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. . INTRODUCTION R L
RS . SR @ : " B

» ¢ . - * ‘ . - / 4
- , - \\,- : ’ . ‘ T '
! . - ' .'—' ° ‘ . ' < S . “oa ' E .\ .
‘ A continental shelf is the main topographic feature found along the coast- °
Y. . e T ot o
' lines ?f the world."A s'helf extends from the shor‘eline’~to"i variable distance ol' R B
| ’ Sl : - TR
SR o between 10 and 300 km offshore_ where the water depth i8 of the order of- 200 m.
‘. ) : '/ B N e, ! \ /:/“
T Beyond thrs dlstance exists the contmental slope wbere the. depth increases much s
L K - -more qurckly:,to'reach its average abyssal value ol' 4000 m.'Because the shelf. and - :,/ﬂ
A LN N e
A O N

slope‘a(e 51tuated upon a rotatmg earth they act as a one-drrriensronal wave gurd A
— ) l'or the propagatron of coastal-trapped waves (GTW's)._[The 1mportance ol\ﬁ L

e ' o C’I‘W s is that they -l'orm th,e dominaxt circulation respohse of coastal waters jo W “

x A = i

a l'orcmg by the atmosphere . R }

CTW phenomen,a have been mvestlga,ted in detall since Hamon [1962] first

' detected a Tea’ lexel srgnal ok submertlal frequency propagatmg along the east T

) — e

coast ofl Australia. The\ first theoretrcal treatment ol' Hamon 3 observatron, was

by Robmson [1964] Usmg t’he depth-mtegrate/lmeanzed shﬁow water equa— -_ r2.

Y

ol trons for a rotatmg ocean,. wavehke rsolutrons w/re obtained whrch prop&ated Dy

phase with the coast on the nght (lel‘t) in the northern, (soﬂthern) hemlsphere =
‘ e Co,

Later, Bughwald and Adams [1968] developed an analytlcal dispersion relatlon for, N

these topographrc-Rossby waves which showed that they e)ﬁlsted as 'drscrete

»y - . -

r'nodesf' and that- o'ach mode-had a subinertial cut-oﬂ'.frequency above which that . ..¢

mode could qot exast Brmk [1980]- showed that wavehke solutlons do ogﬁlir'_.' B IR

above the cut-o.ﬂ' I‘requency, but ﬁt these modei were evanescent The .

t'_'r,‘-',.-.&"._{-.',: AR A
Shdad SN
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e eVan'escent modes diflered from the usual propagating modes in that they did not
<4 - >

:’éf‘“‘ig transport energy in the,klongshore dlrectlon and that therr amplrtude decayed in

- e the al8'ngshore dlrectlon .

/

L ~ .. .
- The theory of CTW's was extended to lﬂ('}llﬁdp the more general feature of

| "f . .continuous delislty sbr:ltiﬁ‘ca't'ion by Wﬁllg;?nd Meoers_ [1976]. Th‘ey‘.u;'ere able to \

‘ ’ '.' “s'h_ow .that str}etiﬁcation‘ had llle quantitative ell‘ect ol irlcr'easing the model phase
_ R s:p'eedé of GTWs, Itater Chapman [1985] ‘showed that suffciently strong T
| ' 2 "l .‘stratrﬁcatron led to the exrstence of propagating mOd“ at all subineftial l'requen- |

-cies. It appears that stratification .wwaﬁfe to produce a nodal structure far thex" '

" ~wa\?e 'which °was a hybrld of the internal Kelvin wave of a’flat bottom ocean and

Cg - l,. : the topographlc Rossby wave of aslopmg bottom. .

/ The bmdmg thread of the followmg work is the presenltatlorf?) a numencal

method l'or solvmg the @TW problem The CTW problem is formulated« as’a

generallzed rﬁatrrx eigenvalue problem whrch is non-linear in the eigenvalue.
“This ig solved using an -expli'citly shiftQ in\?erse 'pO\)er algorithm.” The specml .-
e fenture ol' .the solupon method is its. ablllty to compute complex or evanescent'

modes drrectly as would r&sult from'the ﬂetbrmmatron of evanescent solutions or

Lof soluttons mcludrng bottom [friction. The first part of thrs thesis descnbes how

—_— -t
_ § ._v,_smtrﬁcatron aﬂ'ects CTW propagatlon characterlstlcs The norfélty of’the work .

- Q‘ . /' s
- s lts abr]rty/ fo show the behavror of the evanescent modes as a l'unctlon ol'

'stratlﬁc'atlon. - oL : .
. L \ _
e L There are many parametrrc varlatlons to consrder in the formulatron of a
' ' C complete theory of CTW dynamlgs such ds the effect ol' the varl:’tron of Corrohs




3

»

( \_1 " force with latitude, irrégul@r topography, bottom friction, wind forcing, and the

] , : | oh M o —

‘ presence of a mean alongshore current. Mith the exception of thealongshore - b
current all of tte above have been addressed in the literature [Mysak, 1980].

Accordingly in the second pari of this thesis the .effect of a mean current on
CTVW propagation is addrésseél. The numerical results obtained are comparod/tg

observations made during”the Australian Coastal Experiment [Freeland “ef al. ;

1986).

‘The outline of this thesis is a3 follows. -The formulation of the CTW
stratiﬁcation sroblem is presented in C_hapter't“;o. Th'(ﬁu'merical method as . \

- applied to the ﬁl;atl_ﬁcation probi‘em is preséhted in Chapter three, and the
results of the effectsof stratification on CTW's are presented in* Chapter four. -
The CTW ;;roblem of Chapter two with'the addition “of & mean alon gshore

current is formulatéd in Cixaﬁtg; five. Finally Chapter six concludes the work by< Lo

presenting the main results of the thesis:

. . .
e . i . 3 .
.



( CHAPTER TWO v -
\
N \
’ \

EQUATIONS OF MOTION

-

The equations of motion goverming the motion of Auid over a continental

+, sheff are presented-for the case in which the fluid has conti aus vertical density

Siratiﬁcatipn. The equations are. reduced to a second{or partial diﬂ'_ereniial

. e ' . R . ' ) 1

equation for'pressure which is solved ss a-discrete eigén-valué problem.

’

s L N . . . . = ]
. L . o A
;

2.1 Mémenthm Equations
— —_— / . s . B ’ ~

+ Consider a hydrodynamic system consisting’ of an-ocean over a continental -

4

shell as ‘depicted in Figure 21. A right-hnanded Cartesian coordinate sy‘s‘te'm- is

chosen such tha.t the-z-axis refers to.the.oﬂshore direction' the -y -axis refers_;&to

¢
P

q{ejalongshore dlrectlon and the z-axns is vertlcally upwards The topog‘rapby

vanes only in the oﬁ'shore dlrectlon and a stralght(coastlme i8 assumed The ori-
| S e _
gin of the coordmate axes is the sur[ace at,thg coast.

:
’

"-The equation '50vernihg'§he,m6tion for & ﬁui_d element in an inviscid fluid on -

.t ! 4 o - . - >

s a rotating referénce frame is [Gill, 1082]

. - ; ol ST |
_ : + 2n U = __, -7, . : 2.1

A . | T X v g o ( . )

. . where §1 is the angular velocity_o,f the rotating frame, U is the velocity vector of

C ok : . - . .
Vo . o
N ! ¢ ,. ' 4
oot . —l—- : .W d A !
:.'.\‘.‘: Lot !




e T
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[ %
!

-
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Figure 2.1 Sche.inatic of a shelf profile showing the coordinate system,
. \ . S~ . -
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the fluid element, p is the density, p-is the pressure, and g is the gravitational
. . a @ . .
acceleration. The quantities p and p have a mean state p, and p, respectively -
B while U has a zero mean state. The presence of wavelike motion superimposed
on the mean state causes a departure from the equilibrium states of p, and p, to
] - .o . ' '
: - . i = polz)+p(zy.,t), ;) o (2.2a)
' ‘ ’ . - . . N ’ .
o : ‘ L p=pol2)+ p'(z TES 5 ‘ © (2.2b)
e L .U ==‘~U'(>s‘tlz.t), R (2.2) -
) g .o ) R - Y . .
]:I . .‘ . .’ o i . .o ‘ , ’ . “: ' ‘ . ’ - 0. .
‘ where the perturbation pressure p ', perturbation density p, and perturbation
i ' . . =2t ' . . P : S, . .
-~ vélocity “U' have been.introduced. Note that:the perturbation velocity U has
three components namely «’, v', and-v' in the z, v, and z directions respectively.
- . - ) . v
. The vector Equation (2.1) has three ¢omponent equations [Pond. and
. | Pickard, 1983] ‘
. ° 19u 3u - Ou Bu"' . S ap .
: 9 9 + 20 =1r .
s . 3 + u U + v ay + W 2Qsingy + coslqbw Pz ‘ (2.3a) ‘
. . ‘
dv - dv.. v . dv -1 9p ooy
—_— —-— 20 = — = 2.3b
SRk a:* 5z Ty U, tHbindu=—2on {2:30)
S ' ow dw dw> Jw -1 dp ' R
' - St U —_—— 20 =——"-9, .
. : - gt t :82 +v 8y + 9z cospu p Bz g (2.3¢]
which may be simplified as follows. Make the Boussinesq approximation that
. o ' . ) . ‘. * (-‘.\.
‘° density variations p about the mear p, are unimportant except where they mul-
tiply the gravitational accelera;uﬁﬁ. ﬂe Coriolis term involving v is neglected in
. " ) o - . ‘. ~ ' . v
‘ s ' (2.3a) as it is small compared to the Coriolis term involving v. The Coriolis term
o in (2.3c) is also neglected as it is small with respect to the gravitational term.
b . o ' ’ ! : : '
;:'_:~: : - ,”‘ ‘ ) l
e e e e S e s ; :
a..fx\u s, vd«n;m A SN ALY TR O Pt P S SPR Y PR B a e
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For the Coriolis terms that remain introduce the Cotiolis parameter as "
_ / = 20sind, ‘ (2.4) |
where ¢ is the geographical latitudAe._ In the formulation of the perturbation

equations it is assumed that non-linear terms are negligible. Finally, for motions

at sub-inertial frequencies the term %—':’ in (2.3¢) is negligible compared to the -

gravitational acceleration term.

The perturbation “momentum -equations for the. horizontal motion then
P - - Ao ‘

become from (2.3a) and (23b) ~

1 N e

. du” , 1 -1 9p ' o q )

’ Y] /U —Po azv ' (..5&)
A 1 3p' / .
. —-—.'v '_—_'-:———-p - U ' Q5l I 4

_ | ‘t_+f\u By - (3.5b)

The vertical momentum Equatiom (2.3c) has a mean state which is the hydros-

tatic equation - ~ o - : -




y
et

_ This r'nay be eipressedin\Cart'esign form as

2.2 Mass Conservation and Continuity Equation

-t .

\
'.\ ) "\ ' /ﬂ“"\"\
The mass conservation equation, assuming no diflusion of demsity is [Gill,
’ . ' ' . / A
1982]
1Dp =+ -
—— . = (. ) .
Dt + j.U (2.8)

Assuming the fluid is incompressible which is a good approximation for sea watef .

° - ' 4 '

reqasires

. , . __, "'g
R 1V'U = 0.
. . . 0

-

g, Fv , dw . ;
5 + .ay;l- 3, = 0 (2.10)

With (2.9), (2.8) becomes

th . : o .

