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- Tradnhonally, a single unique curve or surface is generated by an algorithm for each
set of control points, with Bezier and- B-apline being two of the famous techniques used. .
Recently, there has been increasing interest in. the. generation of many different - . . L
‘curves or surfaces by a single technique for a set of control points, The Beta?-spllne tech- Co W
vique is a recent example of this idea. It uses a parameter called Ba to act 8s 8 pulling ) ey
- agent, or Dnnon, on the B-apline curve'or surface; However, the curves or suffaces lose- -~~~ "
their smooth appesarance as they are pulled closer to the set of control Joints, This could ’ i
be an undesirable featute when smooth interpolation of the control points is desired Y T

- : “The Bezier techmque has been one of the most famous techniques i m the computer o "
' aided design industry, It is capable of representipg most of the geometrle entities of prac- ' T
tical interest. . However; it has a shortcoming: the Bezier curve or surface- bears liytlo.- -

resemblancé to the shape of the control polygon or the,net respectwely . N .
* This paper proposes a simple technique which serves to overcome the two dindvan- PRI .
. tages mentioned above. The proposed technique employs a patdmeter cnlled 7, (o act- a8’ ‘ o

+ a pulling agent on the Bezier curve or surface. The pulled curves or surfaces have better - - SR
.| mimicking properties than that of the Bezier.. 'l‘hey always have a smooth appeuance, S
' --even when lnterpolatmg the set or control pomts / B e, ' U
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1. Prologue L -

‘1.1, Introduction
Surface N;odeling techniques have undergone many improvements since their first
' introduction into‘ computer graphics lit_erature. Many techniques have been implemented
in an effort to model surfaces. These t.efhniques can be classified under the beladings of
' intefpolatior; and approximation.

Giv-en a set of data pointé",” (intcrpolation is dome b)} finding a function which passes

t!xrough these (‘iz-\ta points. Some classic ‘methods are Coon's method (9], Overhauser's

e [6,14], and the popular Lagrange: and Hermit interpolat;on. On the other b:;nd, ap‘;)roxi- -
mat.ionu is concerngd with l]nding a runct.'idn_ which approximates t.b: shape of the co%}l

~

. , ) ] IS
\ - vertices (i.e., data point;)v._;ot.‘ necessarily passing through them. Two of the classical
Y «

- .

)

methods ‘are the B-spline [16] and Bezier [4] methods. .

[ .
o ) ‘ The techniques mentionedIn the references above generate a single unique represen-
~ 7 " tation ba;ed on the set of data points: I order to generate a surface whi;h slightly devi-
:-— ) / al.eq-.from \2he standard surface,reitlnr some dada po'int.u have to be modified or ailother set
of cot;trol points is needed. Recently, Brian Bal\'sky' proposed a method called the Beta-
“, spline technique [1]. This isla generalization of the B-spline technique. It endbles the ge.n-
eration of a set of diﬂer'ent. surfaces or curves just by varying the valug of two paraineters
called Betal and Beta2. ‘He also proposed a simpler method called the BetaZ:spline [2],
. . %pich .employg ju;t one-par}uneter,-Betnz from the Beta—épline technique. This simplified
: n:;t;od; 8 specix;l case of BetaAsplin; : poaecéues cban;ctcristics tha: make the usage of

Beta-2 splin? very attractive, In fa,c~t, the idea of this paper is\’n};)tivated by this special

-~ e
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technique. We will discuss this te'chnique briefly in Chnbter Four.

7

Analogous to the Beta2-spline, this paper propoees & technique zhat can generate'
-different curves or surraces lor a single set of control vemces. “This is dono hy varyin; the

.value of a smgle patameter which has been named gnmml. The propoaed method is

simple. It is a modification of the Bezier and Overhauser techmqu@s. The detail will be

— ' ¢
examined in Chapter Five,

1 L °

The remainder of this chapter con_t.aing some l‘undaméntal mathematical concepts
e . .

related to. surface .modeling. Chapui' Two discusses the interpolation technique. intrc;-

duced by Overhauser [14]. In the third chapter, we talk about the Bezier technique {5]

which has enjoyed popularity since its first implementation. Chapter Four discusses

o
N

briefly the Beta2-spline ‘téchnique, since it motivates the idea of this paper. The formu-

o

lation of the p-roppsed‘method is discum'd\in Chapter Five. Chnpter Six describes an"
sy, . ¥ . -

implementation of the proposed gamma-parameter technique on a SUN-Workstation,

Chapter Seven concludes the'@heuis.- The Appendix contains some of the pictures. gene

erated by t_hé Gamma method. .

[ \ -

1.2, Type Of Renrgentstlon.

-

& p

A surface can be repreaenteﬂ_ by’ either a nondparametric equation or by -a

parametric equation. Each representation bas its own advantages. > )
- . 3
1.2.1. Non-parametric Representation

Non-parametric‘lsurl'acea are represented by an algebraic equation of the form :

~

F(z,y,2)=0 . . /
In this form, it is easy to determine whether a point lies on t.he, surface,
\
4 ™ * .
. , .
N ~
' o
. . ’ .
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1.3.3. Parametric Representation

Parametric surfaces are generated by 3 bivariate functions of the form :

z = X(u,v)
y =Y(u,v)
vEg=2Z(uw)

.

{n this ror,'n,' we can easily gencratww on the surface by varying the parameters, u

and v, appropriately.

1.3, Advantages Of Parametric Representation

For reasons which will be discussed later, the dominant representation of shapes in
computer-aided design is the parametrico form, that ia,‘a 2-space curve is:represented by

a eet of two lunctions

= X(1)
v =Y(t)

of a parameter t. Hence, we can say that a point on such curve is represented by the vec-

P, = [;}(,) 0] /‘\

Likewise, a point on a space curve js given by the vector

’
tor

P = [x() v() z(1))

and a point on the surface is represented by the vector

P, = [X(u V) Y(u,0) Z(u,v)

N

\ .
vis the non-parametric form. A few of these and Some others are now discussed.

Although our discussion below and the next section concerns gemeral curves, the same

>
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argumént holds true for surfaces.

~~

In general, the non-pmimetric curve form has several inz:erent drawbacks. A curve
1 }

—

which is deﬂn;d by-tangen‘t'propertiea as well as points may well require that the slope be:

infinite. This can be avoided by either changing the coordinate. axis or by using &
different form of equation, both of which are cumbersome procedures. Curve segments
must be bounded by defining the end points, but the test to determine whether a point

lies on the bounded segment can be elaborate and even ambiguous when the curve loops.

In the case of two dimensional curves, a given value of x may yield several values of y~
» » . -

which must be tested, and in the case of twisted curves, the difficulty is compounded.

. {
This complicates the computation for displaying, plotting, etc., of points on the curve;

-computations may involve evaluating square, cube and higher poWen‘. If the curve s to
be plotted, either as a series of points or as a series of etraight lines, the number of com-

putations involved to genen;te a visually smooth curve would be very large. Parametric *

methods overcome many of these difficylties.

»
~

Consider the parametric representation of a general continuous curve in 3-spaceor a

transformation of t_he form ®
z = [(v) ) ‘ : .
oy =gu) : ‘
z = h(u) .

defined for u in the interval [a,b]. In vector notation
, _ -

) (u) e
Fu)= [y] = (u) | L

h(u)
then




., -5-
) l.ﬁ. . o

du f 'u)
E— ly— = ! - ' [
du du 0'(u)

hl
“ (u)
| du |

is the tangent vector. The real slopes of the curve are given by the ratio of the com-

ponents of the tangent vector. For example :

[l "

| 7 (w) )
,/-. ' o ‘_h.

To specify an infinite slope, we need only to set one component of ‘the tangent vector to

tero.

A parametnc curve is bounded by two parametric values. Each point on the carve

: corresponds to a unique parametric value. Thus, the test for a point lylng on the curve
\ A

reduces to ﬂnding “the parami:tric value defining the point.'and checking that this value
- ’

lies in the stated range. Pa[qmetric representation is axis independent and therefore a

parametric curve is easily transformed into another of similar form by matrix multiplica-
‘. - ! . B )

Nt

¥
tion. Similar transformations on a non-parametric curve are more difficult. A parametric

curve can be ,iutgdjvided into segments, each represented by a new set of parametric etjua-

0y

tions. We will discuss t:hin in Chapter Three along with the Bezier technique,. Last, but
' NS
not least, in hjs PhD dissertation, Blinn [5] proposed a faster and mote efficient method

for displaying surfaces : the scanline method, which works well only with parametric sur-

' t
faces. » .

1 hY

Hence, the parametric form is not only more general, it is well suited to computa-

tion and display. In (acg, the parametric form is the most convenient for graphics appli-

L .
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catiqna. Therefo_re it will be used in t.biq theais. ~
1.4. Objectives In Dasign .

v

The ease of designing an object depends heavily on the characteristics of the tech-

nique used. Some of the most desirable characteristics are described below.

3

In the process of designing an object, one would like to be able to mbdil'y parts of
the curve without\nﬂécting otl:r/pam. A technique has a local property il local
modifications do not propagate. On the other hand, a change in the location or the mul-

tiplicity of one of the control points for a curve which has global property requires the

recalculation of the whole curve,\even though the change will have Iittld'eﬂéet far from

the changed point. Piecewise polynomial functit.;nslqﬂer a direcct way of achieving local .

control. One such function is shown in Figure 1.1,

~

Figuré 1.1 Two piecewise curves, f, and f,, joined together

Generally, we wish to hé\fm which is as smooth as possible. This implies that we
need a highe.r order par etriq curve, Unfortun@"(hiz:er ordcr.p_arame'tric.curves
tend to have undesirable wiggles or oscillations. For most purposes, a parametric cubi¢
curve is sufficient. The cubic is also the lowest-order- parametric which can describe a

non-planar curve, a necessity for describing 3D curves. If the conti'o‘i\'p‘olnta bound the

curve then the curve exhibits the "convex hull” property- Intuitively, the convex hull of

points in a plane is the area defined by a rubber band stretched aroiind all the points. -

. R | | .
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The convex hull is useful in clipping 2 curve against a window or view volume. This is
mentioned in (7. We will talk more about the convex hull property when we discuss the
Bezier curve. Usually, it is possible to convert a curve which does not have the @nyex
hull property to one tha;. does. Far the reasons ment.ioned above, only the piecewise

parametric cubic form is used in this thesis. Presented below-is the general parametric

cybic curve. ¢
X(t) = o 245, 2+c, ¢ 44,
Y(t) = o, t3+8,4%+c, t +4,
v Z(t) = 0,134 b,t%+c, t +d, ‘ C (1)
\

for t in the interval [0,1].

The derivative of X(t), Y(t), and Z(t).with respect to the parameter t are all of the same
)

form. For example L : )7/ N

dz
]

As'mentioned in section 1.2, the three derivatives form the tangent vectors. - The slopes of

the curve are ratios of the tangent vector components. For example

dy '
dy 3
dz dz
dt
@ ‘
dz dz . )
dr ~
4
— . dz dt
AT —" TR —
a7 N (1.3)
: dt
Note that the slgpes are independent of the lengths of the tangent vectors, If we ;ﬁultiply
\ .
the-derivatives by K, we'have .
'
r N i ~

— = 3a,1%242b, 1 +¢, _ _ , (1.2)
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3 dz . d
k k. )
4y
_dt
dz
K \
. Then . —
dy  dy : . . > ‘
) Kd‘ = d‘ == _d_” ’ ' M
dz dz dz ' : , K
ir T ' ‘ "
Y \ - e . N -
‘ .!i iz. ! ’ 4 n
dt dt dz : . S
T I ) . -
. . dt dt - ' . - . .;._..'_;
" ) -\ : . - . ' ' Vs
3 1.5. Parametric Cublec Curve Representation - i : ' .
L " We have seen the'advantages_,that the paramettic form has, now we are going to RS \ v
. look at the general parametric form-used o represent a curve. Relerence [13] examines o
f‘\ B , detail the construction of.different curves with different constraints. The next - chapter ' - )
L will talk about the construction of curves. ind surfaces using Ovérhaus\l':s"_lecbn[que. Py
Chapter Three deals with the Bezier technique. A simple way to déﬁné a cubie¢
» parametric curve , the l-,mit fSnn,lsconaid;:red'here. T - - - )
1.5.1. Hermit Form : ' . t ’ . ) .
. » . - '. . :\
The Hermit form of a cubic is determined from the epdpoints and endpoint '
tangents. Since thé derivations and resulting formulae for Y () and Z(t) are exactly .
' analogous to that of X (1), we will work explicitly with derivations only for X(¢ ), to find
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7

_and R, and R, refer to the starting and ending point tangents respectively), we can find.

a, by, ¢y, and d, for{1.1), subjeci to the conditiods :

X(0) = P,
X(1) =P,
X/(0) = R, -
X(1) =R,

(1.6)

The subscript z is used to refer to the x-components of the points and the tangent vec-

tors.
6
From (1.1), we can rewrite X (¢ ) as

a
\ ~ 1
X(t)=[t2 12 ¢ 1)
) ¢
d]s
\ ~

=[1* ¥ t "1|C,

= TC,

' \
: (1.7)
\ \ T r (1.8)
o (.1.9]

where T is a row vector of powers of {, and C; is the column vector of cgeﬂicients of

X(t).
From (1,6), we g:t

X(0) =P, "![0 0@’1],0,

X(1) = P, = [1 11 1]0.

