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ABSTRACT

The purpose of this study was to investigate
whether students made systematic and common errors when
simplifying polynomials.., In addition to this general
question, the study investigated the relationship between
the errors made in an algebraic context and a corresponding
arithmetic context, whether errors were a function of
grade, program, or sex, and whether differences existed
between direct and indirect situations. Twenty—fi&e
students were randomly selected from eight groups repre-
senting a Grade (9 or 10), by Program (Matriculation or
Honours), by Sex matrix, resulting in a total sample of
200 students in the analysis. Three tests, an algebra
test, an arithmetic test, and a computation test were
administered to intact classes within a 40-minute period.
The 20-item computation test involved single operations
with integers. The 32-item algebra and 20-item arithmetic
tests included items involving exponential expressions,
the distributive principle and grouping. These tests
contained items requiring the same type of skills but the
arithmetic test contained no variables.

The results indicated that 15 common, systematic

errors were made in algebra. The common errors were found
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in the categories of sign errors, wrong operation errors,
distribution errors and exponent errors.

Most students who made common errors did so in
one context only, either algebra or arithmetic, but not
both. Most common errors arose in the direct mode, where
only one step solutions 'were needed, rather than in the
indirect mode, where a series of steps were necessary.
The major difference found between grades was in the
frequency of errors rather than the types of errors.

The same was found when errors made by students inm the
matriculation programs were compared to those made by
students in the honours programs. Only minor differences
in performance were found between male and female students.

Implications for remediation, as well as for
teaching in general, were discussed. Recommendations

for further research in error analysis were also proposed.
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CHAPTER I

THE PROBLEM

Rationale for the Study

The study of polynomial expressions has long
served an important role in the high school mathematics
curriculum. Current algebra textbooks include many topics
which deal with polynomials in one form or another. The
program of studies adopted by all schools in the Province
of Newfoundland suggests that a large percentage of the
instructional time in algebra should relate to polynomial
expressions. Within the study of algebra, familiarity
with its symbolism is essential (National Advisory
Committee on Mathematical Education, 1975, p. 138), and
this symbolism is the essence of polynomials and their
format. It is felt that the mathematical language itself
should be well known in order to develop the mathematical
concepts (Ailles, Norton & Steel, 1973, p. 2). Polynomials
are the sentences and phrases of that mathematical language.
Polynomial expressions form the "backbone" of algebra,
and since algebra is accepted as a major part of the

mathematics curriculum, it seems essential that students



thoroughly understand polynomials and their character-
istics. However, often the mathematics which children learn
and retain differs greatly from the objectives and desires
of mathematics educators (Carry, Lewis & Bernard, 1978,

p. 1ii). Many students are unable to demonstrate the
understanding of and famjliarity with algebra for which
teachers strive. Irregardless of the best efforts of
students and teachers, children still make errors.

The analysis and documentation of errors in math-
ematics can be traced back to the early twenties when
researchers, such as Myers (1924), observed that mistakes
in computation were "persistent". More recently, researchers
such as Budden (1972), Carry et al. (1978), Laursen (1978),
Meyerson (1978), and Davis (1980) also indicated that
errors occurred "consistently" in exercises involving
polynomials. Roberts (1968), Engelhardt (1977), Carry et
al. (1978), and Radatz (1979) were able to classify and
categorize the "common" errors they found. Thus, there is
evidence throughout the literature to suggest that errors
made by students, whether they occur in algebra, arithmetic,
or geometry, are both common and frequent.

Too often teachers underrate the important
information inherent in students' mistakes and fail to
realize the strategies used by students to obtain such
solutions. Error analysis is a field of study which

involves the investigation of the nature of errors and the



processes behind them. During the late twenties, the
study of "recurrent" errors was valued highly by investi-
gators in the algebra field (Pease, 1929, p. 264). It

was believed that success in teaching algebra depended
primarily on the teacher's knowledge of typical difficulties
which pupils faced while learning algebraic topics (Pease,
1929, p. 264). It has been shown by researchers who have
delved into the field of error analysis that the study

of errors does provide valuable insights pertaining to
both the learning and teaching of mathematics. For
instance, the careful examination of a child's errors
reveals patterns which are quite logical to the child who
developed them (Pincus, 1975, p. 184). Errors made by
pupils are often systematic and are retained by children
if remediation does not occur (Cox, 1975). Errors in
algebra can sometimes be traced to difficulties in reading
and fundamental arithmetic (Wattawa, 1927). Therefore,
any knowledge of such systematic errors that can be
obtained could prove to be valuable information for a
teacher.

As indicated earlier, polynomials occupy a large
part of high school algebra courses. Yet, few empirical
studies were found which dealt with high school algebra,
and even fewer still specifically examined errors in
polynomial expressions. Therefore, an investigation into

students' errors in the simplification of polynomial



expressions was warranted.

In an attempt to provide an explanation of the
errors found, any possible links between these algebraic
errors and similar errors in arithmetic should be sought.
In studies by Carry et al. (1978) and Wattawa (1927) the
arithmetic-algebra conneg¢tion surfaced. For instance,
Wattawa found that children who had not developed certain
fundamental arithmetic processes to a level of what she
termed "automatic recall and application," demonstrated
greater difficulty with beginning algebra courses. She
believed that the link between arithmetic and algebra was
so important that success in algebra depended on success
in arithmetic. Yet, Carry et al. (1978) revealed that most
of the college students who participated in their study did
not view algebra as generalized arithmetic. Rather, algebra
was recognized as a separate entity. Although the major
emphasis of this study was on errors in the simplification
of polynomials, corresponding arithmetic and computational
items were included to permit an exploration into any links

between algebraic and arithmetic processes.

Purpose of the Study

The main problem investigated concerned the types
of common errors which grade nine and ten students commit

when they deal with the addition, subtraction, and multi-



plication of monomials. These operations with monomial
expressions arise in the introduction to algebraic
expressions and serve as a basis for future algebraic
topics such as the simplification of polynomials and
rational expressions. In particular, the problem was to
identify and classify any common systematic errors found
in the given algebraic examples as well as to record the
frequency with which these errors occurred. A secondary
problem concerned the possible relationship between
arithmetic errors and algebraic errors. This involved
the need to investigate the existence of any common
characteristics in the errors made in corresponding
arithmetic and algebraic examples.

With respect to the problem, the following research
questions were investigated.

1. Do students make systematic algebraic errors?
What classifications appropriately describe
these errors?

2. What common errors do grade nine and ten
students commit when adding, subtracting,
and multiplying monomials?

3. Do students who make systematic errors in
algebra make the corresponding arithmetic
errors and vice versa?

4. If a student makes a systematic direct error,
does the student make the corresponding indirect

error, and vice versa?

5. Do grade nine and ten students make the same
errors or are there differences?

6. Within grades, are the errors made by students
in the honours program different from, or



similar to, those made by students taking
the matriculation mathematics program?

Scope and Limitations

The first limitation of this study arose from the
sample selection. The sample was chosen from schools within
a 20 km radius of a smaii, urban community of 100 000. It
was drawn from students in intact classes in large high
and junior high schools whose populations ranged from 300
to 1200 students. Since many schools in Newfoundland are
smaller and often much farther from an urban cente), this
was seen as a limitation on the generalizability of the
results.

A second limitation arose from the size and
selection of the interview sample. This sample was rela-
tively small because interviews were carried out on a
one-to-one basis and involved audiotaping of each session.
Since only 16 students were interviewed concerning the
errors, the conclusions drawn may not be generalizable to
errors made by other students. Also, the students were
not randomly selected but were chosen based on the number
of errors they made. Since this was an exploratory study
and the interviews were to be used only to enhance the
analysis, this bias was accepted as a limitation.

The method used to collect the data was seen as
a third limitation. Students were required to complete

three short tests within a prescribed time limit and this



time limit may have affected performance. Students may
have rushed through exercises and committed more errors
than usual or students may have worked too slowly and not

completed the exercises.

Definition of Terms

Certain terms or phrases used throughout the

review of literature and the study are defined as follows:

Error: Any incorrect procedure used to
solve a problem.

Systematic An error which was made by a student

Error: on at least 50% of the occasions in
which the student had an opportunity
to make that error. Studies reviewed

in Chapter I may use alternate criteria.

Common Error: Any systematic error which was made
by at least 10 children from the
sample of 200.

Direct Error Any error which was made in the
(Direct Mode): first step of a solution.

Indirect Error Any error which was made in other
(Indirect Mode): than the first step of a solution.
Arithmetic An error which occurred when operating
Error: with numbers only. Errors with facts,

operations, properties and computation
were arithmetic.

Algebraic An error which occurred whenever vari-

Errors: ables were present. Errors with
copying, properties, operations and
solution procedures were algebraic.

Monomial: An expression of the form ax® where
a was an integer and n was a whole
number. For example, x, 3x, -5x3,
x2 are monomials.



Active
Operation:

Honours

Program:

Matriculation

Program:

Basic Program:

The operation which was activated in
order to simplify the expression.

For example, both addition and
multiplication are present in 2x + 3x
but addition is the active operation,
since to simplify it we add, 2x + 3x =
(2 + 3)x = 5x.

A mathematics program designed for
students with superior ability in
mathematics. (Division of Instruction,
Department of Education, Government of
Newfoundland and Labrador, 1980-81).

The core mathematics program designed
for students with an average general
ability in mathematics. (Division

of Instruction, Department of Education,
Government of Newfoundland and Labrador,
1980-81).

A mathematics program designed for
students with a low level of academic
achievement in mathematics. (Division
of Instruction, Department of Education,
Government of Newfoundland and Labrador,
1980-81) .



CHAPTER II

REVIEW OF RELATED LITERATURE

The purpose of this chapter is to review the
literature concerned with'error analysis. Research on
errors in both algebra and arithmetic is included because
the relationship between algebraic errors and arithmetic
errors was investigated. The chapter is organized under
four subheadings. First an overview of the error anmalysis
research is given. Then, the literature pertaining to
the rationale and methodology used for error analysis is
reviewed. Next, the errors detected by experienced
teachers are discussed. Finally, the error patterns

reported in formal research findings are considered.

An Overview of Error Analysis Research

The earlier research studies in arithmetic, such
as those done by Myers (1924), Brueckner and Elwell (1932),
Brueckner (1935), and Grossnickle (1935, 1936) involved
investigations of the "persistent" errors present in
computation, and these authors simply listed the errors
they found. Later, researchers such as Roberts (1968),

Cox (1975b), and Engelhardt (1977) extended the earlier
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studies by classifying the errors into general error types
or categories. The early researchers in algebra, such as
Wattawa (1927) and Pease (1929), also reported "persistent"
errors but their investigations covered a broad range of
topics and they included a frequency count of the errors

as part of their studies. More recent research by Davis
and Cooney (1977), Sachar (1979), and Carry et al. (1980),
included investigations of errors within the solutions to
linear equations. They also examined adjunct topics and
speculated as to the causes of the errors found.

Budden (1972), Laursen (1978), and Meyerson (1978),
all experienced teachers, presented a variety of algebraic
errors and commented upon their possible origins. Other
researchers, including Davis, Jockusch, and McKnight (1978),
Radatz (1979), and Carry et al. (1980) presented various
models of the thinking process which were obtained through
information processing methods and which often formed a
basis for their studies.

In general, most of the literature involving
algebra either dealt with errors present in polynomial
exercises similar to those included in this study, or
discussed errors which were relevant to the process of
simplifying polynomials. For example, a "like term" error
found by Davis and Cooney in the context of equation solving
is relevant to the process of polynomial simplification.

An example is provided in Figure 1.



iyl

8x + 20 = 4
-4 + 8x + —20 = 4 - 4
dx = 20

FIGURE 1. An example of a "like term" error which arose
in a child's solution to a linear equation
(Davis & Cooney, 1977, p. 171).

4

Rationale and Methodology

In a survey of studies involving error analysis,
Radatz (1980) indicated that since the 1970's interest and
activity in this field of research had increased. Radatz
(1979) reported that researchers were no longer limiting
their error analyses to arithmetic computation. He
claimed that interest in the diagnostic aspects of teaching,
and criticisms of the traditional paradigms of empirical
research have led to the acceptance and expansion of error
analysis in mathematics education (pp. 163-164).

The need for alternative research paradigms in
education was also supported by Davis et al. (1978) who
pointed out that educational phenomena can never be undef—
stood in terms of numerical variables only. They suggested
that since descriptive studies were well established in
various other fields, then education ought not be an
exception (pp. 11-12). In the field of error analysis
the descriptive study paradigm has been employed by most

researchers.
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Further rationale for the study of error patterns
can be drawn from the information inherent in children's
mistakes. If the written work of a child is to provide
useful information, it must be scored and analysed (Ashlock,
1972, p. 1). 1In fact, the careful examination of the kinds
of errors children make reveals patterns which are quite
logical to the child who made them (Pincus, 1975, p. 580).
Researchers in this field have observed that the mistakes
in a student's exercises often outline faulty procedures
or strategies which the student has adopted to obtain the
required answer. The character of a child's error contains
as much information as the nature of a correct answer;
both hold the keys to the child's thought processes.
Therefore, error analysis is not only an alternative
research paradigm, but is one which possesses rich potential
in ascertaining the difficulties in learning mathematics.

Two particular methods have emerged within error
analysis research. The most prominent technique involves
a paper and pencil survey approach with the analysis
performed after the fact. The second technique, which has
gained more popularity in recent years, involves inter-
viewing the student and observing the errors made.
Rudnitsky, Breakeron, Jaworowski, and Puracchio (1980)
reported that several researchers, including Erlwanger
(1975), and Davis et al. (1978), used task-based interviews

quite successfully to study the students' understanding of
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mathematics (p. 2). Often researchers, such as Lankford
(1974) and Kent (1978a, 1978b), used interviews as a form
of diagnosis. Lankford suggested a variety of procedures
to follow for such interviews, including the suggestion
that verbatim recordings be made, students be permitted to
proceed their own way without corrections, erasures should
not be allowed, and leading questions be avoided. Lankford
also noted that a subject should never be hurried (pp. 31-
b [

Carry et al. (1980) employed both paper and pencil
tests and interviews. Children's comments were keyed to
the written work by using video recordings during the
sessions.

The advantage of the paper and pencil method lies
in the time factor and the size of the sample which can
be tested, while the interview method must be used on a
one-to-one basis. The interview method, however, has more
potential for determining causes of the learning difficulties
while the paper and pencil method provides useful informa-
tion for an initial assessment of areas of difficulties
for large groups. If a combination of these methods is

employed, the advantages of both techniques can be utilized.

Errors Detected by Experienced Teachers

Without undertaking any formal investigations,

many teachers have reported errors which arise during
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classroom or homework activities. Some teachers examined
very specific types of errors and speculated as to possible
reasons for such mistakes. Laursen (1978), for instance,
discussed errors which she believed originated when
"students try to extend a shortcut method to other seem-
ingly similar configuratiions" (p. 194). In particular,

she reported errors made when children misapplied shortcuts
for the crossmultiplication and cancellation of fractions
as well as shortcuts for multiplying radicals. Some

examples of such misapplications are presented in Figure 2.

Example 1. The rule for multiplying radicals,
:/azb2 = /a2¢b2 = ab,

is misapplied as follows:

/az + b2 = /g§.+ /gi = a+b

Example 2. The rule for crossmultiplication,

a _ ¢ where ad = bc,

b d
is misapplied as follows:

4 = ad + bc.

og v
ol

FIGURE 2. Two examples of the "misapplication" errors,
(Laursen, 1978, pp. 194-195).

Meyerson (1978) examined various solutions to

quadratic equations in which the principle of zero products



15

was misapplied. An example can be found in Figure 3.

22 = Bz o+ K= 8

(x = 2) (x - 3)
X 2 =6 X -
= 8 b 4

I wih
O il o
o

X

FIGURE 3. An example of the misapplication of the principle
of zero products (Meyerson, 1980).

’

He reasoned that such errors occurred when specific math-
ematical procedures were learned without understanding of
the origin or the application of the procedure (p. 49).
Budden (1972) reported errors made by his students
in a boys' school. He classified the errors according to
the faulty procedure he felt students used. Some of the

types of errors that Budden discussed are in Figure 4.

l. Law of Universal Distributivity. A child
distributes regardless of the operation or
symbolism. For example:

a(bc)=a-b-a-c

2. Commutativity of Operations. A child assumes
operations are cummutative. For example:

(a + b)2 = a + b2
since the square of the sum equals the sum
of the squares.

3. Confusion of Operations. A child fails to
distinguish between operations. For example:

(a -b)n = ab” or x2 = 2x

4. Omission of Punctuation. A child omits or
ignores parentheses going so far as to even
introduce his/her own grouping schemes.

For example:
5+ 2(3 + 7) = 70

FIGURE 4. Error classifications suggested by Budden (1972).
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These reports involved teachers and students at
the secondary level and the subject in which the errors
arose was algebra. Hence, these teachers have provided
evidence that errors are made in the natural school
environment, and these errors possess discernible common

characteristics which perpit classification.

Errar Patterns Reported in Formal Research

Findings in formal research studies supported the
error patterns found by experienced teachers. Descriptions
and examples of the specific error types listed in the
various studies are provided in Appendix A. This section's
primary focus is on the conclusions and implications drawn
from these studies.

The earliest research study reviewed was by Wattawa
(1927). In this study, the oral and written class work
and tests of a beginning class in algebra were examined
for possible errors. Wattawa found that the most frequent
errors were due either to a lack of a thorough knowledge
of the fundamentals of arithmetic or to faulty reading.

She explained that faulty reading, such as 'minus' read as
'Plus' or 'z' read as 'y', led to incorrect copying and
this, in turn, caused difficulty with written solutions.
The relationship between arithmetic and algebraic errors
was a major concern in her study, and Wattawa addressed it

from several angles. She reported that the difficulty with
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subtraction found in arithmetic problems carried over to
the work in algebra where the subtraction of polynomials
was considered the most difficult operation. Wattawa
further elaborated on this relationship by attempting to
explain the link in terms of concentration levels. She
stated that children, whgse fundamentals of arithmetic
were not automatic, had much more difficulty with algebra
as they were unable to rely on 'reflex' for arithmetic
aspects and concentrate solely on the algebra concepts.
Students with insufficient knowledge of basic arithmetic
still had to concentrate on the arithmetic involved and,
therefore, could not concentrate on the algebra being
developed. Of the 407 errors Wattawa recorded, 85.4% were
errors in simple arithmetic, signs, copying, and reading.
Other errors were due to the use of incorrect operations or
the lack of comprehension.

While studying the relative difficulty of learning
units found in the first year algebra text, Pease (1929)
also classified errors in arithmetic and algebra. He did
not investigate any direct link between the errors in these
areas of mathematics but rather noted the frequency with
which the errors arose. In particular, Pease reported that
of the 43 000 errors found, 31% were functional, 22.9% were
due to sign difficulty, 8.5% were exponent errors, and 8.2%
were due to carelessness. In his study a "functional error"

was defined as an error within the solution procedure as



18

opposed to an incorrect calculation. Pease also distin-
guished between "literal numbers" and "numbers" and defined
arithmetic errors as mistakes made with operations in the
absence of "literal numbers". He implied that adding 2

and 3 was arithmetic while adding 2x and 3x was algebraic
and the procedures to be, followed were distinct.

