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ABSTRACT

A mapping F of a metric space X into itself is said to satisfy
a Lipschitz condition with Lipschitz constant K if d(F(x), F(y))
< Kd(x, y) , (x, y €X). If this condition is satisfied with a Lipschitz
constant K such that 0 < K <1 then F 1is called a contraction mapping.
If we let K = 1 the mapping is called non-expansive, and if K = 1 and we

have a strict inequality it is called contractive.

In this thesis we give a survey of the various definitions offered for
non-expansive, contractive and contraction mappings in uniform spaces. In
particular we study the following definition of a l-contractive mapping
given by Casesnoves) [3 ]. DEFINITION: If (E, U) is a complete uniform
space and F a map of E into itself such that g = (F, F) is the
extension of F to the product space E x E, then F 1is said to be

U-contractive, provided the following conditions are satisfied.

(a) vy vel |, g()cv
(b) yV,¥yWelu, k€N, ¥p>0 , ¥n>k

L Mog™ (0 ... 0" W ew.

We consider also sequences of contraction mappings in metric and
uniform spaces. In metric spaces we prove a theorem for a sequence of
contraction mapping of a complete € — chainable metric space. In
uniform spaces we prove the following theorem and then show how it may
be used to prove other results for sequences of mappings in uniform

spaces.




(i1)

THEOREM: 1Let (E, U) be a complete uniform space and Fk a U-contract-

ive mapping from E into itself, with fixed points Uk k=1, 2, ... ).

Suppose lim Fk(x) = F(x) for every x € E, where F is a U-contractive
ko

mapping from E into itself. Then Llim Uk =y, where U is a fixed point
koo

of F.
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CHAPTER I

Introduction

In the latter part of the nineteenth century a lot of work was
being done on distance-related concepts in a number of specific "spaces"
which were not "spaces" in the usual sense, for example; "spaces”in which

the typical "point" might be a curve or a function.

In 1906)Maurice Fréchet suggested in his doctoral thesis that this
work might be done more economically by considering a single, abstract,
but restricted concept of "distance" defined for pairs of equally abstract
points and developing its properties once and for all. He suggested and
explored several alternate ways of doing this, but his best proposal was
that of a metric space. In such a space, distance-related concepts such

as continuity and convergence could be defined and interpreted in a

natural way.

The process of generalization did not terminate with metric spaces,
for within a short time, men such as Riesz, Hausdorff, and Fréchet himself
observed that the notion uf distance could be replaced with the notion of
"meighbourhood" and that continuity, perhaps the principal metric space
property, could be considered equally well in temms of "neighbourhoods".
Hausdorff, in 1914, laid down certain conditions that these neighbour-

hoods must satisfy and called the resulting space a topological space.

The greatest advantage enjoyed by a topological space over a metric
space is the fact that a topological space does not depend on the system

of real numbers, or for that matter, on any other more specialized math-




ematical system. However, in moving from metric spaces to topological
spaces some important concepts were lost, for example; uniform continuity,
uniform boundedness and Cauchy nets. Efforts were made to develop theories
in which these and similar ideas could be worked out without suffering from

the limitations of metric spaces.

One idea was to introduce a generalized metric space, that is:
d : Xx X~ [0, »] where X is a non-empty set, satisfying the usual axioms
for a metric space, i.e. d(x, y) = 0 iff x = y, d(x, y) = d(y, x) and

d(x, y) < d(x, z) + d(z, y). [18].

Another idea was that of proximity spaces, (for a discussion of the
theory of proximity spaces see Thron [29]) but the most useful of all was

the concept introduced by A. Weil [30], in 1937, of a uniform space.
See Kelley [14] for the following definitions and terminology.

A uniform space is defined as follows: A uniformity for a set X 1is

a non-viod family U of subsets of X x X such that:
(a) each member of U contains A ; (where A = [(x, X) : x € X]
called the diagonal);
(b) If UE U, then U € U;
(¢) IfUE U, then Vo Ve U for some V in U;
() If U and V are members of U, then UMV E U; and

() IfUE Uand UCVC X x X, then VE U.

If U satisfies the condition “

NU:UEU] =4




then U 1is called an Hausdorff (or separated) uniformity. The elements
of a uniformity are sometimes called entourages, and the pair (X, U) is

called a uniform space.

A subfamily B of a uniformity U is a base for U iff each

member of U contains a member of B8 .

Now given a metric space (X, d) one can define a uniformity for X
by letting VE = {(x, y) : d(x, y) <€}. It can also be shown that every
uniform space is a topological space. Uniform spaces therefore will lie

somewhere between metric and topological spaces.

Uniform continuity and Cauchy nets can be defined on a uniform space

in the following way (Kelley [14]).

If f is a function on a uniform space (X, U) with values in a
uniform space (Y, V), then £ is a uniformly continuous relative to U
and V iff for each V in V the set {(x, y) : (f(x) ,f(y)€ V} is a

member of U.

A net'{Sn , n¢& Dlin the uniform space (X, U) is a Cauchy net iff
for each member U of U there is N in D such that"{Sm , S, YEU

whenever both m and n follow N in the ordering of D.

One of the best known theorems in connection with the mappings of a
metric space X into itself is the Banach contraction principle stated

below.

THEOREM 1 : If f maps the complete metric space X into itself

and if




there exists A such that 0 <X <1 and
D) d(f(x) , £(y)) < ald(x, y)] for all x and y in X,

then there exists a unique point x in X such that f(x) = x.

A mapping satisfying (1) is called a contraction and ) 'is called

the contraction constant for f with respect to d.

Because of the simplicity and usefulness (see for example‘Kelmogorov
and Fomin [16]) of Theorem 1, various generalizations and localizations of
it are given which in one way or other relax the restrictions on (1)
(Edelstein [11], Raketch [23] and Naimpally [21]). Several authors have

also examined non-expansive mappings which satisfy
(2) d(£(x), £y < d(x, ¥).

Some of these are listed in the bibliography (Edelstein [9 ], Edrei [12])_

Another approach has been to consider mappings which satisfy

(3) d(f(x), £(y)) > d(x, y)

called expansive mappings (Edelstein [9 ]).

The previous condition insures the existénce of fixed or periodic
points in certain cases, but most results obtained from (3) are of quite

di fferent nature. For example, Brown and Comfort [2 ] provedthe following.

THEOREM 2 : Suppose X 1is compact and metric and suppose f 1is
one-to-one mapping satisfying (3), then f 1is, in fact, an isometry on

X, That is d(f(x), f(y)) = d(x, y) for all x and y in X.




The concept of contractions has also been made meaningful in spaces
more general than metric (Davis [ 6] and Diaz and Margolis [ 7]). How-
ever, as contraction and non-expansive mappings are uniformly continuous
it is not possible to define them in ordinary topological spaces, but

they can be defined in uniform spaces.

Rhodes [24], in 1955, gave first definitions in uniform spaces,
when he defined non-expansive and expansive mappings, as an aid for the
generalization of isometries to uniform spaces. He considered the fact

that if we let X be a metric space with metric d and let
U, = {(x, y) : d(x, ) < ¢}

then two points x, y of X near of order Ue imply d(x, y) <¢ ,
therefore the images £(x), f£(y) of the points x, y under a non-
expansive map f are also mear of order Ue . Rhodes then defined non-

expansive mappings for uniform spaces in the following way.

