + ((1). 

Consequently a norm of ( satisfies 

so we can obtain a bound on the full discretization error from bounds on the separate 

SJ>dial and temporal contributions, and these contributions depend on both the choice 

of collocation points and the approximating power of the underlying spline spaces. 

96 



Bibliography 

[1] M. B. Abbott. An lnlrorlru·lion to Tire Aiel/rod of Chnmclcr·i.qfics. American 

Elsevier Publishing Company, Inc., 1966. 

[2] K. Abe and 0. Inoue. Fourier expansion solution of the Korteweg-de Vries 

equation . ./ou1'nnl of Compulalio11al Ph.r;sic.c;, 34:202-210, 1980. 

[3] M. Abramowitz and I. A. Stegun, editors. Handbook of 1\-falhcmnfical F1wc­

lirm ... , volume 55 of Applird Malltrmnfir.c; Scrir.<t. National Bureau of Standards 

(U.S.A), 1970. 

[4] S. G. B. Airy. Tides and waves. Enr.yrlopacdia Mrlropolitana, 1845. 

(5] M. E. Alexander and J. L. Morris. Galerkin methods applied to some model 

equations for non-linear dispersive waves. .Journal of Computational Phyflics, 

30:428-451, 1979. 

(6) W. F. Ames. Num rriral Mr.lhods for Parlin[ Diffcrculial Equations. Acedemic 

Press, second edition, 1977. 

97 



[7] A. Aoyagi and K. Abe. Runge-Kutta smoother for suppression of computational 

mode instability of leapfrog scheme . .Jourual of Computational Physic.~, 93:287-

296, 1991. 

[8] D. J. Benney. Long non-linear waves in fluid flows. Journal of Alalhcmafic.~ 

aud Physics, 45:52-63, 1966. 

[9] J. G. Blaschak and G. A. Kriegsmann. A comparative study of absorbing 

boundary conditions. Journal of Computational Physirs, 77:109-139, 1988. 

[10] J. Boussinesq. Theorie des andes et des remous qui se propagent le long d'un 

canal rectangulaire horizontal, en communiquant au liquide contenue dans ce 

canal des vitesses sensiblement pareilles de la surface au fond . .J. Ala/h. Purr8 

rf A flpliqrtfrs, 17(2):55-108, 1872. 

[11] J. P. Boyd. Equatorial solitary waves. Part 1: Rossby solitons. Journal of 

Physiral Orranogmphy, 10:1699- 1717, 1980. 

[12] H. Brunner. On the numerical solution of nonlinear Volterra-Fredholm inte­

gral equations by collocation methods. S/Akf Journal on Numerical Ana[y.<;i,.,, 

27:987- 1000, 1990. 

[13] H. Brunner and P. J. van der Houwen. The Numerical Solution of Volterra 

Equations. North-Holland, 1986. 

98 



[14] R. K. Bullough. "The wave" "par excellence" the solitary progressive great 

wave of equilibrium of the fluid: An early history of the solitary wave. In 

M. Lakshmanan, editor, Soli/om>. lnlroducliou and Application .<~, pages 7-42. 

Springer-Verlag, 1988. 

[15] A. L. Camerlengo and J. J. O'Brien. Open boundary conditions in rotating 

fluids . .lourual of C'ompulnlionnl Physif·s, 3!\:12-35, 1980. 

{16] B. W. Char, K. 0. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and 

S. M. Watt. Alaplr F Language Urfnr.llcc Manual. Springer-Verlag, 1991. 

[17] C. I. Christov and K. L. Bekyarov. A Fourier-series method for solving soliton 

problems. SIAM .lnul'lwl on 8f·irn1Uir and Slalislical Computing, 11:631-647, 

1990. 

[18] R. A. Clarke. Solitary and cnoidal planetary waves. Gcoph!Jsiral Fluid Dymzm­

if's, 2:343-354, 1971. 

[19) R. Courant, K. Friedrichs, and H. Lewy. Uber die partiellen Differenzengle­

ichungen der mathematischen Physik. Math. A una/en, 100:32-74, 1928. 

[20] M. G. Cox. The numerical evaluation of /3-splines. .J. lust.. Math.s Applies, 

10:134-149, 1972. 