- . ‘ . \-..\

* (1.10)

, 5 ' (1.11)
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SN - In the case of the tangent vecf,or conditions, we firat _diﬂe'teatlate (1.8) with l"espe'ct ) a
to ¢, getting - R
N . N .
- X'(t)= [3t2 2t 1 0] C. ' - (1.12) -
-  X(0)=R, = [o010]c, - SRR L
- ) ° $- < ,
° " X'(1)=R, = [3 21 o] C; i (1.14) e
4 : ) . ¢
The four conditions in (1.10), (1.11), (1.13) and (1.14) can be gathered together into a sin- )
o G gle matrix equation : .
Py 0001
\ ) P, 1111 _ : ;
: C, ' (1.18) .
R,§ 0 l 0 N - . - S
o ~ - .
. R, 13210 ’ '
: ) C, can be solved by multiplying by the inverse of tl@ 4 x 4 Matrix throughout (1.15), .‘ AN
b .- .P B ) . . . 1
: T 2 21 1] 2. - LR
- " 38 -2-1f(P] . -
C, = . = M, G, o (1.16)
001 0f|R]. -
» v 10 0.0J|g,]|,
. Here M, is the Hermit matrix and G, is the Hermit geometric vector. .Substituting g
(1.16) into (1.9) we get
@
X(t)=TM, G, : (1.17)
By the same argument
. ™~
. Y(t) = TH, Gy, (1.18),
 Z{)="TM\ G, - . (1.19)
The equation of a curve is frequently represented as N N ‘
b .
' $
' ". - * . T
\}' ~ N A :
. N R




\

CP(t)=TM, Gy, ' (1.20)
Given P,, P,, R, and R,, we can evaluate X(¢), Y(¢{) and Z(¢) for ¢ in the interval

|0, 1], and find all points lying on the curve from P, to P, with starting tangent vector

R, and ending tangent vector R, . e
\ We can expand (1.20) and rearrange as
X(‘)_Pl,bl+Pl,bﬁ+Rl,b8+R0,b4 (121)
where .
~
\

by = 202-31°+1
by = -2434312
ba = ‘8—2‘2+(

o= t? o (1.2?
The four functions b, (1< i <4) in (1.22) are often called blending functions, singe ;-

and b; blend P, and P,, while b5 and b, blend R, and R,, producing the "blended”

) . o

. . »
", Obviously, the length of the tangent vécto;, and its direction, affects the appearance

of the resulting curve. These are discussed more clearly i [7]. .

Different techniques bave their own distinct set of blending fu‘;lctioqa. "As can be

N ‘

seen from Chapter Three, the Bezier technique has Blending functions

b‘=(l-‘)a >

bg = 31(1-t)? _

b,=312(}—l) | ‘ . o
by t? ~  (1.23)

~

for a curve defined by four points P,, P, Py and P with t in the range [0, 1]. A draw-

back 6! the Hermit form is that it.does not have the convex .hulAl property. To bea con- -

vex Ihull,‘the set of blending functions must sum .up to one for any‘wh e of the parameter

t. Since all the blending ?lﬂctions in (1.23) sum up to one for any value of ¢ jn the

N
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range [0 1], the Beuer curve hu th convex hull property Another drawbsck of the Her—* :

toead
T TR

mit form is that zangent. vectors must be directly specmed This makea lt dlﬂ‘icult to

A

i draw, or to modlfx,\a curve interactively. A novice might ﬂnd it qncomfottable to’ use,
| — ‘ ~

smce the concept of a tangent mnght be unfamiliar. However, I’orc!n; a curve to. Yoatch a
cs s
known tangent vector is easy with the\Hermit form. - . ) c
i : : :
Nowadays, ye frequently use adet of points to guide the drawing of a curve, called

guiding points. For example, the Beiie_r technique uses four guiding points for each eurve ¥

AN

segment. This makes it a lot more convenient for interactive use. The Bezler curve is of

3 \

tile form ' 4

“P(t)= TMp G, : \ . (1.24) X
We have the Hermit form as ' '

. . TM, G, . - _ 5

and ﬁhe Bezier form aa . Jf . N \
\
\

- . * . [
1

T MG,

1t is now possible to convert from one fon to another; lor example, Hermit form to Bez-

A"

ier form is done as follows

N N Gy, = MB.lMA G~ ! ' ) N (1.25)

\ _ l\‘low 3 new set of control points G. is found, which defines a bounded curve, congruent

to\ that of Hermit, when the Bezier technique is applied to G,. .Thus, the Hermit form,

: , . . ‘ &
Vo | ' ]

which does not have the convex hull property, can be converted to the Bezier form, which

. does have this property,

\
- N

1.6. Parametric Blcuble Surface Representation ' . »

- In the preceding section, we examinec‘i a8 method, the Hermit method, to construct a

curve given two points and their tangent values. lnx“is section, we- will talk about the -
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general principles of surface conatruction.

A curve is represented in 3-space By-a vector-valued function

P(u) = [X(u] Y(s) Z(u.)]

Generally, the curve-generating algorithm may be represented by att operator §, applied

to the vector-valued function P (G ) representing the data [10]

Q(u) =9, P(u)

As mentloncd before, a point on a surfaJ in 3-space can be described in parametric

fonn by the function

P(u,v);= [X(u,v] Y (u,v) Z(\“r”)].

Then the surface-generating procedure may be symbolically denoted by

Q(u ")=¢uvp(“v) N ¢
where P(u,v) represents the data from whlch Q(u v) will be-constructed. The most

widely used ,approach to ap(pro:umau $,.v i8 to form the tensor product (alias cartesian

product or cross product) of two univariate operators, leading to the surface app;oxima-

N ' N . . u ’
tion h K
‘n

Q(q.u)=¢u"§.P(u,v) *.
The eflect of this operation is that ¢, operates on the data P (u,v,) while $, operates

simultaneously on the data P(u, v). Given a finite number of discrete values P(u, v,)of

the function P (u,v), we have

) . Qu,v)= E EP(“I U))Uln(“)vjn(v) . ) | (1.26)

J =m0y w) N
where U, . (u) and V. V,.i(v) are interpolating, or approximating, univariate functions.
Usually, U and J are of the same type, but this'is not mandatory.

In matrix notation we may write (1.26) as
- X ~



_______________

Py i N
K’;f:.; T § R ~ _‘Q .‘
i R T .
L ~ -14-
- . . .
o | Q(s,8)=UXPxXVT )
. X with ‘ .
TN 1 : .
. s U = [Uo_,,,(u) Upm(u): - - - u..,,.(u)]
« V om [Vo_,(v] Via(v) -+ V,.,(v)] . (1.28)
and P being the matrix of constraints , )
[P(uove) . . . P(uovs)
N ,:;3, P(u,vo) R P(u,v,)
= 1)
. . Coe . -
Plomvd) . Plumml,
e The superscript T in (1.27) stands for the transpose’of the matrix.
It follows naturally that the parametric equations representing a Hermit Surface are
X(s,0)=SM\ Q:MITT
Y(8 ,‘)=' SM, Q,MATTT u '
. - .
S Z(s,t)= SMyQM'TT - . (1.30)
. It is shown in (7] that - R
[
|2 2 dz © dz .
A U dty  dig
z : dz T dz
. Zio Iy TN " T "
=| . (1.31)
dz  dz d%z d%z //\
g \ d’w d8m : d’d‘m dﬁd‘(ﬂ
Los dz dz d%r d%z ' S
Ld' 10 d&u d&d‘ 10 d’d‘ 11
- -~ @, and @, have the same form as (1.31) except that dz is replaced by dy and dz. respéc-
WX i - )
- e "7 tively.
N -
L ] .
‘ /
N .

N "’ ..' " -
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\

Equation (1.30) defines a bicubic surface patch since the maximum power of either

s or ! is three. Note that partial derivatives are required for the computation of a Her-

1

mit Surface. This makes it cumbersome and impmti%for a novice user. To overcome

this problem, many techniques use guiding points or guiding planes to define the suiface. -

-
That is, only points are specified in (1.31) which are required in the computation of the

defined surface. Bezier and B-spline are two of the techniques which use guiding points or

guiding planes. The ;;roposed method in this thesis will use guiding points/planes as well.

- Y

1.7. Summary

-

lo summary, we would like to recap some of the things that we have described so

'{ar. In compuler-aided design today, the parametric form is used _domiﬁa&ly for reasons

discussed im Section 13. To prepare for the later chapters, we have also discussed the

general derivation of parametric cubic curves, the generalization of cubic curves to-bicu-

s

bic sutfaces by u;lsor product, and the Ppossibility of conversion between different forms

of representations, for instance , from Heflmit to Bezier.

s

Ty




2. Overhauser Technlque

/

“~

2.1, Introduction '

In Chajpter O:e,\r\e looked briefly at a simple interpolation technique known as the

Hermit Interpolation technique, In this chapter, a diflerent-but easier to use interpola-

tion technique known: as the Overhauser technique is discussed. : .

. The Overhauser technique, was originally proposed by A. W. Overhauser [14] in

— .

1068 in an internal research report a‘t Ford Motor Company. The method is based on the
parabolic blending of curve; and surfaces. A significant advantage o‘f this te;hnique is the
user-oriented contrt;l of surface shape ‘that is achieved because one interactively manipu-
lates only coord inates on°the ;iesign su’rf:ce. This means that coordinate points which lie

~
-

on the curve segments and surface paiches- make up the boundary copdition, whe;eas in °

the Hermit.method, parametric derivatives and control points are r'equlréd to be speciied ——

[
’

to form a.curve segiment or a surface patch. In this thesis, the coordinate points, as used.

above, are treated in a way analogous to control,aoin}s, since both of them are used to
14

~
.

control the shape of the surfaces or curves.

2.2, Overhauser Curve

Since the derivation of the surface fgrmulae can be geperalized from that of the,

curve easily (for example, using cartesian product), we will work on the formulation of

the curve first,

-

Each segment of the Overhauser curve is forr‘uulated_ from four adjacent points ; p,, .

>

P2 psand p, As shown in Figure 2.1, p|, p, and py form a parabola p(r) whilgl P2 Py

aq

e
o
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and p, form a parabola ¢(#). The Overhauser curve ¢ (¢) which intérpolates p, and p,
is a blend of the above two parabolas, p (r) and ¢(s). Thus the Overhauser method can

be expressed as:
[4

c(t)=(1-t)p(r)+ tafs) ' (2.1)
where r, # and ( are parameters and ¢, p and ¢ are vector expressions for curves.

+

v .,"" ( S
- . q(s)
{ ! " :
' x Figure 2.1 An Over%user curve
Since p and ¢ are_palabolic curves, we can express them as second degree polyno-

mials (parametric quadratic)

plry=|[r?r 1]B
o(e) = [s721)C » . (2.2)

where B and C are column matrices. By having r, # and ¢ related in a linear mananer,

r == k|t +kg E 4
8 = kgt +k, ' (2.3)

the fesulting curve ¢ (see Figure 2.1) is a parametric cubic :

c(t)=[t*e?t 1A ‘ (2.4)

Now, we need to express A in terms of the control points p;, py, pyand po By

* arbitrarily assigning parameter values at’ points p,, po, psand p, the relationship among

paramet;rs (;qs. (2.3)) may be aperfically defined. Assuming,

p(0) = p,, p(-;-)=pz. p(l)=rp;
%

-\
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q(0) = p, 4(—;-)-1’3@ qg(1)m p, '

c(0)=p, c(l)=p;
We can getefrom eqs. (2.3)

1
= —f
r 2( +1)

1 ’
8 =§-l
From eq. (2.2)
[e)] 0 01
: 1 1
= |- — 1| B = aB
P2 7 2 a
AR G I B U B § .
we get
2 4 2 FP:
B = |-3 4 -1| |p2 “ T
10 0 Ps
‘Similarly, the matrix C of eq. (2.2) can be expressed in terms of pa, pyand p, as
- - .
2 4 2] |p:2
C =1]-3 4 -1 Psl, *
10 0] |p, | .

Substituting eqs. (2.2) into eq. (2.1) gives

AR A PR AN P C

and eqs. (2.6) into eq. (2.9) we get Qo -

0= [Fewtan e wala [ 2o

By substituting eq. (2.7) and eq. (2.8) into eq. (2.10),

P . P2
c(t)= [fxfzfa] P +[ﬂxhh] Pa X
Ps LX)

(2.8)

(2.9)

(2.10)

(2.11)

b}

lem
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[3
° 2
~ where =~ g
f _,-_‘a-*.‘z_—‘- f = 13_}-2_:-{-1 f =3 :l—s.*._‘.
17 2’ 2 ' T2 T2
and ’
13 2
L ga= 134207 =
!72¥ + 9s 273
By rearranging eq./{2.11)
U
\. 1 . -
| P17 P
-
< P2 Pa
e(t)=[Irisars0]| |+ [0010204]
' Ps Pa
_Pd_ _P”
or D )
K Py
_(
. P2
c(t) = [f1 [o4gy [atg2 ﬂa] -
Q ¢ ' Ps ‘
T L
By substituting eqs. (2.12) into eq. (2.13) we get -
-1 3 3 1]
N 2 2 2|, .
; 8 1 P
1 — 2 —
2 2 P2 .
c(t) = [t’l"'t 1]
-1 1 Ps
- 0 =0
2 2
P4 -
S\\ (o0 1 0 o) "
* =TMOP ,
Therefore, in eq. (2.4) we have
103 3 1] '
2.2 2 2|, \
- 5 nf
1 — 2 — .
~ A 2 2 Pal
= EY
:1 0 __l_ “'0 Ps \(
2 2
lp‘l
0 1 0o o

Yo
ENTe)
T

« (2.12)

(2.13)
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2.3. Chuu’:terhfle of Overhauser Curve

Blending of two parabolas is possible only if the interval is an interiqr one. If the

curve starts at point p, in Figure 2.1, then interpolation between p, and p;should be by ‘

the single parabola, defined in eq. (2.4), through p,, p; and p,. In the formulation above,
we assign the parametric value uniformly between the control paints as illustrated in eqs.
(2.5). However, there is no requirelﬁent that the points be equglly, or nearly equally

spaced, Obviously, where higher curvature is needed, point density should be higher too,

]

The mafiner of construction (as a blend of two garabolas) guarantees that aptfrious
wiggles will not be i;ltrOQuced as frequently happens when simple cublcs are forced to
pass through four points of a curve. The smoothness between adjagent curve segments is
a very important fact-o!- sincé their application is usually to the des{gn of some pésicnl
object such as an airplane wfng. Wit.h the Overhauser method, It.he first der‘ivaltive con-

tinuity is g:ua'ranteed between adjacent curve segments.. The proof is shown. below:

Suppose the curve starts at p, and control points start at p,, as shown in Figure
2.2. The curve segment ¢, is then computed from p,, p, 4y, P, 42 30d p,43. On the pthel:

‘hand, ¢, -1 is computed from p,_,, p,, P, a0d p, 42

Figure 2.2 Piecewise Overhauser.curves
. «

e R
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From eq. (2.14), the first derivative of ¢, is

¢ (t)= [3!"'2! 10]

and the first derivative of ¢,_; is

c',_,(t); [3:’2! 10]

-

[ 1
2

-1

2

o

3 31
2 2 2
5 1 [ »,
= 9
2 2 Py
1 ' PlM
0 — 0
2
Piys
1 o 0 J ) ]
3 .3 1]
2 2 2 . .
5 | Pia
? 2 _2- 44
0 _l_ 0 pl+l
.2 .
_Pr+2j
1 0 0] .