Frequency of errors was also the focus of a study
by Davis and Cooney (1977). The researchers concentrated
on the errors made by regular and basic algebra students
while they solved linear equations. In this investigation,
more than one-half of the errors were attributed to mis-
calculations with the four basic operations or to incorrect
applications of the rules for computing signed numbers.
These researchers also discussed "process" (functional)
errors. They found that the 'better' students in their
sample committed more computational errors than process
errors. Again in this study, the most common errors found
in the algebraic topic chosen were attributable to dif-
ficulties with arithmetic.

The report by Davis et al. (1978) drew upon a
variety of studies which were carried out to substantiate
a theory of mathematical learning that the authors proposed.
They, like Wattawa (1927), indicated that errors often
resulted from misreading one's own notation due to the
visual similarity of initial cues. These authors also

pointed out that errors arose when components of procedures
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were so salient and automatic that they were virtually
unknown and unrecognizable. In particular, Davis et al.
referred to error types such as ‘binary confusions'. This
label was attached to all errors in which the general
attributes of operations were adopted and the simpler
operation was often used,to replace the higher one. For
example, if a child added when he was required to multiply,
the error was classified as a "binary confusion".

Davis et al. also discussed two error types
particularly relevant to the simplification of polynomials.
First, they provided a lengthy explanation of a phénomena
by which children did not distinguish between symbols and
their meanings. This phenomena, together with any
ambiguities in the language, often led to errors. For

uéﬁ = 2x" was an example used to demonstrate the

instance,
case where a child lacked sufficient knowledge of the
symbolism and thus made a mistake. Second, errors were
found in exercises where "like terms" were to be combined.
In these examples students misinterpreted the necessary
distinguishing characteristics and grouped terms with
insufficient similarities. For example, "2x, 3x2 and 4x3"
were combined as "like terms" since all of the expressions
contained an "x". Davis et al. did not consider the
arithmetic versus algebra issue. Instead they emphasized

the misconceptions inherent in a lack of understanding of

the language and symbols of mathematics as possible
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explanations of the algebraic errors found.

Difficulties inherent in the mathematical symbolism
was also one aspect of the study by Sachar (1979). Sachar
compared the errors generated on "literal equations" with
those generated on equations with "numerical coefficients".
The number of errors increased significantly when "literal"
coefficients were involved. Sachar concluded that the
complexity of the equation, which was indicated by the
presence of literal coefficients, did change the frequency
of the errors but it did not influence the type of errors
made.

Carry et al. (1980) also investigated errors
pertaining to equations. Two groups of college students,
described as good and poor equation solvers, were involved
and numerous categories of errors were proposed. These
categories are included in Appendix A. The errors discovered
in this study were "systematic" within a student's work and
were "common" within the work of different students. From
comments made by solvers, Carry et al. concluded that both
the student's knowledge and execution of a procedure were
faulty. For instance, several of the "operator errors"
were described as examples in which incomplete knowledge
or incorrect knowledge was overextended. That is, students
"stretched" the pieces of knowledge they had in order to
solve partially familiar situations. An example is provided

in Figure 5.
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The correct simplification

is incorrectly extended to

a + =x
a

=1 S

’

FIGURE 5. Use of knowledge overextension.

It should be noted that this error category resembled the
"misapplication" errors discussed by Laursen (1978).

Carry et al. also focused on the use of "ggneric
operations" which were defined as operations based on general
key notions. These authors claimed that if algebra was
seen as an exercise in symbol manipulation, students often
organized their knowledge of operators in a generic form.
That is, students suppressed the restrictions on or the
specifics of an operator and carried out general actions.
For example, when addition and multiplication represented
a generic combining operation, y + yz became 2yz, since the
expression was read as "one y" and "one y" and "one z",
that is, "two y's and one z" (pp. 52-53).

The bulk of "applicability errors" reported by
Carry et al. involved the assignment of a false grouping
to terms in an expression. It was indicated that the
absence of parentheses was often overlooked and children

imposed their own grouping order before simplifying. For
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example, given x + 2 (x + 1), students grouped x and 2
together and proceeded to multiply (x + 2) by (x + 1) -
(ps | Tade

Lewis (1980) used the results found by Carry et
al. to discuss the knowledge required to solve equations
in elementary algebra. He pointed out that in essence,
a student who uses a generic operator simply drops some
of the critical aspects of the operation required and works
with a general notion of the required procedures. In
this report, Lewis linked algebra and arithmetic together
when he indicated that students often applied correct
arithmetic procedures in similar algebraic examples and
errors resulted. For instance, operations learned while
doing fractions in arithmetic were applied to algebraic
examples with fractions, resulting in an incorrect answer.

The idea of "generic operators" also surfaced when
Kent (1978a) interviewed school children and adults
attending remedial classes in the evening. For example,
subtraction was described as a "decreasing" operation—
an operation in which the solution is always smaller than
the largest "subtrahend". Such generic operations lead
to difficulties both in the execution and understanding
of particular problems. For instance, when 15 - ~3 was
assigned, students ignored the negative in front of the
3 and wrote 12 as the answer. They also had great difficulty

in believing that 15 - -3 was 18, since this answer was
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larger than 15 or 3, and this contradicted their generic
operator.

In a second study by Kent (1978b), the main focus
was on the students' misinterpretation of symbolism.
Students often interpreted the symbol "xy" as a "number"
whose "ones" digit was "y¥ and whose "tens" digit was "x".
Few students in this study recognized "xy" as "x times y"
where "x" and "y" represented different numbers. Such
misconceptions led to many difficulties as students were
unable to solve 3x + 2 = 14 since "thirty-blank" plus two
could never equal 14.

As indicated earlier, since an arithmetic component
was included in the present study, research involved with
arithmetic topics was considered relevant. Thus far, most
research reviewed involved studies in algebra at the high
school level. The studies which follow were on arithmetic
topics and the subjects were elementary school children,
with the exception of those in Lankford (1972).

Lankford (1972) investigated errors which seventh
graders made when they computed with whole numbers and
fractions. Most of the errors students made with whole
numbers were in subtraction and division, while the errors
with fractions occurred in all operations. Few errors
were due to poor recall of facts, and most of the errors

found were process-oriented.
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Roberts (1968) was one of the first researchers
who classified the computational errors he found. The four
categories he suggested, namely, "wrong operation", "com-
putational error", "defective algorithm", and "random
response"” were later refined by Engelhardt (1977) who
replicated Roberts' study with third and sixth graders.
Both sets of categorizations are included in Appendix A.
After subdividing the original four classes to eight
categories, Engelhardt found that over 40% of the errors
were made by the lowest quartile of students. He also
indicated that students erred in the execution of the
procedure rather than the recall of facts. He claimed that
errors arose with the procedures because the procedures
themselves were not meaningful to the students.

Many of the specific errors listed by Pincus (1975)
could be classified under Engelhardt's broader categories.
In the same study, however, Pincus revealed other types of
errors which had been given little attention previously.

He described errors which resulted from poor penmanship and
alignment of numbers, as well as errors which arose from
the failure to estimate or check answers.

Finally, a textbook for pre-service teacher
education by Ashlock (1972) contained some relevant infor-
mation concerning error analysis and remediation. Ashlock
contended that erroneous procedures often produce correct

answers which reinforce the child's actions and increases
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the difficulty of detecting the error pattern. He also
indicated that the investigator's interpretation of an
error strategy may differ from the strategy used by the
child. This supports the need to interview the child who
made the error in order to provide an accurate description
of the child's thoughts. , Ashlock pointed out that any
error analysis which is to be useful has to be thorough

and detailed. When discussing potential causes of students'’
errors, Ashlock claimed that often the instructional
strategies used by a teacher lead a child to adopt
erroneous strategies. One example demonstrated that
confusion might arise if two algorithms were taught without
changing the arrangements used. For instance, if a child
was taught to add in columns and was then presented with
the same example for multiplication, he might be inclined
to multiply in columns. An example of such an error is

given in Figure 6.

23 23
+43 x43
66 89

FIGURE 6. Example of error in multiplication influenced
by the arrangement of the items and previous
knowledge.

Summarz

The literature on error analysis provided evidence

that students do make systematic errors and that many of
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the errors are common. The conclusions drawn from the
research also provided support for the contention that
common, systematic errors are classifiable. Furthermore,
it was found that these classifications were verified in
different studies.

This informatioﬁ had several implications for this
study. The categories of errors found in the literature
were related to those expected to occur in the simplification
of polynomial expressions. Thus, these categories provided
a working base for the development of a hypothetical set
of error types used in the coding scheme for the present
study. There was also support for the contention that a
relationship existed between arithmetic and algebraic errors
and this provided a foundation for the investigation of

such a relationship between errors in the simplification

of polynomials and corresponding errors in arithmetic.



CHAPTER III

METHODOLOGY

In this chapter, ,the methodology used in the
investigation is described. Initially, the population
and sample are defined, and then the pilot study is
outlined. Following this the final instruments are
described, and the procedures used in the main study are
explained. Next, the coding scheme used to classify the
errors is presented and the methods used to analyse the

data are reported.

Population and Sample

The population consisted of students enrolled in
grade nine and ten algebra classes. An initial sample of
19 intact classes was selected from six schools. Eight
classes were grade nine matriculation, four were grade
nine honours, four were grade ten matriculation and three
were grade ten honours. A total of 573 students were
tested and the average class size was approximately 30.

The schools' populations ranged from 300 to 1200
students and only two schools contained both grade levels.

Three of the schools were junior high schools while one

27
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other included grades 10 and 11 only. All schools were
within a 20 km radius of a small urban community of 100 000
people.

Two hundred of the 573 students were included in
the sample for analysis. As shown in Figure 7, eight
groups were formed based ,on the grade, sex, and the program
of the students. Each group of 25 was randomly selected

from the appropriate set of students in the original

sample.
PROGRAM
Matriculation Honours
SEX
Male Female Male Female
G
R 9 2.5 25 25 25
A
D 10 25y 25 25 25
E

FIGURE 7. Distribution of students in the sample.

Pilot Study

The objectives of the pilot study were:

l. To ascertain the time limits necessary to
allow students to complete the tests com-
fortably.

2. To check the difficulty of the complete
tests as well as any particular items.

3. To observe any difficulties with the
written and oral instructions.

4. To investigate whether systematic errors
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did arise in order to determine the
feasibility of the study.

Two intact mixed ability classes, one grade nine
and one grade ten, were chosen from one school within the
area designated for the main study. A total of 50 students
were tested.

Using items simiiar to the exercises in Chapter 3

of Using Algebra (Travers, Dalton, Brunner & Taylor, 1979),

four algebra tests were developed. Four arithmetic tests
and one computation test containing items requiring the
same type of skills as those on the algebra tests were
also developed. Every student wrote the computation test
but each algebra and arithmetic test was written by a
quarter of each class. The time taken by a student to
complete each test was recorded and any oral comments or
reactions were noted by the investigator.

No student required more than 40 minutes to
complete the three tests, thus the length of the instruments
used in the main study was similar. The design of the
computation and algebra tests posed no difficulties and
the instructions were clear. However, the instructions
used on the arithmetic tests were unclear, and students
were unsure as to exactly what was expected.

Consequently, the arithmetic tests were refined
and a sample of two matriculation classes was used to pilot

the new versions. Based on these results, the appropriate
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instructions were chosen, and the final instruments were
devised. Finally, since systematic errors were found among
students' responses in the pilot study, the study was

considered feasible.

Instruments

The final instruments consisted of an algebra, an
arithmetic, and a computation test. The 20 computation
items involved single operations with integers. To limit
the length and complexity of this test, division was
excluded. Also, due to the isomorphic relationship
between addition and multiplication of wholes and addition
and multiplication of positive integers, these operations
were omitted as well. The 32 items on the algebra test
involved single operations with exponential expressions,
the distributive principle of multiplication over addition,
and the grouping of like terms, with some particular items
involving a combination of these procedures. The 20
arithmetic items were chosen to correspond to the algebraic
items, resulting in similar skills being tested on the
algebra and arithmetic tests. Large numbers were used on
the arithmetic test to deter students from calculating to
obtain a single numeral solution, and examples were included
to alert students to the type of responses required. To
avoid errors due to the order of operations, brackets

were inserted in appropriate arithmetic items.
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On both the algebra and arithmetic tests, space
was provided for students to write several steps of a
solution when desired. On all tests, there were two items
for every skill in a given format, while other items
required the same or a similar skill but in different
formats. To illustrate ﬁhis, examples from the algebra
test are given in Figure 8, and copies of the instruments

are included in Appendix B.

Same skill Same skill/
Example and format different format
~5p(2p-7) ~7w (3w=-6) “2w(3w+7) + ~3w(2-5w)

FIGURE 8. Sample of items from the algebra test
involving the same skill.

Procedure

The data were collected at the end of April since
the teachers involved had indicated that all students would
have completed the relevant material on polynomials at
least one month earlier. All three tests were administered
by the investigator or by an assistant who was thoroughly
familiar with the procedures. Each test was assigned a
maximum time limit to ensure that all students attempted

all three tests within a 40 minute period. The algebra
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test, with a 20 minute limit, was assigned first followed
by the arithmetic test with a 10 minute limit. The com-
putation test was assigned in the last five minutes. Any
students who did not require the maximum time to complete

a test were permitted to write any subsequent tests without
intermediate delays. If, students finished all three tests
before the 40 minute period had ended, they were permitted
to check their work and to return to any omitted items.

All instructions pertaining to the content and
solution methods were written on the tests. Technical
instructions were given orally. Students were told to use
pen or pencil and to write their solutions on the test
papers. Erasures were not permitted and students were
instructed to draw one line through the error before making
any changes to the answers. Students' names were requested
in order to match each of the three tests.

All tests were written during regularly scheduled
mathematics periods. Prior to the testing the students
were not aware of what content was to be tested, and no
review related to the particular skills was carried out.

As a follow-up to the written tests, a select
sample of students was interviewed on a one-to-one basis.
Due to time constraints, tests were corrected but the errors
had not been classified prior to the interviewing. The
algebra tests written by students in the matriculation

classes were sorted according to the number of errors.
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sixteen students from different schools, who had made the
most errors in their group and who had, on initial inspection,
made errors similar to other students, were interviewed
individually in late May.

An audio tape was made of each interview session
between the student and the investigator. In an interview,
students were given blank test papers and were requested
to complete particular items while repeating aloud the
procedures used. If students did not verbalize their
actions sufficiently, the interviewer asked questions to
obtain explanations and clarifications. For example, if

a student said "10p2

- 8" as the description of the pro-
cedure, the investigator asked "How did you obtain the
10p2?" The session lasted 15-20 minutes on the average
and was followed by an informal review of the errors for
the students' benefit.

The comments made during these sessions served as

one of the components utilized in the discussion and inter-

pretation of the results obtained from the written data.

Coding Scheme

In order to investigate and classify error patterns,
a coding scheme was developed. Using error types available
in the literature as well as some errors found during the
preliminary analysis of the pilot material, a list of

general error categories was compiled. Based on the
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information gathered during a trial run of the analyses,
refinements and modifications were made. Each general
category was subdivided into specific error types. A
description of the general categories is provided in this
section, with detailed examples of specific error types
contained in Table 18, Appendix C.

Ten general categories were used and a total of
111 specific error types were hypothesized. A brief
description of each category follows.

1. Sign errors dealt with errors where students carried
out the correct operations and procedures, and arrived at
an answer correct in absolute wvalue, but incorrect in sign.

2. Basic fact errors were errors in which the correct
operation was followed but an addition, subtraction, or
multiplication fact was recalled incorrectly.

3. Wrong operation errors included errors where the
student performed a different operation from that required.
For example, students who added when multiplication was
the operation, committed wrong operation errors.

4. Distribution errors involved situations where a
number was to be distributed and the student either failed
to distribute or distributed incorrectly.

5. Grouping errors were errors in which students grouped
terms and thereby changed the meaning of the expression.

6. The category labelled "incorrect operation symbols

written" included situations where students wrote addition
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symbols where multiplication symbols were required or vice
versa. This category was limited to arithmetic errors
since it was on the arithmetic test where students were
instructed to indicate their procedures only and were
asked not to compute a final answer.

7. The category "nuymerical bases multiplied" was for
arithmetic test items only and it included errors where
students multiplied the bases in an exponential expression.

8. Exponent errors encompassed all errors students
made with exponents when they simplified exponential
expressions.

9. Like term errors involved errors which students made
when combining "unlike" terms as if they were "like" terms.
10. A miscellaneous category was included to provide

codes for other errors which did not fall within the
descriptions.

Individual coding sheets were designed by using
these categories and the test items. An example of such

a coding sheet and its use is contained in Appendix D.

Analysis of Data

For each of the eight cells in the design, a summary
sheet was completed. On this sheet, records were kept of
how many errors each student made in a particular error
category. Further details of these summary sheets are

included in Appendix E.



To facilitate between—-group comparisons on common
systematic errors, a final summary sheet was designed to
record the number of students who made errors in each
category and the frequency with which they made them.
This summary sheet is available in Appendix F.

Before describing the analysis techniques used
for each question, two key definitions are restated here.
A "systematic error" was defined as an error which occurs
on at least 50% of the occasions in which the student has
the opportunity to make such an error. A "common error"
was any systematic error which was made by at least 10

of the 200 students in the sample.

Question 1. Do students make systematic
algebra errors? What classifications
appropriately describe these errors?

An inspection of the final summary sheet was used
to determine if any of the error types occurred in a
systematic manner. The classifications of such error

categories were noted.

Question 2. What common errors do grade
nine and ten students commit when adding,
subtracting, and multiplying polynomials?

By examining the final summary sheet, the total
number of students who made each error systematically was
determined. All error categories which fulfilled the

criterion indicated earlier were noted as common errors.
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Any group of errors which were conceptually related and
satisfied the criterion as a set were considered for

analysis as a set of errors.

Question 3. Do students who make systematic
errors 1in algebra, make the corresponding
arithmetic errors and vice versa?

Each common systematic error in algebra was compared
to its arithmetic counterpart to determine if the same

students were making both errors.

Question 4. If a student makes a systematic
direct error, does the student make the
corresponding indirect error, and vice versa?

The students who made direct and indirect errors
within a category were compared to ascertain whether or

not students made the error in both situations.

Question 5. Do grade nine and ten students
make the same errors or are there differences?

For each common error type, a comparison was made
between grades and any errors which were grade specific

were recorded.

Question 6. Within grades, are the errors
made by students in the honours program
different from, or similar to, those made
by students taking the matriculation
mathematics program?

For each common error found, a comparison was made
between students in different programs. Any errors which

were specific to a particular group were reported.



CHAPTER IV

RESULTS

In order to present a complete report of the
data, this chapter contaips a variety of components. First,
all necessary notation is explained. Next, the results are
reported in the context of the general error categories.
Tabulations of students who made specific error types
within each general category are presented prior to the
report on the errors in that category. Any hypothesized
errors which did not occur systematically are noted. Then,
an overall summary of the systematic algebraic errors is
presented. Comparisons are made between groups based on
grade, program, and sex. Any common errors in the category
are reported in detail and comparisons are made between
similar algebraic errors as well as any parallel arithmetic
errors. Finally, a discussion of the results in terms of
the research questions posed in Cahpter I is provided, with
appropriate reference to the interview data.

Frequency counts were recorded for each hypothesized
error type and the number of students who made each error
type at particular frequencies was also tabulated. Any
error type which occurred on at least 50% of the occasions
in which the student had the opportunity to make the error

was considered to be systematic. Any systematic error type
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which was made by a minimum of 10 students was called a
common error. Tabulations were made according to grade,
program, and sex to permit between group comparisons.
Indirect and direct errors were coded separately in order
to ascertain the situation in which the error occurred.

