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ABSTRACT

Pile foundations are often used in soft soils to support heavy structures, such as
offshore towers, nuclear power plants, tall buildings, dams and bridges. There are
many situations where these structures may undergo dynamic loading, for example,
earthquake forces, wave forces, wind forces, blasting and unbalanced machines ctc.
There has been a remarkable increase in the study of pile dynamics in the last twenty
years, although piles have been used for hundreds of years.

In this study, the dynamic behavior of single piles and pile groups are investi-

and d with i I results perf d earlier. Both

gated th
theoretical and experimental studies have shown that the dynamic response of the
piles is very sensitive to the properties of the soil in the vicinity of the piles. The
impedances of the soil layer are formulated for different modes of vibration based
on a new model of the boundary zone with non-reflective interface, which is more

realistic and robust than the current leading models of Novak and Veletsos.

With the impedances of the soil media derived, the stiffness and damping [or sin-
gle piles and pile groups are presented. The validity of the boundary zone model for
the soil-pile system is verified by comparison with the dynamic experiments which
were conducted on single steel piles and on a concrete pile group in the field, respec-
tively. The effects of non-linearity ol the soil-pile system under strong cxcitation,
the pile-soil-pile interaction (group effect) and the influence of frozen soil on the piles
are investigated comprehensively. The results obtained from this study provide a

guideline for engineering design, to increase the safety of the piles and the structures.
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Chapter 1

Introduction

Pile foundations are often used in soft soils to support heavy structures, such
as offshore towers, nuclear powerplants, tall buildings, dams and bridges. There are
many situations where these structures may undergo dynamic loading, for example,

carthquake forces, wave forces, wind forces, blasting and unbalanced machines etc.

Modal characteristics of a pile-supported structure and its response to dynamic

Aexibili

loads depend to a high degree on found. For pile-supported struc-
tures, the flexibility of individual piles is routinely taken into account, but the in-
teraction of piles in a group, referred to as pile-soil-pile interaction or group effect,
is often neglected. The group effect has been considered in offshore engineering by
only a few researchers ( O'Neill, 1983; Mitwally and Novak, 1987; Novak and Mit-

wally, 1990 ).

The studies undertaken here are concentrated on the dynamics of pile founda-
tions, involved with the impedances of a single pile and the behaviour of a ty pical pile

group. The linear and nonlinear vibration and the seismic response are investigated



ly and th ically with the ideration of pile-soil-pile interaction.
Once the properties of the pile foundation are established, they can be i d
into the ination of pil i ion using the sub approach

Jjust as with other types of foundation.

Organization of the thesis:

In Chapter 2, a comprehensive review of the literature is presented. In Chapter
3, theimpedances of soil medium are formulated as a plane strain problem by means
of an analytical solution. Chapter 4 deals with stiffness and damping of single pile
using the finite elernent method. Chapter 5 describes tests on single pile performed

by the author prior to this thesis and ison of d and the d

response using the theory in Chapters 3 and 4. Chapter 6 deals with stiffness and
damping for pile group using pile-soil-pile interaction factors of Poulos (1980) for
static condition and Kaynia and Kausel (1982) for dynamic condition. Chapter 7

describes full scale tests on pile group again performed by the author prior to this

thesis and i of the d response with d results. Chapter
8 deals with effect of frozen soil layer ou the response of single pile as well as the

group. Chapter 9 lists summary, conclusion and recommendations.



Chapter 2

Review of Previous Work

Piles have been used for hundreds of years but in the last twenty years or so
there has been a remarkable increase in the study of pile dynamics. The dynamic
behaviour of piles is, of course, very complex and this might have lead Terzaghi and
Peck ( 1967 ) to state that ... theoretical refinements in dealing with pile prob-
lems... are completely out of place and can be safely ignored”.

F ly, not rybody became di d by this imisti |

and a number of analytical and numerical approaches to the analysis of pile dynamic

behaviour have been developed. These hes have provided a much sounder

theoretical basis for pile design than the equivalent cantilever concept or other purely
empirical methods which dominated the field for decades. Nevertheless, some differ-

ences between the various theoretical approaches exist and the experiments reported

aresom mes i 1 also, some inties are inevitable when applying an

idealized theory to field conditions. Thus, furtl er studies of pile dynamics in theory,

or from i and field ob ions, are needed for engineeri i




The subject of pile dynamics received a comprehensive treatment in the state-
of-the-art report by ‘“ajimi (1977), covering developments up to 1977, and in a few
special volumes, ie, De Beer et al. (1977), O'Neill and Dobry (1980), Nogami
(1987), Prakash and Sharma (1990) and Novak (1991).

2.1 Single Pile

The earliest systematic, theoretical studies of dynamic soil-pile interaction are due
to Parmelee et al. (1964), Tajimi (1969), Penzien (1970), Novak (1974) and a few
others. Parmelee and Penzien employed a non-linear discrete model and a static
theory to describe the dynamic elastic stress and displacement fields, Tajimi used
a linear viscoelastic stratum of the Kelvin-Voigt type to model the soil, but in his
analysis of the horizontal response neglected the vertical component of the soil mo-
tion. Novak assumed linearity and an elastic soil medium composed of independent

lly thin hori | layers ding to infinity.

The problem of the interaction between the pile and the soil is very difficult
to solve, even for the idealized assumptjons of linear elastic or viscoelastic homo-
geneous soil and the pile being bonded to the soil. Thus, approximate procedures
were formulated first, In 1974, Novak formulated a very simple approach for the
horizontal response of an end bearing pile in a homogeneous soil based on plane
strain soil reactions, which can be interpreted as a dynamic Winkler medium or a
plane strain assumption. This solution identified dimensionless parameters of the

problem, yielding a number of design charts and tables for dynamic stiffness and

4



damping of piles. Material damping was later included in a closed form expression
for the soil reactions in Novak et al. (1978). The application of the same approach
to vertical response of floating piles was made by Novak (1977). Torsional response
was also examined in this way (Novak and Howell, 1977, 1978) and the importance

of material damping for this vibration mode was demonstrated.

A somewhat more rigorous solution was formulated by Nogami and Novak (1976)
and Novak and Nogami (1977). These approximate solutions offered a basic insight

into the behaviour of the soil-pile system.

Much of the attention was focussed on the complex dynamic stiffnesses of the
pile {impedance functions) because they have a strong influence on the response of
pile supported buildings and structures. The impedance functions were also used in
the dynamic analysis of embedded foundations (Han, 1989).

More recent analysis based on the solution of governing equations of a three

di i i were ; by Sen et al. (1985) and Pak and Jennings

(1987). All vibration modes were investigated by Rajapakse and Shah (1987a, b,
1989). The latter authors evaluated the accuracy of some of the existing solutions

and generated an extensive set of charts for impedances of floating piles.

Finite element soluti: were f lated by Kuhl (1979a, b), Blaney et

al. (1976), Wolf and Von Arx (1978), Waas and Hartmann (1981), Sanchez-Salinero

(1982) and others. B dary element hes were d by Banerjee

o



(1978), Banerjee and Sen (1987) and a few others. Ready to use charts and for-
mulae were produced for homogeneous soil by Roesset, (1980), Dobry et al, (1982),

Novak and El-Sharnouby (1983) and a few others.

Comparing the results of experiments with theoretical predictions repeatedly
showed that if the soil was assumed to be homogeneous, both pile stiffness and
damping can be grossly overestimated. In fact, the soil is not homogeneous since
the soil shear modulus varies with depth. [n particular it reduces toward the ground
surface which results from the diminishing confining pressure. In this situation the

pile may be separated from the soil, even producing gaps.

Observations of this kind lead to the development of approaches better suited for
nonhomogeneous soils. Significant progress was made by Kaynia (1982) and Kaynia
and Kausel (1982, 1990) who bused their solution of piles, in layered media, on the
formulation of displacement fields due to uniformly distributed forces on cylindrical

surfaces. Banerjee and Sen (1987) presented a boundary element solution for piles

bedded in a semi-infinit h soil in which the shear modulus varied
linearly with depth. A few other methods suitable for linear layered media use a
semi-analytical finite element approach. Solutions of this type were formulated by

Waas and Hartmann (1981, 1984) and Mizuhata and Kusakabe (1984).

A much simpler and very versatile solution was formulated by Novak and Aboul-
Ella (1978a, b) who extended the plane strain approach to include layered media.

Roesset et al. (1986) also found the plane strain approach to work very well for



high [requencies. For very low frequencies, an adjustment to the plane strain soil

reaction was made by Novak and El-Sharnouby (1983).

The sensitivity of the response to pile separation and free length shows when
evaluating most experiments. The prediction of the separation length is difficult

and only empirical suggestions can be made (Han and Novak, 1988a).

While the consideration of a free separation length in the analysis may produce
the reduction in both pile stiffness and damping often observed in experiments, a
better measure to this effect, or a complemcntary one, may be to account for soil
nonhomogeneity in radial direction. A simple way of doing this is to assume a weak,
cylindrical boundary zone around the pile. The purpose of such a zone is to account

in a very i way for soil linearity in the region of the highest stresses,

pile separation, slippage and other deficiencies of the pile-soil interface. Such a zone
was proposed by Novak and Sheta (1980). In their plane strain solution, the mass
of the boundary zone was neglected in order to prevent wave reflections from the
fictitious interface between the cylindrical zone and the outer region. The omission
of the mass of the boundary zone in the original solution lead Lakshmanan and
Minai (1981) and Veletsos and Dotson (1986, 1988) and Dotson and Veletsos (1990)
to further develop the concept and to include the mass of the boundary zone in the
analysis. Some of the effects of the boundary mass were investigated by Novak and
Han (1990) who found that a homogeneous boundary with a non-zero mass yielded
undulating impedances due to wave reflections from the fictitious interface between

the two media. The ideal boundary zone should have properties smoothly approach-



ing those of the outer zone to alleviate wave reflections from the interface. \With

the consideration of the separation effect and weakened soil in the boundacy zone. a

between the

I results and experiment data were ob-
tained (Woods, 1984; Han and Novak, 1988b; Han and Vaziri, 1991; El- Marsafawi,
Han and Novak, 1992).

At large displacements, piles behave i a nonlinear fashion because of soil nonlin-
earity at high strain, pile separation (gapping), slippage and friction. The incorpo-
ration of these factors into a continuum theory is extremely difficult, and therefore
lumped mass models are most often used when nonlinear analysis is required. Such
models feature nonlinear springs, nonlinear dampers, gaps and Coulomb friction
blocks, as proposed by Penzien (1970}, Matlock et al. (1978, 1980) and a num-
ber of others. The combination of these elements makes it possible to generate a
variety of nonlinear force-displacement relationships. Models of this type are very
versatile but it is difficult to relate the characteristics of the discrete elements to
standard geotechnical parameters of soil. To help overcome this difficulty, various

li soil resi deflection known as P - Y curves have been

3 ded in the literature. For applications in offshore the Amer-

ican Petroleum Institute (1986) specifies the P - Y curves for clay as well as sand

making a difference between static and cyclic loadings.

With the boundary zone model, the nonlinear vibration of piles under steady-
state excitation was investigated by Han and Novak (19884, b), and Han (19892, b;

1992). If a nonlinear transient response rather than the steady-state response is to

8



be investigated, then a time-domain analysis is called for. A time-domain analysis
which extended the dynamic Winkler model to allow for nonlinearities, was formu-
lated by Nogami and Konagai (1987, 1988), Nogami et al. (1988), and Mitwally and
Novak (1988).

2.2 Pile Group

Piles are usually used in groups, aud if they are not very widely spaced they inter-

act with each other generating the pk known as pile-soil-pil

or group effect.

Under static loads, pile interaction increases group settlement, redistributes the
loads on individual piles and reduces the bearing capacity, unless this reduction is
counteracted by densification of the soil within the group due to pile driving. The
investigation of static group effects was put on a rational basis, relying on contin-
uum mechanics, by Poulos (1968, 1971, 1979) and Butterfield and Banerjee (1971).
Extensive data on static group effects are available in Poulos and Davis (1980), El-

Sharnouby and Novak (1985, 1986, 1991 .

Dynamic investigations of pile groups are more recent. The techniques employed
are extensions of the approaches used for single piles and most of them are limited
to linear interaction with no allowance for gapping. The first theoretical analysis of
pile-soil-pile interaction was carried out by Wolf and Von Arx (1978) who employed

an axisymmetric finite element formulation to establish the dynamic displacement



9eld due to ring loads. Waas and Hartmann (1981, 1984) formulated an efficient
semi-analytical method which used ring loads and is well suited for layered media,
properly accounting for the far field. Kaynia (1982) and Kaynia and Kausel (1982,
1990) further improved the accuracy by combining the cylindrical loads, actually a
boundary element formulation, with the consistent stiffness matrix of layered media
to account for the far field. A very simple approach was employed by Kobori et al.
(1991) who used the cylindrical loads for the pile and disk loads for the base. Baba

(1991) formulated a three-dimensional analysis of end bearing piles.