(2.16)

(2.17)

At the joint between ¢,_y and ¢, the paljametric' value ¢t for ¢,_; is one, and the

parametric value ¢ for ¢, i"zero. That is

¢ -l(‘l) == €, (0)

If the Grst derivative is continuous at the joint, then

¢, 4(1) = ¢',(0)

~

To see this, we proceed as foliows,

-

From eq. (2.16)

¢! (0) = [o(no]

[ -1
2

tolJ,,,

O M

1

21, -
M

-1

2 | P+

0 Pl+2
Piys

k |

4

(2.18)
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-1 1 "
" = T;’l + —2-P.+q
and from eq. (2.17)
-1 3 3 1]
N g 2 7 7 2
, ‘ R S §
. 2 2
() = [3210]
-1 S
- 0 = 0
. 2 2
: ’ o 1 0 o)

-1 1
= 'E'Pl + ';Q'PH-Q

Pia
P

D4

-P' “-

_ Since eq. (2.19) and eq. (2.20) agree with each other, the first derivative continuity

is established at the joint of the curve segment ¢, ; and ¢,. To achieve a smoother curve,

*

higher order of derivative continuity is needed. Unfortunately, it can be shown easily

L4

that the Overhauser method does not provide cont‘im_xity at the joints automatically

beyond the first derivative. However, for most purposes, first derivative continuity is

sufficient. S

1

Sometimes, a discontinuity in the first derivative is-desired, for example atpoint p,

k]

of Figure 2.3. To achieve this, points off the blended curve, as indicated by p, and p;

-

Ry

AN
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may be added.

- qls)
P3
Figur‘e 2.3 Formi D \ 2
re ¢.3 Forming a Dis- Figure 2.4 An Overhauser curve
cé?c:mmty in F1r,§é Deriva- - with two coincident points

A Y

It is possible to allow two points which define ah Overhauser curve to be coincident

> as shown in Figure 2.4, This means that point p,, point p; or both iwint.a Pa and py of

Ry ~

Figure 2.3 may coi;xci_de with point p,. This yields ﬂ{ut deriva\tive discontinuity at point ,?,
Pa also. Consequently,lend-pqint.s_ of a 3equence of points may coincide with the second " i
and sedond-to-last point.é. In this case, all’ points will lie on the curve.

" Another important property that the Overhauser method possesses is that it has
- ' 0 'S N
local control. Modification of point p 4 to p'y affects its four neighboring curve segments '

only as indicated in Figure 2.5. This property is desired because one can modify a part of

-
the curve.without aflecting oth‘er parts of the curve,

N\

Figure 2.5 Modification of a point in an Overhauser curve
' ¥
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While the convex hull property is an imp&rtant. (eatQ in computer graphics, the

Overhauser method does not provide this facility. This is intuitively cleu; since the

curve has to pass through the control points and maintain smoothness (Brst derivative -
coutinuit}) at the joint. A way to get around this is to convert the same curve ug'meut',_ '

to one that has the convex hull property. An example of this is to convert to the Bezier ™

curve which wis mentioned in Chapter One. ' > 7

\

~

2.4. Overhauser Surfaces

There are many ways to construct a surface for a given mesh of 'points, for instance,

by lofting or modified Coon technique. These are discussed in refgréncc |l4| by A. W,

Overhauser,-In this thesii, we will f‘leal with the cartesian product dr tensor product to

L4 a i

' . , —

fotm a surface patch.
From eq. (1.27), we have

Quw)=UXPXVT g' N (2.21)

1By having U = V in eq.’(2.21), and from eq. (2.14), the Oirerha;mer‘_sur!ace can be

represented by

Q(s,t) = SMoPMITT . o (2.22)

where S is a row of powe} s, T is a row of power {, and P i8 a 4 x 4 matrix containing
1

sixteen control points. Therefore, a mesh of sixteen points is re&uired to form an

Overhauser surface patch as shown in Figure 2.6,

Figure 2,6 An Overhauser patch ' ‘

4 - -
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The characteristics of the Overhauser curve also apply to the Overhauser surface. 5
Fir;t derivative continuity is automatically achieVed at the boundary of the adjacent sur-
face patches. Local control property holds since a modification to.a control point common
to !ourpa'tche-s.a-ﬂecu twelve adjacent patches. Obviously, the convex hull property does

not apply to the Overbauser surface nor does it apply to the Overhauser curve.

2.6. Summary

In this chapter, the derivation and some merits of the Overhauser method are dis-

o

cussed. The main purpose of this thesis is to derive a formula which will be done in

~

Chapter Tﬁree, so that we can proceed with the proposed gamma surface easily in

_Chapter Five: For more detailed examination of the Overhauser method, please tefer to

[\

_reference [14].

W



3. Besler Technlque

3.1. Introduection

So far, we have considered the formulation of curves or surfaces to interpolate a
given det of control points. Another approach, as mentioned in Cl;apter One, is to pro-
vide.a good, smooth representation of a curve or a surface tba: approximates 4 given set
of control points. A very famous approximation technique is proposed by P. Bezier,
which we will be looking at in this chapter. P. Bezier works for the French firm Regle )
* Renault. His UNI'SU'RF system had been used by designers to define objects such as theA

outer panels of cars and yacht hulls [4]) since 1072,

~ ~

3.2. peﬂer Curve

N

Let V, ({ =0,1,-:-,m) be ordered control points in R*, the Bezier polygon ia

formed by joining successive points P = V,V, - V,.c Then the Bezier curve B(¢)
associated with the Bezier polygon is given by i “
B(1)= Y Vidalt) (3.1)
1 = .,

for 0 <t < 1, where
my - . :
o b (t)= [F)e (e)~- (3.2)
are the blending functions called the Bernstein polynomials.

__ Eq. (3.1) is a vector valued equation, thus parametric functions for X, Y and Z

Fd

coordinates can be written as

X(l) = f:xl¢l,’l(‘)



%
‘

- - N . 27 - \ -
TY(t) = S Y¢,..00) } ’ -
— 1 =m0~ N i
Z(t)= 32,9, (1) S : (3.3)
1 =m0 X
for 0 < t < 1, where (X, Y, Z ) constitute the control point V,. “
é From eq. (3.1) and eq. (3.2), we get :
and J
B(l)= Vg, (3.4)

Therefore, a Bezier curve interpolates its endpoints. Figure 3.1 shows a cubic Bezier

\

curve with endpoints interpolated. ' »

° ' . +%

2
’

+
Figure 3.1 A cubic Bezier. curve s

3.3. Convex Hull
By using the Binomial Theorem, it is easy to show that a Bezier curve lies within
the convex hull of its defining control points. This is shown below:

k The blending functions as shown in eq. (3.2) are evidently nonnegative on |0,1].

From the Binomial Expansion Theorem, we have

'go(':l) ‘1(1_‘ )n-l‘= .(%‘E_(:);:L = ] | \ (3.5)

Since the blending functions sum to one and ‘are nonnegative on [0,1], the Bezier curve
v ,




must lie within the convex hull of the defining cqnirol,points. ~

3.4. Tangent or First Derlvative Continulty

A

’ -
Many segments of the Bezier curve can be joined together. In order to make two

curve segments have a smosth transition at the joint, we proceed as follows :

Differentiating eq. (3.1) we sce that

Jo - )

B'(0) = m(V-V,) o (3.6)
and E
/(\

B'(1) = m (Va-Va-) o @

so that tangents at either end are collinear with the iine segment bﬂwze& the ﬂr;t two
and the last two control points ;espectively. Consecytive segments in a con&:oeite Bezier
curve (see' Figul;e 3.2) can therefore be made tangent continuous simply b}; i;ranging that
the pecultimate coqtrol point of the Arst curve, V,, the sfmre'd endpoint, Vy = Vi and
the second vertex; V' of the next curve be collinear. If |V-Vy | = [V/-V/], then the

composite curvé has first derivative continuity. To achieve higher order continuity, more

complicated work has to be done. This is covered in [4]. 1

»

Figure 3.2 Two cubic Bezier curves with :
at the joint with tangent continui'ty

N

\
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3.5. Cublc Besler Curve |,

A simple Be.zie.r cgrve such as the one deﬁne(li by eq. (3.1) is a single polynomial,
sad s there\fore inf8nitely dBerentiaBle. However, adding control points increases the
degree of the curve as well as increasing the cost of evaluation. Also, the movemeat of

4 . 'any.control point alters ¢he Bezier curve entirely. Tbi.s obvicusly is not a pleasant feature i

to possess. An alternative, as suggested in Chapter Oune, is to construct a composite Bez-

* segment and the ﬂmtfcontrol. point of

ier curve by having the last control point of the &

the (i +1)" segment coincide. In this thesis, we will work with the cubic Bezier curve
\

. “ . .
only. That is, eagh Bezier curve segrient is defined by four control points. One example

is shown in Figure 3.1. Each cubic Bezier curve is of T¥e form

L}

B(t) = Vo=t } + V3L (1t P+ Vi3t (1-t) + Vt® » (3.8)

or in matrix form

!

ol = -
. 13 -31]|Y
. 3 -6 30| |Vh] ~ )

B(t)=[t*t?t ] (3.9)

. . 33 0 0|V,
10 0ol)y, p
<8
= TMy V : . (3.10)

- Figure 3.3 shows the four (nlending funitions that correspond to a cubic Bezier curve

with four confrol points,

. | L

v

Figure 3.3 The fqyr cubic Bezier blending functions

’ ‘ . %

e
.,
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« These curves represent‘te "influence” that each control point exerts on the curve for | <
varfous values of {. “When ¢ =0, the first control point, Vo, corresponding to $oa(t) ia
most influential; in fact, locations of all other control points are.ignored when (=m0,

bécause their> blending functions are zero.” When ¢ =1, the situation is symmetric for V.

-

The middle control pointa Vl:and V, are most influential when !—% and % respec-

i

-

tively.

36. Loeal rol - .

Local control can be achieved easily witl: a piecewise cubic Bezier curve. If the' con-

trol point modifled is an interior one; then only one Bezier segment needs to be modifled,

I, however, the control point modified is at the joint of two Bezier curve ugme‘x};ts, two

& -

Bezier segments need to be modified.

J

5

3.7. Subdivision of Cubic Berler Curve . ’

As mentioned in Section 1.3, a parametric curve can be subdivided into segments,
o
each represented by a new set of equations. We would like to ind an easy way to break

a cubic Bezier curve in half. That is, suppose we have.th‘e Bezier curve (see Figure 3.4)

.= Vy=T
S6Yo 33

Figure 3.4 Subdivision of a cubic Bezier curve. The original .con-

trol vertices v,, V,, V., are r
: ’ epresent "$ig,
control vert1cg9 ard reﬁ;esgntgd wiﬁh 'O'S?d With “+‘s. The new

w

I Nl 07
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B(t)= Vo{1-1)* + V 3t{1-t )2+ V31 (1-t) + Vye?
We need to find control points )

S0 518288 To T, T, T, \

such that the Bezier curv
[ 4

L(#)=So(1-2)® +X,30(1-2)> + S32 (1-2) + S;6°

(3.11)

(3.12)

(3.13)

for 0 S‘ < 1 is the! Brst half of the curve defined by Vo, V|, Vaand V, (ie. B(t) for

0<t <£0.5)and

R(u)=Tol-u)* + T 3u(l-u)’+ TBu(l-u) + Tgu?

(3.14)

for 0 € u < s the second half of the curve defined by Vo, V|, V, and V, (ie. B(¢)

for 0.6 <t <1.0)

To find the control points listed in (3.12), rwe proceed as follows :

‘We know that

Soﬂ Vo

Sg = B(—%-) = -;-(vo+3v.43v,+ Ve
From eq. (3.6) and eq. (3.7) we know that

 L(0) = 3(S1-S0)
L (1) = 3(S5-52)

Since we have t=%, by the chain rule

L(0) = $B(0) = S(V-Vy)

and '

1 1 3
L'(1) = E'B'('é‘) - 'g(Va"‘VrVrVo)

Now, from eq. (3.15) to eq. (3.20), we have

* >

. 3(51;-50) - %(Vx-Vo) \

(3.15)

(3.16)

(3.17)
(3.18)

(3.19)

(3.20)



3(S5-53) = %-(V,+V,—V1-Vo)
Sy _%(V-o+3 V43V Vy)
| Sy Vo ' (3.21) "
Solving egs. (3.21) above, we get .
So= Vo
§, = 'é'(vo'*’ Vi) ’ ’
Sy = %(vo+2vl+ Va) h
§y = %(vo+3vlfavz+ Vy) , (322) -

Analogously, we can show that " -

To= %(vo+3 Vi3Vt Vy)
T= f:‘(‘V1+2Vz+ Va)
.
Ty= '2-( Vot Vs
Ts = Va ) ’ ~ (3.23)
" The fact that Bezier curves and sﬁrfaces have the convex hull and subdivisibility
properties‘ is extremely useful in computer graphics. In [12], Lane and Riesenfeld pro.-

posed an efficient algorithm to generate curves and surfaces, and an efficient algorithm to

find the intersection between curves or surfaces based on the subdivision and convex hull

properties. Because a Bezier curve/lieu within the convex hull of its defining control
point.u‘, we can test to see if the length of the convex hull is within some tolerance of the
distance between the first and the last control points [11], or whether the distance

between each pair of control poirts is less than some tolerance, or whether the deviation

¢ joining the end points is sufficiently small

of internal control vertices from a lie seg

[

[12], etc. The convergence test can, be applied to each subdivided curve individually, so

3

PR
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that the- subdivision process ceases appropriately when the curve has become "locally '

flat”, at which point drawing the control polygon directly is a sufficiently good approxi-
mation to the real curve. The convex hu.ll property can also be used for finding the inter-
section points between two curves. Since each curve segment lies within the convex hull
of its deﬂl;ing polygon, two curves do oot intersect if their convex hulls do not intersect.
If the convex hulls do intersect, we can continue to subdivide the curves and test for the
possibility of convex hulls intersection between all appropriate subdivided curve segments,

When two convex hulls are sufficiently small, yet still overlap, we can declare that a point

"' of intersection has been found. Reference [7] mentioned that the convex hull property is

useful in clipping a curve against a window or view volume. We clip the curve itself only

if the intersection between the convex hull of the curve and the window or the view

volume is detected first.