2l -0, .
. Dt ‘ L (2.11a)

or in expanded form _
4 ' )

3 1dp 8 88 el ot

= 9 = o. P2,
at Tt ey T m Y Y P (240

Still further simplification is possiblé by neglecting non-linear terms yielding the

equation _ : \.,,,/ y

. ap 100, : .
" | —éT + w 3z 0. . (212)

Thus far we haveb total of five Equations (2.5a), (2.5b), (2.7), {2.10), and

(2.12) in ﬁ've. utknowns p', ag, ¢, v’, and w' which form a closed deterministic

L
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2.3 The Pressure Equatioh

-
~

14

and alongshore dependence ¢‘¥ + “*) where & is the alongshore wavenumber and

w is the frequency of the wave motion. The perturbation quantities'-behave as

A

\

1
\

We look for wavelike solutions of the set of five equations having the time’ ) *-

] dalz,y,z,t)=u(z,2)eithy #et), © (2.130)
: a ' e
’ o . LAY . ' ‘r .
. v(z,y_,:,t)_mv(z,z)e'(‘VJ”"”, , (2.13b)
v .
) ,w'(z Wiz t)=w'(z,z)ei kY +ut) (2.13¢)
plz.y,z,t)="p (z,z)e'ty +u1) ' (2.13d)
“: - L ilky ) a
P(ziylz l‘)=p(zlz)c y ‘ . (g‘lseJ‘

Upon sﬁbgtitution of (2.13) i‘nto-'(2.5a.), (2:5b), (2.7), (2.10), and (2.12), we obtain -

the following e&;}mtions having explicit z and : dependencies only

fwu" - [y = L2P_ (2.14)
v po Oz
i . " " '-fk "
fwy + fu = —p , (2.14b)
. ’ Po
‘ = (2.14c)
dz '
)]
- ‘Il ’Ia
14 . .'wp +w ,_ap: =t 0’ ) \ ‘(:2.14(1)
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v, wr o m TN

-'N\__‘, I . . - ’ ) )
( : b = f I:ap + kop] ! s* (2.15b)

-incompressibility Equation (2.14e) to yield -

The system of Eqns. (%14a-d) may be éplved for ihe three yelocity coinpgnents as

‘e,
+|'kp],

. dp
(/2 = «)p, [m‘”

_ (2.15)

\ AR

In Equations (2.15) ‘the non- dlﬁ\ensmnal buoyanci l'requency an.d bhe non-

dlmensmnal ‘wave frequency have been introduced. res ectively as
L N N2 _ g apo
!
, (/2 - w2)Po 9z

(2.16a)

- - '
R 0= % | : (2.16b)

A governmg equablon in pressure p “(z,¢) in the interjor of the Auid is

obtalned by substituting t,he expresswn,s for veloclty components (2.15) into the

e
82 ' k2 " l 82Pf/ . '

- + =0' _ .
e NQ 372 ,

a2

(2.17;1)

“The derivation of the above was carried out under the assumptions that both the

-—

(- . -
S [ " . s .
: i YA PV

(2. 14.‘?}&‘

(2,.‘150) .




1 ' .. s ' 'l‘_';:
. o, s , . L 1!
/ buoyancy frequency and the Coriolis l'req’ueliqy are constant. - ¢ B
y The bohndary eql_latiorrs\iiyiz ,z ) are obtained by considerﬁg the flow pro- )
perties at each boundary (see Figure 2.1). The basic condition is that of no low
. . >
- normal to each boundary except‘ét the offshore-boundary. At the coast the
boundary is vertical [Mitchum and Clarke, 1986] so u”.= 0 and hence
. | | ' (217H)
¢ |9z L Co ' '
S » . L o )
Along the.sloping bottom of the shelf upon which z = -h{z ), where h(z)is tHe ‘

fAuid depth- as.a. function of offshore distance =z, the flow condition s .

udg—:+wlé=’brequiringthat . - \'
Voo o g -
. "2 +kp+N28_h_ - - 0. (2.17c),

. Where the bottom is flat % == 0 so the above condition is simplified to v’ = 0

T . —
. ’

yielding -

op .o, | 2.17d)

o

(\/ Apply'ing the. rigid-li\d agprc;ximation alokg the surface at z == 0 leads to v’ = Q
there s that Equation (2.f7d) applies at the sjﬁi-face as well. The offshore condi-

tion is that the oceanic response be trapped at the coast so that p’ — 0 25'z —oo0.
. - N ! . . .
. As this condition is impractical to implement ifi 2 numerical .scheme, the domain’

is restricted to-an offshore distahce of D some distance past the seaward edge of _

the shélf at L (see Figure 2.1). An appropriate choice for D*is approximately 1.5 .\ ;_-Z
times L [Chapmsn, 1983]. There the condition that the gradient of \,,92,,;81 /\ 4{
* o

T }3




7

.
-
A
o
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R
z.
<
N
‘

velocity must vanish is applied (Brink, 1082] which is %':- =050
. . .r,

-
¢

. 3% . .9p
- — 4k =0.
' 0 7 + 92

- }

Ed

n’

e

4 -
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2.4 The “Ei/genvalue Problem

. : | S

€

" The Eﬁuétions (2.17) may be ;e-'expre'sésaed )b'y collecting all terms involving Ic.'

)

to the right .l'm.nd side of each equation and omitting the double prime notation

toryield . o S o

>

"in the interior ' : oy

v

at z =0

- (2.184)

§

.
to

L]
————
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3.2 55 (2.18¢)

{ For fixed o these équations.coflstitute an eigenvalue problem in the_eigenvalue k,

i

the alongshore wavenumber. Since it is quadratic in the eigenvalue a special

techniqué Is “employed fgk its solution.
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o . CHAPTER THREE
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o ' NUMERICAL METHODS
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The solution to the partial diﬂ'erential(Equation (2.18) is sought .over. the

;'.': . '. - . . 3 "-‘..

’ irregular two-dimensional shelf domain. It is convenient to transform the domain

L-'.* into & rectangular domain by 2 vertically stretched coordinate transformation. _

Y " ! ] i . . o . . 7.
"/’ g - .The equations are then discretized and are formed into a matrix eigenvalue prob-

5 2 J - _lem non-linear in the eigenvalue, The prablem is linearized at the cost df increas-

R : irié the dimension of .the'gqluiidn space. The system "is‘then sol'\red'.usi‘h,g an .
o ' iterative procedure called the ‘inverse power algorithm whereby the -perturbation

B : . — - . o __— -

megsure at each grid point is obtained ps wéll as the value of the alongshore

- ) ’ : ) :

: _» wavenumbbr k.

3.1. Coordinate Transformation
The motlva.tlonftewsmg a coordmate transformation is that a solutlon to

o o : (2.18) is more easxly obtained in 2 rectangular domam To carry out the transl’or- et
L . mation 1t is necessary to derive expressions which relate the denvatwe funct.lons

in the xrregular and the r\tnngular domains. A mappmg from the lrregular TN

domam of Flgur'e 2.1 to a rectangular domp.m is a vertically stretched coordinate L

=7 transformation from (z ,z) space to (z,z") space according to
. . ' o . T

L 1
:‘I: . o : R . . ) * o
. ! Voo . : A O L. ’
. ’ o . .o i .

L)
[ - i
La” . ’
Voo - []
PN
Vo B ’
»" K é
[ . \
e v Y- "
y. N L
v s 2 ¢ .
" e ‘. §
= A PRI




. N " T : ViR
el * v )p ) LI 1-';‘\,
‘ Y=g, " (3.12)
- . B
o = T(z): - £(3.1b) _
. )y -
: " / : - '
; where . _ -
™ ? -~ N ’ LT - ’ v -
. > 1 . ’ - _
. T(z)= . L (39)
N O o ' LCTR - :
% o . . - -
In transformed space, the depth z' tfow goes from Yero at the surface to a value ol' -
s 7 '
G _one at the ottom mespectlve of’ honzontal position along th(e shelf bottom Ql‘ .
’ ) ] ~ - R . ' ‘\ ﬂu
flat botftcsm. ‘ L B F ‘ -
: - ' The details of the transformatitn are presented in Appendix A, The follow- . = "
N . . ‘ - . i -3
s . . ' o L . .
' - ingrelate derivatives in the itregular domain to those in the ‘tectangu!:}‘r domain L '
: . . S Y
b R (,_QV “ ap ig— 3T :l ap . N
9 _@p 4 8T: 8p (3.3a) "
. dz dz 9z T 9z ¢ N
LN
- . !
: - Op = g0 (3.3b)
¢ . d: d: K 4 "
hY ' /.
. .2 .
&p aT = &% aT =" V&% | 8T : ap '
g ~2—7—f—,"r A ) R N (33 )
oz o7 - 83 gz : T d: 0z T 3z
~ | -
? C o .,
, .g_% = :r'-;;’{; < (33d)
. 4 2 - — . -
-~ g . . )
’ Sﬁbstltutlng these expressions into Equations [2 18) results in the followmg {
N .
- transforﬁned equations - ‘
o B
» . ‘
I - L4 ' ‘_—
',: : (\ ‘ r ’ v C .
’ | - “ i -
b - .
e £ N A1
..'1’-(.:."'.'. - - :r}‘.
l_' "\, ' “‘1 3l. ;" ) "'1';/"" 'l‘ . . o I ‘;‘;;:'F :i'
: ”“‘ "‘l'l','g;.‘,"“” ; " -;vl.:.n"':iij'v ,’ TR ) N M - ".lh v '”-;‘ R [N 7 ‘:': ‘T“ a




O Lat i st ® ‘i
JuE, Ay ."._ x o A I R v & S
B . S S \ — L.
el A . . . . . . ’ .
o o - Yoo . v l6
R . . - .
- , -

. interior T oW v .
L ., RIS Y LT 2 82 | '
e . 6% [ or:z | . T ]‘9” + 23T’ 9p (3.4a)

A o ’1\3:'1 3z T N? | 8.7 T)3:02
PO _ —

2 a*T 9p _
_ = k?
. l IQ:T 32 'p'
coast . | . ‘ o i v k
ST PR ) TR o

O . sloping bottom .’ L R 5

s ¢ . ' ‘ ) .o ;." _— R v e " -
NPT A L P i T JSUP SR - PR

-0 . . N

s'urface or flat bottom - T - S o it
' . : . L (3.4d)
Y ¢ v . .
) o ; . WO ) A . B
. oflshore L : S
. , i AL B ~ (3.4¢) .
g , N ' - 92" 0z
I ' / ' ' : ’ ’ . . * . > Y
/ ) : Simplification .of the transformations (3.3) are possible in certaih regions o+ -+~
: T I Tt T Cox e ‘
' —= . H ) . Y
o the domain. Anywhere the ocean bottom is flat gh will be zero and conseq’uently , .
! . . : . A ’ . z ; N .
. : ' ’ T . (
by (3 2) both and Z I will be zera. Terms involving these quantmes may
Z
R i . . - . . t b . ]
. be lguored when Equatlons (3 4) are evaludted over any. pomon of tie domam A
* . whlch has a- %at bottom. In particular Equatron (3‘4e) was derlved under the oo
E ',assumptnon that the ocean lras a flat bottom jn the‘ reglon where the offshore r
" boundary cpndmon is apphed An. additional srmpllﬁcatlon jae that by vnrtue of .
the chonce ol' the origin of the (z ,:) coordmate system at the surface of the . '
t - . s, ) | "’\ ‘
fi‘_ ;. O
s 3 WQ’—' ) - ' ’ :" "".'\ o

R T ot - Al . B . L DR » ' .. ce Min ' e : [ : e T :
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‘ s . .

coastal boundary, then :' is zéro everywhere along the surface boundary. - This. .

implies all terms involving 2  are dropped win;n Equations (3.4) are applied ‘ot the

surface. .Such simglifications lead to computational savings.