A total of 200 sthents, consisting of eight sub-
groups of 25, was included in the analysis. There were 10
general error categories, each of which was subdivided into
specific error types. A total of 111 hypothesized error
types was investigated. Each subcategory was assigned a
three or four character descriptor. Each descripto? began
with a letter which represented the test on which the error
occurred, C for computation, A for arithmetic, or P for
algebra (polynomials). A second letter was then used to

indicate the general error category, as shown in Table 1.

TABLE 1

Letters Used to Represent General Categories

Category Letter Category Letter
Sign Errors S Incorrect Symbolism L
Basic Fact Error F Numerical Bases Multiplied B
Wrong Operation W Exponent Errors E
Distribution D Like Term Errors i
Grouping G Miscellaneous M
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If an error type was related to an operation, a third

letter was included to indicate whether it was addition (A4),
multiplication (M), or subtraction (S). The number which
appeared at the end of each description indicated the
position of the error type in the listing. To clarify these

descriptions, two examples are provided in Figure 9.

EXAMPLE 1

AEM1
ariJLmetic exponent error multipﬂ&cation first

i.e., AEM1l was the descriptor for the first exponent error
in multiplication on arithmetic items.

EXAMPLE 2 FR

algebra distribution error td&rd
i.e., PD3 was the descriptor for the third distribution
error on algebra items.

FIGURE 9. Examples of the descriptors used.

In this chapter, "arithmetic test" refers to that
particular test used, while the word "arithmetic" refers to
the arithmetic context as a whole, including items from

both the arithmetic and computation tests.

Sign Errors

As shown in Table 2, 30 specific error types were
hypothesized under the category of sign errors. Five of

the algebraic errors, PSM5, PSA4, PSA6, PSS2, PSS3, and two



TABLE 2:

(at back of this paper)
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of the arithmetic errors, ASM1l, ASM3, were not made system-
atically by any students. However, all of the 10 sign errors
proposed for the computation items were made systematically
by some students.

Systematic algebraic sign errors. Overall, 68

students made systematic sign errors on algebraic items.
Forty—-eight students madé a single error type, while 14
students made two error types, three students made three
error types, one student made four error types, another
student made five error types, and one other student made
seven error types. When between group comparisons were made,
it was found that more students in grade nine made systematic,
algebraic sign errors than students in grade ten. Fewer
students in the honours program made such systemeric errors
and no difference was found between the performance of males
and females. These results are summarized in Table 3. A

detailed description of each common algebraic sign error

follows.

TABLE 3

Between Group Comparison (Algebra)--Sign Errors

Grade Program Sex

9 10 M H M F
Number of student h
s b, i Y g 40 28 I =3 34 34

erred systematically
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Common error types, PSM4 and PSM8, occurred within
the general framework of problems involving the distributive
principle for multiplication over subtraction. For example,
in problems such as —2x (4x - 6) a student would write ~—12
as the coefficient of the second term rather than 12. PSM7,
in which the term being distributed was a negative integer
rather than a monomial, thle not common, was the only other
systematic error of this general type. As indicated in the
Venn diagram shown in Figure 10, 19 of the 25 students who
made these errors made the error in only one of the three

situations described.

ERROR EXAMPLE
PSM4 PSM7
PSM4 =5p(2p - 7) where the
coefficient of the
second term was written

!l ags =35,
PSMS8 —3w(2 - 5w) where the
coefficient of the

second term was written

as —15.
PSM8
PSM7 —3(7r - 2) where the
second term was written
as ~6.

FIGURE 10. Number of students making sign errors when
distributing multiplication over subtraction.

These algebraic errors corresponded directly to ASM2
on the arithmetic test and indirectly to CSM1 on the com-
putation test. When given problems such as ~59(65 - 97) on

the arithmetic test, 21 students wrote a negative second term,
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in this case =59 . 97. On the computation items, nine

students said that problems like —4 - “21 had a negative
product, namely ~84. When ASM2 and CSM1l were considered
together to represent this systematic, arithmetic sign error
and PSM4, PSM7, and PSM8 were considered to represent the
systematic, algebraic sign error, only nine students were

found to have this sign error in both algebra and arithmetic.
As shown in Figure 11, 16 students made this type of systematic
error in arithmetic only and 16 others made it is algebra

only.

Arithmetic Algebra
(ASM2, CSM1l) (PsM4, PSM7, PSMS8)

FIGURE 1l1. A comparison of algebraic and arithmetic
sign errors involving the multiplication of
two negative integers.

Common sign error, PSA2, involved the incorrect

n

addition of coefficients in problems of the type ax + bx™

where at least one of the coefficients was negative. For

2 2 students would

example, in problems such as —23x° + 12x
write the correct magnitude of the coefficient but the
incorrect sign, namely 11 in this case instead of ~11.
Specifically, the error type PSA2 referred to a direct error

of the form illustrated above, where the negative coefficient
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has a greater absolute value than the positive coefficient
and the error was made in the first step of a solution.

As shown in Figure 12, the other wvariants of coefficients
did not result in many errors. Even the indirect error
PSA5, which was identical to PSA2 but was made in a step
other than the first step of the solution, was made by only

two students and neither of them had made the direct error.

PSA4 PSA2 ERROR EXAMPLE
A PSAl -2x2 +‘5x2 where the
v coefficient was
AQ written as 7.
PSAS
PSA2 5r + “21r where the
coefficient was
PSA3 written as 1l6r.
PSA3 ‘6w2-+15w2 where the

coefficient was
written as -9w2.

PSA4 Same as PSAl but
indirect.
PSAl
PSAS5 Same as PSA2 but
indirect.
PSA6 Same as PSA3 but
PSAG6 indirect.

FIGURE 12. Number of students who made systematic sign
errors in addition.

The error category CSA2 on the computation test
corresponded to the systematic, algebraic error PSA2. Given

problems such as 27 + —39, students who wrote 12 for the
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answer were said to have made error CSA2. As indicated in
the Venn diagram in Figure 13, only five students made this
sign error systematically in both arithmetic and algebraic

items.

Arithmetic

(CsA2) Algebra

e (PSA2)

FIGURE 13. A comparison of the number of students who
made systematic algebraic and arithmetic
errors when adding constants of opposite
signs.

Common error type, PSS1l, involved the incorrect
subtraction of coefficients in problems of the type ax™ - bx"
where both coefficients are positive. For example, in

problems such as 4p2--6p2

students would write 2 instead

of =2 for the coefficient. Specifically, PSS1 referred to
the error type where the subtrahend was larger than the
minuend as illustrated in the above example. The other
error type in this category, PSS2, did not appear systema-
tically. As can be seen in Figure 14, any student who made
a systematic sign error in subtraction did so only when the
subtrahend was larger than the minuend.

The arithmetic error CSS4 corresponded directly

to PSS1 and arose in problems such as 25-35 where students
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PSSs2 ERROR EXAMPLE

PSS1 PSSl 4p2 - 6p2 where the
coefficient of p2 was
written as 2.

PSS2 842 - 7a2 where the
coefficient of d2 was
written as -1l.

FIGURE 14. Number of students making systematic sign errors
in subtraction.

wrote 10 for the answer. As shown in Figure 15, only four
students made a systematic sign error in both arithmetic

and algebraic items.

Arithmetic Algebra
(CSs4) (PSS1)

FIGURE 15. A comparison of the number of students who
made systematic algebraic and arithmetic sign
errors involving subtraction.

Wrong Operation Errors

As shown in Table 4, 24 specific error types
occurring on the algebra and computation tests were hypoth-
esized as wrong operation errors. Nine of the algebraic
errors, PWl, PW2, PW5, PW8, PW9, PW1l0, PWll, PW1l2, and two
of the computational errors, CWl, CW2, were not made

systematically by any students.
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Wrong Operation Errors
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Grade and Sex 9 OF 10M-M 10M-F 9H-M 9H-F 108-M 10H-F TOTAL
g = 5 € 8 » 2 8 B P8 € 8 3 € =B 0D < = > < = > < = >

Frequency 50 50 50 50 50 50 50 50 50 50 50 50 50 SO 50 50 S50 S50 50 50 50 50 50 50 50 50 50

Error Types

Wrong Operation*
a1 3 . 1 B 1)
cw2 4 2 2 3 3 1 3 18 0 0
w3 7 2 4 3 1 3 41 2 1 -1 20 4 6
w4 5 4 O IR 3.6 5 3 2 0 22 16
CW5 5 5 5 5 1 2 2 1 1 0 14 13
CWo 2 1 1 1 1 ARVl
il 1 1 A0 0
P2 2 2 00
W3 1 01 0
P4 Lo RN B N7
PW5 0 0 0
Pil6 I 01 0
B 1 1 0 2 0
Pi8 1 Lm0
P9 1 1 00
PW10 1 1 2 1 5 0 0
Pwll 0 0 0
PW12 0 0 0
+PWL3 GRN 2 1 1 11 0 7 4
+PW14 il 5 1 1 1 0 8 2
PW15 2 3 1 1 70 0
+PW16 10 8 1 2 5 5 7 3 0 40 1
+PWL7 48 A 2 I 52 400 4 2 I 1 0 13 26
+PW18 1 IR R /IR S| 1 3 i 1 4 3 12

+A common algebraic error.
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No such errors were proposed for arithmetic since
students were not permitted to calculate. Instead, the
error category, "incorrect operation symbol written" was
applied in the arithmetic test items. That is, a student
would write down the incorrect symbol rather than carry out
the wrong operation.

L4

Systematic algebraic wrong operation errors. Over-

all, 70 students made wrong operation errors systematically
on algebraic items. Of the 37 students who made multiple
errors, 27 students made two error types, five others made
three error types, and five more students made four error
types. When between group comparisons were made, only a
marginal difference could be found between the performance
of males and females, with more males making errors. More
grade nine students made systematic errors than grade ten
students and fewer students in the honours program than in
the matriculation program made systematic wrong operation
errors in algebra. These comparisons are indicated in Table

S

TABLE 5

Between Group Comparisons (Algebra)--Wrong Operation Errors

Grade Program Sex
9 19 M H . . F
Number of students who 47 23 45 25 38 32

erred systematically
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A detailed description of each common algebraic
wrong operation error follows.

Common wrong operation errors, PW1l3 and PW1l4,
occurred in the general framework of problems where two
binomials were incorrectly subtracted. For example, when
students simplified problems such as (17x + 2) - (12x + 9),
they added the coefficients of the like terms, in this
case 29 would be the coefficient of the first term and 11
would be the second term. As indicated in Figure 16, six

students made both errors systematically.

PW1l3 PW1l4 ERROR EXAMPLE
PW13 (17% + 2) = (L2% + 9)
e was written as 29x - 11.
PW14 tea® = 13) = (7a® = &

was written as 1542 - 17.

FIGURE 16. Number of students who made systematic, wrong
operation errors with subtraction.

The arithmetic error, CW3, where students added
when they were required to subtract, was the arithmetic
error corresponding to the common algebraic errors mentioned
above. Here, students would write 60 as the answer to
problems like 25-35. However, as seen in Figure 17, no
student made this type of error systematically on both

arithmetic and algebraic items.
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Arithmetic Algebra
(Cw3) (PW13, PW1l4)

FIGURE 17. A comparison of the number of students who made
wrong operation errors with subtraction on
corresponding arithmetic and algebraic items.

Common wrong operation errors, PW1l6é and PW1l7,

n

occurred in problems of the form ax" + bx" where the two

monomials were multiplied instead of added. For example,

2 2

in problems such as 4x“ + 7x

writing 28x4. Specifically, error PW1l7 occurred in problems

students would simplify by

where b = 1 and n = 1. As indicated in the Venn diagram
in Figure 18, 25 students made both error types systema-
tically, but 30 other students made the systematic error

in only one of the situations.

PW1le6 PW17 ERROR EXAMPLE
PW16 4x2 + 7x2 was written
’. as 28x4.
PW17 13x + X was written
as 13x2.

FIGURE 18. Number of students who systematically
multiplied monomials when asked to add
them.
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These errors in algebra corresponded to the error

CW2 in computation, where students given problems such as

18 + =7 wrote

=126 as the answer.

As seen in Figure 19,

no student made CW2 systematically.

Arithmetic
(Cw2) 3

FIGURE 19.

Algebra
(PW1l6, PW1l7)

A comparison of the number of students who

systematically multiplied instead of added
on corresponding algebraic and arithmetiic

items.

The error, PW1l7, where
"axz“, was directly related to
as "ab + b = abz". The latter

a priori and was inserted only

cases.

problems such as 35 - 789 + 789

In this arithmetic error,

"ax + x" was written as

the arithmetic error described
error was not hypothesized
after it occurred in several
students would simplify

2

by writing 35 - 789°. As

shown in Figure 20, only 7 of the 59 students made these

errors systematically in both arithmetic and algebraic items.

Arithmetic

(ab + b = ab?)

FIGURE 20.

Algebra
(PW17)

A comparison of the number of students who

systematically made the errors "PW1l7" and

"ab + b = ab2",
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Common wrong operation error, PW1l8, occurred in

= + d) where the binomials

problems of the type (axn +. b} = {(c=x
were multiplied instead of subtracted. For example, on
problems such as (7x + 2) - (12x + 9), 15 students multiplied
the binomials and wrote variations of 84x2 + 83x - 24% + 18,
No corresponding arithmetic or computation items were
included in the tests and hence no comparisons could be

made.

Distributive Errors

As shown in Table 6, 10 specific error types were
hypothesized as distributive errors. Only one of the
algebraic error types, PD5, was not made systematically
by any students. All of the four distributive errors
proposed for the arithmetic items were made systematically
by some students. However, since problems involving a
solution by the application of the distributive principle
were not present in the computation test, no such errors
were proposed for that test.

Systematic algebraic distributive errors. Overall,

35 students made systematic distributive errors on algebraic
items. Thirteen of these students made systematic errors

in two error types, and the remaining 22 students made
systematic errors in only one error type. When between
group comparisons were made, it was found that more grade

nine students than grade ten students made distributive
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TABLE 6

Distributive Errors
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Grade and Sex MM MF 10M-1 LOM-F 9H-M 9H-F 10H-M 10H-F TOTAL
< = > < = > < = > < = > < = > < = > < = > < = > < = >
Frequency 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
Error Types
Distributive
Anl 4 3 2 1 2 11 1 3 4 0 715
AD3 1 1 31 11 4 2 2
AD4 4 2 2 2 11 1 1 1 9 2 6 31 1 3 0 15 25
ADS 1 2 2 2 2 1 2 2 1 5 1 2 0 12 11
PD1 32 2 2 1 2 2 9 3 2
PD2 2 1 4 2 1 4 2 4
+PD3 11 31 1 1 3 32 11 0 10 8
+PD4 11 1 4 1 2 2 1 1 11 1 0 7 10
PD5 3 300
PD6 2 1 0 2 1

+a common algebraic error
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errors systematically and more students in matriculation
than in the honours program made systematic distributive
errors. A small difference was found between the performance
of males and females, with more males making errors. The

number of students in each group is presented in Table 7.

¥

TABLE 7

Between Group Comparisons (Algebra)--Distributive Errors

Grade Program Sex
9 10 M H M E
Number of students who 25 10 25 10 20 15

erred systematically

A detailed description of each common algebraic
distributive error follows.

Common distributive errors, PD3 and PD4, occurred
within the general framework of problems involving the
difference of two binomials where the distributive principle
was applied incorrectly. For example, in problems such as
(4p2 - 3) - (6p2 - 5), some students would write 4p2-3-6p2-5,
resulting in an incorrect sign for the last term. Speci-

fically, in both errors PD3 and PD4, the second binomial

had an implied coefficient of one. As shown in
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Figure 21, eight students made both errors systematically,
while another 19 made this type of error systematically in

only one of the two situations.

ERROR EXAMPLE
25 w2 PD3 o= R3] =« (7a® = 4}
g was written as
8d2 - 13 - 742 - 4
PD4 (7x + 2) - (12x + 9)

was written as
7x + 2 - 12 + 9

FIGURE 21. Number of students who systematically failed to
distribute correctly when subtracting binomials.

These algebraic error types corresponded to the
distributive error, ADl, on the arithmetic items. For
example, when given items such as 169 - (349 + 876), 22
students systematically wrote 169 - 349 + 876 as the response,
thereby failing to distribute correctly. As shown in Figure
22, 25 students made this systematic distributive error
only in algebra while 20 other students made it systema-

tically in arithmetic only.

Arithmetic Algebra
(AD1) (PD3, PD4)

FIGURE 22. A comparison of the number of students who made
systematic distributive errors when subtracting
binomials on corresponding arithmetic and
algebra items.
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Error types, PDl1l, PD2, and PD6 constitute a con-
ceptually related set of errors, and when considered together,
can be considered as a common error. These error types were
specific situations where only partial distribution was
carried out. For example, when students were given ~5p(2p -7),
they failed to multiply the second term by ~5p and wrote -7
instead of 35p. Specifically, PD1l and PD6 were error types
in which the term being distributed was a negative integer
instead of a monomial as in PD2., Other variants of this
error were not hypothesized, and did not, in fact, occur.

As shown in Figure 23, no student made all three error types.

ERROR EXAMPLE
PD1 PD2

PD1 ~6(13a + 8) was written
‘7 as~78a + 8
A Q PD2 =7w(3w - 6) was written
as 21w2 - 6
PD6 ~8(7y + 9) was written
PD6 as 7y + =72

FIGURE 23. Number of students who partially distributed,
systematically.

These algebraic distributive errors corresponded to
AD3 in the arithmetic test. Given problems such as ~12(517 -
229), students would write 229 instead of ~12-229 for the
final term. As shown in Figure 24, 10 students made such

algebraic errors systematically and four others made the
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arithmetic errors systematically but no student made errors

in both contexts.

Arithmetic Algebra
(AD3) (PpD1, PD2, PD6)

FIGURE 24. A comparison of the number of students who
partially distributed a negative term
systematically on corresponding arithmetic
and algebraic items.

Exponent Errors

As shown in Table 8, 17 specific error types were
hypothesized under the general category of exponent errors.
Four of the algebraic errors, PEM5, PEM6, PEA4, PESl, were
not made systematically by any students. However, all of
the five exponent errors proposed for the arithmetic items
were made systematically by some students. No exponent
error types were appropriate for the computation test.

Systematic algebraic exponent errors. Overall, 37

students made systematic exponent errors in algebra. Three
of these students made systematic errors in three error
types, seven others made systematic errors in two error
types, and the remaining 27 students made systematic errors

in only one error type. When between group comparisons
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TABLE 8

Exponent Errors

Grade and Sex QM QF 9H- 9H-F 104 L0U-F 106-M 108-F TOTAL

< = > < =] > < = > < = > < = > < = > < = > < = > < = >

Frequency 50 50 50 30 50 50 50 50 50 30 30 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

Error Types
Exponents
ARM1 2 1 1 20 12
AEM2 1 e o
AEM3 1 1 1 1 (N
AFAl Al e I 1 1 1 AC I
AFA2 4 1 & 02 1 1 1 0 10 3
+PEM1 3 [N 1 L2 1Ll 0 4 7
PEM2 2 2 1 2 1 1 1 1 5
PEM3 iyl 1 1 2 Lo 5 20
+PEM4 GRS R I D S 2 4 AN g IS 1 30 4 9
PEMS 0 0 0
PEM6 0 0 0
PEAL 4 2n 2 1 2 9 0 4
PEA2 A REREE R LR, R il g ol I 1 18 8 1
PEA3 3 1 2 1 50
PEA4 0 0 0
PES] 1 1 0 0
PES2 s 208 1 (A

+A camon algebraic error
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were made, it was found that more students in grade nine
than students in grade ten made systematic exponent errors
and fewer students in the honours program than those in the
matriculation program made such systematic errors. A small
difference was found between the performance of the males
and females, with more males making errors. These

comparisons are shown in Table 9.

