ECONOMIC OPERATION OF VARIABLE-HEAD HYDRO- THERMAL ELECTRIC POWER SYSTEMS USING NEWTON METHOD

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

KENNETH PATRICK WALSH
Economic Operation of Variable-Head Hydro-Thermal Electric Power Systems Using Newton Method

by

KENNETH P. WALSH, B.Eng.

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering

Department of Engineering

Memorial University of Newfoundland

November 1982.

St. John's Newfoundland
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>(iv)</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>(v)</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>(vi)</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>(vii)</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>(ix)</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>(x)</td>
</tr>
<tr>
<td>1.1 BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>1.2 SCOPE OF THE THESIS</td>
<td>2</td>
</tr>
<tr>
<td>2. A HISTORICAL REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 A REVIEW OF THE DEVELOPMENTS IN THE PROBLEM OF OPTIMAL VARIABLE-HEAD HYDRO- THERMAL DISPATCH</td>
<td>4</td>
</tr>
<tr>
<td>3. FORMULATION OF THE PROBLEM</td>
<td></td>
</tr>
<tr>
<td>3.1 COORDINATION EQUATIONS FOR VARIABLE-HEAD HYDRO SYSTEMS</td>
<td>7</td>
</tr>
<tr>
<td>3.2 DISCRETE COORDINATION EQUATIONS</td>
<td>13</td>
</tr>
<tr>
<td>3.3 APPLICATION OF THE NEWTON-RAPHSON METHOD IN THE PROBLEM</td>
<td>15</td>
</tr>
<tr>
<td>3.4 GENERATION OF INITIAL ESTIMATES</td>
<td>20</td>
</tr>
<tr>
<td>4. PERFORMANCE EVALUATION</td>
<td></td>
</tr>
<tr>
<td>4.1 INTRODUCTION</td>
<td>24</td>
</tr>
<tr>
<td>4.2 TEST SYSTEM ONE AND CHARACTERIZATION TESTS</td>
<td>24</td>
</tr>
<tr>
<td>4.2.1 Test System One Description</td>
<td>24</td>
</tr>
<tr>
<td>4.2.2 Computational Results</td>
<td>26</td>
</tr>
</tbody>
</table>
4.2.3 Characterization Tests Description 31
4.2.4 Characterization Test One ... 31
4.2.5 Characterization Test Two ... 36
4.2.6 Characterization Test Three ... 42
4.3 TEST SYSTEM TWO .. 42
 4.3.1 Test System Two Description 42
 4.3.2 Computational Results .. 46
4.4 TEST SYSTEM THREE .. 56a
 4.4.1 Test System Three Description 56a
 4.4.2 Computational Results .. 56a

5. COORDINATION EQUATIONS FOR ECONOMIC OPERATION OF POWER SYSTEMS WITH HYDRO PLANTS ON THE SAME STREAM
 5.1 INTRODUCTION .. 68
 5.2 FORMULATION ... 68
 5.3 DIRECT OPTIMALITY CONDITIONS 71
 5.4 COORDINATION EQUATIONS .. 72
 5.5 WATER-WORTH ... 74

6. CONCLUSIONS AND FUTURE WORK
 6.1 CONCLUSIONS .. 76
 6.2 FUTURE WORK .. 76

7. BIBLIOGRAPHY AND REFERENCES ... 78

APPENDIX A. FIRST-ORDER PARTIAL DERIVATIVES 83
APPENDIX B. THE COMPUTER PROGRAM 89
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2-1</td>
<td>OPTIMUM DISPATCH SCHEDULE: TABULATED DATA</td>
<td>29</td>
</tr>
<tr>
<td>4.2-2</td>
<td>INCREMENTAL COST OF POWER AND WATER-WORTH COEFFICIENTS: TABULATED DATA</td>
<td>32</td>
</tr>
<tr>
<td>4.2-3</td>
<td>HEAD VARIATIONS: TABULATED DATA</td>
<td>34</td>
</tr>
<tr>
<td>4.2-4</td>
<td>CHARACTERIZATION TEST ONE: TABULATED DATA</td>
<td>38</td>
</tr>
<tr>
<td>4.2-5</td>
<td>CHARACTERIZATION TEST TWO: TABULATED DATA</td>
<td>41</td>
</tr>
<tr>
<td>4.2-6</td>
<td>CHARACTERIZATION TEST THREE: TABULATED DATA</td>
<td>44</td>
</tr>
<tr>
<td>4.3-1</td>
<td>OPTIMUM DISPATCH SCHEDULE: TABULATED RESULTS</td>
<td>49</td>
</tr>
<tr>
<td>4.3-2</td>
<td>OPTIMUM DISPATCH SCHEDULE: TABULATED RESULTS</td>
<td>51</td>
</tr>
<tr>
<td>4.3-3</td>
<td>VARIATIONS IN $\lambda(t)$ AND $\nu(t)$: TABULATED RESULTS</td>
<td>54</td>
</tr>
<tr>
<td>4.3-4</td>
<td>NET HEAD VARIATIONS: TABULATED RESULTS</td>
<td>56</td>
</tr>
<tr>
<td>4.4-1</td>
<td>OPTIMAL DISPATCH SCHEDULE: TABULATED RESULTS</td>
<td>59</td>
</tr>
<tr>
<td>4.4-2</td>
<td>VARIATIONS IN $\lambda(t)$ AND $\nu(t)$: TABULATED RESULTS</td>
<td>63</td>
</tr>
<tr>
<td>4.4-3</td>
<td>VARIATION IN $h(t)$: TABULATED RESULTS</td>
<td>67</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

FIGURE 3.1 The Jacobian Matrix and Partition Details 17
FIGURE 3.2 Structure and Partitioning of \(f(x) \) and \(A'x' \) 18
FIGURE 4.2-1. Maximum Relative Error Versus Number of Iterations. 27
FIGURE 4.2-2. Optimal Dispatch Schedule 28
FIGURE 4.2-3. Variation in \(\lambda(t) \) 30
FIGURE 4.2-4. Variation in \(v(t) \) ... 30
FIGURE 4.2-5. Variation in \(h(t) \) ... 33
FIGURE 4.2-6. Variation in Head with Increased \(B(t) \) 35
FIGURE 4.2-7. Variation in \(v(t) \) with Increased \(B(t) \) 35
FIGURE 4.2-8. Variation in Daily Fuel Costs with Increased \(B(t) \) 37
FIGURE 4.2-9. Variation in Head with Increased \(P_d(t) \) 39
FIGURE 4.2-10. Variation in \(\lambda(t) \) with Increased \(P_d(t) \) 39
FIGURE 4.2-11. Variation in Fuel Cost with Increased \(P_d(t) \) 40
FIGURE 4.2-12. Variation in Head with Increased Inflow 43
FIGURE 4.2-13. Variation in Daily Fuel Costs with Increased Inflow 43
FIGURE 4.3-1. Maximum Relative Error Versus Number of Iterations ... 47

FIGURE 4.3-2. Optimum Dispatch Schedule ... 48

FIGURE 4.3-3. Variation in $P_h(t)$... 50

FIGURE 4.3-4. Variation in $P_g(t)$... 50

FIGURE 4.3-5. Variation in $\lambda(t)$... 53

FIGURE 4.3-6. Variation in $\lambda(t)$... 53

FIGURE 4.3-7. $h(t)$ Versus t ... 55

FIGURE 4.4-1. Variation in Maximum Relative Error With Iterations .. 58

FIGURE 4.4-2. Optimal Dispatch Schedule ... 59

FIGURE 4.4-3. Variation in $P_h(t)$... 62

FIGURE 4.4-4. Variation in $P_g(t)$... 62

FIGURE 4.4-5. Variation in $\lambda(t)$... 63

FIGURE 4.4-6. Variation in $\lambda(t)$... 63

FIGURE 4.4-7. Variation in $h(t)$... 67

FIGURE B-1. Algorithm Flowchart ... 90
LIST OF SYMBOLS

\(F \)
Fuel cost function.

\(J \)
Objective functional which is to be minimized.

\(P_{s_i}(t) \)
Thermal power output for the \(i \)th plant at time \(t \).

\(P_{h_i}(t) \)
Hydro power output for the \(i \)th plant at time \(t \).

\(a_{s_i}, b_{s_i}, \gamma_{s_i} \)
Fuel cost model coefficients for the \(i \)th plant.

\(a_{h_i}, b_{h_i}, \gamma_{h_i} \)
Hydro plant model coefficients for the \(i \)th plant.

\(a_{r_i}, a_{i}, a_{i} \)
Reservoir model coefficients for the \(i \)th plant.

\(h_i(t) \)
The net head for the \(i \)th plant at time \(t \).

\(q_i(t) \)
The biquadratic function defining the discharge of the \(i \)th plant at time \(t \).

\(i_i(t) \)
The \(i \)th reservoir's natural inflow at time \(t \).

\(\phi_i(P_h) \)
Hydro plant model equation for the \(i \)th plant at time \(t \).

\(\psi_i(h) \)
The reservoir model equation for the \(i \)th plant at time \(t \).

\(P_i(t) \)
The transmission losses for time \(t \).

\(P_D(t) \)
The system power demand at time \(t \).

\(b_i \)
The amount of available water for the \(i \)th plant.
B_{ij}, K_o

System's loss coefficients.

v_i

The water-worth coefficient of the ith plant.

$\lambda(t)$

The incremental cost of power for time t.

K

System constant.

$Q_i(t)$

Amount of water discharged from the ith plant at time t.

δ_i

The surface area of the ith reservoir,
ACKNOWLEDGEMENTS

I would like at this time to express my thanks and appreciation to those people who helped make this thesis possible. Firstly, I would like to thank my supervisor, Dr. M.E. El-Hawary, for his guidance, help, and encouragement, and also Ms. Wanda Roy whose typing was so fast and accurate. Next, I want to acknowledge the help I obtained from the staff of both the Newfoundland and Memorial University computing services and especially Mr. Bernard Keogh who had so much time and patience. I also wish to thank Memorial University for their financial help and my fellow graduate students for their moral support. Last and foremost, I want to thank my wife whose understanding and support made it all possible.
ABSTRACT

In this thesis the optimum generation schedules for systems with variable-head hydro plants are developed. The scheduling problem is solved by use of the Newton-Raphson method where the coordination equations developed by Richard-Kron are employed. Several power systems containing different numbers of plants are considered.

The problem's formulation is profiled and details of the development of the coordination equations with variable-head hydro systems and the discretization of these equations for computer solution are outlined.

Also highlighted are the difficulties encountered with excess computer processing time due to large arrays and how these problems are resolved. Methods for generating the initial estimates of the variables are presented.

Results from three test systems are given and, in addition, evaluation tests for the algorithm's response to changes in the system's variables are detailed.

Coordination equations for systems with water transport delay problems resulting from being hydraulically coupled are presented.

In addition, complete documentation of the computer program is included.
CHAPTER I
INTRODUCTION

1.1 BACKGROUND

In any power system one of the major goals is to attain optimum economic dispatch. This involves scheduling the generation at various generating stations to meet the system's power demand while keeping the power production costs to a minimum. Usually, this scheduling covers prescribed periods of time. In addition to operating economics the optimum operation of a power system is governed by other restrictions. The ability to fractionally reduce power production costs still has priority with electric utility companies. Also, knowledge of the optimum dispatch schedule allows for better planning and design of any future equipment additions to power systems. It is for these reasons that the problem of economic dispatch has been so extensively researched (refer Ch. II).

In problems concerning economic dispatch it is customary to consider the cost of operation only. Such consideration does not take into account the expenses of labour, capital, start-up and shut-down related to the duration of the down time of a specific unit. Hence, an accurate knowledge of the manner in which the total operating cost of each generating unit varies with the instantaneous output is essential.

The hydro-thermal optimization problem involves the planning of the usage of a limited resource over a prescribed period of time. The resource being the amount of water available for generation. In some systems the use of this water is governed by social factors including
irrigational and navigational commitments. Other systems, with hydro plants located on the same stream have special problems concerning water transport delay which affects the net head and discharge levels. Thus, the conditions which exist over the entire optimization interval must be taken into account when determining the optimum dispatch schedule. For instance, a system with a large reservoir may require an optimization period of a year. Still another system with a small to moderate storage capacity may find an optimization interval of a day or a week more useful.

1.2 SCOPE OF THE THESIS

In this thesis the optimum generation schedules for hydro-thermal systems with variable-head hydro plants are developed. The scheduling problem is solved by use of the Newton-Raphson method where the coordination equations (21, 27) are employed. Several power systems containing different numbers of plants are considered.

The historical background on the problem is presented in Chapter II. In this presentation all previous work concerning optimum hydro-thermal scheduling for systems with variable-head hydro plants is detailed.

In Chapter III the problem's formulation is profiled. Sub-sections (3.1) and (3.2) detail the development of the coordination equations for variable-head hydro systems and the discretization of these equations for computer solution. In sub-section (3.3) it is shown how the Newton-Raphson method is applied to the problem. This section also highlights
the difficulties encountered with excess computer processing time due to large arrays and how these problems are resolved. Sub-section (3.4) outlines the methods for generating the initial values of the variables.

Chapter IV presents the results from three test systems. In addition to these tests, an evaluation of the program's performance is given. This evaluation tests for the algorithm's response to changes in the system's variables.

The coordination equations for systems having hydro plants with water transport delay problems resulting from being hydraulically coupled are given in Chapter V. This chapter looks at several different arrangements and the resulting coordination equations.

In Chapter VI, the major conclusions of the work are presented. Also outlined in this chapter are the areas in which further work may be conducted.

A full listing and description of the computer program is presented in Appendix B.
CHAPTER II

A HISTORICAL REVIEW

2.1 A REVIEW OF THE DEVELOPMENTS IN THE PROBLEM OF OPTIMAL VARIABLE-HEAD HYDRO-THERMAL DISPATCH

Much of the work done on optimal hydro-thermal dispatch in the past revolved around the assumption that for short range studies the effect of head variations could be neglected. However, Ricard [27] in 1940 relaxed this constant head principle. In his paper, he presented a set of coordination equations for systems with net head variations and negligible transmission losses.

Fourteen years later in 1954, Cypser [12] reported on a method he had developed which utilized variational calculus. As with Ricard, he neglected transmission losses and in addition concentrated his attention on the long-range scheduling problem. Cypser tested his method on a system containing one thermal and one hydro plant with varied success.

Then in 1958, Glimm and Kirchmayer [21] in a comprehensive paper, detailed the expansion of the basic coordination equations to include transmission losses. They tested their method on various model systems using the technique of numerical integration. One of the important results of this paper was the demonstration of equivalence of Ricard's, Kron's, and Cypser's equations. The authors show using variational calculus techniques.

After this presentation by Glimm and Kirchmayer, the reports on optimizing the dispatching schedule for variable-head hydro-thermal
systems became more frequent and researchers began to try new approaches. Hence, only two years later in 1960, Ackimmander [1] utilizing variational calculus and employing all the necessary and sufficient conditions for optimality, arrived at the required scheduling equations.

The following year, Dandeno [15], reported on the computational experience gained by applying the coordination equations to an actual operating system. The computer algorithm he used proceeded to the solution by linearizing the non-linear equations, solving them by the Gauss-Seidel method for the power values, and then adjusting the constraint multipliers accordingly. However, large amounts of computer time and heavy core requirements were the major drawbacks of the method.

In 1962, Drake et al. [16], using basically the same computer algorithm as Dandeno, applied variational methods to functional systems. This method, although more successful than Dandeno's, did not resolve all of the problems surrounding the optimizing procedure.

The work continued and in 1966, Dahlin [13] presented his maximum principle approach to the problem. The basis of this approach was developed by Pontryagin. Later in 1966, Dahlin along with Shen [14], detailed the application of his method to several types of systems. The numerical analysis was performed on a test system consisting of one thermal and one hydro plant and was mainly for the purpose of exploring the convergence behavior.

The next notable work came in 1971 when Bonaert and El-Abiad [8] reported on a method known as decomposition in which the hydro-thermal system was subdivided into hydro and thermal subsystems. In addition to decomposition, the technique also used perturbations to arrive at
the required result.

In 1972 another method was proposed by El-Hawary and Christensen [18]. This procedure utilized functional analytic minimum norm formulation. It was pointed out that this method eliminated the multipliers associated with the linear constraints in the control vector.

The decomposition method surfaced again in 1980 when Soares, Lyra, and Tavares [29] reported on a "coordinated" decomposition technique. In this procedure the solution was obtained through a tri-level hierarchical calculation structure.

To conclude the review, the work presented herein utilizes the coordination equations and obtains the solution using the Newton-Raphson method.
CHAPTER III
FORMULATION OF THE PROBLEM

3.1 COORDINATION EQUATIONS FOR VARIABLE-HEAD HYDRO SYSTEMS

The coordination equations for variable-head hydro systems are an extension of those used for fixed-head systems. For both types of systems the classical approach of variational calculus is utilized giving the optimality conditions in terms of Richard's equations. To arrive at the optimal strategy for variable-head hydro systems, the equations for fixed-head systems are developed and then extended to the variable-head case.

To begin, it is assumed that the reservoir is large enough so that any variation in net head may be neglected. It is also assumed that the fuel cost for the thermal units is

\[F = \sum_{i=1}^{N_s} F_i (P_i) \] \hspace{1cm} (3.1)

where \(N_s \) is the number of thermal plants and \(F_i (P_i) \) is defined as

\[F_i (P_i) = a_i s_i + b_i s_i P_i (t) + c_i s_i P_i^2 (t) \] \hspace{1cm} (i=1, \ldots, N_s) \tag{3.2}

It is required to minimize the objective functional given by

\[J = \int_0^{T_f} P \, dt \] \hspace{1cm} (3.3)

while satisfying the active power balance equation given by...
\[N_s \sum_{i=1}^{n} P_{b_i}^p(t) + \sum_{i=1}^{n} P_{h_i}^p(t) - P_{b_i}^r(t) = P_D^t(t). \] (3.4)

In the above equation \(P_{h_i}^p(t) \) is the output of the \(i \)th hydro unit, \(N_h \) is the number of hydro plants in the system, \(P_L^t(t) \) is the transmission loss, and \(P_D^t(t) \) is the system's power demand.

The volume of water available, \(b_i \), for generation is also taken into consideration through the requirement

\[\int_0^T q_i(t) \, dt = b_i, \quad (i=1, \ldots, N_h) \] (3.5)

Here \(q_i(t) \) is the rate of water discharge at the \(i \)th plant. This is a bi-quadratic function of effective head and active power generation according to the model suggested by Glimm-Kirchmayer [21], given by

\[q_i(t) = K \phi_i(h) \phi_i^t(P), \quad (i=1, \ldots, N_h) \] (3.6)

where the dependence on net head is expressed as

\[\phi_i^t(h_i) = a_{0,i} + a_{1,i} h_i^1(t) + a_{2,i} h_i^2(t) \quad (i=1, \ldots, N_h) \] (3.7)

The dependence on active power generation is indicated by

\[\phi_i^t(P_i) = \phi_{h_i}^t + \beta_{h_i}^t h_i^1(t) + \gamma_{h_i}^t h_i^2(t) \quad (i=1, \ldots, N_h) \] (3.8)

In the above:

\[K = \text{constant of proportionality} \]

The parameters \(a_{0,i}, a_{1,i}, a_{2,i}, b_{h_i}, \beta_{h_i}, \gamma_{h_i} \) and \(b_i \) are assumed available.
The cost functional J is now augmented to include the volume of water constraint. This is accomplished by using constant multipliers, v_i, as follows:

$$J = \int_0^{T_f} \left[F + \sum_{i=1}^{N_h} v_i q_i(t) \right] \, dt \quad (3.9)$$

The power balance equation is also included through the use of the multiplier function $\lambda(t)$. In this way, the constrained minimization problem of (3.1) is changed to an unconstrained problem of minimizing the following augmented cost functional:

$$J = \int_0^{T_f} \left[F + \sum_{i=1}^{N_h} v_i q_i(t) + \lambda(t) \left(P_D(t) - \sum_{i=1}^{N_h} P_{h_i}(t) + P_L(t) \right) \right] \, dt \quad (3.10)$$

Through variational calculus techniques, the optimality conditions for fixed-head systems are obtained as:

$$\sum_{i=1}^{N_s} + 2v_i P_{s_i}(t) + \lambda(t) \left[C_i + 2 \sum_{j=1}^{N_g} B_{ij} P_j(t) \right] = 0, \quad (i=1,N_s) \quad (3.11)$$

$$v_i \left[\sum_{j=1}^{N_g} B_{ij} P_j(t) + \lambda(t) \left[C_i + 2 \sum_{j=1}^{N_g} B_{ij} P_j(t) \right] = 0, \quad (i=1,N_h) \quad (3.12)$$

where:

$$C_i = B_{i,0} - 1, \quad (i=1,N_s) \quad (3.13)$$

Note that it is assumed here that K_d is set to unity for fixed head hydro plants.
When solved, these equations yield active powers, the incremental cost of power, \(\lambda(t) \), and the base water worth, \(\nu_1 \). However, complete solution requires that the following constraint equations be adhered to

\[
\int_0^{T_f} q_i(t) \, dt = b_i, \quad (i=1,N_i) \\
K_i + \sum_{j=1}^{N_j} P_j(t) + \sum_{i=1}^{N_i} C_i P_i(t) \\
\sum_{i=1}^{N_i} \sum_{j=1}^{N_j} P_{ij}(t) B_{ij} P_j(t) = 0 \\
\]

(3.14) (3.15)

The assumption of negligible head variation is now relaxed and is replaced by the assumption that operation of the hydro units results in a change in the net head of the reservoirs. Thus, for hydro plants with variable-head characteristics, the generation of active power is regulated by the rate of discharge, \(q_i(t) \), and also by the volume of water discharged, \(Q_i(t) \), given by

\[
Q_i(t) = \int_0^t q_i(t) \, dt, \quad (i=1,N_i) \\
\]

(3.16)

The cost functional is still constrained by the active power balance equation and the volume of water available, however, the decision variables are now extended to include \(P_{ij}(t) \) and \(Q_i(t) \).

Again, using variational calculus methods, it is found that the coordination equations for variable-head systems are equivalent to those of the fixed-head case with the exception that the water conversion coefficient, \(\nu_1 \), is now variable and is defined by
\[v_i(t) = v_i^0 \exp \left[\int_0^t \frac{1}{s_i} \left(q_i(t) - 3 \frac{\partial q_i(t)}{\partial h_i(t)} \right) dt \right], \quad (i=1, N_h) \]
(3.17)

The integrand in the above is denoted by \(M(t) \) which is written as

\[M(t) = \frac{K}{s_i} \phi_1(F_h) \left[a_{1i} + 2a_{2i} h_i(t) \right], \quad (i=1, N_h) \]
(3.18)

By assuming that \(M(t) \) is constant over the interval \([0, T_e] \), equation 3.17 may be written as

\[v_i(t) = v_i^0 \exp[M_i(t)]. \]
(3.19)

The coordination equations for the variable-head hydro system are given as

\[\beta_{s_i} + 2\gamma \left[q_i(t) - 3 \frac{\partial q_i(t)}{\partial h_i(t)} \right] + \lambda(t) \left[C_{1i} + 2 \sum_{j=1}^{N_g} B_{ij} P_j(t) \right] = 0, \quad (i=1, N_h) \]
(3.20)

\[\left\{ v_i^0 \exp[M_i(t)] \left[2 - \frac{\dot{h}_i}{\dot{h}_i} \right] \left\{ \sum_{j=1}^{N_g} P_j(t) \right\} \left\{ \frac{q_i(t)}{P_{h_i}(t)} \right\} \right\} \]

\[+ \lambda(t) \left[C_{1i} + 2 \sum_{j=1}^{N_g} B_{ij} P_j(t) \right] = 0, \quad (i=1, N_h) \]
(3.21)

As before, the complete solution requires the observance of the following constraint equations

\[\int_0^{T_e} \left[K \phi_1(F_h) \phi_1(F_h) \right] dt = b_i, \quad (i=1, N_h) \]
(3.22)

\[K_{L_i} + P_{D_i}(t) + \sum_{j=1}^{N_g} C_{ij} P_j(t) + \sum_{j=1}^{N_g} E_{ij} P_j(t) B_{ij} P_j(t) = 0, \]
(3.23)
For variable-head hydro systems an additional constraint is imposed which accounts for the effect of head variation and has the form

$$h_0(t) = \frac{1}{2} g \frac{1}{2} \left[C_1 + 2 \int t \sum_{i=1}^{N} B_i \left[\mathbf{P}(t) \right] \right] + \lambda(t) - \frac{1}{2} \int [\lambda(t)]^2 \, dt$$

where $\lambda(t)$ is the natural inflow assuming a vertical storage reservoir under the foregoing assumptions the optimality conditions for a variable-head hydro system are given by

$$h_0(t) = h_0 \left[\frac{1}{2} g \frac{1}{2} \left[C_1 + 2 \int t \sum_{i=1}^{N} B_i \left[\mathbf{P}(t) \right] \right] - \frac{1}{2} \int [\lambda(t)]^2 \, dt \right]$$

As before

$$h_0(t) = h_0 \left[\frac{1}{2} g \frac{1}{2} \left[C_1 + 2 \sum_{i=1}^{N} B_i \left[\mathbf{P}(t) \right] \right] \right]$$

(3.20)

$$h_0(t) = h_0 \left[\frac{1}{2} g \frac{1}{2} \left[C_1 + 2 \sum_{i=1}^{N} B_i \left[\mathbf{P}(t) \right] \right] - \frac{1}{2} \int [\lambda(t)]^2 \, dt \right]$$

(3.24)
The dynamic equations 3.25 to 3.29 are non-linear and a discrete form is required for digital solution. This problem is treated in the next section.