A transformation f of a uniform space E with basis of vicinities
B into itself is said to be non-expansive if, for every pair of

(4) points x, y of E and every vicinity V of B8, (x, y)EV
implies (£(x), f(yDE€ V , i.e. (f, D)VCV.

Obviously a non-expansive map is uniformly continuous.
Expansive mappings were defined in the following way.

A transformation f of a uniform space E with basis of vicinities
B into itself is an expansive if, for every pair of images f(x), £(y)
(5) of points x, y of E and every vicinity V of B8, (f(x), f(y)e Vv

implies (x, y) £ V.




In 1959, Brown and Comfort [2 ] used (4) and (5) to prove some
further results concerning isometries in uniform spaces. For example, they

were able to prove a generalization of Theorem (2).

The first fixed point theorem in uniform spaces, using a modified
version of (4), was given, in 1963, by Kammerer and Kasriel [17]. Other
results using the definitions of Kammerer and Kasriel were given by
Edelstein [10] and Naimpally [20]. Knill [15] using a different definition

for the non-expansive map in uniform spaces, gave some further results.

In 1965, Casesnoves [3 ] added an extra condition to (4) and gave a
definition for contraction mappings in uniform spaces. His exact definition

is stated below.

If (E, ) is a uniform space and f a map of E into itself, such
that g = (f, f) is the extension of f to the product space E x E.
Then f is said to be "U-contractive" provided the following

conditions are satisfied

(a) weu , gWn)cv

(6) (b) W o, Weu , JkeN , V¥Ww>0 , Vn>ky

o ™o ..o gMPy g

By gn(v) we mean the n-fold iterations of V bysg. Using this
definition Casesnoves was able to prove the Banach Contraction Principle

in uniform spaces.

R-Salinos [25] and most recently Chandler [4 ] have given different
definitions of contraction mappings in uniform spaces and proved fixed

point theorems.




In Chapter II, of this dissertation, we give a survey of the fixed
point theorems proven for non-expansive and contraction mappings in uniform

spaces; and using definition (6) we prove some further results.

In Chapter III we consider sequences of contraction mappings, again
we give a survey of what has already been done in uniform spaces,and using

the definition of Casesnoves give some further results.

References throughout this dissertation are given by a number in
brackets indicating a particular article or book in question. Definitions
and terminology, unless otherwise indicated, are taken from Kelley [l4].

A complete list of references arranged in alphabetical order is given at

the end of this dissertation.




CHAPTER IT
NON-EXPANSIVE AND CONTRACTION MAPPINGS OF A

UNIFORM SPACE

In this chapter, given a map F of a uniform space E into itself,
we shall be interested in seeking the conditions on F and E sufficient

to insure the existence and uniqueness of a fixed point of F in E .

We begin by stating several definitions which were first given by

Brown and Comfort [2] ; Kammerer and Kasriel [17] .

Let (E, U) be a uniform space and let B be a basis for the

uniformity.

2.1 DEFINITION: B is said to be open if each of its elements are open

in E x E.

2.2 DEFINITION: B is said to be ample if; whenever (x, y)e UEB ;

there is a WE B for which (x, y)€ WC WC U,

2.3 DEFINITION: Let UE B . Then a U-=chain is any finite set of points
Xgs Xls »ees X in E such that (xi_l , xi)E.LJ, i=1,2, ... , n. We
shall say in such a case that X, and x are joined by a [J-chain. The

uniform space (E, U) 1is said to be U-chainable if for each pair (x, y)

of its points there exists a(/-chain joining x and VY.

The above definition in uniform space is a generalization of the e-chain
concept for metric spaces. A formal definition of an e-chain in metric

spaces will be given in Chapter III.




As a means of comparison we shall list as 2.4 an abreviated form
of definition 1.5 and then as 2.5 state the definition of a g—contractive

map as introduced by Kammerer and Kasriel.

2.4 DEFINITION: Let (E, U) be a uniform space and B be a basis
for U . A function ¥ : E~> E 1is said to be a contraction, if

(F(x), F(y)) € U whenever (x, y)EUE B .

2.5 DEFINITION: Let (E, U) be a uniform space and B be a basis
for U. A function F : E+ E is said to be B-contractive, provided that
for eachy € B and (x, Y)E U (x + y) there exists a W& B such that

(F(x), FyDEWC U and (x, y)E W.

Definition 2.5 is a more restrictive definition than 2.4 and can be
thought of as a generalization of the metric d(F(x), F(y)) < d(x, y)
called a contractive mapping (see Edelstein [8]) where as 2.4 is a
generalization of d(F(x), F(y)) < d(x, y) the non-expansive mapping

definition.

K ammerer and Kasriel, using Definition 2.5, were able to prove the
following theorem which is a generalization of a theorem given by Edelstein

[8]) for metric spaces.

2.6 THEOREM: Let (E, U) be a Hausdorff uniform space and let B be
an open ample basis for the uniformity of E. If F :E~+E is B-contractive
and is such that the image of E under some iterate of F is compact, then
(a) The set of periodic points in X is a nonempty finite set
integer

A= {xo’ X5 eens xn} so that for some positive/\p, Fp(xi) = X, for

each xg in A. TFurthermore, for each x in E, there exists an




—cpar
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xie A such that 1lim Fpn(x) =X, .
132 .

(b) Suppose E is U-chainable, Ug¢ g. Then A reduces to a single
point. [Hence F has a unique fixed point X and for each x € X,

lim Fn(x) = xo.]
axacd

The fact that in the above theorem, if A consists of a single point
then F has a unique fixed point depends on a lemma, which for completeness

shall be included here together with its proof.

2.7 LEMMA: If F 1is a continuous mapping of a set into itself and if,
for some positive integer k , Fk has a unique fixed point, then F has a

unique fixed point.

PROOF: Denote by Z the unlque fixed point of Fk. Since

Fk+l

F2) = F(F@2) = FL@) = F(R(Z))

it follows that F(Z) is a fixed point of Fk and so F(Z) = Z since Z
is unique. Thus F possesses a unique fixed point, and a fixed point of F

is necessarily a fixed point of Fk and so is unique.

The next results, using Definitions 2.4 and 2.5 , were given by
Edelstein [10]. 1In this paper Edelstein generalizes some fixed point theorems,
which he had proven in metric spaces, to uniform spaces. In so doing he gives

a generalization of Theorem 2.6.

2.8 DEFINITION: Let EF denote the set of all points x & E with the
property that x is a cluster point of {Fn(y)} for some y € E, where F is

a mapping of the uniform space (E, ) into itself.

2.9 DEFINITION: Let (E, U) be a uniform space and g a base for (.
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We say that a mapping F : E+ E is g-contractive at x & E if for each
Ueg and (x,¥Y)E U, xFy, a WEQ exists so that (Fx, Fy)E& WC U

and (&, V)¢ W

Clearly a mapping is 8-contractive if, and only if, it is B-contractive

for all x € E.

2,10 THEOREM: Let (E, ) be a uniform space and B an open ample
base for (. Let F : E+ E be a contraction with respect to 8 . Suppose

X E. EF and F is PB~contractive at x . Then

(a) x 1is periodic under F, i.e. there exists a positive integer k
such that Fk(x) = X3

(b) if (x, YY) EUER and y is periodic under F then y = x;
(¢) if ZEE and x is a cluster point of {F'(Z)} then

{(F{2)} ,n=1, 2, ..., converges and its limit is (x) for some

£=0,1, ..., k - 1.