In this thesis, we only deal with subdivision at the midpoint of a cubic Bezier curve.

A general technique foygdirectly subdividing elsewhbere other than at the midpoint can be

found in |3] ‘ .

3.8. Bezer Blcublc Surfaces

The formulation of the three dimensional Bezier surface can be easily derived from
the formulation of the Bezier curve by using the cartesian product or t;:usor product of
two curves. Two similar bleading functions are used, one for each paramet;r:

"

Blet)= 3 z;:o Vi ®ale)®, (1) (3.24)

For a bicubic surface, m == n = 3 in eq. (3.24) Eq. (3.24) can also be expressed in

matrix form: N

Bla,t) = SMg VMITT - ~ (3.25)
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where S is a row of power #, T isafow of power ¢, and V is a 4 x 4 matrix containing
sixteen control points. Therefore, as in the Overhauser cu'e, \{mesh of sixteen points is

required to form a Bezier Bicubic surface‘ patch as shown in Figure 3.5.

..
.
*en i
- !
LY
LTS

.........
...............

Dy
.
bRy

~

Figure 3.5 A bicubic Bezier surface patch, The net is represented
by the solid lines, and the dotted lines outline the surface

-

We say a net is formed when each control point in the given mesh is connected to all ita .

A

adjacent control points by straight lines. Analogus to thi Bezier iule, the Bezier surface

is contained within the convex hull of its net.
The extension of curves to surfaces leaves the properties listed in previous sections

unchanged. Surlaces can be pieced together from individual patches as shown in Figure
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Achieving continuity between two patches can be done much the sameé way as that at the
joint between two curves. Continuity across patch boundaries ig obtained by making. the
fout control points on the bounda:y equal. Achicvi'ng first-order continuity across a boun-
dary requires not only that first and last edges of the joining polygons be collinear, but
also that the ratio of the lengths of all these’edge pairs be conatant. Of course, as in the
Bezier curve, the Bezier surface has the convex hull property, and can be subdivided into

smaller sub patches too. Local control can be achieved easily with the bicubic Bezier

N 4
patches. If the control point modified is interior to the patch, then a Ratch needs to be

modified. However, if the modified point is on the boundary of two patches, or on the

corner of four patches, then two, or four patches need to be modified respectively.

\

3.9. Conclusion

The Bezier technique has been widely used kr the followit;g reasons: the intuitive

{eel of the control points, the control of continuity; the ability to gubdivid;z and having

the convex hull property. It is well suited to interactive design, since the control points

can be eaaily manipuiatcd to change the shape of the surface. ¢

H}
Although‘lhe Bezier technique possesses many benefits as stated above, it does have

shortcomings.' The Bezier technique discussed above generates a unique single curve or a
unique single surface representation to its control polygon or its net, respectively. A
T
shortcoming of the Bezier method is that the curve and the surface often bear little
L}

resemblance to the shape of the polygon and the net. Ap example is shown in Figure 3.7.

In Figure 3.7, no loop is produced by the Bezier algorithm where we expected one to

exist. Thus, it would be nice if we can generate a curve or surface that can mimic the -

shape of the control 'polygon ot the net more closely than that generated by the technique

mentioned above. That is the purpose of this thesis.
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. In Chapter Five; we propose a mfthod, such that !;y varying tixe value of a pamTe- -
ter named gamma , the curve or surfac; can mimic the control polygon or the net )
closely, or even int;rpolate the set of control points, while maintaining its smooth appea;-
ance.

Al N N :
Figure 3.7 A bezier curve with no loop where one is expected

AN AY

~
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4. Beta2-spline Technlque

As mentioned in Chapter One, the idea of this thesis is motivated by the Beta2-

spline technique. Thus, before going into detail of our proposal, we would like to discuss

brieBy the Beta2-spline technique.

/\4.1. Introduction | ¢
. .

~3

_ A spline curve or surface is a piecewise function with continuity constraints at the
locations where the pieces of the function meet (often called the joints in the casé of
curves, and borders or boundaries in the case of surfaces). Undoubtedly, the Overhauser

and Bezier techniques, as discussed in previous chapt;rs, are special cases of the spline

technique,

"B-spline is another special spline technique. It is very popular in the CAD/CAM

industry today. It has local control, the convex hull property and achieves ¢! and C?

automatically across'the curve or surface. It generates a single unique representation to

\

the set of control point.s; It is shown in [1] that the generated curve or surface may or

may not interpolate any of the control points, depending on the multiplicity of the knots

and the multiplicity of the control points. As the multiplicity of the knots or the control
" , .

points increases, the continuity at the joint or at the border decreases.

4

A generalization of the B-spline method proposed by Barsky [2] is called the Beta2-

spline method. As in the B-spline technique, Beta2-spline technique has local control pro-
. S

'berties in the sense that modifying a control vertex will affect the shape of the curve or
the surfac.e locally. 1t has élobal properties also in the sense that by modifying a ‘parame-

ter called Beta2, f4;, the whole curve or surface can be modified tq mimic the control

Y
N
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polygon or the net more closely, orgven to interpolate the control points. It has the con-
vex hull property. No matter what value ﬂg has, the curve or the surface always lxes in
the convex hull of the control polygon or the net, respectively. The Beta2-spline imposes
the frst derivative continuity automatically. The curvature vector continuity at the joint

or the border is controlled by the value of the parameter, f,.

4.2. Beta2-spline Formula .

For reference purposes, the formula for the Beta2-spline is produced below. The

complete formulation is shown in [2]. . « '

The i* segment of a Beta2-spline curve takes the form

Q6 u)=EV.+,b(ﬁz.u) 0<u <t - . (4

¢ -2

The four functions b, (f2; u) (-2 =< { < 1) are the blending functions or the bws

functlons for the Be"a2-aplme curve, L

It is shown in |2] that

bdfy u) = 21w )

by(Ba; u) = ’1(ﬂz+8+“2('3(52+4)+2“ (843)))
bolBz; u) = 1(2+u (6+u (3(32'*2)‘2" (82+3))))

b_y(fz; u) = 2yu? ' (4.2)
where . )
1
= 43
1= 512 (43)

Note that the basis functions of egs. (4:2) are symmetric in the sense that

b‘_z(ﬂ,\; u)=b,(8z; 1-u ). and b_,(By; u) = bo(fy; 1-u).” This symmetry ilppl‘iea that

reversing the order of the control vertices in a control polygon reverses the resulting
_J

curve.

b,
TR

£ pmen
-
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Eqs. (4.1) can be written in matrix form
' [ V:-z.
Via
Q.(fy;u) = [udu?u 1|M, (4.4)
[ . V' l
p ‘/l +1 J
where
. ' ' (2 848 2 0] : -
6 0 6 o .
. ' My=1 _ (4.5)
6 -3(0;+4) 3(5+2) O
-2 2f+3) -26r+3) 2,
and where 7 is specified in eq. (4.3) e ~ - W
\ . Naturally, the Beta2-spline surface can be formed by taking the tensor product of
\ two curves
) QB u;t)= UMVMITT (8
. where U and T are vectors of power u and { respectively, and V is a 4 x 4 matrix con-
taining 16 control points required to form a surface patch.
4.3. Characteristics
By varying the parameter, g,, a different curve or surface can be generated. When
B2 = 0, the spline has contfgmity of first and second derivative vectors; it is thus
; equivalent to a cubic uniform B-spl'i,ne when f; = 0. As f, increases, the Beta2-spline
curve or surface is pulled closer to the polygon or the aet. This suggests that 8, acts like
a tension parameter. In the limit of infinite §,, the Beta2-spline curve becomes a piece-
wise linear function that interpolates the interior vertices of the control polygon. In the
N\ . . . ~
case of a surface, in the limit of infinite f,, the surface coincides with the interior panels T -
o St o
. s
. ‘vé



of the net.. This makes-the curve or the surface lose its smooth appéarance as the value
of the §; goes to infinity. Figure 4.1 z:nd Figuge 4.2 show the effect 6! fa on the Beta2-

spline curve and surface respectively.

4.4. Summary

The Beta2-spline is a generalization of the B-spline metho«i. It can generate a curve
“or surface closer to, or even interpolate t.hc bounding polygon or the net@ever, as the
curve or the surface interpolates the polygon or the net,‘ the smpotbneu at thle joint or
the border is lost due to the necessity of satisfying the convex hull property. This tech-
nique is useful for some modeling as suggested in [2]. H;weveJr: for some gpplicnatlons,-

o

when smooth interpolation is needed, this technique is not appropriate.

_\ln the next\chapu_t, a method is pi'opo;ed to generalize ’the Bezier and Overbauser
techniques instead of the B-spline technigue. The proposed technique uses a parameter: -
mm;ed gamma {o act as a tcis_ion on the Pe:ier curve or surface. The 'newly geneufed
curve or surface always maintains its smooth appearance, even if it"'interPolates the set of
control points. \

» Y

f

By=0 B,35 B,=50

Figure 4.1 The curves above are generated with the Beta2-spline

method for the same set. of control vertices, with -
mete'r values ’ t different para

t
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Figure 4.2 The surfaces.above are generated with the Beta?-
spline method for the same set of control-vertices, with di-
fferent parameter values
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5. Gamma TechL,lque

6.1. Introduction

In Chapter Four, a generalization of the B-spline methdd, the Beta2-spline tech-

-

nique, was briefly discussed. The Beta2-spline technique has the capability of generating

a curve or a surface, which grows closer and closer t( the control polygon or the net, sim-
ply by in‘cre%sing the value of a parameter named B;. Since the generue.d curve or sur-
face must lie within the convex hull of the control polygon or the net, each curve segment
or surface patch grows "straighte\"\u they grow closer to the contlrol polygon or 'the net.
Thus, the smooth appearance of the curve or the nurtac‘n is lost as the value of 4,

increases, . \

k]

~ ‘ .
In this thesis, a generalization to the Bezier and the Overhauser techniques, rather

N ~

than the B-spline technique, is proposed. By increasing the value of the parameter, wh'ich'_

has been named gamma , 7, from zero to one, the corresponding curve or ‘surface can be.

made to grow closer to the conirol polygon or the net. A distinction with this method, as
opposed to the Beta2spline techniciue, is ti)at the resulting curve or surface always main-
tains its smooth appearance even when it ui‘nterpolatcs the control polygon or the net.
However, by maintaining the smoothness, the convex' hull property, as exhibited by the
Bezier tecjnique, is Jost with the proposed technique. A way to get around this deficiency
is to convert the gamma curve or surface to a Bezier curve or surface, which has the con-

N

vex hull property as mentioned in Chapter One. This will be discussed again later,

\

. 5.2. Gamma Curve -

a
3

N oalypT Tyt LD TR - L, e
S e i A UL e SR, TS,

Figure 5.1 shows three gamma curves with the same contr&I polygon. The only -
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difference is that the left curve has v == 0.0, the middle curve has v == 0.5, and the right
A
curve has -y == 1.0. Notice that the curve with v == 1.0 interpolates the control polygon

while maintaining the smoothness of the curve.

—+— —+
y=20 y = 0.5 y = 1.0
Figure 5.1 Gamma curves with the same set 6f control points, but
different parameter values : ’
N\
oit)u)_ .
.

Figure 5.2 A Gamma curve’ ' . ‘ .

.



The following is an explanation of the formulation of a Gamma curve. ,

Suppose we are gwen six control vertices, po, Py, P2, Pa Py 80d py Then a leg-
ment of a cubic Bezier curve B(l ) can be drawn for the four interior control vertices, and
%ree segme-nts of an Overhauset curve O,(u) (0 < § < 2) can be drawa to [nterpolnte
the interior four control vertices. This is sho;vn in Figure §.2. The gamma curve is
represented by the three curve segments Golv; #), Gy(7; #), snd G,{7; ¢) shown in
Figure 5.2. Each gamma curve segment.can be expressed as follows:

G(7; 0) = (1B (+)+10,(u) (5.1)
for(0<y<1)and(0<i <2) ;

v

From eq. (5.1), we can tell that the Gamma curve lies on the' Bezier curve, B(t),
when 7 e 0, and on the Overhauser curve, O,, when 7= 1. Any other value of 7 will
generate 3 curve that,is in between the Bezier and the Overhauser curve. Thus, the

Gamma t.ecbmque is a gd;ezﬁutlon of the Bezier and the Overhauser techniques.
. e

To derive the formulation, we assume that a cubic Bezier curve segment, combined’
with three consecutive Overhauser curve segments, is used to make up three consecutive

Gamma curve segments. By - arbitrarily partitioning the cubi¢ Bezier curve into threé

. parts, we can use the first part, combined with O,, to derive Gy the second part, com-

bined with @,, to derive G'y; and t\'li'e third part, combined with O, to derive G .

. >
By havinﬁ s, t, and u of eq. (5.1) related in a linear manaer

$ = kl‘ +k2
and

u = kg +k, - (6.4)
The resulting curve G, (7; #) is a parametric cubic curve

;i .
(s% 622 1)A \ (6.3)
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where A is 'Y matrix to be found. .