3.2 DISCRETE COORDINATION EQUATIONS

To discretize equations (3.25) to (3.29) it is assumed that the optimization interval \([0, T]\) is divided into \(N_T\) discrete intervals. The discrete time index is denoted by \(t_k\). Equation (3.25) is denoted by \(f^i_1(t)\) and is straight-forward as far as the discretization process is concerned. Similarly equations (3.26) and (3.28) are denoted by \(f^i_1(t)\) and \(f^D_1(t)\), respectively. The volume of water constraint given by equation (3.27) is replaced by a summation assuming that the discrete intervals to be of equal length, \(\Delta\). The reservoir equation (3.29) is replaced by the equivalent form

\[
h^i_1(t + \Delta) = h^i_1(t) + \frac{1}{s^i_1} \int_{t}^{t+\Delta} [i^i_1(t) - q^i_1(t)] \, dt \quad (i=1,N_h)
\]

Thus

\[
f^i_1(t) = h^i_1(t) - h^i_1(t + \Delta) + \frac{1}{s^i_1} \int_{t}^{t+\Delta} [i^i_1(t) - q^i_1(t)] \, dt = 0
\]

\[(i=1,N_h) \quad (3.32)\]

or

\[
f^i_1(t_k) = h^i_1(t_k) - h^i_1(t_k + \Delta) + \frac{\Delta}{s^i_1} [i^i_1(t_k) - q^i_1(t_k)] = 0
\]

\[(i=1,N_h) \quad (3.33)\]

The discretization process results in a set of nonlinear algebraic equations which must be solved and these equations are:
\[f_{S_i}(t_k) = \beta_{S_i} + 2\gamma_{S_i} p_{S_i}(t_k) + \lambda(t_k) \left[C_i + 2 \sum_{j=1}^{N_g} B_{i,j} p_j(t_k) \right] = 0, \quad (i=1,N_g) \] (3.34)

\[f_{h_i}(t_k) = \left\{ \begin{array}{l}
\exp[Mt_i] \left[2 - \frac{2\alpha_{h_i} + \beta_{h_i} P_i(t_k)}{\phi_i(P_i)} \right] \{ q_i(t_k) + \lambda(t_k) \left[C_i + 2 \sum_{j=1}^{N_g} B_{i,j} p_j(t_k) \right] \} = 0, \quad (i=1,N_h) \\
\end{array} \right. \] (3.35)

\[f_D(t_k) = k_{D_i} + P_D(t_k) + \sum_{i=1}^{N_g} C_i p_i(t_k) + \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_i(t_k) B_{i,j} p_j(t_k) \] (3.36)

\[f_{l_i}(t_k) = h_i(t_k) - h_i(t_k - 1) + \frac{A}{S_i} \left[a_i(t_k) - q_i(t_k) \right] = 0, \quad (i=1,N_h) \] (3.37)

\[f_{b_i}(t_k) = \sum_{k=0}^{N_T-1} \left[k_i \phi_i(h) - \phi_i(P_i) \right] \Delta - b_i = 0, \quad (i=1,N_h) \] (3.38)

Each of the above equations applies at the following discrete instants:

- \[f_{S_i}(t_k) \quad t_k = 0, 1, \ldots, N_T-1 \]
- \[f_{h_i}(t_k) \quad t_k = 0, 1, \ldots, N_T-1 \]
- \[f_D(t_k) \quad t_k = 0, 1, \ldots, N_T-1 \]
- \[f_{l_i}(t_k) \quad t_k = 0, 1, \ldots, N_T-2 \]
- \[f_{b_i}(t_k) \quad t_k = 0, 1, \ldots, N_T-1 \]
The unknowns are v^0_i and the following

$$p_{s_1}^k(t_k): t_k = 0, 1, \ldots, N_T-1$$

$$p_{h_1}^k(t_k): t_k = 0, 1, \ldots, N_T-1$$

$$\lambda(t_k): t_k = 0, 1, \ldots, N_T-1$$

$$h_1^k(t_k): t_k = 1, \ldots, N_T-1$$

The interval over which $h_1^k(t_k)$ is found, i.e. $(1,N_T-1)$ has its basis in the assumption that the reservoir levels $h_1(0)$ are known. This is described more fully in section 3.4.

3.3 APPLICATION OF THE NEWTON-RAPHSON METHOD TO THE PROBLEM

The Newton-Raphson method requires solving on each iteration the following set of linear equations

$$f(x_m) + J\Delta x_m = 0$$ \hspace{1cm} (3.39)

In the above, f is the vector nonlinear function to be solved and J is the Jacobian matrix consisting of the first-order partial derivatives of the functions with respect to the unknown variables (Appendix A) which comprise the vector x. The index m denotes the iteration number.

The size of the Jacobian matrix depends on the number of units in the system and the number of time intervals in the period. For each hydro plant there are two variables per time instant, for each thermal plant only one variable per time instant. In addition, one variable v^0_i per hydro plant is encountered. Also included are the values of
the incremental cost of power, \(\lambda(t_k) \), for each time interval.

Solving for \(\Delta x^m \) requires that the inverse of the Jacobian matrix, \(J^{-1} \), be obtained. This is achieved by (1) ... or (2); by determining the inverse of the matrix as a whole or two; by utilizing the method of matrix partitioning.

The first method provides a direct path to \(J^{-1} \). The Jacobian matrix is set up and its inverse is obtained directly through a commercially available inversion routine. This method performs well when considering small systems. However, with larger systems, 4 plants or more, the amount of time required to obtain \(J^{-1} \) is such that it is no longer feasible.

The main objective of the second method is to restrict the application of the inversion routine to a matrix of the smallest possible dimensions.

To accomplish this a method of matrix partitioning is employed.

The Jacobian matrix, \(J \); the nonlinear function vector, \(f(x^m) \), and the unknown variables, \(\Delta x^m \), are divided up or partitioned so that a more efficient procedure may be used.

To begin, the Jacobian matrix is structured as shown in Figure 3.1. This arrangement obtains the maximum benefit from the sparseness of the matrix. Figure 3.1 also details the partitioning of the matrix and identifies the submatrices.

Similarly, the vectors \(f(x^m) \) and \(\Delta x^m \) have partitions, which are structured according to Figure 3.2.

Equation (3.38) is now rewritten in terms of these partitioned matrices.
FIGURE 3.1
THE JACOBIAN MATRIX
AND
PARTITION DETAILS

NOTE: 1) x = PARTIAL DERIVATIVE OF THE FUNCTION (row element) WITH
RESPECT TO THE VARIABLE (column element) SEE APPENDIX 'A'.
2) ALL OTHER ELEMENTS ARE ZERO.
3) i = 1 \rightarrow n_i
 j = 1 \rightarrow n_j
FIGURE 3.2
STRUCTURE AND PARTITIONING OF \[\mathcal{f}(x^m)\] AND \[\Delta x^m\]

\[
\begin{align*}
\mathcal{f}(x^m) = & Y_1 \quad \text{Y}_1 = \begin{bmatrix}
\mathcal{f}_1(1) \\
\mathcal{f}_d(1) \\
\mathcal{f}_s(2) \\
\mathcal{f}_d(2) \\
\mathcal{f}_l(n-1) \\
\mathcal{f}_d(n-1) \\
\mathcal{f}_l(1) \\
\mathcal{f}_l(2) \\
\mathcal{f}_l(n-2)
\end{bmatrix}
\end{align*}
\]

\[
\Delta x^m = \begin{bmatrix}
\Delta X_1 \\
\Delta X_2
\end{bmatrix}
\]

\[
\begin{align*}
\Delta \mathcal{f}_s(1) \\
\Delta \lambda(1) \\
\Delta \mathcal{f}(n-1) \\
\Delta \lambda(n-1) \\
\Delta \mathcal{f}_l(2) \\
\Delta \lambda(2) \\
\Delta \mathcal{f}(n-2)
\end{align*}
\]

\[
\begin{align*}
\Delta \mathcal{f}_l(1) \\
\Delta \lambda(1) \\
\Delta \mathcal{f}(n-1) \\
\Delta \lambda(n-1) \\
\Delta \mathcal{f}_l(2) \\
\Delta \lambda(2) \\
\Delta \mathcal{f}(n-2)
\end{align*}
\]

\[
\begin{align*}
\Delta \mathcal{f}_l(1) \\
\Delta \lambda(1) \\
\Delta \mathcal{f}(n-1) \\
\Delta \lambda(n-1) \\
\Delta \mathcal{f}_l(2) \\
\Delta \lambda(2) \\
\Delta \mathcal{f}(n-2)
\end{align*}
\]

\[
\begin{align*}
\Delta \mathcal{f}_l(1) \\
\Delta \lambda(1) \\
\Delta \mathcal{f}(n-1) \\
\Delta \lambda(n-1) \\
\Delta \mathcal{f}_l(2) \\
\Delta \lambda(2) \\
\Delta \mathcal{f}(n-2)
\end{align*}
\]

\[
\begin{align*}
\Delta \mathcal{f}_l(1) \\
\Delta \lambda(1) \\
\Delta \mathcal{f}(n-1) \\
\Delta \lambda(n-1) \\
\Delta \mathcal{f}_l(2) \\
\Delta \lambda(2) \\
\Delta \mathcal{f}(n-2)
\end{align*}
\]

\[
\begin{align*}
\Delta \mathcal{f}_l(1) \\
\Delta \lambda(1) \\
\Delta \mathcal{f}(n-1) \\
\Delta \lambda(n-1) \\
\Delta \mathcal{f}_l(2) \\
\Delta \lambda(2) \\
\Delta \mathcal{f}(n-2)
\end{align*}
\]

\[
\begin{align*}
\Delta \mathcal{f}_l(1) \\
\Delta \lambda(1) \\
\Delta \mathcal{f}(n-1) \\
\Delta \lambda(n-1) \\
\Delta \mathcal{f}_l(2) \\
\Delta \lambda(2) \\
\Delta \mathcal{f}(n-2)
\end{align*}
\]

\[
\begin{align*}
\Delta \mathcal{f}_l(1) \\
\Delta \lambda(1) \\
\Delta \mathcal{f}(n-1) \\
\Delta \lambda(n-1) \\
\Delta \mathcal{f}_l(2) \\
\Delta \lambda(2) \\
\Delta \mathcal{f}(n-2)
\end{align*}
\]

\[
\begin{align*}
\Delta \mathcal{f}_l(1) \\
\Delta \lambda(1) \\
\Delta \mathcal{f}(n-1) \\
\Delta \lambda(n-1) \\
\Delta \mathcal{f}_l(2) \\
\Delta \lambda(2) \\
\Delta \mathcal{f}(n-2)
\end{align*}
\]

\[
\begin{align*}
\Delta \mathcal{f}_l(1) \\
\Delta \lambda(1) \\
\Delta \mathcal{f}(n-1) \\
\Delta \lambda(n-1) \\
\Delta \mathcal{f}_l(2) \\
\Delta \lambda(2) \\
\Delta \mathcal{f}(n-2)
\end{align*}
\]

\[
\begin{align*}
\Delta \mathcal{f}_l(1) \\
\Delta \lambda(1) \\
\Delta \mathcal{f}(n-1) \\
\Delta \lambda(n-1) \\
\Delta \mathcal{f}_l(2) \\
\Delta \lambda(2) \\
\Delta \mathcal{f}(n-2)
\end{align*}
\]
or in terms of \(\mathbf{P}(x^n) \)

\[
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
\times
\begin{bmatrix}
 j_A & j_B \\
 j_C & j_D
\end{bmatrix}
\times
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix}
= 0
\]

Expanding equation (3.41) gives

\[
\begin{align*}
 j_A x_1 + j_B x_2 &= y_1 \\
 j_C x_1 + j_D x_2 &= y_2
\end{align*}
\]

Through algebraic manipulation the following relationships are obtained

\[
\begin{align*}
 x_1 &= -j_A^{-1} [y_1 - j_B x_2] \\
 x_2 &= -[j_D - j_C j_A^{-1} j_B]^{-1} j_C^{-1} [y_2 - j_C j_A^{-1} y_1]
\end{align*}
\]

Closer examination of the submatrix, \(j_A \), reveals that it is block diagonal and, hence, its inverse may be found simply by inverting each subblock. This reduces the computational time substantially. The other inversion which is performed is on a matrix which has the same dimensions as the submatrix, \(j_D \).

As an example of the amount of reduction which results, a system with three hydro plants and three thermal plants is examined. The resulting Jacobian matrix has the dimensions [240 x 240] for an interval of 24 time periods.
This is a very large matrix to invert by method one. However, solution by method two requires inverting the blocks of J_A with dimensions $[4 \times 4]$ for $I=1,N$ and $[23 \times 23]$ for $I=N+1$. The inversion required for X_I, i.e., $\left[J_D - J_D J_A \left(J_A \right)^{-1} J_B \right]^{-1}$, has a dimension equal to J_D of $[75 \times 75]$. It is evident that method two is superior and indeed this is reflected in the fact that a successful solution was obtained for all three test systems as detailed in Chapter IV.

3.4 GENERATION OF INITIAL ESTIMATES

In problems such as this where the solution is obtained using iterative techniques, a good initial estimate of the variables is essential if the number of iterations and, hence, the computational time is to be minimized.

The methods by which these initial values may be obtained are numerous. Therefore, it is necessary to make certain assumptions and develop particular models to produce an initial variable estimation procedure which contributes to the overall efficiency of the program. The method described herein produces satisfactory initial estimates of the variables.

The first assumption made is that the level of the reservoir is monitored and would be available as input to the program in the form of $h(t_o)$. Thus, the number of initial values to be determined is reduced by one.

Knowing $h(t_o)$, $\psi(h)$ is calculated using equation (3.7). By further assuming that $\lambda(t_o)$ is constant over the time interval t_x, it is possible to write equation (3.27) as
\(T \tau \psi \gamma (h) [a_{s_1} + b_{s_1} P_{h_1}(t_0) + \gamma_{h_1} P_{h_1}(t_0)^2] - b_1 = 0, \quad (i=1-N_i) \) \hspace{1cm} (3.46)

Rearranging gives:

\[a_{s_1} + [b_{s_1} P_{h_1}(t_0) + \gamma_{h_1} P_{h_1}(t_0)^2] - \frac{b_1}{T \tau \psi \gamma (h)} = 0. \] \hspace{1cm} (3.47)

Letting

\[b_{s_1} = \frac{b_1}{T \tau \psi \gamma (h)} \] \hspace{1cm} (3.48)

gives

\[[\gamma_{h_1}] P_{h_1}(t_0)^2 + [a_{s_1} - b_{s_1}] P_{h_1}(t_0) + [a_{s_1} - b_{s_1}] = 0. \] \hspace{1cm} (3.49)

\(P_{h_1}(t_0) \) is now obtained by applying the quadratic formula and taking the positive root of the equation.

Once \(P_{h_1}(t_0) \) and \(P_{h_1}(t_0) \) are known, \(P_{s_1}(t_0) \) is quickly estimated from

\[P_{s_1}(t_0) = \left[\frac{P_{D}(t_0)}{N_{s}} \right] \left[1 - \frac{P_{D}(t_0)}{N_{h}} \right] \] \hspace{1cm} (3.50)

For simplicity, it is assumed that the value for \(P_{s_1}(t_0) \) is equal for all plants, \(i=1-N_s \) over the interval \([0,N_i-1]\), i.e., \(P_{s_1}(0) = P_{s_2}(0) = \ldots = P_{s_N}(0) \).

\(P_{s_1}(1) = P_{s_2}(1) = \ldots = P_{s_N}(1) \); etc. The same is assumed for \(P_{h_1}(t_0) \) and \(P_{h_1}(t_0) \). However, this does not imply that \(P_{s_1}(0) = P_{s_1}(1) \); etc.

An initial value of \(\lambda(t_0) \) is now calculated from
\[
\lambda(t_o) = \frac{-\beta_{s_1} + 2 \gamma_s \beta_{s_1} P_{s_1}(t_o)}{C_0 + 2 \sum_{j=1}^{N_s} B_{ij} P_{s_1}(t_o)} \quad (i=1\cdots N_s)
\]

and \(v_{0i} \) is calculated directly from equation (3.35).

Once the values of the variables for all plants at time, \(t_0 \), are known, it remains only to determine values for the remainder of the study interval \([1;N_T-1]\).

The first method developed to find these variables assumes a flat profile such that:

\[
P_{s_i}(t) = P_{s_i}(t_o) \quad (3.52)
\]

\[
P_{s_j}(t) = P_{s_j}(t_o) \quad t_k = 1\cdots N_T-1 \quad i = 1\cdots N_h
\]

\[
\lambda(t) = \lambda(t_o) \quad j = 1\cdots N_s \quad (3.54)
\]

\[
h_{s_i}(t) = h_{s_i}(t_o) \quad (3.55)
\]

This method performs well, but on examination it is found that better results are obtained when an adjustment factor is used. Such a factor is based upon the ratio of the power demand at time instant, \(t_k \), to the initial power demand. In other terms

\[
fact(t_k) = \frac{P_s(t_0)}{P_s(t_k)} \quad (3.56)
\]

The variables at time instant, \(t_k \), are adjusted as follows...
\[
\begin{align*}
 p_{h_k}(t_k) &= p_{h_o}(t_o) \times \text{fact}(t_k) & (3.57) \\
 p_{s_k}(t_k) &= p_{s_o}(t_o) \times \text{fact}(t_k) & (3.58) \\
 \lambda(t_k) &= \lambda(t_o) \times \text{fact}(t_k) & (3.59)
\end{align*}
\]

The profile for the net head over the interval was assumed flat due to its characteristically slow variation with time.
CHAPTER IV
PERFORMANCE EVALUATION

4.1 INTRODUCTION

In this chapter, the results of the application of the computer algorithm to three hydro-thermal test systems are presented. The first system consists of one thermal unit and one variable-head hydro unit. Characterization tests are performed on this system to determine the algorithm's ability to adjust to variations in system parameters. The second test system examined contains two thermal plants and two variable-head hydro plants while the third system has two thermal units and five variable-head hydro units.

4.2 TEST SYSTEM ONE AND CHARACTERIZATION TESTS

4.2.1 Test System One Description

Test system one consists of one variable-head hydro plant and one thermal plant. Both of these supply power to a common grid over transmission lines with losses.

The models for the fuel cost, hydro plant performance and reservoir variation are represented by quadratic equations of the form

\[F(P_t) = a_{s1} + b_{s1} P_1(t) + c_{s1} P_1(t)^2 \]

\[S(P_h) = a_{h1} + b_{h1} P_1(t) + c_{h1} P_1(t)^2 \]
\[y(h_1) = a_{01} + a_{11} h_1(t) + a_{21} h_1(t)^2 \]

where the quadratic coefficients are given as

\[a_{s1} = 1.0 \quad a_{s1} = 1.0 \]

\[\beta_{s1} = 2.2 \quad \beta_{s1} = 0.1 \]

\[\gamma_{s1} = 3.0 \times 10^{-3} \quad \gamma_{s1} = 1.0 \times 10^{-4} \]

\[a_{01} = 1.0 \]

\[a_{11} = 0.2237 \]

\[a_{21} = 1.0 \times 10^{-3} \]

The transmission loss coefficients are

\[B_0 = 0 \quad B_{20} = 0 \]

\[B_{s} = 0 \quad B_{s} = 0 \]

\[B_{h} = 0 \quad B_{h} = 1.43 \times 10^{-4} \]

\[k_{L0} = 0 \]

The data for the reservoir is

Area = 10 mi^2

Available water = 2.5 \times 10^9 cf
Net head (initial) = 205 ft.
Natural inflow = 12 x 10^3 cfs.

The test interval covers a 24 hour period and is subdivided into 24-1 hour discrete time instances.

4.2.2 Computational Results

For test system one the program converged in seven iterations to an error criterion of 1.0 x 10^{-4} (see Figure 4.2-1) and required 33.25 seconds of cpu time for solution.

The optimal dispatch schedule is obtained and presented in Figure 4.2-2 and Table 4.2-1. It is observed that the hydro plant produced on average 85% of the total power demand plus transmission losses. This high percentage is in keeping with the guidelines of the program criteria to reduce thermal generation and, hence, fuel cost to a minimum. The calculated daily fuel cost for the system under these conditions is $9,844.70.

The variation in the incremental cost of power, \(\lambda(t) \), is shown in Figure 4.2-3. The curve shows that \(\lambda(t) \) and \(P(t) \) vary with time in the same manner. That is, the curves have the same shape. This is to be expected since the incremental cost of power should increase or decrease in accordance with the variation in the power demand.

The water worth coefficient curve, \(W(t) \), is detailed in Figure 4.2-4. The variation shown complies with earlier predictions that the optimization procedure conserves water at the start by keeping \(\lambda(t) \) high at first and then slowly decreasing it.
FIGURE 4.2-1. Maximum Relative Error Versus Number of Iterations.
FIGURE 4.2-2. Optimal Dispatch Schedule.
<table>
<thead>
<tr>
<th>TIME PERIOD HR</th>
<th>POWER DEMAND MW</th>
<th>POWER LOSSES MW</th>
<th>HYDRO PLANT NO. 1 MW</th>
<th>THERMAL PLANT NO. 1 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>681</td>
<td>42.07</td>
<td>542.42</td>
<td>180.65</td>
</tr>
<tr>
<td>2</td>
<td>722</td>
<td>46.82</td>
<td>572.19</td>
<td>196.63</td>
</tr>
<tr>
<td>3</td>
<td>708</td>
<td>46.03</td>
<td>567.33</td>
<td>186.69</td>
</tr>
<tr>
<td>4</td>
<td>703</td>
<td>46.16</td>
<td>568.14</td>
<td>181.01</td>
</tr>
<tr>
<td>5</td>
<td>741</td>
<td>51.17</td>
<td>598.18</td>
<td>193.98</td>
</tr>
<tr>
<td>6</td>
<td>758</td>
<td>53.98</td>
<td>614.39</td>
<td>197.59</td>
</tr>
<tr>
<td>7</td>
<td>761</td>
<td>55.12</td>
<td>620.83</td>
<td>195.28</td>
</tr>
<tr>
<td>8</td>
<td>732</td>
<td>52.05</td>
<td>603.34</td>
<td>180.72</td>
</tr>
<tr>
<td>9</td>
<td>685</td>
<td>46.71</td>
<td>571.50</td>
<td>160.20</td>
</tr>
<tr>
<td>10</td>
<td>683</td>
<td>47.10</td>
<td>573.92</td>
<td>156.18</td>
</tr>
<tr>
<td>11</td>
<td>716</td>
<td>52.29</td>
<td>604.71</td>
<td>163.58</td>
</tr>
<tr>
<td>12</td>
<td>692</td>
<td>49.53</td>
<td>586.53</td>
<td>153.00</td>
</tr>
<tr>
<td>13</td>
<td>675</td>
<td>47.75</td>
<td>577.85</td>
<td>144.90</td>
</tr>
<tr>
<td>14</td>
<td>666</td>
<td>47.08</td>
<td>573.77</td>
<td>139.31</td>
</tr>
<tr>
<td>15</td>
<td>491</td>
<td>26.18</td>
<td>427.89</td>
<td>89.29</td>
</tr>
<tr>
<td>16</td>
<td>481</td>
<td>25.58</td>
<td>422.96</td>
<td>83.63</td>
</tr>
<tr>
<td>17</td>
<td>473</td>
<td>25.17</td>
<td>419.54</td>
<td>78.63</td>
</tr>
<tr>
<td>18</td>
<td>451</td>
<td>23.34</td>
<td>403.98</td>
<td>70.35</td>
</tr>
<tr>
<td>19</td>
<td>448</td>
<td>23.42</td>
<td>404.67</td>
<td>66.75</td>
</tr>
<tr>
<td>20</td>
<td>443</td>
<td>23.28</td>
<td>403.52</td>
<td>62.76</td>
</tr>
<tr>
<td>21</td>
<td>441</td>
<td>23.46</td>
<td>405.01</td>
<td>59.45</td>
</tr>
<tr>
<td>22</td>
<td>444</td>
<td>24.17</td>
<td>411.14</td>
<td>57.03</td>
</tr>
<tr>
<td>23</td>
<td>461</td>
<td>26.56</td>
<td>430.98</td>
<td>56.59</td>
</tr>
<tr>
<td>24</td>
<td>480</td>
<td>29.43</td>
<td>453.69</td>
<td>55.75</td>
</tr>
</tbody>
</table>
FIGURE 4.2-3. Variation in $\lambda(t)$.

FIGURE 4.2-4. Variation in $v(t)$.
The values for \(\lambda(t) \) and \(\nu(t) \) are tabulated in Table 4.2-2. The variation in net head is presented in Figure 4.2-5 and Table 4.2-3. Since the inflow to the reservoir is constant, the value of the net head decreases as expected.

Actual computer print-out for this system is found in Appendix C.

4.2.3 Characterization Tests Description

The characterization tests are carried out on the system described in 4.2.2 to evaluate the computer algorithm.

Three tests are performed on the system. In the first test the available water is varied. In the second test the power demand, \(P_d(t) \), is changed while in the third test the natural inflow, \(i(t) \), to the reservoir is altered. The tests and results are described herein.

4.2.4 Characterization Test One

In this first test the power demand, \(P_d(t) \), and the reservoir's natural inflow are held constant while varying the available water, \(B \). Then, the effects of the changing \(B \) on the head variation, the water worth coefficient, \(\nu(t) \) and the daily fuel cost are examined.

Figure 4.2-6 shows how the head variation was affected by altering \(B \). This head variation refers to the difference between the minimum and maximum head levels over the test interval. As expected, the head variation increased almost linearly with increases in \(B \). The reason for this can be deduced from Figure 4.2-7 which shows that as \(B \) increases the water worth coefficient, \(\nu(t) \) and, hence, the cost of water decreases.
<table>
<thead>
<tr>
<th>TIME PERIOD HR</th>
<th>NU PLANT NO. 1 S/CF</th>
<th>LAMBDA $/MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.04812</td>
<td>3.784</td>
</tr>
<tr>
<td>2</td>
<td>0.04698</td>
<td>3.880</td>
</tr>
<tr>
<td>3</td>
<td>0.04599</td>
<td>3.820</td>
</tr>
<tr>
<td>4</td>
<td>0.04481</td>
<td>3.786</td>
</tr>
<tr>
<td>5</td>
<td>0.04347</td>
<td>3.864</td>
</tr>
<tr>
<td>6</td>
<td>0.04219</td>
<td>3.886</td>
</tr>
<tr>
<td>7</td>
<td>0.04102</td>
<td>3.872</td>
</tr>
<tr>
<td>8</td>
<td>0.04025</td>
<td>3.784</td>
</tr>
<tr>
<td>9</td>
<td>0.03983</td>
<td>3.661</td>
</tr>
<tr>
<td>10</td>
<td>0.03888</td>
<td>3.637</td>
</tr>
<tr>
<td>11</td>
<td>0.03734</td>
<td>3.682</td>
</tr>
<tr>
<td>12</td>
<td>0.03681</td>
<td>3.618</td>
</tr>
<tr>
<td>13</td>
<td>0.03622</td>
<td>3.569</td>
</tr>
<tr>
<td>14</td>
<td>0.03551</td>
<td>3.536</td>
</tr>
<tr>
<td>15</td>
<td>0.03551</td>
<td>3.236</td>
</tr>
<tr>
<td>16</td>
<td>0.03809</td>
<td>3.262</td>
</tr>
<tr>
<td>17</td>
<td>0.03761</td>
<td>3.172</td>
</tr>
<tr>
<td>18</td>
<td>0.03751</td>
<td>3.122</td>
</tr>
<tr>
<td>19</td>
<td>0.03696</td>
<td>3.100</td>
</tr>
<tr>
<td>20</td>
<td>0.03647</td>
<td>3.077</td>
</tr>
<tr>
<td>21</td>
<td>0.03591</td>
<td>3.057</td>
</tr>
<tr>
<td>22</td>
<td>0.03520</td>
<td>3.042</td>
</tr>
<tr>
<td>23</td>
<td>0.03400</td>
<td>3.040</td>
</tr>
<tr>
<td>24</td>
<td>0.03267</td>
<td>3.034</td>
</tr>
</tbody>
</table>

TABLE 4.2-2
INCREMENTAL COST OF POWER AND WATER-WORTH COEFFICIENTS. TABULATED DATA.
FIGURE 4.2-5: Variation in \(h(t) \).
<table>
<thead>
<tr>
<th>TIME PERIOD</th>
<th>NET HEAD PLANT NO. 1 (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>205.00</td>
</tr>
<tr>
<td>2</td>
<td>204.81</td>
</tr>
<tr>
<td>3</td>
<td>204.60</td>
</tr>
<tr>
<td>4</td>
<td>204.38</td>
</tr>
<tr>
<td>5</td>
<td>204.15</td>
</tr>
<tr>
<td>6</td>
<td>203.90</td>
</tr>
<tr>
<td>7</td>
<td>203.62</td>
</tr>
<tr>
<td>8</td>
<td>203.32</td>
</tr>
<tr>
<td>9</td>
<td>203.04</td>
</tr>
<tr>
<td>10</td>
<td>202.78</td>
</tr>
<tr>
<td>11</td>
<td>202.51</td>
</tr>
<tr>
<td>12</td>
<td>202.21</td>
</tr>
<tr>
<td>13</td>
<td>201.91</td>
</tr>
<tr>
<td>14</td>
<td>201.62</td>
</tr>
<tr>
<td>15</td>
<td>201.32</td>
</tr>
<tr>
<td>16</td>
<td>201.17</td>
</tr>
<tr>
<td>17</td>
<td>201.02</td>
</tr>
<tr>
<td>18</td>
<td>200.86</td>
</tr>
<tr>
<td>19</td>
<td>200.72</td>
</tr>
<tr>
<td>20</td>
<td>200.58</td>
</tr>
<tr>
<td>21</td>
<td>200.44</td>
</tr>
<tr>
<td>22</td>
<td>200.29</td>
</tr>
<tr>
<td>23</td>
<td>200.13</td>
</tr>
<tr>
<td>24</td>
<td>199.95</td>
</tr>
</tbody>
</table>
FIGURE 4.2-6. Variation in head with increased $B(t)$.