[}

»

g

o

3.2 -Finite. Difference Forms

r
L T

© The next step in the SC.‘eme 1s' to transform the contmuous Equatlons (3 I)

‘ 'mto a set of_ dxscrete equatlons The domam is to ‘be exprassed as a gnd (see an-
. ure 3. 1), there w1ll be one dlscrete equatlon I'or each gnd pomt The pnme super—

‘scrlpts on z and z are now dropped as all references to a coordma)‘,e system are -

_henceforth to the transformed ong. A rectangular mesh system is set up wh'er'e._.
each point is tndexed by a pair of Subscripts (s;5), the i referring to the z direc-

tion and the j referring to the : direction.- The m'esh'sp(acing in the z direction

Se

is Az, and in the 7z direction it .is Az. A centered finite difference Scheme is .

" used- The basis for this choice is that the pressure at.a point in the domain is °

assumed to have continuous z and deri\'i'atiw’/w‘and thereby ‘can be expanded.

A

about that p-oi'nt in"a Taylor's, series. “For det_.\éils of the finite difference scheme -

e

see Appendix B. The gént,int;ixm derivative at a point thereby l_)'e’comes.an

-

’ .apbfbxirr'la_tioq invo)ving: the’ 'péint itsell and its nine nearest neighbours. The -

discrete detivatives; are {Roache; 1985] ‘
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l 3 p|+l,j —pl--l,)

| - TR . 355

=

I

Q@

“ : ap P+t~ -1 i
L= , 3.5b
dz-. 24 ( )’)

32p = pl+|,; - 2pl,) + pl-l.] ["l r’(‘)
8z° ' Ar? o a '

e 2 + p; :
L | z’j — p'M. Z'; Dt (3.5d)
. SR T4 A R '

‘ v - %p P'u‘+|.;+| t P11~ Pivrge1 T Proy 4

e \ o 0z dz B ., . - 4A_2A_Z‘

Substitution of (3.5) into the set of Equations (3.4) yields the following equa-

(3.5€)

, . - X . b 1 * N
. . - ' -
tions . *

o '
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i ‘ 20
o .
2 “
=\k pl ] ’ ) j \
st - L
o aT -
LA g 2 Ipia- 6
o . [2Az_ I"'“" ¥ 7%z 22T P (3.6b)
< . . '
a
o aaT Z |n [ lp = -kp;
_ ' 8z 2A:T )7 [Baz ) e
* " sRelf bottom . '
- ' | o l - oT = T Y. .
. ' APy, + |o— +o Pij+i— . (36(3)
P s - I 28z ) 6:_2A2T 2A.zNg_a_h_
‘ dz
9T :° . " T - "
\ o— + 0o P,,l [ ]pll]__kpl['
| 8z 28:T ) NgZ’l il EY.Y
‘/.\ . . ? !
surface and flat bottom ,
.2 ')_..
- . p; )+l Pija = 0, oot . (36(1)
offshore
. : ' a'i ' o o .
| l'A_:z‘—;lPiﬂ,j - IQFIP., +‘ IFIP.‘-L,‘ e . (3.6e)
- /7 - . _
1 1
-k [—2A1 IP.'-H,j e l—'m ]pi+1,f }
- The Equat_ions (3.8) form a system of equations in which the unknowns are
the pressures p; ;' at each grid point. The equation for-the interior of the fluid
(3:6a) is applled at each.point in t.he mtenor of the domam and at fach point
.nlong the boundary. ,The interior Equatlon (3 68,) is applied at a total Of
e N = nz Xn: points where nz is the number of points in the horizontal and n: is
.\-:\ . | ‘ .
g , - \
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the number ir the' vertical direction. The interior e(iuation applied at a point

) ‘ v .
along the boundary of the domain will involve points exterior to the domain.

-

A _ The-appropriate boundary Equation.(3.6b - 3.8e) is used to eliminate the unk-

nown exterior points from the interior equation.
i

3.3 Matrix Formulation

-

B / '. In the domain there are N points at which the pressure is to be solved for.

An N, dimensional vector P is constructed by considering all .the points in the
_ first column for which 7 ="1 {i.e. at the .coast), from the surface to the bottom
which has j =1, -+ ,nz points and then adding on each consecutive column of

points in the direction of the offshore corresponding to i =2, - ,nz until P

references every point in the domain. Equations (3.6) can be written as

: | o . AP =kBP + kCP, (3.7)

| . ' -~

where A, B, C are linear qatrix- operators. As each row of the matrices A, B,

and C are multip]ied,b}m he operation symbolized by (3.7) then each row
%

‘represents an equation at one unique point in the domain. There are-a total of N

equations and hence A, B, and C are each NXxN dimensional.

.

The non-linear problem (3.7) can be expressed as a linear problem with the

substitution .

o .

¢ | C d=kA, x (3.8)
‘ : into the second term on the rfght-hand side of (3.7) where the vector @ is N
. e - :

-~ i

!

-~

’

0!



dimensional. This equation becomes
v

4

: ] . . " AP =kBP +kCO. ' L (3.9)

_.‘,\~

The system of Equations (3.8) and (3.9) ‘t_ben form a problem of dimension 2N
8 . - B .
(A O |P| CHy|P
{o II[Q‘]=H.1 o]lQI- (3.10)

where I is the identity matrix and 6 is the null matrix. Both I ahd O are NXN

RN oy

B Pl

dimensional.
Instead of solving (3.10) directly it is desireable to introduce'an?explicit shift
s whic’g/ is an estimate-of used to improve solution convergence as well as ta
isolate a particular solution [Stewart, i973]. The vector
o : c) (P |
. e : o (B O]IQI’ ' (3.11)
is subtracted from both.sides of (3.10) to yield
-  A-4B -0\ (P B C (P ~
‘, [ :JJI -81 ]IQ] n\(k,-'d)[lol[Q'I ] (312)
_Rearrangement of this vector equation yields
. ' A-aB'-aC"B.C Pl _ 1 ‘(P
\\ : o 1) G Ollé]_h_olél". (3.13)
We note that
A-4B —1Cy[D'1 . sD'C" I O :
o1 1) [aD"I pia-.p)) = lo 1) (3.14)
where
D-_=-A—a‘B-.aQC. . (8.15)
y ‘
4:‘;-- . . . .
“;I.'(‘}b ;'_'-'»;;x'y.‘j‘x't\i::.fJ_:‘. -.'"\ ' ‘,.L.":"'-:lf.."-!;fi:v,‘fi,-:.' >_,. ’b,..._,'l,-‘;'.r'.'. --:‘."lr‘v'l':&\‘-l.y i 'Ix'c'l,"‘.". RPN .l' e ';,I- RATU ‘l:. h

N TR lr|“
REEET A



LA
AN

, | &
o ‘ - : 23
From the -efinition of the'inv-erse of a matrix it Tollows that
2
\\ .
(A-sB -aC),!' _ (D1 s D"'C
21 1) = [ipu pia-.m) (3.16)

;

.

After substitution of this inverse expansion into (3.13), the vector equation can be

multiplied out to yield

r . D—n(g_’&ac) '_"D';’%] [g] =k—l_—,|g|- ©

The quatién (3.17) has the standard form of a discrete eigenvalue problem

ME = ), . (318)
where M is the 2Nx;'l(1_'d?\ ensional matrix . L
‘\\: ’ '
__[D'B +20) D'C |
M= l DA LD (7'19)
£ is the 2N dimensional vector
el
i= (5} (3.20)
and A = . L s the eigeﬁvalue.
~ 8 _ - s e -

The eigenvector corresponding to the eigenvalue of largest abﬁt‘fhité_valuc,

say A, which if turn corresponds to the ¥ - o of smallest absolute value can be
- L . a .
determined b \application of the inverse power algorithm. To understand how

~

the algorithm leads to a folution eigenvector £, of (3.18) with-eigenvalue X\, from

[

.some initial and arbitrary vector £° it is necessary to assume that 4 has a com-

plete set of eigenvectors &, &, ..., &y Which have corresponding eigenvalues satis-

&

N . .
T ‘ R . [V . . LT . J . . e
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o
- ""’A1|> |k2|2 Z’MN'- (3.21)
Since the set of eigenvectors form a basis for the spac;: spanned by M then any
vector/fw expressed in tbg form -
E=mb+nbE+ 0 + b (3.22)

S .

where the 4, are some scalars for s = 1,2, ..., 2N. It is evident that repeated

application of M on ¢° say v times will lead to

o

MYE° -_-=‘X,"'r,$, + M 6+ 0+ An"Tenéan- (3'23)

A, particular eigenvalue &, of (3.10) can, be singled out for computation by

choosing an s in the neighbourhood of k, so that A\, will be large and (3.21) willu'

be satisfied. The rate of convergence of (3.23} on the eigenvector of largest eigen-

value depends in part on the relative magnitudes of the largest eigenvalues.

Assuming X, is the second largest eigenvalue (in magnitude) then convergence on’

)\, tends to be quick provided |)\: I >> |x2 '
T ‘ .

If v is large enough and (3.211) is valid then the eigenvalue A, will dominat'e

so that to an arbitrarily good degree of approximation (;'

M'E = &' = N, (3.24)

" where £," is the estimated &; after the v"-iteration.

Jhe manner in “which the solution:technique works- is that we assume that

after iteration # we have computed G,i'. Note that to get the iteration procedure

Jstarted we picked & arbitrarily. Thg improved solution at iteration v + 1 is

———

Ly . ' . . e

’e
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N

~

- __determined by a sinjgle application of M since S
9® . M&lu_:l é-lu+l.. ' (325)

This procedure is cortinued until convergence.to a single eigenvector is obtained.

This eigenvector is identified as £,

Once the eigenvector § is known then the eigenvalue X, is immediately [

knogn by one more application of M as in

ME = ME. \&9( (3.26)

_ : . . . 5,
* Recalling the definition of & from (3.20) it is possible to réwrite (3.25) as two

[ b Y
component equations for the original unknowns £ * ' and Q¥ *" as

H

_ ‘ Pyl = D—.I(B + 3 C)PV + D‘]CQ.”, {3.27a)

and
QU =RV + P (3:27b) .

where P¥ and Q"’ are known from the previous iteration. There is a dimhculty : "

. o~ . '
with (3.27) in tbat it requires the inversion of D an NXN matrix where N is of
the ordersof several hundred points. -It is therefore impracticﬁl to attempt a solu-

tion of (3.24) by inverting D direcily.
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o , 3.4 Alternate Formulation
. Instead of solving the eigenvalue problem (3.27) with NXN dimensional . :
matrices the problem can be solved by dealing with nz sets of matrices of size
] nz X nz.' The vector P may be broken up into a set of i = 1,7.., nz column
E _ vectors p; each of dimension nz, with each subvector p spanning from the ocean
: ;:‘,'-‘. A bottom to the surface. The equation at point (f,5) involves poipts lying: -
the columns i-1, i, and §+170nly. This suggests a method of reformulating the
"=_;' ' _ t Equntioris (3.6) in"matrix notation in analogy with (3‘.27)'3.5 ' ' :
.o , B .- _//J_"_—:—
" : ' oo :
A o ' (ati - ab*-a%t ) pia T+ (8% - b - 8%’ p; L+t 3.28a) o
(a7 - ab7 -’ ]i’.‘.ly+l = (b¥; +'ac*; ) pin’ + ¢Tid
(b e )pit g+ (b e ) hia + 4" '
e t .
k and , .- - h . —
PGt =ap vt ‘,(+ B’ - (3.28b)
where all ma,tricﬁ;are of dimension nz X nz and all vectors are of dimension nz .
The manner in which the submatrices a*,», a’;, a"; are derived from the matrix
"l . . . . .
v A, the b*,, b°;,'b~; from B, and the ¢ty %4, c ; from C is illustrated in Fxgure
3.2. Also deplcted is the relatldn between the subvectors i and the vector P.
v * Thus tbe nz set of Equations (3.28) are equivalent to (3.27) ‘and have the advan- .
tage of being more manageable numerically.
-2 |
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Figure 3.2 Diagrammatic relation between formulation of eigenvalue problem
and the alternate submatrix formulation.
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W On each iteration, the solution vectors of the/perturbation pressures are-
L o s 7
o ' ) determined for each of the nz columns of the domain. The following is an expla;
= nation of exactly how the perturbation pressures for each column are determined
p at the v + 1 iteration by using a modified form of Gaussian elimination. Con-
. \ . .
C— sider the nz set of equations of the form (3.28). In general we relate two adja-
. : /7
R ,

. cent columns in the domain using an _expression of the form [Lindzen and Kuo,
| v 1969) - -
Bia T =dpt T+ /3.'-1: !3/29)
:",‘.' 15 8 nz X nz matrix and B: is a nz dimensional vector.