The thin layer method was used by Shimizu et al. (1977), Masuda et al. (1986)
and a few others. Boundary element solutions, employing Green's functions of gen-
erally layered media, were formulated by Banerjee and Sen (1987), Mamoon ct al.
(1990). Simpler solutions based on the dynamic Winkler medium were developed
by Nogami (1983), Sheta and Novak (1982) and Otani et al. (1991).

With the pile-soil-pile interaction theories being so complex, it is of importance
to examine how the theories perform when compared with experiments. Dynamic
experiments with a group of 102 model piles, each 1.06 m in length, were done by

Novak and El-Sharnouby (1984). I experi fucted on a group of

36 full scale piles were reported by Masuda et al. (1986). Six full scale piles were

tested and very good results were obtained but the weak zone and separation had

to be included in analysis for a 'y match with i I results (Han,
1992; Han and Vaziri, 1991. 1992; El-Marsafawi, Han and Novak, 1992). Kobori et

al. (1991) also found the theory to be of sufficient applicability. Thus, it may be

10



concluded that the linear theory works quite well as long as the experiments do not
deviate too much from the theoretical assumptions, as might be expected. Often, a
correction for separation, gapping and nonlinearity is needed, however, at least in

the form of a weak zone and a pile free length.

The dynamic interaction factors were formulated by Kaynia and Kausel (1982),
which is an extension of the widely used static interaction factor approach. It was
observed that the accuracy, of the interaction factor approach, was quite sufficient
for a homogeneous medium but less accurate for a nonhomogeneous one. A re-
markably simple approximate method for dynamic interaction factor evaluation was
proposed by Dobry and Gazetas (1988) and extended for nonhomogeneous soil by
Makris, Gazetas and Fan (1989) and Gazetas and Makris (1991).

Nonlinear dynamic analysis of a pile group is very difficult and this may be the
main reason why it has received very little attention than the linear analysis. Nogami
and Konagai (1987) developed a group analysis assuming that in the vertical vibra-
tion, response nonlinearity stems mainly from slippage at the soil-pile interface; they
represented the soil using the dynamic Winkler model. Nogami et al. (1988) and
Otani et al. (1991) extended the concept of the dynamic Winkler medium further to
include horizontal response, slippage. gapping and inelastic soil behaviour and were
able to generate a variety of degrading hysteresis loops. The dynamic experiments

of nonlinear vibration of pile groups under lateral loading were conducted by Han

(1992) and d with th ical results that i d a boundary zone,

which included weakened soil and gapping in the interface between the pile and the

1



soil.

2.3 Soil - Structure Interaction (SSI)

It is well-recognized now that the foundation material on which a building is con-
structed may interact dynamically with the structure during its response to earth-
quake excitation or other excitation - to the extent that the maximum stresses and
deflections in the system are modified significantly from values that would have been
developed if it were on a rigid foundation. However, forty years ago when the meth-
ods of analysis of structure response to earthquake motions were just beginning to

be developed, such i ion effects were id

d to be of little

and hence were ignored. It was concluded that the base shear force due to earth-
quake excitation in a typical tall building is hardly affected by foundation flexibility
even for the most flexible foundation that might be considered suitable for such a
building ( Merritt and Housner, 1954). Interest in SSI effects on the response of

to was

during the next two decades
owing to developments in the nuclear power industry and offshore engineering. The

effects of SSI on seismic response of stri~:tures were outlined by Clough (1992).

The analysis of the soil-structure interaction problem may be carried out on the
basis of a direct finite element or boundary element approach and by use of a sub-
structure or subsystem procedure. In the first approach, a finite element model of
the entire system is made and the response of the model is evaluated in one step.

The direct approach is more time consuming and costly than the substructure ap-

12



proach which will be employed in this study.

In the substructure approach the problem is solved in two stages: in the first
stage, elements of the response of superstructures, foundations and soil are obtained
independently; in the second stage, the individual responses are combined so as to
satisfy the interaction conditions and the response of the complete system is ob-

tained (Sarrazin et al., 1972; Roesset et al., 1973, 1982).

The subject of linear soil-structure-interaction analysis was reviewed by Luco
(1982), and a thorough treatment of the substructure method, including all deriva-

tions and a di ion of the jons and limitati as well as illustrative

examples from actual practice, was included in textbooks (Wolf, 1985, 1988).

However, most of the studies on soil-structure interaction were done with respect

to shallow foundations or on an elastic half space. Relatively few studies were de-

voted to deep and considered pile-soil-pile i ion. Seismic response
analysis of a pile supported structure was carried out by Nogami et al. (1991), Had-
jian et al. (1990), El-Hifnawy and Ncak (1986, 1987). Random response analysis
of an offshore tower, considering pile-soil-pile interaction, was studied by Novak and

Mitwally (1990).

The lastest devels in dy ics of pile fc and soil-structure inter-
action are included in this literature survey. From the review above, it can be seen

that further research must be done in both theory and experiment, in order to apply

13



the advanced theory of pile dynamics to engineering practice. The contact situation
between the pile and soil is very sensitive to the dynamic response of piles. Thus the
boundary zone model should be improved to better account for this phenomenon.
Soil-structure interaction depends on the real confining pressure of soil deposits and
on the cantac!.situa!ion, so the dynamic experiments of full scale piles and other
model pile tests should be studied further. The research project proposed in the

following section will attempt to answer these questions.



Chapter 3

Impedances of Soil Layer

3.1 Introduction

One of the more i problem in soil i ion is how to model
the soil. A number of approaches are available to account for dynamic soil-structure
interaction but they are usually based on the assumptions that the soil behaviour
is governed by the laws of linear elasticity or viscoelasticity and the soil is perfectly
bonded to an embedded foundation or a pile. In practice, however, the bonding be-

tween the soil and the footing is rarely perfect and slippage or even separation often

occurs in the contact area. Furth the soil region i diately adjacent to the

footing can undergo a large degree of straining which would cause the soil-structure
system to behave in a nonlinear manner. Both theoretical and experimental studies
have shown that the properties of the soil in the vicinity of the footing are very
sensitive to the dynamic response of the footing ( Han and Novak, 1988; Han, 1989;
Han and Vaziri, 1992, and El-Marsafawi et al, 1992).

To account for the nonlinearities resulting from loss of contact between the soil



and the footing, Novak and Sheta (1980) proposed including a cylindrical annulus
of weakened soil (an inner weakened zone or so-called boundary zone) around the
footing in their plans strain analysis. Although their analysis allowed for different
properties in the weakened boundary zone and the outer zone, each zone is assumed

to be h One of the simplifications involved in the original boundary

zone concept was that the mass of the inner zone was neglected to avoid the wave
reflection from the interface between the inner zone and the outer zone, To overcome
this problem Lakshmanan and Minai (1981). Veletsos and Dotson (1986, 1988) and
Dotson and Veletsos (1990) proposed schemes that could account for the mass of the
boundary zone. Some of the effects of the boundary zone mass were investigated

by Novak and Han (1990) who found that a homogeneous boundary zone with a

non-zero mass yields undulating i d due to wave refl from the inter-

face between the two media. Since in reality the interface between the two media

is only fictitious ( actually i ), the undulating imped may be not
suitable for practical applications. The ideal boundary zone should have properties
smoothly approaching those of the outer zone. to alleviate wave reflections {rom the

interface.

In this study the impedances for a composite soil layer are formulated based on
a new model of the boundary zone with non-reflective interface. A parabolic varia-
tion of the medium properties is assumed, so that the boundary zone has properties
smoothly approaching those of the outer zone to alleviate wave reflections from the
interface. The impedances of the soil layer are presented for different modes of vi-

bration . The results are evaluated over wide range of the parameters involved and
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compared with those obtained for a homogeneous layer, as well as compared with
Novak’s and Veletsos's results. Since the boundary zone mass is accounted in this
model and the non-reflective interface is formed, the impedances ( soil stiffness and
damping ) are considered to be more suitable to practical applications than previous

ones.

3.2 . Model of Soil Layer with Non-reflective In-
terface

The system examined is a linear viscoelastic layer of unit depth and infinite
extent with a circular hole of radius r,, as shown in Fig. 3.1 (a). The impedances

of the composite layer are derived based on the following assumiptions : the outer

zone medium is | isotropic and viscoelastic with freq indy d

material damping; within the boundary zone, the complex shear modulus, G*(r),
varies parabolically, as expressed by the function f(r), shown in Fig. 3.1 (b). The
variation of G*(r) is continuous within the boundary zone both in the function itself
and its derivatives, so that no reflective wave can be produced at the interface (this

is referred to as non-reflection interface):

The properties of the soil medium for each region are defined by the complex-

valued modulus

G; r=r,
G (r)=< G3f(r) r,<T<R (3.1)
G; r>R



and

G: =Gl +i23)
(3.2)

Gy = Gy(1 +i23,)

in which G; and G, = shear moduli of the inner and outer zones; r, = radius of the
cylindrical cavity in the medium; R = radius of boundary zone; r = radial distance
to an arbitrary point; §; and 3, = damping ratio for the two zones; and i = /=T.

The parabolic function, f(r), can be expressed as :
i =1 —mi =By @)
To

and

= Tonlra? )

where t,, = thickness of boundary zone; m = a constant whose value depends on
G;/G; and tn/r, , as shown in eq.(3.4). [t should be explained that the soil in the
boundary zone may be weakened, as well as may be strengthened in some cases, such
as pile driving. When the soil is weakened, G;/G, < 1; when the soil is strengthen,
Gi/G.> L.

Denoting

rfrs (3.5)

then

J(€) =1 =m*E = R/r)} (3.6)
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e t 1 Interface
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(2) Composite layer (b) Variation of shear modulus

Figure 3.1: Model of boundary zone with non-reflective interface, (A) composition
of the zones, and (B) variation of shear modulus with radial distance.



3.3 Differential Equations in Cylindrical Coor-
dinates

For a homogeneous isotropic medium, the differential equations can be derived
from the standard form, written in cylindrical coordinates, ( Sokolnikoff, 1956 )

Oo, 187  Ores $ oz Fu
o " r o8 " o: CE T
Ory 1000  Omy 2

& -
R R (@1
e L0 B0, L Pm
or Troe Toz T fom
in which u,v and w = radial, ial and vertical displ; ively; r,0

and z = radial, angular and vertical variables; o; = normal stress; 7;, = shear stress;

p = mass density and ¢ = time.

Hooke's law for the medium assumes the form

o =M(e + e +6) + 267 @3)
7, =2G%;

where A" = complex Lamé constant of the medium and the strains, ¢ and ¥;,, can

be expressed as
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3.4 Impedance Functions of Soil Layer

3.4.1 Vertical Excitation

Within the Boundary Zone

The radial and tangential displcements are assumed to be very small in com-
parison to the vertical displacement and hence can be neglected. Thatis u =v =0,
and also the variation of vertical displacement with depth is not considered. The
governing equation can be derived from eq.(3.7) for the composite layer excited

vertically,
e 3
R

The mass density for the inner zone is assumed to be equal to that of the outer

(3.10)

zone.

Under harmonic excitation

w= w(r)e (3.11)

€q.(3.10) can be written as

i(E);g + [.1;(5) ﬂ:’]‘;—;’- -Nw=0 (3.12)
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in which

o= —— 3.1
v {3)
where dimensionless frequency, a, = wro/V,,w is circular frequency, and V, is shear

wave velocity of soil.

Let
z=m(R[r,-¢§) (@314
then
fEe)y=1-z (3.15)
Substituting eq.(3.14) and (3.13) into eq.(3.12), vields
-1 Aova
= —l) +[21:+ mR/rl +(-':) w=0 (3.16)
Denoting
a=mR/r,
Aoya
b=(=)
Eq.(3.16) can be rewritten as
d*w =1 dw
2 1)— +[2 —_— = 38
(@ ”dﬂ*[z’*_'z-..]dz”"” 0 (3.17)

The displacement ,w, can be expressed by a power series as

w= 3 Au (3.18)
b=

Substituting eq.(3.18) into eq.(3.17), the coefficients in the power series can be de-

termined as

A =G



A= G (3.19)
abd, + Ay

2a
(n=1An s +alb+(n = 2)(n = DJda-a = b+ (n =3){n — V|4,
aln—1l)a

where Cy and C; are complex-valued constants which can be determined by
considering the boundary conditions.

Finally, the shear stress s

di
=GNg =160 (320)

Outer Medium

The governing equation for the vertical vibration of the homogeneous medium
can be derived from eq.(3.7), but G* is taken as constant in the outer zone. The
equation is derived as

E:

@ +£——A EwlE) = (321)

This is 2 Bessel equation for which its solution is
w(§) = CaF~.(\sf) + Cal(Aef) (3:22)

where [, and K, are modified Bessel functions of zero order of the first and second

kind. respectively; Cy and C are complex-valued constants of i ion which can

be determined from the boundary conditions.