To find eqs. (6.2), we proceed as follows:

'
For Gyv; #), we bave

»

Gol7;0) = 040} = B(0) = p,

When 4 = 1, we bave

Goll; 1) = Of1) = p,
and when v == 0 ifffeq. (5.1), we let

G(0; 1) = B(%] .
As a result from eq. (6.4), we have ‘

o

] 0
yu =m0
{ =0
and from eq. (5.5) and ‘eq. (5.6) t.

<

T 4
s =]

u =1

1-

Solving eq. (5.2) with constraints, given in eqs. (5.7), and egs. (5.8) we get

“ - L.
U .
Now, by substituting eqs. (5.9) into eq. {5.1) we get

.-

Glvi o) = (1B(H10de)

Analogously, for segment G,(7; #), we have
]

o m ()

u ==

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)



-46.

and

2 X o

S

In this case, we assume

Gy(1;0) == 0)(0)=p,; and G,(0;0)m B(%)

G1:1) =01} =p, mmd G0 1)= B(3)
i

whgn g == ] = -3—, since B(t) is most affected by point P, when { = -g— Solying eq. '

~

(5.2) with constraints given in eqs. (6.11) and eqs. (5.12), we get

& +1

3
u =g )
By substituting eqs. (5.13) into eq. (5.1), we have

Gilri #) = (1-)B (5 +704s)

Similarly, for se;gmeut G47; ), we have

2 =0
u =0
2

\ . 3 . e

and
Q/P g =)
' u—.l
{ =] -

In this case, we assume

(5.12)

(5.13)

(5.14)

(5.16)

(5.16)

.-)13‘7’;’
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.. ’
GA1;0)m 0f0)=ps and G0;0)= B.(%)
Goyi1) == 04(1) = B(1) = p,
Now, by solving eq. (5.2) giving the constraints in eqs. (5.15) and eqs. (5.16) we get

L

=y ' (5.17)
Again, by substituting egs. (5.17) into eq. (6.1) gives

*+2
3

Now, we hm'rg the three equations as follows:

GAv;.0) = (1-7)B( J+104e) . (5.18)

L

Gol1i0) = (1-1)B($1+10{s)

Gilr 1) = (1B (£FH)+10,s)

o042

Gfy;e)= (14)B (T)+'102(0) | (5.19)

Nc;te that six control points p,, P2 Ps Pe Ps and pg are needed for eqs. (6.19) as
shown above. From Figure 5.2, we can see that the Bezier curve only depends on the
four interior contlrol poinds (p 4, Pg, P3P 4) for all three equations in egs. (5.19). Howeyer,
“the first Overhauser curve gegment O, depends on ip 1, P2, Pa P4 the second Overhauser
curve ugment’Ol‘depends on (pg, P, Pe Ps) and the third Overhauser curve segment
0, ‘dependu on (Ps, P4 Ps, Po)  Therefore, \;re need " six control points
(P1, P2, Py P Ps Po) to compute egs. (5.19). If there are more than three segments, that
is if more than six control points are given, then the general equation can be derived

casily as

Gi(7;0) = (1-4)B,( ’;ﬂ )+'70.(;) ' ‘ . (6.20)

where

ogm i /3 ' P,
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L ﬁ-i%:‘l .

‘ . (21
The '/’ sign in eq. (5.21) stands for the integer division of i divided by 3? and "%’ sign

stands for the integer remainder of 5 divided by 3. .

.The three Gamma curve segments shown in eqs. (5.19) form a Gamma curve th;t is
in between the Besier curve, B(¢) which is computed from (p, p3psps), and the

Overhausef curve which interpolates (p, p3 ps py). As a result, the Gamma curve (co;:-
sisting of three consecutive Gamma curve segments) will interpolate the control points p ,,
and p , for any value of 7.

5.3. Simplification

~

Now that the general form of thgcuwe equation has been found as given in_eq.

(5.20), a simplification can be made to derive an equation of the form given by eq. (5.3).

To do the simplification, we have to work with the three equations.f:ogether'.hs given
ip eqs. (5.19). Given a list of consecutive control points p, (0 < i-s n ;\rhere n2b
and (n+1) % 3 == 0), there must be at least six control points and the aumber of control

points must be divisible by three, These conditions must be satisfied because we need to

™~
‘have at least four control points {p,, p2, ps, p4) for a cubic

zier curve segment, and we
need two extra control points (po, ps), one on each end of the four control points

(P1, P2 Pa P4 80 that the Overhauser curve can interpolate the four control poil;ts
(P1, P2, P's, P d) Furthermore, if there 15 more than one Bezier curve segment, say m seg-
ments, then we need to have 3m +1 control points for the m cubic Bezier curve gegments

to join together. Forf an Overhauser curve to interpolate these 3m +1 con’trol points, we
need to have two exterior control points, on'e on each end of the list of the 3m +1 control
points, C;msequent.ly, (3m +1)+2 = n control points are nceded f&\ \;amma curve to

‘be built. Since n = 3m +3, and m must be an integer, n must_be divisible by three.

R,
T,

L-_‘,‘; it
Shv
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. /
However, since the control points are numbered from zero, the condition becomes n +1

must be divisible by three, and n must be greater than five.

The layout for a list of twelve, i.e. n == 11, control points is given in Figure 5.3.

Figure 5.3 . The dependency of the Bezier and Overhauser curve
on the set of the control points. 'O'.stands for Overhaser -
curve and 'B' stands for Bezier curve

From Figure 5.3, we caa see that nine Overhawser curve segments can be constructed

with dependency on the control points as shown below:

0, (PonPaPa)
0, 0 (PlP:PaPc)
02 2 (Papspipe)
O3 @ (pspyPsPo)

w



~

L

Os O (psroPioPu) ' - (8.22)
Where (3 stands for 'depends on’. In general

»
~

ol 1] (Pl Pi41 Praa Pt-H) (5'23]

Similarly, three Bezier curve segments can be cdnstructed with coatrol point depen-

N

dency given as follows:

. ! B, Q (PxPzPaPc)
B," @ (pyPsreri)
By @ (prpspPoPu) (5.24)
* In general . e
. - B, 0 (Pa;-nh,-u; Psj4a Payd) * (6.28)

From Figure 5.3 and eqs. (5.19), we can see that in order to derive the Gamma

curve, we must have W
" N
Go 0 ‘loo BOI Y [PAoP‘PaPsPJ
- G, Q {01 Bo] 0 (Px PaPaPd)

G; 0 {02\§0} Q (P1P2Psraps)
{

Gy 0 {00 B?} 0 (peP7PsPoPr0)
\b

G, Q l01 32] 2 (p7rsporo)
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H LA o .. i PN
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Gy 0 loo Bz} 0 (prrepoPiorn) * (6.26)

In general

(Pl P|+IP|-MP|+]P|-H) ifs %3-0

G, 1 {(p ParPsaPiss) ifi %3mi : (5.27)

(PI-IPI Pl+lPl+Qp'“) ifi % 3= 2

The dependency of the first three Gamma segments on the set of control points is shown

in Figure 5.4. ) ,
o L g
& le E ....-......--.'....(.; ......... eeemeeaseanas

Lemcernnnns Ll L) A

i G . : :
Lorecmcueenes 1_0__L ............................. ] g
e T TS Aseiceceneas I +
Po P P2 P3 Pg Pg

Figure 5.4 The dependency of the first three consecutive Gamma
cqrvibsegments on the set of the control points

This also means 6& a total of six consecutive control points are needed to compute the
three Gamma curve segments as indicated in eqs. (5.27). By taking the umon of the con-
trol. poin\ in the eqs. (5.27), the gemeral equation dependeney on the control points

becomes:

P
P4n
Pasa|l
. : 5.28
. . . G'., Q Pire (5.28)
' | T
Pigs

-
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where 5 m i — (i % 3). And since §=={ % 3 as shown in eq. (5.21), § can be expressed

.
as ; N

bmi-p . (5:29)

It § == 0, then the Gamma curve G, will interpt/)lm the control point p 4y, for any value
of 7, and if B == 2, the Gamma curve G, will interpolate the control point p ;44 for any

value of 7.

v

One bas to remember that not all six control points in eq. (5.28) are used to derive *
_the ith Gamms curve segment. The set of cou;trol points used by the f{h Gmmi curve |
segment gle;;endu on the 8 valué When g == 0, the top QVe control polnu\ _ir‘e{e'eded for
the'qomﬁutuion of the ith Gupmn curve segment. When S == 1, the interjor f\our cone-
trol poiats m needed, and when B = 2 the hattom five t_:ontr?sl polntd _'s're gequi;ed for
the comput;:tion of.the ith Gamm&'curve o:eg'ment. Note tbnlt, for.any. value of § for the
ith _ga‘;mma curve ueglx')ent,ihe Betzier curve segment (used io define the ith Gamma . -

A

curve segment) is always defined by the four interior control points. On the other hand,

N

the set of control points used to deBne the Overhauser curve segment (whlch is used to .

define the i Gamma-curve segment) always depend on the value of . It p =0, the top
four control pomu are used. This is the reason for usmg the top five control points to
derive the Gamma curve segment when = 0 (the top four control points are used for
Overhauser, and the middle four control points are used for Bemer, implying that a uni n/-
of five contro! pomu is used to derive the Gammt curve segment with A= 0). it s,
the middle four are used. In this case, ‘since both the Overhauser curve and thq. Bezier \
curve use the middle four cont;ol points, the Gamma curve segment uses the middle four

control points for derivation when == 1, And if # = 2, the bottom four tgntrol points

are used. With the same argument as in the case when =0, four middle control points ‘

= he
RS IvE)

-



B

-53- .

A

for the Begier curve and four bottom control points for the Overhauser curve,’rendering a
union of Bve control points for the derivation of the Gamma curve segment when g = 2.

As a result of these, eq. (5.20) can also be written as:

P *
Pt Pl
Piswe P42

G(v:0)=(1-7)TMp Pire + 1UMo_¢ M (5.30)

D44 PH-4

PH-GJ .

- !

+

where T, U are row vectors of power of | = 2 , and u == & respectively, and Mp is

3

the motrix given in Chapter Thrgg'for the cubic Bezier curve, and My ¢ is a 4 x 6 matrix

to be determined. Eq. (6.30) can be simplified into. ‘ .

-]
, P
\ . Pin
Piy2
G (v;e)=((1-1)TMpr_c.+1UMo ¢ ) Pras . (5.31)
Pita

Piys

where My  is a 4 x 6 matrix to be found.
\ B

A

It is easy to derive the matrix Mgy ¢c. From Chapter Three, we know the cubic

Bezier curve matrix Mp is as follows :

o

13 31
3630
Mg = ; (5.32)
33 00 -
1000 ' '

Now, singe the matrix Mz only works on the four interior comtrol points

(P 441 P i42 P 144 P 144)> 38 given in eq. (5.30), we can write
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0-13 310

03 632390

Mprc = ' (5.33)
033 00O

01 0 0O00O0

so that the matrix Mpy ; would not affect the two extetior control points (py p j4s) 28

TS

. . .
required: Now, by substituting eq. (5.33) and ¢ = 2 +h into TMpy ¢ of eq. (5.31), we
get ) N

e

S, [¢° 2% 2 1|Mp ¢ = TMpr ¢ (5.34)
where ' '

P 1 a4 1
N 9 v 7w°
L, . 1 1 s |7
0 SEA (-2 g!l-ﬂ) 50 )
Mp g = | : . . (6.35)
-1 2 1 1 2
0 7(5-3) 3(52-45‘*'3),-3(2-19) 50 '
o gy Lepop Less £ o
oy 9 0 7| o -
As a result, eq. (5.31) can also be written as
Pi ) <
P ’
Piy2
Gi(1;0) = (1-1)SMp ¢ +1UMoc) |, . (5.36)
(P4
Pi+e
where Mp_¢ is given in eq. (5.35), and S is a row of power of s .
To derive the matrix Mp_c, we proceed 2s follows :
From 'Chz'\pter Two, we know that the Ovethauser matrix is
-1 3 3 1
2 22 2
. 5 -1 .
gt 5
My : (5.37)
-1 1
a7 0 7 0
”~ '
0 1,0 0

“y,

PR L ST S S T TR R R T TN oy e LR r e
N B . N EOR E S, aAs T R S
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)
Now, by assigoing C, (0 < § < 3) to the ith column of the matrix My given in eq.

(5.37), we can write

- 17
¢ ooy

CiagstCoary
CaaoptCrongtCotzg|
Caao'rf‘ Czﬂl"‘f c 102,

Ci01 4+ Caazy

Mo_a - (538)

Cyazy
where the s'upencript T stands for the transpose of the matrix Mo g, a,yis a kronecker
delta, and # = { % 3 as given in eq. (5.21). Thatis

1ifi =g
NE™h0 otherwise (5'3?)
In effect, the matrix My contains the matrix Mo which is being shifted 4
columns to the right. This is required because if o= 0, § = 1 ;nd B ==.2. we want only
the top four, middle four, and the bottom four control points given 'in eq. (5.36) to form

the Overhauser furve segment respectively for the construction of the ith Gamma curve
Ve .

segrank, . sequently, at any moment, there are four non zero columns in the matrix Co

e

My _c and the remaining two columns consist of zeros.