FIGURE 4.2-7. Variation in $v(t)$ with increased $B(t)$.
This means that more hydro power will be generated and that the thermal output and, hence, daily fuel costs will be reduced. Such is the case as Figure 4.2-8 clearly indicates.

Data for the three curves are tabulated in Table 4.2-4.

4.2.5 Characterization Test Two

In this second test the natural inflow and available water is held constant and the power demand is varied to determine the effects on the head variations, incremental cost of power, \(\lambda(t) \), and the daily fuel cost.

The head variation remains fairly constant (Figure 4.2-9), as \(P_d(t) \) increases since the inflow and \(B \) are held constant which results in an increase in \(\psi(t) \).

The incremental cost of power \(\lambda(t) \) increases as \(P_d(t) \) increases, which is exactly as expected. This result is demonstrated by Figure 4.2-10.

Examination of Figure 4.2-11 shows that the daily fuel cost also increases with increases in \(P_d(t) \). This is not unexpected since constant hydro plant characteristics result in no increase in hydro output. Therefore, the slack must be taken up by the thermal unit and, hence, an increase in the daily fuel cost.

The data for these curves is found in Table 4.2-5.
FIGURE 4.2-8. Variation in Daily Fuel Costs with Increased B(t).
Table 4.2.4

Characterization Test

Tabulated Results

<table>
<thead>
<tr>
<th>B (cf x 10^9)</th>
<th>V (av) $/cf x 10^{-2}$</th>
<th>Head Variation FT</th>
<th>Fuel Cost $/Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.5</td>
<td>4.503</td>
<td>4.21</td>
<td>11325.96</td>
</tr>
<tr>
<td>23.0</td>
<td>4.407</td>
<td>4.38</td>
<td>10839.67</td>
</tr>
<tr>
<td>23.5</td>
<td>4.314</td>
<td>4.55</td>
<td>10365.86</td>
</tr>
<tr>
<td>24.0</td>
<td>4.224</td>
<td>4.72</td>
<td>9904.07</td>
</tr>
<tr>
<td>24.5</td>
<td>4.137</td>
<td>4.90</td>
<td>9453.86</td>
</tr>
<tr>
<td>25.0</td>
<td>4.052</td>
<td>5.07</td>
<td>9014.82</td>
</tr>
<tr>
<td>25.5</td>
<td>3.977</td>
<td>5.24</td>
<td>8586.54</td>
</tr>
<tr>
<td>26.0</td>
<td>3.891</td>
<td>5.41</td>
<td>8186.66</td>
</tr>
<tr>
<td>26.5</td>
<td>3.814</td>
<td>5.58</td>
<td>7760.80</td>
</tr>
<tr>
<td>27.0</td>
<td>3.739</td>
<td>5.76</td>
<td>7362.64</td>
</tr>
<tr>
<td>27.5</td>
<td>3.666</td>
<td>5.93</td>
<td>6973.64</td>
</tr>
</tbody>
</table>
FIGURE 4.2-9: Variation in Head Variation with Increased $P_d(t)$.

FIGURE 4.2-10: Variation in $\lambda(t)$ with Increased $P_d(t)$.
FIGURE 4.2-11. Variation in Fuel Cost with Increased $F_d(t)$.
Table 4.2-5

Characterization Test Two

Tabulated Results

<table>
<thead>
<tr>
<th>Power Demand (MW)</th>
<th>Head Variation (ft)</th>
<th>λ (mv) $/MM</th>
<th>Fuel Cost $/Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>660</td>
<td>5.66</td>
<td>3.483</td>
<td>6897.66</td>
</tr>
<tr>
<td>670</td>
<td>5.65</td>
<td>3.545</td>
<td>7685.68</td>
</tr>
<tr>
<td>690</td>
<td>5.66</td>
<td>3.654</td>
<td>9011.92</td>
</tr>
<tr>
<td>710</td>
<td>5.66</td>
<td>3.763</td>
<td>10377.32</td>
</tr>
<tr>
<td>730</td>
<td>5.67</td>
<td>3.872</td>
<td>11781.92</td>
</tr>
<tr>
<td>750</td>
<td>5.67</td>
<td>3.981</td>
<td>13229.74</td>
</tr>
<tr>
<td>770</td>
<td>5.67</td>
<td>3.091</td>
<td>14708.62</td>
</tr>
</tbody>
</table>
4.2.6 Characterization Test Three

In this final test, the power demand and available water are held constant and the natural inflow to the reservoir is varied. The effects on the head variation and the daily fuel cost are presented in Figures 4.2-12 and 4.2-13, respectively.

Figure 4.2-12 shows that as the inflow is increased, the head variation decreases to such a point where the reservoir water must be spilled. This is not surprising and further, such increased head should result in a lowering of the daily cost which is indeed what happens as is shown in Figure 4.2-13.

Table 4.2-6 presents the data for the curves.

4.3. TEST SYSTEM TWO

4.3.1 Test System Two Description

Test system two consists of two thermal and two variable-head hydro plants. All units are supplying power to a common grid over transmission lines with losses.

The quadratic models used to represent the fuel costs, hydrop plants performances, and reservoir variations are of the same form as those for test system one. The quadratic coefficients are as follows

\[
\begin{align*}
\alpha_{s_1} &= 1.0 \\
\alpha_{s_2} &= 1.0 \\
\beta_{s_1} &= 2.7 \\
\beta_{s_2} &= 2.733 \\
\gamma_{s_1} &= 3.0 \times 10^{-3} \\
\gamma_{s_2} &= 2.998 \times 10^{-3}
\end{align*}
\]
FIGURE 4.2-12. Variation in Head with Increased Inflow.

FIGURE 4.2-13. Variation in Daily Fuel Costs with Increased Inflow.
TABLE 4.2-6

CHARACTERIZATION TEST THREE.

TABULATED DATA.

<table>
<thead>
<tr>
<th>RESERVOIR INFLOW CFS</th>
<th>HEAD VARIATION FT</th>
<th>FUEL COST $/DAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.63</td>
<td>12071.22</td>
</tr>
<tr>
<td>3</td>
<td>7.13</td>
<td>11182.63</td>
</tr>
<tr>
<td>10</td>
<td>5.64</td>
<td>10247.18</td>
</tr>
<tr>
<td>15</td>
<td>4.14</td>
<td>9262.04</td>
</tr>
<tr>
<td>20</td>
<td>2.65</td>
<td>8224.55</td>
</tr>
</tbody>
</table>
\[\begin{align*}
\alpha_{h1} &= 1.0 \\
\beta_{h1} &= 0.1 \\
\gamma_{h1} &= 1.0 \times 10^{-4} \\
\alpha_{h2} &= 1.0 \\
\beta_{h2} &= 0.998 \times 10^{-1} \\
\gamma_{h2} &= 1.002 \times 10^{-4}
\end{align*} \]

The transmission loss coefficient matrix is

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 \cdot 1.43 \times 10^{-5} & 0 \\
0 & 0 & 0 & 1.43 \times 10^{-5}
\end{bmatrix}
\]

Other loss coefficients are

\[
\begin{align*}
B_{10} &= 0 \\
B_{30} &= 0 \\
B_{20} &= 0 \\
B_{40} &= 0 \\
K_{50} &= 0
\end{align*}
\]

The data for reservoir one is

\[
\eta
\]
Area = 10 mi^2

Available water = 2.5×10^9 cf

Net head (initial) = 205 ft

Natural inflow = 5.5×10^3 cfs

The data for reservoir two is

Area = 18 mi^2

Available water = 2.25×10^9 cf

Net head (initial) = 206 ft

Natural inflow = 11×10^3 cfs

Again the test interval covered a 24 hour period which was subdivided into 24, one hour intervals.

4.3.2 Computational Results

For test system two the program converged in 13 iterations to an error criterion of 1×10^{-4} (see Figure 4.3-1) and required 731 seconds of cpu time for solution.

The optimal dispatch schedule is obtained and presented in Figure 4.3-2 and Tables 4.3-1 and 4.3-2. Again, the thermal generation was minimized and the hydro generation accounted for an average of 80% of the total power requirements. The daily fuel costs for thermal plants one and two were found to be $11,764.85$ and $11,413.87$, respectively.

Figure 4.3-3 is an enlarged version of the $P_h(t)$ portion of the composite graph. Note that as time progresses $P_{h_2}(t)$ carries more of
FIGURE 4.3-1. Maximum Relative Error Versus Number of Iterations.
FIGURE 4:3-2: Optimum Dispatch Schedule.
<table>
<thead>
<tr>
<th>TIME PERIOD</th>
<th>POWER DEMAND MW</th>
<th>POWER LOSSES MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1362</td>
<td>82.29</td>
</tr>
<tr>
<td>2</td>
<td>1444</td>
<td>90.86</td>
</tr>
<tr>
<td>3</td>
<td>1416</td>
<td>97.02</td>
</tr>
<tr>
<td>4</td>
<td>1406</td>
<td>88.26</td>
</tr>
<tr>
<td>5</td>
<td>1482</td>
<td>97.02</td>
</tr>
<tr>
<td>6</td>
<td>1516</td>
<td>101.54</td>
</tr>
<tr>
<td>7</td>
<td>1522</td>
<td>102.90</td>
</tr>
<tr>
<td>8</td>
<td>1464</td>
<td>96.60</td>
</tr>
<tr>
<td>9</td>
<td>1370</td>
<td>85.25</td>
</tr>
<tr>
<td>10</td>
<td>1366</td>
<td>85.65</td>
</tr>
<tr>
<td>11</td>
<td>1432</td>
<td>83.89</td>
</tr>
<tr>
<td>12</td>
<td>1384</td>
<td>89.38</td>
</tr>
<tr>
<td>13</td>
<td>1350</td>
<td>88.60</td>
</tr>
<tr>
<td>14</td>
<td>1332</td>
<td>94.88</td>
</tr>
<tr>
<td>15</td>
<td>982</td>
<td>47.43</td>
</tr>
<tr>
<td>16</td>
<td>962</td>
<td>46.03</td>
</tr>
<tr>
<td>17</td>
<td>946</td>
<td>44.97</td>
</tr>
<tr>
<td>18</td>
<td>902</td>
<td>43.24</td>
</tr>
<tr>
<td>19</td>
<td>896</td>
<td>41.34</td>
</tr>
<tr>
<td>20</td>
<td>886</td>
<td>40.81</td>
</tr>
<tr>
<td>21</td>
<td>882</td>
<td>40.78</td>
</tr>
<tr>
<td>22</td>
<td>888</td>
<td>41.63</td>
</tr>
<tr>
<td>23</td>
<td>922</td>
<td>45.11</td>
</tr>
<tr>
<td>24</td>
<td>970</td>
<td>50.31</td>
</tr>
</tbody>
</table>
FIGURE 4.3-3. Variation in $P_h(t)$.

FIGURE 4.3-4. Variation in $P_s(t)$.
Table 4.3-2

Optimum Dispatch Schedule

Tabulated Results

<table>
<thead>
<tr>
<th>Time Period HR</th>
<th>Hydro Plant No. 1 MW</th>
<th>Hydro Plant No. 2 MW</th>
<th>Thermal Plant No. 1 MW</th>
<th>Thermal Plant No. 2 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>560.26</td>
<td>511.42</td>
<td>188.99</td>
<td>183.61</td>
</tr>
<tr>
<td>2</td>
<td>588.05</td>
<td>538.14</td>
<td>207.02</td>
<td>201.65</td>
</tr>
<tr>
<td>3</td>
<td>580.83</td>
<td>531.71</td>
<td>198.75</td>
<td>193.38</td>
</tr>
<tr>
<td>4</td>
<td>579.28</td>
<td>530.72</td>
<td>194.82</td>
<td>189.45</td>
</tr>
<tr>
<td>5</td>
<td>607.54</td>
<td>556.23</td>
<td>210.31</td>
<td>204.95</td>
</tr>
<tr>
<td>6</td>
<td>621.60</td>
<td>568.92</td>
<td>216.19</td>
<td>210.83</td>
</tr>
<tr>
<td>7</td>
<td>625.48</td>
<td>573.02</td>
<td>215.88</td>
<td>210.52</td>
</tr>
<tr>
<td>8</td>
<td>604.22</td>
<td>557.17</td>
<td>202.29</td>
<td>196.92</td>
</tr>
<tr>
<td>9</td>
<td>567.74</td>
<td>529.95</td>
<td>181.97</td>
<td>176.59</td>
</tr>
<tr>
<td>10</td>
<td>567.31</td>
<td>530.94</td>
<td>179.73</td>
<td>174.35</td>
</tr>
<tr>
<td>11</td>
<td>597.17</td>
<td>553.98</td>
<td>190.55</td>
<td>183.18</td>
</tr>
<tr>
<td>12</td>
<td>576.13</td>
<td>541.41</td>
<td>180.62</td>
<td>175.23</td>
</tr>
<tr>
<td>13</td>
<td>560.92</td>
<td>553.24</td>
<td>173.44</td>
<td>168.05</td>
</tr>
<tr>
<td>14</td>
<td>552.81</td>
<td>530.14</td>
<td>169.17</td>
<td>163.78</td>
</tr>
<tr>
<td>15</td>
<td>392.55</td>
<td>421.39</td>
<td>110.46</td>
<td>105.03</td>
</tr>
<tr>
<td>16</td>
<td>384.64</td>
<td>417.06</td>
<td>105.98</td>
<td>100.45</td>
</tr>
<tr>
<td>17</td>
<td>378.25</td>
<td>414.05</td>
<td>102.06</td>
<td>96.62</td>
</tr>
<tr>
<td>18</td>
<td>356.94</td>
<td>401.98</td>
<td>94.02</td>
<td>88.58</td>
</tr>
<tr>
<td>19</td>
<td>356.84</td>
<td>402.22</td>
<td>91.86</td>
<td>86.42</td>
</tr>
<tr>
<td>20</td>
<td>352.70</td>
<td>401.21</td>
<td>89.17</td>
<td>83.73</td>
</tr>
<tr>
<td>21</td>
<td>351.30</td>
<td>402.18</td>
<td>87.37</td>
<td>81.93</td>
</tr>
<tr>
<td>22</td>
<td>354.86</td>
<td>406.40</td>
<td>86.91</td>
<td>81.46</td>
</tr>
<tr>
<td>23</td>
<td>373.60</td>
<td>419.35</td>
<td>89.80</td>
<td>84.35</td>
</tr>
<tr>
<td>24</td>
<td>402.14</td>
<td>436.03</td>
<td>93.79</td>
<td>88.35</td>
</tr>
</tbody>
</table>
the load than $P_{h_1}(t)$. This is as predicted, since reservoir two has a larger area and greater inflow. The higher starting value of $P_{h_1}(t)$ can be attributed to the larger starting value for the available amount of water.

Figure 4.3-4 again is an expanded portion of the composite showing $P_s(t)$. As expected, the curves for $P_{s_{1}}(t)$ and $P_{s_{2}}(t)$ are very similar in shape as well as values.

Figures 4.3-5 and 4.3-6 present the variations in $\lambda(t)$ and $v(t)$, respectively, with time. As for the two plant system, $\lambda(t)$ varies with the power demand and $v(t)$ decreases as the net head, $h(t)$, decreases. It is important to note that the decrease in $v_2(t)$ is less steep than $v_1(t)$. The reason for this is evident from Figure 4.3-7 which shows the net head variations for the two reservoirs. The decrease in $h_2(t)$ is less than that of $h_1(t)$, hence, the difference in $v_2(t)$ and $v_1(t)$:

This lesser decrease in $h_1(t)$ is due to the larger inflow and greater area of reservoir one. The tabulated data for these curves is given in Tables 4.3.3 and 4.3.4.

Actual computer print-out for this system is found in Appendix C.
FIGURE 4.3-5. Variation in $\lambda(t)$.

FIGURE 4.3-6. Variation in $v(t)$.
<table>
<thead>
<tr>
<th>TIME PERIOD</th>
<th>(\nu(t)) (PLANT NO. 1)</th>
<th>(\nu(t)) (PLANT NO. 2)</th>
<th>(\lambda(t)) (S/HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.04769</td>
<td>0.04684</td>
<td>3.834</td>
</tr>
<tr>
<td>2</td>
<td>0.04651</td>
<td>0.04624</td>
<td>3.942</td>
</tr>
<tr>
<td>3</td>
<td>0.04541</td>
<td>0.04566</td>
<td>3.893</td>
</tr>
<tr>
<td>4</td>
<td>0.04433</td>
<td>0.04509</td>
<td>3.869</td>
</tr>
<tr>
<td>5</td>
<td>0.04300</td>
<td>0.04438</td>
<td>3.962</td>
</tr>
<tr>
<td>6</td>
<td>0.04175</td>
<td>0.04307</td>
<td>3.997</td>
</tr>
<tr>
<td>7</td>
<td>0.04063</td>
<td>0.04263</td>
<td>3.914</td>
</tr>
<tr>
<td>8</td>
<td>0.03993</td>
<td>0.04235</td>
<td>3.792</td>
</tr>
<tr>
<td>9</td>
<td>0.03951</td>
<td>0.04163</td>
<td>3.778</td>
</tr>
<tr>
<td>10</td>
<td>0.03974</td>
<td>0.04101</td>
<td>3.843</td>
</tr>
<tr>
<td>11</td>
<td>0.03727</td>
<td>0.04066</td>
<td>3.764</td>
</tr>
<tr>
<td>12</td>
<td>0.03698</td>
<td>0.04027</td>
<td>3.741</td>
</tr>
<tr>
<td>13</td>
<td>0.03643</td>
<td>0.03983</td>
<td>3.715</td>
</tr>
<tr>
<td>14</td>
<td>0.03586</td>
<td>0.03916</td>
<td>3.363</td>
</tr>
<tr>
<td>15</td>
<td>0.03521</td>
<td>0.03889</td>
<td>3.335</td>
</tr>
<tr>
<td>16</td>
<td>0.03589</td>
<td>0.03855</td>
<td>3.312</td>
</tr>
<tr>
<td>17</td>
<td>0.03561</td>
<td>0.03805</td>
<td>3.264</td>
</tr>
<tr>
<td>18</td>
<td>0.03522</td>
<td>0.03760</td>
<td>3.251</td>
</tr>
<tr>
<td>19</td>
<td>0.03490</td>
<td>0.03726</td>
<td>3.235</td>
</tr>
<tr>
<td>20</td>
<td>0.03451</td>
<td>0.03690</td>
<td>3.224</td>
</tr>
<tr>
<td>21</td>
<td>0.03457</td>
<td>0.03662</td>
<td>3.221</td>
</tr>
<tr>
<td>22</td>
<td>0.03459</td>
<td>0.03634</td>
<td>3.239</td>
</tr>
</tbody>
</table>
FIGURE 4.3-7: \(h(t) \) Versus \(t \).
Table 4.3-4

Net Head Variations

Tabulated Results

<table>
<thead>
<tr>
<th>Time Period (HR)</th>
<th>Net Head Plant No. 1 (FT)</th>
<th>Net Head Plant No. 2 (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>205.00</td>
<td>206.00</td>
</tr>
<tr>
<td>2</td>
<td>204.71</td>
<td>205.88</td>
</tr>
<tr>
<td>3</td>
<td>204.40</td>
<td>205.75</td>
</tr>
<tr>
<td>4</td>
<td>204.08</td>
<td>205.62</td>
</tr>
<tr>
<td>5</td>
<td>203.75</td>
<td>205.48</td>
</tr>
<tr>
<td>6</td>
<td>203.39</td>
<td>205.34</td>
</tr>
<tr>
<td>7</td>
<td>203.01</td>
<td>205.18</td>
</tr>
<tr>
<td>8</td>
<td>202.61</td>
<td>205.01</td>
</tr>
<tr>
<td>9</td>
<td>202.22</td>
<td>204.86</td>
</tr>
<tr>
<td>10</td>
<td>201.86</td>
<td>204.72</td>
</tr>
<tr>
<td>11</td>
<td>201.50</td>
<td>204.57</td>
</tr>
<tr>
<td>12</td>
<td>201.09</td>
<td>204.41</td>
</tr>
<tr>
<td>13</td>
<td>200.70</td>
<td>204.26</td>
</tr>
<tr>
<td>14</td>
<td>200.31</td>
<td>204.11</td>
</tr>
<tr>
<td>15</td>
<td>199.93</td>
<td>203.96</td>
</tr>
<tr>
<td>16</td>
<td>199.70</td>
<td>203.86</td>
</tr>
<tr>
<td>17</td>
<td>199.48</td>
<td>203.77</td>
</tr>
<tr>
<td>18</td>
<td>199.26</td>
<td>203.68</td>
</tr>
<tr>
<td>19</td>
<td>199.05</td>
<td>203.60</td>
</tr>
<tr>
<td>20</td>
<td>198.85</td>
<td>203.51</td>
</tr>
<tr>
<td>21</td>
<td>198.65</td>
<td>203.43</td>
</tr>
<tr>
<td>22</td>
<td>198.44</td>
<td>203.34</td>
</tr>
<tr>
<td>23</td>
<td>198.23</td>
<td>203.25</td>
</tr>
<tr>
<td>24</td>
<td>198.00</td>
<td>203.15</td>
</tr>
</tbody>
</table>
4.4 TEST SYSTEM THREE

4.4.1 Test System Three Description

Since no data is available for larger systems, the basic hydro unit, used for test one and the two thermal units of test two were scaled so that the algorithm could be tested on a system containing five hydro units and two thermal units.

The basic data for the system is found in the preceding test descriptions and the system power demand is found in Appendix C.

4.4.2 Computational Results

The program converged in seven iterations to an error criterion of \(1 \times 10^{-4}\) (see Figure 4.4-1) and required 35 min cpu time. This is not exceptional when one considers the size of the system.

The optimal dispatch schedule is obtained and is presented in Figure 4.4-2 and Table 4.4-1. As can be seen, the thermal generation was reduced to a minimum and again the hydro power output, supplied approximately 80% of the total power requirements. The daily fuel costs for thermal plant one is $16,693.21 and $17,020.42 for thermal plant two.

Figures 4.4-3 and 4.4-4 are enlarged views of the hydro and thermal power output, \(P_h(t)\) and \(P_s(t)\), respectively.

Figures 4.4-5 and 4.4-6 show how \(\lambda(t)\) and \(\phi(t)\) vary with time.

As with the other two test systems, the shape and, hence, the functions of the curves act as earlier predicted. Tabulated data for these curves is found in Table 4.4-2.
FIGURE 4.4-1. Variation in Maximum Relative Error with Iterations.
FIGURE 4.4-2. Optimal Dispatch Schedule.
Table 4.4-1. Optimal Dispatch Schedule: Tabulated Results.

<table>
<thead>
<tr>
<th>Time Period (HR)</th>
<th>Power Demand (MW)</th>
<th>Power Losses (MW)</th>
<th>Thermal Plant No. 1 (MW)</th>
<th>Thermal Plant No. 2 (MW)</th>
<th>Hydro Plant No. 1 (MW)</th>
<th>Hydro Plant No. 2 (MW)</th>
<th>Hydro Plant No. 3 (MW)</th>
<th>Hydro Plant No. 4 (MW)</th>
<th>Hydro Plant No. 5 (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3223</td>
<td>33.99</td>
<td>263.16</td>
<td>268.23</td>
<td>545.09</td>
<td>545.27</td>
<td>544.90</td>
<td>545.08</td>
<td>545.26</td>
</tr>
<tr>
<td>2</td>
<td>3367</td>
<td>37.35</td>
<td>271.21</td>
<td>276.29</td>
<td>571.35</td>
<td>571.54</td>
<td>571.15</td>
<td>571.32</td>
<td>571.49</td>
</tr>
<tr>
<td>3</td>
<td>3318</td>
<td>36.59</td>
<td>260.92</td>
<td>266.00</td>
<td>565.51</td>
<td>565.70</td>
<td>565.31</td>
<td>565.49</td>
<td>565.66</td>
</tr>
<tr>
<td>4</td>
<td>3300</td>
<td>36.49</td>
<td>253.66</td>
<td>258.74</td>
<td>564.79</td>
<td>564.99</td>
<td>564.60</td>
<td>564.77</td>
<td>564.95</td>
</tr>
<tr>
<td>5</td>
<td>3434</td>
<td>39.88</td>
<td>258.33</td>
<td>263.41</td>
<td>590.42</td>
<td>590.63</td>
<td>590.21</td>
<td>590.36</td>
<td>590.52</td>
</tr>
<tr>
<td>6</td>
<td>3593</td>
<td>44.11</td>
<td>263.60</td>
<td>268.68</td>
<td>620.98</td>
<td>621.22</td>
<td>620.74</td>
<td>620.88</td>
<td>621.02</td>
</tr>
<tr>
<td>7</td>
<td>3503</td>
<td>42.15</td>
<td>252.48</td>
<td>257.56</td>
<td>607.02</td>
<td>607.25</td>
<td>606.80</td>
<td>606.95</td>
<td>607.10</td>
</tr>
<tr>
<td>8</td>
<td>3302</td>
<td>37.51</td>
<td>235.63</td>
<td>240.72</td>
<td>572.60</td>
<td>572.79</td>
<td>572.41</td>
<td>572.59</td>
<td>572.78</td>
</tr>
<tr>
<td>9</td>
<td>3338</td>
<td>38.67</td>
<td>232.24</td>
<td>237.33</td>
<td>581.39</td>
<td>581.59</td>
<td>581.19</td>
<td>581.37</td>
<td>581.55</td>
</tr>
<tr>
<td>10</td>
<td>3331</td>
<td>38.78</td>
<td>226.79</td>
<td>231.88</td>
<td>582.19</td>
<td>582.39</td>
<td>582.00</td>
<td>582.18</td>
<td>582.36</td>
</tr>
<tr>
<td>11</td>
<td>3346</td>
<td>39.44</td>
<td>222.32</td>
<td>227.41</td>
<td>587.11</td>
<td>587.32</td>
<td>586.91</td>
<td>587.09</td>
<td>587.27</td>
</tr>
<tr>
<td>12</td>
<td>3262</td>
<td>37.56</td>
<td>214.80</td>
<td>219.89</td>
<td>572.92</td>
<td>573.10</td>
<td>572.74</td>
<td>572.94</td>
<td>573.15</td>
</tr>
</tbody>
</table>
Table 4.4-1. Optimal Dispatch Schedule: Tabulated Results. Cont'd.