TABLE 9

Between Group Comparisons (Algebra)--Exponent Exrrors

Grade Program Sex
Exponent Errors 9 10 M H M F
Number of students who 25 12 26 11 22 15

erred systematically

A detailed description of each common algebraic
exponent error follows.

Common algebraic exponent errors, PEM1l and PEM4,
involved the omission of an exponent in response to problems
of the type ax - bx. For example, given such problems as
8a - 13a, some students would write 104a and no explicit
exponent was written. Specifically, PEM4 was the same type
of error, but it occurred in the context of problems such

as “5p(2p - 7) where students would write "p" rather than
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"p2" in the first term. As shown in Figure 25, 20 of the

22 students who made this error systematically did so in

only one of the situations.

ERROR EXAMPLE
PEM1 15b - 7b was written
as 105b.
PEMA4 7w (3w - 6) where the

first term was written
as —21lw.

FIGURE 25. Number of students who made systematic
exponent errors when multiplying expressions
with implicit exponent of 1.

While no parallel arithmetic errors were hypoth-
esized, these two algebraic exponent errors are similar
to the arithmetic error, AEM1l, where a number was multiplied
by itself. Here, it was predicted that a student would
write the number alone. For example, 231 - 231 would be
written as 231. However, only two students made this error
systematically, and as shown in Figure 26, neither of them

made the algebraic errors.
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Arithmetic Algebra
(AEM1) (PEM1, PEM4)

FIGURE 26. A comparison of the number of students who
systematically omitted an explicit exponent
when multiplying expressions with unwritten
exponents of 1.

Error types, PEAl, PEA2, PEA3, and PEA4 constitute
a conceptually related set of errors, and when considered
together, they can be considered as a common error. These
error types were specific situations where students added
coefficients and exponents when given problems of the
form ax™ + bx"™. 1In particular, PEAl and PEA2 were the
direct errors, and PEA3 and PEA4 were the indirect errors
when n = 1 and n = 2, respectively. For example, given a
problem such as 4x2 o= 7x2 students would write llx4. As
shown in Figure 27, 10 students made this type of error
systematically in only one of the specific cases. Although
the number of students making these errors systematically
is small, the data indicated that students tended to make

this systematic error in direct situations rather than

indirect ones.
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PEA1L ERROR EXAMPLE
PEA2
PEAl 2p + ~7p was written
as —5p2.
PEA2 4x2 + 7x2 was written
as 11x4.
PEA3 Same as PEAl but
indirect.
PEA4 PEA4 Same as PEA2 but
PEA3 indirect.

FIGURE 27. Number of students who systematically added
exponents when adding monomials.

The algebraic errors PEAl and PEA2 corresponded
to the arithmetic errors AEAl and AEA2. These arithmetic
exponent errors arose in problems such as ~9 . 18% + 17 -182
where students would write (-9 + 17)184. As shown in Figure
28, however, only one student made such exponent errors
systematically in both arithmetic and algebra, while 26

students made the systematic errors in only one of the

contexts.

Arithmetic Algebra
(AEAl, AEA2) (PEAl, PEA2)

y

FIGURE 28. A comparison of the number of students who
systematically added exponents when adding
expressions in arithmetic and algebra.
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Other Errors

The six other general categories were not reported
in detail because none of the specific algebraic error types
were made systematically by 10 or more students. The
category "Basic Fact Error" did not occur systematically
on any tests and neither did the category called "Incorrect
Operation Symbol Written®.

Ten students did make "Like Term Errors" systemati-
cally but no particular error type or set of error types was
common. Five students made the like term error PT9, which
involved addition of common terms without applying the
necessary distributive principle. For example, in problems
such as 5r + =3 (7r - 2), students would combine 5r and 7r,
and -3 and —2 without distributing first. As shown in Figure

29, few students made the other variants in this category.

ERROR EXAMPLE NUMBER OF STUDENTS
PT1 27b - 10 = 17b 0

PT2 15x2 + 3 = 18x2 1%

PT3 same as PT1l, but indirect d

PT4 same as PT2, but indirect 1

PT5 15x% + 3x = 18x° 2

PT6 same as PT5, but indirect 0

PT7 15x% + 3x = 18x° 1%

PT8 same as PT7, but indirect 0

PT9 5r + "3{ir - 2) = 12 = § 8

*same student made both these errors systematically

FIGURE 29. Number of students who made systematic like
term errors.
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The only grouping error proposed for algebra, PGl,
occurred in problems of the form ax + ~b (cx - d) where the
first two terms were incorrectly grouped together. Four
students, systematically, wrote (5r + =3) - (7r - 2) when
given problems such as 5r + =3 (7r - 2). However, 12 students
made the corresponding ayrithmetic error AG3, and only one of
them made the error systematically in both arithmetic and
algebra. As shown in Figure 30, 1l students wrote
(189 + —21) - (537 = 792) as a response to 189 +~21 (537 - 792)
but did not group 1l0p and ~3 together in problems like

10p + -3 (6p + 8).

Arithmetic Algebra
(AG3) (PG1)

FIGURE 30. A comparison of the number of students who made
the same systematic grouping error in algebra
and arithmetic.

A commutativity error in subtraction, AM3, was
prominent in arithmetic, yet no student made the correspond-
ing algebraic error, PM3, systematically. In this error
type students commuted terms in subtraction problems.

For example, problems such as (31 - 340) + (71 - 340) - 123
were rewritten as 123- (31 + 71) 340, yet problems like
l16d + 314 - 27 were never written as 27 - 47d. These errors

were listed in the "miscellaneous" category.
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The category of errors called "Numerical Bases
Multiplied" was specifically related to arithmetic items
and was made systematically by only two students.

All the common algebraic errors and all but two
or three systematic errors found in the study had been
hypothesized prior to the data analysis. Thus, although
systematic errors did not occur in all hypothesized
categories, the hypothesized error categories were considered
to be appropriate descriptions of the systematic algebraic
errors students made when simplifying polynomials.

An analysis of the data with respect to each research
question is now considered. The data is presented for each
guestion. Where appropriate, in the discussion which
follows the questions, explanations of the results are
suggested and the interview data is analyzed to provide

support for these explanations or to suggest alternatives.

Research Questions

Question 1. Do students make systematic
algebraic errors? What classifications
appropriately describe these errors?

To determine whether or not an error was systematic,
a comparison was made between the number of times a student
made the error and the number of times the student had an
opportunity to make the error. As defined earlier, a

systematic error was an error which occurred on at least
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50% of the occasions in which the student had the oppor-
tunity to make that error. As shown in Table 19, in
Appendix F, 77 of the 111 hypothesized errors were made
systematically. Specifically, 42 of the 72 hypothesized
algebraic errors were made in a systematic manner.

Overall, the classifications generated from the
literature were appropriate descriptions of the error types
found. No different error types occurred frequently enough
to warrant alternative classifications, although some
students did make unique errors. Thirteen specific
algebraic error types were not present in any of the
students' responses, and the remaining 17 algebraic errors
occurred in an unsystematic fashion. Details are available
in Appendix F.

Discussion. When analyzing and coding the data,

systematic patterns were found in the students' responses.
In many studies the criterion for a systematic error is

one that occurs in more than 50% of the occasions on which
it is possible rather than at least 50% of the occasions.
Due to the breadth of this study and its exploratory nature,
the "at least 50%" criterion was introduced to capture those
errors which occurred in situations which arose when only
two items were available. However, even when the more
stringent criterion of more than 50% is applied, 79 of the
122 students who made systematic errors did so on more than

50% of the occasions. 1In particular, when the criterion
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of "more than 50%" was applied there were 30 algebraic
errors which were made systematically. Thus, although in
all the following discussions the word "systematic" applies
to the "at least 50%" criterion, it appears that this less
stringent criterion does not provide a serious limitation
to the conclusions. )

Because few discrepancies were found between the
predicted errors and those which students made systematically,
it seems reasonable to conclude that these hypothesized errors
were adequate descriptions of the procedures students used
to reach the "incorrect" response. The information gathered
from the interviews generally supported this assumption.

For example, for the error PWl4, it was predicted that

2

when students simplified problems such as (4p° - 3) - (6p2 - s

they would ignore the active operation of subtraction and
proceed to add like terms, resulting in the answer lOp2 2= .
Students who were interviewed indicated that this was their
procedure. These students explained their answer of "10p2~—8"
with comments such as "add 4 and 6 to get 10, and 3 and 5 to
get 8, because they're alike."

Although, as stated previously, the interview data
generally supported the hypothesized descriptions, there
were discrepancies. Two examples of these follow. For the
error PSM4, it was predicted that students would multiply the

negative terms ~5p and ~7 in problems such as ~5p (2p - 7)

and would obtain a negative product, ~35p, as the result.
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Some students who were interviewed did write ~35p but the
procedure they used differed from the predicted one. These
students did not change 2p - 7 to 2p + -7 as expected, but
instead they multiplied ~5p by 7 to obtain —35p. Thus, it
seemed as if they ignored the definition of subtraction
whereby 2p - 7 would have been written as 2p + =7, and an
error resulted.

Another discrepancy was also found between the pre-
dicted procedure for the error PW1l7 and the procedure students
used during the interviews. It was predicted that students,
given such problems as 13x + x, would multiply the terms
instead of adding them, and would write 13x2. However, in
the interviews, no student who wrote 13x2 said they were
multiplying. Some students did indicate that the "unwritten"”

"xz" came from

coefficient of x caused problems and that
the fact that two x's were involved. This seemed to imply
that students were obtaining 13x2 from 13x + x by a procedure
where 13 + "an invisible value" was 13 and two x's means x2.
It should be noted that only 16 students were inter-
viewed and these students were requested to solve only
particular items. Some students did not repeat the
systematic errors they made during the written tests,
therefore, their comments may not be indicative of the
procedures used by all students in the sample or the

population. Within these limitations, the information

gathered from the interviews provides a basis for the
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conjecture of "possible" explanations of systematic errors.

Question 2. What common errors do grade
nine and ten students commit when adding,
subtracting, and multiplying monomials?

At least 10 students out of the 200 tested had to
commit a systematic error type before it was considered to
be common. This same criterion was also used to determine
if combinations of specific error types within a general
category were common. As a result, 13 specific algebraic
error types and two combinations of algebraic error types
were considered to be common. A list of these common errors
and their descriptions is contained in Table 10.

The common algebraic errors which were found belonged
to four of the 10 general categories of errors, namely sign
errors, wrong operation errors, distribution errors, and
exponent errors. Although common error types occurred in
these categories, only a few specific error types in each
category were common. For example, only one of the six
hypothesized algebraic sign errors in addition was made by
at least 10 students.

Discussion. Common algebraic error types, PSM4 and

PSM8, occurred in the general category of sign errors in
multiplication. Specifically, the common error types were
made when a negative monomial was to be distributed over

a binomial involving subtraction. For example, given

problems such as ~7w (3w - 6), students would write —-42 as



TABLE 10
Common Algebraic Errors

Number of Students

Error Type Description of Error Grade 9 Grade 10 Total
PSM4 ~ax (bx - c) where =-ax . =c = -acx 7 3 10
PSM8 -ax (c - bx) where -ax - ~bx = —abx? 9 £ 13

R n

PSA2 g}::n I fﬁxn}= S aV 8 Bo'n 23 16 39
Pssl ax® - bx™ = (b - a) xB (b > a) 10 5 15
PW13 (ax® + b) - (cx® +4d) = (@a+¢c) x® - (b + d) 2 11
PW14 (ax® = b) - (cx® -d) = (a+¢c) x* - (b +4d) 1 10
PW16 ax® + bx® = abx’D 29 12 41
PW17 ax + x = ax’ b, 8 39
PW18 (ax™ + b) - (cx® + d) = acx?® + adx™ + bex?? + b 19 5 15
PDl}* a (bx + c) = abx + ¢ 1 5
PD2 ax (bx + c) = abx? $ & 6 0

PD3 (ax® - b) - (cx® -d) =ax" -b - cx" -4 i3 5 18

PD4 (ax® + b) - (cx® +4d) = ax" + b - cx" + d 10 7 17
PEM1 ax * bx = abx 5 6 bl
PEM4 ax (bx + c) = abx + acx 21 2 13
PEAl1q ** ax + bx = (a + b) x2 4 0 4
PEA2 ax? + bx? = (a + b) x* 7 2 9
PEA3 ax + bx = (a + b) x*>  (indirect) 0 1 1
PEA4 ax2 + bx2 = (a + b) x4 (indirect) 0 0 0

*Both errors together constitute the partial distribution error type and it is this
error type which is common.

**All four errors together denote the exponent error in addition, and it is this general
error type which was common and no specific situation.

TL
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the coefficient of the second term. The other variations
of errors in this category involved the multiplication of
the negative and positive monomials, and none of these were
common. It therefore seems as if some students had sign
difficulties because the two negative terms were being
multiplied.

This contention was only partially supported by the
interview data. There were students in the interviews who
used the definition of subtraction, in problems such as
-7w (3w - 6), to change 3w - 6 to 3w + —6 and who said that
—7w times —6 was ~42w. It appeared then that these students
applied the incorrect rule that a negative integer times a
negative integer is negative.

The procedures followed by other students, in the
interviews, indicated an alternative rationale for making
the same error. These students did not change 7w - 6 to
7w + -6 but instead, multiplied “7w by 6. With this
strategy students would get —“42w as the second term, which
would be correct for the particular product they calculated,
but incorrect for the complete exercise. Thus, while these
students obtained a final incorrect response, they did not
appear to attend to the definition of subtraction.

Common algebraic error types, PSA2 and PSS1,
occurred in the general category of sign errors in addition
and subtraction. Specifically, the common sign error in

addition was made when two monomials of opposite signs were
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being added, and the negative monomial possessed the largest
absolute value. Similarly, the common sign error in sub-
traction was made when two positive monomials were subtracted,

but the subtrahend was larger than the minuend. For example,

2 2 2 2

given problems such as —23x” + 12x™ of 4p~ - 6p~, students

2 2

would write 11x“ and 2p~, respectively. These sign errors

in addition and subtraction were considered together since

they appeared to be conceptually related in that problems

such as "4p2 - 6p2“

2 24

require the "same" solution procedure

as "4p® + ~6p The other sign errors in subtraction and
addition included different combinations of two sighed
monomials, but none of the errors made with these combinations
were common. Initially it seemed as if the larger size of
the negative monomial caused the difficulty and signs were
overlooked in the response.

In the interviews, however, most students responded
correctly. This indicated that the sign errors might have
resulted because of the "testing milieu" rather than any
particular incorrect strategy.

Common algebraic error types, PW1l3, PWl4, PW1le6,

PwWl7, PW1l8, belong to the general category of wrong operation
errors. Specifically, wrong operation errors, PWl3, PW1l4,
were made when the like terms in two binomials which were

to be subtracted were added instead. For example, in
problems such as (8d2 - 13) - (7d2 - 4) students would

write 15d2 - 17. It was assumed that in such examples
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students did not attend to the active operation but rather
used the presence of "like terms" to determine their
operational procedures. As reported in Carry et al. (1980)
and Kent (1978a), students seem to have developed a generic
rule for "combining" like terms. This contention was
supported by the interviqw data, where students who made
such wrong operation errors described their actions as
"adding like terms". Some students stated that all like
terms are supposed to be added.

Errors, PWlé6, PWl7, involved the multiplication of
two monomials instead of adding them, as was required. For

2 2

example, given problems such as 4x“ + 7x° or 13x + x, students

1 2, respectively. When the particular

would write 28x° or 13x
items involved were examined, it was found that students
made this error when the coefficients were relatively small
and both were positive. Few students multiplied in the
item —23x% + 12x%. As was indicated in Roberts (1968) and
Engelhardt (1972), a possible explanation is that students
appeared to be using the size and sign of the numbers to
determine the operation required.

The information gathered during the interviews
indicated that these two common error types were not as
related as it was first thought. In the items of the type

2, 7x2, most students did not multiply the monomials as

4x
they had on the written test. One student who did multiply

explained that she did not notice the addition sign and
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this would lend support to the contention that students
may not be keying in on the active operation.

The categorization of wrong operation error for
items like 13x + x was contradicted in the interviews. As
indicated in the discussion of question 1, no student who
was interviewed multipliged the terms 13x and x to get l3x2.
Instead, students who made this error indicated that the
"unwritten coefficient" in front of 'x' caused them difficulty.

These students also explained that they wrote "x2 simply

because there were two "x's" present. That is, students in

the interviews were adding when they obtained the answer l3x2.
An alternative hypothesis to explain the procedure in these
items seemed to be that the "unwritten" coefficient was
considered to be "nothing"” and 13 + "nothing" is 13, while
"x2" was used to denote the two x's in the sum.

Common wrong operation error, PWl8, was made when

two binomials were multiplied instead of subtracted. For

example, for problems such as (_4p2 - 3) - (6p2 - 5), students
would multiply 4p2 = 3 by 6p2 - 5 and obtain a variation of
24p4 - 38p2 + 15 for their answers. A possible explanation

here is that students were influenced more by the brackets
and the presence of binomials than they were by the active
operation of subtraction.

This explanation was supported by the interview data,

since students who committed this error rationalized their

procedure by the "fact" that "brackets mean you multiply.”
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Again, the number of students who used this rationale was
limited, but no alternative was proposed since the other
students were unsure as to why they multiplied.

Error types PD1l, PD2 were conceptually related and
when they were considered together, they constituted a common
error. Two other common ,algebraic error types, PD3, PD4,
were also present in the category of distributive errors.
Specifically, the common distributive error types were made
when students partially applied the distributive principle

of multiplication over addition. For example, PDl, PD2

involved problems such as ~7w (3w - 6) where students wrote
-21w2 - 42w, while PD3, PD4 involved problems such as
(4p2 - 3) - (6p2 - 5) where students wrote 4p2 - 3 = 6p2 - 5

Since few students made such partial distribution errors in
both situations, it was assumed that students did not
perceive the examples as the same and the procedures used
to obtain a solution may not have included the distributive
principle, per se. A possible explanation is that students,
who could solve one set of examples but not the other, were
applying general rules like "multiply everything in the
brackets" or "remove the brackets", without any consideration
for the principles involved.

The interview data neither supported nor contradicted
this explanation. Students who solved the appropriate
examples during the interview made different errors from

those in question and thus were unable to provide any further
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information appropriate to these errors.

The final group of algebraic errors, PEM1l, PEM4,
PEAl, PEA2, PEA3, PEA4, occurred in the general category of
exponent errors. Specifically, the common exponent errors,
PEM1, PEM4, were made when both terms which were to be
multiplied contained "unwritten" exponents. For example,
given problems such as 8a - 13a or ~5p (2p - 7), students
would write 104a and ~10p + 35p, respectively. The other
variations of exponent errors in multiplication involved
terms which contained at least one written exponent, for

7 3 2

example, p-p  or lln~ - 2n°, and few common errors were

made. Therefore, a possible explanation is that as long as

one exponent was written, it served as a "cue" to initiate
the proper algorithm. When neither exponent was explicit,
students seemed not to use the appropriate rule.