REMARK 1 : If (E, U) and B are as in theorem 2.10 and F is
g-contractive then each xE& EF i periodic, i.e. each x§€& EY is a

fixed point of F.

2.11 THEOREM: Let F be a B-contractive mapping of a uniform space
(E, U) into itself with respect to an open ample base 8§ . Then the set of
all periodic points of F is closed. If E is compact then this is
finite. Moreover for each x & X there is a periodic point Z and an

integer k so that {Fnk(z)} ,n=1, 2, ..., converges to Z.

PROOF: Note that the set of all periodic points of F is here
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precisely EF. Let x be an accumulation point of this set. It suffices
to show that x is a cluster point of | {Fn(x)}. Let, then, UgB be
arbitrary and n a positive integer. Let y ¢ W{x] f\EF where

WeB, WC Vn V_l and VoV U. Then (x, y)E W and, since Fk(y) =y

for some k, we have
F* ), ) = e, e w

nk -
thus (F (x), x)& Wo W 1C_ g, i.e. Fnk(x)e Ulx]. Therefore x 1is a cluster

point ofi{Fn(x)} as asserted.

If, now, E 1is compact then EF is compact too. (Since ¥ is
continuous.) The family {le]/x:e:EF} is an open cover. This cover contains
a finite subcover and by part (b) of Theorem 2.10 each element of this sub-

cover contains one point of EF only. Thus EF is ‘finite.

Since E dis compact the final part of this theorem follows immediately

from part (c) of Theorem 2.10.

REMARK 2: Theorem 2.11 is essentially the same as part (a) of Theorem
2.6. The only difference being, in Theorem 2.6, the author requires that the
uniform space be Hausdorff and some iterate of E under F be compact. In
Theorem 2.11 the uniform space E 1is assumed to be compact. In both cases
they are using the fact that the continuous image of a compact space is
compact to prove that the set of periodic points under F is compact and
hence finite. The different assumptions arrive from the different techniques

used to prove this fact.

2.12 THEOREM: Let (E, ) be a U-chainable uniform space for some

U¢ B where B is an open ample base for U, Suppose F is a contraction




ey T
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mapping of E iInto itself with respect to B which is B-contractive at

x € EF.

Suppose, further, that‘{Fn(y)} ,n=1, 2, ..., has a cluster point

whenever y € U[x]. Then F(x) = x and x is unique with this property.

PROOF: It suffices to show that the set of all periodic points reduces
to a singleton. Suppose y, ¥y + X, is periodic and let n be the smallest

integer with the property that a U-chain exists of the form

X =X X ase X = .
o’ 1> > 4 y

Let Fk(x)

X, F#(y) =y, Since F is a contraction it follows that

i

{kaz(xi)} ,1=0,1, ..., n, is a U~chain for allm =10, 1, ... . The

fact that B is ample clearly implies that all cluster points of
{kaz(x )} belong to U. It then follows from part (b) of Theorem 2.10 that
the only cluster point of this sequence is x. From part (c) of the same
theorem it then follows that x = lim kat(xi). This in turn can be seen
to imply that for sultable mj(x, m;:kz(xh)) € U. For such m a U-chain

exists in which n can be replaced by n' <n -1 since x = X

qu(xz), qu(XE,), cees X =Y is such a chain. This contradicts the
definition of n, thus proving that x is a unique periodic - hence a

fixed (Lemma 2.7) - point under F.

REMARK 3, If we allow E to be a countably compact uniform space with
an ample base B for the uniformity U , E to be U-chainable, and F to
be p-contractive, then all assumptions of the above theorem are satisfied
and the ccnclusion holds. Because a compact space is also countably
compact, then part (b) of Theorem 2.6 satisfies the conditions of Theorem

2,12 and is therefore a weaker result.
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The final work, using Definition 2.5, which we shall include here was
given by Naimpally [20]. In this paper Naimpally proves Theorem 2.6, in
the light of the generalized metric, for the special case having a base 8

as defined below.

2.13 DEFINITION: Let (X, d) be a generalized metric space. For any
real ¢ > 0 let U, = {(x, y) &€ X x X/d(x, y) < €}. Then the set

By = {Uelg > 0} is a base for a uniformity U; of X under d.

2.14 LEMMA: The base gy is ample and the uniform space (X, U') is

Hausdorff.

PROOE: If (x, ¥)E UE c B,, i.e. d(x, y)< ¢ for some ¢ > 0, let

d(x, y) = » and consider W= {(x, y) € X x X/d(x, ) <552} . Then
Vs e XxX/dkx, ) <S5 and

(x, )E WCWC u_ .

Thus B; is a ample base for Uj.

Now the ﬂ{UE/e > 0= N{(x, YE X x X/d(x, y) <et = {(x, y)&€ X x X/
d(x, y) =0} =4.

Thus (X, LP is Hausdorff.

For the following X will denote a Hausdorff uniform space with a base
B1 for its uniformity induced by a generalized metric d and the terms

Cauchy sequence, complete etc., will have the usual meanings with reference

to d.

2.15 DEFINITION: A function F : X =X 1is said to be e-contractive iff

d(Fx, Fy) < d(x, y) for all x, y& X such that 0 < d{(x, y)< € .
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2.16 LEMMA: If X dis compact and F is an e-contractive self mapping

of X then F has a periodic point.

2.17 DEFINITION: Let B be a base for the uniformity U of X and
U€ 8. A function F : X+ X 1is said to be U-contractive iff for each
(x, YJE X (x $y), (x, yY)€ U implies there exists a We8 such that

(Fx, )€ WC U and (x, y)¢ W,

If F is U-contractive for all UE B then it is B-contractive.

REMARK 4: If we let By = B then this definition is equivalent to
Definitions 2.14 of an e-contractive mapping for a suitable ¢ >, 0,
€€ R . We note also the difference between Definitions 2.9 and 2.14, In
2.9 Edelstein allows an x € X to be fixed and F to be B -contractive
for all (x, y)& Vgg where x $y. In 2.14 F is allowed to be B-contractive

for a given Ug g.

2,18 THEOREM: Let X be a Hausdorff uniform space with a basis B8;
obtained from a generalized metric d. TFor some Ug&R if F : X» X is
U-contractive and Fk[X] is compact then F has a periodic point. Moreover

the set of all periodic points of F equals A = N Fn[X] which is finite.
n=1

PROOF: U is obtained from some ¢ belonging to R with ¢ > 0 and
so F 1s g-contractive. The restriction of F to Fk[X] is an e-contract-
. . , . k
ive self-mapping and so by Lemma 2.15 F has a periodic point in F [X] and

hence in X.

The final part of the theorem follows from the fact A =ﬂ Fn [X] is
n=1
compact, F[A) = A and for any two distinct points (p, q) € A, : .

d(ps @) > e .
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2.19 THEOREM: 1If in Theorem 2.18 X is U-chaingble then F has a

unique fixed point.

F , . s
PROOF: Since AC X', A itself is e~chainable for some ¢ belonging
to R, &> 0 which corresponds to U. But for p, q € A, P ¥ q d(p, q) > ¢
and so A must contain only one point which is the unique fixed point of

F.