[21] P. J. Davis and P. Rabinowitz. Me/hods of Numc7'ical /ntcgmlion. Acedemic 

Press, second edition, 1984. 

99 



{22] C. de Door. A Practical Guidr: to SpliTIC8. Springer-Verlag, 1978. 

[23] C. de Boor and B. Swartz. Collocation at gaussian points. SIAM Journal on 

Numerical A nnlysis, 10:582-606, 1973. 

[24] J. de Frutos and J. M. Sanz-Serna. An easily implementable fourth-order 

method for the time integration of wave problems. .loumnl of Compulalional 

Physir,r;, 103:190-168, 1992. 

[25] J. de Frutos and J. M. Sanz-Serna. Erring and being conservative. Technical Re­

port 1993/5, Universidad de Va.lladolid Departamento de Matematica Aplicada 

y Computaci6n, May 1993. 

[26] R. K. Dodd, .J. C . Eilbeck, J. D. Gibbon, and H. C. Morris. Solilml.'l and 

:Vonliucar WatJr. Equafions. Acedemic Press Inc., 1982. 

[27] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. Unpack lJ.r;crs' 

Gttiflc. SIAM, 1979. 

(28] J. J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson. An extended set of 

Fortran basic linear algebra subprograms. A CM Tmnsaclions o1l Malhemalical 

Software, 14:1- 32, 1988. 

[29] J. Douglas, Jr. and T. Dupont. Collocation Mcllwds fm· Parabolic Equations in 

a Sin!Jlc Space Variable, volume 385 of Lecture Noles in Mathematics. Springer­

Verlag, 1974. 

100 



(30] P. G. Drazin and R. S. Johnson. Soliton.<>: au inlmdudion. Cambridge Univer­

sity Press, 1989. 

(31] W. Eckhaus and A. van Harten. The Inverse Scattcrin_q Transformation and 

lhe Theory of Solilons, page 2. North Holland Publishing Company, 1981. 

(32] E. Fermi, J. R. Pasta, and S. M. Ulam. Studies on nonlinear problems, I. 

Technical Report La-1940, Los Alamos, May 1955. See also [70, pages 143-156]. 

(33] A. P. Fordy. Soliton theory: a brief synopsis. In A. P. Fordy, editor, Soliton 

Theory: A Surney of Rc.•ml/.-., pages 3-22. Manchester University Press, 1990. 

[34] B. Fornberg. On a Fourier method for the integration of hyperbolic equations. 

S/A 1\1 .Iournnl on Numeriral A nn/y,c;i..,, 12:509-528, 1975. 

[35] B. Fornberg and G. B. Whitham. A numerical and theoretical study of certain 

nonlinear wave phenomena. Philo.cwphiml 1hwsacfions of flu: Royal Society of 

London, 289:373-404, 1978. 

[36] E. S. Fraga and J. L. Morris. A piecewise uniform adaptive grid algorithm for 

nonlinear dispersive wave equations. Technical Report N A/106, University of 

Dundee Department of Mathematics, July 1987. 

[37] N. C. Freeman. Soliton interactions in two dimensions. Advancc.c; in Applied 

Alrchanir.s, 20:1-37, 1980. 

101 



[38] N. C. Freeman and R. S. Johnson. Shallow water waves on shear flows. Journal 

of Fluid Mechanics, 42:401-409, 1970. 

(39) C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura. Method for 

solving the Korteweg~deVries equation. Physical Rc11icw Lclfcr.c;, 19:1095-1097, 

1967. 

[40) C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura. Korteweg­

deVries equations and generalizations. VI. Methods for exact solution. Com­

munications in Pure and ApjJlicd Math, 27:97-133, 1974. 

[41) C. S. Gardner and G. K. Morikawa. Similarity in the asymptotic behaviour of 

collision-free hydromagnetic waves and water waves. Technical Report NYO 

9082, Courant Institute, 1960. 

[42] K. Gada. On stability of some finite difference schemes for the Korteweg-de 

Vries equation . .lourual of lhc Phy.<;ical Sor.icly of Japan, 39:229-236, 1975. 