The boundary conditions are :
w=1 até=1

w,=0 atf=020

3.23
wi=w, até=R/r, (3:2)
até=R/r,
To satisfy these boundary conditions, Cy = 0 must hold.
Eq.(3.22) can now be written as
w(§) = Cako(Ao€) (3.24)
At the boundary of the hole, r = r,, so £ = 1. Thus, eq.(3.14) reduces to
(3.25)
and likewise eq.(3.18) becomes
Ci+Camy+ Az} + o+ Anl =1 (3.26)

At the interface of the two zones, £ = R/r,, so z = 0. From eq.s(3.18) and (3.24),

it follows that

CGi= C;l\’a(»\,;{?) (3.21)
and the shear stresses is .
7= C-2)G; (3:28)
= -Cr e (3.29)
To To

where A} is modified Bessel function of first order and the second kind. Using 7, =7,

at the interface it follows that
% R
Cy = Ca;l(n(»\-;:) (3.30)
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From eq.s(3.26),(3.27) and (3.30). C),C; and Cj can be calculated.

The impedances of the composite layer for vertical vibration is defined as

ky = =27ToTy(r=ry) (3.31)
then, k, can now be determined from
dw
k= 7G2m(L + 123 G leex, (3.32)

It is desirable to express k, in the following form
ko = 7Gi(Su +ia:Sea) (3.33)

in which

2= — (3.34)

where V, = \/Gi/p is the shear wave velocity for the boundaty zone; S,y and S,z
are dimensionless factors that depend on y,tn /7o, Gi/Go, 6 and ,. The factors

S.1 and S, are referred to as the vertical stiffness and damping of soil, respectively.

In this study, the impedances of the soil layer was expressed in terms of the
shear modulus of the inner region. G;, following the format employed in Veletsos
and Dotson(1988). The stiffness and damping factors, S,; and 5,5, obtained from
the present analysis are compared with those obtained for the Novak-Sheta (N-S)
and Veletsos-Dotson (V-D) idealizations, as shown in Fig. 3.2. These solutions are
for a soil layer with tm/r, = 1.0.G,/G, = 0.25,8; = 0.1, and §, = 0.05. The mass

density for the inner zone is taken to be the equal to that for the outer region in
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the present solution and V-D solution, for the N-S solution the mass density for the
inner zone is assumed to be zero. It can he observed that the three sets of results
are significantly different; the V-D solution results in pronounced oscillations ( un-
dulations) caused by wave reflections from the interface between the two media. It
is a defect in theory to assume zero-mass in the inner zone for N-§ solution. The
results from the present analysis are smooth curves over a wide range, the value
of a; from 0.0 to 4.0, which indicates that the wave reflections from the interface
are alleviated because it embodies a continuous variation in soil properties in the
boundary zone with smooth (continuous derivatives) transition into the outer zone,

For comparison, the results for a homogeneous layer are also included in Fig. 3.2.

To illustrate the influence of parameters involved, the stiffness and damping
factors for a vertically excited layer are plotted in Fig. 3.3 and Fig. 3.4 as a function
of a; for several different combinations of t,,/r, and G,/G;, with material damping,
3;=0.1and J, = 0.05. It should be noticed that the undulations caused by wave
reflection vanish as expected in all of the cases presented, owing to the inodel of
non-reflective interface. The influence of the material properties in the boundary
zone is sensitive to the stiffness and damping of the soil layer. The stiffness factor,
Su. increases with the level of G,/G, and is smallest for the homogeneous case
(G./Gi = 1). The damping factor, S,2, at lower frequency levels hecomes larger
as the magnitude of G,/G; increases; however, at higher frequencies this tendency

diminished.

The effects of material damping on the impedances of the soil layer are shown
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Figure 3.2: C of i d. functi for vertical vibration by different

solutions, tm/re = 1.0, Gi/Gs = 0.25,5; = 0.1,, = 0.05; (A) stiffness factor S.1,
and (B) damping factor Sy
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Figure 3.3: Vertical impedances for a composite layer with material damping 5; =
0.1, 4, = 0.05 and different parameters: (A) for tn/ro =0.1; (B) for tm/r, = 0.2.
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Figure 3.4: Vertical impedances for a composite layer with material damping §; =
0.1, 8, = 0.05 and differsnt parameters: (A) for tm /1, = 0.5; (B) for ta/ro = 1.0.
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Figure 3.5: Effects of material damping on vertical impedances of soil layer, (A)
stiffness factor S,;, and (B) damping factor $,3.
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in Fig. 3.5. Several values of damping ratio are selected, in one case both 3, and
3, are zero and in other cases 3, = 0.05 and 3; = 0.05,0.1 and 0.2, respectively. It
can be seen that the stiffness facior, 9,y, reduces with material damping increasing,
but the effect to damping factor,S,,, are small. This trend in damping response
can be explained by reference to the fact that the radiation damping becomes more

dominant (relative to the material damping) at higher frequency levels.

3.4.2 Torsional Excitation

Within the Boundary Zone

The assumptions that are made for the case of torsional vibration of the medium
around the vertical axis of the cylinder are that the radial and vertical displacements
are i. initesimally small and hence can be neglected. That is u = w = 0. variation
of tangential displacement with depth is not considered. The governing equation
can be derived from eq.(3.7) for the layer excited torsionally,

02 191 1
Gl + 55~ 7+

dG*(r)
dr

v v R
i =)= & (3.35)

=

The mass density for the inner zone is assumed to be equal to that of the outer

zone.

Under harmonic excitation

v = u(r)e (3.36)



€q.(3.35) can be written as

_)d_v_ Ldf(€) f(~ _
[ Ly 1 {€ R +\ =0

Substituting qu(I!.H) and (3.13) into eq.(3.37), vields

6%

=1 2z 1-z?
+Ty+b1v=0

(:-1) +(°z+ Tt E

!

The displacement,v, can be expressed by a power series as

(3.37)

(3.38)

(3.39)

Substituting eq.(3.39) into eq.(3.38), the coefficients in the power series can be de-

termined as

A4 =G
A =G
A = (a% + 1)A, + ady

2a?
2a(1 — b)A, + a*(b + 2)A, + 6aA,
6a?
with denoting
=(n-1)(2n-3)a

62= (n-1)(n -2 —(n—2)?+ba® + 1
83 = —a|(n - 3)(2n - 3) +2(b - 1)]
f4=(n=-2)(n-4)+b-3

the general term can be expressed as

81 An-y + 8240y + 63An_3 + 64An_4
a(n —1)a?

An=

32

(3.40)

(3.41)

(3.42)



where Cy and C; are complex-valued constants which can be determined by
considering the houndary conditions.

Finally, the shear stress is

d di
MG =) = =G IR +5) (343)

Quter Medium

The ¢ verning equation for the torsional vibration of the homogeneous medium
can be derived from eq.(3.7), but G* is taken as constant in the outer zone. The

equation is derived as
dv | v
200 Vg -
3 & + Ed{ (M + 1)) =0 (3.44)
This is a Bessel equation for which its solution is
v(€) = Cal1(Aof) + Cali(Ao€) (3.43)

where /; and K are modified Bessel functions of order one of the first and second

kind, respectively; C3 and Cy are compl lued of i ion which can

be determined from the boundary conditions.

The boundary conditions are :
v/r=1 atf=1
v, =0 té=
° . (3.46)
v =1y, at ¢ = Rfr,
Ti=T; at = R/r,
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From these boundary conditions. Cy.Cy , Cs and Cy can be calculated.

The impedances of the composite layer for torsional vibration is defined as the
moment of the shear stresses around the cylinder axis with respect to unit torsional
angle (vi/ro =1),

ko = =21r3Titrar,) (3.47)

then, ks can now be determined from
p mdy
ko = 2ar3Gi(1 + m‘](r_.,ﬁ + Dle=sy (3.48)
It is desirable to express kg in the following form
kg =2772G\(Sar + ia;Sp2) (3.49)

where Sy, and Sy, are dimensionless factors that depend on g, tm/rs, Gi/Go, A and
3,. The factors Sy, and Sy, are referred to as the torsional stiffness and damping of

soil, respectively.

The stiffness and damping factors, S and Sy, obtained from the present analy-

sis are compared with those obtained for the Novak-Sheta (N-S) and Veletsos-Dot

(V-D) idealizations, as shown in Fig. 3.6. These solutions are for a soil layer with
tm/To = 1.0,Gi/G, = 0.25,3; = 3, = 0.0. The mass density for the inner zone is
taken to be the equal to that for the outer region in the present solution and V-D
solution, for the N-S solution the mass density for the inner zone is assumed to

be zero. It can be observed that similar to the case of vertical vibration the V-D

solution results in d oscillations ( undulations) caused by wave reflections
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from the interface between the two media. The results from the present analysis
are smooth curves over a wide range, indicated that the wave reflections from the
interface are alleviated because it embodies a continuous variation in soil properties
in the boundary zone with smooth (continuous derivatives) transition into the outer
zonie. For comparison, the results for a homogeneous layer are also included in Fig.

3.6.

To.illustrate the influence of parameters involved, the stiffness and damping fac-
tors for a torsionally excited layer are plotted in Fig. 3.7 and Fig. 3.8 as a function
of a; for several different combinations of tn/r, and G,/G;, with material damping,
B = 0.1 and B, = 0.05. It should be noticed that the undulations caused by wave
reflection vanish as expected in all of the cases presented. The torsional stiffness
factor, Sp, increases with the level of G,/G; and is smallest for the homogeneous

case (Go/Gi = 1).

The effects of material damping on the torsional impedances of the soil layer are
shown in Fig. 3.9. Several values of damping ratio are selected, in one case both f;
and 3, are zero and in other cases J, = 0.05 and §; = 0.05,0.1 and 0.2, respectively.
It can be seen that the stiffness factor. Sy, reduces with material damping increas-
ing, but the effect to damping factor,Ss2, are small. This trend in damping response
can be explained by reference to the fact that the radiation damping becomes more

dominant (relative to the material damping) at higher frequency levels.
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Figure 3.6: Comparison of torsional impedance functions by different solutions,
tmfra = 1.0,Gi/G, = 0.25,; = B, = 0.0; (A) stiffness factor Sy, and (B) damping
factor Sy,
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3.4.3 Radial Excitation

Within Boundary Zone

The composite laer is subjected to an axi rical, volumetrical def

associated with the propagation of P-wave in the radial direction, or say breathing
vibration, such as in the cases of cavity expansion, pile vibration and driving. In
this case, v = w = 0,the governing equations can be derived from eq.(3.7) as
Ao, 0, —0p Qu?(r,t) 5
T e (3:50)

where, o, = normal stress, oy = tangent stress, and u(r,t) = radial displacement.

The stresses, o, and oy, can be expressed as

Bu(r t)

o, = (A +26m) 240l | yulnt)
0 r (3.51)
i u(r,l) +(A.+,G.)u(:.l)

where A" = complex Lamé c-nstant of medium in boundary zone, and expressed as

r=-2 o 3.52
“T-w 3:82)

where v = Poisson's ratio, to be assumed a constant in the boundary zone and the

same as that in the outer medium,

Substituting eq.(3.51) into eq.(3.50), yields
) | ulr) 26 dulnd) ()
£ G ror ™

[ . 3 _ Funt) ’
Fl0+267) P V=R (353)

Within the boundary zone, A* and G* are variable, eq.(3.53) can be written as

Pu(rt) 10u(rt) L - dOC+2G7) dulrt) d\ulrt) Pu(r t)
B troar anntlTTn or Tdr ¢ "Tad
(3.54)
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Under harmonic excitation
ot

u(r,t) = u(r)e

eq.(3.54) becomes

:
fofe 40, Moyl JO_SOR (e o
in which ia
o= WIT g,

=21 -v)/(1 - )
=\ll-v)
and denoting
sty
8= (L2

With reference to eq.(3.14) and (3.15), eq.(3.36) can be written as

(2? —I)F+[2:+ - Id: r[(i:—z),+q, +Blu—0

The displacement,u, can be expressed by a power series as

=
u= At
=

(3.36)

(3.57)

(3.38)

(3.59)

(3.60)

Substituting eq.(3.60) into eq.(3.59), the coefficients in the power series can be de-

termined as

41
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4 o @BHDA+ad,
=2a(B + 1)y + aH(B+ 24, +ad,

Ay = 60

with denoting
81 =(n-1)(2n-3)a
62 = (n—2)(n = 3)(a® - 1) + (n — 2)(2a® — 1) + Ba® + |

(3.62)
3 = —a[(n = 3)(2n - 3) + 2B + n})}
=(n=2)(n-4)+ B+ -1
the general term can be expressed as
A= S1An_1 + 82459 + 83An3 + 64Ang (3.63)

n(n ~ 1)a?
where Cy and C; are complex-valued constants which can be determ....:d by consid-

ering the boundary conditions. Finally, the normal stress is
P du o u o
a,=_;:(,\ +2G )d1+/\ = (3.64)

Quter Medium

The governing equations of the homogeneous medium can be derived from eq.(3.53),
but A* and G* are taken as constants. For the axisymmetric, volumetric deforma-
tion associated with the propagation of P-wave in the radial direction, breathing
vibration, the equation is

Bu(r, 8, 1y 1 _ dunt)
o Ty Iz Bars

O e e )| (3.69)

where A} = complex Lamé constant of medium in outer zone. For harmonic excita-

tion, eq.(3.65) becomes
ﬂu(r)+ Ldul)

|
T + () =0 (3.66)



This is a modified Bessel equation, for which its solution is
u(r) = CyKy(sr) + Cihy(sr) (3.67)

where I; and K; are the modified Bessel function of order one, the first and second

kind, respectively; Cy and C, are pl lued of i ion which can

be determined from the boundary conditions.