Because Theorem 2.6 was the first fixed point theorem proven for uniform
spaces, the papers which followed were, as we have seen, dealing with one
generalization or another of it. The first to diverge from it and prove an
entirely different fixed point theorem was due to Knill [15]. This paper
also gave a new definition of the non-expansive map for wniform spaces as

stated below.

2.20 DEFINITION: Let (E, U) be a uniform space. A function F of E
into itself is non-expansive if for any entourage U of U there is a

closed entourage V such that

FVC Int(V)C U.

Here Int(V) = interior of V and F V = {(Fx, Fy)/(x, y) € V} .

The function F is a uniform non-expansive if for any entourage

U E U there are entourage V and W such that

FVvoWC VCU.
Knill makes uses of this definition to give a contraction principle for
uniform spaces. He then shows how the contraction principle may be used
to give a simple proof, in uniform spaces, of two theorems from metric
spaces due to Edelstein [8] and Rakotch [23] . A complete proof of Knill's

contraction principle will be presented here.




l7l

2,21 LEMMA: Let (E, U) be a uniform space. A function F of E into
itself is a uniform non-expansive map iff for every entourage U of U

there are symmetric entourages V and W such that

Wo (FWo Vo W) o WC VCUT.

2.22 COROLLARY: Any uniform non-expansive map of a uniform space (E, U)

is a non-expansive map.

2.23 DEFINITION: A uniform space (E, U) is well-chained if for every
pair x, y of polnts of E and any entourage U of U there is a positive

integer n such that (x, y)& u™( "=u.ypo U .ud)s

2.24 THEOREM: (Uniform contraction principle). A uniform contraction
F of a sequentially complete well-chained wniform space (E,U ) leaves

exactly one point of E fixed.

PROOF: As in the metric case it is sufficient to show that for amy
point x of E, the sequence (Fn(x), n=1, 2, ...) is a Cauchy
sequence. The limit point X, of this sequence is then the fixed point of F.
Let x be any point of E. Before showing that (F'x), n=1, 2, ...) is
a Cauchy sequence we need to show that for any U€ U there is a positive
integer N such that:

Fn+1

(F*(x) s (x))€ U for all n > N. (1)

Now from Lemma 2.21 it follows that there are symmetric entourages V and

W such that
F(VoWC VCU and FWCW
We now show that for all n > 1,

PV oWe v (2)
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For n = 1 it is true by our choice of V and W. Suppose (2) is true

for some n > 1. Then because F is continuous we have
P o W ¢ BEwe W) o )¢ P o W) < .
(Since F(Vo W)C Vo W and W'C W'.)

Thus by induction on n, (2) 1is true for positive integer n.

To prove (1) observe that since E is well chained, there is a positive

integer N such that (x, F(g}éﬁ W'. Thus for n > N,
@, Flan e P o W) cPwo W) C Ve,
which proves (1).

Now apply (1) to W to choose an integer N' > 0 such that for
> N, (F @), Fn+1(X)) € W. We claim that for any pair of

integers m, n > N'
(F'(x) , F(x)€ V (3)

i.e. (Fn(x) ,n=1,2, .,..) is a Cauchy sequence, since VCU and U

was an arbitrary element of U. Since V is symmetric it suffices to
prove (3) for n = m + k where k3 0. For k=0 it is true since V
contains the diagonal (A) of E. Suppose (3) is true for all m

and for some n=m+ k and k> C; then (Fm_l(x), F'(x))E W by
assumption and (Fm(x), Fm+k(x)) C V by the induction hypothesis. Hence
(Fm_l(x), Fm+k(x))éi VoW for all m>N', and so
(Fm(x),Fm+kf;(x))gF(vgw9c:v for all m > N'. Thus (3) is true by induction

on k=n-m for all m>0N' and all n > m, which was what we wanted

to show.

Knill also proved the following lemma.
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2.25 LEMMA: Let (E, U) be a uniform space such that the topology
induced on E by U 1s compact. Then a self map of E 1s mnon-expansive

iff it is uniform non-expansive.

The following corollary of Theorem 2.24 follows from the above lemma
and the fact that for a compact space E, E is well-chained iff E is

connected.

2.26 COROLLARY: If F 1is a non-expansive map of a compact comnected

space E then F leaves exactly one point of E fixed.

The following theorems have been proven in metric spaces.

2.27 THEOREM: (Edelstein): Let (X, d) be a compact connected metric
space and let a be a positive real number, If F 1is a function of X
into itself such that d@(x), F(y)) <d(x, y) for all x,y in X such

that d(x, y) < a, then F has a unique fixed point in X.

2.28 THEOREM: (Rakotch): Let (X, d) be a complete g—chainable metric
space, let a be a positive real number and let p be a monotone decreas-
ing function of the interval (0, a] into the interval [0, 1). Suppose F
is a function of X dinto itself such that whenever x, y are in X and
0 < d(x, y) < a, then d(F(x), F(y)) < p(d(x, y))' d(x, y). Then F has a

unique fixed point in X.

REMARK 5. Suppose (X, d) 1s a metric space and F 1is a self map of
X such that d(F(x), F(X» < d(x, y) whenever d(x, y) < a for some
fixed a. Now consider the uniform space (X, Ud) where Ud 1is the
uniformity for X eenerated by d in the usual way. Then if Ud€ Ud
ie. Uy= {(x, y)/d(x, y) <€, 0<e <al and we let

Vy = {(x, y)/d(x, y) < 9/23 then VdC, Ud and we have for all (%, y) €. Vd
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d(F(x), F(y)) < d(x, y).

Then F(Vd) C Int(Vd) C Ud and F is therefore a non-expansive map on
(X, Ud). Thus the Corollary 2.26 extends Edelstein's theorem to arbitrary

compact connzcted spaces.

To see that Knill's uniform contraction principle includes Rakotch's

theorem we need the following.

2.29 DEFINITION: A uniform non-expansion of a metric space (X, d) is
aself map F of X such that for some number a > 0 and every e € (0, a]
there is a real number ¢ = r(e) less than 1 such that if x, y are

points of X and d(x, y) < e, then d(F(x), F(y)) <r * e.

2.30 PROPOSITION: If F 1is a uniform non-expansive map of a metric
space (X, d) then F is a uniform non-expansive map of the uniform space

(X, Ud) where Ud is the uniform structure on X induced by d.
2.31 COROLLARY: Rakotch's theorem.

PROOF: We need only to show that for (X, d) and F as in the statement
of Theorem 2.28, F is a uniform non-expansion of the metric space (X, d).
Let P be a monotone decreasing function of the interval (O, a) into [0, 1)
such that if x, y are points of X and 0 < d(x, y) < a, then
A(F(x), F(y)) < pld(x, v) » d(x, y)). Suppose e € (0, a] . Then let
r = max (p(e/2), 1/2). If d(x, y) <e, then either d(x, y) =0 in which
case d(F(x), F(y)) =0 <r e, or 0 <d(x, y) < ef/2 in which case

d(F(x), F(¥)) < /2 <t * e, or finally &/2 < d(x, y) < e, in which case
d(F(x), F@y)) < pld(x, ¥)) « d(x, y) <p(E/2) e < e

Thus in all cases d(F(x), F(y)) <r - e if 0 <d(x,y) <e.
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REMARK 6: Tt is often more convenient, as shown above, to prove a
theorem for metric space by working with an equivalent wiform space,
having the uniformity induced by the metric d. Another example of this
technique is given at the end of this chapter, when we introduce a theorem

by Chandler [4].