Students in the interview sample failed to provide
an "explicit" exponent in items which contained no "written"
exponent. That is, students did not write an exponent in
their responses. However, they did not explain their pro-
cedures for reaching such answers. Instead, all responses
were direct without any intermediate comments. Therefore,
little information as to why they "neglected" the exponent
was available.

Exponent errors, PEAl, PEA2, PEA3, and PEA4, were

conceptually related and when they were considered together

they constituted a common error. Specifically, these errors
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involved the addition of monomials where the exponents and
coefficients were added. For example, when given problems

2 2

such as 4x° + 7x° or 1l6d + 31d - 27, students would write

llx4

or 4'7d2 - 27, respectively. A possible explanation is
that students misapplied the rule used in multiplication of
monomials, where it is c@rrect to add exponents.

Some of the interview data seemed to support this
explanation, while other comments provided an alternative
rationale. Most students who were interviewed justified
their procedure with the rule that "in addition, you add
your exponents." One student went so far as to say, "you
always add exponents". In both cases, it seemed that adding
exponents was a rule students had adopted, and although no
student made the comparison, it was plausible that the
rule originated in multiplication.

However, other students who were interviewed
indicated that the sign of the coefficients affected the
procedure used with the exponents. For example, some
students who added exponents in items such as 4x2 + 7x2,
where both coefficients were positive, would not add the
exponents in items where one of the coefficients was
negative, such as —23x2 + 12x2. These students indicated
that the negative sign influenced them, and they "felt"
like simply writing "x2" ag the variable in the answer.

These students did not use the active operation of addition

to activate their rule for exponents, but rather used the
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sign of the coefficient to determine whether or not the

exponents should be combined.

Question 3. Do students who make systematic
errors in algebra make the corresponding
arithmetic errors and vice versa?

The common alggbraic errors, as well as some common
arithmetic errors, were considered for this question. When
students made common systematic errors in either algebra
or arithmetic, they did not necessarily make the correspond-
ing errors in the other context. The data concerning the
number of students who made each common error type are
summarized in Table 11. Details of the error types and in-
depth comparisons were provided earlier in this chapter.

A short description of each error type is also available
in Appendix C.

As indicated in Table 11, the majority of students
did not make corresponding errors on all tests. Some
students made the error types on algebra only, while others
made the same error types in arithmetic only.

The comparisons discussed in this question were
made between the algebraic context and the arithmetic
context. The "arithmetic context" included any applicable
items on either the computation test or the arithmetic test,
since both tests included numerical items only. The
algebraic context involved the algebra test since it was

the only test which included variables in its items. 1In



TABLE 11

Comparison of Arithmetic and Algebraic Errors

Error Types Number of Students
TESTS CONTEXT
Arithmetic* Algebra Both
Computation Arithmetic Algebra only only Arithmetic & Algebra
CsSM1 ASM2 PSM4, PSM7,
PSM8 16 16 9
CSA2 - PSA2 10 34 5
Csa4 - PSS1 18 11 4
CwW3 - PW13, PWl4 10 15 0
CwW2 - PW1l6, PW1l7 0 85 0
= ab +b = ab? PW17 20 32 7
= AD1 PD3, PD4 20 25 2
- AD1, AD4, PD3, PD4
ADS 67 ¥ 10
v PD1, PD2,
AD3 PD6 4 10 0
- AG3 PGl 11 3 1
- AG4 PW17 34 31 8
- AG2 PT1 13 0 0
AEM1 PEM1, PEM4 2 22 0
AEA]l, AEA2 PEAl, PEA2
PEA3, PEA4 8 i l

08

*Arithmetic refers to either the arithmetic test or the computation test.
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the following discussion of this question "arithmetic test"
refers to that specific test, while the word "arithmetic"
alone refers to the arithmetic context as a whole, including
items from both the arithmetic and computation tests.

Discussion. The results obtained in this study

seem to support the concllisions of both Pease (1929) and
Carry et al. (1980). Pease claimed that algebraic and
arithmetic procedures were distinct, and the procedure used
to add 2 + 3, say, was different from that used to add
2x + 3x, while Carry et al. (1980) indicated that students
do not perceive algebra as generalized arithmetic.

Discussions with students supported this hypothesis,
since students described arithmetic as the context in which
you "compute" and algebra as the context in which you
"simplify". Even teachers, who were shown the tests,
indicated that students would more readily apply properties
to algebraic items than to the items on the arithmetic test.
In an attempt to determine the different perceptions students
might have, each error type in Table 11l is discussed.

The first set of error types, CSM1l, ASM2, PSM4,
PSM7, PSM8, which were compared occurred in the general
category of sign errors in multiplication. Specifically,
these errors involved the multiplication of two negative
terms. The following are examples of errors made by
different students. On computation items such as 4 - —21

some students would write —84; on the arithmetic test items
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such as —12 (517 - 229) some students would write

=12 - 517 - 12 - 229; and on the algebraic items such as

-5p (2p - 7) some students would write ‘lOpz - 35p. As
shown in Table 11, while some students made these errors
in both contexts, there seemed to be no clear reason why
other students would make ,these errors in only one context.

While the initial analysis suggested no clear
explanations for the results, the interview data provided
two possible explanations as to why students made the
algebraic error only. One explanation was based on the fact
that some students carried out a procedure in algebra which
was unrelated to the arithmetic items. For example, some
students incorrectly simplified —5p (2p - 7) because they
calculated the second term, ~35p, by multiplying —5p by 7.
This procedure would not be related to the one applied in
the arithmetic context where items such as -4 - =21 were
given. Students knew the procedures for determining the
sign of both products, but the terms chosen in the algebraic
items led to errors in the exercise.

A second explanation was based on the methods used
to simplify items on the arithmetic and algebra tests. In
algebra, students simplified the given expressions by computing
mentally first, before writing a final response. In the
arithmetic test, students were not permitted to calculate
and they copied the answer term by term. For example, given

=5p (2p - 7) students would complete ~5p times 2p and ~5p
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times —7 mentally, ending with ‘10p2 - 35p, while these
same students, when given items such as ~-12 (517 - 229),
would write ~12 - 517 - —12 - 229, term by term in order.

In both circumstances, the "minus" sign indicated the
operation, and a correct calculation of ~5p - =7 could still
lead to an error. In the arithmetic, students may have
written the correct answer only by chance, since few
students wrote ~12 - 517 + 12 - 229, which would indicate
more clearly that the "sign change" was recognized.

The interview data also provided a plausible
rationale as to why some students would make the arithmetic
error only. One student indicated that the example (a) on
the arithmetic test was used as a model for the items involved.
Using the example 158 - 7 (651 + 318) = 158 - 7 - 651 - 7 - 318,
this student simplified ~12 (517 - 229) by writing
=12 - 517 - 12 - 229. Since no examples were given on the
algebra test, it is possible that students would answer
those items correctly, but when examples were present in
arithmetic, these same students were influenced by them,
and errors occurred from such misapplications.

The next two sets of error types, CSA2 and PSA2,
CSA4 and PSS1l, occurred under the general category of sign
errors in addition and subtraction. These two sets are
discussed together since they both involved two terms with
opposite signs, where the negative quantity had the largest

absolute value. The following are examples of errors made
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by different students. Given computation items such as
18 + —39 or 25 - 35, some students would write 21 or 10,

respectively, and for algebraic items such as -23x2 + 12x2

£ o 6p2, some students would write 11x? or 2p2,

or 4p
respectively. To ascertain why some students might make
these sign errors in algebra only, the particular items were
compared. It was found that in all arithmetic items the
negative term followed the positive one, while on the item
which caused the most difficulty in algebra, the negative
integer preceded the positive one. It appeared then that
students may have been using a generic rule where the sign
preceding the second term influenced the sign of the answer.

The interview data did not support this contention.
Most students who made the algebraic error corrected them-
selves during the interview situation. Therefore, this
suggested that students who made the algebra error only
may have done so because of the "testing" situation.

A possible explanation as to why students made
these sign errors in arithmetic only may have been because
they used the sign of the first term to determine the sign
of the answer. Again, the information gathered during the
interviews did not support such a contention. Instead,
students corrected their arithmetic sign errors, indicating
that it may have been the "testing milieu" which led to

the errors originally.
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The set of errors, CW3, PW1l3, PWl4, occurred in
the general category of wrong operation errors in subtraction.
Students who made these errors added instead of subtracted.
In computation they added integers, while in algebra they
added binomials. The following are examples of errors made
by different students. Given computation items such as
-40 - =73 or 25 - 35, some students would write —113 or 60,
respectively, and given algebraic items such as
(17x + 2) - (12x + 9), some students would write 29x - 1l.
A possible explanation why some students made such errors
in algebra only, is that they applied a generic rule for
"combining like terms" which would not be appropriate in
the arithmetic context.

The interview data supported this explanation as
students clearly indicated that they were adding like terms.
Students explained that since the terms had variables, they
were alike and therefore should be combined, and "combined"
meant "added together". No student spoke of like terms in
arithmetic. Instead, students seemed to use the signs of
the numbers to determine the procedures.

A possible explanation why students made this wrong
operation error in arithmetic only is because they applied
a generic rule for "adding two negative integers". This
was illustrated when most students made the computation
error in items such as —40 - —-73 rather than items such as

25 - 35. Since the corresponding algebraic items did not
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explicitly contain these conditions, students were apt not
to apply the same generic rule to the algebraic items.

This contention was supported by the interview data.
Students who made the computational error rationalized their
procedures with statements like, "when there are two
negatives, you always add, them." No such comments were
made in algebra.

The set of error types, CW2, PWl6, PWl7, were also
under the general category of wrong operation errors, but
these error types involved the replacement of an addition
operation with multiplication. Students made these wrong
operation errors when they multiplied two terms instead of
adding them. The following are examples of errors made by
different students. On computation items such as 18 + ~7
some students would write -126 and on algebraic items such

2 2 4

as 4x° + 7x° or 13x + x, some students would write 28x° or

13x2, respectively. When the items in both contexts were
examined it was noted that all the computation items
contained both a positive and a negative integer or two
negative integers while all but one of the appropriate
algebraic items involved two positive coefficients. A
possible explanation why some students made the algebraic
errors only, is because it was more "acceptable" to multiply
positive values rather than negative ones.

This explanation was not directly supported by the

interview data. Students who repeated this error during
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the interviews claimed they did not see the addition sign
but they did not explain why they chose to multiply. Thus,
there was no explanation as to why they made the algebraic
error. However, the interviews concerning the items such

as "13x + x", which were ,included in this error type, did
provide an explanation as to why students would make an error
here, without making the corresponding arithmetic error.
These students did not multiply 13x by x to obtain 13x2 and
therefore it would be consistent if they did not multiply
when given items such as 18 + ~7. This particular algebraic
item is further discussed in the following set of errors.

The set of errors, PWl1l7 and "ab + b = abzﬂ were
compared to each other because the items on which they were
made were parallel. There was no general category as such
in this case, but specifically, the errors involved the
squaring of the "like" parts of the terms which were to be
added. The following are examples of errors made by different
students. In arithmetic items such as 35 - 789 + 789, some

2

students would write 35 . 789° and, in the algebraic items

such as 13x + x, some students would write l3x2. Since

these items are so similar, it was unclear as to any specific
reason why students might make this error in one context

and not the other. One possible explanation is that the

major influence on this error was the different perceptions

students have of algebra and arithmetic.
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The interview data supported the contention that
many students perceived these two items as unrelated. Some
of the students were asked directly if they could see the
relationship between 35 - 789 + 789 and 13x + x, and all of
them admitted that ordinarily they would not recognize any
connection. To further interpret the processes involved,
the comments of the students who were interviewed with
respect to either item were examined.

It was observed that for some students, who made
the error in algebra, but did not make it in arithmetic,
the numerical characteristic of the latter items permitted
them to check their work. One student, for example,

2 but then realized that

responded originally with 35 - 789
"squaring them means 'times'", so the student changed the
answer to 35 - 1578, where the 789's were added. At this
point, the student realized that this meant that 35 was
being "times by both of the 789's" and "it wasn't suppose
to." This student finally settled for (35 - 789) + 789 for
an answer. From such a session, it was apparent that, for
at least some students, their knowledge of numbers permitted
them to be critical of their responses, but their knowledge
of algebra seldom permitted such critiques. This same

student, for instance, wrote 13x2

immediately and saw no
reason to change it.
The interview data also indicated that some students

who erred on the arithmetic item only, did so because the
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instructions and item were unfamiliar. Many students who
were interviewed indicated that this particular item was
troublesome in arithmetic. They were all capable of
calculating the item correctly, but when the instructions
prevented this move, they were uncertain as to what could
be done. Some students récognized that 35 - 789 + 789 was
similar to the example 18 - 120 + 33 - 120 but the absence
of an explicit coefficient for the second number prevented
them from using it as a model. ©No student described this
item as 35 - 789 + 1 * 789, but students who did the algebra
correctly, often said "13x + 1x" before writing l4x. Thus,

for some students the unwritten "one" was quite acceptable
in algebra but was not even considered in arithmetic.

The set of error types, ADl, PD3 and PD4, occurred
under the general category of distributive errors. These
errors occurred when a binomial was preceded by an unwritten

" one n

and the operation of subtraction. The following are
examples of errors made by different students. Given items

on the arithmetic test such as 169 - (349 + 876), some students
would write 169 - 349 + 876, and given algebraic items such

as (17x + 2) - (1l2x + 9), some students would write 5x + 11
directly, or following 17x + 2 - 12x + 9. As shown in Table
11, although some students made these errors in both contexts,

there was no clear explanation as to why some students would

make the algebraic error only.
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While initial analysis provided no clear explanation,
the interviews concerning the applicable items provided one
possible reason. Students who were interviewed calculated
directly in algebra and they omitted any possible inter-
mediate steps. For example, when given (17x + 2) - (12x + 9),
students would calculate "17x minus 12x" and "2 plus 9" and
would write "5x + 11". Students did not indicate that they
had removed the brakcets or distributed, and it seemed as
if the "brackets" were "ignored" from the beginning. These
same students wanted to calculate in the corresponding
arithmetic items, too. Because the instructions did not
permit any calculations, the students were unaware of what
was expected. When it was suggested that they "remove" the
brackets, most students did so correctly, implying that
students perceived the role of brackets in algebra as
different from their role in arithmetic.

A possible explanation as to why students made this
distributive error in arithmetic only is because the instructions
did not "seem" to apply in this situation. During the inter-
views, students indicated that these particular arithmetic
items did not seem to "fit". Many students said that "if
you can't calculate, there's nothing to do." When these
students were regquested to remove the brackets, some did it
correctly as discussed earlier, but other students removed
the brackets, literally. Students rewrote items such as

169 - (349 + 876) as 169 - 349 + 876 and commented that "it
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was the same as above; nothing has been changed." These
students were unaware of the significance of brackets in
the arithmetic context. Carry et al. (1980) indicated that
parentheses were "abused" by students who often omitted or
inserted them at random. This parentheses "problem" was
highlighted further by a.,student who wrote (35) 789 + 789
to an earlier item. When asked what was meant by this,

the student replied that both 789's were multiplied by 35.
Other students wrote 19 + —42 (107) when they meant

(19 + —42) 107.

The set of error types, ADl, AD4, AD5, PD3, PD4,
were an extension of those just discussed and also occurred
under the general category of distributive errors. 1In this
case, students were given items such as 169 - (349 + 876)
and they would make one of three errors, namely, 169 - 349 + 876
or 169 - 349 + 169 - 876 or 169 - 349 + 169 - 876. In the
corresponding algebraic items, (4p2 - 3) - (6p2 - 5
students would write ’2p2 - 8. Since so many students made
an arithmetic distributive error without making the
corresponding algebraic one, it seemed as if the arithmetic
item was perceived differently from the algebraic one. A
possible explanation is that the distributive principle
of multiplication over addition was misapplied only in the
arithmetic items because of their structure. It would
seem more plausible to perceive 169 - (349 + 876) as if it

were 169 (349 + 876) and write 169 - 349 + 169 - 876 than it
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2 - (4p® - 3) -5 for

would be to write (4p2 - 3) - 6p
(4p% - 3) - (6p? - 5).

As it was previously indicated, students in the
interviews did find the arithmetic items in this case to be
confusing, and their reflex was to calculate. Students who
made the latter arithmeti¢ errors did not state directly that
they were using the distributive principle. Thus, absolute
support was not present. However, some students indicated that
they used example (a), "158 -7 (651 + 318) =158-7 - 651 -7 - 318,"
which employed the distributive principle, in order to obtain
the responses given. No student used such a model in algebra,
but instead, "common" terms were combined "automatically".

The set of error types, AD3, PDl1l, PD2, PD6, also
occurred under the general category of distributive errors.
These error types were made when the distributive principle
of multiplication over addition or subtraction was only
partially completed. The following are examples of errors
made by different students. Given items such as
=12 - (517 - 229), some students would write —12 - 517 - 229,
while given items like ~7w (3w - 6), other students would
write ‘21w2 - 6. It was not clear at first why students
would make this error in algebra only.

The interview data did not indicate why students
made the algebraic distributive error and not the arithmetic

error. No student explained the algebraic error and little

discussion took place on it. Some students who did the
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arithmetic item correctly indicated that example (a), where
"158 = 7 {8651 + 318) = 158 - 7 - 651 = 7 = 318," did help

them determine the procedure. No such example was available
in algebra.

A possible explanation as to why students might
make the arithmetic error'only is because students would
be more familiar with the multiplication of a binomial by
a monomial than with the application of the distributive
principle in arithmetic. During the interviews, most
students corrected the 'partial distribution' error on the
arithmetic items. Some students indicated that it was
already simplified, and others indicated that if they could
not calculate, it was unclear as to how it could be
"simplified". When some students were given more direct
instructions such as "rewrite" instead of "simplify", a
correct response was made. Consequently, it seemed that
the difficulty in arithmetic originated from the instructions.
It appeared that "simplify" was an instruction much more
appropriate for the algebraic circumstance than the
arithmetic one.

The two error types, AG3, PGl, occurred under the
general category of grouping errors. These particular errors
were made when students imposed an incorrect grouping scheme
which overruled the order of operations present. The
following are examples of errors made by different students.

When given items such as 189 + —21 (537 - 792), some students
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would write (189 + —21) (537 - 792) or 168 (537 - 792),

and when given items such as 5r + =3 (7r - 2), some students
would write (5r + —-3) (7r - 2). A possible explanation is
that students who erred only in algebra used the example

(a) on the arithmetic test to help them reach a solution,
since example (a), 158 -:7 (65 + 318) = 158 - 7 - 65-7 - 318
was similar to items like 189 + —21 (537 - 792).

Some students in the interviews referred to the
examples on the test in order to complete several particular
problems on the arithmetic test. When students usad the
example they completed the distribution correctly but often
made sign errors. Students who erred on 5r + =3 (7r - 2)
during the interviews indicated that they were uncertain
as to what procedure to follow, so they often grouped
5r + “3 and multiplied it by 7r - 2.

More students made this error in arithmetic than
in algebra. A possible explanation is that the character-
istics of the terms influenced the grouping procedure. It
seemed that students would more likely group two numbers
as in 189 + T21 (537 - 792) than they would group unlike
terms, as in 5r + 3 (7r - 2). All students who were
interviewed demonstrated clear recognition of "like" and
"unlike" terms, and all of them were aware that you add
"like" terms only. In the arithmetic items, students who
wrote (189 + —21) (537 - 792) indicated that ordinarily

they would calculate and write 168 (537 = 792). Therefore,
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the parentheses were inserted only to satisfy the
instructions. No student indicated he would add 5r and —3
in 5r + =3 (7r - 2) so there would be little reason to group
these terms. The interview data indicated that the presence
of "unlike" terms served as a deterrent to such an error

and no such deterrent was ' present in the arithmetic items.