For (3.28a) at the coastal boundary (¢ = 1) we have
° (a%; - sb* - ‘2.°+1)f’2”+ l".a“f" (8% - 8b°) = a%)p," " = (3-30)‘
L)
. (b*y + ac™)ps" + e* 4" + (b°; + s¢®)p," + ¢ 144"
Y There is no reference to column s-1, that is column 0, as it ‘was implicitly elim-
- inated ip the formulation of (3’28) The form of (3.29) at the coastal boundary is
l\ .i’lu +1 = alézy.’: ! + Bl.' (3.31)\»"‘
. /"TrTs-.f)‘ection of {3.30) ledds to
' , . ‘(a*, -sb*, - a2t
b _ a, = - (a7 ! . ’), (3.32a)
(a%, - ab%; - 2%c"))
& -~ (b 4 0 s Pt + (4 4 06 o1+
;. = : L A= i ! 2l (3.32b)
h‘.—"\.""‘. . ’ (ao\l -8 bﬂl -8 c° 1) - .
Byl ) )
?‘i«:'. . ) . . o X
W o : A matrix division convention for {3.32) and subsequept matrix quotients is
; ...'.4.': , i ’

LI . S M
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introduced such that -
. A- R 0
= =RB"A, )
. ) B (3/33)
h

for arbitrary mat:ices A and B. . —
b Next for columns from i = 2, - - - ,nz the relations for @, and 8, are derived
T i ‘ ‘£ . . . .

Pl from substituting (3.29) into the left-hand side of (3.28a) to eliminate column

p..." "' Note that in this\progressive scheme as the index i varies across the

shelf from ¢ =2,---,nz that the matrix e;;, and the vector B;., are known|
from the previous calculation at i-1. The a; and B; are calculated 'as
. at; - a bt -, .

- = . Rl
~ (8°; -8b%; - c",)+(a.‘,-—ab',—.—a‘c’,—)al_{,
~ \ v
‘ I A o e A L M

(a°; - sb°, - 8%c’;) + (a5 - ab™; - s2¢”,)ey,

-«

+ (3.34b)

a

B;

(b + 8¢ )i +¢i§i" -(a7; -ab’, -2%7)8,

j(a",- ~sb’; - azc",)+(a.',- -ab7, - 2%, oy,

<

--When the column ¢ = nz is reached we need to solve for p,"* ', The

column ;‘;M'H"“ does not appear in tite formulation of (3.28a) at the. offshore

to. .

S 'p'boundary as the unknowns in that column were implicitly eliminated in. (3:28a)

by application of the offshore boundary condition. At i = nz we have.

(a%ps ~ 0 b%,, - 5205" )ﬁm” Ty (a-nz -ab7,, Y ‘23-" )i’m-lu e (335]

(B% ps o+ 8¢ oy Mins " €%y g+ (b7 ps + 8€ 0, Mhazt” + € s Gnst’
2 v

‘ .
N From (3.29) there is also the relation

., . - _ ¢

BRI \ ) P N . . . Lo ~ .
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. (3.28h).

1 . .- . . e T a

. \ . : . . .. . ’ ' 30

P’ = b B ‘  (3.36)

‘where a-,,,_, and B,s - are already computed and available. The Equations '(3.35)

i

v+l

and (3.36) forp. a system of two equations in two unknowns namely ;‘:,,,_, and

-

Yope’ L The system is convemently solved by substltutmg (3. 36) mto (3.35) to

a

@

N VU,

ehmmate p,,, g The resulting equatlon for i\] S -
| “

Pns = - ~ LA - ,
e (8, - 2b%y; - 2%’ na) H(87p - ab nx--"“’zc n2 )‘_'_nx;l

>

[}

(bonx +‘c nx)?n: +c’ qu;v+(b ns +‘cn:)pnzl +c—;;;q,,, l._
(‘ ns "b nz ~af c nx)+(&az ’b- -8 onzranx-l

”

‘ . B .
- .

Y
'3

< B (a-nz -9 b-nz - ‘2¢'_'nx ):an -1 )
(a"q 'ﬁ:f s bo nz "~ '2‘:0 ﬂlT+ (‘;-nx -4 b-n: -8 20-,,, )amz-l ' p .
7o ’ Y . . - /’t\\

o
B p] ,-‘ . . -

N . . .
With p,,*** now known as well as all the o;’and [9: then immediately all

the other p;”*! vectors in the domain are obtained using (3.29) as a recurrence

“ relation. The solution for g** " is then readily determined ‘by application of

v

‘o

.On each complete iteration through the domain a new pressure solution

P** ! is obtained from the solution A” at the previous iteration. To initialize the
procedure an arbitrary vector P° is chosen. A.convenient choige is to set all the
9 i ’ ‘ , .

elements of P° to&gity.

e

(.b.knz +ac7,, )pn;Hv . c:.'m dnz +‘lv a + ' _ (3~37) . .’:.
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. Convergence to a solution is detected using the Rayleigh Quotient which —

-

equals the present value of the éhifted eigenvalue and is calculated s [Stewart,

1073
‘ . N . ! : . \
1 P (Pv+l)H PV .
’ ’ k- s - (P,V*I)H__f)w-il. -, (3.38)

" where the superscript H on vector P”*! denotes the complex conjugate tran: .
., spose. 1f the solution has cohverged thén iwo successive iferations will produce - ‘W

B vglue.s for the Rayléigh Quotient which diﬂpr by an amount. less lthan' some’ arbi-

2 -
L N B
o : ‘ : : o v 1
' trary small parameter e. At t:onverg'egce, the eigenvalue & is recovered from - -~ *-
K l , R o . ’ . . - - ‘ "
{3.38) since 2 is already knowa. The corresponding eigenvector is identified as
. prv+t ' . .
e - 4 ‘
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.

v : ' APPLICATION TO BAROCLINIC CTW's

. . —
. / ~y <
. A

In this Chapter the effect of a constant stratification o.n) the propagation

. characteristics of CTW'’s shall be investigated. The propagation characteristics

- of C_TW‘s are determined by a dispersion relation between their frequency and

wivenumber. The main®features of a CTW dispersion. relation will be "outlined

“.. " byfirst presenting the simpler barotropic dispersioh relat'ioh.' . | - o

o

\

" 4.1 Barotropic Dispersion Relation

The shelf profile used to investigate the barotropic dispersion relations.is the

same as t{nsat studied by Buchwald and Adams .[1968],-nar'nely'

h=h,e¥ for0< 2z <L, . - (4.1)
g : ‘ h=nh, forl <z <D. .

s —---+—— — The constants are chosen to be

h, = 219 m, .
b =4.52X10° m™!, ' »
L= 1.2o,x|o~" m, ’
D.=1.60X10°m, . . 4
hy= h,lc.“‘ = 4900 m.

The Coriolis parameter, is taken as [ == LOX 107 57!,

.
LR R - . 3
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If the rigid lid approximation is made the CTW solutions for this shelf shape
. . : can be determined analytically [Buchwald and Adarhs, 1568].. For this solution

the wavenumber k is the root of the transcendental equation

tanfal ) = =%, (4.2)
24k
—_— [2 ]
where the relation between a and & is given by
|
. 2 . , '
. . ot + kY4 34—‘+ M— = 0. : (4.3)

’ * - - . o
) . i - »
e

© At a given frequency w, the analytical solutions obtained occur as a finite number
of real wavenumber solutions and an infinite mumber of complex wavenumber
solutions. The real solutions are the propagating modes and the complex solu-

tions are the evanescent modes.
t

The distinction between real propagating and 'complex evanescent solutions
.« is as follows. The wavenumber solution k¥ will have a real component kp and
@

- possibly.a non zero imaginary component k; such that
. . 4 .

k=kp+i k. ' (4.4)

'

" The wave solution has a harmonic alopgshore dependence of the form e, Sub-

] stituting (4.'4) into this dependence gives .

P

ety ity - (4.5)

The factor ¢’ thus represents a growth or decay of the wave in the alongshore
. direction. A real propagating solution therefore has constant_amplitude while a

complex-evanescent solution does not.

Y
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The barotropic dispersion curve for the real part of th.e wavenumber calcu-

-

‘" lated ::nalytically for the first three modes is presented in Figure 4.1 [Webster,

1985]. Frequency has been non-dimensionalized as ¢ =w/f and the real part of
B [N | '

the wavenumbher as vz =kg /b where b is the shelf slope parameter.

The ratio of the frequency to the wavenumber at a given point on the

dispersion_curve gives the phase velocity as

L —
—

‘_c = i. _ (4.6)

=

which is the rate at which lines of constant phaée' propagate in the: a]éngshore

<

northern (southern) hemisphere, hence CTW's only propagate with the coast on

the right (left). The group velocity is the slope of the dispersion curve at a given

-

O wavenuiber: that is.
. Ow o . n
C’ = 3F . (4.7)
/ N '~ The group veloeity represents the velocity of energy propagation in the
alongshoresdirection.

An important feature of the barotropic dispersion characteristics is that each
propagating rﬁbde is frequency limited. That is, each mode has a subinertial fre-
3 querncy above which it may not exist as a propagating mode but must be évages-

cent. Below this cutoff freqixency. the propagating CTW’s occur in modal pairs
K . - having the same mode'numbe'_r but having éroup velocities of 6pposit'e signs. The
| o " CTWin a.modal pair is considered to be forward propagating if its group velo-

i

' , city is'positive and to be backward propagating if its group velocity is negative.

m .
L
L . i . » e AN P

direction. The phase velocity may only be of negative {positive) sign in the
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At the cutoff frequency the group velocity is zero. Above this frequency the
evanescent modes split off from the propagatiné modes. The evanescent modes

also occur as modal pairs. The members of an evanescent modal pair have

wavenumbiers that are complex conjugates of each other [Webster, 1985].

The baroclinic numerical scheme outlined in Chapter three is applied to the

"shelf profile (4.1) using an extremely small amount of 'strati.ﬁcation. The barotro-

© pie dié‘persion. curve of Figure 4.{ is reproduced. The success of the nurnerical
scheme in . reproducing the analytical solution can be regatded as a partial
verification of the éqheme. A more'complet_;é verification is presented in Appendix

-

C.