We note also that Davis [6] has proven a fixed point theorem for a
well-chained topological space, however this theorem is straightfomardly

included in Theorem 2.24.

We move now to contraction mappings and recall the definition of a

U~contractive mapping as given by Casesnoves.

2.32 DEFINITION: If (E, U) 4is a uniform space and F a map of E
into itself, such that g = (F, F) is the extension of F to the product
space E x E, then F is said to be U-contractive, provided the following

conditions are satisfied.
(a) ¥VELU, g CV

b)) vv, vWeulU, JkENI¥pPp>0, ¥n>k ,
+ +
gn(V)O gn 1(V) 0... 0 gn P(V) & v.
This definition differs in two ways from the foregoing definitions of

non-expansive mappings in uniform spaces.

(1) Here the mapping is defined on the elements of the uniformity
directly, rather than on its base. There is no discrepancy here as a base
defines the uniformity completely (see Kelley [14] (p 176—177», it is

sufficient to work with its base.

(2) We have in this definition the extra condition (b) which is

designed to replace in uniform space, the Lipschitz constant for contraction
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mappings i .. ~ic spaces (see Definition 1.1).

2.33 PROPOSITION: Let (E, U) be a uniform space, and F: E ” E be

U-contractive. Then F is uniformly continuous.

PROOF: Since F is U-contractive g(V) € V, ¥ VE UU. Now for any
v in U there exists an entourage U of U such that g(d) € V, namely
V itself.

Thus F 1s uniformly continuous.

2.34 THEOREM: (contraction principle). Let (E, U) be a complete
uni form space, F : E> E be U-contractive then F has a unique fixed

point.

PROOF: As in Theorem 2.24 we start by proving that the sequence of

iterates {F(x), n=0, 1, 2, ...} is a Cauchy sequence.

Let (x, F(x))& V. Then g(x, F(x) = (F(x), F2(x)) € g(V) by the very

definition of F. Continuing we have;
+
e, P Cgm.

Now if m > n then we have (F'(x), F 1(x)) C g™(V),
1, P2 ¢ W), ..., W, @) € ).
Thus (PP (0, FTH@) o R, F2)0... 0" 1), F(x) C
W 0 g 0...0 W), e

m—1

), PE)C W o g rwo...0 g" (W),

By (b) of Definition 2.32, given any W& U and choosing n > k, m > n then
for m and n satisfying these conditions we have

(F'(x), Fr(x)) C W,

e
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n
Thu§ (F(x) ,n=0,1,2, ...) is a Cauchy sequence.

Now as E is complete, each Cauchy sequence has a limit, if this

limit is Z then

Z= lin F'(x) = F lin [FF1(x)] = F@)
o hregs]

holds because F is continuous. Therefore 2Z 1is a fixed point of F.

Next it is required to show that the fixed point is unique. To do
this we show that the Cauchy sequences obtained by beginning with any two

arbitrary points x, y of E are equivalent.

Let (x, y)€ V then (F(x), F(y»e g(V) & V. It follows that
(F(x), Fy)€ (V) and (F(x), F(y)) € g(V) and therefore
x, y), (F(x), F(y)), (F2(x), F2(y)) € g(V) (Since A € V and g(V) also
x,v9)€ V, (v, y)€ g(V) we have (x, y) € g(V), similarly for the
others). Continuing this procedure with n, m such that m > n, we have
@, ), E e, Pl e g and

e, Pl @, Poye &N ths

1

(F ), (), (FiG), F(y)) 6 g"(V) 0...0 g (V)

which proves that the sequence'{Fn(x), Fn(yZL n=0,1, ... is a Cauchy

sequence, and therefore the two Cauchy sequences are equivalent.

It follows that we cannot have more than one solution of equation (1),
n
for if Z and y are both fixed points of F then {F(Z), F (y)}

cannot by Cauchy, contrary to above. Thus F has a unique fixed point.

REMARK 7: We note that even though Theorems 2.24 and 2.34 are similar
in both statement and proof, Theorem 2.34 appears to be the better result.

In the case of Theorem 2.24, Banach's contraction principle is, strictly
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speaking, not generalized since the space must be well-chained.

2.35 COROLLARY: If (E, U) is a uniform space such that some iterate

Fk of F is U-contractive then F has a unique fixed point.

PROOF: Since Fk is U-contractive it has a unique fixed point X
say. Thus

x, = :.;:1 '%"‘(xo) = F [rlrig F“k“l(xo)J = Fx) .

Thus F has a fixed polnt and uniqueness follows from Lemma 2.7.
Using Theorem 2.35, we prove the following two theorems in uniform
spaces. The theorems were originally given in metric spaces by Chu and

Diaz [5]. We would like to give these theorems in uniform space.

2.36 THEOREM: Consider F : E* E and if

(a) (E, U) a complete uniform space and

(E, V) a uniform space;
(b) The uniformity U is smaller than the uniformity Vv i.e.
each entourage of U also belongs to V ;
(¢) F is continuwous on (E, U) and V-contractive on (E, V).

Then T has a unique fixed point in E.

PROOF: Consider X F(xo), fz(xo), ... the iterations of F for
some X, @E. Now since F 1is VU-contractive in (E, /), by the same method

as used in the proof of Theorem 2.34, it follows that the sequence is Cauchy

in (E, V).

Now because each entourage U of U also belongs to v,
'{Fn(xo). n=1, 2, ...} 1is a Cauchy sequence in (B, . But (E, U) is

complete thus {F'(x ), n = 1, 2. ...} converges to some point Z in E and
o
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again by the same method as used in Theorem 2.34 we can prove that Z is
unique.
Since F is continuous on (E, U) we have

) _
Z=lin P l(xo) = Flin Fx) = F@) , f.e.

e e
Z 1is a unique fixed point of F.

2.37 THEOREM: Let T be a mapping from the complete uniform space
(E, U) into itself and let K be another map also defined on E 1into itself,
such that K possesses a right inverse K—l. Then T has a unique fixed

point 1f K17k is U-contractive.

PROOF: Since K_lTK is a U-contractive it has a unique fixed point,
-1 .
= . & = . h
say x_. Thus KK "TK (xo)] K(xol K (x)) K(xo) K(x ) is therefore
a fixed point for T.
To prove uniqueness we assume that K(xo) and K(x;) are two fixed

points for T. i.e.

T(K(xo)) = K(xo) and T(R(x)) = K(x;), therefore

L}
i}

X and

-1 -1
K TK(xo) K K(xo) o

U

K—lK(Xl )

KR (xp) x;

contradicting the fact that K_lTK has a unique fixed point.
2.38 COROLLARY: Let T and K be mapping from a complete uniform

space (E, U) into itself. If K possesses a right inverse and T is

U-contractive, then K‘lTK has a unique fixed point.

PROOF: For some xoe E we have

-1 -1 -
= = K
K TK(x,) K T[K x ] K x
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Thus K-lTK has a fixed point xo.

To prove uniqueness we assume that K—lTK has two fixed points, say
-1
X, and x1 , then K TK(xo) =%, thus T(K(xo)) = K(xo) and
-1
K "TK(x1) = x) , thus T(K(x1)) = K(x1),

But this is a contradiction since T has a unique fixed point.