<table>
<thead>
<tr>
<th>TIME PERIOD</th>
<th>POWER DEMAND MW</th>
<th>POWER LOSSES MW</th>
<th>THERMAL PLANT NO. 1 MW</th>
<th>THERMAL PLANT NO. 2 MW</th>
<th>HYDRO PLANT NO. 1 MW</th>
<th>HYDRO PLANT NO. 2 MW</th>
<th>HYDRO PLANT NO. 3 MW</th>
<th>HYDRO PLANT NO. 4 MW</th>
<th>HYDRO PLANT NO. 5 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>3203</td>
<td>36.32</td>
<td>208.47</td>
<td>213.56</td>
<td>563.39</td>
<td>563.56</td>
<td>563.22</td>
<td>563.45</td>
<td>563.67</td>
</tr>
<tr>
<td>14</td>
<td>3191</td>
<td>36.26</td>
<td>203.57</td>
<td>208.67</td>
<td>562.93</td>
<td>563.10</td>
<td>562.77</td>
<td>563.00</td>
<td>563.23</td>
</tr>
<tr>
<td>15</td>
<td>2559</td>
<td>22.34</td>
<td>183.36</td>
<td>188.46</td>
<td>441.66</td>
<td>441.68</td>
<td>441.64</td>
<td>442.06</td>
<td>442.47</td>
</tr>
<tr>
<td>16</td>
<td>2524</td>
<td>21.84</td>
<td>177.85</td>
<td>182.96</td>
<td>436.76</td>
<td>436.78</td>
<td>436.75</td>
<td>437.16</td>
<td>437.58</td>
</tr>
<tr>
<td>17</td>
<td>2496</td>
<td>21.48</td>
<td>172.75</td>
<td>177.85</td>
<td>433.13</td>
<td>433.14</td>
<td>433.12</td>
<td>433.54</td>
<td>433.95</td>
</tr>
<tr>
<td>18</td>
<td>2437</td>
<td>20.53</td>
<td>167.17</td>
<td>172.28</td>
<td>423.36</td>
<td>423.36</td>
<td>423.79</td>
<td>424.21</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2408</td>
<td>20.14</td>
<td>162.38</td>
<td>167.49</td>
<td>419.40</td>
<td>419.40</td>
<td>419.82</td>
<td>420.25</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2391</td>
<td>19.99</td>
<td>157.92</td>
<td>163.03</td>
<td>417.75</td>
<td>417.76</td>
<td>417.75</td>
<td>418.17</td>
<td>418.60</td>
</tr>
<tr>
<td>21</td>
<td>2384</td>
<td>20.01</td>
<td>153.66</td>
<td>158.78</td>
<td>418.07</td>
<td>418.08</td>
<td>418.06</td>
<td>418.48</td>
<td>418.89</td>
</tr>
<tr>
<td>22</td>
<td>2393</td>
<td>20.35</td>
<td>149.50</td>
<td>154.62</td>
<td>421.62</td>
<td>421.64</td>
<td>421.60</td>
<td>421.99</td>
<td>422.38</td>
</tr>
<tr>
<td>23</td>
<td>2454</td>
<td>21.76</td>
<td>144.97</td>
<td>150.09</td>
<td>435.97</td>
<td>436.03</td>
<td>435.91</td>
<td>436.23</td>
<td>436.56</td>
</tr>
<tr>
<td>24</td>
<td>2520</td>
<td>23.34</td>
<td>139.88</td>
<td>145.00</td>
<td>451.60</td>
<td>451.71</td>
<td>451.49</td>
<td>451.71</td>
<td>451.94</td>
</tr>
</tbody>
</table>
FIGURE 4.4-3. Variation in \(P_h(t) \).
FIGURE 4.4-5. Variation in \(\lambda(t) \).

FIGURE 4.4-6. Variation in \(\nu(t) \).
Table 4.4-2. Variations in $\lambda(t)$ and $v(t)$.

<table>
<thead>
<tr>
<th>TIME PERIOD HR</th>
<th>PLANT NO. 1 S/CF</th>
<th>PLANT NO. 2 S/CF</th>
<th>PLANT NO. 3 S/CF</th>
<th>PLANT NO. 4 S/CF</th>
<th>PLANT NO. 5 S/CF</th>
<th>LAMBDA $$/KW$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.06329</td>
<td>0.06331</td>
<td>0.06326</td>
<td>0.06328</td>
<td>0.06330</td>
<td>4.279</td>
</tr>
<tr>
<td>2</td>
<td>0.06169</td>
<td>0.06171</td>
<td>0.06167</td>
<td>0.06169</td>
<td>0.06171</td>
<td>4.327</td>
</tr>
<tr>
<td>3</td>
<td>0.06030</td>
<td>0.06032</td>
<td>0.06027</td>
<td>0.06029</td>
<td>0.06031</td>
<td>4.266</td>
</tr>
<tr>
<td>4</td>
<td>0.05891</td>
<td>0.05893</td>
<td>0.05889</td>
<td>0.05891</td>
<td>0.05892</td>
<td>4.222</td>
</tr>
<tr>
<td>5</td>
<td>0.05713</td>
<td>0.05715</td>
<td>0.05711</td>
<td>0.05713</td>
<td>0.05715</td>
<td>4.250</td>
</tr>
<tr>
<td>6</td>
<td>0.05515</td>
<td>0.05517</td>
<td>0.05514</td>
<td>0.05516</td>
<td>0.05517</td>
<td>4.282</td>
</tr>
<tr>
<td>7</td>
<td>0.05404</td>
<td>0.05406</td>
<td>0.05402</td>
<td>0.05404</td>
<td>0.05406</td>
<td>4.215</td>
</tr>
<tr>
<td>8</td>
<td>0.05353</td>
<td>0.05355</td>
<td>0.05351</td>
<td>0.05353</td>
<td>0.05355</td>
<td>4.114</td>
</tr>
<tr>
<td>9</td>
<td>0.05207</td>
<td>0.05209</td>
<td>0.05205</td>
<td>0.05207</td>
<td>0.05209</td>
<td>4.093</td>
</tr>
<tr>
<td>10</td>
<td>0.05084</td>
<td>0.05086</td>
<td>0.05082</td>
<td>0.05084</td>
<td>0.05086</td>
<td>4.061</td>
</tr>
<tr>
<td>11</td>
<td>0.04951</td>
<td>0.04953</td>
<td>0.04950</td>
<td>0.04952</td>
<td>0.04953</td>
<td>4.034</td>
</tr>
<tr>
<td>12</td>
<td>0.04883</td>
<td>0.04884</td>
<td>0.04881</td>
<td>0.04883</td>
<td>0.04884</td>
<td>3.989</td>
</tr>
<tr>
<td>TIME</td>
<td>PLANT NO. 1</td>
<td>PLANT NO. 2</td>
<td>PLANT NO. 3</td>
<td>PLANT NO. 4</td>
<td>PLANT NO. 5</td>
<td>LAMBDA</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>HR</td>
<td>S/CF</td>
<td>S/CF</td>
<td>S/CF</td>
<td>S/CF</td>
<td>S/CF</td>
<td>$/MW</td>
</tr>
<tr>
<td>13</td>
<td>0.04807</td>
<td>0.04808</td>
<td>0.04805</td>
<td>0.04806</td>
<td>0.04908</td>
<td>3.951</td>
</tr>
<tr>
<td>14</td>
<td>0.04704</td>
<td>0.04706</td>
<td>0.04702</td>
<td>0.04704</td>
<td>0.04705</td>
<td>3.921</td>
</tr>
<tr>
<td>15</td>
<td>0.05052</td>
<td>0.05054</td>
<td>0.05050</td>
<td>0.05051</td>
<td>0.05052</td>
<td>3.800</td>
</tr>
<tr>
<td>16</td>
<td>0.04991</td>
<td>0.04993</td>
<td>0.04988</td>
<td>0.04989</td>
<td>0.04990</td>
<td>3.767</td>
</tr>
<tr>
<td>17</td>
<td>0.04927</td>
<td>0.04929</td>
<td>0.04925</td>
<td>0.04926</td>
<td>0.04926</td>
<td>3.736</td>
</tr>
<tr>
<td>18</td>
<td>0.04891</td>
<td>0.04894</td>
<td>0.04889</td>
<td>0.04890</td>
<td>0.04891</td>
<td>3.703</td>
</tr>
<tr>
<td>19</td>
<td>0.04835</td>
<td>0.04837</td>
<td>0.04833</td>
<td>0.04834</td>
<td>0.04835</td>
<td>3.674</td>
</tr>
<tr>
<td>20</td>
<td>0.04772</td>
<td>0.04774</td>
<td>0.04770</td>
<td>0.04770</td>
<td>0.04771</td>
<td>3.648</td>
</tr>
<tr>
<td>21</td>
<td>0.04701</td>
<td>0.04703</td>
<td>0.04699</td>
<td>0.04699</td>
<td>0.04700</td>
<td>3.622</td>
</tr>
<tr>
<td>22</td>
<td>0.04616</td>
<td>0.04617</td>
<td>0.04614</td>
<td>0.04614</td>
<td>0.04615</td>
<td>3.597</td>
</tr>
<tr>
<td>23</td>
<td>0.04478</td>
<td>0.04480</td>
<td>0.04477</td>
<td>0.04478</td>
<td>0.04478</td>
<td>3.570</td>
</tr>
<tr>
<td>24</td>
<td>0.04333</td>
<td>0.04335</td>
<td>0.04332</td>
<td>0.04333</td>
<td>0.04334</td>
<td>3.539</td>
</tr>
</tbody>
</table>
In Figure 4.4-7, the net head is presented. This curve also performs as expected. Table 4.4-3 gives the tabulated results.

Actual computer printout is found in Appendix C.
FIGURE 4.4-7. Variation in $\hat{h}(t)$.

\[[H_1(t), H_2(t), H_3(t), H_4(t), H_5(t)] \]
<table>
<thead>
<tr>
<th>TIME PERIOD HR</th>
<th>NET HEAD PLANT NO. 1 FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>205.00</td>
<td>205.00</td>
<td>205.00</td>
<td>205.00</td>
<td>205.00</td>
</tr>
<tr>
<td>2</td>
<td>204.81</td>
<td>204.81</td>
<td>204.81</td>
<td>204.81</td>
<td>204.81</td>
</tr>
<tr>
<td>3</td>
<td>204.59</td>
<td>204.59</td>
<td>204.59</td>
<td>204.59</td>
<td>204.59</td>
</tr>
<tr>
<td>4</td>
<td>204.38</td>
<td>204.38</td>
<td>204.38</td>
<td>204.38</td>
<td>204.38</td>
</tr>
<tr>
<td>5</td>
<td>204.16</td>
<td>204.16</td>
<td>204.16</td>
<td>204.16</td>
<td>204.16</td>
</tr>
<tr>
<td>6</td>
<td>203.91</td>
<td>203.91</td>
<td>203.91</td>
<td>203.91</td>
<td>203.91</td>
</tr>
<tr>
<td>7</td>
<td>203.62</td>
<td>203.62</td>
<td>203.62</td>
<td>203.62</td>
<td>203.62</td>
</tr>
<tr>
<td>8</td>
<td>203.34</td>
<td>203.34</td>
<td>203.34</td>
<td>203.34</td>
<td>203.34</td>
</tr>
<tr>
<td>9</td>
<td>203.09</td>
<td>203.09</td>
<td>203.09</td>
<td>203.09</td>
<td>203.09</td>
</tr>
<tr>
<td>10</td>
<td>202.82</td>
<td>202.82</td>
<td>202.82</td>
<td>202.82</td>
<td>202.82</td>
</tr>
<tr>
<td>13</td>
<td>201.99</td>
<td>201.99</td>
<td>201.99</td>
<td>201.99</td>
<td>201.99</td>
</tr>
<tr>
<td>14</td>
<td>201.71</td>
<td>201.71</td>
<td>201.71</td>
<td>201.71</td>
<td>201.71</td>
</tr>
<tr>
<td>15</td>
<td>201.43</td>
<td>201.43</td>
<td>201.43</td>
<td>201.43</td>
<td>201.43</td>
</tr>
<tr>
<td>16</td>
<td>201.26</td>
<td>201.26</td>
<td>201.26</td>
<td>201.26</td>
<td>201.26</td>
</tr>
<tr>
<td>17</td>
<td>201.09</td>
<td>201.09</td>
<td>201.09</td>
<td>201.09</td>
<td>201.09</td>
</tr>
<tr>
<td>18</td>
<td>200.93</td>
<td>200.93</td>
<td>200.93</td>
<td>200.93</td>
<td>200.93</td>
</tr>
<tr>
<td>19</td>
<td>200.77</td>
<td>200.77</td>
<td>200.77</td>
<td>200.77</td>
<td>200.77</td>
</tr>
<tr>
<td>21</td>
<td>200.46</td>
<td>200.46</td>
<td>200.46</td>
<td>200.46</td>
<td>200.46</td>
</tr>
<tr>
<td>22</td>
<td>200.30</td>
<td>200.30</td>
<td>200.30</td>
<td>200.30</td>
<td>200.30</td>
</tr>
<tr>
<td>24</td>
<td>199.95</td>
<td>199.95</td>
<td>199.95</td>
<td>199.95</td>
<td>199.95</td>
</tr>
</tbody>
</table>
CHAPTER V
COORDINATION EQUATIONS FOR ECONOMIC OPERATION
OF POWER SYSTEMS WITH HYDRO PLANTS
ON THE SAME STREAM

5.1 INTRODUCTION

A newly developed set of coordination equations for electric power systems with hydro plants on the same stream is presented. Time delay of flow between plants is taken into account. The resulting equations represent a natural extension of the pioneering Kron-Ricard equations from which the useful concepts of waterworth can be obtained easily. This preserves the intuitive form of the coordination equations and provides insights into the physical meaning of the variables concerned.

5.2 FORMULATION

The system considered is assumed to contain one thermal plant whose active power generation is denoted by \(P_1 \) and a hydro subsystem. The objective of the economic scheduling problem is to minimize the thermal cost represented by \(F \) over the optimization interval \([0,T]\).

\[
J = \int_{0}^{T} f[P_1(t)] \, dt
\]

(5.1)

The function \(F \) is assumed available. The optimization is to be carried out while satisfying the hydro subsystem constraints as well as the electric network constraints. For simplicity we assume that only one
The constraint is used which requires an active power balance,

\[f_D(t) = \sum_{i=1}^{N} P_i(t) - P_L(t) - P_D(t) = 0 \quad (5.2) \]

The system demand, \(P_D \), is assumed given for the optimization interval. Power losses are denoted by \(P_L \). The number of system plants is denoted by \(N \).

The power system considered is assumed to contain three hydro plants on the same stream. This is the minimum number required for a general formulation. The plants are ordered as follows:

1. Plant 2: up-stream plant
2. Plant 3: intermediate plant
3. Plant 4: down-stream plant

It is assumed that the performance characteristic of each hydro plant is modeled by the Glimm-Kirchmayer model.

\[f_{q_1}(t) = q_1 - K_1 \psi_1(h_1) \phi_1(P_1) = 0 \quad (5.3) \]

The rate of water discharge in \(\text{m}^3/\text{sec} \) is denoted by \(q_1 \), the effective head in meters is denoted by \(h_1 \), and \(P_1 \) denotes the active power generation in MW. The functions \(\psi \) and \(\phi \) are given by

\[\psi(h_1) = a_0 + a_1 h_1 + a_2 h_1^2 \]
\[\phi(P_1) = b_0 + b_1 P_1 + b_2 P_1^2 \]

The model assumes the availability of the parameters \(K, a_0, a_1, a_2, b_0, b_1, \) and \(b_2 \) for each plant.
Each of the hydro plants is assumed to draw water from a vertical-sided reservoir whose surface area is s in m^2. The reservoir's natural water inflow is denoted $i(t)$ in m^3/s. A forecast of $i(t)$ is assumed available over the optimization interval $[0,T]$. The continuity equation for reservoir 2, at the up-stream plant is thus

$$f_{h_2}(t) = s_2 h_2(t) - s_2 h_2(0) - \int_0^t i_2(z) \, dz$$

$$+ \int_0^t q_2(z) \, dz = 0$$

(5.4)

As the intermediate reservoir, the inflow is composed of a natural component $i_3(t)$ as well as that due to the controlled discharge q_2 of the up-stream plant delayed by τ_{23} hours. As a result, the continuity equation for reservoir three is expressed as

$$f_{h_3}(t) = s_3 h_3(t) - s_3 h_3(0) - \int_0^t i_3(z) \, dz$$

$$+ \int_0^t [q_3(z) - q_2(z-\tau_{23})] \, dz = 0$$

(5.5)

In a similar way, the continuity equation for reservoir four is given by

$$f_{h_4}(t) = s_4 h_4(t) - s_4 h_4(0) - \int_0^t i_4(z) \, dz$$

$$+ \int_0^t [q_4(z) - q_3(z-\tau_{23})] \, dz = 0$$

(5.6)

The water draw-down constraints over the optimization interval for the system are given by
\[j_{b_1} = \frac{t}{\ell} q_1(z) \cdot dz - v_1 = 0 \]

(5.7)

The volumes \(v_2, v_3, v_4 \) are assumed available and correspond to hydraulic requirements such as navigational, irrigation or other constraints.

5.3 DIRECT OPTIMALITY CONDITIONS

The optimal operation strategy is described by a set of optimality conditions obtained by forming an augmented objective functional as indicated in Appendix D. This takes the form

\[J_A = \int_0^T I_A(t) \, dt \]

(5.8)

Optimality is attained by setting the derivatives of \(I_A \) with respect to control variables to equal zero. We choose initially to have both discharge, \(q_1 \), and head, \(h \), to be control variables in addition to the active power generations.

Differentiating with respect to the thermal active power generation we obtain

\[\frac{\partial I_A}{\partial P_1} = \frac{\partial F}{\partial P_1} + \lambda(t) \left[\frac{\partial F}{\partial P_1} - 1 \right] = 0 \]

(5.9)

This is the familiar all-thermal, equal incremental cost expression.

Differentiating with respect to the hydro-active power generation we get

\[\frac{\partial I_A}{\partial q_1} = \lambda(t) \left[\frac{\partial F}{\partial q_1} - 1 \right] = m_1(t) \frac{\partial q_1}{\partial q_1} = 0 \]

(5.10)
Taking the derivatives of I_A with respect to h_1, we obtain

$$\frac{\partial I_A}{\partial h_1} = n_1(t) - m_1(t) \frac{\partial q_1}{\partial h_1} = 0.$$

(5.11)

Taking the derivatives with respect to each of the q_1's we get

$$\frac{\partial I_A}{\partial q_2} = v_2 + m_2(t) + [n_2(t) - n_2(t)] - N_2(t) = 0.$$

(5.12)

$$\frac{\partial I_A}{\partial q_3} = v_3 + m_3(t) + [n_3(t) - n_3(t)] - N_3(t) = 0.$$

(5.13)

$$\frac{\partial I_A}{\partial q_4} = v_4 + m_4(t) + [n_4(t) - n_4(t)] = 0.$$

(5.14)

Equations (5.9) through (5.14) together with (5.2) through (5.7) constitute the optimality conditions necessary for solving the problem.

5.4. COORDINATION EQUATIONS

The direct optimality conditions obtained above can be reduced to a form that represents a direct extension of the well-known Kron-Ricard's equations by simply eliminating the functions $m_1(t)$ and $n_1(t)$. The algebraic details of the process are given in Appendix B. The resulting equations consist of the following.

For the thermal plant we have from Equation (5.9),

$$L_1 \frac{\partial F_1}{\partial q_1} = \lambda(t).$$

(5.15)
For the up-stream plant

\[L_2 v_2(t) \frac{\partial^2 \lambda}{\partial P_2} = \lambda(t) \]
(5.16)

where

\[v_2(t) = v_2 \phi_2(t, o) + \int_0^t \phi_2(t, o) u_2(o) \, du \]
(5.17)

For the intermediate plant

\[L_3 v_3(t) \frac{\partial^2 \lambda}{\partial P_3} = \lambda(t) \]
(5.18)

where

\[v_3(t) = v_3 \phi_3(t, o) + \int_0^t \phi_3(t, o) u_3(o) \, du \]
(5.19)

For the down-stream plant

\[L_4 v_4(t) \frac{\partial^2 \lambda}{\partial P_4} = \lambda(t) \]
(5.20)

where

\[v_4(t) = v_4 \phi_4(t, o) \]
(5.21)

In the above

\[\phi_4(t, t') = \exp \left(\int_{t'}^t \frac{\partial \lambda}{\partial P_4} \, du \right) \]
(5.22)

\[\lambda_1(z) = \frac{1}{P_4} \frac{\partial^2 \lambda}{\partial P_4} \]
(5.23)
\[
 u_i (\sigma) = \hat{m}_{i+1} (t + \tau_i (i+1)) \\
 0 \leq t \leq T - \tau_i (i+1) \\
 = 0 \quad T - \tau_{34} \times t \leq T
\]

(5.24)

\[
m_4 (t) = - v_4 \exp \left\{ \int_0^t M_4 (\sigma) \, d\sigma \right\}
\]

(5.25)

\[
m_3 (t) = - v_3 \phi_3 (t, \sigma) - \int_0^t \phi_3 (t, \sigma) \, u_3 (\sigma) \, d\sigma
\]

(5.26)

\[
m_2 (t) = - v_2 \phi_2 (t, \sigma) - \int_0^t \phi_2 (t, \sigma) \, u_2 (\sigma) \, d\sigma
\]

(5.27)

As is common in conventional theory, the loss penalty factors are given by

\[
 L_i = \frac{1}{1 - \frac{\partial L_i}{\partial P_i}}
\]

(5.28)

5.5 WATER-WORTH

The functions \(v_i (t) \) in Equations (5.16), (5.18), and (5.20) represent the water-worth functions for the hydro plants considered. In the classical theory for economic operation for fixed head hydro plants these functions are constant and represent the conversion factors necessary to convert the incremental discharge into an equivalent incremental cost. When hydro plants are of the variable head type, the water-worth is no longer a constant for each plant (for the given allowable volume of water available). Instead, the water-worth increases
over the optimization interval as long as discharge exceeds the natural inflow into the reservoir. This concept has been discovered by Kron and Ricard and illustrated vividly by Glimm and Kirchmayer for plants that are hydraulically isolated.

The coordination equations derived here for systems with plants on the same stream provide us with the basis for obtaining water-worth functions \(v_1(t) \) defined by Equations (5.17), (5.19), and (5.21). Inspection of each of the equations reveals that the water-worth is made of two components. The first is the coupling-free term \(v_1 \Phi_1(t,0) \), while the second component pertains to coupling and represents a penalty for discharge arriving at a plant further down-stream. Note that for the down-stream plant only the coupling-free term exists.
CHAPTER VI
CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

An algorithm based on the Newton-Raphson iterative technique is developed for application to the problem of optimal economic operation of variable-head hydroelectric power systems. When this algorithm is applied to several test systems, the results show that it is successful in obtaining the optimal hydro-thermal dispatching schedule.

The computer evaluation of the behavior of the variables under varying system constraint conditions is consistent with the predetermined analytical observations. In other words, the variables react as predicted to changes in the system.

The amount of computer storage and computational time required for the successful solution of the problem is significantly reduced by exploiting the sparsity of the Jacobian matrix. As is pointed out in Section 6.2, even further savings are realizable through this process.

The coordination equations for hydraulically coupled variable-head hydro-thermal electric power systems are developed for several configurations of systems.

6.2 FUTURE WORK

As in any type of research work there is always one more detail that could be accomplished before the topic is brought to a close. The following items constitute the details which form possible starting points.
for any continuing work on this topic.

It is shown in the preceding chapters how exploitation of the sparsity of the Jacobian matrix results in reduced core space and computer time. As mentioned, it is possible to further exploit this sparsity and obtain more savings. This additional work should be directed towards performing the matrix manipulations on an 'elemental' basis. This will require further partitioning of the submatrices detailed in Chapter two and taking advantage of the sparsity of the block diagonal matrix J_A.

Another path would be to work towards improving the methods used to obtain the initial estimates of the variables. Such an improvement will increase the overall efficiency of the program and will also reduce the computational time required for solution.

As another point, the optimality equations for hydraulically-coupled hydro plants in hydro-thermal systems should be implemented. As well, the program could be expanded to include pumped storage units.

As a last item, an in-depth sensitivity analysis of the program should be performed to determine, if any, the limitations of the program that are not obvious through the testing that has been performed.
CHAPTER VII

BIBLIOGRAPHY AND REFERENCES

APPENDIX A

FIRST-ORDER PARTIAL DERIVATIVES

This appendix lists the first-order partial derivatives which form the elements of the Jacobian matrix.

The partial derivatives of $f_{s_i k}$ are obtained on the basis of Equation (3.34) as

$$\frac{\partial f_{s_i k}}{\partial s_i} = N_s \sum_{j=1}^{N_s} B_{ij} \lambda(t_k), \quad (i=1 \rightarrow N_s) \quad (A.1)$$

$$\frac{\partial f_{s_i k}}{\partial h_i} = \sum_{j=1}^{N_s} B_{ij} \lambda(t_k), \quad (i=1 \rightarrow N_s) \quad (A.2)$$

$$\frac{\partial f_{s_i k}}{\partial \lambda(t_k)} = C_i + \sum_{j=1}^{N_g} B_{ij} p_j(t), \quad (i=1 \rightarrow N_s) \quad (A.3)$$

$$\frac{\partial f_{s_i k}}{\partial h_i(t_k)} = 0 \quad (A.4)$$

$$\frac{\partial f_{s_i k}}{\partial v_{0_i}} = 0 \quad (A.5)$$

The partial derivatives of $f_{h_i k}$ are obtained on the basis of Equation (3.35) as
\[
\frac{\partial f_{D_k}}{\partial h_i} \bigg|_{t_k} = \sum_{j=1}^{N_g} \frac{K_t}{h_i} \left[\psi_1(h_i) \right] \left[\gamma_{t_k} + \frac{K_t}{s_i} \left(a_{1j} + 2a_{2j}(t_k) \right) \right], \quad (i=1+N_h) \quad (A.6)
\]

\[
\frac{\partial f_{h_i}}{\partial h_i} \bigg|_{t_k} = \frac{E_{D_k}}{s_i} \left[\left[\gamma_{t_k} + 2\frac{K_t}{s_i} \left(a_{1j} + 2a_{2j}(t_k) \right) \right] \left[\psi_1(h_i) \right] \right], \quad (i=1+N_h) \quad (A.7)
\]

\[
\frac{\partial f_{h_i}}{\partial \lambda(t_k)} = C_i + 2 \sum_{j=1}^{N_g} B_i \psi_j(t_k), \quad (i=1+N_h) \quad (A.8)
\]

\[
\frac{\partial f_{h_i}}{\partial \psi_j(t_k)} = \left[\gamma_{t_k} + 2a_{2j}(t_k) \right] \left[\psi_1(h_i) \right] \left[\psi_j(t_k) \right], \quad (i=1+N_h) \quad (A.9)
\]

The partial derivatives of \(f_{D_k}(t_k) \) are obtained on the basis of Equation (3.36) as

\[
\frac{\partial f_{D_k}}{\partial s_i} \bigg|_{t_k} = \sum_{i=1}^{N_h} C_i + 2 \sum_{j=1}^{N_g} B_{ij} \psi_j(t_k), \quad (i=1+N_h) \quad (A.10)
\]
\[
\frac{\partial f_D(t_k)}{\partial \beta_i(t_k)} = \frac{\nu_i}{2} \sum_{i=1}^{N_h} \sum_{j=1}^{N_h} \beta_i \beta_j f_j(t_k), \quad (i=1-N_h)
\]
(A.12)

\[
\frac{\partial f_D(t_k)}{\partial \lambda(t_k)} = 0
\]
(A.13)

\[
\frac{\partial f_D(t_k)}{\partial \beta_i(t_k)} = 0
\]
(A.14)

\[
\frac{\partial f_D(t_k)}{\partial \psi_{i-1}} = 0
\]
(A.15)

The partial derivatives of \(f_D(t_k) \) are obtained on the basis of Equation (3.37) as:

\[
\frac{\partial f_D(t_k)}{\partial \psi_{i-1}} = 0
\]
(A.16)

\[
\frac{\partial f_D(t_k)}{\partial \beta_i(t_k)} = -\frac{\Delta}{\psi_{i-1}} \beta_i \psi_i (t_k) \{ \phi_{i-1} + 2\psi_{i-1} \beta_i \psi_i (t_k) \}, \quad (i=1-N_h)
\]
(A.17)

\[
\frac{\partial f_D(t_k)}{\partial \lambda(t_k)} = 0
\]
(A.18)
\[\begin{align*}
\frac{\partial}{\partial \psi} \left(\frac{1}{2} b_1 (c_j) \right) &= \frac{1}{2} b_1 (c_j) = 0 \\
\frac{\partial}{\partial \psi} \left(\frac{1}{2} b_0 (c_j) \right) &= \frac{1}{2} b_0 (c_j) = 0 \\
\frac{\partial}{\partial \psi} \left(\frac{1}{2} b_2 (c_j) \right) &= \frac{1}{2} b_2 (c_j) = 0 \\
\frac{\partial}{\partial \psi} \left(\frac{1}{2} b_3 (c_j) \right) &= \frac{1}{2} b_3 (c_j) = 0
\end{align*} \]

The partial derivatives of \(f_\psi \) are obtained on the basis of equation (3.38).
\[
\frac{af}{b_1} = 0
\]

(A.26)
APPENDIX B

THE COMPUTER PROGRAM

B-1 INTRODUCTION

The computer program presented herein solves for the optimum hydrothermal dispatch schedule. The algorithm, described in the text, revolves around the Newton-Raphson technique where the solution is obtained by iterative techniques.