The boundary ditions are : the displ litude is unity at the bound-

ary of the hole and displacements vanish as r — co; displacements and stresses are
equal at the interface between the two zones. To satisfy these boundary conditions,

Cy =0 must hold. Eq.(3.67) can now be written as
u(r) = C3K,(sr) (3.68)

At the boundary of the hole, r =r,,and £ = 1

% (3.69)
and likewise eq.(3.60) becomes
Ci+Cin+ At 4o+ Azt =1 (3.70)

At the interface of the two zones, r = R and z = 0, from egs. (60) and (68), it
follows that

Ci = C3K1(sR) (3.71)
From eq.(3.1) and eq.(3.52) one knows that A* = A; and G* = G at the interface
(r = R), and the normal stresses o, = o,, then

o

C2=Cof T (sR) + ’—:-lﬁk,(m)] (3.72)

m
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From eq.5(3.70), (3.71) and (3.72). C.C; and Cy can be obtained. Since the dis-
placement amplitude is unity at r = r,, the radial stitfness is defined as

ks = =Girmrn) (3.73)
then, &, can now be determined from

kr:z(l—u)ﬂ du v 1

pri R e i

-2 r, )

Separating the real and imaginary parts of eq.(3.74), the complex-valued radial
stiffness can be written as

b= %[s,. +ia;Sn) (3.75)

The real part Sy, is a dimensionless stiffness factor and Sy, is a damping factor. The
values of Sy, and Sy; depend on frequency a,, damping ratio 4, and Poisson’s ratio
v; also on the boundary zone parameters, such as, modulus ratio Gi/G,, thickness

ratio ¢, /r, and damping ratio J3;.

The stiffness and damping factors, Sj; and Sjz, obtained from the present anal-
ysis are compared with those obtained for the Novak and Mitwally idealizations
(1988), as shown in Fig. 3.10. These solutions are for a soil layer with tm/r, =
2.0,G;/G, = 0.5,3 = 0.1,5, = 0.05 and Poisson’s ratio,» = 0.25. The mass for the
inner zone is accounted in both Nevak's solution and the present solution, however,
the properties of soil for the inner zone were assumed to be constant in the former so
that resulting in pronounced oscillations ( undulations) caused by wave reflections
from the interface between the two media. The results from the present analysis

are smooth curves over a wide range, indicated that the wave reflections from the
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interface are alleviated because it embodies a continuous variation in soil properties
in the boundary zone with smooth (continuous derivatives) transition into the outer
zone. For comparison, the results for a homogeneous layer are also included in Fig.

3.10.

To illustrate the influence of parameters involved, the stiffness and damping fac-
tors for a radially excited layer are plotted in Fig. 3.11 as a function of a; for several
different cnmf;ina!ions of tm/re and Go/Gi, with material damping, 3; = 0.1 and
3, = 0.05. It should be noticed that the undulations caused by wave reflection van-
ish as expected in all of the cases presented. The radial stiffness factor, Sy, increases

with the level of G,/G; and is smallest for the homogeneous case (G,/G; = 1).

The effects of Poisson's ratio on the radial impedances of the soil layer are shown
in Fig. 3.12. Several values of Poisson's ratio are selected, » = 0.0,0.2,0.3 and 0.4,
respectively. It can be seen that the stiffness factor, Sy, reduces with Poisson's
ratio increasing, but the damping factor,S,, increased with v increasing for higher

frequency range.
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Figure 3.10: Comparison of radial impedance functions by different solutions,
tmfrs = 20,Gi/Gs = 0.5,v = 0.25,5; = 0.landfl, = 0.05; (A) stiffness factor

5], and (B) damping factor Sia.
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Figure 3.11: Radial impedances for a composite layer with material damping 5; =
0.1, B, = 0.05 and different parameters: (A) for tm/ro = 0.5; (B) for tm/ro = 1.0.
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Figure 3.12: Effects of Poisson’s ratio on radial impedances of soil layer; (A) stiffness
factor Sy, and (B) damping factor Sy;.
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3.4.4 Rocking Excitation

Within the Boundary Zone

In this case it is assumed that the particles of soil move vertically up and down
along the cylinder axis. This case is very similar Lo the vertical case. The assump-
tions are u = v = 22 = 0. The governing equation can be derived from eq.(3.7) for

the rocking vibration of the composite layer

cge G TR, COZe_ 2 e

The mass density for the inner zone is assumed to be equal to that of the outer

zone.
Assuming
w = w(r) cos B (3.77)
€q.(3.76) can be written as
R ) @79)

%t
in which
T G

Substituting eq.(3.14) and (3.13) into eq.(3.78), yields

o

-1 dw - Aoy _
(z —1)——+[2:+—Tw]1+[m+(;)lw—° (3.80)
Denoting
a=mR/r,



b= (k)
Eq.(3.30) can be rewritten as

dw =1 dw L2
LIl R e [ - ;
(' ”dzf +[2z + x—a]:.h: +[(1_")2 +blw=10 (3.81)

The displacement,w, can be expressed by a power series as

w= f: Auz” (3.82)

=0

Substituting eq.(3.82) into eq.(3.31), the coefficients in the power series can be de-

termined as
4 = C
A = O
2
g o A2y (383)
2a
A —2abA, + a?(b + 2)A, +6ad,
¥ 6a?
with denoting
§1=(n—1)(2n—3)a
82=(n-1)(n-2)a-(n-2)+ba® +1
(n = 1)(n —2)a* — (n—2) @s)
al(n - 3)(2: - 3) +25)]
n=2)n-4)+b-1
the general term can be expressed as
Ay SlAn-i + 62402+ 83An-3 + 8440 (3.85)
(n=1)a?
where C) and C; are ple lued which can be d ined by

considering the boundary conditions.



Finally, the shear stress is
o dw m . dw
7= Gl cos0 = ~ 67 ()3 s (3.36)

Quter Medium

The governing equation for the rocking vibration of the homogeneous medium
can be derived from eq.(3.7), but G* is taken as constant in the outer zone. The
equation is derived as

dw L dw
fzw Hoge - A+ Dw(e) =0 (3.87)
This is a Bessel equation for which its solution is

w(§) = C3Ky(Aef) + Cali(Aof) (3.88)

where /; and K, are modified Bessel functions of order one of the first and second

kind, respectively; C3 and C are compl lued of i ion which can

be determined from the boundary conditions.

The boundary conditions are : R
w=1 atf=1ladf=0

w, =0 até =20

wi=w, atf=R/r, (389
n=1 atf=R/r
To satisfy these boundary conditions, Cy = 0 must hold.
Eq.(3.38) can now be written as
w(§) = Cskir(Aef) (3.20)
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At the boundary of the hole. vields
Ci+Caxy+ Apf + o+ Aurf = 1 (3.91)

At the interface of the two zones, § = R/r,, so £ = 0. From eq.s(3.82) and (3.90).
it follows that

C = C;l\'.(,\,rﬂ) (3.92)
Using 7, =7, at the interface it follows that

N R R
o =Gl Kl ) + —":—EK.(A,;)] (3.93)

From eq.s(3.91),(3.92) and (3.93), Cy,C; and C; can be calculated.

The impedances of the composite layer for rocking vibration is defined as

(3.94)

where M, = is the soil reaction moment to the motion of the cylinder, expressed as
2r
M=o / r2r, cos 68 (3.95)
k

and the rocking amplitude of the cylindér is ) = w(r = r,)/(rocos0). then, k, can

now be determined from

dy
e (396)

ko = 7r2Gum(1l + i26;
It is desirable to express ky in the following form

ky = 7r2G\(Su1 + ia,Su2) (3.97)
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where S, and S, are dimensionless factors that depend on a,,tn/r,,Gi/G,. 3 and
3,. The factors S, and S,; are referred to as the rocking stiffness and damping of

soil, respectively.

To ill the influence of involved, the stiffness and damping fac-

tors for the layer in rocking vibration are plotted in Fig. 3.13 and Fig. 3.14 as a
function of a, for several different combinations of tm/r, and G,/G;, with material
damping, § = 0.1 and 3, = 0.05. It should be noticed that the undulations caused
by wave reflection vanish as expected in all of the cases presented, owing to the
model of non-reflective interface. The influence of the material properties in the
boundary zone is sensitive to the stiffness of the soil layer. The stiffness factor,
Si, increases with the level of G,/G; and is smallest for the homogeneous case

(G./G, =1).

The effects of material damping on the impedances of the soil layer are shown
in Fig. 3.15. Several values of damping ratio are selected, in one case both 3; and
3, are zero and in other cases 3, = 0.05 and J3; = 0.05,0.1 and 0.2, respectively. It
can be seen that the stiffness factor, S, reduces with material damping increasing,

but the effect to damping factor.S,;, is small in this case.



"
] =025 Sw
ViG,/Gin 4 tnfre =0 s,
3
é 4
< Go/Gi
3 T 4
v 2
i
1
&
0
0 2 3 4
(A)
as T
! =05
3 Miaans nfrad
3
a 28 GilGi=4
3
§
B
no 2 3 4
(8) Frequency G

Figure 3.13: Rocking impedances for a composite layer with material dsmping ; =

0.1, B, = 0.05 and different parametess: (A) for tm/r, = 0.25; (B) for tn/r, = 0.5.
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Figure 3.14: Rocking impedances for a composite layer with material damping §; =
0.1, , = 0.05 and different parameters: (A) for tm/ro = 1.0; (B) for tm/ro = 2.0.
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Figure 3.15: Effects of material damping on rocking impedances of soil layer, (A)
stiffness factor Sy;, and (B) damping factor Sy,.
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3.4.5 Horizontal Excitation

Within_Boundary Zone

With the assumption that the vertical displacement are negligibly small in com-
parison to the radial and tangential displacements. that is w = 0. the equilibrium
equation under horizontal excitation can written as

0o, \ 10  orooe _ Bu
o o v e
Oy 18og | 27, 4]

T trmt P

A general solution involving variations of soil properties in the boundary zone proves

(398)

to be extremely difficult because of cross coupling between the radial and tangen-
tial displacements, and higher order differential equations that result from above
equations. Hence, in this study it is assumed that A} and G are constants in the

boundary zone under horizontal excitation.