R - Salinas [25] has defined a contraction mapping for uniform spaces
and offered without proof,a contraction principle somewhat similar to that of
Casesnoves. He then uses this theorem to prove several short theorems involv-
ing fixed points, which, in one way or another, expands the stated theorem.
His proofs, however, are purely topological and do not depend upon the
unproved theorem. We offer here two of the more important theorems and prove

one of them.

The theorem which R - Salinas has stated, without proof, will now be
given below, and the definition of his contraction mapping shall be included
in the statement of the theorem. We note that both the statement of the

theorem and the definition of the mapping are much more involved than that

of Casesnoves.

2.39 THEOREM: Let (E, U) be a complete uniform space and

{t,n=1, 2, ...} a sequence of elements of U such that for each U& U
n

one can find an n >0 so that

0... 01U

1
n+1°UnCU (1)

P -
Un Urri-p © Un+p—1

for all n_>_no and p >0 and

\’ Uonc Ux , where U*E L. (2)

n>0
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Let T be a continuous map of U*[xo] into E with the property
that (x, y)€ U and {x,y}cu*[xo] imply (T(x), TG)E U, for

eack n > 0.

Then, if x& Uo[xo] and (x, T(x)) ¢ U, the sequence
{Tn(x), n=1, 2, ...} converges to a point x*, which is a fixed point
of T, and therefore the existence of one such poilnt x assures the exist-
enc@ of at least one fixed point x* of T. Furthermore, if x; and Xo
are two fixed points of T, belonging to U*[xo] and such that (xj, xz)E.Uo

it follows that x; = x, .
As in the case of Theorem 2.34 the following is an obvious corollary.

2.40 COROLLARY: With the same conditions as Theorem 2,39, if from
(x, yYE U* and {x, y} C U* [xo] it follows that (T (x), T(¥y)) € U,
for some n > 0 dependent on (x, y), then there exists at most, one

fixed point of T belonging to U*[xo] .

REMARK 8: If U* [xo] is closed and T is a continuous map of
U* [xo] into itself, such that TU* [xO]C Uk [xo] one ran supprass the condition

(2) in Theorem 2.39 as well as in the above corollary.
NOTATION: 1In what follows:
1. E will be a compact Hausdorff space;

2. T will be a continuous map of E into itself;

3. S x will be the collection of accumulation (or limit) points of
a

"), n=1, 2, ...} for x€ E. It is obvious that x is a fixed

point of T if and only if § x ={ x}.
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2.41 THEOREM: There exists at least ome closed subset E # ¢ of E,
{nvarient w.r.t. T (i.e. TEm = Em), which contains no other closed subset

F# ¢ such that TFC F.

If Em is a set with these properties it can only happen that:

¢8) Em is finite and consists of n, points.

n
Then if x & Em it follows that T °x = X and

E = {™x) /0<n<nl} i.e. 5x=E;.
™ ) a m

or (2) Em is infinite. Then, for each x€& EM)Tn(x) ¢ x for all

n=1, 2, ««¢ and Sax =X consequently Em is a perfect set.

PROOF: Keeping in mind that each decreasing chain of closed subsets

(non-empty) of E, which are transformed into themselves by T, have an

intersection with these properties, it follows from Zorn's lemma that there

exists a closed subset Em # 0 with TEmC. Em which contains no other

closed subset F # 0 with TFC F.

The other assertions of the theorem are easily proved; for example, to

prove that S x =E for each x € E_, it suffices for S x to be a closed
a m m a

subset (non-empty) of E_, for x € E with TSaxc § X it follows that

= = =5x=E.
Sax =E. In particular, then TE TS x X o

9.42 THEOREM: Let B = {Bn, n=0,1, ...} bea decreasing sequence

of neighborhoods of the diagomal A of E2 with

©
(V8 = 8
o n

and TB_[x]C B [x] for each X EE and n > 0. Then
n ntl

E = {gx/ xek}
(o] a
14] p. 54-53) of E

is a finite set such that each component (see Kelley [
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contains at most one point of E .
o}

2,43 COROLLARY: If in addition to the conditions satisfying Theorem
2.42 E 1is comnected, the sequence -{Tn(x), n=1, 2, ...} converges to
a point x* independent of xg E and thus x* is a unique fixed point

of T.

PROOF: Trivial, since if E 1is connected, then it is its only

component g Sax therefore, contains only one point.

Finally we give another definition for the contraction map in uniform
spaces and use it to prove the necessary contraction principle, both of

which are due to Chandler [4] . In this case the uniform space is restricted

to the class having a countable symmetric base. The theorem is, however,

important; because a uniform space as described above, is equivalent to a

metric space and thus a result proven here can be immediately transferred

to metric spaces.

2.43 DEFINITION: Let (E, U) be a uniform space. A mapping
F:E>E is U-contracting provided there is a collection of symmetric sets
v btlé Z , cofinal in U(with respect to the ordering U; > U; if and
n

only if U;¢ Up) which satisfy

(V) v, eV if iEj,mVn=A, W_=ExE,

1 nez ne

(2) for each n =1, 2, ... there is an integer p(n) > 0 such that

: . v
{p(n) / n€ 2} is bounded and Vn—p(n) Vn-p(n) eV

(3) if (x, Y€V then (F(x), F(Y)E Vo_q-
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2.44 LEMMA: If F : E > E is U-contracting then F has at most one

fixed point.

2,45 LEMMA: If F : E-» E 1is lU-contracting then so is any iterates,

Fp, of F and also T 4is uniformly continuous.

2.46 THEOREM: Let F : E-> E be U-contracting where (E, U) is a
complete uniform space. Then there is exactly one :%)6 E for which

F(xo) =%

PROOF: Let P = max {p(n) / n& 2} and let x be an arbitrary point
of E. Let g denote the pth iterate of TF. Rename, if necessary, the

V_ so that (x, g(x))€ V. Then

(g, 2N eV (82(x), g3(x)) € V_

5 v s

2p

(g (), gl e Vpp * 000 @, e e V- (akq)p”

l.'l+q+1

Thus (" (x), & @) EV_ 0V (mr1)p 0-0-0 V_(ra41)p © "=(atqdp”

cVv
Now V—(n+q)p C v4h+q—1)p (since V;(n+q)p -(mtq)ptl

c...C vV so that

_(tq)ptp  -(ata-1)p)

cCv .
V-(n+q“--1)p ° V-(n+q)1:* < V-(n+<1-1)p 0 V_(ntq-1)p = - (ntq-2)p
Consequently , we see that

Y cCv o V. _CV (1 1)p°
Vap © Varl)p O (mtq-D)p ° -(mbq)p = o TP (=-Lp

For each UE& U there is an N such that if
(n - 1)p > N then V-(n-1)pc U since‘{Vn, n€ 27} is cofinal in U .
Thus, if n » N/ptl and gq > 0, we have

& wiqtl fe™Mx), n=1, 2, .t
(g (¥), 8 ™)) e v—(n—l)p ¢ U. Therefore {g (%), y 2,

is a Cauchy sequence in (g, U).
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— 3 n
Let X = 1lim g (x). Since g 1is uniformly continuous we have
- . n _ n+l
g(xo) g(lim g (x)) = lim g~ "(x) = x and so x is a fixed point of

g. However,
g(F(x)) = Fg(x)) = Flx ).