[43) D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral .Mcthods: Thcol'y 

and Applicafiomt SIAM, 1977. 

[44] R. Greatbatch and T. Otterson. On the formulation of open boundary condi­

tions at the mouth of a bay. Journal of Geophysical Ucscarch, 96(C10):18431-

18445, 1991. 

102 



(45] I. S. Greig and J. L. Morris. A hopscotch method for the Korteweg-de Vries 

equation . .Journal of Com]Julational Phyflics, 20:64-80, 1976. 

(46) R. Grimshaw. The solitary wave in water of variable depth . .Journal of Fluid 

Alrchnnic.r;, 42:639-656, 1970. 

[4 7) C. A. Hall and T. A. Porsching. Num.cT'ical A na/y.r;is of Pa1'lial Differential 

Equations. Pt'entice Hall, 1990. 

(48] A. Hasegawa. Optical solitons in fibers: theoretical review. In J. R. Taylor, 

editor, Oplirnl 8olilon,r;-Throry and Brpcrimwl, pages 1-29. Cambridge Uni­

versity Press, 1992. 

[49) G. W. Hedstrom. The Galerkin method based on Hermite cubics. SIAM .Journal 

on Nu mrriml A naly.'li.c.;, 16:385-393, 1979. 

[50) R. L. Herman and C. J. Knickerbocker. Numerically induced phase shift in the 

KdV soliton . .IOili'IWI of Compulalional Physics, 104:50-55, 1993. 

[51) E. N. Houstis, R. E. Lynch, J. R. Rice, and T. S. Papatheodorou. Evalua­

tion of numerical methods for elliptic partial differential equations . .Journal of 

Compufafional Phy,c;ic,r;, 27:323-350, 1978. 

[52) A. Jeffrey and T. Kakutani. Weak nonlinear dispersive waves: A discussion 

centred around the Korteweg-de Vries equation. Siam Review, 14:582-643, 

1972. 

103 



[53] R. S. Johnson. A non-linear equation incorporating damping and dispersion . 

.Journal of Fluid ll1cr!tanics, 42:49-60, 1970. 

[54] R. S. Johnson. Water waves and Korteweg-de Vries equations . . Joul'nal of Fluid 

Mcchauir.<~, 97:701-719, 1980. 

[55] K. Y. Kim, R. 0. Reid, and R. E. Whitaker. On an open radiational bound­

ary condition for weakly dispersive tsunami waves. .Jou.l'llal of ComJntlnlional 

Physics, 76:327-348, 1988. 

[56] D. J. Korteweg and G. de Vries. On the change ofform oflong waves advancing 

in a rectangular canal, and on anew type oflong stationary waves. Thr Londvn, 

Edin!Jitl'fjh., anrl Dnblin Ph.ilo,c;op!tirall\laga::inr arHl .lo1t1'11nl ofSr·irna, Srrir..r.; .~, 

39:422-443, 1895. 

[57] M. D. Kruskal. The birth of the soliton. In F. Calogero, editor, lutrmaliorwl 

Symposium on Nonliumr Ermlnlion Eqllalious Solnnblc by lhr Sprdral Trans­

fm·m, pages 1-8. Pitman, 1977. 

[58] M. Lakshmanan, editor. Solilo11!i, lnlrodncl.ion and ''ppliralious. Springer­

Verlag, 1988. 

[59] G. L. Lamb. Blwu:ul.r.; of Soli/on Theory. John Wiley & Sons, 1980. 

104 



[60] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra sub­

programs for Fortran usage. A Ci\1 Transactions on Mafhcmafir:al Soflwarr:, 

5:308-325, 1979. 

(61] V. G. Makhankov, V. K. Fedyanin, and 0. K. Pashaev, editors. 1\llh /nfann­

liounl lVor~:slwp on Solilrm.-; aud Applim/io118. World Scientific, 1990. 

(62] M. F. Maritz and S. W. Schoombie. Parasitic waves and solitons in the numer­

ical solution of the Korteweg-deVries and modified Korteweg-deVries equation . 

.Journal of Compulalional Physif,.,, 73:244-266, 1987. 