\

4.2 Baroclinic Dispersion Relation

L4

-
—

‘ .
The effects of density stratification on the dispersion characteristics are now
iriv\esiigéed. The same shelf profile (4.1) is used with the same nz’mefical param-

" eters. A density stratification parameter is chosen [Chapman, 1083] such that

- g MRy - (48)

Note that the buoyancy i’requency is defineéd in its usual dimensional form in the

‘context of the strat_iﬁcation parameter. The stratification parameter i3 set to the

- )

values of § =02 to simulate a weakly stratified ocean sand S = 1.0 to simulatea
stropgly".stré.tiﬁed ocean. _The dispersion curves for both" these cases are

’gre:seqtcd in Figures 4.2 and 4.3

S &5
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Stratification 'ha.s the effect of increasing the phase speed “of.the forward pro-
pagating modes while decreasing the phase speed of‘ the backward ;)ropagé.tiﬁg
modes [Chapman, 1983]. As well, at §'= 0.2 a second zero of group veloci’ty 1?
- introduced for each.mod.e. As with the first zero of group velocity there are
evanescent, modes branchmg out from the sécond zero of group-velocnv The
~second zero of group velocity differs I'rom the first in that it deﬁnes the frequency
below which a backwards propagating mode'gan not exist for the particular mode
number. There exists a range of frequenci;es_for a given mode through wﬁich that

mode can exist as a long wave forward propagating mode, a short wave backward

propagating mode, or an even shorter wave forward propagating mode.

Another feature of -this particul;u choice of stratification pa.rameter is the
manner in which certain propagating r{{odes are linked through the evanescent.
modes._ For instance, there is an evanescent mode branching oit from the secon‘d
zero of group velocity df the first ".‘°d.° which eventually connects np'to the first
zero of.“grogpv velocity 6[ the third mode. As well, the évapescént mode br:mch.-.
ing out from the second zero of group velocity of the second mode connects to
the ﬁrs;, zero of grqup velocity of the fourth mode, alt‘hough this is not depicted
in Figure 4.2. The process of translorm:;tion of the mode two propagating mode

into 2 mode four propagating mode will be presented in the next section,

—

4.(4’-
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. close t'o\t.he mode one CTW dispersion curvefor § = 1.0 (see Figure 4.3)

- o == 03 for 'varidble stratification.

For the strongly stratified case (§ = 1.0), all three propagating modes/a/e no
lor&;er frequency limited. Thwe modes exist right up to the memal frequency
Nelth;r propagating mode has Lzero/of group velocity and consequently there
are no evanescent modes splitting off from the propagatiné modes. The disper-
sion curves suégest “that the waves are: t;anding towards a non-dispersive Kelvin
wave nature. This premise is supported by analytically computing the Baroclinic

Kelvin wave dispersion relation (see Appendix D) for a flat bottom ocean of depth

“h, =4900 m. For the first mode baroclinic Kelvin wave the dispersion curve lies

- <

. The

: stratiﬁéqﬁibn parameter may be intefpreted as the ratio of the baroclinic radius of

deformation NH/f to the-offshore ]engih scale L. It is expected that as S is

increased and hence the baroclinic radius is increased that the CTW's will begin
to sce the- coast as a vertica] wall. In the limit of large stratification the CTW
dispersion relation would thérefore approach the baroclinic Kelvin wave disper-

sign relation [Chapman, 1983]. o . )

!

4.3 Fixed i?requéncy

'F iguré 4.4 shows the lochtions of the non-dimensionalized wavenumber solu-

‘tions in the'complex plane for the lowest five modes at a fixed frequency of

Note again that the non-dimensionalized

wavenumber is defined as ~ m k /b which has a real compoﬁent +r = kg /b and

-b

G, i
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imaginary component y; = k;/b. The stratification pararmeter is varied from

S =001to$§ =04.

The wavenumbers of the forward propagating modes one (1F), two (2F), and
of the previous section. The wavenumbers of the evanescent modes four (4E) and
five (5E) apparently remain complex as S is increased to 0.4. For the backward
propagating modes one (1B), two (QB), and three (3B), increasipg S first resul*s in

4 -

the wavenumber increasing along the real axis. At an intermediate value of § \l‘qr
each‘mode a second forward propagating mode one (1F), two (2F, ‘and three (3F')

appears along the real axis. At a slightly higher stratification for each modJe the

-

backward and the second f(')r;»var'd propagating mode coalesce. At this point 5
leaves the 1:eal _axis and c!oizs a reverse loop in the (.:omplex plane. ¥The evanescent
modes occur as complex conjugates of' each other. This is evident by taking the
complex <':onju‘gz-1te of (."3..18).-Since M'is purely real-then M= M' where + is
\used'-t.o denot_e' the complex conjt‘lgate._ Const;quent]y, il A 'qnd/Z’ are solutions of
(3.1’23-) then A\’ and ¢’ are also so_lutiéns. Since the ¢omplex « ocmllr as’conjugate
solutions, 't!)e joining of theé two real solutions produces two complex'_solutions.
The mode two dis;persion' curve .eventually rejoins the real-axis and splits into a

mode four forward and backward propagating mode. Thus, it appears that a

process by which a given mode may transform into another mode, has been esta-

r.
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three (3F) décrease as S is increased. This behavior is consistent with the results
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Figure 4. lo Loci of wavenumber solucions on thJcomplex plane for g =0.3 and __ .

for S varied between 0.01 and 0.4. The mode numbers are indicated. Ve
F designates a forward propagating mode,..B-a backward propagating’ “« w
mode, and E an evanescent ' mode.’
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4.} Rate of Convergence : | S
. B .
o]
- . .
© T This Chapter is concluded by presenting a note concerning the manner in -

which a dispersion curve is produced .- The numerical scheme outlined in Chapter
_ three is.implemented as a Fortran 77 progthm on a VAX 11/785 computer using

doublg precision complex arithmetic (14 digit accurd@).

-

~
- S~

To obtain regults from the model it is ne}c;sary to specify: horizontal nz;‘
and ve:tica] nz grid spacing, the b(:ttom topography & (z ), the sb;alf lgngth L, the o o
extent of the grid-in the offishore direction D, the Coriolis parameter / , tile wave
frequency w, an estimate of the wavenumber s, and an arbitrary initiallvecto'r £°‘

The program will then seek a wavenumber solution & which is close to s. If the 2

solution converges then a dispersion pair (w,k ) is identified.” If the s@lution does

s B
~ not cpnér?/‘vithin a specified number of iterations then execution is terminated.
The solution may fail for any one of several rea.sons/ First, il there is no - o

wavenumber solution k in the vicinity of the shift s then convergence will not
/ -

occur quickly enough. Secondly, certain choices of input parameters may lead to

¢

extremely large matrix coefficients. As the computer can not handle such
numbers the solution fails. Thirdly, convergence to a complex solution can never

be obtained with a real shift as complex conjt;géte solutions oceur in conjugate
“

pairs both of which are the exact same distance from any real shift.

The generation of the curves in Figures 4.1 through 4.4 requires, the compu-

)]
tation of a large number of such wavenumber solutions. Once an (w,k) pair fog’
)

b e

any curve has been identified then the rate of convergence for all successive solu-

-

2

Y
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E ‘tions on that curve may be improved by a factor of five. This is achieved by .
using the eigenvector of the .previous solution as the initial vector £’ of the
- LS .

. present solution. As well, the choite of shift #+ may be-optimized by choosing it
* fo lie along a linear extrapolation of a portion of the curve already determined.
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CHAPTER FIVE

INCLUSION OF A BAROCLINIC SHEAR CURRENT

—

In this Chapter, the previous model is exiended‘ t> include a baroclinic shear

\ . .
current flowing patallel to the<oast to determine how the phase speeds of CTW's
are influenced. Results are obtained for comparison with observations of CTW

\.propagation made-during the Australian Coastal Experiment [Freeland et al.,

1986).

M

5.1 Equations e

P
The mean states of density, pressure, and velocity are designated by p,, p,.
and U, respectively.. The total density field p, pressure field g, and velocity field

U are composed of the mean fields and the perturbation fields o', p", an‘d G due

to the presence of wave motion so that

- p=p,(z,2) +pz,y.2.1) (5.1a)
p =p(z.2)+ plz,y,z,t) _ | (5.1h)
' . _— T h
U = U,(z,z) + U'(z.,y,.z,l ). (5:1¢c)
\ * .

The mean current has only one -component parallel to the coastline denoted by

Vo . ‘ _ . ' ' E

-, N . '
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The perturbation equations are derived from the mass conservation, the con- .
tinuity, and the momentum equations in a manner analogous to that of Chapter
two. The differential fofm of the density equation is Equatjon (2.11). After util-

izing (5.1a) and (5.1c) for the density and velocity fields, it becomes

8, 190 . 3 e, 100 190 100"
2P —o. 2
ot t 9z tu 6 + Y% 6y By . dz v dz (5.2)

Assummg that the. perturbatlon quantxtnes are much smaller than the correspond-

ing mean state quantltm then this equation can be linearized to

—

Bp apo ap apo _ ,,. . .‘.A
3t +fl 32 + v By +w 3 0. (5.3)
! The conLinuit&_EquatIion (2.9) remains as is because v, hasno y dependence.
Hence,
! !
dvl L dwl _, (5.4)

dz + dy 02

For the momentum equations the time-dependent flow is separated from the
/-'-—- .
mean flow. Substituting the relations (5.1) into the momentum Equations (2.1)

gives the three component equations

’ du’ ,0u
EAA TS

,3“'
4+ w

+(,+v') ij(u,+u')= ©(558)

-1 8(p, +p') ‘
Po 0z ' .

e

+ (v, + v") %"y" + w'a(""a:’ "'_) + fu'= (5.5b)

c. e N A 3
. . . -
- .
P . . -
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dw' ,0w! now' 0w’ -
\ | 31 + u I + (v, + v') 9y + w 3 o (5.5¢)
. . N
, A |
1 8l +p"
(po +0') 0: g

where the Boussinesq appro.ximation' has been adopted.‘ Linearizing and time

averaging these equations produces from (5.5a) the geostrophic relation

, 1. 9p, Lo
j [ve -‘? 3z (-).9:\)
and from (5.5¢) the hydrostatic relation
o,
d ;
. . o -p, 9 = Po_. (5.6h)
: ) . a:

Subtracting the mean state Equations (5.6) from the Equations (5.5) andl lineariz-

ing the resulting equations gives the perturbation equations as

du' Ou' v 1 ap' -
. o Ty N (5.7)
- dv' ,a"o a'vi ,a"o ' 1 dp'! ..
ov_ A = L2 8
at tu dz ._-+0° dy T a: +J pa Oy (5.8)
¢ t
’ iy =a_p' K : 5.0
, pg, az .' ) ()' ]
. ,\

The five perturbation Equations (5.3), (5.4), (5.7), (5.8), and (5.9) in the five,

unknowns p', o', u', v/, and w' may be solved explicitly for the perturbation p?es-

. A\ J
sure p'.



~ velocity v’ and the cross shélf perturbation pressure gradient %p— as
b 4

5.2 Long-Wave Approximation -

\ o

Analogous to the treatment presented in Chapterfti’uo, the perturbation
cquations may be formulated as a generalized discrete eigenvalue problem in pres-
sure. It turns out that the resulting equation is of-fifth power in the eigenvalue

k. The equation is of the form

AP = kBP + k’CP +k’DP + k'EP + k°FP. " (5.10a)

‘

The methods outlined earlier may be employed to solve such an equation result-

ing in an expanded dimensional space equal to five times the original space.