The program logic is detailed in the flowchart presented in Figure B-1. The program itself is written in fortran language and has an approximate storage requirement of 1500 program lines.

The sections which follow detail the variables used in the calculations, a full listing of the computer program, a description of the matrix inversion routine, and some basic data on the computer.

B-2 PROGRAM VARIABLE DEFINITION LIST

The following list contains the definitions and dimensions of the terms used in the program. They are cataloged according to their function within the program.

Control Terms:

N number of discrete time intervals into which the study period is divided
NUNS number of thermal plants in the system
NUNH number of hydro plants in the system
FIGURE 8-1. Algorithm Flowchart.
Figure B-1 (Cont'd). Algorithm Flowchart.
ITCNT number of iterations completed by the program.

Variable Dimension Values

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAP</td>
<td>IR</td>
<td></td>
</tr>
<tr>
<td>LAP0</td>
<td>IC</td>
<td></td>
</tr>
<tr>
<td>LYO</td>
<td>IIR</td>
<td></td>
</tr>
<tr>
<td>LYT</td>
<td>IIC</td>
<td></td>
</tr>
<tr>
<td>NH</td>
<td>IRR</td>
<td></td>
</tr>
<tr>
<td>NHA</td>
<td>IIC</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>NSA</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>IA</td>
<td></td>
</tr>
</tbody>
</table>

Optimization Variables

Ps (NUMH, N) generated thermal power for plant NUMH at time period N.

Ph (NUMH, N) generated hydro power for plant NUMH at time period N.

h (NUMH, N) the reservoir level of plant NUMH at time N.

LAM (N) the incremental cost of power λ(t) for time instant N.

NEW (NUMH) the water worth coefficient \(y \) for the reservoir of plant NUMH.

Quadratic Model Coefficients

ALPHAH (NUMH) \(a_h \) for plant NUMH.

BETAH (NUMH) \(b_h \) for plant NUMH.

GAMMAH (NUMH) \(γ_h \) for plant NUMH.

BETAS (NUMH) \(β_g \) for plant NUMH.
\[\text{CAMS} (\text{NUMS}) \quad \lambda_a \text{ for plant NUMS.} \]
\[\text{AZ} (\text{NUMH}) \quad a_0 \text{ for plant NUMH.} \]
\[\text{AO} (\text{NUMH}) \quad a_1 \text{ for plant NUMH.} \]
\[\text{AT} (\text{NUMH}) \quad a_2 \text{ for plant NUMH.} \]

Transmission Loss Coefficients

<table>
<thead>
<tr>
<th>BSS</th>
<th>BSH</th>
<th>These transmission losses are for interconnections and other modes. S refers to thermal and H refers to hydro.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHS</td>
<td>BHH</td>
<td>System's constant factor for plant NUMH.</td>
</tr>
<tr>
<td>CH</td>
<td>CS</td>
<td>Length of time subintervals.</td>
</tr>
<tr>
<td>KLO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Constants and Data

\[PD(N) \quad \text{Power demand at time } N. \]
\[K(\text{NUMH}) \quad \text{System's constant factor for plant } \text{NUMH}. \]
\[\text{DELT}(I) \quad \text{Length of time subintervals } I. \]

Partial Derivatives (see Appendix A)

\[\frac{\partial [F]_j}{\partial F_h(t)} \]
\[\frac{\partial [F]_j}{\partial h(t)} \]
\[\frac{\partial [F]_i}{\partial F_h(t)} \]
\[\frac{\partial [F]_i}{\partial h(t)} \]
Jacobian Submatrices

$AP(\text{LAP, LAP})$
$AP(\text{LAP, LAP})$
AINV (LYO, LYO)
BP (LYO, LYT)
CP (LYT, LYO)
DP (LYT, LYT)
Reservoir Data

- **FLO**(NUMH, N) Natural inflow to the reservoir of plant NUMH.
- **EPCE**(NUMH, N) \(\psi(t) \) - quadratic model of reservoir variation.
- **S**(NUMH) Reservoir surface area for plant NUMH.
- **B**(NUMH) Available amount of water from reservoir of plant NUMH.

System Output

- **LOSS**(N) Transmission losses.
- **NU**(t) Water worth coefficient \(v(t) \) determined as
 \[v_o(t) \exp[\lambda t] \text{NEW}(\text{NUMH}) * \text{P}(\text{NUMH}, N) \]
- **P**(NUMH, N) Time variable portion of \(\text{NU}(t) \).
- **Q**(NUMH, N) Hydro plant discharge.
- **FCST**(NUMS) Thermal plant daily fuel cost.

Function Variables

- **PHI**(NUMH, N) \(\phi(P_h) \) - quadratic model for the hydro plant performance.
- **FS**(NUMS, N)
- **FH**(NUMH, N)
- **FI**(NUMH, N)
- **FD**(N)
- **PB**(NUMH)
- **YO**(LV) Vectors containing values of the functions for iteration \(i \).
- **XT**(LV) Vectors containing the error vectors generated by the program.
Variables, Vectors, and Matrices used to Determine the Maximum

Relative Error

F0 (LYO)	DECK1 (LYO)
F00 (LYO)	DEINX2 (LYT)
F2 (LYT)	TESTX
FTT (LYT)	

Vectors and Matrices used to Determine the Error Vectors

R1 (INT, LYO)	R5 (LYT)
R2 (LYT, LYT)	R6 (LYO)
R3 (INT, LYT)	R7 (LYO)
R4 (LYT)	

General Purpose (dummy) Variables

F1	F11	TF
F6	F12	CBA
F2	AC	CC
F7	SUM	FA
C	FF1	AA
Z	FF2	FB
X1	FF3	AB
X2	WW	FC
X3	WX	EE
E3	WY	FP
F8	WZ	P
F4	FP4	TEMPI
F9	FP6	ABC
B-3 THE COMPUTER PROGRAM LISTING

The following pages present the listing of the computer program in full. The dimensions shown are for the first test system of one thermal and one hydro plant for a 24-hour time period.
THIS PROGRAM SOLVES FOR THE
OPTIMUM HYDRO THERMAL DISPATCH
SCHEDULE FOR ELECTRIC POWER
SYSTEMS CONTAINING VARIABLE
HEAD RESERVOIRS.

THE METHOD UTILIZES THE WELL
KNOWN NEWTON-RAPHSON METHOD
TO OBTAIN THE SOLUTION
THROUGH ITERATIVE TECHNIQUES.

THE PROGRAM IS SUBDIVIDED INTO
VARIOUS SECTIONS AS FOLLOWS:

THE MAIN PROGRAM IS RESPONSIBLE
FOR ALL ARRAY AND DATA MANIPULATION
AND CONTROL. THE PROGRAM ALSO
KEEPS TRACK OF THE NUMBER
OF ITERATIONS AND ENSURES THAT
ALL PROGRAM TOLERANCES ARE
MET.

SUBROUTINES RONE AND RTWO ARE
RESPONSIBLE FOR THE TRANSFER OF
DATA FROM THE DATA FILE TO THE
MAIN PROGRAM AND THE OTHER
SUBROUTINES.

SUBROUTINE THREE CALCULATES THE
VALUE OF PHI(T) WHICH IS THE
QUADRATIC MODEL OF THE HYDRO
PLANT'S PERFORMANCE.

SUBROUTINE FOUR FINDS THE VALUE
OF EPCE(T). THIS QUADRATIC EQUATION MODELS THE RESEVOIR VARIATIONS.

SUBROUTINE T IS RESPONSIBLE FOR CALCULATING THE VALUES OF THE SYSTEM EQUATIONS THAT ARE TO BE MINIMIZED. ONCE THESE VALUES ARE DETERMINED, THE SUBROUTINE THEN POSITIONS THEM IN TWO ARRAYS YO AND YT. THESE AND THEIR STRUCTURES ARE FURTHER DESCRIBED IN THE TEXT.

SUBROUTINE GUESS IS THE SUBROUTINE WHICH GENERATES THE INITIAL ESTIMATES THAT ARE USED IN THE SOLUTION OF THE OPTIMAL STRATEGY.

SUBROUTINES MINVRD AND SUBMXD ARE THE COMMERCIALLY OBTAINED SUBROUTINES WHICH TOGETHER FIND THE INVERSE OF THE MATRICES.

SUBROUTINES X1MULT AND X2MULT ARE SUBROUTINES DEVELOPED TO HANDLE THE MATRIX MULTIPLICATION FOUND IN THE MAIN PROGRAM.

IMPLICIT REAL*8(A-H,O-Z) DIMENSION PS(1,24),PH(1,24),LAM(24),PD(24) DIMENSION H(1,24),FLO(1,24),DELT(24) DIMENSION PHI(1,24),EPCE(1,24),FB(1) DIMENSION FS(1,24),PH(1,24),FI(1,24),PD(24) DIMENSION IR(2),IC(2),IIR(23),IIC(23) DIMENSION IRR(25),ICC(25),BHS(1,1)
DIMENSION LOSS(24), NUMBFL(1), NUMBES(1)
DIMENSION ALPH(1), BETA(1), GAMMA(1)
DIMENSION AZ(1), AO(1), AT(1), CH(1)
DIMENSION BETAS(1), GAMMAS(1), CS(1)
DIMENSION BSS(1, 1), BH(1, 1), BSH(1, 1)
DIMENSION NEW(1), S(1), K(1), FCST(1)
DIMENSION Q(1, 24), P(1, 24), NU(1, 24)
DIMENSION B(1), DELX(1), DELX2(25)
DIMENSION DBH(1, 24), DBB(1, 24),
1:DFB(1, 24), DFBID(1, 24), DFBFP(1, 24),
1:DFDS(1, 24), DFDH(1, 24), DFHS(1, 24),
1:DFNH(1, 24), DFNL(1, 24), DFH(1, 24),
5:DFSL(1, 24)
DIMENSION AP(2, 2), APO(2, 23)
DIMENSION Y0(71), YT(25)
DIMENSION AINV(71, 71), BP(71, 25)
DIMENSION CP(25, 71), DP(25, 25)
DIMENSION R1(25, 71), R2(25, 25)
DIMENSION R3(25, 25), R4(25)
DIMENSION R5(25), R6(71), RT(71)
DIMENSION X0(71), XT(71)
DIMENSION F00(71), FTT(25)
DIMENSION F0(71), FT(25)
REAL*8 NU, KLO, LAM, K, NEW, LOSS
OPEN(UNIT=10, NAME='STORE.DAT', ACCESS='SEQUENTIAL',
1:TYPE='OLD', DISPOSE='SAVE', FORM='FORMATTED')
OPEN(UNIT=5, NAME='OUT.DAT', TYPE='NEW', DISPOSE='SAVE')

READ IN THE CONTROL TERMS

N------NUMBER OF DISCRETE INTERVALS
NUMH--NUMBER OF HYDRO PLANTS
NUMS--NUMBER OF THERMAL PLANTS

READ(10,123) N, NUMH, NUMS

123 FORMAT(3110)

READ IN THE VARIABLES

THES VARIABLES ARE THE COEFFICIENTS
FOR THE QUADRATIC MODELS OF: THE FUEL
COSTS (BETAS, GAMMAS), THE HYDRO PLANTS
PERFORMANCE CHARACTERISTICS (ALPH, BETA, GAMMA); AND THE RESERVOIR VARIATIONS
C
AZ, AO, AT). ALSO INCLUDED ARE THE
C SYSTEM'S PROPORTIONALITY CONSTANT (K),
C THE RESERVOIR AREA (S) AND THE AVAILABLE
C AMOUNT OF WATER (B). THE TRANSMISSION
C LOSS COEFFICIENTS (BSS, BSH, BHS, BHH, CS,
C CH, KLO) ARE READ IN AS WELL.

C-----------------------
CALL RONE(ALPHAH, BETAH, GAMAH, AZ, AO, AT,
1 BETAS, GAMAS, CS, CH, BSS, BSH, BHS, N, KLO, K, S, NUMH,
2 NUMS, B, BHS)

C-----------------------
WRITE OUT THE VARIABLES

C-----------------------
WRITE(6, 1000)
1000 FORMAT(1H1, //)
WRITE(6, 1001) NUMS
1001 FORMAT(/, 10X, 'NUMS= ', I10)
WRITE(6, 1002) NUMH
1002 FORMAT(/, 10X, 'NUMH= ', I10)
DO 6001 NH=1, NUMH
WRITE(6, 1003) ALPHAH(NH)
1003 FORMAT(/, 10X, 'ALPHAH=', E30.20)
WRITE(6, 1004) BETAH(NH)
1004 FORMAT(/, 10X, 'BETAH=', E30.20)
WRITE(6, 1005) GAMAH(NH)
1005 FORMAT(/, 10X, 'GAMAH=', E30.20)
WRITE(6, 1006) AZ(NH)
1006 FORMAT(/, 10X, 'AZ(0)= ', E30.20)
WRITE(6, 1007) AO(NH)
1007 FORMAT(/, 10X, 'AO(A-ONE)= ', E30.20)
WRITE(6, 1008) CH(NH)
1008 FORMAT(/, 10X, 'CH(0)= ', E30.20)
WRITE(6, 1009) BHH(NH, NH)
1009 FORMAT(/, 10X, 'BHH(0)= ', E30.20)
WRITE(6, 1021) B(NH)
1021 FORMAT(/, 10X, 'B0= ', E30.20)
WRITE(6, 1020) S(NH)
1020 FORMAT(/, 10X, 'S0= ', E30.20)
CONTINUE
6001 CONTINUE
DO 6002 NS=1, NUMS
WRITE(6, 1001) BETAS(NS)
1011 FORMAT(/, 10X, 'BETAS(0)= ', E30.20)
WRITE(6, 1012) GAMAS(NS)
1012 FORMAT(/, 10X, 'GAMAS(0)= ', E30.20)
WRITE(6, 1013) CS(NS)
1013 FORMAT(/, 10X, 'CS0= ', E30.20)
C ESTIMATE THE INITIAL VALUES

C THESE INITIAL VALUES ARE THE INITIAL
C GUESSES USED IN THE ITERATIVE
C PROCESS OF THE NEWTON-RAPHSON
C METHOD.

C PS------THERMAL POWER
C PH------HYDRO POWER
C LAM------THE INCREMENTAL COST OF
C POWER COEFFICIENT.
C DELT------THE LENGTH OF THE DISCRETE
C INTERVAL
C PHI------THE QUADRATIC MODEL FOR
C THE HYDRO PLANT PERFORMANCE
C CHARACTERIC
C EPCE------THE QUADRATIC MODEL FOR
C RESEVOIR VARIATION.
C Q------THE BIQUADRATIC MODEL FOR
C THE RESEVOIR DISCHARGE

C CALL GUESS(PS,PH,LAM,H,PD,DELT,AZ,AO,AT,
 1 BS,K,N,ALPHAH,BETAH,GAMAH,KLO,CS,CH,BSS,
 2 BSH,BHH,BETAS,GAMAS,NEW,NUMS,NUMH,PHI,EPCE,
 3 Q,BHS)

C .BEGIN THE ITERATION COUNT
C AND CHECK TO SEE THAT THE
C THE NUMBER OF ITERATIONS
C DOES NOT EXCEED THE PRESET
C LIMIT.

C ITCNT=1.5

902 CONTINUE
IF(ITCNT.EQ.15)GOTO 4060

C REVISE FO AND FT

C THESE VECTORS ARE USED IN
C THE CALCULATION OF THE
C MAXIMUM RELATIVE ERROR
C
C L=1
DO 9077 I=1,N
DO 9078 NS=1,NUMS
FO(L)=PS(NS,I)
9078 CONTINUE
FO(L)=LAM(I)
9077 L=L+1
DO 9079 I=2,N
DO 9079 NH=1,NUMH
FO(L)=H(NH,I)
9079 L=L+1
C L=1
DO 9080 I=1,N
DO 9080 NH=1,NUMH
FT(L)=PH(NH,I)
9080 L=L+1
DO 9081 NH=1,NUMH
FT(L)=NEW(NH)
9081 L=L+1
C C CALCULATE THE VALUES
C OF PHI(T) AND EPCE(T)
C THESE ARE THE QUADRATIC MODELS
C OF THE HYDRO PLANT'S PERFORMANCE
C AND THE RESERVOIR VARIATION
C RESPECTIVELY.
C CALL THREE(ALPHAH,BETAH,GAMAH,PHI,N,NUMH)
C CALL FOUR(AZ,AC,AT,H,EPCE,N,NUMH)
C
C SET UP THE VECTORS YO AND YT
C AND DETERMINE IF THEY
C ARE WITHIN THE ALLOWABLE
C LIMIT.
C
C THESE VECTORS ARE DESCRIBED IN
C IN THE TEXT. BRIEFLY, THEY ARE
C THE FUNCTIONS WHICH ARE TO BE
C MINIMIZED; ONCE THE VALUE OF
C THE FUNCTIONS ARE CALCULATED
C THEY ARE THEN COMPARED TO A
C
MINIMUM CRITERION VALUE WHICH
IS THE TEST FOR CONVERGENCE.

CALL T(FS,PH,PD,EL,FH,PH,LM,NL,EPCE,
1 PH, I,DELT, PD, KLO, YO, YT, BETAS, GAMAS, GAMAH,
2 BETAH, CH, CS, BSS, BSH, BSS, BHH, B, S, FLO, N, NEW,
3 AO, AT, NUNS, NUMH, P, Q, LYO, LYT)
C
DO 4000 I=1,LYO
IF(DABS(YO(I)) .GT. 1.E-5) GOTO 4020
IF(I.EQ.LYO) GOTO 4010
4000 CONTINUE
4010 DO 4011 I=1,LYT
IF(DABS(YT(I)) .GT. 1.E-5) GOTO 4020
IF(I.EQ.LYT) GOTO 4030
4011 CONTINUE
C
DETERMINE THE ELEMENTS OF THE
JACOBIAN MATRIX AND SET UP THE
PARTITIONED Matricies.

4020 CONTINUE
CALL JAC(ALPHAH, BETAH, GAMAH, GAMAS, EPCE, LM,
1 DELT, PH, BSS, BSH, BHH, CS, CH, N, K, S, H, PH,
2 PS, PD, KLO, AO, AT, NEW, NUNS, NUMH, P, Q, IR, IC, IIR, IIC,
3 MU, LYO, LYT, DFSS, DFS, DFS, DFS, DFS, DFS, DFS, DFS, DFS,
4 DFS, DFS,
5 DFS, DFS, LAY, LAY, LAY, AIV, BP, CP, DP, AP, AFO)
C
CALCULATE THE DIFFERENCE ELEMENT
VECTORS AND DETERMINE IF THEY
ARE WITHIN THE TOLERANCE LIMIT.

C
CALL X1MULT(CP, AIV, R1, LYT, LYO, LYT)
C
CALL X1MULT(R1, BP, R2, LYT, LYO, LYT)
C
DO 9000 I=1,LYT
DO 9000 J=1,LYT
R3(I,J) = DP(I,J) - R2(I,J)
9000 CONTINUE
MA=LYT
IA=LYT
CALL MINVRD(R3, IA, MA, DET, IER, IRR, ICC)

CALL X2MULT(R1, YO, R4, LYT, LYO)

DO 9001 I=1, LYT
 R5(I)=XT(I)-R4(I)
9001 CONTINUE

CALL X2MULT(R3, R5, XT, LYT, LYT)

CALL X2MULT(BP, XT, R6, LYO; LYT)

DO 9002 I=1, LYO
 R7(I)=YO(I)-R6(I)
9002 CONTINUE

CALL X2MULT(AINV, R7, XO, LYO, LYO)

REVISE THE VARIABLES

L=1
DO 3000 I=1, N
 DO 3001 NS=1, NUMS
 PS(NS, I)=PS(NS, I)-X0(L)
 3001 L=L+1
 LAM(I)=LAM(I)-X6(L)
3000 L=L+1

DO 3002 I=2, N
 DO 3002 NH=1, NUMH
 H(NH, I)=H(NH, I)-XO(L)
 3002 L=L+1

L=1
DO 3003 I=1, N
 DO 3003 NH=1, NUMH
 PH(NH, I)=PH(NH, I)-XT(L)
3003 L=L+1
DO 3004 NH=1,NUMH
NEW(NH)=NEW(NH)-XT(L)
L=L+1
3004 CONTINUE

SET UP THE NEW
VECTORS FOO AND FTT

THESE VECTORS ARE USED IN
THE CALCULATION OF THE
MAXIMUM RELATIVE ERROR

L=1
DO 9070 I=1,N
DO 9071 NS=1,NUMS
FOO(L)=PS(NS,I)
9071 [L=L+1]
FOO(L)=LAM(I)
9070 [L=L+1]
DO 9072 I=2,N
DO 9072 NH=1,NUMH
FOO(L)=H(NH,I)
9072 [L=L+1]

L=1
DO 9073 I=1,N
DO 9073 NH=1,NUMH
FTT(L)=PH(NH,I)
9073 [L=L+1]
DO 9074 NH=1,NUMH
FTT(L)=NEW(NH)
9074 [L=L+1]

CALCULATE THE RELATIVE
ERROR AND DETERMINE IF
IT IS WITHIN THE
ALLOWABLE LIMITS.

DO 9015 I=1,LYO
DELX1(I)=(FOO(I)-FOO(I))/FOO(I)
9015 CONTINUE
DO 9016 I=1,LYT
DELX2(I)=(FTT(I)-FTT(I))/FTT(I)
9016 CONTINUE
TESTX=DABS(DELX1(I))
DO 5105 NN=2, LYO
 IF(DABS(DELX1(NN)).GT.TESTX) TESTX=
 DABS(DELX1(NN))
5105 CONTINUE
 DO 5106 NN=1, LYT
 IF(DABS(DELX2(NN)).GT.TESTX) TESTX=
 DABS(DELX2(NN))
5106 CONTINUE
WRITE(6,5107) ITCNT, TESTX
5107 FORMAT(//, 10X, 'THE MAXIMUM RELATIVE ERROR FOR'
 1, 'ITERATION NUMBER', I3, //, 10X, 'IS ',
 2 E20.10, /)

DO 9010 I=1, LYO
 IF(DABS(DELX1(I)).GT.1.E-5) GOTO 4070
 IF (I.EQ.LYO) GOTO 9011
9010 CONTINUE

DO 9012 I=1, LYT
 IF(DABS(DELX2(I)).GT.1.E-5) GOTO 4070
 IF (I.EQ.LYT) GOTO 4030
9012 CONTINUE

REVISE THE ITERATION COUNT

4070 CONTINUE
 ITCNT=ITCNT+1
 GOTO 902

CALCULATE THE THERMAL
FUEL COSTS AND THE SYSTEM
LOSES.