Thus F(xo) is also a fixed point of g. We conclude that TF(x ) =x .
o o}

2.47 COROLLARY: (Banach.) If F : E+ E where E is a complete metric
space (metric d) and d(F(x), F(y)) < ed(x, y) for somea € [0, 1) and all

x, y€ E, then F has a unique fixed point.

PROOF: Ifoa =0 then F 1is a constant mapping and so has a unique
fixed point. If o # 0 thenin E x E we define
v, = {x, y) / d(x, y) <u—n}, n=0,1, ... .

Then {V} > 0 € 7 shows that F is U-contracting.

We show, finally, how one can use Theorem 2.46 to give a simple proof

for a theorem in metric spaces by using the equivalent uniform space.

9.49 THEOREM: (Edelstein). If F: x> X isa €& ,0a) - uniformly

locally contractive (d(F(x), F(y) < ad(x, y) when itx, y) <e,c &[0, 1),

and € >0) where (X, d) is a complete metric space and if for each

(x, y)E€ X x X there is an integer n> 0 such that

d(F(x), F(y)) < e , them F hasa unique fixed point.

PROOF: Define
en =, ¥) /Al V)< ot ed, w0 L e

and

AEIE CRM N ACHOR FPonevy ,n=1 2

(If o= 0 define

v, ={(x, y) / dx, y)<e’
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v-n = {(x, y) / dlx, y) <2, (=1, 2, ...

Then {Vn}ne 7 shows that F is U-contracting.
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CHAPTER III

Sequences of Contraction Mappings

We recall the Banach contraction principle states that a contraction
mapping from a complete metric space to itself leaves exactly one point
fixed. One may ask : If X is a complete metric space, does the converg-
ence of a sequence of contraction mappings to a contraction mapping T
imply the convergence of the sequence of their fixed points to the fixed

point of T? The first solution to this problem was offered to Bonsall

[1] in the following way.

3.1 THEOREM: Let X be a complete metric space. Let T and T,

be contraction mappings of X into {tgelf forn =1, 2, «ev » with the

same Lipschitz constant K < 1, and with fixed points u, U, m=1,2, .+..)

respectively. Suppose that lim T x = Tx for every x€ X. Then

n-)d’

1im u_ = U,
n+o

In this chapter we consider some extensions of Theorem 3.1 and also

state and prove a theorem for a sequence of contraction mappings for a

complete € -chainable metric space. In the later part of the chapter we

use the definition of a l-contractive mapping, given by CasesnoVes [3],

to prove a theorem in uniform spaces gimilar to Theorem 3.1.

In the statement of Theorem 3.1 it is assumed that T is a contraction

uperfluous as it can be proven

mapping. We now show that this condition is 8

from the remalning statement of the theorem.

3.2 LEMMA : Let X be a complete metric Space and let Tn(n =1, 2, .

o itself with the same Lipschitz constant

be contraction mappings of X int
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K< 1. Suppose lim Tnx = Tx for each x € X, where T is a mapping
n->o
from X into itself. Then T is a contraction mapping.

PROOF : Since K < l, is the same Lipschitz constant for all n,

T - TG | = Um|T (0 - T | <klx-3l,
o xa

Thus T 1s a contraction mapping with contraction constant K, and

as such has a unique fixed point.

We now state Theorem 3.1 in the modified form and give for it a

proof due to Singh [28] which is  simpler than that given by Bonsall [1 ].

3.3 THEOREM : Let X be a complete metric space and let

{Tn, n=1, 2, ...} be asequence of contraction mappings with the same

Lipschitz comstant K< 1, and with fixed points un(n =1, 2, ...). Suppose

that 1im Tn(x) = T(x) for every x € X, vhere T is a mapping from X into

o]

itself. Then T has a unique fixed point u and lim u_=u.

n
e

PROOF : From Lemma 3.2 It follows that T has a wnique fixed point u.

Since the sequence of contraction mappings converges to T, therefore

for a given € > 0, there exists an N such that n2 N implies

d(Tn(u) , Ty Q- e ,

where K 1is the contraction constant. Nov for n> N,

d(u, un) = d(T(U) , Tn(Un))
< a(T(w) » Tn(u)) + d(Tn(u) R Tn(un))

(1-KE +K d{u, un)

<

Now since 0 < K < 1, we have

Thus (1 - K)d(u, un) < (1 - K) € .
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d,u) <€, 2N

and so lim u, = u.
n—HD

The above theorem emits a useful corollary.

3.4 COROLLARY : Let X be a complete metric space and let
Tn (n=1, 2, ...) be contraction mappings of X into jtself with Lipschitz
= <
constants Kn(n 1, 2, ...) such that Kn + 15_ Kn 1 for each n, and

with fixed points U (n =1, 2, ...). Suppose that 1limT (x) = T(x) for
n oo D

every x€ X, where T is a mapping from X into itself. Them T has a

unique fixed point U and lim Un =1,
nro

PROOF : Now lim |T (x) - Tn(y)| < lim K [x - y| and since K 5 <X
e nro
for all n, it follows that 1lim Kn < 1. Hence
e

T(x) = lim Tn(x)
n»®

is a contraction mapping. Moreover Ky will be a Lipschitz constant for all

T, (n=1, 2, ...). Thus the proof follows by replacing K by K1 in the

above theorem.

3.5 EXAMPLE : Consider T (o, 2} + [0, 2] such that

Tn(x)=1+__x__. (n=1,2, «ee):
nt+l

Now 1im T (x) = 1 = T(x) for every x €0, 2]. The Lipschitz constants
n

o
= 2 will serve the purpose
are K =1 (=1, 2, --.). Thus K1 1/

ntl

for all mappings to be contraction. The fixed points are

Now 1im U =1, and 1 18 the unique fixed point for T-
n

n->-o
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If in the above corollary the Lipschitz constants are such that

K412 Kn (n=1, 2, ... ) the result is, in gnereal, false.

3.6 EXAMPLE: Consider Tn : E'+ E' such that

nx
Tx=p+ S (=1,2,..), p> 0. (Vhere E' = (= , 4=)).

The Lipschitz constants are Kn = 5(m=1, 2, «u. ).

ntl
The fixed polnts are Un =(n+1) P, (n=1,2, ...).

Now 1lim T (x) = p + x = T(x) for every x&€E' .
e 0

That is under the mapping T every point &f E' has been translated by a

distance P, thus T does not have a fixed point. Moreover,

lim Un=lim (n+1)p=o and °°¢E'.

g P
Also
un |1 -1 0| =lprx-p-yl = Tlxoyl, Gy EED.
nre

Thus, T 1s not a contraction mapping.

Singh £ 26]has proven a corollary similar to Corollary 3.4 by replacing

the condition Kn _<_Kﬁ_*_1 by Kn +K <1 foralln=1,2, ... .

3.7 DEFINITION: Let (X, d) be a metric space and € > 0. A finite

sequence X_ , Xy, eec05 X of points of X 1is called an e-chain joining
)

X and x_ 1if
0 n
d(xi_1 R xi) <€, d=1,2, .0 n).

The metric space is sald to be ¢-chainable if, for each pair (x, ¥)
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of its points, there exists an e-chain joining x and vy.
Edelstein [8_] proved the following theorem.