Since we know y == ¢, we can rewrite eq. (5.36) as
P W
P
Pie
Pa
P
et

7

Gi(7;0) = ((1-1)SMp_c +7SMo_¢ ) (5.40)

which can be simplified into



, by T N N E L T e S Tat
h ™ - B
- “ -
’ G(y;e)m[e®e? e 1M P, .
where | .
Mg = (1-1Mp ¢ + 1Mo
and
P
P
p PHa
v = P‘+_‘
P
Pegs *
r A Consequently, the matrix A i eq. (5.3) can be expressed as:
A=M:P,

The 4 x 6 matrix Mg is produced below:

8-

I3

3 1/
-g-ao —-‘%”w %(300—01) -(l—;_’)-+%(-—30°+30|-ag)

-~ -(IT'ql(a-ﬂH%(%l-Sao) E‘T"'l(p-a)+-}(4ao-sal+2an)

-%ao : -!l;ﬂ(ﬂ-:’)z“%al '(l%)'(f —4/9"'3)"'%(00-6'2)

0 --(%q)-(ﬁ)'ﬂao -(lT'q)-ﬁ(M)’ﬂax
. q{
__(l__;ql+ %(ap‘iaﬁaa,) -(12-7-2)4 -g-(al-aa,) %a,

'(lT_ql(l'ﬂ)"'%('ﬂO;"‘“l"’“z) ﬂg—’lﬁ%(-alﬂaz) -%az

'(—)'1;7 ﬂz-ﬂ)""-;\a: -(—)'1;7 ﬂa*‘%ﬂz 0
Clpgm, e o

RN RSt AT PR

- - ’ [

(5.41)

(5.42)

(5.43)

(5.44).

g

(6.45)
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In the above equation, each a, = a, 4 where § is dropped for lack of space to produce

the matrix.

Once again, the general equation for 8 Gamma curve is

P
. P
G(1;0)=[e%0%s 1|M; zz (5.46)
P
P

where

Smi-(s%3) " °
=i -8
The parameter 7 gives the interpolated curve between the Bezier and the control points,

or rather the Ove!hauur, curve, and the parameter » determines the value -along the

) interpolated curve. The matrix Mg requires the input of the value of 7, and the number,

1, of the curve ugmént’ for the computation of A. Further simplification of the matrix
Mg is discussed in the next Chapter (where an implementation of the Gamma technique

on the Sun workstation is considered) by breaking the matrix into three simple cases.

8.4. Continulty

The Gamm:gne will have pomlonal and C! continuity, il the Bezier curve has
posltional and C' continuity. Since the Overhauser curve always has C! continuity as

discussed in Chapter Two, the proof is trivial a3 shown below.

N
o

Suppose we want to prove thabtwo adjacengGammn curves G,, and G, 4 have C°,
*d‘s

and C! continuity ‘at tho loint marked X as ohown ‘n Fi;nre 6.5. Further we assume
thit the two adjacent Besier curves) (B, B,.;), and two adjacent Overhauser curves

(0, 0,41) used to form the two Gamma curves have positional and C! continuity at the
\

) [



»

L)

joint X. -

N ' -

Figure 6.5 . Two Gamma curves h

_at the joint if the Bezier and
. themﬁare c' continuous

R "' \_

Then at the joint X , we have

B,(1)=B8,u(0) . . . :

B', (1) = B', i(0) ' \_ ' - (547 _f—
and , :

o =0u0) . o

AN =04ul0) . L ()
and A o ) ¢ )

B, (1) = O = B, 4(0) = 0,,,(0) ' : . (6.49)

.

Note that the formula for the'Gamma curves G, and G, ., from the Figure 6.5 are

842

3 }+40,(¢) I ?

- G (via)=(1-9)B,(
Ginlr; f')'- (1-1)B, }1('5‘_)""7?: ale) ) (5-50-)

a~+ To prove pésitional continuity, we need to ;):cve '
-. >

G (1:0) = G u(1:0) oL ' '(5.51)‘

ave first degree-derivative continuity
the Overhauser curves used.to derive-
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A}

The proof is as follows:

G(r:1)m (1":’)8}(1)".'701 (1)
G, (7 ; 0) = (1-4)B, 44(0)+70, 4,(0) : (5.62)
Now, by conditions specified by egs. (6.49), we have ‘

G(r:8)= G pl1;0)

which is just what we wanted to prove.

To prove C! continuity, we need to prove

G'(1i1)= G yyf7;0) - . . (5.53)

The proof is as follows:

Using the chain rule applied to eqs, (5.50), we get

- l N . .
G'\(1; 1) = Z{1-1)B", (1)+10", (1) ,
1 oy

Gli(7:0) = '5(1"‘1)3 !, 11(0)+70, 4,(0) (5.54)
By conditions given in eqs. (5.47) and eqs. (5.48), we proved eq. {5.53), that is

G'\(1:1)= G', y(1:0) .

Although a joint, X, is proven above to be C%and C' continuoﬁs, the proof applies

to any other joints, as long as the Bezier curve is poeitionaland\%:ntinuous. If bow-
ever the Beszier curve has tangent continuity, instead of c? continuitf; the éamma curve
generated is guaranteed to have tangent con‘uity at the joint too. A very interesting

feature that 3 Gamma curve has is that a curve that is not smooth can be made into a

-

smooth. curve as it interpolates the cc}htrol‘polygon. Suppose at 7 = 0, the curve gen-
erated, which is also a Besier curve, does not h_:ve C! or tangent continuity, t.hen as
ktmmn increases from szero to one, the curve' beco;nea smoother and smoother. As a
matter of fact, when 7 == 1, the curve generated has C! continuity. This is because when

7= ], the cornipondln; curve generated is the Overbauser curve, which has C°!

. ___('.
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case.

Figure 5.6 The solid curve has first derivative distontinuity with

v=0. The dotted curve has first derivative continuity with y=1.0

5.5. Chuukrlgélu of 7

0

When"f = 0, the Gum;m curve is analo.;ous to thc-Bezier curve, As the value of ~
increases towards one, the Gamma curve comes closer and closer to the set of control
points. This suggests that 7 can be used as a pulling agent on the Bezier curve towards
the set of control points. When there is more than one piecewise cubic Bezier curve seg-
‘ment, with C! continuity maintained throughout the curve, th.e pulled curve always has a

smooth appearante and is C! continuous. We mentioned in Chapter Three that a draw-

back of the Bezier techmique is that the curve generated does not resemble the control

polygon very much. However with the Gamma technique, the mimicking of the control _

polygon can easily be done just by increasing the value of the ~. A very striking result of
this is shown in Figure 5.7, where an expected loop is obvious only when the value of 7 is

o
increased to 0.4. When v == 1, the Gamma curve is the Overhauser curve, which interpo-

' a3
lates the set of control points and maintains the Orst derivative continuity throughout.

[y

Due to the neéessfty % maintaining smooth interpolation, the convex hull property is
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sacrificed. This is shown in Figure 5.8, where the solid line enclosed the convex hull of

the control polygon and the dotted line represents the Gamma curve with 4 = 1.

Py + + P

Figure 5.8 Gamma curve is not contained within the convex hull
of the control polygon. Dotted line is the Gamma curve with v=1.0

and the solid line encloses the convex hull of the control polygon
®

!

This undesirable property can be eliminated by converting the Gamma curve into the
. *

- Bezier curve, whereby the gamma curve is constrained with a new set of control points.

5.8. Local Control
‘4 X
With the Gamma method, local control can be achieved, That is to say, by modify-
4

ing a control point, only a few local curve segments need to be adjusted.

The number of Gu’kma curve segments which need to be adjusted depends solelf on

the position of where the modified control point lies. Assume that the Gamma curve
Ry
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starts from the second control point and ends at the second-to-last control point (see Fig-

ure 5.9).
G, G, G, Gy G, G. G. G, G )
0 1 2 3,74 5 76 7,78
Po pI: Pr  Pj p;4. Py Pz '9:7 Pg Pg plo P11
AR T T 1

Figure 5.9 Layout of the relationship between the Gamma curve and
the Bezier curve on the set of control points

N

Obviously, if either of the endpoints is changed, only one end Gamma curve ugment

. : derived from the modified control endpoint needs to be adjusted. If t.he. modified conf.roj .
point is located at the jt;int of two Bezier cubic Eégmenu, then theb two Bezier se;menf.s
need to be gdjuut,ed. whick of course ilﬁpliea that six consecutive Gamma curve segmenﬁ
need to be adjusted. For example, if the control point P; is modified in Figure 5.9, then
the Gamma curve segments Gy, G, * , Gg need to be adjusted. Finally, if the
modified control point is interior to a cubic Be.zier curve, then four consecutive Gamma
curve segments need to be adjusted. Three of them are derived from the modifled Bezier
curve segment, and the other s;:gment is derived from the adjacent Gamma curve seg-
ment which is closest to the modified co.ntrol point because of the aﬂccud‘ Overhauser
curve segment. For ex;'mple, if the control point Py in Figure 5.9 is modified, then the
Gamma curve segments G3, G, G, and Gy need to be recomputed. However, if the
" control point P4 is modified, then the Gamma curve segments G5, G, G4, and Gg need

to be recomputed.
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5.7. Conversion to Besler Curve w

Since the convex bull property is very important in computer graphics, we would
) like to have the Gamma curve, which does not have the convex bull propetty, converted

to the equivalent Bezier curve, which does. This is doue by the equation given below:

Py ¢ = Mg'McP, (5.55)

where Mg is the inverse of the matrix Mg

0 o

(=]
[

00

Ma'l - (556)

Wl

1
0 3

] 111 1] | .

The four newly found control points contained in the matrix Py ¢ are the vertices of the
Bezier control'pol\ygon. After convmion,. the Gamma curve is'obviously‘contained within
the. convex hull of the c‘:ontrol points speciﬁed by Py ;. Also, the subdivision of the
curve, as mentioned il; Chupter Three, can be done éasily now on the converted Gamma

cutve.

5.8. Gamma Surface

As discussed in Chapter One, the generalization of the Gamma curve to the Gamma
surface can emily be done by forming the tensor product of two Gamma curves. The

_ general equation for a Gamma surface patch is:

G,,(1iu ;s)= UMg, P;(SMG‘)’ (5.57)

where the parameter u gives a family of horizontal curves for the surface, while the

[\

parameter # gives a family of vertical curves for the surface. As a result of this, we have

A}

to use the matrix Mg for the horizontal curves and Mg for vertical curves. Both



matrices are derived from the matrix given in eq. (5.45). The matrix Mg, requires the

input of the § value of the % horizontal patch for the computation of its f = i % 3

value. The matrix Mg , on the othér hand réquires the 5 value of the jtA vertical patch

\

for the computatien of its = j % 3 value. Obviously, both matrices require the input .

of the 4 value. Note that there are three distinct matrices, with S == 0, S == 1 and f = 2

for each of Mg, and Mg . However, it does not require six distinct matrices in memory.

N
"

This fact is very useful in the implementation of the Gamma surface as mentioned in the
LY

pext chapter.’ Also, we need a 6x6 matrix P, contaiding the mesh to derive s patcﬁ.

De;;endiug on the value of ¢ ‘)md I, ghé»meah used within the matrix can be different, as

in the case of the cur_ve.‘ When i % 3 == 0, the first five control points in each row are

A -

used to provide the horizontal curve, when i % 3 = l,lthe mi&dle four control points ig

hY

eacl‘ row are used, and when { % 3 m 2, the last five control poi‘nu in each row are used

to derive the horizontal curve. Likewise, the parameter j works on the control pointb in

each column, as ¢ works on the control points in each row.

patch, shown by the area enclosed by
solid 1ines, is used to derive nine
Gamna surface patches

|

Pl

d
Figure 5.10 A bicubic Bezier surface '?
é
é
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Note that a bicubic Bezier surface patch is used to derive nine, 3x3, Gamma surface

| ~ patches. This is sbown in Figure 5.10, with the 6x6 matrix P, given also. The inner 4x4
matrix of the 6x6 matrix P, is required for the computation of the Bezier surface, and

the surrounlding control points in the 6x6 matrix P,, are used by the Overhauser method

to derive the nine Gamma surface patches. Note also that the derivation of the center

patch G, does not depend on the surrounding control points of the 6x6 matrix P, .

As in the Gamma curve, the parameter 4 gives the interpolated surface between the
Bezier uurfac; (when 4 == 0), and the control points, or the Overh:.iuser surface (when
v = 1). The four corner control bointo of the inner 4x4 matrix of the 6x8 mauix‘ P, are
!nte-rpolsted by. the Gamma surfac‘e. for any value of 4. The Gamma surf'ace aiways
maintains its smooth properiy if the Bezier surface and ‘tbe Overhauser surface are C!
continuous, A Bezier surface which is not C! continuous, will become- C! continuous

when 7 == 1; that is, when the set of control plointa used to define the Bezier surface are

interpolated. This is shown in Figure 5.11.

y = 1.0

2020 0.0‘,
A "q} S “'
XD
’I a AU/ \‘
IS ‘“\\i“
::, S5 A\v{\\. NS
B '4'.0..0 0N ;\ AT

LR “ -

\VA\-"«”" §
"“ \V q0,j :1' e
ml

l
'\VA :‘:4 ‘4’» o

1’()0( 4’)3
' DO "'
'4¢g;;%>«r

Figure 5.11 Gamma surface which does not have c' continuity at
v=0, 0. will become c¢' continuous at y=1.0

‘v
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As in the case of the Gamma curve, the Gamma sutface does not have the convex
hull property. A way to obtain the convex hull property, similar to that of the Gamma \
curve, is to convert the Gamma surface to a Beafer surface to enforce the convex hull pro-
/ .
perty. The formula to do this is as follows:
. | Psc = (Mg5'Mc,)P,(M5"Mg )T | (5.58)
where Pp_ is a mesh of 4x4 control points used to obtain the equivalent Bezier surface.
Locality is also schieved in the Gamma surface, as it is achieved in the Gamma
curve. The nuglber of surface patches which need to be adjusted vuiu'u:cordlng to tio
position of the modified control point. To see this, a four (2x2) Bezier surface patch lays
out is ,ahowg in Figure 5.12 with accompanying 9x9 controi points.
‘ = 0 0 o0 .0 o0 o 0 o0 o
0 ?---_-.. 0
o ) 0 v
» 0 ?I 0 L3
Figure 5.12 Layout of o
four bicubic Bezier sur- 0 & e 0
face patches with a'fo- :
, cussed centre matrix of 0 ) 0
3x3 contrdl points num- -
. bered from ¢y to Cq 0 g 0 0
0 beeeeng

Here, our attentiod is focu n the 3x3 control points, numbered ¢, ¢, -, ¢q, Which
form the centre part of the four Besier surface patches. Obviously, if the control poiat,

¢g which is at the corner of the four Bezier patches, is modifled, then four (2x2) Bezler
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patches peed to be adjusted. This implies that thirty six (6x6) Gamma patches need to

be modified. This is shown in Figure 5.13.

v
. . -
e ¢ 0 . P B
. - . . . .
el > Yl '~ Yl bl '+ Yl ' el
J '

Figure 5,13 Thirty six Gamma patches need to be adjusted when the
focussed -point, Cg (shown by a cross), is modified

Figure 5,14 Modify Cq causes Figure 5.15 Modify c, causes
adjustment of sixteenpatchgs adjustment of sixteen’patches

Figure 5.16 Modify ¢, causes Figure 5.17 Modify cA causes

adjustment of sixteeen patches adjustment of sixteeefi patches
. » .
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determine the way of adjusting the surface for a modified control

Figure-5.22 Pattern of the focused 3x3 matrix which is used to
point
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If the modified control pqint is one of the coher/p'ointa of the focused 3x3 center
matrix, for e ple, ¢, then sixteen Gamma patches need to be recalculated, as shown
by the shaded area in Figure 6.14. These are derived from the nine (3x3) Gamma

patches, computed from the Besier surface patch which is affected by the modification of
/

tie-wontrol point ¢, (shown by the area shaded by diagonal lines). In addition"to that,™,

three adjacent Gamma patches on each side of the modified Bezier surface patch closest
to thé modiled point need to be recalct;lated (shown by the area shaded by the vertical
lines). - And finally, one Gamma patch that is diagonally closest to the modlﬂed poin?
needs/ to be adjusted (shown by the area shaded by the horizoatal lines). The Iut seven
patches need to be recalculated because the Overhauser surface patches used to compute
them are modified when the control point, c,, is modified. Analogously, sixteen patches

peed to be recalculated in the same fashion for the modification of any of the remaining

three corner control points. These are shown in Figure 5.15, Figure 5.18 and Figure 5.17.