4030 CONTINUE

FCST(NS)=0.
DO 4435 I=1, N
 DO 4435 NS=1, NUMS
 FCST(NS)=FCST(NS)+(1+BETAS(NS)*PS(NS,I)+
 (GAMAS(NS)*PS(NS,I)**2.))
4435 CONTINUE

DO 4445 I=1, N
SUMM=0.
DO 4448 NS=1,NUMS
 SUMM=SUMM+PS(NS,I)
4448 CONTINUE
DO 4449 NH=1,NUMH
 SUMM=SUMM+PH(NH,I)
4449 CONTINUE
 LOSS(I)=SUMM-PD(I)
4445 CONTINUE
 GOTO 4081

C**
C**
C**
C**
 START
C**
C**
C**
 OF
C**
C**
 PRINT
C**
C**
 SECTION
C**
C
C START HERE FOR NON-COVERING SYSTEM

4080 WRITE(6,5000)
5000 FORMAT(1H1)
 WRITE(6,5001)
5001 FORMAT(10X,'THE PROGRAM IS EXITING DUE TO',1X,'NON-CONVERGENCE')
 GOTO 9999

C
C START HERE FOR CONVERGING SYSTEM

C
C 4081 WRITE(6,5050)
5050 FORMAT(1H1)
 WRITE(6,5051)
5051 FORMAT(20X,'------------------',1X,'------------------')
 WRITE(6,5052)ITCNT
5052 FORMAT(15X,'THE SOLUTION WAS OBTAINED IN',I3,' I T E R A T I O N S ')
 WRITE(6,5051)
 WRITE(6,5050)
C
 DO 5110 NH=1,NUMH
5110 NUMBH(NH)=NH
 DO 5111 NS=1,NUMS
5111 NUMBS(NS)=NS
C
WRITE(6,5056)
FORMAT(30X, 'B A G E 1', /////////////)
WRITE(6,5051)
WRITE(6,5057)
FORMAT(25X, 'TIME', IX, <NUMS>(3X, 'THERMAL'))
WRITE(6,5058)
FORMAT(24X, 'PERIOD', <NUMS>(4X, 'PLANT'))
WRITE(6,5059)(NUMBERS(NS), NS=1, NUMS)
FORMAT(30X, <NUMS>(5X, 'NO:', I2))
WRITE(6,5060)
FORMAT(25X, '(HR)', IX, <NUMS>(5X, 'MW', 3X))
WRITE(6,5051)
DO 5061 I=1, N
WRITE(6,5062)I, PS(NS, I), NS=1, NUMS)
FORMAT(26X, I2, 2X, <NUMS>(3X, F7.2))
CONTINUE
WRITE(6,5051)
WRITE(6,5050)
WRITE(6,5063)
FORMAT(30X, 'P A G E 2', /////////////)
WRITE(6,5051)
WRITE(6,5064)
FORMAT(25X, 'TIME', IX, <NUMH>(4X, 'HYDRO', 1X))
WRITE(6,5065)
FORMAT(24X, 'PERIOD', <NUMH>(4X, 'PLANT'))
WRITE(6,5066)(NUMBERS(NH), NH=1, NUMH)
FORMAT(30X, <NUMH>(5X, 'NO:', I2))
WRITE(6,5067)
FORMAT(25X, '(HR)', IX, <NUMH>(5X, 'MW', 3X))
WRITE(6,5051)
DO 5068 I=1, N
WRITE(6,5069)I, PH(NH, I), NH=1, NUMH)
FORMAT(26X, I2, 2X, <NUMH>(3X, F7.2))
CONTINUE
WRITE(6,5051)
WRITE(6,5050)
WRITE(6,5070)
FORMAT(30X, 'P A G E 3', /////////////)
WRITE(6,5051)
WRITE(6,5071)
FORMAT(25X, 'TIME', IX, <NUMH>(3X, 'NET', 2X))
WRITE(6,5072)
FORMAT(30X, <NUMH>(3X, 'HEAD', I1X))
WRITE(6,5073)
FORMAT(24X, 'PERIOD', <NUMH>(3X, 'PLANT'))
WRITE(6, 5074) (NUMBEH(NH), NH=1, NUMH)

WRITE(6, 5075)

WRITE(6, 5076) I=1, N

WRITE(6, 5077) I, (H(NH, I), NH=1, NUMH)

C WRITE(6, 5078) FORMAT(30X, 'PAGE 4', '/////////////')

WRITE(6, 5079) FORMAT(25X, 'TIME', 5X, 'POWER', 5X, 'LAMBDA')

WRITE(6, 5080) FORMAT(24X, 'PERIOD', 4X, 'DEMAND', 4X, 'LOSSES')

WRITE(6, 5081) FORMAT(26X, 'HR', 8X, 'MW', 8X, '7X', 4/MW')

WRITE(6, 5082) DO 5082 I=1, N

WRITE(6, 5083) I, PD(I), LOSS(I), LAM(I)

WRITE(6, 5084) FORMAT(26X, 'HR', 8X, 'MW', 8X, '7X', 4/MW')

WRITE(6, 5085) DO 5089 I=1, N

WRITE(6, 5086) (NU(NH, I), NH=1, NUMH)

C WRITE(6, 5087) FORMAT(30X, 'PAGE 5', '/////////////')

WRITE(6, 5088) FORMAT(26X, 'HR', 2X, 'NUMH>(4X, '$/CF', 1X))

WRITE(6, 5089) DO 5089 I=1, N

WRITE(6, 5090) (NU(NH, I), NH=1, NUMH)

C WRITE(6, 5091) FORMAT(30X, 'PAGE 6', '/////////////')
WRITE(6,5051)
WRITE(6,5093)
5093 FORMAT(25X,'TIME',1X,<NUMH>(3X,'RESEVIO'))
WRITE(6,5094)
5094 FORMAT(26X,'HR',2X,<NUMH>(4X,'INFLOW',1X))
WRITE(6,5095)
5095 FORMAT(30X,<NUMH>(5X,'PLANT',1X))
WRITE(6,5096)(NUMBEH(NH),NH=1,NUMH)
5096 FORMAT(30X,<NUMH>(5X,'NO',I2,1X))
WRITE(6,5097)
5097 FORMAT(26X,'HR',2X,<NUMH>(5X,'CPS',3X))
WRITE(6,5091)
DO 5098 I=1,N
WRITE(6,5099)(FLO(NH,I),NH=1,NUMH)
5099 FORMAT(26X,I2,2X,<NUMH>(3X,F8.1))
5098 CONTINUE
WRITE(6,5051)
WRITE(6,5050)
C
WRITE(6,5100)
5100 FORMAT(30X,'PAGE 7',/)/)
WRITE(6,5051)
WRITE(6,5101)
5101 FORMAT(24X,'THE VALUE OF THE COST FUNCTIONS FOR'
1,'/20X,'THE THERMAL GENERATING PLANTS IN ($/DAY)'
2 'ARE'//)
WRITE(6,5051)
DO 5103 NS=1,NUMS
WRITE(6,5102)(NUMBS(NS),FCST(NS)
5102 FORMAT(/,24X,'PLANT NO',I3,5X,'FUEL COST '
1 F8.2)
5103 CONTINUE
WRITE(6,5104)
5104 FORMAT(/)
WRITE(6,5051)
WRITE(6,5050)
CPE
SUBROUTINE RONE(ALPHAH, BETAH, GAMAH, AZ, AO, AT,
 1 BETAS, GAMAS, CS, CH, BSS, BSH, BHH, N, KLO, K, S, NUMH,
 2 NUMS, B, BHS)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION K(NUMH), ALPHAH(NUMH)
DIMENSION BETAH(NUMH), GAMAH(NUMH)
DIMENSION AZ(NUMH), AO(NUMH), AT(NUMH)
DIMENSION BHH(NUMH, NUMH), S(NUMH), B(NUMH)
DIMENSION BETAS(NUMS), GAMAS(NUMS), BSS(NUMH, NUMS)
DIMENSION CS(NUMS), BSS(NUMS, NUMS), BSH(NUMH, NUMH)
DIMENSION CH(NUMH)
REAL*8 KLO, K
C
DO 100 NH=1, NUMH
READ(10, 111) ALPHAH(NH), BETAH(NH), GAMAH(NH)
100 CONTINUE
C
DO 200 NH=1, NUMH
READ(10, 111) AZ(NH), AO(NH), AT(NH)
200 FORMAT(3E10.5)
C
DO 201 NH=1, NUMH
READ(10, 1) CH(NH), S(NH)
201 FORMAT(2E10.5)
C
DO 202 NH=1, NUMH
READ(10, 2) B(NH), K(NH)
202 FORMAT(3E10.5)
C
DO 203 NS=1, NUMS
READ(10, 3) BETAS(NS), GAMAS(NS), CS(NS)
203 FORMAT(3E10.5)
C
READ(10, 5) KLO
5 FORMAT(E10.5)
C
DO 102 NSA=1, NUMS
DO 102 NSB=1, NUMS
READ(10, 6) BSS(NSA, NSB)
102 FORMAT(E10.5)
C
DO 104 NS=1,NUMS
DO 104 NH=1,NUMH
READ(10,8)BSH(NS,NH)
FORMAT(E10.5)
CONTINUE
C
DO 105 NH=1,NUMH
DO 105 NS=1,NUMS
READ(10,9)BSH(NH,NS)
FORMAT(E10.5)
CONTINUE
C
DO 103 NHA=1,NUMH
DO 103 NHB=1,NUMH
READ(10,7)BSH(NHA,NHB)
FORMAT(E10.5)
CONTINUE
C
RETURN
END
C

C* SUBROUTINE RTWO ***
C***
C
SUBROUTINE RTWO(PD,FLO,DELT,N,H,NUMH)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION DELT(N),PD(N)
DIMENSION FLO(NUMH,N),H(NUMH,N)
DO 100 I=1,N
 DO 101 NH=1,NUMH
 READ(10,1)FLO(NH,I)
 FORMAT(E10.5)
 CONTINUE
C
I=1
 DO 101 NH=1,NUMH
 READ(10,2)H(NH,I)
 FORMAT(E10.5)
 CONTINUE
C
 DO 102 I=1,N
 READ(10,3)PD(I),DELT(I)
 FORMAT(2E10.5)
 WRITE(6,4002)I,PD(I)
C
4002 FORMAT(5X,'I=',13,'PD=',E20.10)
 WRITE(6,4003)I,DELT(I)
C
4003 FORMAT(5X,'I=',13,'DELT=',E20.10)
 CONTINUE
C
RETURN
END
SUBROUTINE THREE(ALPHA, BETA, GAMAH, PH,
1 PH, N, NUMH, PD)
IMPLICIT REAL*8(A-H, O-Z)
DIMENSION ALPHA(NUMH), BETA(NUMH), GAMAH(NUMH)
DIMENSION PH(NUMH, N)
DO 1 I = 1, N
DO 1 NH = 1, NUMH
PH(NH, I) = ALPHA(NH) + BETA(NH) * PH(NH, I) +
1 GAMAH(NH) * PH(NH, I) ** 2.
1 CONTINUE
RETURN
END

SUBROUTINE FOUR(AZ, AO, AT, H, EPCE, N, NUMH)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION EPCE(NUMH, N), H(NUMH, N+1)
DIMENSION AZ(NUMH, N), AO(NUMH), AT(NUMH)
DO 1 I = 1, N
DO 1 NH = 1, NUMH
EPCE(NH, I) = AZ(NH) + AO(NH) * H(NH, I) +
1 AT(NH) * H(NH, I) ** 2.
1 CONTINUE
RETURN
END

SUBROUTINE T(FS, FH, FD, FI, FD, PS, PH, LAM, H, EPCE,
1 PH1, K, DELT, PD, KLO, IO, IT, BETAS, GAMAS, GAMAH, BETAH,
2 CH, CS, BSS, BSR, BHH, B, S, FLO, N, NEW, AO, AT, NUMS,
3 NUMH, P, Q, LQ, LIT)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION FS(NUMS, N), FH(NUMH, N), FD(N), S(NUMH)
DIMENSION FI(NUMH, N), PS(NUMS, N), PH(NUMH, N)
DIMENSION LAM(N), H(NUMH, N), PD(N), BSS(NUMS, NUMS)
DIMENSION PHI(NUMH,N),BSH(NUMS,NUMH),BHS(NUMH,NUMS)
DIMENSION EPCE(NUMH,N),Q(NUMH,N),BHH(NUMH,NUMH)
DIMENSION BETAS(NUMS)
DIMENSION AQ(NUMH),AT(NUMH)
DIMENSION GAMAH(NUMH),BETHA(NUMH)
DIMENSION P(NUMH,N),GAMAS(NUMS)
DIMENSION FLO(NUMH,N),DELT(N),K(NUMH)
DIMENSION NEW(NUMH)
DIMENSION FB(NUMH),B(NUMH),CS(NUMS),CH(NUMH)
DIMENSION YO(LOYO),YT(LYT)
REAL*8 KLO,K,LAM,NEW

C
C CALCULATE FS(T)
C
DO 1 I=1,N
DO 1 NS=1,NUMS
F1=0.
DO 2 NH=1,NUMH
2 F1=F1+(2.*BSH(NS,NH)*PH(NH,I))
F6=0.
DO*15 NSA=1,NUMS
15 F6=F6+2.*BSS(NS,NSA)*PS(NSA,I)
FS(NS,I)=BETAS(NS)+2.*GAMAS(NS)*PS(NS,I)
1 LAM(I)=(CS(NS)+F6+F1)
CONTINUE

C
C CALCULATE Q(T)
C
DO 3 I=1,N
DO 3 NH=1,NUMH
Q(NH,I)=K(NH)*EPCE(NH,I)*PHI(NH,I)
CONTINUE

C
C CALCULATE PH(T)
C
DO 4 I=1,N
DO 4 NH=1,NUMH
F2=0.
DO 5 NS=1,NUMS
5 F2=F2+(2.*BHS(NH,NS)*PS(NS,I))
P(NH,I)=(K(NH)/S(NH))*0.00012913*
1 PHI(NH,I)*(AO(NH)+2.*AT(NH)*B(NH,I))
2 *DELT(I)*(I-1)
F7=0.
DO 16 NHA=1,NUMH
16 F7=F7+2.*BHH(NH,NHA)*PH(NHA,I)
C=CH(NH)+F2+F7
Z=2.-((2.*GAMAH(NH)+(BETHA(NH)+PHI(NH,I)))*
1 PHI(NH,I))
PH(NH,I)=NEW(NH)*DEXP(P(NH,I))*Z
(Q(NH,I)/PH(NH,I)) + C^LAM(I)
CONTINUE

CALCULATE FI(I)
J=N-1
DO 6 I=1,J
PO 6 NH=1,NUMH
X1=H(NH,I)-H(NH,I+1)
X2=DEL(T)/S(NH)*0.00012913
X3=LOC(NH,I)-Q(NH,I)
FI(NH,I)=X1+X2*X3
CONTINUE

CALCULATE FD(I)
DO 10, I=1,N
F3=0.
DO 7 NS=1,NUMS
F3=F3+(CS(NS)*PS(NS,I))
F8=0.
JJJ=NUMS-1
DO 17 NS=1,JJJ
DO 17 NSA=2,NUMS
F8=F8+BSS(NS,NHA)*PS(NS,I)
F4=0.
DO 8 NH=1,NUMH
F4=F4+(CH(NH)*PH(NH,I))
F9=0.
JJ=NUMH-1
DO 18 NH=1,JJ
DO 18 NHA=2,NUMH
F9=F9+BSS(NH,NHA)*PS(NH,I)
F5=0.
DO 9 NS=1,NUMS
DO 9 NH=1,NUMH
F5=F5+BSS(NS,NH)*PS(NS,I)
F10=0.
DO 19 NH=1,NUMH
DO 19 NS=1,NUMS
F10=F10+BSS(NS,NH)*PS(NH,I)
C
F11=0.
DO 20 NH=1,NUMH
F11=F11+BSS(NH,NH)*PH(NH,I)**2
C
F12=0.
DO 21 NS=1,NUMS
F12=F12+BSS(NS,NH)*PS(NS,I)**2
C
FD(I)=KLO+PD(I)+F3+F4+F5+F6+F9+F11+F12+F10
10 CONTINUE
C
CALCULATE FB(T)
C
DO 11 NH=1,NUMH
 SUM=0.
11 CONTINUE
DO 12 I=1, N
 AC=Q(NH,I)*DELT(I)*3600.
 SUM=SUM+AC
12 CONTINUE
FB(NH)=B(NH)-SUM
11 CONTINUE
C
SET UP THE VECTOR Y0
C
L=1
DO 1001 I=1, N
 DO 1000 NS=1, NUMS
 X0(L)=FS(NS,I)
1000 L=L+1
 X0(L)=FD(I)
1001 L=L+1
 J=N-1
 DO 1002 I=1, J
 DO 1003 NH=1, NUMH
 Y0(L)=FI(NH,I)
1003 L=L+1
1002 CONTINUE
C
SET UP THE VECTOR YT
C
L=1
DO 1005 I=1, N
 DO 1004 NH=1, NUMH
 YT(L)=FH(NH,I)
1005 L=L+1
1004 CONTINUE
 DO 1006 NH=1, NUMH
 YT(L)=FB(NH)
1006 L=L+1.
RETURN
END

SUBROUTINE JAC(ALPHAH, BETAH, GAMAH, GAMAS, EPCE, LAMH, DELT, PHI, BSS, BSH, BHH, CS, CH, N, K, S, H, PH, PS, PD, KLO, AO, AT, NEW, NAMS, NUMH, P, Q, IR, IC, IIR, IIQ, NU, LYO, LYT, DFSS, DFSH, DFSL, DFHS, DFHH, DFHL, DPFD, DPHN, DPDS, DFPH, DFID, DFBH, DFBD, DPDP, LAP, LAPO, AINV, BP, CP, DP, AP, APO)
IMPLICIT REAL*8(A-H, O-Z)
DIMENSION ALPHAH(NUMH), BETAH(NUMH), GAMAH(NUMH), GAMAS(NUMH), EPCE(NUMH), LAMH(NUMH)
DIMENSION DELT(N), PHI(NUMH), BSS(NAMS, NUMS), BSH(NAMS, NUMS), BHH(NUMH, NUMH), CS(NUMS)
DIMENSION CH(NUMH), K(NUMH), S(NUMH), H(NUMH, N), PH(NUMH, N), PS(NAMS, N), PD(N), AO(NUMH)
DIMENSION AT(NUMH), IR(LAP), IC(LAP)
DIMENSION IIR(LAPO), IIIC(LAPO), BSH(NUMH, NUMS)
DIMENSION P(NUMH, N), Q(NUMH, N)
DIMENSION NU(NUMH, N), NEW(NUMH)
DIMENSION DFBD(NUMH, N), DFPH(NUMH, N), DFDS(NUMH, N), DFHS(NUMH, N), DFHH(NUMH, N), DFHL(NUMH, N),
DIMENSION DFBD(NUMH, N), DFPH(NUMH, N), DFDS(NUMH, N), DFHS(NUMH, N), DFHH(NUMH, N), DFHL(NUMH, N),
DIMENSION AINV(LYO, LYT), BP(LYO, LYT)
DIMENSION CP(LYT, LYT), DP(LYT, LYT)
REAL*8 KLO, K, LAM, NEW, NU

CALCULATE THE ELEMENTS OF THE JACOBIAN MATRIX.

DO 100 I = 1, N

DO 101 NS = 1, NAMS
FF1 = 0.
DO 10 NSA = 1, NAMS
FF1 = FF1 + BSS(NS, NSA) * LAM(I)
10 DFSNS(NS, I) = 2.0 * (GAMAS(NS) + FF1)
101 CONTINUE
IF (NUMS .EQ. NUMH) GOTO 90
IF (NUMS .LT. NUMH) GOTO 91
IF (NUMS .GT. NUMH) GOTO 92

90 DO 102 NS = 1, NUMS
 F1 = 0.
 DO 103 NH = 1, NUMH
 F1 = F1 + (2. * BSH(NS, NH) * LAM(I))
 DFHS(NS, I) = F1
 CONTINUE

102 DO 106 NH = 1, NUMH
103 F3 = F3 + (2. * BSH(NH, NS) * LAM(I))
 DFHS(NH, I) = F3
CONTINUE

GOTO 93

91 DO 1020 NS = 1, NUMS
 F1 = 0.
 DO 1030 NH = 1, NUMH
 F1 = F1 + (2. * BSH(NS, NH) * LAM(I))
 DFHS(NS, I) = F1
 CONTINUE

1020 DO 1060 NH = 1, NUMH
1030 F3 = F3 + (2. * BSH(NH, NS) * LAM(I))
 DFHS(NH, I) = F3
1060 CONTINUE

GOTO 93

92 DO 1021 NS = 1, NUMH
 F1 = 0.
 DO 1031 NH = 1, NUMH
 F1 = F1 + (2. * BSH(NS, NH) * LAM(I))
 DFHS(NS, I) = F1
 CONTINUE

1021 DO 1061 NH = 1, NUMH
1031 F3 = F3 + (2. * BSH(NH, NS) * LAM(I))
 DFHS(NH, I) = F3
1061 CONTINUE

GOTO 93

93 DO 104 NS = 1, NUMS
FF2=0;
DO 11 NSA=1,NUMS
11
FF2=FF2+2.*BSS(NS,NSA)*PS(NSA,I)
F2=0.
DO 105 NH=1,NUMH
105
F2=F2+(2.*BSH(NS,NH)*PH(NH,I))
DFSIL(NS,I)=CS(NS)+FF2+F2
104 CONTINUE
C.
DO 108 NH=1,NUMH
FF3=0.
DO 12 NHA=1,NUMH
12
FF3=FF3+2.*BHH(NH,NHA)
FF3=FF3*LAM(I)
NU(NH,I)=NEW(NH)*DEXP(P(NH,I))
WW=(BETAH(NH)+2.*GAMAH(NH)*PH(NH,I))
WX=(AO(NH)+2.*AT(NH)*H(NH,I))
WY=(K(NH)*DELT(I))/S(NH)
WZ=2.*GAMAH(NH)
DPHH(NH,I)=K(NH)*NU(NH,I)*EPCE(NH,I)
1*(WZ+WX*WW**2.*0.00012913)+FF3
108 CONTINUE*
C.
DO 109 NH=1,NUMH
FF4=0.
DO 13 NHA=1,NUMH
13
FF4=FF4+2.*BHH(NH,NHA)*PH(NHA,I)
F4=0.
DO 110 NS=1,NUMS
110
F4=F4+(2.*BHS(NS,NH)*PS(NS,I))
DPHL(NH,I)=CH(NH)+F4+FF4
109 CONTINUE
C.
DO 112 NH=1,NUMH
DPHN(NH,I)=(NU(NH,I)/NEW(NH))
1*(2.*GAMAH(NH)*PH(NH,I)+BETAH(NH))
2*K(NH)*EPCE(NH,I)
112 CONTINUE
C.
DO 113 NS=1,NUMS
FF5=0.
DO 14 NSA=1,NUMS
14
FF5=FF5+2.*BSS(NS,NSA)*PS(NSA,I)
F5=0.
DO 114 NH=1,NUMH
114
F5=F5+(BSH(NS,NH)*PH(NH,I))
DPDS(NS,I)=CS(NS)+FF5+F5
113 CONTINUE
C.
DO 115 NH=1,NUMH
FF6 = 0.
DO 15 NHA = 1, NUMH
15 FF6 = FF6 + 2.*BHH(NH, NHA) * PH(NHA, I)
 FF6 = 0.
DO 116 NS = 1, NUMS
116 F6 = F6 + (BHS(NH, NS) * PS(NS, I))
 CDFH(NH, I) = CH(NH) + FF6 + F6
 CONTINUE
C
 DO 117 NH = 1, NUMH
 CDFH(NH, I) = -K(NH) * EPCE(NH, I) *
 1 (BETAH(NH) + 2.*GAMAH(NH) * PH(NH, I))
 2 *(DEL Tin(NH) / S(NH)) * .00012913
 CONTINUE
C
 DO 118 NH = 1, NUMH
 CDFIDP(NH, I) = -1.
118 CONTINUE
DO 120 NH = 1, NUMH
120 CDFH(NH, I) = 3600. * K(NH) * DELT(I) *
 1 *EPCE(NH, I) * (BETAH(NH) + 2.*GAMAH(NH)
 2 * PH(NH, I))
 CONTINUE
C
 DO 121 NH = 1, NUMH
 CDFBD(NH, I) = 3600. * K(NH) * DELT(I) *
 1 * PH(NH, I) * (AO(NH) + 2.*AT(NH) * H(NH, I))
 2 CONTINUE
100 CONTINUE
C
 DO 111 I = 2, N
 DO 111 NH = 1, NUMH
 E = AO(NH) + 2.*AT(NH) * H(NH, I) *
 1 *(K(NH) / S(NH)) * DELT(I) * .00012913
 2 * PH(NH, I) * EPCE(NH, I))
 CDFH(NH, I) = K(NH) * NU(NH, I) * E *
 1 *(BETAH(NH) + 2.*GAMAH(NH) * PH(NH, I))
 CONTINUE
C
C*) SET UP THE MATRICES
C*) A(I) AND CONSTRUCT
C
THE INVERSE OF JA
C

LL=1
MM=1
DO 500 I=1,N
DO 499 II=1,LAP
DO 499 J=1,LAP
AP(II,J)=0:
499 CONTINUE
L=1:
M=1
DO 501 NS=1,NUMS
AP(L,M)=DFSS(NS,I)
L=L+1.
501 M=M
L=NUMS+1
M=1
DO 502 NS=1,NUMS
AP(L,M)=DFDS(NS,I)
502 M=M+1
M=NUMS+1
L=1
DO 503 NS=1,NUMS
AP(L,M)=DFSLS(NS,I)
503 L=L+1
DO 517 III=1,LAP
DO 517 JJJ=1,LAP
517 CONTINUE
C
FIND THE INVERSE
C
MA=LAP
IA=LAP
CALL MINVRD(AP,IA,MA,DST,IER,IR,IC)
C
POSITION THE BLOCK IN THE
C MATRIX AINV
C
MM=LL
DO 504 II=1,LAP
DO 505 J=1,LAP
AINV(LL,MM)=AP(II,J)
505 MM=MM+1
LL=LL+1
504 MM=MM-LAP
LL=LAP*I+1
500 CONTINUE
SET THE I'TH 1 BLOCK

DO 509 I=1,LAPO
DO 509 J=1,LAPO
APO(I,J)=0.
CONTINUE

L=1
M=1
J=N-1
DO 510 I=1,J
DO 511 NH=1,NUMH
APO(L,NH)=DFIDP(NH,I)
L=L+1
M=M+1
CONTINUE
IF(N.EQ.1)GOTO 516
M=1
L=NUMH+1
J=1
DO 512 I=1,2,J
DO 513 NH=1,NUMH
APO(L,NH)=DFID(MH,I)
L=L+1
M=M+1
CONTINUE

INVERT THE BLOCK

MA=LAPO
IA=LAPO
CALL MINVRD(APO,IA,MA,DET,IER,IIR,IIC)

POSITION THE INVERSE
WITHIN THE MATRIX
AINV

516 LL=(LAP*N)+1
MM=LL
DO 514 I=1,LAPO
DO 515 J=1,LAPO
AINV(LL,MM)=APO(I,J)
MM=MM+1
LL=LL+1
MH=MM-LAPO
SET UP THE MATRIX "JB"

DO 519 I=1,LYO
DO 519 J=1,LIT
BP(I,J)=0.
CONTINUE

IF(NUMS.LE.NUMH)GOTO520
IF(NUMS.GT.NUMH)GOTO525

M=1
L=1
DO 521 I=1,N
DO 522 NS=1,NUMS
BP(L,M)=DFSH(NS,I)
M=M+1
L=L+1
L=((NUMS+1)*I)+1
M=(NUMH*I)+1
GOTO530

M=1
L=1
DO 526 I=1,N
DO 527 NS=1,NUMH
BP(L,M)=DFSH(NS,I)
M=M+1
L=L+1
M=(NUMH*I)+1
L=((NUMS+1)*I)+1

M=1
L=NUMS+1
DO 531 I=1,N
DO 532 NH=1,NUMH
BP(L,M)=DFDH(NH,I)
M=M+1
L=L+NUMS+1

SET UP THE MATRIX "JC"

DO 535 I=1,N
 DO 535 J=1,N
 CP(I,J)=0.
 CONTINUE
 IF(NUMS.GE.NUMH) GOTO 540
 IF(NUMS.LT.NUMH) GOTO 545

M=1
L=1
DO 541 I=1,N
 DO 542 NH=1,NUMH
 CP(L,M)=DFHS(NH,I)
 L=L+1
 M=M+1
 L=(NUMH*I)+1
 M=((NUMS+1)*I)+1
GOTO 550

M=1
L=1
DO 546 I=1,N
 DO 547 NH=1,NUMS
 CP(L,M)=DFHS(NH,I)
 L=L+1
 M=M+1
 L=(NUMH*I)+1
 M=((NUMS+1)*I)+1

M=NUMS+1
L=1

DO 533 I=1,J
 DO 533 NH=1,NUMH
 BP(L,M)=DFIH(NH,I)
 L=L+1
 M=M+1

L=(NUMS*N)+1+N
M=1
J=N-1.
DO 551 I=1,N
DO 552 NH=1,NUMH
CP(L,M)=DFHL(NH,I)
 L=L+1
 M=M+NUMS+1
C L=NUMH+1
 M=(NUMS*N)+1+N
 DO 553 I=2,N
 DO 553 NH=1,NUMH
 CP(L,M)=DFHD(NH,I)
 L=L+1
 M=M+1
C M=NUMS*N+1+N
 DO 555 I=2,N
 L=(NUMH*N)+1
 DO 554 NH=1,NUMH
 CP(L,M)=DFHD(NH,I)
 L=L+1
 M=M+1
C CONTINUE
C SET UP THE MATRIX " JD "
C
 DO 556 I=1,LYT
 DO 556 J=1,LYT
 DP(I,J)=0.
C CONTINUE
 L=1.
 M=1.
 DO 560 I=1,N
 DO 561 NH=1,NUMH
 DP(L,M)=DFHH(NH,I)
 L=L+1
 M=M+1
C CONTINUE
C
 L=1.
 DO 562 I=1,N
 M=(NUMH*N)+1
 DO 563 NH=1,NUMH
 DP(L,M)=DFHN(NH,I)
 L=L+1
 M=M+1.
CONTINUE.