[63] F. Mesinger and A. Arakawa. Numrriml Afr.lhod.'i (!,..rd in AlmosphrTif Alorl­

r/8, volume 1 of Sn·ir,.; 17. GARP (Global Atmospheric Research Program) 

Publications, 1976. 

(64] J. W. Miles. The Korteweg-de Vries equation: a historical essay. Journal of 

1-'/uit/ Mrrhnnirs, 106:131- 147, 1981. 

(65] A. R. Mitchell and S. W. Schoombie. Finite element studies of solitons. In Nu­

mrriral Mrlhods fo,. Couplrd Pl'oblrrm;: Pmrrrdin_q.<; of lhc lnlr,.,uLiioual Con­

/nTIHT, 1981. 

[66] A. R. Mitchell and R. Wait. 'i'.',t" Finilr Elcmrnl Alclhod in Partial Diffcr·rnlial 

l~'qllalinll.'l. John Wiley & Sons, 1977. 

105 



[67] R. M. Miura. The Korteweg-de Vries equation: A survey of results. Siam Rr virw, 

18(3):412-459, 1976. 

[68] R. M. Miura, C. S. Gardner, and M. D. Kruskal. Korteweg-de Vries equation 

and generalizations. II. Existence of conservation laws and constants of motion. 

Jourual of Mafhrma/i('(i/ Phy.'>il'.'11 9(8):1204-1209, August 1968. 

[69] K. W. Morton. Finite element methods for non-self-adjoint elliptic and for 

hyperbolic problems: Optimal approximations and recovery techniques. In D. F. 

Griffiths, editor, Tltr Mnlhrmafirul /fn..c;i,q of Pinilr Blrmr.nl Mdhods, pages 91-

122. Clarendon-Oxford, 1984. 

[70) A. C. Newell, editor. Nonlinrar· H'(wr Motion, volume 15 of /.,rd 11/'rs in 1fppliffl 

Mal h rmul ir.... American Mathematical Society, 1974. 

[71] F. Z. Nouri and D. M. Sloan. A comparison of Fourier pseudospectral methods 

for the solution of the Korteweg-de Vries equation . ./ow·nal of Cowpulalionnl 

Phy ... irs, 83:324-344, 1989. 

[72) P. M. Prenter. Spliru·s and Vadalional J\lr.lltods. Wiley-Interscience, 1975. 

(73] L. Rayleigh. On waves. Philo."~ophical A'la!Jn::inc, 1:251-271, 1876. 

[74] L. G. Redekopp. On the theory of Rossby solitary waves. .lollrnal of Fluid 

Mcr.hnnif's, 82:725- 745, 1977. 

106 



(75] R. D. Richtmyer and K. W. Morton. Diffr.rcucc .Mrlhod.c; for lnilial- Valur. ProiJ­

Irms. Interscience, second edition, 196'7. 

[76] L. P. R0ed and C. K. Cooper. Open boundary conditions in numerical ocean 

models. In J. J. O'Brien, editor, J\d,nnrrd Phy.coirnl Occnnogmpl!ic Nu.mcricnl 

Modrlliug, pages 411-436. D. Reidel Company, 1986. 

[77] J. E. Romate. Absorbing boundary conditions for free surface waves. Journal 

r~f (.'ompulfllinnal Phy.c;ir·s, 99:135-145, 1992. 

[78] J. S. Russell. Report on waves. In Fortl'lrrnlh Mrrliug of lhr /Jrilish As.c;or.ialion 

for lhr· t\rl~~rlnr·rmf'lll of Srif'nrr, pages 311-3~0. John Murray, 1844. 

[79) J. M. Sanz-Serna and I. Christie. Petrov-Galerkin methods for nonlinear dis­

persive waves . .Journfll of Co'Tiplllnlionol Phy.';i(·,c;, 39:94-102, 1981. 

[80] S. W. Schoombie. Finite element methods for the Korteweg-de Vries equation 

I. Galerkin method with Hermite cubics. Technical Report NA/43, University 

of Dundee Department of Mathematics, August 1980. 

[81] S. W. Schoombie. Spline Petrov-Galerkin methods for the numerical solution of 

the Korteweg-de Vries equation. /i\111 .Jornnl of Numerical Analy:"~i ... , 2:95-109, 

1982. 