3.8 THEOREM: Let T be a mapping of a complete e—chainable metric
space (X, d) into itself, and suppose that there is a real nuwber K with

0 <K <1 such that

d(x, y) <€ = d(TRx), T(y) < Ki(x, ¥).

Then T has a unique fixed point U in X, and U = lim Tnx0 where
n->w

X, is an arbitrary element of X.

Tn the above theorem Edelstein has taken an e-chainable metric space

and has considered contraction mapping. In [27] we proved a theorem by

B considering a sequence of such mappings.

3,9 THEOREM: Let (X, d) be a complete ¢—chainable metric space, and

let T (n=1, 2, ...) be mappings of X into itself, and suppose that there

i{s a real number K with 0 < K < 1 such that
d(x, y) < € = d(Tn(x), Tn(y» < Kd(x, y) for all n.

1f U (n=1, 2, ...) are the fixed points for T  and 1im T (x) = T(x)
n n n

>

for every x € X, then T has a wnique fixed point U and

Umy =g,
nmre n

PROOF: (X, d) being ¢-chainable we define for x, Yy € X,

de(x, y) = inf % d(xi_l s xi)

i=1
where the infimum is taken over all e-chains x X] 5 vees xP joining
n on X satisfying

x =x and x_=Y. Then dE is a distance functio
o P
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(1) d(x, y) < de(x’ )

(i1) dx, y) = de(x, y) for d(x, y) <e.

From (ii) it follows that a sequence {xn} , X. &X is a Cauchy
n
sequence with respect to de if and only if it is a Cauchy sequence with
respect to d and is convergent with respect to d if and only if it
€
converges with respect to d. Hence, (X, d) being complete, (X, d ) is also
€
a complete metric space. Moreover Tn(n =1, 2, ...) are contraction mapp-
ings with respect to ds' Given x, ¥y € X, and any e-chain x_, X1, «.« X
o p
with x = X, x =y, we have d(xi_1 , xi) <eg(i=1, 2, ... p), so that
(T (% _q)» T (x4)) <Rylxg g5 %) <€ (=1, 2 ..., p). Hence

Tn(xo), cees Tn(xp) is an g-chain joining Tn(x) and Tn(y) and
P
(T (), T OGN 121 d(T_(xy_5)» T (%)

iK ‘g d(xi_l) xi)
i=1

X s Xys eees xp being an arbitrary g-chain, we have

ds(Tn(x) , Tn(y)) f_KdE(x, ¥).

Now since Tn(n =1, 2, ...) are contraction mappings with respect to

then T(x) = lim T (x) is a
n—>°°n

de and (X, de) is a complete metric space,
Moreover T has a unique fixed

contraction mapping with respect to dE.

point U and lim Un = U by Theorem 3.3.

nr«

This unique fixed point is given by

1im dE(Tm(xo), u) = 0 for xo€E X arbitrary.
1]

But (i) at the beginning of the proof implies

lim d(T™(x) , U) = 0.
iinasd °
|
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Nadler [ 19 gave a generalization of Theorem 3.3 in the following

way.

3.10 THEOREM: Let (X, d) be a locally compact metric space, let
Tn : X » X be a contraction with fixed point 2, for eachn =1, 2, ... ,
and let To :+ X + X be a contraction with fixed point a. If the
sequence {Tn’ n=1, ...} converges pointwise to T0 , then the sequence

{an ,n=1, 2, ...} converges to a.,.

Further results for sequences of contractive mappings and fixed

points have been given by Fraser and Nadler Asd.

Finally, using Definition 2.32 of a U-contractive mapping we give

a generalization of Theorem 3.1 in uniform spaces.

3,11 THEOREM: Let (E, U) be a complete uniform space and F 2

U-contractive mapping from E into itself, with fixed points Uk k=1, 2, ...).

Suppose lim Fk(x) = F(x) for every x € E, where F is a U-contractive
koo

Then lim Uk = U where U is the unique fixed

map from E into itself.
K+

point of F.

PROOF: Consider 1lim 1im Fnk(x)

n>e

ko
= 1i F“(xz] (1
tn

be ) .
Now because F 1is a U-contractive it follows that F (x) 1s a Gauchy

sequence and as such converges; thus by Theorem 2.34 we have,

1im [Fn(xi] = U

nre

Now 1im [}im Fnk(x{]

nre ~300
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= lim U ,
oo [-k:] @

n
Since Fk (x) ,n=1, 2, ... is U-contractive with fixed points for each

Kk and thus 1im F'(x) = U -
n->°°k

Now combining (1) and (2) we have

1im U = U.
ko k

Using Theorem 3.11 we offer also the following theorem.

3.12 THEOREM: Consider Tn(k =1, 2, ...) and T mappings from E

into itself and 1f

(a) (E, U) a complete unlform space and

(E, V) a uniform space;

(b) the uniformity U is smaller than the uniformity V, i.e. each

entourage of U also belongs to V 3

(c) Tk and T are continuous on (E, ) and U~contractive on (E, V).

Then if (Uk’ k=1, 2, ...) and U axe the fixed points of Tkﬂk =1,2,...) and 1

respectively and if lim Tk(x) = T(x) for every x € E, we have,
koo

1im Uk = U-

koo

PROOF: It follows from Theorem 2.36, the sequence of iterates

Tkn (n=1, 2, vee) Of Tk(k =1, 2, «o») and ™ of T are Cauchy in (E, Uy

and as such converge to the unique fixed points of Tk and T respectively

i.e.
1im Tnk(X) =V (k=1,2,...) and
o

m Tx) = U

n+®
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where x € E. Thus from Theorem 3.11 it follows that

1lim U, = U.
koo k

3.13 REMARK: In the proof of Theorem 3.11 the contraction mapping principle
of Casesnoves was used only to show that the sequence of iterates
Fnk (n=1, 2, ...) of Fk(k =1, 2, ...) and f* of F are Cauchy and
as such convergee As the convergence of the Cauchy sequence'is also used
by Knill and Chandler, it is possible to give a generalization of their

contraction principle similar to Theorem 3.11. In the case of Chandler the

theorem is as follows.

3,14 THEOREM: Let (E, ) be a complete uniform space and F 2 U-

contracting mapping from E into itself, with fixed points Uk(k =1, 2, vee)e

Suppose lim Fk(x) = F(x) for every x € E, where F is a U-contracting
koo

mapping from E into itself. Then 1lim U = u.
ko

The proof of the above theorem follows the same pattern as that of

Theorem 3.11. We note that the difference between Theorem 3.11 and 3.14 is,

by virtue of the definition of a U~contracting mapping, the uniform space in

Theorem 3.14 has a countable symmetric base.

We conclude by showing that Theorem 3.1 follows as an easy Corollary

of Theor=m 3.14.

3.15 COROLLARY: Theorem 3.1.

PROOF: If K=0 then Fk’ k=1, 2, ...) and F are constant mapp-

ry xeX it follows that 1lim Uk = U,

ing and thus since lim Fk(x)= F(x) for eve o

ko
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If K40 then in E x E define
v = {(x, y)/d(x, y) < a—n} , n€E Z. Then {Vn} né& Z showes that

(k =1, 2, ...) and F are U-contracting and hence by Theorem 3.14,

1lim Uk = U.

|
|
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