M=1
DO 564 I=1,N
L=(NUMH*N)+1
DO 565 NH=1,NUMH
DP(L,M)=DFBH(NH,I)
L=L+1
565
M=M+1
564 CONTINUE
RETURN
END

SUBROUTINE GUESS(PS,PH,LAM,H,PD,DELT,AZ,AO,AT,B,
S,K,N,ALPHAH,BETAH,GAMAH,KLO,CS,CH,BSS,BSH,BHH,
BETAS,GAMAS,NEW,NUMS,NUMH,PHI,EPCE,Q,BHS).
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION PS(NUMS,N),PH(NUMH,N),LAM(N),H(NUMH,N)
DIMENSION PD(N),EPCE(NUMH,N),PHI(NUMH,N),Q(NUMH,N)
DIMENSION DELT(N),AZ(NUMH),AO(NUMH),AT(NUMH),B(NUMH)
DIMENSION S(NUMH),K(NUMH),ALPHAH(NUMH),BHS(NUMH,NUMS)
DIMENSION BETAH(NUMH),GAMAH(NUMH),CS(NUMS),CH(NUMH)
DIMENSION BSS(NUMS,NUMS),BSH(NUMS,NUMH),BETAS(NUMS)
DIMENSION GAMAS(NUMS),BHH(NUMH,NUMH),NEW(NUMH)
REAL*8 LAM,NEW,K,KLO

TF=0.
DO 10 I=1,N
TF=TF+DELT(I)
10 CONTINUE
I=1
DO 11 NH=1,NUMH
EPCE(NH,I)=AZ(NH)+(AO(NH)*H(NH,I))*
(1*(AT(NH)**H(NH,I)**2.))
BP=B(NH)/(TF*K(NH)*EPCE(NH,I)**3600.)
XX=DSQRT((BETAH(NH)**2.)-(4.*GAMAH(NH)
1*(ALPHAH(NH)-BP)))
PH(NH,I)=(-BETAH(NH)+XX)/(2.*GAMAH(NH)).
11 CONTINUE
CBA=0.
DO 777 NH=1,NUMH
CBA = CBA + PH(NH, I)
DO 110 NS = 1, NUMS
 CC = 1, -(CBA/PD(I))
 PS(NS, I) = CC*(PD(I)/NUMS)
110 CONTINUE

C

NS = 1
FA = 0.
DO 30 NSA = 1, NUMS
 FA = FA + 2.*BSS(NS, NSA)*PS(NSA, I)
 AA = BETAS(NS) + (2.*GAMAS(NS)*PS(NS, I))
30 DO 13 NH = 1, NUMH
 FB = 0.
 DO 31 NSA = 1, NUMH
 FB = FB + 2.*BSH(NSA, NH)*PH(NH, I)
 AB = CS(NS) + FA + FB
31 CONTINUE
 LAM(I) = (-AA/AB)
C

DO 14 NH = 1, NUMH
 PHI(NH, I) = (ALPHAI(NH) + (BETAI(NH)*PH(NH, I))
 (GAMAI(NH)*PH(NH, I))**2.)
14 CONTINUE

DO 15 NH = 1, NUMH
 FC = 0.
 DO 32 NHA = 1, NUMH
 FC = FC + 2.*BHH(NH, NHA)*PH(NH, I)
 Q(NH, I) = K(NH)*EPCE(NH, I)*PH(NH, I)
 EE = ((2.*ALPHAI(NH)) + (BETAI(NH)*
 1 PH(NH, I))/PHI(NH, I)
 FF = Q(NH, I)/PH(NH, I)
 P = (PHI(NH, I)/S(NH))*A0(NH) + (2.*AT(NH)*
 H(NH, I))**DELT(I)**0.00012913
 TEMP1 = CH(NH) + FC
 ABC = 0.0
 DO 16 NS = 1, NUMS
 ABC = ABC + 2.0*BHS(NH, NS)*PS(NS, I)
16 CONTINUE

ABC = ABC + TEMP1
NEW(NH) = (-LAM(I)*ABC)/((2.*EE)*FF)
1 #DEXP(P)

CONTINUE

DO 20 NS = 1, NUMS
 DO 20 I = 2, N
 FAC = PD(I)/PD(1)
 PS(NS, I) = PS(NS, I)*FAC
20 CONTINUE

DO 22 NH = 1, NUMH
DO 22 I=2,N
FAC=PD(I)/PD(1)
EPCE(NH,I)=EPCE(NH,1)*FAC
PHI(NH,I)=PHI(NH,1)*FAC
Q(NH,I)=Q(NH,1)*FAC
PH(NH,I)=PH(NH,1)*FAC
H(NH,I)=H(NH,I-1)
22 CONTINUE.
DO 24 I=2,N.
FAC=PD(I)/PD(1)
LAM(I)=LAM(I)*FAC
24 CONTINUE.
RETURN.
END

SUBROUTINE MINVRD

SUBROUTINE MINVRD(A,IA,MA,DETA,IER,IR,IC)
REAL*8 A(IA,IA),DETA,PIV,PIV1,TEMP
DIMENSION IR(MA),IC(MA)
IER=0
DETA=1
DO 1 I=1,MA
IR(I)=0
IC(I)=0
1 DO 123 JKL=1,MA
2 CALL SUBMXD(A,IA,IA,MA,MA,IR,IC,I,J)
PIV=A(I,J)
DETA=PIV
IF(PIV.EQ.0.000) GOTO 17
IR(I)=J
IC(J)=I
PIV=1.DO/PIV
1 DO 5 K=1,MA
5 A(I,K)=A(I,K)*PIV
A(I,J)=PIV
DO 9 K=1,MA
IF(K.EQ.I) GOTO 9
PIV1=A(K,J)
9 CONTINUE.
A(K,J)=PIV1
DO 11 K=1,MA
11 A(K,J)=PIV1*A(K,J)
A(I,J)=PIV1.
CONTINUE
12 DO 16 I=1,MA
K=IC(I)
M=IR(I)
IF(K.EQ.I)GOTO 16
DETA=-DETA
14 DO 15 L=1,MA
TEMP=A(K,L)
A(K,L)=A(I,L)
15 A(I,L)=TEMP
16 CONTINUE
RETURN
END

SUBROUTINE SUBMXD
REAL*8 A(IA,JA,MA,NA,IR,IC,I,J)
DIMENSION IR(MA),IC(NA)
I=0
J=0
TEST=0.D0
DO 5 K=1,MA
IF(IR(K).NE.0)GOTO 5
DO 4 L=1,NA
IF(IC(L).NE.0)GOTO 4
X=DABS(A(K,L))
IF(X.LT.TEST)GOTO 4
I=K
J=L
TEST=X
4 CONTINUE
5 CONTINUE
RETURN
END

SUBROUTINE XMULT
SUBROUTINE X1MULT(AM, BM, RM, NA, NAMB, MB)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION AM(NA, NAMB), BM(NAMB, MB), RM(NA, MB)
DO 30 I=1, NA
DO 20 J=1, MB
RM(I, J) = 0.
DO 10 K=1, NAMB
RM(I, J) = RM(I, J) + AM(I, K) * BM(K, J)
10 CONTINUE
20 CONTINUE
30 CONTINUE
RETURN
END

SUBROUTINE X2MULT(AM, BM, RM, NA, MB)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION AM(NA, MB), BM(MB), RM(NA)
DO 30 I=1, NA
RM(I) = 0.
DO 20 K=1, MB
RM(I) = RM(I) + AM(I, K) * BM(K)
20 CONTINUE
30 CONTINUE
RETURN
END

END OF PROGRAM
The subroutines MINVRD and SUBMXD found in the listing are developed by the University of Waterloo and is available as part of a scientific package. This matrix inversion routine is available in either single (MINVRS) or double (MINVRD) precision.

The main purpose of the program is to compute the inverse of a matrix by the direct method.

The subroutine is called in the following way:

```
CALL MINVRD (A, IA, DET, IER, IR, IC)
```

where

- A is dimensioned with absolute size IA by IA and the portion of matrix being used by the subprogram is represented by MA.
- IR and IC are dimensioned to MA - they are work vectors.
- IER is an error parameter usually set at 0 but equals 1 if A is singular.

The accuracy of the routine is dependent upon the size of the given matrix. The round-off error is minimized by searching for the largest pivotal element at each stage of the process. The greatest accuracy is 13 digits with MINVRD, and 4 for MINVRS.

The routine takes the matrix stored in A and computes the inverse of it by the direct method. It does this by searching for the largest pivotal element at each stage of the procedure. The result is stored in position A. The determinant |A| is also calculated and is stored in DET. The matrix A is destroyed.
The core requirements for MINVRD is 2688 bytes for the object code.

B-5 COMPUTER SPECIFICATIONS

The computer used in this research belongs to Memorial University of Newfoundland. The equipment and software is produced by Digital Equipment of Canada. The hardware of the system is the VAX 11/780 computer and peripheral support equipment. The software is Version 3.0, VAX/VMS and in particular the language used for the program was VAX-11 Fortran (Fortran 77).

The computer has 4.0 Mb of main storage and 706 Mb of disk storage. In addition, the tape drive units are capable of operating on 1600 or 6250 bpi.
APPENDIX C

COMPUTER PRINTOUT

C-1 INTRODUCTION

This appendix presents the actual form of the computer printout from the program.

It has been manually transferred to a word processing device to obtain an output of suitable quality. Otherwise, there are no alterations.
ECONOMIC DISPATCH
SCHEDULE

TEST SYSTEM
NO: 1
COMPUTATIONAL RESULTS

THE SOLUTION WAS OBTAINED IN 7 ITERATIONS

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER: 1
IS 0.9003693759E-00

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER: 2
IS 0.9790824988E-01

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER: 3
IS 0.1397912817E-01

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER: 4
IS 0.2885521034E-02

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER: 5
IS 0.6953570515E-03

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER: 6
IS 0.1929799536E-03

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER: 7
IS 0.5060176689E-04
<table>
<thead>
<tr>
<th>TIME (HR)</th>
<th>THERMAL PLANT NO: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW</td>
</tr>
<tr>
<td>1</td>
<td>180.65</td>
</tr>
<tr>
<td>2</td>
<td>196.63</td>
</tr>
<tr>
<td>3</td>
<td>186.69</td>
</tr>
<tr>
<td>4</td>
<td>181.01</td>
</tr>
<tr>
<td>5</td>
<td>193.96</td>
</tr>
<tr>
<td>6</td>
<td>197.59</td>
</tr>
<tr>
<td>7</td>
<td>195.28</td>
</tr>
<tr>
<td>8</td>
<td>180.72</td>
</tr>
<tr>
<td>9</td>
<td>160.20</td>
</tr>
<tr>
<td>10</td>
<td>156.16</td>
</tr>
<tr>
<td>11</td>
<td>163.55</td>
</tr>
<tr>
<td>12</td>
<td>153.00</td>
</tr>
<tr>
<td>13</td>
<td>144.90</td>
</tr>
<tr>
<td>14</td>
<td>139.31</td>
</tr>
<tr>
<td>15</td>
<td>89.29</td>
</tr>
<tr>
<td>16</td>
<td>83.63</td>
</tr>
<tr>
<td>17</td>
<td>78.63</td>
</tr>
<tr>
<td>18</td>
<td>70.35</td>
</tr>
<tr>
<td>19</td>
<td>66.75</td>
</tr>
<tr>
<td>20</td>
<td>62.76</td>
</tr>
<tr>
<td>21</td>
<td>59.45</td>
</tr>
<tr>
<td>22</td>
<td>57.03</td>
</tr>
<tr>
<td>23</td>
<td>56.59</td>
</tr>
<tr>
<td>24</td>
<td>55.75</td>
</tr>
<tr>
<td>TIME PERIOD (HR)</td>
<td>HYDRO PLANT NO: 1 MW</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>1</td>
<td>542.42</td>
</tr>
<tr>
<td>2</td>
<td>572.19</td>
</tr>
<tr>
<td>3</td>
<td>567.33</td>
</tr>
<tr>
<td>4</td>
<td>568.14</td>
</tr>
<tr>
<td>5</td>
<td>598.18</td>
</tr>
<tr>
<td>6</td>
<td>614.39</td>
</tr>
<tr>
<td>7</td>
<td>620.83</td>
</tr>
<tr>
<td>8</td>
<td>603.34</td>
</tr>
<tr>
<td>9</td>
<td>571.50</td>
</tr>
<tr>
<td>10</td>
<td>573.92</td>
</tr>
<tr>
<td>11</td>
<td>604.71</td>
</tr>
<tr>
<td>12</td>
<td>588.53</td>
</tr>
<tr>
<td>13</td>
<td>577.85</td>
</tr>
<tr>
<td>14</td>
<td>573.77</td>
</tr>
<tr>
<td>15</td>
<td>427.89</td>
</tr>
<tr>
<td>16</td>
<td>422.96</td>
</tr>
<tr>
<td>17</td>
<td>419.54</td>
</tr>
<tr>
<td>18</td>
<td>403.98</td>
</tr>
<tr>
<td>19</td>
<td>404.67</td>
</tr>
<tr>
<td>20</td>
<td>404.52</td>
</tr>
<tr>
<td>21</td>
<td>405.01</td>
</tr>
<tr>
<td>22</td>
<td>411.14</td>
</tr>
<tr>
<td>23</td>
<td>430.98</td>
</tr>
<tr>
<td>24</td>
<td>453.69</td>
</tr>
<tr>
<td>TIME PERIOD</td>
<td>NET HEAD PLANT NO: 1</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>HR</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>205.00</td>
</tr>
<tr>
<td>2</td>
<td>204.81</td>
</tr>
<tr>
<td>3</td>
<td>204.60</td>
</tr>
<tr>
<td>4</td>
<td>204.38</td>
</tr>
<tr>
<td>5</td>
<td>204.15</td>
</tr>
<tr>
<td>6</td>
<td>203.90</td>
</tr>
<tr>
<td>7</td>
<td>203.62</td>
</tr>
<tr>
<td>8</td>
<td>203.32</td>
</tr>
<tr>
<td>9</td>
<td>203.04</td>
</tr>
<tr>
<td>10</td>
<td>202.78</td>
</tr>
<tr>
<td>11</td>
<td>202.51</td>
</tr>
<tr>
<td>12</td>
<td>202.21</td>
</tr>
<tr>
<td>13</td>
<td>201.91</td>
</tr>
<tr>
<td>14</td>
<td>201.62</td>
</tr>
<tr>
<td>15</td>
<td>201.32</td>
</tr>
<tr>
<td>16</td>
<td>201.17</td>
</tr>
<tr>
<td>17</td>
<td>201.02</td>
</tr>
<tr>
<td>18</td>
<td>200.86</td>
</tr>
<tr>
<td>19</td>
<td>200.72</td>
</tr>
<tr>
<td>20</td>
<td>200.58</td>
</tr>
<tr>
<td>21</td>
<td>200.44</td>
</tr>
<tr>
<td>22</td>
<td>200.29</td>
</tr>
<tr>
<td>23</td>
<td>200.13</td>
</tr>
<tr>
<td>24</td>
<td>199.95</td>
</tr>
<tr>
<td>TIME PERIOD</td>
<td>POWER DEMAND MW</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>681.00</td>
</tr>
<tr>
<td>2</td>
<td>722.00</td>
</tr>
<tr>
<td>3</td>
<td>706.00</td>
</tr>
<tr>
<td>4</td>
<td>703.00</td>
</tr>
<tr>
<td>5</td>
<td>741.00</td>
</tr>
<tr>
<td>6</td>
<td>758.00</td>
</tr>
<tr>
<td>7</td>
<td>761.00</td>
</tr>
<tr>
<td>8</td>
<td>732.00</td>
</tr>
<tr>
<td>9</td>
<td>685.00</td>
</tr>
<tr>
<td>10</td>
<td>683.00</td>
</tr>
<tr>
<td>11</td>
<td>716.00</td>
</tr>
<tr>
<td>12</td>
<td>692.00</td>
</tr>
<tr>
<td>13</td>
<td>675.00</td>
</tr>
<tr>
<td>14</td>
<td>666.00</td>
</tr>
<tr>
<td>15</td>
<td>491.00</td>
</tr>
<tr>
<td>16</td>
<td>481.00</td>
</tr>
<tr>
<td>17</td>
<td>473.00</td>
</tr>
<tr>
<td>18</td>
<td>451.00</td>
</tr>
<tr>
<td>19</td>
<td>448.00</td>
</tr>
<tr>
<td>20</td>
<td>443.00</td>
</tr>
<tr>
<td>21</td>
<td>441.00</td>
</tr>
<tr>
<td>22</td>
<td>444.00</td>
</tr>
<tr>
<td>23</td>
<td>464.00</td>
</tr>
<tr>
<td>24</td>
<td>480.00</td>
</tr>
<tr>
<td>TIME PERIOD</td>
<td>PLANT NO: 1</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HR</td>
<td>$/CF</td>
</tr>
<tr>
<td>1</td>
<td>0.04812</td>
</tr>
<tr>
<td>2</td>
<td>0.04698</td>
</tr>
<tr>
<td>3</td>
<td>0.04589</td>
</tr>
<tr>
<td>4</td>
<td>0.04481</td>
</tr>
<tr>
<td>5</td>
<td>0.04347</td>
</tr>
<tr>
<td>6</td>
<td>0.04219</td>
</tr>
<tr>
<td>7</td>
<td>0.04102</td>
</tr>
<tr>
<td>8</td>
<td>0.04025</td>
</tr>
<tr>
<td>9</td>
<td>0.03983</td>
</tr>
<tr>
<td>10</td>
<td>0.03888</td>
</tr>
<tr>
<td>11</td>
<td>0.03734</td>
</tr>
<tr>
<td>12</td>
<td>0.03681</td>
</tr>
<tr>
<td>13</td>
<td>0.03622</td>
</tr>
<tr>
<td>14</td>
<td>0.03551</td>
</tr>
<tr>
<td>15</td>
<td>0.03585</td>
</tr>
<tr>
<td>16</td>
<td>0.03589</td>
</tr>
<tr>
<td>17</td>
<td>0.03761</td>
</tr>
<tr>
<td>18</td>
<td>0.03751</td>
</tr>
<tr>
<td>19</td>
<td>0.03696</td>
</tr>
<tr>
<td>20</td>
<td>0.03647</td>
</tr>
<tr>
<td>21</td>
<td>0.03591</td>
</tr>
<tr>
<td>22</td>
<td>0.03520</td>
</tr>
<tr>
<td>23</td>
<td>0.03400</td>
</tr>
<tr>
<td>24</td>
<td>0.03267</td>
</tr>
<tr>
<td>TIME</td>
<td>RESERVOIR INFLOW</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>HR</td>
<td>PLANT NO: 1 CFS</td>
</tr>
<tr>
<td></td>
<td>12000.0</td>
</tr>
<tr>
<td>1</td>
<td>12000.0</td>
</tr>
<tr>
<td>2</td>
<td>12000.0</td>
</tr>
<tr>
<td>3</td>
<td>12000.0</td>
</tr>
<tr>
<td>4</td>
<td>12000.0</td>
</tr>
<tr>
<td>5</td>
<td>12000.0</td>
</tr>
<tr>
<td>6</td>
<td>12000.0</td>
</tr>
<tr>
<td>7</td>
<td>12000.0</td>
</tr>
<tr>
<td>8</td>
<td>12000.0</td>
</tr>
<tr>
<td>9</td>
<td>12000.0</td>
</tr>
<tr>
<td>10</td>
<td>12000.0</td>
</tr>
<tr>
<td>11</td>
<td>12000.0</td>
</tr>
<tr>
<td>12</td>
<td>12000.0</td>
</tr>
<tr>
<td>13</td>
<td>12000.0</td>
</tr>
<tr>
<td>14</td>
<td>12000.0</td>
</tr>
<tr>
<td>15</td>
<td>12000.0</td>
</tr>
<tr>
<td>16</td>
<td>12000.0</td>
</tr>
<tr>
<td>17</td>
<td>12000.0</td>
</tr>
<tr>
<td>18</td>
<td>12000.0</td>
</tr>
<tr>
<td>19</td>
<td>12000.0</td>
</tr>
<tr>
<td>20</td>
<td>12000.0</td>
</tr>
<tr>
<td>21</td>
<td>12000.0</td>
</tr>
<tr>
<td>22</td>
<td>12000.0</td>
</tr>
<tr>
<td>23</td>
<td>12000.0</td>
</tr>
<tr>
<td>24</td>
<td>12000.0</td>
</tr>
</tbody>
</table>
THE VALUE OF THE COST FUNCTIONS FOR THE THERMAL GENERATING PLANTS IN ($/DAY) ARE

PLANT NO: 1 FUEL COST 9844.70
ECONOMIC DISPATCH SCHEDULE

TEST SYSTEM NO: 2
COMPUTATIONAL RESULTS

THE SOLUTION WAS OBTAINED IN 13 ITERATIONS

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 1
IS 0.550095074E+00

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 2
IS 0.592572180E-01

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 3
IS 0.1329054893E-01

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 4
IS 0.6463548968E-02

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 5
IS 0.3470227069E-02

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 6
IS 0.2019128443E-02
THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 7
IS 0.1204589334E-02

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 8
IS 0.7322724724E-03

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 9
IS 0.4512366868E-03

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 10
IS 0.2809106443E-03

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 11
IS 0.1762657394E-03

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 12
IS 0.1113009484E-03

THE MAXIMUM RELATIVE ERROR FOR ITERATION NUMBER 13
IS 0.7053917420E-04
<table>
<thead>
<tr>
<th>TIME PERIOD (HR)</th>
<th>THERMAL PLANT NO: 1 MW</th>
<th>THERMAL PLANT NO: 2 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>188.99</td>
<td>183.61</td>
</tr>
<tr>
<td>2</td>
<td>207.02</td>
<td>201.65</td>
</tr>
<tr>
<td>3</td>
<td>198.75</td>
<td>193.38</td>
</tr>
<tr>
<td>4</td>
<td>194.82</td>
<td>189.45</td>
</tr>
<tr>
<td>5</td>
<td>210.31</td>
<td>204.95</td>
</tr>
<tr>
<td>6</td>
<td>216.19</td>
<td>210.83</td>
</tr>
<tr>
<td>7</td>
<td>215.88</td>
<td>210.52</td>
</tr>
<tr>
<td>8</td>
<td>202.29</td>
<td>196.92</td>
</tr>
<tr>
<td>9</td>
<td>181.97</td>
<td>176.59</td>
</tr>
<tr>
<td>10</td>
<td>179.73</td>
<td>174.35</td>
</tr>
<tr>
<td>11</td>
<td>190.55</td>
<td>185.18</td>
</tr>
<tr>
<td>12</td>
<td>180.62</td>
<td>175.23</td>
</tr>
<tr>
<td>13</td>
<td>173.44</td>
<td>168.05</td>
</tr>
<tr>
<td>14</td>
<td>169.17</td>
<td>163.78</td>
</tr>
<tr>
<td>15</td>
<td>110.46</td>
<td>105.03</td>
</tr>
<tr>
<td>16</td>
<td>105.88</td>
<td>100.45</td>
</tr>
<tr>
<td>17</td>
<td>102.06</td>
<td>96.62</td>
</tr>
<tr>
<td>18</td>
<td>94.02</td>
<td>88.58</td>
</tr>
<tr>
<td>19</td>
<td>91.86</td>
<td>86.42</td>
</tr>
<tr>
<td>20</td>
<td>89.17</td>
<td>83.73</td>
</tr>
<tr>
<td>21</td>
<td>87.37</td>
<td>81.93</td>
</tr>
<tr>
<td>22</td>
<td>86.94</td>
<td>81.46</td>
</tr>
<tr>
<td>23</td>
<td>89.80</td>
<td>84.35</td>
</tr>
<tr>
<td>24</td>
<td>93.79</td>
<td>88.36</td>
</tr>
<tr>
<td>TIME PERIOD (HR)</td>
<td>HYDRO PLANT NO: 1 MW</td>
<td>HYDRO PLANT NO: 2 MW</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1</td>
<td>560.26</td>
<td>511.42</td>
</tr>
<tr>
<td>2</td>
<td>588.05</td>
<td>538.14</td>
</tr>
<tr>
<td>3</td>
<td>580.83</td>
<td>531.71</td>
</tr>
<tr>
<td>4</td>
<td>579.28</td>
<td>530.72</td>
</tr>
<tr>
<td>5</td>
<td>607.54</td>
<td>556.23</td>
</tr>
<tr>
<td>6</td>
<td>621.60</td>
<td>568.92</td>
</tr>
<tr>
<td>7</td>
<td>625.48</td>
<td>573.02</td>
</tr>
<tr>
<td>8</td>
<td>604.22</td>
<td>557.17</td>
</tr>
<tr>
<td>9</td>
<td>567.74</td>
<td>529.95</td>
</tr>
<tr>
<td>10</td>
<td>567.31</td>
<td>530.94</td>
</tr>
<tr>
<td>11</td>
<td>597.17</td>
<td>553.98</td>
</tr>
<tr>
<td>12</td>
<td>576.13</td>
<td>541.41</td>
</tr>
<tr>
<td>13</td>
<td>560.92</td>
<td>533.24</td>
</tr>
<tr>
<td>14</td>
<td>552.81</td>
<td>530.14</td>
</tr>
<tr>
<td>15</td>
<td>392.55</td>
<td>421.39</td>
</tr>
<tr>
<td>16</td>
<td>384.64</td>
<td>417.06</td>
</tr>
<tr>
<td>17</td>
<td>378.25</td>
<td>414.09</td>
</tr>
<tr>
<td>18</td>
<td>358.94</td>
<td>401.98</td>
</tr>
<tr>
<td>19</td>
<td>356.84</td>
<td>402.22</td>
</tr>
<tr>
<td>20</td>
<td>352.70</td>
<td>401.21</td>
</tr>
<tr>
<td>21</td>
<td>351.30</td>
<td>402.18</td>
</tr>
<tr>
<td>22</td>
<td>354.86</td>
<td>406.40</td>
</tr>
<tr>
<td>23</td>
<td>373.60</td>
<td>419.35</td>
</tr>
<tr>
<td>24</td>
<td>402.14</td>
<td>436.03</td>
</tr>
<tr>
<td>TIME PERIOD</td>
<td>NET HEAD PLANT NO: 1</td>
<td>NET HEAD PLANT NO: 2</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>HR</td>
<td>FT</td>
<td>FT</td>
</tr>
<tr>
<td>1</td>
<td>205.00</td>
<td>206.00</td>
</tr>
<tr>
<td>2</td>
<td>204.71</td>
<td>205.88</td>
</tr>
<tr>
<td>3</td>
<td>204.40</td>
<td>205.75</td>
</tr>
<tr>
<td>4</td>
<td>204.08</td>
<td>205.62</td>
</tr>
<tr>
<td>5</td>
<td>203.75</td>
<td>205.48</td>
</tr>
<tr>
<td>6</td>
<td>203.39</td>
<td>205.34</td>
</tr>
<tr>
<td>7</td>
<td>203.01</td>
<td>205.18</td>
</tr>
<tr>
<td>8</td>
<td>202.61</td>
<td>205.01</td>
</tr>
<tr>
<td>9</td>
<td>202.22</td>
<td>204.86</td>
</tr>
<tr>
<td>10</td>
<td>201.86</td>
<td>204.72</td>
</tr>
<tr>
<td>11</td>
<td>201.50</td>
<td>204.57</td>
</tr>
<tr>
<td>12</td>
<td>201.09</td>
<td>204.41</td>
</tr>
<tr>
<td>13</td>
<td>200.70</td>
<td>204.26</td>
</tr>
<tr>
<td>14</td>
<td>200.31</td>
<td>204.11</td>
</tr>
<tr>
<td>15</td>
<td>199.93</td>
<td>203.96</td>
</tr>
<tr>
<td>16</td>
<td>199.70</td>
<td>203.86</td>
</tr>
<tr>
<td>17</td>
<td>199.48</td>
<td>203.77</td>
</tr>
<tr>
<td>18</td>
<td>199.26</td>
<td>203.68</td>
</tr>
<tr>
<td>19</td>
<td>199.05</td>
<td>203.60</td>
</tr>
<tr>
<td>20</td>
<td>198.85</td>
<td>203.51</td>
</tr>
<tr>
<td>21</td>
<td>198.65</td>
<td>203.43</td>
</tr>
<tr>
<td>22</td>
<td>198.44</td>
<td>203.34</td>
</tr>
<tr>
<td>23</td>
<td>198.23</td>
<td>203.25</td>
</tr>
<tr>
<td>24</td>
<td>198.00</td>
<td>203.15</td>
</tr>
<tr>
<td>TIME PERIOD HR</td>
<td>POWER DEMAND MW</td>
<td>POWER LOSSES MW</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>1362.00</td>
<td>82.29</td>
</tr>
<tr>
<td>2</td>
<td>1444.00</td>
<td>90.86</td>
</tr>
<tr>
<td>3</td>
<td>1416.00</td>
<td>88.67</td>
</tr>
<tr>
<td>4</td>
<td>1406.00</td>
<td>88.26</td>
</tr>
<tr>
<td>5</td>
<td>1482.00</td>
<td>97.02</td>
</tr>
<tr>
<td>6</td>
<td>1516.00</td>
<td>101.54</td>
</tr>
<tr>
<td>7</td>
<td>1522.00</td>
<td>102.90</td>
</tr>
<tr>
<td>8</td>
<td>1462.00</td>
<td>96.60</td>
</tr>
<tr>
<td>9</td>
<td>1370.00</td>
<td>86.25</td>
</tr>
<tr>
<td>10</td>
<td>1366.00</td>
<td>86.43</td>
</tr>
<tr>
<td>11</td>
<td>1432.00</td>
<td>94.88</td>
</tr>
<tr>
<td>12</td>
<td>1384.00</td>
<td>89.38</td>
</tr>
<tr>
<td>13</td>
<td>1350.00</td>
<td>85.65</td>
</tr>
<tr>
<td>14</td>
<td>1332.00</td>
<td>83.89</td>
</tr>
<tr>
<td>15</td>
<td>982.00</td>
<td>47.43</td>
</tr>
<tr>
<td>16</td>
<td>962.00</td>
<td>46.03</td>
</tr>
<tr>
<td>17</td>
<td>946.00</td>
<td>44.97</td>
</tr>
<tr>
<td>18</td>
<td>926.00</td>
<td>41.53</td>
</tr>
<tr>
<td>19</td>
<td>896.00</td>
<td>41.34</td>
</tr>
<tr>
<td>20</td>
<td>886.00</td>
<td>40.81</td>
</tr>
<tr>
<td>21</td>
<td>882.00</td>
<td>40.78</td>
</tr>
<tr>
<td>22</td>
<td>881.00</td>
<td>41.63</td>
</tr>
<tr>
<td>23</td>
<td>922.00</td>
<td>45.11</td>
</tr>
<tr>
<td>24</td>
<td>960.00</td>
<td>50.31</td>
</tr>
<tr>
<td>TIME PERIOD</td>
<td>NU PLANT NO: 1</td>
<td>HU PLANT NO: 2</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>HR</td>
<td>$/CF</td>
<td>$/CF</td>
</tr>
<tr>
<td>1</td>
<td>0.04769</td>
<td>0.04634</td>
</tr>
<tr>
<td>2</td>
<td>0.04651</td>
<td>0.04624</td>
</tr>
<tr>
<td>3</td>
<td>0.04541</td>
<td>0.04566</td>
</tr>
<tr>
<td>4</td>
<td>0.04433</td>
<td>0.04509</td>
</tr>
<tr>
<td>5</td>
<td>0.04300</td>
<td>0.04438</td>
</tr>
<tr>
<td>6</td>
<td>0.04175</td>
<td>0.04370</td>
</tr>
<tr>
<td>7</td>
<td>0.04063</td>
<td>0.04307</td>
</tr>
<tr>
<td>8</td>
<td>0.03993</td>
<td>0.04263</td>
</tr>
<tr>
<td>9</td>
<td>0.03961</td>
<td>0.04236</td>
</tr>
<tr>
<td>10</td>
<td>0.03874</td>
<td>0.04183</td>
</tr>
<tr>
<td>11</td>
<td>0.03727</td>
<td>0.04101</td>
</tr>
<tr>
<td>12</td>
<td>0.03688</td>
<td>0.04066</td>
</tr>
<tr>
<td>13</td>
<td>0.03643</td>
<td>0.04027</td>
</tr>
<tr>
<td>14</td>
<td>0.03586</td>
<td>0.03983</td>
</tr>
<tr>
<td>15</td>
<td>0.03521</td>
<td>0.04116</td>
</tr>
<tr>
<td>16</td>
<td>0.03889</td>
<td>0.04086</td>
</tr>
<tr>
<td>17</td>
<td>0.03856</td>
<td>0.04055</td>
</tr>
<tr>
<td>18</td>
<td>0.03861</td>
<td>0.04042</td>
</tr>
<tr>
<td>19</td>
<td>0.03822</td>
<td>0.04007</td>
</tr>
<tr>
<td>20</td>
<td>0.03970</td>
<td>0.03976</td>
</tr>
<tr>
<td>21</td>
<td>0.03751</td>
<td>0.03940</td>
</tr>
<tr>
<td>22</td>
<td>0.03697</td>
<td>0.03897</td>
</tr>
<tr>
<td>23</td>
<td>0.03591</td>
<td>0.03834</td>
</tr>
<tr>
<td>24</td>
<td>0.03447</td>
<td>0.03760</td>
</tr>
<tr>
<td>TIME</td>
<td>RESEVIOR</td>
<td>RESEVIOR</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>HR</td>
<td>INFLOW</td>
<td>INFLOW</td>
</tr>
<tr>
<td></td>
<td>PLANT NO: 1</td>
<td>PLANT NO: 2</td>
</tr>
<tr>
<td>1</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>2</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>3</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>4</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>5</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>6</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>7</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>8</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>9</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>10</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>11</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>12</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>13</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>14</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>15</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>16</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>17</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>18</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>19</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>20</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>21</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>22</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>23</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
<tr>
<td>24</td>
<td>5500.0</td>
<td>11000.0</td>
</tr>
</tbody>
</table>
THE VALUE OF THE COST FUNCTIONS FOR THE THERMAL GENERATING PLANTS IN ($/DAY) ARE