Making the long wave approximation reduces this p;oblem to a linear eiéenvglue

problem as
AP =kBP. ‘ (5.10b) -

Another consequence is that the waves become nondispersive in the long-
wavelength limit. Making the approximation in effect means that the offshore

momentum’ Equation (.5.7{) is a purely geostrophic balance between perturbation

[

fo =120 ’ (5.11)

For the approximation' to be valid we assume the conditions kL << I,
kv, << f, and and w << f to be satisfied. Applying a scaling argument to
(5.4) and use of the condition 4L << 1 indicates that the offshore velocity u'is

smaller than the alongshore velocity v' by a factor of order kL |Gill and

. ] - \
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du'

Schumann, 1974]. The term < ey be neglected in (5.7) in comparison with

o !

Jv' as the neglected term is smaller than fu' by the product of the two terms &I,

. ]
and 2. As wett, the term v,aa—"- may be neglected in comparison with fo'
y

/

This time the neglected term is smaller than fv' by the product of the two terms

k
kL and 2o Taking a maximum allowable alongshore velocity v, to be of order

f

1 ms™', & of order i10°® m™, L of order 10° m, and / of order 10-*s™ then the

term$ kL and kv, are both of order 0.1. Their product is then of order 0.0L.. Also .

note fhat since the geostrophic assumption__is made in only one coordinate direc-

tion the equatiops used are termed semi-geostrophic.
7

5.3 Pressure Formulation

-

As-in Chapter two, solutions are séught which have the harmonic time and
alongshore dependencies c'(‘;’ +w) where k is the alongshore waven'li.mber and w
is the frequency. 'The equationy of motion are relduced from a I'our-dime‘nsioﬁl;zl T
problem in z, y, z, and t to a two-dimensional one in z and :.- Ea'ch' of the five ‘ o "/"

perturbation quantities is now denoted by' double prime supérsc;ipts in accor-

dance with (2.13), The equations are

: £




- 50
jwp +u P + kv, p + w0 3;: =0, o (5.12a)
’ %—"; + ik + aa{ —o0, (.12
fv' = pl., %’;, ﬁ) (5.12¢)
o o +_.u""_’a";4 bty o kw4 = p"—"  (sa2d)
Y = % . ' (5.12)

3

Thé Equations (5.125.1, (5.l2c); (5.12d), and (5.12¢) are solved for the three per-

turbation velocity components as

-

ap" ap ap ‘9p"
AT - 7 =+ kfp', (5.13a)
" ’ a g N
v' = r,,a_';, (5.13b)
) dp" ap ap'w 0 ¢
=. A .
w' kf,o 9 +f°a + & 85 +f7a + kfep (5.13¢)

where the functions prefixgd by f are introduced for convenience reasons as

dp, Ov, dp, Ov, dp,

3z 9z 9z o9z ' 9z’ (5.14a)

fo

. . . apo ‘

7 0z
f, = e 5.14b
1 Po fo . ) ( )

f, B e, ) ‘ (5.140)
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dp,
® 9 .
o ot (5.14d)
N dv,
w :
D= gi: - _ _ (5.140)
dv,
v, .
f = 2 g;’o’ , RN GR ST
N
apo . .
fo=- .;"’;o,. : (5,14g)
.0 , .
‘ L 8
e o200 ' |
f; = -I—f%, - (5.14h)
apo \N./
° 9z .
— f8 - fp fo ’ (5.[4])
[
(e + wf )
fo=- pr3 : : (5.14j)
ov
o (‘va. ao + vuf)
fio = - zgf ' ' (5.14k)
0
— fn= /'p (5.141)
[

The equation for pressure in the interior is obtained by substituting the

expressions (5.13) for velocities into the continuity Equation (5.12b). The interior
. s .

<



* equation becomes

%" ofy - of, \8p" p” 3fz ap”
—_ f —_—) .
r°az? +(82+31'32+2/312+[ 32)62+ (5.15)
62p" 8' s  dfo gp”
(f; + 1) 322 I‘[rfo + (fg + P + —aT)“a—z‘" +

| o2t o Oy Ofy ap” . Oy O .
‘ (fg + f5) =~ ,'*“( 7 T g Tt )5+ (5 + 30 |

The pressure equations along the boundaries are determined from: considering the

—n—

behavior of the'velocitiesh@._ Along the vertical coastal wall we have

—

uw' =0, - (5.16a)
so 4

P I S -FSP{_ + fsaLz + f,,,'j_ (5.16b)

" s0

w' =0, ' s [(5.17a)
- \ ’

3 3] d

ap + f1 3z = "k[flo ap + ra ap + fep . (5.l7b)
On the sloping shelf bottom
-
] ah ” -

o +w =0, (5.18a)

SO
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. dh ap" EL
" . gz + 09+ (hg; + 1)L = (5.18b)

E ;. dp" dh
-k (fs— + fo)—— p + (fa + fs)—apT + (flg + fe)p

At the offshore boundary

/
du" A , - '
— = , 5.19:
v 9z ,(). 192)

SO

) oty ap' a%p" a%p" . 9l gp" | '

it f f 20p : ..
dz az+2a?+48zz+az oz (5:19b)

ap" 3’p. 8%p" arl
_k [ it}
r582+r3¢9'~’+53 +( +r) azp

- . e . . '
To solve the equations [or pressure they are first transformed from the irreg-
ular shelf geometry into a rectangular domain by the same vertically stretched
coordinate transformation as utilized in Chapter two. In transTérmed space the

derivatives are approximated by centered finite difference expressions. From the

resulting equations the problem is formulated as a matrix eigenvalue problem in

. which the elements of the matrix are derived from the coeﬂ'idehts of the equa- -.

tions. Even with the equatiors in the semi-geostrophic !'orm thwm' the terms
that form the matrix elements is formidable. "The entire procedure mvolves a
long series of algebraic manipulations and cdnsequently it.is carried out using a
computer program called Macsyma which is an algebraic sym'bc';l'ic manipulator
[Bogen, 19831. It is gapable of generat’ing the necessary computer code to set-up

and define all the elements of the required matrices.
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£ 5.4 Mean Velocity and Density Fields N

To solve the problem it is necessary to specify the mean velocity 'ﬁe]d
v(z,2), the mean density ﬁeldhp,[z,z), ;;d their derivatives. However, tixe
k T ' mean velocity and .density fields are relat;ed thr;mgh the gegstrophic (5.6a) and

hydrostatic (.5.61')) equations.’ Ip the following development, the mean velocity

field will be used to determine the mean d¥nsity field.

-

Starting from the geost'rbphic equation for the mean flow, -differentiating

~ with respect to :z, interchanging the order of differentiation for p,, using the
. 4 . .\, . -3 ’
hydrostatic relation, assuming / to be constant, and using p, in,the Boussinesq

sense gives the thermal wind equation

avo [} apo

y f = -

. “(5.20
c_")z:' p, 0z - (5.20)

——

Equation (5.20) states that the horizontal gradient of density is —

\ | ' % L4, 0% — (5.21]
- dz g 0x } et
. : -

— If the buoyancy frequency is sp%qged over an entire vertical column, say at ~ _f

N the furthest offshore coplumn of the discrete domain, then the vertical gradient of

‘ ' . : ’

. density —;"— is known all-along that column. That is, from the definition of
. L4

L

-~

buoyancy frequency .

90, Po .2 99
e "TN (). | | (5.22) .

i 1
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\

, —
The actual density field p,(z,z) itself is computed by first integrating in the

¢ direction from (D ,0) to a depth : at (D,:) as

po(D.2)=p,(D.0) + [
_0

)
; d: | (5.23)

where the valde of p, at the point (D,0) is chosen to be p,(D .0} = 10350 kg m *

and the : gradient is known from (5.22). The in-tegration is then carried out in

the z direction from (D\)z )to(z,2)

3
. 35,
po(2.2) = po(D,2) # [ dz, (5.23h)
\ p O , .

where the z gradient is known from (5.21). This procedure is carried out for °

tach point on the z, 2 grid. - ' S/
5.6 Application' ’ ’ : ' %

o
An experimental program, was carried out along the eastern coast ol Aus-

tralia to investigate the existence of CTW's [Freeland el al. , 1986]. Observa-

. . .
tional evidence suggested the presence of the first three forward propagating

. .Mmodes. The theoretical phase speed of each of theses modes was computed, at a

-

l'requency‘ol' 10 percent of the Coriolis frequency, using a numerical model [Brink
I

and Chapman, 1985. The model allowed for realistic topography and .

stratification. The experimental determination of phase speeds was computed
“using two different data analysis techniques. First, Freeland ef al. performed a

modal decomposition in the frequency domain. The experimental phase speeds

9
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s ‘ systematically‘l exceeded the theoretical phase speeds by about 25 percent for all

- three modes. Secondly, Church ef al. [1986] performed a modal.decomposition
in the time domain. Using Ellis method, the experimental phase speeds did not

exceed tlfft.heoretical values. Moreover, the phase spegds were closer. to the
&

theoretical values than those of Freeland et al. The modé one CTW was about . v
-»
20 p(.;rcent. slower; the mode two about 10 percent slower. In either case the

-

theory and_experinﬁent‘gere\unable to produce congrugnt results.

In the Australian experiment a mean current was measured to flow in the_

—_ s

direction opposite to the direction of phase propagation of thee CTW's, Using the

model developed in this Chapter, theoretical values for the. phase speeds of _.

ca “'\’. ra . SR

CTW’s in the presence of a mean baroclinic alongshore current are to be com-

®
puted. These revised theoretical values shall be compared to the experimental

values. ¢

An offshore topography, a vertical stratification profile, -and a mean velocity
profile are chosen from data kindly supplied by H.J. Freeland. The data chosen
o i; representative of the oﬂ',shor'e line at Newcastle. The shelf éopogmhxjs_ﬁ.t&:;d____
to an exponential profile us:l_qg,avleast squares fit (see Figure 5.1). The profile is &

Equation (4.1) with "k, =202m, _h, =4800.0m, b = 5.10X10° m!,
"

e . ’

L = 100.0 km, D = 120.0 km. The vertical stratification profile at z =D is
modeled by . "’ .
N¥:)= N,%™ + N,?, - (5.24)

where N, is the maximum value of the buoyancy frequency at the surface, o is

rd

. & the vertical decay scale of the buoyancy frequency, and N, is a constant

e Aty
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stratiﬁcation ‘of small numerical value. The parer})eter N, is required because the

decay of stratification is so rapid that the oCean is eflectively barotropic near the

bottom. It is necessary to have some stratification there to prevent the computer

program from failing due to numerical reasons. The parameters appropriate to

N - a

the coast of Australia are N,"-=3.0x10"s"*', a=0.142 km”*, and

- LN =1.0X10572,

- S , . ,
Orrgmally, the mean velocrty field ‘was determined from current meter data -

3

" for the Australran expenment by tailering the data to the requrrements of the

t
Mmencal scheme usmg a bi- cublc spline to interpolate velocrty values at all gid

.‘ N . . 4
e ' points. However, wrth~ ther sparse data avallable 1t was dlﬂ“rcult to carry out the

-~
-——

mterpohtlon over the -entire’ domain, Instead an analytlcal expressron whrch

-approxrmately modeled l'eatures of the behavior gf the observed mean' veloclty -

-~ a

field was chosen. The choice ol’ an analytrcal,expresswn for the mean velocity -
' o . ' LR ‘ ) )
field immediatelyallows easy computation of velocity gradients as well as densily

¥ -
N ¥
;-

field and density gradients.