The two error types, AG4, PW1l7, occurred under two
general categories. The arithmetic error occurred in the
category of grouping errors and the algebraic error occurred
in the category of wrong operations. When given items such
as 35 -« 789 + 789, students would write 35 (789 + 789), and
given items such as 13x + x, students would write 13x2.

This comparison was made to determine if students who made
the arithmetic error were also saying 13 (x + x) where

"x + x" was x2. Since very few students made both these
errors, it is possible that students who made the algebraic
error only, did so for completely different reasons. That
i8, 13x2 was the response, but no incorrect grouping led to
it.

As indicated earlier, the interviews supported this
assumption, since most students wrote 13x2 for numerous
reasons other than adding x and x separately. Some students
indicated "xz" was a way of saying "there's two x's," but
at no time did they imply that the "x's" had been grouped.

It is possible that students would group only in

arithmetic because in algebra 13x may not be interpreted as
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13 times x but rather as a “"term". Thus, 35 - 789 + 789 might
be interpreted as 35 times 789 plus 789, "35 (789 + 789)",
but the algebraic item would not be seen as 13 times x plus x,
"13 (x + x)". No student who was interviewed read the item
"13x + x" as "13 times x plus x". Instead, it was read as
"13x plus x". The multiplication did not seem as obvious
in algebra as it was in arithmetic, where the multiplication
symbol was present. Also, it was noted earlier that
students had difficulty with symbolism, especially the
meaning of parentheses, and it is a possibility that students
who wrote 35 (789 + 789) may not have meant what it says.
This was not checked in the interviews, however.

The two error types, AG2, PTl, also occurred in
two different categories. The arithmetic error type occurred
in the general category of grouping errors, but the algebraic
error type occurred in the general category of "like term
errors". The grouping error involved the "over-distribution"”
of a common number, while the like term error involved the
addition of "unlike" terms. The following are examples of
errors made by different students. When given arithmetic
items of the form (31 - 340) + (71 - 340) - 123, some students
would write (31 + 71 - 123) - 340; and when given algebraic
items of the type 164 + 31d - 20, some students would write
27d. It is possible that this was exclusively an arithmetic
error because students were less apt to group "unlike terms"

than they were to group numbers. It appears as if students'



97

knowledge of algebra deters them from combining unlike
terms, but their inexperience with "rewriting" arithmetic
terms allows them to regroup since they do not realize
they have made an error.

During the interviews, some students did comment
that they did not know what to do with the "-123" in the
item, " (31 - 340) + (71 - 340) - 123". Others commuted the
expression in an attempt to make it match example (a), where
"158 - 7 (651 + 318)" was rewritten. Such behavior suggested
that students were unclear as to what to do with the
arithmetic items, as was suspected. Such uncertainty was
not visible in the algebra context. No student hesitated
when asked to simplify "1l6d + 31d - 20" and most of them
wrote "47d - 20" almost automatically.

The set of error types, AEM1l, PEM1l, PEM4, occurred
under the general category of exponent errors in multipli-
cation. These errors were made when two terms, whose
exponents were unwritten "1's", were multiplied, and the
product contained an unwritten "1" for its exponent. For
example, when given 231 - 231, some students would write 231,
and given 18x - 3x, some students would write 54x. A possible
explanation as to why many students would make the algebra
error only is because their knowledge of numbers would
make the writing of 231 - 231 = 231 unacceptable while their
knowledge of variables may not indicate any error in writing

x i xll as llxll
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The interview data was partially supportive of
this contention. Students who worked with this arithmetic
item did receive automatic feedback as to its plausibility.
For example, one student in the interview originally wrote

2n because the first

"2 - 231" but guickly changed it to "231
value "would not be large enough". The students who were

interviewed with respect to the algebraic items did not

provide any further explanations. They often wrote "x" as
an automatic response and one student who was guestioned
further wrote "x2", saying "x times x is x2 sure". @ This
implied that the calculation was rule bound, since no
explanation was based on the properties or meanings of the
symbol "x".

The last set of errors, AEAl, AEA2, PEAl, PEA2,
PEA3, PEA4, occurred under the general category of exponent
errors in addition. These errors were made when the
exponents of the terms being added were also added. The
following are examples of errors made by different students.

2 2

Given items such as 79 - 18 + 17 - 18, some students would

write (79 + 17) 184; while given items such as 4x2 + 7x2,

some students would write 11x4. As shown in Table 11, only
one student made such an error in both contexts. However,
it was unclear why students would make the algebraic error

but not the arithmetic one as it seemed that the arithmetic

items would be less familiar.
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There was little interview data available on the
arithmetic items, but one student who did these correctly
in the interviews, modelled the given example accurately.
This student exhibited doubt at first, then read the example
(b) where 18 - 120 + 33 - 120 = (18 + 33) - 120, and proceeded
to do this with all the applicable items, including those
with the exponent equal to 2. It seems then that students
could err in algebra, but with the aid of the examples
complete the corresponding arithmetic items successfully.

A possible explanation as to why students would
make the arithmetic error only is because the algebraic
circumstances were more familiar and students would not
transfer the algebraic procedures to the arithmetic context.
There were few examples similar to the arithmetic items
available in the current textbooks so the lack of familiarity
was justified. The interview data provided no further
information and it was unclear why students would still not
apply the "algebraic" procedures in these circumstances.

Overall, though, the interviews did indicate that
students did not recognize algebra as general arithmetic
and procedures used in both contexts were believed to be

distinct.

Question 4. If a student makes a systematic
direct error, does the student make the
corresponding indirect error, and vice versa?
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A direct error occurred in the first step of a
solution, while an indirect error occurred in a subsequent
step. Indirect and direct errors were predicted in four
of the general categories of errors. Students made
systematic errors in the direct and indirect modes in only
two of the possible four categories, namely, "sign errors"
and "exponent errors". In both cases, the operation of
addition was involved. Students did not make systematic
indirect and direct errors, as predicted, in the "like
term errors" and "wrong operation errors" categories.

As indicated in Table 12, most students made the
direct errors and not the indirect ones, and no student

made an error in both modes.

TABLE 12

Comparison of Students who made Direct and Indirect Errors

Direct Number of Indirect Number of
Error Students Error Students
PsSAl 0 PSA4 5
PSA2 39 PSAS5 2
PSA3 2 PSA6 0
PEA]l 4 PEA3 1

PEA2 9 PEA4 0
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Discussion. One general category in which students

made systematic errors in the indirect and direct modes

was sign errors in addition. The particular error types
were made when students added signed coefficients and
obtained the correct magnitude but the incorrect sign for
the response. For example, a direct error was of the type
where students wrote llx2 for items such as -23x2 - 2 12x2,

and an indirect error was of the type where given items

such as 5r + =3 (7r - 2), students would write 5r + —21r + 6,
for the first step, but in the second step they would write
lér + 6. A possible explanation is that students made the
direct error and not the indirect one because "other" errors
made in the "first" step of the indirect situation may have
prevented the sign error from occurring in a subsequent step.

When the appropriate items were checked in the tests,
it was found that this explanation was incorrect. Most
students who made a systematic direct sign error in addition
had the correct signs under similar circumstances in the
indirect mode.

Another possible reason why the number of direct
errors was greater than the number of indirect ones was
simply because there were more items on the respective
tests involving the direct mode. In the interviews, the
students, who had made direct sign errors on the written
test, responded correctly while redoing them. It appeared

then that the testing "milieu" may have been responsible.
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The second general category in which students made
systematic errors in the direct and indirect modes was
exponent errors in addition. These error types occurred
when students added the exponents of the monomials which
were to be combined. For example, a direct exponent error

was made in such items as.4x2 + 7x2 where students would

write 11x4, and indirect exponent errors were made in items
such as “6x (3x + 4) + —3x (5x - 3) where students first wrote

—18x" + —24x + —15x° + 9x and then wrote —33x
other variations. A possible explanation is that students
would make only direct errors in this case because the
adding of exponents when multiplying in the first step may
serve as a deterrent to adding exponents again in the
following step.

The interviews provided little information in this
respect, since the direct and indirect situations were not
openly discussed. However, when completing the item
=5p (2p - 7) one student wrote ~“10p - 35p but would not
add the two terms together as she did in questions like
l6d + 31d - 20, where the student wrote 47d - 20. When
inquiries were made, the student explained that these were
two different situations. In the former, she had multiplied
to obtain the terms so they remain separate, while in the
latter, the terms were meant to be added. This implied
then that procedures applied in original steps of a question

are not necessarily acceptable in subsequent steps of a

similar problem.
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Question 5. Do grade nine and ten students
make the same errors or are there differences?

When the common algebraic error types were examined
for each grade, it was found that students in both grades
made the same types of errors. The differences existed
with regard to the frequency of the error in each grade,
rather than the error itself.

As indicated in Table 13, most of the common
algebraic errors were made by at least twice as many grade
nine students as grade ten students. Only one error type
was made by more grade ten students than grade nine students,
and then only one extra student was involved.

Discussion. On a mathematics test of this type a

narrow range of responses would be expected. As indicated
earlier, only 15 out of the 111l predicted errors were common,
and no error arose in just one grade. Furthermore, a decrease
in the frequency of errors at the grade ten level might have
been expected. A possible explanation is that with an

"extra" year of experience with polynomials, grade ten
students would be more familiar with polynomials and their
properties.

It was noted that grade ten students employed
factoring as part of their solution strategies and grade
nine students did not. No common factoring errors were
found, but some students did misapply this "factoring"
strategy on such occasions as 16d + 31d - 27 where they

would write (4d - 9) (44 + 3). A possible explanation is
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TABLE 13

Common Algebraic Errors made by both Grade 9 and 10 Students

Grade
Error Type 9 10
PSM4 7 3
PSM8 ; 9 4
PSA2 23 16
PSS1 10 5
PW13 9 2
PwW1l4 9 I
PWlé6 29 12
PW17 31 8
PW18 10 5
PD1* 4 1
PD2 } 6 } 0 }
PD3 13 |
PD4 10 7
PEM1 5 6
PEM4 11 2
PEALl** ] 4 1 0
PEA2 W 2
] b q
PEA3 0 1
PEA4 | 0 . 0 |

*These two error types together constitute a "common" error
type.
**These four error types together constitute a "common" error

type.
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that grade ten students were influenced by their experience
with factoring which is often emphasized at this grade level.
Again, there were no comments in the interviews which pro-

vided any further explanation of such procedures.

Question 6. Within grades, are the errors
made by students 1In the honours program
different from, or similar to, those made
by students taking the matriculation
mathematics program?

When the common algebraic error types were examined
for each program within each grade, it was found that
students in both programs made similar errors. In grade
nine, there was one case where no student in the honours
program made the error (PSS1l) but ten students in the
matriculation program did so. In grade ten, there were also
situations where errors were made by students in one program
only, but each of these situations involved less than 6 out
of 50 matriculation students.

The major difference existed with regard to the
frequency of the errors, rather than the errors themselves.
As indicated in Table 14, in both grades, more students in
the matriculation program made the common algebraic errors
than students in the honours program. One exception in
grade nine occurred in the distributive error type, PD3,
where (4p2 = 3) = (6p2 - 5) was rewritten as 4p2 o 8 - 6p2 = 5
by one more student in the honours program. There were two

exceptions in grade ten, where more students in the honours
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TABLE 14

Common Algebraic Errors which were made by Students
in the Matriculation and Honours Programs
at each Grade Level

Grade Level

Program: ***

Common
Error Type M H M H
PSM4 6 L 3 0
PSM8 7§ 2 3 1
PSM2 20 3 12 4
PSSl 10 0 4 1
PW1l3 2 2 0
PW1l4 7 ° 1 0
PWlé6 19 10 2 10
PW17 20 11 5 3
PW18 8 2 4 1
PDl*} 4 0 il 0
PD2 5 1 0 0
PD3 6 7 5 0
PD4 r 3 6 1
PEM1 3 2 1 5
PEM2 8 3 2 0
PEA1**] 4 0 0 0
PEA2 6 1 2 0
PEA3 0 0 1 0
PEA4 0 0 0 0

*These two error types together constitute a common error
type.

**These four error types together constitute a common error
type.

***M = matriculation program; H = honours program.
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program made the exponent error in multiplication (PEM1)
and the wrong operation error (PWl6). Ten students in the

honours program, in grade ten, wrote 4x2 <= 7x2 #

as 28x° while
only two matriculation students did so, and five students

in the honours program wrote 8a - 13a as 104a while only

one matriculation student did so.

Discussion. Since both mathematics programs

include instruction on the simplification of polynomials,
it was expected that students would make similar errors.
Likewise, fewer students in the honours program were
expected to make errors because these students are by
definition "above average" mathematics students.

The fact that no student in the grade nine honours
program made a sign error in subtraction when ten students
in the grade nine matriculation program did, was not explained.
No information from the programs or the interviews led to a
clarification of this occurrence. As for the errors which
seemed to be made exclusively by students in grade ten
matriculation, the numbers were so low, namely 6 or less
out of 50, it is suggested that they might have been random.

There was no clear reason available to explain why
more students in the grade ten honours program would make
the wrong operation error and exponent error as described
earlier. No students from the honours program were inter-
viewed, but their programs were examined. It was found that

these topics are only covered briefly in a direct fashion,
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and emphasis is often placed on more “difficult" exercises.
It is suggested that procedures used by the students in the
more complex items may not be transferred to the "simpler"
items as one might expect. There was no interview data

to support this conjecture.



CHAPTER V

CONCLUSIONS, IMPLICATIONS, AND RECOMMENDATIONS

In this chapter, a brief overview of error analysis
and a summary of the stud§ are given. Then, the conclusions
reached are summarized, and the implications for teaching
suggested. Finally, some recommendations for further

research are made.

Overview

Error analysis is considered to be a field in which
the students' thought processes are determined through an
analysis of the errors they commit. The premise of error
analysis research has been that students' errors contain
patterns which illustrate the incorrect strategies used
to obtain the answer. Although research on errors made in
algebra by high school students was limited, the research
available supported the premise that "systematic" errors are
made. Researchers were able to list or categorize the errors
they found, as well as use the errors to describe the types
of algebraic knowledge the students possessed. To describe
the strategies used by their subjects, researchers such as

Wattawa (1927), Davis et al. (1978), Carry et al. (1980),

109
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and Lewis (1980), used terms such as "operator gaps",
"binary confusions", and "overextension of pieces of
knowledge". Wattawa (1927) attributed the difficulty in
algebra to the lack of fundamental arithmetic knowledge.
Davis et al. (1978) proposed that students made errors if
the procedures they used were so salient and automatic that
they were applied without any conscious awareness by the
student. Lewis (1980) indicated that learning procedures
without meaning led to errors. Whatever the rationale,
all researchers agreed that students' knowledge of algebra
was incomplete.

The simplification of polynomials was chosen as
the algebraic topic to investigate in this study since it
serves as a basis for most other algebraic topics. Students
in grade nine and ten mathematics programs were chosen as
appropriate subjects. To control the instructional factor
as much as possible, different classes were chosen within
several different schools and the tests were administered
directly by the investigator. Of the 573 students who were
tested, 25 students were randomly selected from eight groups
representing a Grade (9 or 10) by Program (Matriculation
or Honours) by Sex (Male or Female) matrix, resulting in
a total sample of 200 students in the analysis. Each
student's errors were classified in terms of a proposed
coding scheme, and any unique errors which were found

infrequently were noted but were not formally classified.
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As a follow—-up to the written tests, 16 students were

interviewed to aid in the interpretation of the results.

Conclusions

A systematic error was defined as an error which
a student made on "at legast 50%" of the occasions in which
the student had the opportunity to make the error. The
results indicated that grade nine and ten students do make
systematic errors when simplifying polynomials. Since
some of the skills tested were found in only two items,
the criterion of "at least 50%" may at first glance be
considered too low. However, when a more stringent criterion
of "more than 50%" was applied, 79 of the 122 students who
made systematic errors still qualified. In particular,
when the "more than 50%" criterion was applied, there were
30 algebraic errors which were made systematically.

A common error was defined as a systematic error
which was made by 10 or more students, irrespective of the
grade or program. Fifteen common algebraic errors were
present and three of these were made by about 20% of the
sample. Thus, it was concluded that students in different
grades, programs, and schools made both systematic and
common errors.

No student made all the error types listed under
any general category. For example, no individual student,

who made an error, made all the "exponent errors"; rather
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each student made particular errors in exponent problems
such as the errors made when multiplying exponential
expressions which contained unwritten exponents. Similarly,
no student made all the possible "wrong operation" errors,
but many students "added binomials when they were required

to subtract". The occuryence of such "specific" error
types indicated the "incomplete" nature of the students'
knowledge. For example, most students knew that expressions

2 -2x3

such as 1llx were simplified by multiplying the
coefficients and adding the exponents, yet many of these
same students simplified 8x - 13x by simply multiplying the
coefficients, and writing 104x. In this case, these students'
knowledge of the multiplication of exponential expressions
was "incomplete" since it did not include situations where
the exponents were unwritten. "Incomplete" knowledge of
this sort allowed many students to solve a major portion of
exercises in each category correctly, while being insufficient
for the correct completion of particular tasks. It was
concluded that some students did not necessarily perceive
the relationships which existed between "particular" tasks
within a general category.

Furthermore, students did not necessarily perceive
the relationships which existed between algebraic and
corresponding arithmetic items. It seemed as if students

perceived many of the procedures used with polynomials as

distinct algebraic operations which were not applicable
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in arithmetic. As indicated in the previous chapter, most
students in the interview sample saw no connection between
items such as 13x + x and 35 - 789 + 789 and few students,
who made errors, applied the same procedure in both.
Because many students who performed correctly on algebraic
tasks were unable to apply similar properties in arithmetic,
it was concluded that students can carry out algebraic
algorithms without knowing the properties which underlie
the procedures. During the interviews, students used rules
such as "adding exponents" and "combine like terms" but no
student spoke of the "distributive principle" or the
"commutative property". It appeared that not only were
arithmetic and algebra considered as two distinct entities,
but algebraic procedures employed in the simplification
of polynomials were not overtly based on the "properties"
involved.

For many students, algebra was an exercise in

symbol manipulation and little concern was given to the

meanings of those symbols. Students who were interviewed
referred to "xz" as "two x's", or "13x + x" was read
"13x plus x" rather than "13 times x plus x". These

students seemed to imply that they saw "letters" and were
unaware of what those "letters" represented. Students

failed to recognize the meaning of a "variable" and were
willing to manipulate it in ways which were unacceptable

for "numbers".
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Differences also occurred in students' approaches
to direct and indirect situations. As indicated in the
results, more students made direct errors than indirect
ones. Using the length of a solution as one criteria for
difficulty, it would seem that the direct situations should
have been easjier. Thus, it was unexpected when students
who made "direct" errors did not make the same error in the
corresponding "indirect" situations. It seemed that when
more than one step was involved in the solution, certain
cues tended to deter students from errors which they had
made when only one step was required. As Davies et al.
(1978) proposed, procedures in the direct circumstances may
have been so automatic that students would not doubt their
behavior, but when the procedure was initiated in an indirect
circumstance, other characteristics of the problem prevented
students from reacting in the same way.