[82] L. L. Schumaker. Splinr Fundions: /3a.c;ic Thco1·y. John Wiley & Sons, 1981. 

107 



[83) A. C. Scott, F. Y. Chu, and D. W. McLaughlin. ·The soliton: A new concept 

in applied science. P1'ocrrdings of the IEF:E, 61:1443-1483, 1973. 

[84) M. C. Shen and X. C. Zhong. Derivation of K-dV equations fer water waves 

in a channel with variable cross section . .Joumal de Mcmuiqur, 20( 4):789-801, 

1981. 

[85) G. D. Smith. Nu m rl'iral Solul ion of Pal'l ial /Jijfr I'C nlial Eqtwl ions. Clarendon­

Oxford, 1978. 

[86] A. H. Stroud. Numerical Quadmlul'r. aud 8olulim1 of Ordinni'!J /J~[farntial 

Equation .... Springer-Verlag, 1974. 

[87) A. H. Stroud and D. H. Secrest. Gmu•8ian Quadmlurc F'nrmula.'i. Prentice-Hall, 

1966. 

[88} T. R. Taha and M. J. Ablowitz. Analytical and numerical aspects of certain non­

linear evolution equations. III. Numerical, Korieweg-de Vries equation . .Journal 

of Computatio11al Phy.<iirs, 55:231-253, 1984. 

[89] T. R. Taha and M. J. Ablowitz. Analytical and numerical aspects of certain 

nonlinear evolution equations. I. Analytical. ./otu·rwl of Comprtlatio11al Phy ... ics, 

55:1£12-202, 1984. 

[90] T. Taniuti and C. C. Wei. Reductive perterbation method in nonlinear wave 

propagation. I. Joumal of the Physical Society of .Japan, 24:941-946, 1968. 

108 



[91] F. Tappert. Numerical solutions of the Korteweg-de Vries equation and its gen­

eralizations by the split-step Fourier method. In A. C. Newell, editor, NonliiiUll' 

JFar•r Motion, volume 15 of Lrrlurr,.; in t1pplird ,\falhrmalic.-., pages 215-216. 

American Mathematical Society, 1974. 

[92] E. F. G. van Daalen, .J. Broeze, and E. van Groesen. Variational principles and 

conservation laws in the derivation of radiation boundary conditions for wave 

equations. ,\fulflt mnlirs of (,'nl11]1Ptfaliflll 1 58:55-71, 1992. 

[93] .J. G. Verwer and J. M. Sanz-Serna. Convergence of method of lines approxi­

mations to partial differential equations. ('ompufin!J, 33:297-313, 1984. 

[94] A. C. Vliegenthart. On finite difference methods for the Korteweg-de Vries 

equation. Journal of h'n_qinr r rill!/ :\lalhr mal irs, 5:137-155, 1971. 

[95] M. Wadati and M. Toda. The exact 11-soliton solution of the Korteweg-deVries 

equation . .Journal of 1/tr f>hy ... ir·al Sof'irly of .Iapan, 32:1403-1411, 1972. 

[96] L. B. Wahlbin. A dissipative galerkin method for the solution of first order 

hyperbolic equations. In C. de Boor, editor, Mnthrmnlirnl A.'iprrl.<> of Finifr 

Elr mnlf.<; i11 fJnl'fi(J/ /Jijfr rn1linl Eqrwlio11.<;1 pages 147-169. Ar.edemic Press, 

1974. 

[97) H. Wash ami and T. Taniuti. Propagation of ion-acoustic solitary waves of small 

amplitude. JJhysiml Urviru• Lrllfr ... , 17:996-998, 1966. 

109 



[98] G. B. Whitham. Li11rar and Nrmliuca1· Waves. John Wiley & Sons, 1974. 

(99] N.J. Zabusky. Computational synergetics and mathematical innovation. Jour­

llal of Compulalio11al Physir.<;, 43:195-249, 1981. 

[100] N. J. Zabusky and M. D. Kruskal. Interaction of "solitons" in a collisionless 

plasma and the recurrence of initial states. Physical llrnirw Lcllr.rs, 15(6):240-

243, August 1965. 

110 