S -+ Thée mean shear current is modeled as a‘coastal jet. In the horizontdl direc- +

13 ll h i - 7w

\i tion the velocity ‘proﬁle 'is token to beliave ms a Gaussian l'unction Whicl'] is
'characterrzed by a maxrmum ampl;tude a, its c'exltre posntlon z, , and its Wrdth b
over the shelf. The Er_tml dependence is modeled as an exponeﬁtlally decaymg
function wnh a vertical decay scale of ¢. The combm-_atron of these functional
dependencies results io the type of shear-current in“Figure 5.2 wheré the center of

r . ) the current has been posrtloned over the shelf break, * The analytrcal expreSsron

_:/" (,' . s ) . - .
- for the shear current is . o : ' L,

T e Wt ey , - I R . : ' . '
e ey S » : . : :
e o A N ) o T YO S s S P AL Y ., A T |




-20 -30 <40 -%0, 40 30 -20 -I0
0 \ \ \ o’ 3
¢ | =100\ \$ 4° .-44 YA
/
/ / A
;0
- -/,~|6.
oy ) o ,
- /
£ /o
E 1000 | . N
m ~ = —- MODELED -
, O | ~ - MEAN VELOCITY (cm/s) |
- 0 | CURRENT -
4 METER VELOCITY (cm/s)
e,
. 2000—
e : N ; . \-‘l. , _
g 4l° L GIO R ;Io'l
| ' 'OFFSHORE’DIST'ANCE (km)
Figure 5,2 ggiﬁa:iiﬁisgi?zzzggnzete;Tm:;surements Kxc‘l: mode‘led



g, .'r \.4.\.',:"??"_‘:;_
60

1 ' N S (‘_’ )’

v,(2.2) = e 7 ¢ b | (5.25) -

The parameters appropriate to the coast of Australia are s = -50cm s,

b = 10 km, ¢ =0.001 m™', and z, = 60 km. .

Also depicted in Figure 5.2 are the current meter measurements at various
Iocations;. Clearly, the agreement between modeled current and current measure-
ments is rough. However, the modeled current does at least reflect the vertical
decizsf of current with depth as well as the decrease in current towards both the

. ' . L °
" deep sea and the coast. B '

P

The assocmted density field was calculated using (5. 23) as

\ 2 as 2 i
plrie) = (D )+, (D) L O s (5:26)
- ' . \/“5("[(_‘/—__‘/}:_) 1 (iQI;_"/_-_’.) cz) 3
. dC[ p,(D 0) 2g .

5.8 Results \ \/

' By vi‘rying)a in (5.25) {t. is possible to observe .the. effect of varying the
strength of 'f.he shear current on the ‘wavenumber n{f a given mode. The effect of
a-baroclinic shear current on the wavenumb'el{s of modes' one, two, and three is
illustrated in Figures 5.3, 5.4, and 5.5 respectively.| Note that positive (negative)

velocities correspond to a shear current flowing in the same (opposite) direction

* ps the phase propagation of the wave.

~'_.T' (n.' 0 s ) . . ' X . . . L LR
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Generally there is a decrease (increase) in wavenumber with an increasingly

positive {negative) <h-ar current. The decrease (increase) in wavenumber then
implies a increase (decrease) in phase speed. This is exactly what is expected if
the wave weré advected by the current. However, for mode one 2 more negative

! results in the wavenumber.

shear current beyond a .value of about —60cm s~
decreasing and hence the phase speed increasing. This is opposite to the effect

expecled by advection.

The- last reé'ult may be explained in terms of vorticity though. From baro-

tropic t'heory it is known that the CTW phase speed is proportional to / [Hsueh,

1980]. Introducing a shear cﬂll'r.enl’:l alters the background potential Qorticity of

. f v,
f -aT r .v -, avo
the system from v to — The contribution of the term - to the

bacvkg?c;und potential vorticity may become comparable to the contribution of

the term f and thereby increa.\é the phase speed of the CTW's. For the particu- -

. . a : . . '
lar shear current modeled the term '.7(’—-15 of thqordernof 25 percent of the term
' z
\ .
/o - This can explain jow a mean shear current flowing opposite to the wave
T - !

propagation can increase the phase speed of the wave.

With respect to the Australian experiment, the most realistic choice for the

maximum amplitude of the 'alqngs_ifore current is taken as -50 cm s, Referrian

to_ Figures 5.3, 5.4, and 5.5 the modified phase speed for all three modes is léss“_'. :

~

-than the phase speed fo the zero mean current case. For mode one the decrease

“is only about I percent, while for modes two and three'it is apout 10 percent. In

'light of the resul_f.s obtained by Freeland et dl. (1988] that alg\t‘hree modes were_’

.
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observed to have phase speeds in excess of those computed theoretically using a

model without any shear current, the present model is unable to reproduce those
observations. On the other hand, the model results do agree qualitatively with

the experimental .determination of phase speed by Church et al.

¥
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A numerica\l method has been presentéd for the solution of the CTW prob-
lem.” The method is an extension of pi'esent methods in that it allows for the
computation of complex.‘%or evanescent. rrllodeg. The a!)ili_ty to compute such

- modes means that the complete set of CTW uvxgde‘solutions may be obtained.
This in turn implies that, for example, the forced or scattered CTW problem may
be indirectiy-solved, |

{;2': : . | As’ outlined in the iﬁtroddctioln, this study had three objectives. The first

I . was the presentation of the numerical method. The second was the application -

of the method to the baroclinic CTW problem. The third was an extensionlot:
the baroclinic CTW problem i?;:he presence-of a mean.alongshore curr.ent.

b The first ch)bj#e.c.tive wes met by the presentation of the explicitly shifted

in.vgrse power algorithrﬂ for the generalized eigenvalue problem. Th;a solution of

a problem non-\linear in the eige;xvalue was aécomquated by expanding the solu-

‘R tion space to turn the problem into one livear in the eigenvalue. The explicit

shift feature allows any particular wavenumber, either real or compled and

2 cdrmponding wavestrueture of a CTW to je isolated and solved for.

A The second objective df the study was met by showing how the introduction

of stratification modified the barotropic CTW dispersion relation. It was found

—

- that, at a given frequency, CTW mode solutions appear to exist in pairs, either as

~
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a real forward and backward propagating pair or as a complex conjugate evanes-
cent pair. Also, the stratification has the eflect of introducing a second.zéro of

group velocity to the dispersion curve for each mode. '
P -
The baroclinic dispersion relation for an intermediate stratification indicated

that certain real propagating modes were linked to one another thrdugh the

: %
evanescent modes. For—a fixed frequency, the variation of stratification caused

such linked modes to transform into one another. The transformation of a real

.

propagating mode into another propagating mode occurred throui;h the process of

‘the real mode becoming complex and then real again, The actual transf.ormntibn

- betwéen a real mode and a complex mode always involved a real forward and

backward propagating transforming ‘to or from complex conjugate evanescent

“

modes. As well, the transformation was only found to oceur at a zero of group

velocity of a dispersion curve.

With strong stratification the CTW’s propagating modes no Jonger had any

zeros of group velocity and thus no obvious. evanescent modes. With increasing
» (

‘stratification the dispersion relation was observed to become more and more-

non-dispersive. The waves were losing the characteristics of topographic Rossby
/

waves and acquiring those of internal Kelvin waves. —~

The third objective of this study was the application of the numerical

method to the baroclinic CTW problem in the presence of a mean baroclinic
alongshore current. An experiﬁ:enfal program by Freeland et o/ [1986] had

obtaihed CTW signals propagating at ‘ﬁhaﬁz speeds exceeding those computed

using a numerica) .‘model'without, a mean current, A modified data analysis by,
. . AR . YT . ' * " ,

ty
)
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Church ef al. obtained the opposite re§ult. ‘The application of the model of
v
Chapter five produced qualitative agreement with Church ef al ®°That ’is, the

mean current opposing the flow appears to slow the phase prepagation of the

lowest three mode CTW's.
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APPENDIX A

Derlivation of Transformation Equations

AN

\
The mapping from the (z,z) irregular domain to the (1',:) transformed and

regular domain occurs through

z =1, (A.1a)
~. -
{ . ’ ('/ r=T(z)n . | (A.1b) o
N /
s The incremental differential relations between the two systems are from (A.1)
Oz' . '
o 1, (A.-2a'.)
9z ’ . -
LR C (A
-
d:!' _ 9T z' '
9 T (A-2¢)
- a
9:' _p , (A.2d)
z - -
,"%s " Consider the two dimensional pressure function p(z,z). Its numerical value at ‘

corresponding points in the twdrgystems must be the same and so

p£p(z,:)=p(2'2) | L EA3)

1 BN

Using the chain rule of differential calculus the first derivatives of p ‘are related

. through .

dp _ 9p 9s' dp ad:' A4
dz Odz' 0z * 3z' 0z’ (A-4a)
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and

d:z

Applying the relations (A.2) these become

!
: 3 _9p , Op T:

8z Odz' 9! 8;'_7_'-'

and

_£=aga apaz+
» dz' 9: 3:' gz

I | B
o}7/ 3
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'

'(A.4b)

(A.5a)

(A.5b)

Similarly secoind derivatives are, obtained by a second applicatiop of the chain

'

rule yielding -

. a'.!p azl + aQP azl

dz'! + dp 9z'

az"R 0z - 31'90z' 91

9% 9xt, 8%

oz Oz! 812

dz' + 8p P%z!

d
0:'0z' 92 * az""—(';; Oz

9%
it

3% 9:' , p

9z! §z2’

ap a?z'l

. o oz"” 0t 91'0z"' 01

"z 98

‘ 8%p 9z' . 3%p 9z’ dz'.. 9p N
' ' @:'9z' 3:  9xz” 01 ) 3: Bz' 8:°

o‘ (A.Ba) .

- (A.6b)
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a’A’p "
Bzd: (A.8¢) o
. . ]
) ' . (
& ' . b o . _
~3%p dz' ?p 8:'18z | 8p { 3°z' 8z’ 3z 9! l i
+ t S
9.7 3z 9:0% 3. } 0 | 92 |9z07 6: ' 9s8:as ) T
> ‘ * .~ \) v
- ! *
?*p 8z' d%p 9L 92’ ap [ 9°:' az' 2% 8:'
. ) [Fyai R ] + [ 1 + .
/ d:'0z" 9z 9z"” dz ) 0z d:' | ¢z238z' 92 d:0z2' B:
. » )
With the relations (A.2) these derivatives become ‘ - -
.f—' ' ) ¢ ) " & .
- | - &%p _ 8% o | =
_ - T A . A :
L , ST L :
. . " , ’ R .- ~
? - 3%. 5 87‘:_'[_*. % (8T '} 8p 3°T ;!
w 029" 92' T} 902! T 9z 9:° T’
g 52 32 ) B
p P p2 -
Py ik ) (A.7h) - -
. 't
ST T ahd R _ [ 4
- . % . #p 8% 8T , , 8p T -
drdz 6:’8:'T+ a:7 92" +EO:" \(A"(‘)
. s A ‘r ’ ‘
- Thus it is Lhe'Equutions {A.3), (A.5) and (A7) which relate a function and its .
W .+ - derivatives in the two coordinate systems. '
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APPENDIX B

—’\ : Derlvation of Finite Difference Forms

" B v The approximation of continuous partial aérivatives-of the pressure function’

, at. a dlscrete lattice pomt is obtained by -assuming a contmulty of denvatwes and
. o by carrymg out a Taylo;s series. expansnon [Roache, 1985] Consider the z:
N T !