For uncoupling of eq.s (3.98), the potential functions, & and v, are introduced,

such that
o210
or " rof (3.99)
105 oo
Trog o
Assuming .
& = Gcos fe™!
) (3.100)
@ = ~Usin fe



the governing equation may be derived as

d*® 1dd 1
F+EE-[«\,’.+E,—)0=0

3.1
L2 1dv o, 1 K100
@ tia - a0

in which 3
Aom G
BV s
\ (3.102)
An= -
R-9i(-m)
Eq.(3.101) is modified Bessel equations, and the solutions are
{ & = Cih(Aag) + CaKi(Ma§) (3.103)
W =Gli(A§) + CaKi(ME)
where Cy, (7, C; and C) are complex-valued constants which can be determined by
considering the boundary conditions. The boundary conditions are:
u(€) =1 atfé=1and0=10
vf) =-1 até=1landl= 3
u§) =0 at{=R/r,
w§) =0 atf{=R/r,

(3.104)

From eq.(3.99), yields
6) = Gl Lo(4a€) = hOhad)] - CalAaKlAnd) + FR00]
- Cagh{h) - Cog KiM) (3105)

and

HO) = ~Cig h(haf) — Crghr(0a6) + ColAL(AE) - )
- CUAKANG + M) (3.106)
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denoting

Ails(Aar) = [i(Aur)
~[MKo(M) + Ki(A)]
=h{\)

~ki(A)

=h(\1)

~Ki(A)

L) = B(A)
—INEo(A) + Ky (M)
_A,.l,(x..:—f) + ’ifl.(x..;’%)

Mk a )+ e kon )

%A’.(A..S)
R, 1y R
ML)+ L0

s 4y i Te R
.\,I\.(A.:)+EK|(ME)

(3.107)

Satisfaction of these boundary conditions shown in eq.(3.104) leads to the follow-

Geo

for the ¢-*arinination of the

ing systems of al;

g



an Gy @y 4y G 1
an an az; au G -1
= (3.108)

a3 ay as ay Cy

a1 ag a3 ay | [ Gy

The following expressions for the stress amplitudes can be obtained from equations
(3.8) and (3.9) by making use of eq.s (3.99) and (3.100):
2
o _[\—("“ "+")+£"—“1msa
3 T

e D90 Rk
W

(3.109)

)sin @

in which the expressions for the derivatives of displacement can be derived from eq.s

(3.105) and (3.106):

e =GOk + ZnE) - 5‘—‘1,0..5)1 Gl + K () + SRt

+Ca[ L6 - -"Ia(/\ 3] +CA( S KA 5)+ K,(,\‘()I (3.110)
:—; =Cnls,ll('\nt)——l(/\-n£)1+Cz[ 1\x(A‘:E)+;'K-(X.-€)I+C:[(«\‘+ )08
- ?'l-ll-é)] [N+ E'—,)l\'u(l-f) +?'K.(f\.£)l (3.111)
The impedance function of the inner medi=:m is defined as
Ky & — [’(,,, :nsﬂ—r,.sinﬂ)r.dﬂ
= "G.'[E—”E—(H—'h) e “Jle=s (3.112)



where 7 and 7, are the same as those defined in eq.(3.57).
Outer Medium

For the outer medium eqs (3.98) to (3.101) again hold with the changes of
parameters from inner zone to outer zone.Then, the governing equations shown in
eq. (3.101) should be rewritten as

£ 18
§df

€
d’v L L
Trer -t ,)w_u

4+ ,] =0

(3.113)

in which 5
A o 1a,
T Vitig,
Ao

Y ey

The solutions for eq. (3.113) are
{ @ = Cih(Aa§) + CaKi(Aar)

(3.114)

(3.113)
W = C3hi(Af) + Cukir(Ao€)

where Cy, C3,C; and Cy are complex-vued constants which can be determined by
considering the boundary conditions. The boundary conditions are:
u() =1 até=R/r,and §=0
v(§)=-1 at{=R/roand §=3
u(€) =0 af=oo
v(€) =0 até=o0

Since the displacements and stresses decay with horizontal distance £, the constants

(3.116)

Cy and C3 must be zero. The solutions shown in eq. (3.115) can now be rewritten
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® = Cy(Aaf)
; @3.117)
=GRS
From eqs (3.99) and (3.117) the displacement amplitudes can be derived as
- L L
u(§) = =Cafda Ko(Aui) + 7 Ki(Naré)] = Caz Kr(Ao€)
B £
(3.118)

L. . Lo
v(§) = -szlh(:\uf) = Ca[AKo( M) + EM(M)]
The constants C; and C; can now be solved from the boundary conditions shown
ineq. (3.16).
Similar to eq. (3.109), the expressions of the stress amplitudes for the outer don can

be written as

Apdu | uv, | 2Gdu
a,_{—r:(E+ _5—)"'7,_45]“”0
(3.119)
Gsdo _utv
=T )sind

in which the expressions for the derivatives of displacement can be derived from eq.s

(3.118):
di 2 As 2 = A
% = CilO% + K00 + 2 KL + Clgg KiDE) + 7 Ka08)

. .
2 = ClE K00 + 32 K0 + GO+ KOG + 0]

3
(3.120)
The impedance function of the outer medium is defined as
ar
Ky ® o~ /' (0, cos — 7,8in 0) RdD

Gy dv  odu 284U
= (=2)[— —p?— - ——|le=r/r. 3121
"GN g (L +ai)= lle=r/es (a121)
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where 7 and 7, are the same as those defined in eq.(3.57).

Using the separate impedances of the inner and outer media given by eq.s (3.112)
and (3.121), the joint impedance of the combined medium in the horizontal vibration

KaKua
ekl ey 3.122
FatKa (az)

It is desirable to express k, in the following form
ky =2rGi(Su + iaiS,) (3.123)

where S, and S, are dimensionless factors that depend on a, ¢, /7o, G/ G,y f; and
B8, The factors S, and S, are referred to as the horizontal stiffness and damping

of soil, respectively.

The stiffness and damping factors, S, and S, obtained from the present anal-
ysis are compared with those obtained for the Novak’s idealizations, as shown in
Fig. 3.16. These solutions are for a soil layer with tn/r, =0.35,Gi/G, = 0.25,5; =
0.1,3, = 0.05, and v = 0.25. The mass density for the inner zone is taken to be
equal to that for the outer region in the present solution, while for the Novak's so-
lution the mass density for the inner zone is assumed to be zero. It can be observed
that the difference between the two solutions appears with increasing of frequency
a;, although the difference is small. It can also be noticed that undulations caused
by wave reflections from the interface between the media can not be observed in the

lower fi region ( f

a; = 2.0). For comparison, the results

for 2 homogeneous layer are also included in Fig. 3.16.
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To illustrate the influence of parameters involved, the stiffness and damping fac-
tors for a horizontally excited layer are plotted in Fig. 3.17 and Fig. 3.13 as a
function of ¢;, maximum frequency a; = 2.0, for several different combinations of
tm/r, and Go/Gi, with material damping, 3 = 0.1,3, = 0.05 and Poisson’s ratio
v = 0.25. It should be noticed that the undulations caused by wave reflection are
not obvious in the lower frequency region, except for the case with larger thickness (
tm/ro = 1.0). The influence of the material properties in the boundary zone is sensi-
tive to the stiffness and damping of the soil layer. The stiffness factor, S,;, increases
with the level of G,/G; and is smallest for the homogeneous case (G,/G: = 1).
The damping factor, S,2, at lower frequency levels becomes larger as the magnitude

of G,/G; increases; however, at higher frequencies this tendency diminished. This

trend in damping response can be explained by reference to the fact that the radia-
tion damping becomes more dominant (relative to the material damping) at higher

frequency levels.

The effects of material damping on the impedances of the soil layer are shown in
Fig. 3.19. These solutions ate for a soil layer with tn/r, = 0.5,Gi/G, = 0.5, and
v =0.25. Several values of damping ratio are selected, in one case both 3; and §,
are zero and in other cases 3, = 0.05 and 3; = 0.05,0.1 and 0.2, respectively. It can
be seen that the stiffness factor, .1, reduces with material damping increasing, but

the damping factor,S,s, increases with material damping increasing.

The effects of Poisson’s ratio on the horizontal impedances of the soil layer are
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shown in Fig. 3.20. These solutions are for a soil layer with tn/r, = 0.5,G,/G, =

0.5.3, = 0.1. and 3, = 0.05. Several values of Poisson’s ratio are selected, v =

1.0,0.15,0.3 and 0.43, respectively. It can be seen that the stiffness factor, Sy,
increases with Poisson's ratio increasing. and the damping factor,S.z, also increases

with v increasing.

Although values of layer impedances for a, > 2 are needed infrequently in prac-
tice, it-is nevertheless desirable to examine their behavior for this frequency range.
In Fig. 3.21 are given representive plots of S,; and S,z for a soil layer with values

of a; up to 4. These solutions are for the soil layer with tn/r, = 1.0,v = 0.25, 3;
0.1,3, = 0.05; in one case G,/G, = 0.25 and in another case G;/G, = 1 (homoge-
neous). Note that, for the higher values of a;, the curves for inhomogeneous layer
are undulatory. [t can be explained that \; and G are assumed to be constant in
the inner zone, resulting in undulations. As a consequence of the discontinuity of
material properties at the interface of the two zones, wave reflections occur at the

interface.

A general solution involving variatiops of A} and G} proves to be extremely diffi-
cult because of cross coupling between the radial and tangential displacements, and
higher order differential equations resulted. Hence, constant A and G} are assumed
for the case of horizontal excitation in this study. Even under this assumption it is
theoretically more complicated to derive than the other cases dealt herein, such as

the cases of vertical, torsional, radial and rocking vibration.
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Chapter 4

Stiffness and Damping of Single
Piles in Layered Media

4.1 Introductior:

The main assumptions are: The soil is composed of horizontal layers that are homo-
geneous, isotropic, and linearly viscoelastic with material damping of the frequency
independent hysteretic type. The soil properties are constant within each layer but
may be different in individual layers. To account approximately for the effects of
slippage and nonlinearity, the boundary zone around the pile is assumed as described

in last chapter.

The pile is vertical, linearly elastic, and of circular cross section that may vary
stepwise at the interface of the layers; it is bonded to the soil. If the pile head lics
above the grade or the pile is assumed to be separated from the soil, the boundary

zone are modeled as void.

The soil reactions acting on 2 unit length of the pile are described by complex
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soil stiffnesses as shown in last chapter. associated with vertical, horizontal, rocking
and torsional displacements of the pile. The complex stiffness of one single pile can
be written as

K, = Ky +iwC, 1)

in which K,; = real stiffness of one pile, ;, = the coefficient of the equivalent vis-
cous damping, i = /=T, w = circular frequency and j = direction of vibration. The
stiffness constant, K, and damping constant, Cj, can be determined experimen-
tally or theoretically. The latter approach is preferred because experiments, though

very useful, are difficult to lize. In the th ical hes, dynamic stift-

ness is generated by calculating the forces needed to produce vibration of the pile
head having a sole, unit amplitude in the direction considered. These correspond

ta vertical vibration, horizontal vibration, and rotation in vertical plane and torsion.

4.2 Element Stiffness Matrices

A pile is divided into beam elements along with the soil layers and the soil below
the pile is an elastic half-space, as shown in Fig. 4.1. The properties of each element
are fully described by its stiffness matrix which is complex due to energy dissipation
in the soil and includes the properties of both the pile and the soil. Because the
pile is axisymmetrical all the stiffness are not coupled and can be described by three

independent matrices.
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Figure 4.1: Pile embedded in layered media and node numbering

Vertical Vibrati
With the vertical i d: of the

posite layer described by eq.(3.33), the

differential equation of motion in the vertical direction is

Puw(z,t uw(z,t Bu(z,t;
m"‘;('f)+c'”é:) W(t)

By A== + kyw(z,t) =0 (4.2)

where m = mass of the pile per unit length; C' = coefficient of internal damping of
the pile; £, and A = Young's modulus and the cross sectional area of the pile; k, =
vertical complex stiffness ( impedance ) of soil; w(z,¢t) = vertical amplitude of the
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pile; z = depth of the pile; and ¢ = time.

For harmonic motion w(z,t) = w(z)e™!, the complex amplitude w(z) can be
determined as
_z —
w(z) = By cosnE+Bgsmn£ (4.3)
in which By and B; = integration constants; h = height of the element of the pile;

and the complex frequency parameter, A, is

k, - iCuw) (4.4)

The dynamic stiffnesses are defined by the boundaties w(0) = 1,w(h) = 0 and

w(0) = 0,w(k) = 1; from these conditions B, and B; can be determined.

The amplitude of the axial force, ¥, is

du(z)

Ma) = BATEE (4.5)

The stiffnesses being external end forces are ky = —V(0) and k; = N(h).
After substituting for w(z), the element stiffness matrix in the vertical direction

becomes

_EpA_[coti  —csch
Ik"]_TH[—cscﬁ ot ] (+6)

The end forces Ny, N; corresponding to end displacements wy, w, then are

{%}-wfn} wn

-

ot



and ional Vibration

Horizontal vibration of a pile can be iated with both hori | 1

and rotation of the head. This horizontal vibration meet the horizontal soil reaction
given by eq. (3.123) and the rotation reaction, eq. (3.97). For slender piles, the
latter can be ignored and the equation of the horizontal vibration, u(z,t), is

Bulzt) | dul=. Pulet) | P
m—':,,(; )+c—"f;‘ Y, g1 "(’) + "(“)+ku(.,4)— (4.8)

in which &V, = static axial force (load of the pile): and E,I = bending stiffness of
the pile. (The value .V, is positive if it acts downward.) This inclusion of VN, is
accurate with end bearing piles; with friction piles, N,, varies with depth but is less

important and can be neglected.