It was also possible that students did not perceive
the direct and indirect situations as similar circumstances.
For example, one student who was interviewed wrote —10p + 35p
for =5p (2p - 7) but refused to combine the terms, as she
had in the problem 164 + 31d - 27 where she automatically
wrote 47d - 27. This student explained the two different
approaches by saying that "because she had obtained ~10p + 35p
by multiplying ~5p (2p - 7), the terms must remain separate"
but "since there's no multiplication in 164 + 314 - 27, all

you can do is add".
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It was found that fewer grade ten students than
grade nine students as well as fewer students in the honours
program than students in the matriculation program made
systematic errors in algebra. However, only the frequency
decreased, and the nature of the errors remained the same.
It seemed that while an extra year of exposure to algebra
for grade ten students reduced the number of systematic errors,
it was not sufficient to eliminate them. Also, although
students with above average ability in mathematics made
fewer systematic errors than those with an average ability,
errors were still made.

There was some general information obtained during
the interviewing which was also noteworthy. For instance,
some students showed confidence in their incorrect pro-
cedures, and often believed they were doing well. For
example, one student who simplified 2w (3w + 7) + ~3w (2 - 5w)
erroneously step by step, ended with the answer 8w - 7 and
the comment "I haven't been thinking this clear in a while".
Other students who changed strategies for similar exercises
often chose the more frequently utilized incorrect strategy
over the correct one. For instance, a student who added
exponents in all addition exercises, except one, chose to
add the exponents there too when the discrepancy was pointed
out. In most cases, it appeared that many of the students
who were interviewed were unaware that errors had been

committed.
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Some students who were interviewed applied their
knowledge from other areas of mathematics even when the
necessary conditions were not met. For example, several
students used the "transposition property" employed
in equation solving to simplify situations such as
-18x2 + -24x + -15x° + 9x", by writing "-18x° + 15x° +24x + 9x".
Such misapplication of knowledge seemed to depend on the
students' interpretation of the task at hand.

Many students rewrote 35 - 789 + 789 as (35) 789 + 789
which would be interpreted as meaning the same thing. However,
when one student was asked what he meant by (35) 789 + 789,
he replied "35 is multiplied by both 789's". This student
wrote (35) 789 + 789, but he meant 35 (789 + 789). Later,
when asked to show that only one 789 was multiplied by 35,
he wrote 35 -7892. This student's interpretation was
clearly different from the standard interpretation attached
to such symbols. Thus, it seemed that a student's perception

of an initial exercise could be different from what was

required, and errors could result.

Implications for Teaching

The results and conclusions in this study have
several implications for teachers and authors of textbooks.
The overall conclusion was that students, at these grade
levels, do make systematic errors which contain "logical"”

patterns and teachers need to be aware of these errors,
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since they disclose important information concerning the
failure strategies students have adopted. The analysis of
errors in this study has implications for remediation
procedures as well as for possible "preventive" techniques
which might be useful.

It is important {hat teachers realize that although
"common" errors were found, remediation might be more
successful if the particular "incorrect" procedure that the
student used is addressed. Even though ten students or

2 _ 35p for -5p (2p - 7), for

more obtained the answer ~10p
example, the procedures used by individuals were different.
Consequently, individual remediation seems to be necessary.
Individual remediation becomes even more important
when it is realized that the error types which occur are
very "specific". For instance, to inform students who
made the error, "8a - 13a = 104a", that "exponents are
supposed to be added when you multiply" would be of limited
value, since most of these same students demonstrated in
other guestions that this rule is already known, but not
applied here. Instead, remedial methods could be geared
directly to the characteristics of the task which permit
the error to occur. In this case, the unwritten exponent
appeared to be the specific characteristic which should be
attended to.

Besides using the errors found in this study for

remediation purposes, it is important that teachers be aware
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of the possible difficulties and attempt to prevent their
repetition in other students' work. In this study, most
students were unaware of the link between arithmetic and
algebra. Consequently, the procedures used in one context
did not seem applicable in the other context. To help
clarify the relationship between these two areas, the
properties of numbers might be demonstrated in both. Where
possible, attempts could be made to help students "understand"
algebra in hopes of preventing students from seeing algebra

as the mere manipulation of symbols. To increase the
understanding of algebra, it may help if students are

reminded that the "variable" represents a "numerical value"
and it must always be treated as such. Examples and
counterexamples might be used to demonstrate the necessary
conditions needed for the application of algebraic procedures.
This relationship between arithmetic and algebra might be
further strengthened if students were encouraged to check
their algebraic responses by using numerical replacements.
"Checking" tended to be more "natural" in the arithmetic
context, and as a consequence, students who wrote 35 -7892
for 35 - 789 + 789 were more suspicious than those who wrote

13x2

for 13% + %.
Because many students failed to focus on the active
operation to determine the procedure required, perhaps more

emphasis could be placed on the "operator" during instruction.

For example, when students add like terms, they might be
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encouraged to do so because the operation is addition and
not because the like terms are present. In this respect,
it may be helpful if the properties involved in carrying
out the operation are emphasized. For instance, a student
who simplifies 13x + x to 1l4x needs to realize that the
distributive principle was used and it was not "magic".

Since students adopt their own interpretation of
mathematical language, symbolism should not be taken for
granted. It seems possible that if teachers become more
aware that students often perceive the language differently,
the explicit emphasis on symbols, per se, might help
remediate errors.

Where possible, students could receive a balanced
exposure to direct and indirect cases of particular skills.
For example, overemphasizing the multiplication of monomials
by binomials to the neglect of the product of monomials
can lead to difficulties. In this study, students were
able to simplify 2w (3w + 7) + “3w (2 - 5w) in which they

combined '6w2 + 15w2

2

correctly, but when given items such
as ‘6w2 + 15w” directly, students made errors. Therefore,
it appeared that procedures used in the "more complex"
task were not readily transferred to the "simpler" ones.
Errors in the distributive error category and the
exponent error category were more prevalent in items which

involved an unwritten coefficient or an unwritten exponent.

For example, more students experienced difficulty with items
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such as 13x + x and (17x + 2) - (12x + 9) than they did

with items such as 2p + “7p and “6x (3x + 4) + ~3x (5x - 3).
This difficulty with the unwritten "one" seemed significant.
Therefore, to improve students' ability to work with such
expressions, teachers and authors of textbooks might consider

1y axt instead of 13x + x, at least until the

writing 13x

student is definitely capable of functioning without it.
The general implication then is for teachers to

be as attentive and empathetic to the students' perception

of algebra as possible. The teacher should attempt to

eliminate all possibilities for ambiguity and to emphasize

the characteristics and restrictions of particular examples

so that students are aware of the conditions necessary for

the application of certain procedures.

Recommendations for Future Research

Due to the limitations of this study, and because
there are some questions still left unanswered, there are
several recommendations to be made for further research.

Because the literature found in error analysis at
the high school level was limited, it is recommended that
other studies of this nature be carried out at all grades
from seven to twelve and with a variety of topics and
courses. The aim of these studies should be to determine
the difficulties students experience in high school

mathematics.
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Since the interviews used in this study, even
though limited by the number and selection of subjects,
were able to provide useful information concerning the
students' thought processes, it is recommended that more
in-depth interviewing of students at all grade levels be
carried out and attentiop paid to the most common errors
found.

It is recommended that other studies be carried
out at these grade levels on this topic, but with refine-
ments to the instruments so that additional items appropriate
for a given error are included.

Further research concerning the indirect and direct
modes of operating could also be valuable. In this respect,
a greater balance should be maintained between the number
of test items which involved these two modes.

Since many of the common errors found in this study
concerned exercises involving either an unwritten coefficient
or exponent, a more restricted study on this characteristic
might prove informative.

While this study shed some light on the relation-
ship between errors in arithmetic and algebra, many aspects
still remain unexplained and are worthy of further research.

Research into the retention of systematic errors
should be carried out, and if possible, the students tested
here should be retested in future years to determine if

their errors persist.
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The role of instructions and examples should be
investigated, since these factors seemed to influence
students' behavior on the arithmetic instrument.

Overall, future research needs to be continued in
the field of error analysis with subjects at the high
school level. These students' perception and interpre-
tation of mathematics ought to be determined, and teachers
need to be aware of the difficulties and ambiguities that

students experience.
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Most researchers in error analysis provided some
error classifications and often lists of specific error
types. In this Appendix, the error types reported in
the literature reviewed is presented in conjunction with
a description and example. Wherever possible the examples
and descriptions were taken directly from the researcher's
report.

Those marked with an asterisk (*) indicate those
errors considered applicable to the simplification of

polynomials.



TABLE 15

Specific Error Types Reported in Available Studies

Researcher Error Type Description Example
Wattawa (1927) *Sign Errors Incorrect sign distribution 6x-4(x~-5) =6x-4x-20
when parentheses are present
*Exponent Errors Incorrect use of exponents ELt=¢%; w2 -w2==w2
Arithmetic Errors Errors made when computing 42=8; 5.5 =24
with numbers (2x - 5)2 =4x - 10
Pease (1929) *Literal Number Ignoring literal number with =-a + -4a = -4a
Errors no written number coefficient
Omitting the literal number -9%a + 4a = =5
from the sum
Misuse of a-b as a monomial (a = b)
4(a - b)
-3a - b
*Sign Errors Like and unlike sign errors
in subtraction and -3 +«=-5 = =15
multiplication =3 J = 2k
Transcribing Errors Errors in copying, omission
of terms or misarrangement
of terms
*Errors with Adds the numerical coefficients 3x - 2x = 5x° 6
multiplication Multiplies exponents (2x2) (3x3) = 6x
of monomials Omits exponent in product (3x2) (4x3) = 12x
Ignores an unprinted exponent (2x) (3x2) = 6x
Literal exponent applied to (2a) (-4a2) = 32a3
numerical coefficient
Failure to combine literal (2a) (-4ab) = -8aab
numbers
(cont'd.)

6CT



Researcher Error Type

Description

Carry et al. (1980) *Operator Errors

*Recombination
Errors

Arithmetic
Errors

Operator Gaps

*Applicability
Errors

*Execution
Errors

Errors which involved the
deletion of elements from
expressions. That is,
operations like - and #
are identified as generic
deletion operations

Errors arising from an
interpretation of addition
and multiplication as
generic operations of
combining

Errors involving simple
incorrect arithmetic on
unsigned numbers

Solvers lacked certain
operators and had trouble
when such operators
appeared

A correct operation was
applied to an expression
or equation that did not
satisfy the conditions
for application

Incomplete execution of a
correct operation or the
possibility of complete
execution of an incorrect
operation

y + yz = 2yz,

X +X, =%, 2%
and xé all seen as
combining two x's.

p + prt was incomplete
since subject did not
recognize p as a
factor

2°*3 + 6 treated as
if 2+ (3 + 6)

2(x +1) =2x + 1

(cont'd.)



Researcher Error Type Description Example
Roberts (1968) *Wrong Operation Pupil used an operation 8+9 =17
other than the one required
Obvious Pupil applied correct 4 x 9 = 32
Computational operation but recalled
Error incorrect basic fact
Defective Correct operation used but B~ 13 = 5
Algorithm errors, other than basic
facts, made in carrying
out the necessary steps
Random Response Response showed no dis-
cernible relationship to
the problem
Engelhardt (1977) *Basic Fact Error Errors in the recall of 5x 7= 3%
basic number facts
*Defective Pupil executed a systematic 123
Algorithm but erroneous procedure x42
186
Grouping Error Errors dque to lack of 57
attention to the positional 93
nature of the number system 1410
*Inappropriate Computation involved the 43
Inversion reversal of some critical -19
aspects of the solution 3¢
procedure ——
Incorrect Operation Pupil performed an operation 6 x 9 =15

other than the appropriate
one

(cont'd.)
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Researcher Error Type

Description

Example

Engelhardt (1977) *Incomplete

Pupil initiated an appropriate

Algorithm procedure but aborted it or
left out critical steps

Identity Errors Pupil showed confusion with 2xl=1
operation of identities
(0 and 1)

Zero Errors Pupil indicated difficulty 30x21=63
with concept of zero

Pincus (1975) Poor Understanding

of the Meaning of

Number and Place

Value

Inadequate Mastery

of Basic Facts

Poor Alignment of

Digits in Columns

*Poor Penmanship

Failure to check

Answer or Estimate

Disregard of Symbol 56 - 21 =77

(cont'd.)
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Researcher Error Type Description Example
Radatz (1979) Language Misunderstanding of semantics
Difficulties of mathematical texts led to

Difficulties in
Obtaining Spatial
Information

*Deficient Mastery
of Prerequisite
Skills, Facts
and Concepts

*Incorrect
Associations or
Rigidity of
Thinking

*Application of

Irrelevant Rules
or Strategies

errors

When performing a mathematical
task, children were unable to
obtain visual or spatial
information

Ignorance of algorithms,
inadequate mastery of basic
facts, incorrect procedures
for applying mathematical
techniques and insufficient
knowledge of necessary
concepts and symbols

Used cognitive operations
when fundamental conditions
of tasks had changed

Use of comparable rules or
strategies from other areas

Boundaries in Venn
Diagrams misinter-
preted

When asked to "double
the smallest 3-digit
number and add the
largest 4-digit
number", pupils wrote

Pl + 111 = 222
222 + 9999 = 10221
9 x 60 = 560
5x 13 = 63

6 x 60,00 = 36,000

When asked to rotate
a square, students
folded them instead.

EET



TABLE 16

Other Applicable Error Types Found in the Literature

Author

Error Type

Description

Example

Laursen (1978)

Budd

Davi

Kent

en (1972)

s et al.
(1980)

(1978a)

Extension of a

shortcut procedure

*Universal

Distributivity
of Operations

Commutativity
of Operations

Omission of
Punctuation

Misinterpretation
of symbolism and
distinguishing
characteristics

Misinterpretation
of symbolism

Student applies a shortcut
in situation where con-
ditions are insufficient

Distribution is carried
out regardless of the
operation or symbolism

All operations assumed to
be commutative

Child omits or ignores
parentheses or introduces
own grouping schemes

Students do not distin-
guish symbols as perceived
by mathematicians

Students interpret letters,
numbers and operation signs
as one group of symbols

B he o /s i e s

¢ (ab) = cacb

(a.+ b)2 = a2 + b

5+ 2 (3 +7)

]
~J
(]

3x, 2x4, 4x5 are like

terms as they all have

x and number in front

or 3Xx + h same as 3xh
h h

2
2xy“ + 2
: 2 L= xy? +2y

veET
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INSTRUMENTS
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SIMPLIFY:

e wlIel

£ A8 TF
36 A3 = Tk
4. =40 = =73
3w 463

6, =27 - 32
T R S |
#S 27 4 =39
9. @5 = 35
0. =iR & =2F

Il

COMPUTATION TEST

11.

12.

133

14.

15‘

le.

17

18.

19.

20.

-4 - =21

-14 - 12
15 - -18
16 - 33

-10 - ~17
15 + —41
-32 + ~8
-37 - -52
56 + —24
-19 - -16

136




ARITHMETIC TEST
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SIMPLIFY, but do not make calculations to find a final

answer. For example,

aj) 158 = 7(651 + 318) = 158 = 7 - 651 = 7 ~ 318

b) 18 - 120 + 33 - 120 = (18 + 33) 120

¥

1. -9 -182 + 17 - 182

3. 19 +107 + —42 - 107

5. (31 - 340) + (71 - 340) - 123

7. (58 - 171) + (43 - 171) - 516

9. 35 =789 + 789

10.

231 » 231

=12 (517 -~ 229)

23 - 666 + 51 - 666

13

=13

352 < 392

(cont'd.)



11.

13.

15,

17.

19.

612 - (349 + 876)

L 38 4 306

156 - 156

97 = (393 + 184)

12.

14.

16.

18.

20.

138

—5% (65 - 97

188 & =21 (537 = 792)

13% + =5 (48T = H532)

107 - 1073

-23.572 4+ 12 - 572
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ALGEBRA TEST

SIMPLIFY:
L 9% : 2. 164 + 314 - 27
3. 9m- "3 3. (3p? =+ 3) = (8pd = B)
5. “2w(3w+7) + 3w (2 - 5w) . “Sp(2p = T7)
5 i

75 4w - 9w 8. 8x - =7

3 5 "
o SR T [ Ve B o 10. 6 (13a + 8)

(cont'd.)



11.

13.

15.

17.

13,

21.

“6x(3x+4) +~3x(5x - 3)

(8a% - 13) - (742 - &)

8a - 13a

2p + 5p2 - 4 + 8p2

+ 3D

15b - 7b

Tw™ * 8w

12.

14.

le.

18.

20.

225

140

5 + =3 ({7xr = 2)

10p + -3 (6p + 8)

o Ty ¥ )

(17 + 2) -

(12x + 9)

13x + x

teont"ds)



23.

2%

27

29

31.

4x° + 7x

-23%x% + 12x

3m - 7m

2

24.

26.

28.

30.

B

141

~4%% 4+ 7 +2x + -6 + 5x2

- 3x

27b + 10b - 5

~7w (3w - 6)

17y + ¥y

(4w + 13) - (3w + 6)
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Each error type was categorized using a three or
four character code. Each code began with a letter which
represented the test on which the error occurred, C for
computation, A for arithmetic, or P for algebra (polynomials).
The second character, also a letter, represented the category

of error as shown in Table 17.,

TABLE 17

List of Letters Used for Each Category

Category Letter Category Letter
Sign Errors S Incorrect Symbolism Written L
Basic Fact Errors F Numerical Bases Multiplied B
Wrong Operation W Exponent Errors E
Distribution Errors D Like Term Errors T
Grouping Errors G Miscellaneous M

If a third letter was present, it indicated the
operation involved, and could be M for multiplication, S for
subtraction, and A for addition. The final character was
a digit which indicated the number of the error in a
particular group represented by the previous characters.

Two examples are provided in Figure 31.
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Example 1:

AE%l

ari!gmetic exponent mnltﬂglication first

AEM1 means the first exponent error in multiplication
on the arithmetic test.

Example 2:

PD3

algebra distribution third

PD3 means the third distribution error on the algebra
test.