PLANT NO: 1 FUEL COST 11764.85
PLANT NO: 2 FUEL COST 11413.87
ECONOMIC DISPATCH
SCHEDULE

TEST SYSTEM
NO: 3
COMPUTATIONAL RESULTS

THE SOLUTION WAS OBTAINED IN 7 ITERATIONS

THE MAXIMUM RELATIVE ERROR FOR
ITERATION NUMBER 1
IS 0.8491699406E+00

THE MAXIMUM RELATIVE ERROR FOR
ITERATION NUMBER 2
IS 0.1134254453E+00

THE MAXIMUM RELATIVE ERROR FOR
ITERATION NUMBER 3
IS 0.1611677021E-01

THE MAXIMUM RELATIVE ERROR FOR
ITERATION NUMBER 4
IS 0.3041146059E-02

THE MAXIMUM RELATIVE ERROR FOR
ITERATION NUMBER 5
IS 0.615115247E-03

THE MAXIMUM RELATIVE ERROR FOR
ITERATION NUMBER 6
IS 0.1286717119E-03

THE MAXIMUM RELATIVE ERROR FOR
ITERATION NUMBER 7
IS 0.2744106656E-04
<table>
<thead>
<tr>
<th>TIME PERIOD (HR)</th>
<th>THERMAL PLANT NO: 1 (MW)</th>
<th>THERMAL PLANT NO: 2 (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>263.76</td>
<td>268.84</td>
</tr>
<tr>
<td>2</td>
<td>271.83</td>
<td>276.90</td>
</tr>
<tr>
<td>3</td>
<td>261.53</td>
<td>266.61</td>
</tr>
<tr>
<td>4</td>
<td>254.26</td>
<td>259.34</td>
</tr>
<tr>
<td>5</td>
<td>258.93</td>
<td>264.01</td>
</tr>
<tr>
<td>6</td>
<td>264.21</td>
<td>269.29</td>
</tr>
<tr>
<td>7</td>
<td>253.08</td>
<td>258.16</td>
</tr>
<tr>
<td>8</td>
<td>236.22</td>
<td>241.30</td>
</tr>
<tr>
<td>9</td>
<td>232.83</td>
<td>237.91</td>
</tr>
<tr>
<td>10</td>
<td>227.37</td>
<td>232.46</td>
</tr>
<tr>
<td>11</td>
<td>222.90</td>
<td>227.99</td>
</tr>
<tr>
<td>12</td>
<td>215.37</td>
<td>220.47</td>
</tr>
<tr>
<td>13</td>
<td>209.04</td>
<td>214.13</td>
</tr>
<tr>
<td>14</td>
<td>204.13</td>
<td>209.23</td>
</tr>
<tr>
<td>15</td>
<td>183.91</td>
<td>189.02</td>
</tr>
<tr>
<td>16</td>
<td>176.40</td>
<td>183.51</td>
</tr>
<tr>
<td>17</td>
<td>173.29</td>
<td>178.40</td>
</tr>
<tr>
<td>18</td>
<td>167.71</td>
<td>172.82</td>
</tr>
<tr>
<td>19</td>
<td>162.92</td>
<td>168.03</td>
</tr>
<tr>
<td>20</td>
<td>156.45</td>
<td>163.57</td>
</tr>
<tr>
<td>21</td>
<td>154.19</td>
<td>159.31</td>
</tr>
<tr>
<td>22</td>
<td>150.03</td>
<td>155.14</td>
</tr>
<tr>
<td>23</td>
<td>145.49</td>
<td>150.61</td>
</tr>
<tr>
<td>24</td>
<td>140.40</td>
<td>145.51</td>
</tr>
<tr>
<td>HR</td>
<td>MW</td>
<td>MW</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>544.87</td>
<td>544.87</td>
</tr>
<tr>
<td>2</td>
<td>571.12</td>
<td>571.12</td>
</tr>
<tr>
<td>3</td>
<td>565.29</td>
<td>565.29</td>
</tr>
<tr>
<td>4</td>
<td>568.57</td>
<td>564.57</td>
</tr>
<tr>
<td>5</td>
<td>590.19</td>
<td>590.19</td>
</tr>
<tr>
<td>6</td>
<td>620.72</td>
<td>620.72</td>
</tr>
<tr>
<td>7</td>
<td>606.78</td>
<td>606.78</td>
</tr>
<tr>
<td>8</td>
<td>572.39</td>
<td>572.39</td>
</tr>
<tr>
<td>9</td>
<td>581.18</td>
<td>581.18</td>
</tr>
<tr>
<td>11</td>
<td>586.90</td>
<td>586.90</td>
</tr>
<tr>
<td>12</td>
<td>572.74</td>
<td>572.74</td>
</tr>
<tr>
<td>13</td>
<td>563.22</td>
<td>563.22</td>
</tr>
<tr>
<td>14</td>
<td>562.77</td>
<td>562.77</td>
</tr>
<tr>
<td>15</td>
<td>441.64</td>
<td>441.64</td>
</tr>
<tr>
<td>16</td>
<td>436.74</td>
<td>436.74</td>
</tr>
<tr>
<td>17</td>
<td>433.11</td>
<td>433.11</td>
</tr>
<tr>
<td>18</td>
<td>423.25</td>
<td>423.25</td>
</tr>
<tr>
<td>19</td>
<td>419.39</td>
<td>419.39</td>
</tr>
<tr>
<td>20</td>
<td>417.75</td>
<td>417.75</td>
</tr>
<tr>
<td>21</td>
<td>418.06</td>
<td>418.06</td>
</tr>
<tr>
<td>22</td>
<td>421.60</td>
<td>421.60</td>
</tr>
<tr>
<td>23</td>
<td>435.90</td>
<td>435.90</td>
</tr>
<tr>
<td>TIME</td>
<td>NET HEAD PLANT NO: 1</td>
<td>NET HEAD PLANT NO: 2</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>HR</td>
<td>FT</td>
<td>FT</td>
</tr>
<tr>
<td>1</td>
<td>205.00</td>
<td>205.00</td>
</tr>
<tr>
<td>2</td>
<td>204.81</td>
<td>204.81</td>
</tr>
<tr>
<td>3</td>
<td>204.59</td>
<td>204.59</td>
</tr>
<tr>
<td>4</td>
<td>204.38</td>
<td>204.38</td>
</tr>
<tr>
<td>5</td>
<td>204.16</td>
<td>204.16</td>
</tr>
<tr>
<td>6</td>
<td>203.91</td>
<td>203.91</td>
</tr>
<tr>
<td>7</td>
<td>203.62</td>
<td>203.62</td>
</tr>
<tr>
<td>8</td>
<td>203.34</td>
<td>203.34</td>
</tr>
<tr>
<td>9</td>
<td>203.09</td>
<td>203.09</td>
</tr>
<tr>
<td>10</td>
<td>202.82</td>
<td>202.82</td>
</tr>
<tr>
<td>13</td>
<td>201.98</td>
<td>201.98</td>
</tr>
<tr>
<td>14</td>
<td>201.71</td>
<td>201.71</td>
</tr>
<tr>
<td>15</td>
<td>201.43</td>
<td>201.43</td>
</tr>
<tr>
<td>16</td>
<td>201.26</td>
<td>201.26</td>
</tr>
<tr>
<td>17</td>
<td>201.10</td>
<td>201.10</td>
</tr>
<tr>
<td>18</td>
<td>200.93</td>
<td>200.93</td>
</tr>
<tr>
<td>19</td>
<td>200.77</td>
<td>200.77</td>
</tr>
<tr>
<td>21</td>
<td>200.46</td>
<td>200.46</td>
</tr>
<tr>
<td>22</td>
<td>200.30</td>
<td>200.30</td>
</tr>
<tr>
<td>24</td>
<td>199.95</td>
<td>199.95</td>
</tr>
<tr>
<td>TIME PERIOD HR</td>
<td>POWER DEMAND MW</td>
<td>POWER LOSSES MW</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>3223.00</td>
<td>33.96</td>
</tr>
<tr>
<td>2</td>
<td>3367.00</td>
<td>37.31</td>
</tr>
<tr>
<td>3</td>
<td>3318.00</td>
<td>36.56</td>
</tr>
<tr>
<td>4</td>
<td>3300.00</td>
<td>36.46</td>
</tr>
<tr>
<td>5</td>
<td>3434.00</td>
<td>39.05</td>
</tr>
<tr>
<td>6</td>
<td>3593.00</td>
<td>44.08</td>
</tr>
<tr>
<td>7</td>
<td>3503.00</td>
<td>42.12</td>
</tr>
<tr>
<td>8</td>
<td>3302.00</td>
<td>37.48</td>
</tr>
<tr>
<td>9</td>
<td>3338.00</td>
<td>38.64</td>
</tr>
<tr>
<td>10</td>
<td>3331.00</td>
<td>38.75</td>
</tr>
<tr>
<td>11</td>
<td>3346.00</td>
<td>39.41</td>
</tr>
<tr>
<td>12</td>
<td>3262.00</td>
<td>37.53</td>
</tr>
<tr>
<td>13</td>
<td>3203.00</td>
<td>36.29</td>
</tr>
<tr>
<td>14</td>
<td>3191.00</td>
<td>36.23</td>
</tr>
<tr>
<td>15</td>
<td>2559.00</td>
<td>22.32</td>
</tr>
<tr>
<td>16</td>
<td>2524.00</td>
<td>21.82</td>
</tr>
<tr>
<td>17</td>
<td>2496.00</td>
<td>21.46</td>
</tr>
<tr>
<td>18</td>
<td>2437.00</td>
<td>20.51</td>
</tr>
<tr>
<td>19</td>
<td>2408.00</td>
<td>20.13</td>
</tr>
<tr>
<td>20</td>
<td>2391.00</td>
<td>19.97</td>
</tr>
<tr>
<td>21</td>
<td>2384.00</td>
<td>20.00</td>
</tr>
<tr>
<td>22</td>
<td>2393.00</td>
<td>20.34</td>
</tr>
<tr>
<td>23</td>
<td>2454.00</td>
<td>21.74</td>
</tr>
<tr>
<td>24</td>
<td>2520.00</td>
<td>23.32</td>
</tr>
<tr>
<td>TIME</td>
<td>NU PLANT NO: 1</td>
<td>NU PLANT NO: 2</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>HR</td>
<td>$/CF</td>
<td>$/CF</td>
</tr>
<tr>
<td>1</td>
<td>0.06332</td>
<td>0.06332</td>
</tr>
<tr>
<td>2</td>
<td>0.06173</td>
<td>0.06173</td>
</tr>
<tr>
<td>3</td>
<td>0.06033</td>
<td>0.06033</td>
</tr>
<tr>
<td>4</td>
<td>0.05894</td>
<td>0.05894</td>
</tr>
<tr>
<td>5</td>
<td>0.05716</td>
<td>0.05716</td>
</tr>
<tr>
<td>6</td>
<td>0.05519</td>
<td>0.05519</td>
</tr>
<tr>
<td>7</td>
<td>0.05407</td>
<td>0.05407</td>
</tr>
<tr>
<td>8</td>
<td>0.05356</td>
<td>0.05356</td>
</tr>
<tr>
<td>9</td>
<td>0.05210</td>
<td>0.05210</td>
</tr>
<tr>
<td>10</td>
<td>0.05087</td>
<td>0.05087</td>
</tr>
<tr>
<td>11</td>
<td>0.04954</td>
<td>0.04954</td>
</tr>
<tr>
<td>12</td>
<td>0.04886</td>
<td>0.04886</td>
</tr>
<tr>
<td>13</td>
<td>0.04809</td>
<td>0.04809</td>
</tr>
<tr>
<td>14</td>
<td>0.04706</td>
<td>0.04706</td>
</tr>
<tr>
<td>15</td>
<td>0.05054</td>
<td>0.05054</td>
</tr>
<tr>
<td>16</td>
<td>0.04992</td>
<td>0.04992</td>
</tr>
<tr>
<td>17</td>
<td>0.04929</td>
<td>0.04929</td>
</tr>
<tr>
<td>18</td>
<td>0.04893</td>
<td>0.04893</td>
</tr>
<tr>
<td>19</td>
<td>0.04837</td>
<td>0.04837</td>
</tr>
<tr>
<td>20</td>
<td>0.04773</td>
<td>0.04773</td>
</tr>
<tr>
<td>21</td>
<td>0.04702</td>
<td>0.04702</td>
</tr>
<tr>
<td>22</td>
<td>0.04617</td>
<td>0.04617</td>
</tr>
<tr>
<td>23</td>
<td>0.04480</td>
<td>0.04480</td>
</tr>
<tr>
<td>24</td>
<td>0.04335</td>
<td>0.04335</td>
</tr>
<tr>
<td>TIME (HR)</td>
<td>RESEVOIR</td>
<td>RESEVOIR</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>INFLOW</td>
<td>INFLOW</td>
</tr>
<tr>
<td></td>
<td>PLANT</td>
<td>PLANT</td>
</tr>
<tr>
<td>1</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>2</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>3</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>4</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>5</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>6</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>7</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>8</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>9</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>10</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>11</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>12</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>13</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>14</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>15</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>16</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>17</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>18</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>19</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>20</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>21</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>22</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>23</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
<tr>
<td>24</td>
<td>12000.0</td>
<td>12000.0</td>
</tr>
</tbody>
</table>
THE VALUE OF THE COST FUNCTIONS FOR
THE THERMAL GENERATING PLANTS IN ($/DAY) ARE

PLANT NO: 1 FUEL COST 16747.22
PLANT NO: 2 FUEL COST 17074.42
APPENDIX D
THE AUGMENTED OBJECTIVE FUNCTIONAL

The first step in the optimization process requires that each constraint \(f_k \) be paired with an appropriate multiplier function to form the product \(F_k \). The proper balance equation is paired with the multiplier function \(\lambda(t) \) to form

\[
F_D(t) = \lambda(t) f_D(t)
\]

The discharge models \(f_{q_1} \) are paired with the multiplier functions \(m_1(t) \) to form

\[
f_{q_1}(t) = m_1(t) f_{q_1}(t)
\]

Finally, the continuity equations \(f_{h_1}(t) \) are paired with the multiplier function \(\dot{h}_1(t) \) to form

\[
f_{h_1}(t) = \dot{h}_1(t) f_{h_1}(t)
\]

The inclusion of the water draw-down constraint requires constant multipliers \(v_{o_1} \) to pair with \(b_{o_1} \) to form \(J_{o_1} \) according to

\[
J_{o_1} = v_{o_1} b_{o_1}
\]

This follows since \(b_{o_1} \) represent definite integrals and not time functions.

The next step is to form the individual contributions \(J_k \) to the
original objective by first defining:

\[J_D = \int_0^T P_D(t) \, dt \]

(D.4)

\[J_{q_i} = \int_0^T P_{q_i}(t) \, dt \]

(D.5)

\[J_{h_i} = \int_0^T P_{h_i}(t) \, dt \]

(D.6)

The augmented objective functional is thus given by

\[J_A = J + J_D + \sum_{i=2}^4 \left(J_{q_i} + J_{h_i} + J_{h_i} \right) \]

(D.7)

Let us note here that all components of \(J_A \) are explicit functions of the control variables, with the exception of \(J_{h_1} \) which needs some transformation.

Consider, for example, the function \(f_{h_2}(t) \) where the integral of the control variable \(q_2(t) \) appears. The part of \(J_{h_2} \) corresponding to this term is transformed as follows

\[\int_0^T \int_0^T q_2(z) \, dz \, dt = \int_0^T \left[n_2(T) - n_2(t) \right] q_2(t) \, dt \]

(D.8)

The corresponding terms in \(f_{h_3} \) and \(f_{h_4} \) are treated similarly. The last term in both \(f_{h_3} \) and \(f_{h_4} \) needs special treatment as well.
\[\begin{align*}
& T \\
& \int_0^{\tau_{23}} \int_0^t q_3(z - \tau_{23}) \, dz \, dt = \\
& \int_0^T [n_3(T) - n_3(t + \tau_{23})] \, q_2(t) \, dt \\
& + \int_{\tau_{23}}^T [n_3(t) - n_3(t + \tau_{23})] \, q_2(t) \, dt.
\end{align*}\]

With the above mentioned transformations, we can thus write the relevant elements of the augmented functional \(J_{n_1} \) as:

\[\begin{align*}
J_{h_2} &= \int_0^T \left(s_2 \dot{h}_2(t) \cdot h_2(t) + [n_2(T) - n_2(t)] \cdot q_2(t) \right) \, dt. \\
\tag{D.10}
\end{align*}\]

\[\begin{align*}
J_{h_3} &= \int_0^T \left(s_3 \dot{h}_3(t) \cdot h_3(t) + [n_3(T) - n_3(t)] \cdot q_3(t) \\
& \quad - N_3(t) \cdot q_2(2) \right) \, dt. \\
\tag{D.11}
\end{align*}\]

\[\begin{align*}
J_{h_4} &= \int_0^T \left(s_4 \dot{h}_4(t) \cdot h_4(t) + [n_4(T) - n_4(t)] \cdot q_4(t) \\
& \quad - N_4(t) \cdot q_3(t) \right) \, dt. \\
\tag{D.12}
\end{align*}\]

In the above we define

\[N_3(t) = n_3(T) - n_3(t + \tau_{23}),\]

\[0 \leq t \leq T - \tau_{23} \]

\[= 0, \quad T - \tau_{23} < t \leq T.\]
\[N_4(t) = n_4(T) - n_4(t + \tau_{34}) \]

\[\begin{align*}
0 & \leq t \leq T - \tau_{34} \\
= 0 & \\
T - \tau_{34} & < t \leq T
\end{align*} \] \((D.14) \)

In writing \(J_k \) elements we drop terms that are independent of the control variables.
APPENDIX E

REDUCING THE HYDRO-OPTIMALITY CONDITIONS

Let us start with the downstream plant optimality conditions (5.14) and (5.11), the derivatives of (5.14) with respect to time gives us

\[\dot{m}_4(t) = \dot{\lambda}_4(t) \]

(E.1)

Define

\[M_4(t) = \frac{1}{r_4} \frac{\partial \lambda_4}{\partial h_4} \]

(E.2)

Thus, Equations (5.11) and (E.1) combine to give the first order differential equation

\[\dot{\lambda}_4(t) = m_4(t) M_4(t) \]

(E.3)

The solution of (E.3) is

\[m_4(t) = m_4(0) \exp \left(\int M_4(t) \, dt \right) \]

(E.4)

From Equation (5.14), we have

\[m_4'(0) = m_4(0) - n_4(T) - \nu_{G_4} \]

(E.5)

To conform with the classical theory, we let

\[\nu_4 = - m_4(0) \]

(E.6)
As a result, the optimality equation (5.10) for plant 4 is

\[v_4 \exp \left(\int_0^t N_4(t) \, dt \right) \frac{dA_4}{\delta F_4} = \lambda(t) \left[t \frac{3F_4}{3F_4} \right] \]

(E.7)

This is exactly Kron-Ricards equation for uncoupled hydro plants.

Consider next the intermediate plant, number 3, Equation (5.13) upon differentiation gives:

\[\dot{m}_3(t) = \dot{n}_3(t) = \dot{n}_4(t) \]

(E.8)

From (E.14), we get:

\[\dot{m}_3(t) = \dot{n}_3(t) - \dot{n}_4(t + \tau_{34}) \]

\[\quad 0 \leq t \leq T \quad t + \tau_{34} \]

\[\quad = \dot{n}_3(t) \quad t + \tau_{34} < t < T \]

(E.9)

Using (E.1), we further obtain:

\[\dot{m}_3(t) = \dot{n}_3(t) - \dot{\bar{n}}_4(t + \tau_{34}) \]

\[\quad 0 \leq t \leq T - \tau_{34} \]

\[\quad = \dot{n}_3(t) \quad T - \tau_{34} < t < T \]

Equation (5.11) for plant 3, is written as:

\[\dot{n}_3(t) = m_3(t) \frac{dN_3}{\delta} \]

(E.10)

where

\[m_3(t) = \frac{1}{\delta_3} \frac{3A_3}{3N_3} \]

(E.11)

Using Equation (E.9) in (E.10), we thus write
\[\dot{m}_3(t) = m_3(t) N_3(t) - u_3(t) \]

(E.12)

In Equation (E.14) we have

\[u_3(t) = \tilde{N}_3(t + \tau_{34}) \]

\[0 \leq t \leq T - \tau_{34} \]

\[= 0 \quad T - \tau_{34} < t \leq T \]

On the basis of Equation (E.13), we have Equation (E.9) written as

\[\dot{m}_3(t) = \tilde{n}_3(t) - u_3(t) \]

(E.14)

Equation (E.12) is an inhomogeneous linear equation whose solution is given by

\[m_3(t) = \tilde{\phi}_3(t;0) m_3(0) - \int_0^t \tilde{\phi}_3(t;\sigma) u_3(\sigma) d\sigma \]

(E.15)

where

\[\tilde{\phi}_3(t;\sigma) = \exp \left(\int_\sigma^t M_3(z) dz \right) \]

(E.16)

To conform with conventional theory let

\[v_3 = -m_3(0) \]

(E.17)

As a result, the optimality condition (5.10) for plant 3, is written as

\[\left(v_3 \tilde{\phi}_3(t;0) + \int_0^t \tilde{\phi}_3(t;\sigma) u_3(\sigma) d\sigma \right) \frac{\partial q_3}{\partial F_3} = \lambda(t) \left[1 - \frac{\partial E_3}{\partial F_3} \right] \]

(E.18)
In a similar fashion we can arrive at the following relation for plant 2

\[
\{ v_2(t, \sigma) + \int_0^t g_2(t, \sigma) u_2(\sigma) \, d\sigma \} \frac{\partial q_2}{\partial P_2} = \lambda(t) \left[1 - \frac{\partial P_L}{\partial P_2} \right].
\]