With harmonic motion u(z,t) = u(z)e"!, the complete solution for the ampli-

tude, u(), is

u(z) = By cosh b + Bysinh b2 + Bycosay + Businay (4.9)
in which the complex frequency parameter d,b are
I ———
e xf Nu 1A FRRCRTY & il
ab= ﬁ{ L5 et = k=il (4.10)
in which Ng = 72E, /A%,
The moment, M, and horizontal transverse force, H, are
M(z) = 45,141;":’
® (4.11)
&
H(s) = -E, I'P""’ N,,—“fl

76



Thei i for the cal ion of stiff are given by end transla-

tions uy = l,u; = | and end rotation w; = 1, = | applied one at a time. The
subscripts | and 2 refer to the upper and lower ends of the element, respectively.
Then, the element stiffness matrix for the horizontal translation and rotation is

1 1 1 -1
wh gh gh wh

1.1 O |
wh R Eh gh

(k] = Epl : i i =t (4.12)
P b ph &
T e
FF’ ﬁF' A_IF‘ EF'A

in which dimensionless functions £; = F(a,b) are
FlaB) = %W + ) (@sinh b~ bsina)

Fy(@,b) = —(a* + 5*)(bcosh bsin @ — asinh bos @)

@ + 5%)(cosh b — cos a)

) (4.19)
;ai;{(ﬁ’ — @?)(cosh beos @ — 1) + 2absinh bsin a)
Aab)= %ﬁ“‘iz +B)(bsinh b+ asina)
Fu(@,B) = SLab(a® + §%)(a cosh bsin@ + bsinh Beos @)
where
$ = 2ab(coshbeosa — 1) + (a* ~ b?)sinh bsina (4.14)

The soil resistance enters the element properties only through frequency parameters

a,b.



With the stiffness matrix given by eq. (12). the element end forces and end

moments due to displacements uy; and rotation wy,; are

Hy w
Mo Uy -
H [ =k, (1.15)
My 23

Tip Reactions

The reactions of soil acting on the tip can be described approximately by the
viscoelastic half-space solutions. They can be written in the following form:

Vertical stiffness:

kut = Gyra[Cur(ao, v, D) + iCa(8o, v, D)) (4.16)
Horizontal stiffness:

ku = Gyra[Curl@s. v, D) + iCua(ac, v, D)} (4.17)
Rocking Stiffness:

kye = Gyra[Cur(ao.v, D) + iCya(ao, v, D)) (1.18)

in which r, = pile radius at the tip; G, = the shear modulus of the soil below the
tip; @, = raw/V; where ¥ = shear wave velocity of soil below the tip. Dimensionless
paramcters C can be taken from available solutions by Veletsos and Verbic (1973),
Luco (1974), and others. Details of the dimensionless parameters C' are given in

Appendix A. The cross stiffness is less significant and can be neglected.
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With eq.s 16-13 the stiffness matrix of the soil (element) underlying the pile tip

ke 00
[k]={0 ke O {Lm
0 0 ky

4.3 Complex Stiffnesses of Pile

The complex stiffnesses (impedance {unctions) of the whole embedded pile are de-
fined as external forces that have to act at the head of the pile in order to produce
just one unit vibration amplitude of the head at a time. These stiffnesses of the
whole pile can be established by means of the overall (structure) stiffness matrix
[K] that relates forces and displacements at all joints of the pile. The elements
of the structure matrix, K,,, are obtained as a sum of element (member) stiffuess
having the same subscripts. For a one-dimensional structure such as the pile the
structure stiffness, Kj,, is just a sum of stiffnesses of two elements meeting at a joint.
Therefore, the structure stiffness matrix is banded in addition to he symmetrical.
The structure stiffness of the tip is a sum of the iowest element stiffness and the

correspoading tip stiffness, eq.(19).

As the vertical and horizontal stiffnesses of the pile are not coupled they can be

determined independently.

ertic:
For the vertical direction, the structure stiffness matrix [K,] is assembled from eq.s

(3) and (19). Using this stiffness matrix, the complex vertical stiffness of one pile
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at the head, K}, is obtained from these equations

K} w =1

0 wy

0 1 =1[K) wy (4.20)
0 Wayst

in which the bandwidth of [K,] is equal to 2.

‘The node numbering is indicated in Fig.4.1. In eq.(20), w3 to wy4, are unknown
and will be denoted as a vector of unknown displacement, A. Matrix [K,] can be

partitioned with the submatrices denoted by capital letters. Then, eq.(20) can be

{ 5\’"‘ }= { A } (21

From the lower equations, displacements
A=-B'Cx1 (4.22)

rewritten as
A T
c B

Then, from the first equation
Ki=Ax1+CTA=4x1-CTB"' x 1 (4.23)

After evaluation of eq.(23) it is convenient to split the complex stiffness, /%, into its
real part (true stiffness) and imaginary part (damping) and introduce the constant
of equivalent viscous damping, c}. Thus, the complex vertical stiffness of one pile is

also

K =k} +iwe) (4.24)
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Introducing the dimensionless stiffness and damping parameters f,,. f,2. the real

stiffness of one pile
E

ki = realK}!
r

far (1.23)
and the constant of equivalent viscous damping

Ve, g JEGA
ol = Simagh} = —"/"—‘f", (1.26)

In these equations, Ay,ry = the area and radius of the topmost element of the pile,

respectively: and V, = shear wave velocity of soil in the lowest layer.
Hori Stiff £ Pi

The complex stiffness of the pile head in the horizontal direction is characterized

by three constants. They are K, iated with the hori: 1 lation of the
head, u,; K|, associated with the rotation of the head, ¥; and K}, = K}, due
to coupling between the end forces and mormnents. These constants can be found
from equations employing the structure stiffness matrix for the horizontal vibration
[K,]. This stiffness matrix is assembl-. from the element stiffness matrices given by

eq.(12) and the tip reaction matrix described by eq.(19).

With the structure stiffness matrix assembled, the complex stiffnesses of the pile
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at the head are available from equations

L R w=1 i w=0
Kl KL B=0 fm=1
GF 0 o) = & o (4.27)
0 i 0 v2 : L5
o i 0 Yt 1

in which the vertical dashed lines separate the two loading conditions. required to
generate the desired stiffnesses. The bandwidth of (K] is 4. In this approach, ex-
plicit mass and damping matrices need not be formulated as is the case with the
standard finite element method. The mass and damping of both the pile and soil
are contained in the stiffness matrices [K.], [K.], which ate, therefore, complex and

frequency variable.

The matrices in eq.(27) can again be partitioned into submatrices denoted by

capital letters to facilitate the solution. Then

KL, ¢ KL, arct|[1io
Ky KL || 0 i1 (4.28)
0 i 0 et Bllabay

This time the submatrix A is 2 x 2, Cr is 2 x 2n, and C is 2n x 2. The solution
of eq.(28) for the sought for stiffness, K, follows the same pattern as in the case of
vertical vibration, i.e., vector Ay,J\; are determined first from the lower equation

and, then, stiffness K" are calculated from the upper two equations.



After evaluation of the complex stiffnesses. K. these can be rewritten analo-

gously to eq.(24). Thus. the horizontal stiffness
KL =k, +iwd,
in which the true horizontal stiffness
B Eyl,
#, = reatkl, = Bl g,
L
and the constant of equivalent viscous damping
1
=

Ly Bk
w'l"mgl\w = r}V.f"

The rotatory stiffness
oy N
K}, =kl + iwchy
in which the true rotatory stiffness
2 El
kb, = realK}, = :_nf“

and damping constant

The cross-stiffness

in which the true cross-stiffness

kL, = realkl, = —2*

and the cross-damping constant

(.29)

(4.30)

(431)

(+1.42)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)



Finally. kL, = kL, and c}, = cl,.

The dimensionless parameters f are suitable for parametric studies. With one

homogeneous layer, they are also advantageous for presentation of pile properties.
With several different layers, a general presentation of dimensionless data is not
practicable and a direct calculation of k! and c! using a computer appears preferable

for any particular situation.

In this chapter, an example of the calculation of the di ionl

[ is given based on a particular case. The pile was a steel pipe with a diameter
of 133 mm and a length of 3.38 m, embedded in loose sand. The distribution of
shear modulus in sand is parabolic with depth, and the shear wave velocity of the
sand at the pile tip is 93m/s. The detail of the soil and the pile will be described
in next chapter. For this single pile, the dimensionless parameters, f,y, fy2, for
vertical vibration and fu1, fuz, for horizontal vibration are computed as shown in
Fig. 1.2 and Fig. 4.3, respectively. A boundary zone around the pile is assumed,
with tn/ro = 0.5,Gi/G, = 025, = U.1,3, = 0.05 and v = 0.4. For comparison,
the parameters are also computed based on Novak's solution. From Fig. 4.2 it can
be noted that the present solutions give higher stiffness parameter f,; and lower f,;
than Novak’s solution does. As described in last chapter, a non-reflective interface
is included in the boundary zone for the present solution and non-mass is assumed
for Novak’s solution. From Fig. 4.3 it can be noted that the horizontal parameters

Juts fua for present solution come close to those for Novak’s solution.
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Chapter 5

Dynamic Experiments of Single
Pile

Although there have been a large number of analytical studies on the dynamic
response, the published record of experimental data is rather scarce. In this study,
dynamic experiments on large-scale model piles with strong horizontal and vertical
vibration are described. The objective is to determine whether the basically lin-
ear theory can reproduce the behaviour of piles under strong excitation if suitable
adjustments of the input parameters are made. To this end, frequency response
curves and deflection curves of piles were experimentally established in the field for
different intensities of excitation and contact conditions between the pile cap and
the soil surface and compared with those calculated using the theories described in

chapter 3 and chapter 4.



Type Steel Pipe

Outer Diameter 133mm

Inner Diameter 12lmm
Moment of Inertia 4.84 x 108mm?*
Area of Section 2390mm?

Length 3380mm
Young’s Modulus 2.06 x 105V /mm?
Poisson’s Ratio 0.25

Damping Ratio 0.01

Specific Weight 7.65 x 7.65 x 1075 N/mm?®

Table 5.1: Pile Properties

5.1 Experimental Setup

The field tests of the single pile subjected to strong harmonic excitation were con-
ducted at the Institute of Engineering Mechanics, Harbin, China, as described by
Han and Novak (1988).

The pile was a steel pipe with a diameter of 133 mm and a length of 3.38 m. The
pile properties are given in Table 5.1. The pile was first place in a pit approximately
3.6 m deep and 1.5 m in diameter. The pile cap was a concrete block 200 mm thick,
770 mm long, and 690 mm wide with a mass of 250 kg. The exciter was fixed on
the cap; its mass was 120 kg. The center of gravity of the cap-exciter system was 3

mm below the cap surface.
The washed medium sand was then placed in the pit in 200 mm lifts after the
pile had been positioned in the centre of the pit. The sand was compacted in place

with a mechanical vibrator. Density and water content measurement were taken for
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each lift. In this way good contact between the pile and soil was secured.

Soil properties that are basic in dynamic analysis are the bulk density and the
shear wave velocity. Several types of static and dynamic tests were run in the labo-
ratory and in situ on the washed medium sand and the undisturbed natural deposit
around the pit. The static tests included specific gravity, density. and water content,
while the dynamic tests were triaxial and seismic cross-hole tests. The samples of
sand taken from the pit were tested under dynamic triaxial conditions in the labo-
ratory. The Young's modulus variation with strain and effective stress o, are shown
in Fig. 5.1. At a dynamic strain of € = 10~3, the shear modulus at the pile tip was
G, = 14.7MPa. With the mass density of sand p, = 1700kg/m?, the shear wave

velocity was V, = \/G,/p, = 93m/s.

The density and water content of the medium sand were uniform in every lift.
The properties of the backfill soil are given in Table 5.2. It is assumed that the

distribution of shear modulus in the sand is parabolic with depth.

The soil profile around the pit was established from ground surface to a depth
of 20 m. The soil is homogeneous sandy clay, with yellow and brown coloring. The
shear wave velocity of the undisturbed natural deposit was measured using seismic

cross-hole tests. The properties of the natural deposit are given in Table 5.3.
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Type Medium Sand

Bulk Density 67K N]m®
Dry Density 15.7K N/m?
Void Ratio 0.67
Moisture Content 0.07

Shear Wave Velocity 93m/s

Table 5.2: Properties of Backfill Soil

Depth ~ Unit Weight Void Ratio  Shear Wave

(m)  (KN/md) e Velocity (m/s)
0.0 - 20 33 0.78 185
20-5.0 16.3 0.95 179
50120 191 0.68 256

Table 5.3: Properties of Natural Deposite

The shear wave velocity of the clay outside the pit is about twice that of the sand
backfill and therefore the effect of the interface between the two soil media has to
be assessed. To approximate this effect the pile dynamic deflections were evaluated

for two cases: a b lly b

medium ising only the sand and a
composite medium comprising the inner zone of sand in the pit and the outer zone of
clay. For low dimensionless frequencies a,. typical of pile response, the difference in
the deflections were quite small. However, it is possible that the geometric damping
of the pile tested was smaller than it would have been in a horizontally homogeneous

medium. This question is discussed in more detail in the last part of this chapter.