Lastly, if one of'the middle coatrol points on any side of the 3x3 locussed matrix is
modified, then twenty two Gamma patches need to be recalculated. The two Bezier sur-
faces ahuiyg the modified control point, for example cq in Figure 5.12, bave to be
modified. This means that each of the nine Gamma patches derived from the two Bezier
patches needs to be modified (shown by the- area shaded by the diagonal lines in Figure
5.18). Also two adjacent patches closest to the modified point have to be modified
(shown by the area shaded by vertical lines in Figure 5.18). The last four patches have to
be recal‘culaied because the four Overhauser surface patches used to compute them are
modified. Analogously, twenty two patches need to be recalculated in the same fashion
for the modification of any of the remaining three middle-side control points. These are

~

shown in Figure 56.19, Figure 5.20 and Figure 5.21.

/

\

7
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Now that we have worked up all the poesible cases for the focused matrix, we can
do the same for any other 3x3 matrix which is arranged in the fashion shown in Figure

5.22.

6.9. Summary

In this chapter, the derivation of the Gamma cﬁrve and the Gamma surface are di&; |

cussed in detail. The Gamma technique is a generalization to the Bezxier and the
Overhauser techniques. The method proposes a way to mimic a Besler curve or a Bezier

surface to the control polygon or the net while maintaining their smooth appearance. By

doing so, the convex hull property is lost. However, by converting the Gamma curve or

surface to the equivalent Bezier, we can’enforce the convex hull property. Locality can
also be achieved with the Gamma method in the sense th;t by modifying a control pt;lnt.
only a few loca.i curve segments or surface patches need to be recalculated. -We would
like to point out here ﬁ:;t\h?paran{eter, 7, acts globally, as with the parameter §, in the
Beta2-spline method. That is, by modifying the parameter 4, the whole Gamma curve or

Gamma sutface is also modifled. . .

The matrices Mg, or Mg and Mg used to compute the Gamma curve or the
Gamma surface respectively seem to be cumbersome. However, by separating them into

three simple cases, the matrices are quite simple. This is examined in the next chapter

)

where an implementation of the Gamma technique in an interactive environment on the ’

SUN workstation is considered.

Aw
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6. Implementation Of Gamma Technlque
&

o.1. lntrod'uctlon

Chapter Five discussed the formulation of the Gamma technique in detail. In this
chapter, we will work on an implemeatation of the_Gamn;t/technique on the SUN works-
tation. A p/ackage is developed to draw three dimensional surfaces interactively using the

Gamma technique.

6.2. Simplification

In order to have lheﬁpmcess_or execute the algorithm faster and more efliciently, we
r

should simplify the algorithm as much as possible.

In the computer, we dc; not need to allocate a colnmq of six control pointggor a
mesh of 6x6 matrix of control points every time a new segment of 2 Gamma éurve, ora
new patch of a Gamma surface is drawn.wmon for this is that a colums of six con-
trol points can provide the derivation of three consecutive Gamma curves, and a mesh of
6x6 of control points can provide nine patches of a Gamma sur‘gce; thre_e patches in a
row and three patches in a column. These facts are obvious from the arguments given in
Chapter Five. Therefore, we can speed up the processing time by allocating a new
column vector of six control points after we draw three consgcutive curve segments from
the current vector of control poi%:rin the case of a surface, by allocating a 6x6 mesh
of coatrol points after we draw nine patches of a Gamma surface from the current mesh

of control points.

The matrix Mg, as specified in eq. (5.45) in the previous chapter, is quite cumber-

-

some. This is because it combines all three distinct cases together, = 0, f == ] and

o -.‘\'1\.‘:?‘1
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B == 2 in a single matrix.. If we have a separate matrix for each case, tﬁ:n the matrix in

each case can be nimpliﬂied.

By substituting # == 0 into eq. (5.45), we get

Mc_o”'

!

[ 4 831-2 229y 1172 17

2 W 18 18 27
2-17y 812 2-5q

6

q
2 2
0

1

3 ) 0
2

1 =2 g 0
5 .
0 0 o

By substituting § = 1 into eq. (5.54), we get,

+

o
s

2425y —254-2 2425y 0

0 -26v-2
54 18 18 54
24Ty -134-2 2-11%
0 =5 8 2 18
-8 247 1
0 3 0 5 e
0 B0 45 22 1
77 0 - 9 27

And by substituting # == 2 into eq. (5.45) we get

Mg ;=

o

0 -1 2-11y 209-2 2:834 i
44 18 18~ 54 .2
1-7 -137-2 2416y 4

05 7 8 v 2
-1 =2 8+

0 0 6 0 18 0

0 17 2-27 4+57 88y 0
n 9 9 27

Ty

(6.1)

(63) -
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The matrices Mg_o, Mg_1, aad Mg 2 are si‘mpler than those given by eq. (5.54).
One can store these three matrices i the main memory for the computation of the
Gsmma curves or the Gamma surfaces. In the case of the curve, when S== 0, 0r f = 1,

or A = 2, substituting the matrix Mg_o, ot Mg_,, or Mg_3 respectively for the matrix

Mg in the eq: (5.46) will derive the corresponding curve segment. Analogously, substitut-

ing the matrix Mg_o" Mg_1 or Mg_p Sor the matrices Mg, and Mg, in the eq. (5.57)

. appropriately will derive the corresponding (i ,5 } surface patch.

CE, ) ' *
0.3. Map to Besler *
Since it is important that we preserve the convex hull property, we would like to

\
convert the Gamma curve or the Gamma surface into Bezier form before we output them.

The conversion of the Gamma curve to.the Bezier curve is given in the eq. (5.55), as
Py g = Mg'Mg P, , (6.4)
where the matrix My is the inverse of the Bezier matrix Mp

- o L

00 1

o

00 1
Ms" = (65)

0

-

[d “'v—

0

b o L

Now, by substituting the matrices Mg_o, Mg ;. and Mg 5 into the matrix Mc of eq.

(6.4), we will get three matrices as follows:.

[0 1 0 0 0 0]

3 oqi2 29

? 3 3 0 0 0

M."Mc_o ] . (6.6)
_ o b Syt4 287 o
18 9 18
0 8-87 by+4 2 14 0
|27 9 ¢ 27 -

1
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. '0 887 445y 229 1-‘& ol
. 27 9 9 =

0 8177 4487y 2-v 2-24 0
54 9 6 27
Mg'Mc_, = ‘ (6.7)

0 2-29y 21 445y 8-179 0 :
1 6 9 54

o o 2 by 881 o
) % 27

>

and

-o 1=y 2-27 4+% 8-8q
27 9 0 27

o o0 251 A4y 8&y

18 9 18
Ms'M;_y = 0 ' (6.8)
.loo 0o & 2 2
) 3 6
‘%) 0o o o 0 1 o]

Now, by ;nbstituting the above three equations into the eq. (6.66) and the eq. (6.57)
appropriately, the corresponding control polygon for the Bezier curve and the net for the
Bezier surface cnn‘ be derived. Note that the matrix My'Mg 5 cu; easily be derived from
the matrix My'Mg o or vice verss. This is‘becsuu the (i,5) (for 0'5 i €3 and
0<j <8 elemfnt in the matrix My'M;_; is equivalent to the (3-i,6-5) element of the
matrix M,"Mc_; Also, the rightmost three columna of the matrix My'Mg , can be
derived from the Jeftmost three colt;mno of the matrix easily or vice versa. This is
because the (i,7) (for 0< i < 3 sad 3 < j < 5) element is equivalent to (3-i,6-5)
clement in the matrix itself. Also, notice that the above three matrices onb depend on
the value of 7. Therel!ore, the matrices need to be chn;aged only if the value of 7 is

¥
changed. By using these facts, we can speed up the computation time again.
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6.4. Subdivision

In the implemented package, a user has the ability to control the, number of squares
to be fc;rmed per patch in any of the two directions along the surface patch. Each square
is subdivided into four triangles for more accuracy of the surface shape. The algorithm is

taken from reference [2|. After the Gamma surface'is converted into an equivalent Bezier

surface, it [s subdivided along both the horizontal and the vertical direction as many

times as the user wishes, Of coﬁm. the smaller the number of st;bdivialons. the more -

-

efficient is the computation of the surface. Although the efliciency is achieved, the result-
ing surface is not as smooth and precise as when a larger number of subdivisions is used.
A ldrge number QledMaiona will slow down the computation, but provide a finer mesh,

-
and thus the resultiag sarface is smoother and more precise.

0.5, Algorithm

1

Given the above simplifications, the d;’orithm written in C to generate Gamma sur-

faces is produced below :

¢ \i

/* Draw nine surface patches for a given 6x6 matrix of control points ¢/
draw_patch (gamma, vt) * ‘
double gamma;

doublo’vt[O][o]M;
{

-

int-k, |;
double bv[d][lual;

for (k = 0; k < 3; k++)
for (l==0; 1 < 3; 14++4)

map_besler (k, |, vt, bv);
app_bezier_surface (bv, res_row, res_col);



.L/ l
- 7° -
) L 4
b,
} -
\
-}
}
. 4 .
, [* subdivide the pateh along u aud @ for ech and gam times respectively and -
output the patch ) . Ji '
app_bezier_surface (;v, ech, gam) o
~ double wi4][4][3];
. / " int ech, gam; N
double wia[4]{4][3], wra[4][4]|3), wiv[4][4)j3], wrv[4)[4](3); - - ‘
.. if (ech > 0)
{

u_subdivide_bez_sur (w, wlu, wra);
app_bezier_surface (wlu, ech-1, gam);
appfigbezier_surface (wru, ech-1, gam);
} .
else if (gam > 0)
{ ' .
. v_subdivide_bez_sur (w, wlv, wrv);
app_bezier_surface (wlv, ech, gam-1;
app_besier_surface (wrv, ech, gam-1);

else :
*polygon_app_bezier (w); e

/* get the middle point of the control patch and output the 4 triangles ¢/

polygon_spp_beszier (w) ' \ @
double w|4|(4](3}; '

“Jouble waj3], w00{3], w03{3], w30[3], w33[3]; !
int i;

for (ime 0;1 < 3; i4++)

) :mzlr\.:|z||z||:|:“



fri
e

17 -

:ulll == w(3][0] I|
i] = wi3|3]{il;

for (i== 0; | < 3;i++)

wali] == 0.25¢(w00[i]+w03[i] +w30[i] +w33l[i]);

line_output_triangle (w00, w30, wa);
line_output_triangle (w30, w33, wa);
Iine_output_tﬂmile (w33, w03, wa);
line_output_triangle’ (w03, w00, wa);

/¢ subdivide along u ¢/. "

u_subd'ividel_bgz_sur (w, wla, wru)
double w[4][4](3], wlu[4][4|(3], wru[4][4][3]; -

{

int i, k;
for (i me 0; i < 3; i++)

for (k = 0; k < 4; k++)

{ .

wlu[0][k|[i] == w]o][k][i];

wlu|1[k|[i] == 0.5¢(wo][K][i]+w]t][k][i]);

wlu[2][K|[i] == 0.25(w][O][k][i]+w{2][k][i]) +
0.5ew(1]k|[i[;

wlu[3][k||l| - o 1250(w[O|[K[i+w{a3 ki) +

°(WI1I[*II||+Wl2lIkllll).

wruf0 llr” l == wlu[3)[k][i]; -

wru[1][k][i] == o 250(w[1|[k][:]+w[3|[k|[||) +

ml k” I =0 3-(wl2||kllil+wlsukllnl)

. : wruf3][k]i] == w3][k][i];

/¢ wbdivide sloag v ¢/
v_subdivide_bes_sur (w, wly, wru)

A

e
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double w{4][4][3!, wiul4][4][3], wra[4][4]3]; }
Cntd k; \
for (i == 0; i < 3; i++) ) \.J

for (k = 0; k < 4; k++)

wiu[k][0 = w(k](o}fil;
wlu[k we 0, SO(WIkIHO]Ii +W[k||l]|i ]
b wlu|k - 0 25¢(wk [0| i|+wk][2] i]) +