direction. The pressure at a point p,-ﬂ',' is.relahted to that at p; ; by

\ i ] . . ~ ap

S - : Pivtj =Pij + 2z Az +

= i

L 2 ' 3 ‘
: L% asre L 22} Asd4poT,.
i 2 22 ' i) az ij CoL

. o "~ _a point p,-_,'.,- is

.o . o N ’_. . X
, . ‘ . ‘ dp .
W , C o Pia =iy - oo | Azt
P " ' : "-az. o
. _1__9_9 Az i L %% | Ao
2 3 6 3z} i '
; - .. .‘ f , .’ "' :
T Subtracting (B8.2) from (B.1) gives : - o
o L. v ’ 9 1 8%
e T Pirij 2piaj = 22| Az + 2B Az’ 3} HOT
I;v' . " N ‘ . . ' ] ' ! dz iy 3 833 i -
i ", Solving for 5o Bives
':.Q. ‘:. | . ' oL 3 '
° R IR - Vel W AT,y
P 25 |, 287 A
L I | | Lo .
{a‘ \" ' ‘ M l‘ ( ‘ -
RO ’ N ol .
A. :‘" L ‘1 —— Y ]
&k 1 J l"\ﬂg“l% ll‘ i - ~y ! SO 1_1':;. LI / r ’h) fla \ - i »

(B.1)

C S ~ where HOT represents terms of higher order than Az Likewise the pressure at

" (B.2)

B3

@\



~ involves a change in the indices as in

Taylor's series expansion in z and z and keeping a sufficient number of terms

73

. /
Neglecting terms of higher order than Az® we get the centered finite difference

approximétion :
N dp o Pt Piong '
oz i 24z ' . (B.5),
From the same reasoning it follows that
dp | '___l\}’i.;'ﬂ =P s . )
az |; ; 2A: ' (B.6)
2 .
The second derivative g—% is obtained by addin@.l) and (B.2) to give
z
2 ' A
Bionj + Pioy =20 + 22| A2+ HOT. (B.7)
N ) dz i.J
. 3%p . Lo
Solving.for 22 and neglecting the HOT gives
oz . - N
. N .
3%p _ Pi+ij =2, *Pio . (B.&)
8z% Az? R o

]
2

which-is also accurate to second order in Az. The expression for gp just

"
Py
»

"

) o%p _ P.',,'+1-'2!’.".,' +t;a.;-|
B T . Az? ' ’

2
. 02z

Finally. the cfoss-derivgtix'e term 2L s approximated. by cnrrying/out a double

such that a second order accuracy in Az? and A:? is maintained. The expréssion

i

.'-

p Pt 41 = Pi+t,j-t = Pirtij+t + Pi-ty-1 | B.10
dx 61 . 4bzd0s - B

. . B [T N v . ' P
| e A R R A PR 0.

(B9’
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APPENDIX C

. Varlﬂcatlon of N umerlcaf Scheme

Y
’

-

both analytical and other numerical results. For the special case of a shelf with a
flat bqttom bounded by a.vertical coastal wall and a constant stratification, the
Ibaroclf‘nic Kelvin wave solutions are calculable analyticall}; (see' Appendi;( D).
The "parameters used are / = 1.0X10™ s}, w =10X10"°s", & = 1000 m every-

where, L =0.0km, D =200 km, N% = 1.375X10° 52, nz = 25, and nz = I7.
i . o

The agreement of the model and the analytical wavenumbers are within one per-

cent for the first mode..

- - The second verification is for the special case of a shelf profile of exponential

o ‘

h(z)=he* <L, (C.1a)

h(z) =h,ett=h, 1z >L. ~ (C.1b)

Sol‘ytions for‘ this shelf are calculable analytically provided the rigid lid approxi-

'

1068]. ‘Alti\ough the model is a baroclinic one, it can simulate a barotropic ocean
,.‘ . ) ’ . ; PP

\ ' by setting the buoyancy frequency to a very small number. Comparisons yielded
S agreement within three. percént for the first mode. The pnra'meters used are

iy f = 10x10 s w = 3.0X10° 87!, hy = 218m, . b= 49000'm,

L! . " . ' . Vv

o

R S D T S B
MY e RRR gV e e i

The accuracy of the model is tested by comparison. of the model results with

mation Wade and there is no density stratification [Buchwald and Adams, ".'

b = 4.620X10°8 m™; L == 120.0 km, D == 160.0 ki, N? wm1.0X10°8% nz =25,

e
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and n: = 17. l ‘ .
A third com-parison is made for a shell of knear sloping topography i
h(z)=h, + bz ..r <L, ' 7 (C.2a)

/J hz)=h, z>L IR NTPIR

This time the results are compared with those of a numerical model developed by

G -

. Brink and Chapman [1985]. The parameters used. are f = 1.0%10*

w=3.15X10°s", h, =100m, h, =40000m, b =3.990X107, L = 100.0 km,

D = 2000 km, N?=1375%10°s2 nz =25, and nz = 17. As with the first
L R

.comparison the agreement is within one percent for the first mode. The ac,tunl"f':j

numerical results of the comparisons are presented in Table C.1.

Table C.1. Comparison of wavenumber soluuons of the numerical model with

known analytical solutlous and solutions of another numerical model for a maode
one CTW.

: [
Type of Comparison "~ Model Discrepancy .
Comparison | Wavenumber | Wavenumber | Percentage \
X10¢m™! X10%'m"
Analytical {
Kelvin 26.79 26.92 0.49
Wave
Analytical | 6.625 6.433 | 2.98 L
CTW \ : ‘
;\ |
Numerical 1.00(! 'l.OOQJ. | 0.30 o
CTW \ ) , -
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As the scheme used to solve the baroclinic CTW,problem is numerical, both

N s s

the solutlon elgenvalue k and the corresponding eigenvector p; ,j €an be expected

to become dependent upon the choice for number of honzontal nz and vertical

-

ns. grid pornts The number of grid pomts used is nz =25 and nz = 17 as used
by Brink and Cha.pman.~In the case of a barotroplc ocean the elgenv_ector p‘-‘,'

does not have any verticfl structure and the choice of nz should be-irrelevant. .

~

. . _
.Howéver, a baroclinic ocean may require a significant number of grid points in

~—

the vertical to resolve the wave structure. As only the first threé modes of wave

action are investigated in this study the vertical grid resolution with nz = 17 is °

expected to be sufficient. .Obviously, increasing the number of horizontal and
) :

vertical grid points would imPrgfg_ the accuracy of the model results. Unfor-

tunately, a linear increase in the number of grid points results in a quadrhtic

increaee m cemputatfonal time. -,

The results of testlng the model with various gnd spaclngs for the first three
CTW modes are presented in Tables C.2 and C.3. Table C. 2 lllustrates the effect
on a barotropic ocean! Table C.3 illustrates the effect on a baroclinic ocean. The
parameters used in Table Cré'are -the same as those used in thalgomparison with
the Analytxcal CTW in Tabfe C l Table C.2 lndlcatm that vﬁal grid spacing
has only a minor mﬂuence on the solution wav,enumber in a barotroplc ocean.
However, the honzontal spacmg is lmportant as a doubhng of nz causes the

mode three wavenumber to undergo a qualitatiye change from a real propagatlng

_solutlon to a complex evanescent one. Fon the barocllmc ocear, the parameters

-used in Table C3 are the same as those used in the corhpanson with the numeri-

-
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T rogl w T N -, ‘ y ~ N . A 0y tL ~ st - ! . !
R L e B I A N T T T IS L S S S SIS

- 2
.



-
= -

cAl CTW in Table C.1. It is evident that the effect of grid spacing on ~

’ 4 o !
wavenumber increases with increasing mode number.

Table C.2. The effect of horizontal #nd vertical grid spacing on the wavcnumbo:
solution for a barotropic ocean for modes one, two, and three ¢

-
-1

- Mode Number of Number of - Solution
Number | Horizontal grid | Vertical Grid Wavenumber
o Points nz Points n: %10 m™!
A ] 25 17 8.4327
Tl s0 - 17 8.4143
2% . BT 8.4263 »
‘ 2 25 17 - [18.801
: 1 50 , 17 18.992
. 25 34 '18.548
3 |2 ' 17 . | 64861
e 50 . 17 - 72.563 + i11.452
e %5 34 63.889
14
. \

- - . .
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¥ e A RO kTN s R o e ot
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- |- Mode
’ Number

1] s -

, Hdrizbzitp.l grid

.Number of *

Points, nz

Number of
Vertical Grid
Points nz

Solution

" Wavenumber _
~ X108 m-

1

e,

25

2]

17

17
34 -

1.0028
1.0107
1.0056

25 [ 17 2.8034 -
90 17 2.9145
25 34 -2.9820™ N
3 25 Y 10.238
50 17 0.0544
25 34 P 11.452
. (,
1}
\
- 7
. ‘e
g
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Ty ¥
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Table C.3. The effect of horizontal and vertical grid.'s‘pacing on a baroclinic ocean
for modes one, two, and three. '
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"~ APPENDIX D

Analyticsl Kelyfn. Wave ?olutlon

.

Internal Kelvin waves may exist in a flat-bottom ocean of uniform

stratification. For such an ocean the Equations (2.18) become

1

B T S N R TIPS ]

interior:
.' 8? )
3 2 B2 '
coast:
- a—g_g = -kp, (D.2)
. . N
‘'surface and flat bottom: ' 4
%g =0, e (D.3)
& ¢ ' . \\ »
offshore: E . -
AR
p—0 as z —oo. . , (D.4)

Note that the offshore boundary condition states that‘the response is trapped at ‘

the coast. The partial differential. Equation in p complete with boundary condi-

. o v
tions is separable.in the form
. plz,2) = X(2)Z(z). . (Ds)
. . | 4
, f 4
- )
e .
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% Substituting (D.5) into (D.1) gives

i , T - X gz

: . dz? 2 e 32 ‘

; -k

'.:: . X ‘. ZN? . . (D.6)
g Settlng each side equal to a sepap tion constant, m?, results in two ordinary
“ -'dlﬂ'erentml.Equatlons

g 1

.k 3 X k2 mx =0, : (D7)
o . 9 2 . . :
& ' ' ' # - 8

LR {  and ' .

\BZ

SFNmiZ =0, (D.8)

L . Consider Equation (D.8) which has the‘generél solution

v

- Z(z) = A,cos(mNz ) + B, sin{mNz), o (D.9)

where. A, and B, are‘yme unknown constants Satlsfymg the surface boundary
condmon (D 3) requires thrat B =0, Sahsfymg the bottom boundary condmon

(D.3) requires that

: nmT l
where n is an integer. Next consider the Equation (D.7) which has general solu-

~ tion -

. < B .
‘o 3 o

X(z) - A e{m +")

1
-
i

+BA"““ , (D)

Y
2

@ e - N ~ where A, "dnd B, are som¥ unkown constant,s;~.Satisfyin'g_ihe o_ﬂsho’ijé‘ boundary

e

5 . ‘ o . ’ o ; :

M; " condition requires B, == 0. Satisfying the coastal boundary‘condition, requires
&y .) ." - . , ‘ . ,. - ' ' ___,..-r y

I.‘ " . ) .o. ' .' . /kﬂ- (
3, - . g Nﬂhﬁ . A
B - by - , o - .o
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It follows that the respective solutions to the Equations (D.7) and (D.8) are

FIARERS 5
S X(2)=4,e M (D.13)
and - -
Z(z)= A,cos(5EE). (D.14)
- . - ) .
The pressure field is calculated as -
o -~ i
' - . | . L “nwe -lN%(;'l)a‘
SE p(z,2)= A, A, cos( . )e et (D.15) -
The value of the integer é&rameter n determines the mode number. Also note
— - g’
that N as defined by Eqn (2.16a) is non-dimensionalize%by {requency. \
b . ——
X J
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