Displacement pickups, strain gauges, and compressive stress transducers were
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Figure 5.1: Inverse value of sand Young's modulus vs strain
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Figure 5.2: Properties of pile and soil used in analysis
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Angle of Eccentric Masses. 05 3 1L
Exciting Force ( N ) 23977 3.79/% 6.15]"

Table 5.4: Magnitude of Horizontal Exciting Force

fixed along the pile shaft. Displacement and acceleration pickups were mounted on
the pile cap. A diagrammatic sketch of the pile and the arrangement of the instru-

ments are shown in Fig. 5.2a.

An exciter with two counterrotating eccentric masses was used to produce the
harmonic excitation. The magnitude of the exciting forces was changed by adjusting
the angle of the eccentric masses, 0. Several magnitudes of the exciting force were
selected in the experiment as shown in Table 5.4 ( f in the table is frequency of the
exciting force in hertz).

In the experiments, two types of contact conditions between the pile cap and the
soil surface were considered. In the first case, the pile cap rested directly on the soil

surface ( connected situation ) and two different excitation intensities were applied,

0 =5 and 8 ( the symbols § = 5, .nd 8. are used to identify this case later in
this chapter ). In the second case, the pile cap was situated 0.20 m above the soil

surface ( unconnected situation ) and the excitation intensities were § = 5,8, and 14.

Because of the nonlinearity of the soil-pile system, the magnitude of exciting
force and the sequence of loading would affect the dynamic characteristics of the
system. The steady-state response of the pile to harm-nic forces was measured with

and different
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5.2 Pile Response under Horizontal Excitation

perimental Horizontal Response

Using the equipment and technique described, response to horizontal excitation was

measured.

Three frequency response curves obtained with 6 = 5, 8 and 14 for the uncon-
nected case are shown in Fig. 5.3 and denoted by the angle 8 of the exciter. The
horizontal displacements of the pile cap vary with frequency and indicate a sharp
resonance peak in all cases. The maximum displacement measured on the top of
the cap amounts to 2-3 mm, the maximum acceleration amounts to 0.8-0.9 g. For

steady-state vibration this represents very intense motion.

In a linear system the resonance peaks occur at one frequency, no matter what
the excitation intensities is. However, Fig. 5.3 shows that with increasing excitation
intensity, the measured resonance peak shifts from about 7.6 to 4.7 Hz. This indi-
cates a reduction of stiffness -proportio;ml to f*-to almost one-third of the highest
value associated with the lowest excitation intensity. Also, the vibration amplitudes
are not proportional to excitation intensity at all frequencies. These are typical
features of nonlinear vibrations. However, the individual response curves observed
intersected each other and are not centered around a joint backbone curve, Omega,
as is inherent to a system whose properties are defined by one nonlinear character-

istic of the restoring force and one nonlinear characteristic of nonlinear damping.
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An example of such theoretical response curves is shown in Fig. 5.4, This response
curve was calculated for one softening characteristic of the restoring force and non-
linear damping proportional to the nth power of vibration velocity with n < 1,
that is, with damping decreasing with vibration amplitudes, using the technique
described in Novak (1971). Such nonlinear characteristics of the restoring force and
damping are, in general, indicated by Fig. 5.3. The amplitude increments grow with
excitation intensity, and are comparable to the amplitude increments of the theo-
retical system (Fig. 5.4) at the frequency of the linear system, w,. The presence of
the response curve intersections in Fig. 5.3 and their absence in Fig. 5.4 suggest
that the restoring forces of the real system do not follow one nonlinear character-
istic. Rather, it seems that with increasing excitation intensity the restoring force
characteristic stabilized after many cycles of load application and to a high degree
linearizes within a range of peak amplitudes, A; with a further increase in excita-
tion intensity the restoring force again stabilizes but on a lower level of stiffness.
These notions are further supported by observations made with horizontal repeated
loading and by the analysis of the vertical response later herein. The features of the
response observed suggest that a linear theory might reproduce the main nonlinear
features of the steady-state response if the input parameters are suitably adjusted.

This possibility is explored in the next paragraphs.

Comparison of Experimental Horizontal Response with Theoretical Predictions
With the stiffness and damping constants of the pile established in last chapter, the

response of a pile-supported footing (cap) to dynamic loading can be predicted, as

described by Han (1989). Under horizontal excitation the coupled horizontal trans-
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lation and rotation are produced on the cap. The boundary zone around the pile

included in the theoretical model gives the analysis considerable versatility.

The shear modulus distribution of the sand backfill is assumed to be parabolic
along the pile shaft, which is consistent with the effect of confining pressure apparent

in Fig. 5.1, and the soil below the pile tip is assumed to be homogeneous. For

different excitation intensities, the soil properties in the boundary zone and at the
top of the sand backfill are adjusted so that the theoretical response curves approach
the measured data. It should be explained that the theoretical response curves are
back-calculated results, but not the "predicted” results because there is no way to
predict the parameters needed for the boundary zone model. From the comparison
with the back-calculated results, engineers can understand how soil properties vary
with different excitation intensities. In practice when the back-calculated parameter
values are not available it is still possible to calculate upper and lower bounds on the
nonlinear response. The characteristics of the pile and soil used in the calculations
are given in Fig. 5.2. The material damping of the weak zone is of less important
than the thickness of the weak zone apd its shear modulus. The comparison of

experimental results with theoretical response curves is shown in Fig. 5.3 and 5.5.

From Fig. 5.2t can beseen that the soil properties in the weak zone and at the
top of the backfill varied with the intensity of excitation and the change of the contact
condition between the pile cap and the soil surface. As the excitation intensity
increases, the shear modulus ratio, Gi/G,, is reduced, whereas the thickness ratio,

tn/To, and the material damping are increased (G; and ty are the shear modulus
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Figure 5.3: Theoretical and experimental horizontal response of pile cap for different
itation i ities (pile cap d from soil)
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Figure 5.4: Theoretical response curves of a syst.em with nonlinear restoring hrce
and nonlinear damping ( n <1 ) fori ion intensity (p = exci
moment/mass = m.e/m)
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Figure 5.5: Theoretical and experimental response curves with different excitation
intensity and contact between cap and soil
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and thickness of the weak zone, respectively). For the connected situation (9 = 3,
and 8,), the soil shear modulus at the top of the backfillis reduced with the increase
in excitation intensity. When the connected situation change; *n the unconnected
situation (from @ = 8,200 = 8, G,/G, decreases, tn/r, increases, and material
damping increases.//

Using the ratio G,/G, =0 in the topmost layer, the separation belween the pile

and the soil is accounted for. For the situation, the ion was

caused by strong excitation. The depth of the anticipated separation, e,, ranges

from 6.8d for 0 = 8 to 9.8d for § = 14, where d is pile diameter.

From Figs 5.3 to 5.5 it can be seen that as the excitation intensity increases,

from § = 5 to 14, the resonant frequency of the pile decrease and the resonant

fispl increases. M hile, for the same magnitude of exciting forces, the
resonant frequency of the unconnected situation is markedly lower than that of the
connected situation. Apparently, for the single pile tested, the cap contributed to
the stiffness and damping of the pile, as was also found by Novak and Grigg (1976);
however, in practice this observation should be applied with caution because the
sand under the cap may settle more than the piles, particularly with end bearing
piles. For embedded caps the soil reactions acting on the vertical sides can generate
a significant amount of damping and be quite veneficial.

Pile Stiffness and Damping

The theoretical stiffness and damping coefficients of the pile for the horizontal and
rocking directions are shown in Fig. 5.6 and 5.7, respectively. The subscript u

indicates horizontal translation while ¢ stands for pile head rotation (rocking).
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The stiffness is almost frequency independent, as would be expected, because of
low dimensionless frequencies the pile dynamic stiffness is known to be close to
the static one. Fig. 5.6 and 5.7 also show the pile damping coefficienis. These
rapidly increase as frequency decreases. This is primarily due to the conversion of
frequency-independent soil material damping to equivalent viscous damping coefti-

cient ¢ = 23/w.

To provide a dimensionless measure of pile damping, the damping ratio can be
evaluated from the stiffness and damping coefficients as cw/(2k). These damping
ratios are shown in Fig. 5.8 and 5.9. The damping ratios increase with frequency but
the rate of increase is lowest for the strongest excitation. It can also be seen from
Fig:s 5.6 to 5.9 that the damping coefficients and damping ratio mostly decrcase
with excitation intensity and thus with vibration amplitudes for frequencies higher
than the lowest resonance frequency observed (4.7 Hz). This is further illustrated
by Table 5.5. In soils, an increase in damping with strain is usually assumed. This
apparent discrepancy suggests a growth in pile separation with vibration amplitudes
and the weakening of the soil around the pile, as reflected in the necessary reduction

in the shear modulus in the weak zone.

Pile Deflections

The measured deflections of the pile varied with frequency and excitation in-

tensity. A ison of the d data with the th ical curves is shown

in Fig. 5.10 and 5.11 for € = 8 and 14, respectively. The th ical ch
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Figure 5.6: Pile horizontal stiffness and damping coeffticient
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Figure 5.10: Comparison of theoretical curves and measured deflections along pile
shaft (excitation 6 = 14)
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Figure 5.11: C ison of th ical curves and d deflections along pile
shaft (excitation § = 8)

Excitation Test 0=5 0=8 6=8 §=1

Resonance Frequency (Hz) 122 85 56 4.7

Damping Ratio Horizontal 0.163 0.110 0.090 0.0%

Rocking  0.080 0.070 0.063 0.060

Table

: Damping Parameters of the Plle
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tics of the pile and soil used are the same as those used in the response analysis. It

can be seen that the measuied data agree well with the theoretical deflection curves.

Comparing the dynamic deflection with the static deflection of the pile. it ap-
pears that the effective pile length is about 13.5d under strong horizontal excitation.
and about 11.0d for static loading. That is, the effective pile length for dynamic
loading is slightly longer than for static loading, although the horizontal displace-
ments along the pile length caused by dynamic loading may be larger than those

due to static loading.
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Figure 5.12: Theoretical and experimental response curves for repeated loading
(8 = 5, cap separated)
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Effect of Repeated Loading

The soil around the pile softens and separates under repeated loading. Accordingly,
the stiffness, damping, and dynamic response of the pile vary with repeated loading.
To obtain data on these effect, dynamic experiments on a single pile under repeated
loading were also conducted. Another pile was embedded in another sand pit, with
the properties of the pile and soil, as well as the test conditions, being the same
as before. The contact condition between the pile cap and the soil surface was of
the two types, that is, connected and unconnected. For each case, the pile was

excited three times, from low to high frequency, with the excitation intensity kept

the same in all runs. The ison of d data with th ical response
curves for the connected and unconnected cases is shown in Fig. 5.12 and 5.13,
respectively. The measured resonance peaks shift to lower frequencies and become
sharper with loading repetition, indicating reduction in both stiffness and damping.
With judicious choice of input data, the theoretical response curves agree with the
experimental results quite well. the reduction in theoretical stiffness and damping
with load repetition can be seen from Table 5.6. Because of the gap around the pile
deeper, soil nonlinearity, and possibly slippage under the pile cap, the pile stiffness
is reduced in the connected condition a%o.

The difficulty with the inclusion of the weak zone in the analysis is that its pa-
rameters are difficult to assess beforehand. Thus the question arises of whether a
correction for »ile separation in the form of a pile free length would not be sufficient
to account for the reduction in pile stiffness and damping observed in the experi-
ments. The need for a free length was already observed by other investigators, for

example, Novak and Aboul-Ella (1978). Novak and El-Sharnouby (1984), and Roes-
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Connection Connected Unconnected
Order of Ist 2nd  3rd |Ist  2nd  3ed
Excitation
Resonant i3.83 126 122 |76 6.3 a7
Fequency (Hz)
Stiffness Horizontal 743 630 3.89 [3.04 178
K.(KN/mm)
Ro:ki!n; 275 2.64 259 [229 208 1.96
Kyl08(KN — mm)
Damping i | 0.193 0.185 0.162 | 0.081 0.064 0.060
Ratio Rocking 0.081_0.080 0.078 [0.060 0.054 0.052

Table 5.6: Dynamic parameters of pile under Repeated Loading

set et al. (1986).

For the d cap, the between the pile and soil is
e, = 3.8d for the first excitation, e, = 5.3d for the second, and ¢, = 6.8d for the
third. The separation lengths required in the analysis to provide a good fit with
the experimental data for the different resonant amplitudes measured are plotted
in Fig. 5.14. Analyses both with and without the weak zone were employed and
gave satisfactory results, although the weak zone allows finer tuning. The separation
lengths needed increase with displacement amplitude and are greater if no weak zone

is idered. The i ion is about 10 pile di The tion

is given in terms of diameter but, in general, the absolute depth must be a basic
parameter because it controls the confining pressure. With the pile diameter of 133

mm the maximum separation length was thus 1.33 m.
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5.3 Pile Response under Vertical Excitation

Experimental Vertical Response

After the testing of the pile under hori: itation, vertical excitation was ap-

plied, with all the other experimental condiiions remaining the same.