FIGURE 31. Two examples of the abbreviations used in the
coding.
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TABLE 18: (at back of this paper)



TABLE 18

DESCRIPTIONS AND EXAMPLES OF ERROR TYPES 145
Error Category Code Description Example Max.*
Sign Errors csMl -“a - b =-(a - b) -5 - =6 = =30 2
CSM2 -a:+ b=ab =5 .« 6 = 30 2
a - b= ab 5. =6 = 30
ASM1 -a (b - c) = ab + ac -3 (4 -5)=3+4+3:.5 4
ASM2 -“a (b -~ c¢c) = ~ab - ac -3 (4-5)=-3+-4-3":+5 4
ASM3 -a (b - c) = ab - ac -3 (4-5)=3-:-4-3.5 4
PSM1 ax *~b = abx 9m + -3 = 27m 2
PSM2 —ax (bx + c) where “5p (2p + 7) = lOp2 + 35p 4
~ax - bx = abx?
PSM3 —ax (bx + c) where “5p (2p + 7) = ‘10p2 + 35p 4
-axX - ¢ = acx
PSM4 -ax (bx - c) where -5p (2p - 7) = -10p% - 35p 4
-ax - ¢ = -acx
PSM5 -a (bx + c) where -5 {(2p + 7) = 10p + 35 4
-a « bx = abx
PSM6 -a (bx + c) where =5 (2p + 7) = ~“10p + 35 3
-a - ¢ = ac
PSM7 —a (bx - c) where -5 (2p - 7) = —-10p - 35 1
~a + ~c = ~ac
PSMB -ax (¢ - bx) . ~5p (7 - 2p) = -35p - 10p° 1
—ax - ~bx = ~abx
CSAl a+-"b=-(a-b) (b <a) 8 + -3 = -5 2
CSA2 a+ b=Db=-a(b>a) 10 + —24 = 14 2
CSA3 “at+b=a+b -10 + 13 = 23 2
PSAL —ax" + “bx™ = (a + b) x" -2x2 + “5x% = 7x° 2
PSA2 -px™ + ax™ _ (b - a) x" 5r + ~2lr = lér 2
ax® +-pxh (b > a) -23x2 + 12x2= 11x2
PSA3 “ax™ + bx" = (b - a) x" —6w? + 15w’ = —9w? z
(b > a)
PSAd —ax™ + -px" = (a + b) x" 2
{indirect)
PSA5 ax™ + “bx™ = (b - a) x"(b>a) 3
{indirect)
PSA6 —ax™ + bx" = - (b - a)x™ (b> a) 1
(indirect)
CSS1 a-~"h=-(a + b) 13 - 12 = —25 2
CSs2 “a - "b="(b-a) (b >a) ~40 - 73 = —33 2
CSS3 “a-b=Db+a -27 - 32 = 59 2
Css4 a-b=b-a(b> a) 25 - 35 =10 2
CSS5 "a - "b=a->b (a>b) —41 - —21 = 20 2



Table 18 (cont'd.)
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Error Category Code Description Example Max.*
PSSl ax® - bx" = (b - a) x" (b > a) 4p2 - 6p2 - 2p2 2
PSS2 ax™ - bx" = ~(a - b) x" (b > a) 8d2 = 7d2 = ‘d2 3
PSS3  -ax” - bxD = (a - b) x" -18x2 - 15x% = -3x° 1
Basic Fact Errors CFl** a+b=c(c+a-b) 2 - 5=11 4
CHOEE atb=c (ctat+hbh) 2+5=28 16
PF1** ax" + bx" = cx" (c+a - b 2%« 3x = 7% 16
PF2** ax + bx = cx (c £ a + b) 2x + 3x = 4x 11
Wrong Operation CW1** a-b=a+hb 13 . 9 = "4 4
cw2** a+b=a-b 18 + =7 = ~126 6
CW3** a-b=a+b "40 - ~73 = ~113 6
CWa** a-"b=a-b 13--12=1 2
CW5 "a-b=a-b =14 - 12 = 2 2
CWé at~"b=a+h 18 + -7 = 25 4
PW1** ax™ - bx™ = (a +b) 20 4w - 9w’ = 13w/ 4
PW2 "a (bx + ¢) = (Tatb) x + ac “6 (13a + 8) = 7a + -48 4
PW3 "a (bx + c) = Tabx + ("a + ¢) “6 (13a + 8) = ~78a + 2 4
PW4 “ax (bx + c) = (a + b) x + acx “5p (2p - 7) = “3p + 35p 4
PS5 -~ax (bx + c) = abx® + (a +c) x  ~5p (2p - 7) = -10p - 12p 4
PRe** ax - b= (a+b)x 9m . =3 = 6m 2
PHT**  ax - bx = (a + b) x° 18a - da = 22a° 2
PW8 ax - bx™ = (a + b) x1*P tw - 9w = 13w° 4
PWO* * ax + bx = abx 5x + 3x = 15x 5
PW1Q** ax" + px" = abx" 4x? + 7x2 = 28x2 4
PWll** ax + bx = abx (indirect) 4
PW12** ax™ + bx" = abx" (indirect) 2
PW13 (ax” + b) - (cx" + 4) (17x + 2) - (12x 4 9) 2
= (a+c)xh- (b+d) =29x - 11
P14 (ax® - b) - (cx - @) (8d° - 13) - (7d% - 4) 2
= (a+c)xD- (b+d) = 1542 - 17
PW15 ax + ~bx" = + (a + b) x" 5r+73r = 8r 7
P16  ax” + bx" = apx’" 1x® + 7x% = 28x* 2
PW17 ax + x = ax2 13x + x = l3x2 2
PW18 (ax® + b) - (cx" + d) (8a% - 13) - (7d% - 4) 4
= acx2n + adxd + bexP + bd = 56a4 - 3242 + 9142 + 52
Distribution AD1 a-(b+c)=a-b+c 169 - (153 + 189) = 169 - 153 + 189 2
AD3 “a (b -c) =ab -_c =59 (65 - 97) = °59 - 65 - 97 4
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Table 18 (cont'd.)
Error Category Code Description Example Max . *
AD4 a-(b+c)=a-b+a-c 169 - (153 +189) =169 - 153 +169 - 189 2
ADS a-(b+c)=a-b T E ° @ 169 - (153 +189) =169 - 153 +169 - 189 2
PD1 “a (bx + c) = Tabx t+ ¢ “6 (13a + 8) = ~78a + 8 4
PD2 “ax (bx + ¢) = Tabx t+ ¢ “6x (3x + 4) = ‘18x2 + 4 4
PD3 (ax™ - b) - (cx" - Q) (4p = 3) - (6p° - 5) 2
= axf - b - cxn - 4d) = 4p2 - 3 - 6p2 - 5_
PD4 (ax + b) - (cx + d) (17x + 2) - (12x + 9) 2
=ax +b-cx +d = 17x + 2 - 12x + 9
PD5S —ax (bx + c) = abx? + ac “7w (3w - 6) - '21w2 + 42 4
PD6 “a (bx + c) = bx + ac “6 (13a + 8) = 13a - 48 4
Grouping ARl ab+cb=a+c-b 19 - 107 + ~42 - 107 8
=19 - 107 + —42 . 107
AG2 ab+ cb-d= (a+c) b (58 »+ 171 + (43 - 171) - 516 2
= (58 + 43 - 516) 171
AG3 a+ b (c ~-d) =(@+7b) (c-4d) 139 + -5 (487 - 632) 2
= {139 + -5) (487 - 632)
AG4 ab +b=a (b +Db) 35 - 789 + 789 2
= 35 (789 + 789)
AGS ab+cb-d=(a+c) (b+d) -d (58 - 171) + (43 - 171) - 516 2
= (58 + 43) (171 + 171) - 516
ace* ab+cb=(a+c) (b+b) 19 - 107 + —42 - 107 2
= (19 + -42) (107 + 107)
PG1 ax + b(cx-d) =(ax +b) (cx-4d) 5r + =3 (7r - 2)
= 6r + -3) (7r - 2)
Incorrect ALl writes : instead of + 12
Symbolism
AL2 writes + instead of - 12
PL1 writes + instead of + 19
PL2 writes + instead of - 19
Numerical Bases AB1 a' - A= (a - a)n+m 82 ° 84 = 646 6
Exponent Errors AEM1 a-a-=a 231 « 231 = 231 3
AEM2 a-al=a" 107 - 107° = 1073 1
AEM3 al -+ aM=g" 1 gd . g7 - g28 2
PEM1 ax bx - abx 8a - 13a = 104a 2
PEM2 ax bx" = abx" 4w 9w5 = 36w5 4
PEM3° ax™ + bx™ = abx" "™ 1183 + 2n° = 22n%° 4
PEM4 Tax (bx + c¢) = abx + acx “5p (2p - 7) = T1l0p + 35p 4
PEM5 ax bxn = abx 4w - 9w5 = 36w 4
PEM6° ax® « bx™ = abx 11x° + 2x° = 22x 4
AEAT ab + cb = (a +c) £? 19 - 107 + =42 - 107 = (19 + —42) 1072 6
AEA2 ach + bl = (“a +b) 2" -9 - 182 + 17 - 18% = (-9 + 17) 184 2
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Table 18 (cont'd.)
Error Category Code Descriptior. Example Max. *
PEAL® ax + bx = (a + b) »° 16d + 31d = 4742 5
PEA2R ax” + px" = (a + b) x2n -4x2 + 5x2 = x4 4
PEA3** ax + bx = (a + b} ):2 (indirect) 4
PEA4** ax" + bx" = (a + b) ™ (indirect) 2
PES1 ax -bx = (a - b) x2 2X - 3x = 'x2 3
PES2 ax" - bx" = (a - b) x°" 4p? - gp? = '2p4 2
Like Term Errors PT1°® ax + b = (a + b) x 27d - 10 = 174 14
pPT2° ax” + b = (a t+b) " 15x% + 3 = 18x° 4
PT3° ax + b = (a + b) x (indirect) 10
PT4° ax™ + b = (a + b) x" (indirect) 4
PT5° ax + bx = (a + b) an*l 15x2 + 3x = 18x3 2
PT6**  ax® + bx = (a + b) 1 6
{(indirect)
° n n 2 2
PT7 ax + bx = (a +b) x 15x° + 3x = 18x 2
PT8° ax™ + bx = (a + b) x" (indirect) 6
PT9 ax+"b (cx + d) 5r + 73 (7r + 2) 2
= (ax + cx) + ("b+ d) = 12r + 71
Miscellaneous PM1 omits variable 2x + 3x = 5 32
PM2 N (m + n) X z4 . 29 = 13z 2
AM3 a-b=D>b-a 169 - (189 + 156) = (189 + 156) - 169 4
PM4 x" & 2x" = z4 - z9 = 2213 2
PM5 (ax + b) - (cx + d) = (17x + 2) - (12x + 9) 4
(a-c)x+ (b+d) = 5x + 11
B blanks
I incomplete solution
D correct, but different
Others ab + b = ab2 13 *+ 789 + 789 = 13 7892 2
*Max. means the maximum number of items in which the error could arise.
**3, bEI
*a, b&N, c&I
afN, bEfI

Safl, b&N
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Each individual's errors were coded on a separate
coding sheet and records of all the errors were kept.
Since the test and item number were indicated, as was the
general error categories, numbers were used to indicate
the specific error type the child made on a particular
item. For example, if a student made the second sign
error in subtraction on item 4 on the computation test,
the number 2 was placed in the appropriate block. This

example is illustrated in Figure 32.

Computation Arithmetic
Error Type s 3 F S RSB BR B
Sign Errors
multiplication
addition
subtraction 2

Basic Fact Error

FIGURE 32. Coding sheets used for individual students.
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Using the coding sheets available for each of
the 200 students, a summary of the number of errors made
in each error category was transferred to the appropriate
summary sheet. A separate summary sheet was available
for each grade, sex, and program combination. The
abbreviations used for coding eqch error type correspond
to those used in Appendix C.

For example, PSM2 was the code used to name the
algebraic (P), sign (S) error in multiplication (M), number
2. If student 3 in a particular group made error PSM2,
three times, a three was recorded in the appropriate box.

The diagram in Figure 33 illustrates this.

MASTER SUMMARY

GRADE : SEX: ALGEBRA TEST

STUDENT NUMBER

2 LEEta 5 & T B 8B F0 el s
ERRORS MAX* NUMBER OF TIMES ERROR MADE
Sign: PSM1l 2 "
PSM2 4 3 &
PSM3 4 .

*MAX indicates maximum number of items in which the error
could occur.

FIGURE 33. Summary sheet used for each group.
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On this summary sheet, the number of students
who made an error at a particular frequency was recorded
for each group. The frequencies were divided into three
groups: those less than 50% (58%), those 50% exactly (53%),
and those greater than 50% (55%). For example, if two
males in grade 9 matriculation made error CSM2 in 50% of
the possible items, then the number 2 was recorded in the
second column, as shown in Figure 34.

Due to the breadth of the study and its exploratory
nature, the "50% exactly" category was adopted because some

skills were tested in only two items.

GRADE, PROGRAM, SEX 9M-M 9M-F 0l Mo

< > <
FREQUENCY 50 50 50 50 50 50

ERROR TYPE

CsM1

CsM2 2

FIGURE 34. Summary sheet of number of students and
frequency of errors.
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GRADE AND SEX: 9M-M 9M-F 10M-M 10M-F 9H-M 9H-F 10H-M 10H-F TOTAL
DN & 5<o 50 5>o 5<o 50 5>o 5<o 50 5>o 5<0 50 5>0 5<o 50 5>0 5<0 50 5>o 5<o 5:0 5>0 5<o 5=o 5>o 5<o 5=o 5>0
ERRORS
SIGN: CsMl 2 1 1 1 3 1 0 7 2
csM2 2 1 1 2 1 0 7 0
Csal 2 4 1 0 7 0
CSh2 4 2 1 1 2 2 1 2 0 14 1
Csa3 32 4 1 1 2 1 1 0 12 3
cssl 2 0 2 0
css2 5 5 2 1 1 1 0 13 2
css3 2 2 3 2 2 1 1 2 0 13 3
css4 9 3 3 3 1 021 1
Css5 4 5 1 2 2 1 3 0 18 1
WR.OP. Wl 3 1 1 5 0 0
w2 4 2 2 3 1 3 18 0 0
a3 7 2 4 3 1 3 4 1 2 1 1 1 20 4 6
cwd 5 4 303 1 3 3 6 5 3 2 0 22 16
w5 5 5 55 1 2z 1 1 0 14 13
w6 2 1 1 1 1 3 2 1
BS.FT. CF1 5 1 2 1 6 1 3 20 2 0
CF2* 9 8 2 6 2 4 1 3% 0 0
SIGN: ASM1* 0 0 0
ASM2 5 3 5 4 1 9 1 AL B0 12 3 1 1 1 4 1 1 IR TR A< T B
ASM3* 1 1 0 0
DIST.  ADl 4 3 2 1 2 1 1 1 3 4 0 15
ap3 1 1 3 1 1 1 4 2 2
AD4 2 22 1 1 1 1 1 2 6 301 1 3 0 15 25
AD5 1 2 2 2 2 1 9 2 1 5 2 0 12 11
GROUP. AGl 3 1 2 1 1 1 1 1 9 1 1
AG2 1 1 3 2 1 1 1 0 2 1
AG3 22 1 1 2 1 0 4 8
AG4 5 4 2 3 4 5 1 3 4 2 3 2 0 21 21
AGS5 2 0 0 2
AG6 1 0 1 o0
INCOP. AL1* 2 2 1 4 1 1 1 12 0 0
A2* 1 1 0 0
NO.BS. ABl 5 L 2z 2 2 3 2 15 2 0
EXP.  AEML 2 1 1 2 0 2
AEM2 1 0 0 1
ARM3 1 1 1 1 0 3 1
AEAL 2 1 1 1 1 1 1 1 i 7.3, 0
AEA2 4 1 g 02 1 il 1 0 10 3
MISC.  AM3 2 4 2 20 17 3 2 1 L 2 1 6 11 5
ab + b = ab? 1 2 4 3 3 3 2 1 2 3 2 1 0 16 11
{cont'd.)

TABLE 19. Summary of the frequency of errors for different groups
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GRADE AND SEX:

<

FREQUENCY

ERRORS

9M-M

>

50 50 50

<

50

10M-M
g = >

50 50 50

10M-F 9H-M

< = > < = >

50 50 50 50 50 50

9H-F 10H-M 10-H-F

< = > < = > < = > <

50 50 50 50 50 50 50 50 50 50

TOTAL

50

>

50

SIGN: PsSML
PSM2
PSM3
PEM4
PSMS5
PSM6
PSM7
PSM8
PSal
PSA2
PSA3
PSA4
PSA5 1
PSA6*
PSS1

PSS2*
PSS3*

PF1*

PF2*

PWL*

Pw'2 *

PW3

Pw4 1

PW5*

PW6

PW/

PW8*

Pw9* 1
PWL0* 1
PW11*
PW12*
PW13*

PWl4
PWL5* 2
PW16
PWL17
PW18 1

PD1 3

PD2 2

PD3

PD4

PD5* 3

PD6

LSRR S N L

WROP.

[N e o« B X o

DIST.

11

10

N Y

= P e N W W

N PN

N T e

e N e
=

— P N W

— —
=
-
[\
w o 1 O

O W o O N O O 0 0 o o U oW

H
C= S |
W
8 2

O W o o bW RO O N O O o o WU =P O O o N o NN

w O O O O = FH ~H W

= w
U o o o NN

-
O O W = o O O O O N o NN H O O O o o O

=
w W

v O O o O O O

[
P o N OB O O O 0 O O 0 0O 0 O O 0 0O o o0 o0 0O o NN o o NN w

=N
N o
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MM 10M-M 10M-F

< = > < = > < = > < = >

5 50 50 50 50 50 50 50 50 50 50 50

GRADE AND SEX: M-F

FREQUENCY

ERRORS

9H-M 9H-F 10H-M 108-F

< = > < = > < = > < = > <

50 50 50 50 50 50 50 50 50 50 50 50

TOTAL

50 50

>

50

PGl 1 1o b

PLI* 1

PL2*

PEM 3 1
P2 2 2 1 2 1 1
PEM3 1 1

PRM4 8 1 3 2 3 1 5 1
PEM5*

PEM6*

PRAl 4 RN 2 2
PEA2 4 3 1 5
PEA} 3 1 2 I
PEA4*

PES1*

PES2 Lo 1

pPT1*
P12
P13
PT4
PT5
PI6* 1 1
P17 1

PI8* 1

P19 A 1

pM1* 10 6 13
PMR*
PM3*
P4
PM5*

GROUP.
INCOP.

— o MY

IK.T.

L - R 9%
—
—

MISC.

(6, B« L SN - B - N =4

O O N O W D O D Oy

(@3]
(%)
=N
=N
[ =
(@3]

o0 o o o

(== O B e SN e B o S oS D = 1 e = o S o B e B o S - SRR o6 T e R e S e BN = o BN oo BN - BN == BECS . " I o Tt O e S e B

O P o o O e o o O ©oO H o o o o el OO DO ] o W

*These errors were not made systematically by either student.



TABLE 2

Sign Errors

Grade, Program, Sex QMM OM-F 10M-M 10M-F 91 OH-F 108-M 108-F TOTAL

< = > < = > < = > < =] > < = > < = > < = > < = > < - >

**Frequency 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 S0 50 50 50 50 50 50 50 50 50

*RRErTOr Type Number of Students

Sign
CSML
M2
Csal
Csa2
Csa3
Cssl
(SS2
Css3
(Css4
(SS5

—
-1 -1 -1

O OO OO OO OO O
o
H = oo O Wk o oo

14

(3]
BB e
—
—
[ N L

13
13
21
18

C= SN =T SO RN S, I s I S BN S 6 I G I NG )
[y}

LUl W W WL
B O RO
RO Lo B0
—
—
W — o
—

ASM3 1 1L

PSMl
psM2
PaM3
+PSM4
PSM5
PSM6 2
i) 1
+PSM3 3
PSAL
+PSA2 m 3 7
PSA3 2
PSA4
PSAS5 1 1 1 Il
PSA6
+PSS1 8 2 2 2 1l
PSS?2 2 1
PSS3

B~ =
o
B — — o
[
— = =N
-
Y-
[ NS
.
—
—
[

— — &> —
—
—

OO O O N OO -1 WO PP OoOoOTOD OO

(%]
O O U1 OO N MNDILWLOD OO O = - w

—
— — oo
—
—
O W OO N OO OO OO U WLWw oY -] O
—

*9M-M, for example, denotes grade nine matriculation males.

**1¢50, =50, >50" represent the frequency at which an error occurred. "<50" denotes that the error occurred in less than 50% of the
possible occasions, "=50"denotes that it occurred in exactly 50% of the possible occasions, and ">50" denotes that it occurred in more
than 50% of the possible occasions.

***A description and example of each error type is present in Appendix F.

+A comon algebraic error.
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