. wlu|k|[3||i] - 0 125.(\\' k||0|[i|+w k][&][il) +
oas(wl w2

weulk|[0}[i —wln[k]la]li]
wra[k[1]fi] = ° 25‘("" Itlllllil+Wlkll3II'Il +
wrulk|(2](i] = 0 5'(' ll|[21|il+‘l'I|iII3HII)
wrulk}(3]]i] == 'l I(31;
}
} :
}
/* outpu:.. the triangle given the coordinates of the three corners o/ 'f
line_outpt\ﬂ_trisngle (w0, wl, w2)
double w0[3], w1|3], w2[3);
.move_aba_3 (w0[0], wO[1], );
line_abe_3 (wi[0f, wi[1], wi|2]};
line_abs_3 (w2[0], w2[1], w2|2 )
. line_abe_3 (wO[O , wO[1], wO[2]); )
}
&y

' /* map the Gamma surface into the equivalent Bezier surface ¢/
map_bezier (r, ¢, pv, w)
intr, ¢; N ' \

X3
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double pv[6](6][3], wl4|[4](3]; )

double pmt;6||4][3];

< switch (¢)
case 0: mat_pmt (pv, mg0, pmt);
break;
case 1: mat_pmt (pv, mgl, pmt);
break;
case 2: mat_pmt (pv, mg2, pmt);
break;

}
switch (r)

case 0: mat_w (mg0, pmt, w);
bresk;

case 1: mat_w (mgl, pmt, w);
break;

case 2: mat_w (mg2, pmt, w);
break; ’

/* Multiply the 6x6 matrix, which coninins the control points, to
.the transpose of one of the 4x6 matrices: mg0, mgl or mg2, which
. is passed in as the parameter mot, and the resulting matrix is
returned through the parameter pmt ®/ f
mat_pmt (pv, mot, pmt)
double pv(6][6][3], mot{4]le], pmt{el[4]3];
inti, ) k, I
for (i =0;1 < 3; I4++)
i'l;;'(i- ;i < 6;i++
{ Y ’J )
for (j == @ § < 4; j++) ‘

“pmt|i|j)[1] = 0.0;
for (k m= 0; k < 6; k++)

. --175::3
- T

o
L
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prt[if /][] +== (pv[i{k]1] » mot{jj{k]);

)

/* Multiply one of the matrices, mig0, mgl, or mg2, by the matrix, pmt,
returned from the subroutine mat_pmt to derive the equivalent
Besier net, which is returned through the parameter w */

mat_w (mo, pmt, w)

double’mol4][6), pm¢[6][4][3], w[4][4][3];

inti, j, k, I;
’ for (1= 0; | < 3; 1++)
for ii =0 i <4 i++)
for (j = 0; j < 4; j++)

wli]lil{1)] = 0.0;
for (k = 0; k < 6; k++)

willill] += (molil[k] * pme[k]li}[1]);

- *
=

/* initialize the 4x8 matrices mg0, mgl, and mg2 every time the value
of the parameter Gamma is changed. */ -

initialize_mg (sama)
double gama;

initialize_mg0_2 (gama); | R
initialize_mgl (pznn);

-
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}
/¢ initialize the matrices mg0 and mg2. After mg0 is derived, mg2
caf be derived easily from the matrix mg0 ¢/
fnitialize_mg0_2 (gama)
, double gams;
{
int i, j;
for (i == 0; | < 4; i++) ’
' for (j == 2+ < 6 j++)
mg0[i][j] = 0.0;
’ mgOd[O = mg0[2](0] == mg0[3][0] == 0.0; .
{ mg0(1](0] = -(gama / 6.0); -
mg0{0]{1| == 1.0; :

mg0|{1)[1] = (sama + 2.0) / 3.0;

mg0{2][1] = (8.0 - 5.0 * gama) / 18.0;

mg0|3]{1] == (8.0 - 8.0 * gama) / 27.0;

mg0|1|[2] == (2.0 - gama) / 6.0;

. mg0{2|[2] = mg0(3][2] == (5.0 * gama + 4.0) / 9.0;

mggl21 3| == (2.0 - 5.0 * gama) / 18.0;

mg0]{3][3] = (2.0 - 2.0 * gama) / 0.0;

mg0|3|[4) = (1.0 - gama) / 27.0;

for (i = 0; i < 4; i++)
for (j = 0; j < 6; j+F)
rog2(i|[i| = mgo[3-i|[6-j];

/* initialize the matrix mgl. After the Best three columns are
* derived, the last three columns are easily derived from the
fiest three o

inltlnlixe;mgl (sama)
double gama; '

{ \
inti, j;
mg1{0}[0] = mg1|1][0] = mgl[2}[0] == rg1[3]|0] = 0.0;
mgl 0| 1] == (8.0 - 8,0 * gama) / 27.0;
mgl|1||1] = (8.0 - 17.0 * gama) / 54.0;
™.
\
) .

LN
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= mgl(1][2] = (4.0 + 5.0 » gams) / 9.0;
m (2,0 - gama) / 6.0;
w (2.0 2.0 *# gama) / 9.0;

mg1(2][1] == (2.0 - 2.0 * gama) / 27 0;
mgl.lallll = (1.0 - gama) / 27.0;
mgl1|0[2 '

mgll [2

mgl[:%,ﬂ

-
Co .

for (i == 0;i < 4; i++)
: for (j=3;j <6; j++)
y - mgl[i][j] = mgl[3-i](5]; -

In the al;or&hm given above, the matrices mg0, mgl, and mg2 stand for the
matrices My'Mg_¢ M§'Mg ), snd"M,"A_lg_; respectively, as mentioned in the previous
section of this’chpur. . Ever‘_y- time the value of 7 is chng;d, the three matrices have to
be modified. The modification to the matrices mg0, and mg2 is dond by the subroutine
"initialize_mg0_2", while the modification of the matrix mgl is done-by the subroutine

"initize_mgl™. Notice how the simplification is done in both subroutines. ' .

The algorithm for Besier surface subdivision is ‘taken from the paper[2]. Interested

readers should refer to the paper for detailed discussion.

6.6. Description Of The Implemented Packaye

'fhe implemented package runs on the/SUN-Worksmion. The package uses a key-/
board and a mouse for input, The package will px:ompt the user for the next action to be
taken as required. The user can select the "HELP” modg when in doubt. The display,
on the display terminal, is divided into five regions (Figure 6.1): the fleedbnck area (upper
left), the f:\;rrent»v:lue ares (upper right), the,}'dinplsy area (middle left), the menu

switches area (iowu rlshtj, and the menu potentiometers area (lower left). The particular

menu awrtches displayed at any time are dependent on the current mode of the system.

B

S
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The first step in the process is to specify the network of contr;l points to be used,
which can t;e accomplished by one ’of two techniques: sn existing set of control points can
be read from' a file, or a new set can be generated interactively. If the latte? alternative is
selected, the number of control points in each direction in the network must be specified.
This is Jdone Ifi:prc;mpting. ’Qien. a,@efault network of m control points b;n control
points is automatically getlnén"ted 38 a regular grid in the zz plane with tl;e same spacing
in tl;e 3 and 2 dir'ectio?s. .Eac‘h control ﬁint is displayed as three mutually orthogonal
“,nf :segrnenu intersecting at ﬂie locatioﬁl of the point. Each control p;int is éonnecte; to
it:: neighborin; control poil;u by dashe'til‘ine segments called {he control graph or the net

L

To interactively modily the network of control points, the system is put in the

(Figure 6.2). ’

modily mo«/ie, in which any point can be selected by pressing the left button on the
mouse, Visual feedback is provided by blinking the selected control point. The value of
the coordinates of the selected control point is displayed in the current-value area. Its
position can now be modified using the three potentiometers marked MOD which control
the amount of displadement in each dimension (Figure 6.3). This process is then repeated
for all points that need to be moved to a satisfactory arrangement of control points (Fig-
ure 2.4). The value of the parameter <y can ab‘bo dgﬂned in the modify mode, If not

defined, a default value of zero is asslimed, whiq-;h will produce a bezier surface.

Having specified the network of conttol points, the next step ia%0 create a surface
for the network of control points. This is done by the sonutruction mode. The user ean

go back to the modily mode to interactively refine the surface.
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The refinement is acomplished by moving one control point at a time as the moves _

ment of a single control point.is guaranteed to affect only a local portion of the surface.

If, however, the user changes the valus of 4, then the éomplete surface is drawn. This is

global control, so that the genentéd surface is pulleg closer or further from the a;al of

control points, depending on the modified value of 7. ‘ -

As the amount of information being displayed & incrolcsed. it becomes m&re dilic;xlt
to view the imagé. For this reason, the package 'can dis'play only certain ‘delected nupecu

R K . ) i V!
of the image. This is accomplished through the use of'a set.of binary "display switches™.
- A § S
The set of display switches, as shown in the menu display in Figure 6.5, enables the user .

F

to select any combination of control points, control gl;nph. and surface to be. displayed.

For example, the control points, $he control graph and the surface are shown in Figure
7

6.6, but only the surface is shown in Figure 6.7. -

rl
<

The default resolution of each surface patch is two squares in each'direction. The ;=

¢

. . 4
user can specify this information in the resolution mode. The number of squares along
i

each direction is two to the pawer o'f whatever the user apcciﬂed.‘ Figure 6.7 shows the
\

picture with resolution l\and Figure 6.8 shows the picture with resolution 2, The higher’
. ! A

the resolution,' the smoother and more precise is the surface. Howevér, it is slower for th.e

complete surface to be drawn.

The picture can be rotated, scaled, and translated. This is done by the left six

L™
menu potentiometers. Figure 6.9 shows the rotated picture of Figure 6.7.

The appendix of this thesis contains some of the pictures generated by the imple-

S X :
mented package. : .
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‘An intenctive 3D surface constmetion system h dimmed in thh clupter.

Snmphﬂcmon to t.he algonthm to geneute the Gamms sumce il prOpooed in ordet to

pecd up the execunon tlme in an inumtm aystem.
R Y _—

The implemented puhge rups on a SUN-Workamion. The pu:kue providea the :

'
AT

trol point at a tune, while ;lobal control is achneved by chmging the v:luo of tho pmme- -

ter 7.. Other faclhtiee inclade rotatton. scaling, tnnslntion, and spoclfying ny combin-

tion of control poinu control graph, and sJirm to be dishlqyed on the dhplqy uen. At

T

any moment the pach;e mll prompt' for the next action. /lf'tn invalid. mponse is

ent.etcd, a warning or no{.nﬁc;hon will be displayed 1 the, f

ties are provided to make the package a user friendly ni:p.ooa.iblle. L

N |

ﬂexlbxhty of both loetl ud global control Local control i achieved by moving one con-

back area.. All these hcili- .

Please make o nerw seleciion [
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7. Epllogue . i ' .

1] ' “
7.1. Symmary .« _ : v )

. . : «
Parametric cnwu'md mrfaces form an essential part of computer-aided design

todqy Schemes for deﬂnin; these entities have evolved which employ a wide range of

mathematic:l wphuﬁwioa The “basic aim s to enable the demgner to create curv‘és and

. aurfaces whnch behaVo‘as the dealgne; wants them t.o behave, The Bezier method is a

powerful tool for thm purpose, md it is capable of. representmg most of the ;eometnc

enmies of practical Int.emt. lt. u not surpﬁsmg that _many rese\uchem put enormous
Ny & .
effort into enhanclng and dlsc'ovenng the propertles of the Bemr method

._{_.._—o \_{ »

- The Beuer method Ilke other surface genentxon methods is limited in that it may

\

not accommodnto the deslgner 8 concept of‘x/hat the shape of the aurface should Iook llke ;

&
A ahortcomlng ‘of .the Bezier method :is that the curve and the aurfue often bear little

reaemblance to- the ahapfof the polygo‘ and the net mpectwcly The purpose of th:s

"thesis was to- propose a anmple method; the-Gamma method, whnch can ‘belp the desngner '

~

with thls shortcotmng of the Bezier method. The Gamma method is a &enerahzahon of

/
the Be:ier and the Overhauser methods. lt. can ;enerate many cugves or surfacea between

. the Besier and the set of control pomts whlch possess beuer mlmlchng quality. Thls is

dong, by varying the vnlue of a paramet.er 7, from zero to one. Each distinet value of ¥

Y '

. will 'produce a dlatlnct curvc: oTtTtTrl‘ace When 1= 0, the co‘rreaponding curve or surface

v . AN
is just the B&:ier -curve -or mrrace iuelf As the value of 4 increases towards one, the' -

coneoponding curve or snmce is pulled towuda the control poum When 7 = l the

-

14

-curves ot the surhcec ;enemed interpolau the set or all control points, which is also the

-

Qverhtum_c\mre or -mrfu'e. Por any value ot v, the génerpud curve or surface is
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gumnteed to be smooth -if the Belior curve or nnfu:e is lmoothg Thia ia in gontrm to

3 / N

. the Beta2-spline, a genernlhntion to the B-ophne mthodN\h the ;enequ, cu RS
or surraces lose their smooth appennnce u they nu pulled clooet to the set of conirol . - T ‘.:‘,':;
a . N\ ¢ . :‘
pomu, even thoq,hthe.B-aphn‘e curve or lnrhee hu C’ continulty-. - Q: o P A
. . R ::,
'We beheve the Gamma techmque oﬂen gtent ﬂexxblhty to s genenl ;roup of users, . . . ,"_" o T \;
. By setting the vnlue of == l, the ‘ueer_can lﬁterpolnu the. m of: control poxnu whlch
. 'mny be agmple points from any physicnl phenomenon, snch 28 umpentum uken trom o R
.. dxﬂerent places, depth of dnﬂerent locauons of ocean lloor, emuu. Also it cnn be 3 use- . A "“
\ -l Sutxace Modelmg techmque, whlch is the purpooe of the propoonl Them' . i
: . » ot : ! ' ’-'-"",f
method presentsn dlﬂerent ldg‘{in Surfnce Modelln; T R o B

) Flnally, weé I:ope the Gammn method is a plenuut eechniquo to use whether by a . o ' :
aophmhcaibd designer orbya novice. L - e TN
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plemented package.
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The following are sample pictures generate
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