The excitation intensity was increased stepwise and three frequency response curves,
shown in Fig. 5.15, were obtained. Sharp intersecting resonance peaks are indicated
like the ones shown in Fig. 5.5. The maximum displacement measured on the top
of the cap is about 1.4 mm and the maximum acceleration reaches about 1.3 g.
Markedly nonlinear features are again manifested particularly by the drop in the
resonant frequency with the increase in excitation intensity (), but this drop is less

than it was under horizontal excitation.

In the case of vertical excitation, the nonlinear features of the measured response
curves can be studied more easily because this response can be treated in one de-
gree of freedom (S.D.0.F.) and is, therefore, quite amenable to linear analysis. Such
analysis is employed in the next section.

Evaluation of the Vertical Response
(1) Nonlinear S.D.O.F. analysis

To identify the parameters of the soil-pile system from the measured response
displaying nonlinear features, the inverse problem of nonlinear vibration has to be
approached. This means that the system mass, stiffness, and damping have to be

established from the experimental response. To this end, the methodology formu-
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lated in Novak (1971) is employed. This procedure assumes that system stiffness is
independent of frequency: this is also usually assumed for slender piles in medium

soil in practical applications.

Assuming that the restoring force is nonlinear but the damping force is lincar
(viscous), the backbone curve, which defines the undamped natural frequencies £,

can be determined to a given response curve using the simple relation
2= G, (5.1)

in which, w) and w, are the frequencies corresponding to the points of intersection
between the response curve and a line passing through the origin of coordinates (see
Fig. 5.15). Intersecting the response curve by a trace of such lines, the backbone
curve ©(A) can be constructed to each response curve. These backbone curves are
plotted in Fig. 5.15. It can be seen that each response curve has its own backbone
curve, unlike the theoretical response curves shown in Fig. 5.4. This indicates that
the stiffness characteristic of the system varies with the overall level of vibration

intensity rather than being unique. This is confirmed by establishing the stiffness

"

char. istics cor curves.

The stiffness characteristic can be assumed to be of two types: A truly nonlinear
characteristic that is followed for all amplitudes A and a characteristic, F(A), that
is nonlinear but for every steady-state amplitude A linearized to give the equivalent

linear stiffness depending on amplitude A, that is,

K.(A) = F(A)/A (5.2)
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The latter assumption appears more suitabie and is adopted here. Then, for a

restoring force expressed by a power series

FIA) = by 4 ka2 4 kg A5 4 o b A 53
e i the amplitude-dependent natural f 45 e b
() = %’Q LA A kA4t kA (54)

in which m is the system effective mass.

The effective mass and damping can be calculated exploiting the geometric prop-
erties of the response curves. The mass and damping found are given in Table 5.7.
The value of the effective mass, m, is much greater than the total mass of the pile,
cap, and exciter, M. The apparent additional mass can be expressed in terms of

the coefficient
m-M

=

(5.5)

which is also given in Table 5.7. the additional mass is very substantial and decreases

with i i itation intensity, ing that partial separation of the pile

from soil might have occurred with higher excitation intensity. It seems that the

apparent mass increase results from the assumption that pile stiffness is constant,

that is, inde d In the i hes, no additional mass is

needed because soil mass 15 automatically accounted for, making the pile stiffness
frequency dependent. This effect can be quite strong, particularly for stiff piles
vibrating vertically and will be demonstrated in the last part of this paper.

With the mass pertinent to each response curve the restoring force characteristic
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Excitation Effective Mass Damping  Stiffness
Mass m(kg) Mass Coefficient Ratio 3 k(' N/mm)

1730 3.01 0.042 23.9
1350 2.05 0.060 15.7
993 1.24 0.075 7.39

‘Jable 5.7: Nonlinear vibration parameters of pile in vertical direction

follows from eq. (2) and (4) as
F(A) = AmQ? (5.6)

For the three response curves shown in Fig. 5.15 the corresponding restoring force
characteristic, caiculated by. eq. (6), are plotted in Fig. 5.16. A few observations
emerge: each response curve has its own characteristic, the overall stiffness markedly
decreases with increasing excitation intensity (8) but the nonlinearity of individual
characteristics is much less pronounced than the overall nonlinearity of the whole
set of the response curves. the latter observation is consistent with those made with
regard to the horizontal response and supports the assumption of linearization im-
plied in eq.(2).

The damping ratio derived from the response curves is also given in Table 5.7,
The damping found is much smaller than what would be expected for a lightly
loaded fully embedded pile and increases with excitation intensity. Under horizon-

This indicates

tal excitation, the damping di d with i
that the separation effect is somewhat less severe in the vertical vibration than it is

in the horizontal vibration and that slippage generating friction may contribute to
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Figure 5.15: Vertical pile response measured and back-calculated for three levels of

excitation intensity (w = 2xf)
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the increase in the vertical damping.

With the soil-pile system mass, damping, and restoring force characteristic de-
rived, the nonlinear response curves were back-calculated using the nonlinear theory
and are plone‘d as solid lines in Fig. 5.15. The theoretical nonlinear response curves
agree with the measured ones very well. Thus, a very good theoretical prediction
can be made assuming a nonlinear restoring force characteristic and a linear, viscous

damping whose constant depends on the peak amplitude.

(2) Linear soil-pile interaction analysis
The theoretical response curves shown in Fig. 5.15 were back-calculated using the
S.D.0.F. data derived from the experiments. Another task is to predict the pile
response on the basis of soil-pile interaction analysis and the properties of soil as
well as the the pile, as described in chapter 3 and 4. This interaction analysis
confirms that extensive pile separation must have occurred. This can be seen from

Fig. 5.17 in which the large 1 response is d with the

theoretical one. When no separation is assumed (curve A) the theoretical response
is heavily damped and the stiffness is ‘:ery high, bring the resonance peak beyond
the experimental frequency range. A large separation of 1.80 m, a weakened zone
around the pile, and a true mass of the system yielded curve B and a reasonable

with the d data. The di in the d. dant branches of

the response curves is due to the linear theory employed in this case, which cannot
give a perfect agreement with the actual nonlinear response over the whole frequency

range.
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Effect of I Size of Test Pi
Finally, it is of interest to examine the effect of the limited extent of the pit in which
the tests were conducted. The pit was filled with sand whose properties differed
from those of the surrounding soil. Consequently, an interface occurs between the
two media from which waves may reflect back into the pit, complicating the wave
pattern within the pit and creating what is know in analysis as the "box effect”.
To examine this effect, the vertical pile stiffness and damping were reanalyzed using
the model of boundary zone in which an annular zone is allowed for around the pile
with soil properties different from those of the outer soil. Because of the large extent
of the pit the mass of the inner zone (sand) was accounted for. The geometry and

notations for this analysis are shown in Fig. 5.18.

The dimensionless stiffness and damping parameters f,; and f,, defined in chap-
ter 4 are plotted in Fig. 5.19 and 5.20. The results are shown for three pit dimensions
characterized by the ratio of the zone thickness, im, to pile radius, ro, and the actual
soil properties of the site. Shown as solid line for comparison are the pile parameters
corresponding to homogeneous soil medium, that is, tm — co. The site tn/r, ratio
is close to 10. The presence of the interface can be seen to have only a small effect
on pile stiffness (Fig. 5.19) but has a profound effect on radiation damping. At low
frequencies the damping is slightly increased but at higher frequencies it is dramati-
cally decreased compared with that of the horizontally homogeneous medium. This
effect of the interface on pile damping is marked but is much less significant than

pile separation, as the response curves plotted in Fig. 5.17 demonstrate.
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The strong variation in the stiffness parameter f,; with frequency (Fig. 5.19) is
also of interest. It is close to parabolic and can be interpreted as k, — mw? where
ky is the pile static stiffness and m is the effective mass. Because the pile stiffness,
like ke, is assumed to be frequency independent in the 5.D.0.F. nonlinear analysis,
the frequency variation of the actual stiffness call for the inertia term, mw?, and

hence for additional mass as found in Table 5.7.
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Figure 5.18: Notations and geometry for pile in test pit.
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Figure 5.19: Pile stiffness parameter f,, for different test pit dimensions (Gi/G, =
0.25, i = B, = 0.10, p; = po,v = 0.4)
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Figure 5.20: Pile damping parameter f,; for different test pit dimensions (G;/G, =
0.25,4; = B, = 0.10,p; = p,,v = 0.4).
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Conclusions

Dynamic experiments with large-scale model piles subjected to strong harmonic ex-

citation in the field were conducted. The measured response curves are compared

with the theoretical curves. The comparison suggests the following conclusions:

1. Pile rcspnr;se at large amplitudes exhibits typical nonlinear features.

2. Consideration of a weakened zone around the pile and pile separation is necessary

for piles subjected to strong vibration.

3. Good agreement can be achieved between the experimental and theoretical re-

sponse curves when the characteristics of soil are suitably chosen, without resort to
truly nonlinear analysis. The excitation intensity and contact conditions between
the pile and soil and between the cap and soil surface change thestiffness and damp-

ing of piles.

The boundary zone model is an approximate approach rather than a rigorous non-
linear analysis for dynamic response of piles. How to select the characteristics of
soil and the parameters of the boundary zone depends on the particular conditions
of the soil-pile system, such as the installation of the piles, the properties of soil and
piles, and the excitation intensities.

The new finding in this study are that the general recommendations can be provided
as guide lines for engineering practice, such as the thickness of boundary zone and
the range of Gi/G,.

4. Under repeated loading, the stiffness and damping of single piles decrease, so
that the resonant frequency decreases and resonant displacernent increases.

5. The weak zone around the pile considered in the theory yields lower damping of

the pile-soil system than that evaluated without a weak zone. The damping values
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calculated in this way are closer to the experimental results.

6. Under dynamic horizontal deflections the effective pile length is slightly longer
than it is under static loading.

7. Dynamic experiments conducted in a test pit may be affected by wave reflections
from the interface between the soil in the pit and soil outside it. Damping of the
test body can be more affected than its stiffness.

8. Further research is needed to develop criteria for pile separation prediction and

pile nonlinear dynamic analysis.
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Chapter 6

Stiffness and Damping of Pile
Group

6.1 Pile-Soil-Pile Interaction

Piles are usually used in groups. The behaviour of the group depends on the dis-
tance between the piles. When the distance between the piles is large, say Len even
twenty diameters or more, the pile do not affect each other and the group stiffniess
and damping are simple sums of contributions from the individual piles. If, however,
the piles are closely spaced, they interact with each other and this pile-soil-pile in-
teraction or group effect exerts considerable influence on the stiffness and damping

of the group.

The stiffness and damping are most often evaluated using the properties of a
single pile and accounting for the group effect by means of the interaction factors.
The interaction factors are derived from the consideration of a group of two piles
and determine the displacement of one pile due to loading of the other pile. Details

of the interaction factor for the two-pile group are given in Appendix B. For static
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loading, the factors were presented in the formof charts by Poulos (1979, 1980) and
Butterfield (1971) and for dynamic loads by Kaynia and Kausel (1982). Dynamic

group effects may vary with frequency and group stiffness, and damping can be

either reduced or increased by pile-soil-pile i i The i ip between
the displacement, ug, of a group of n piles and the displacement, u, of a single pile

carrying the same load as one pile in the group can be written as

i
wg=uds
=

in which a, = the interaction factor defined as the ratio of the settlement of the rth

1)

pile dueto thesettlement of the reference pile ; @; = 1 and for static loads, the other
factors have absolute values smaller than unity. The sum of pile interaction factors,
¥ a,, can be viewed as a group interaction factor. Stiffness of the pile group, Kg,
is inversely proportional to displacement (fexibility)and, thus, for the horizontal or
vertical direction can be approximately written as
__K
Tar

in which K = Tk is the group stiffness calculated without the pile interaction

Kg (6.2)

effect; and k& = stiffness of a single (is."ated) pile. For a large group of piles, loads
are usually assumed to be carried equ;lly by pilesand T e, may be calculated for
the middle pile of the outer row of the long direction taken as the reference pile. A
similar but more consistent formula, which avoids the somewhat arbitrary selection

of the reference pile, can be written for translations as
Ko =kY Y a (6.3)
i
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in which ai, = the elements of the inverted matrix, [a;,]=!, with the n x » matrix
[ay] listing all interaction factor, ar, between any two piles, i and r; the diagonal

terms a;, = 1; and n = number of piles in the group.

The static interaction factors were derived based on Mindlin's displacement field
in the elastic half-space. To extend the interaction factors approach to dynamic
situation, Kaynia and Kausel (1982) presented charts for dynamic interaction. In
the solution, the soil reactions acting on the piles were evaluated numerically. The
dynamic interaction factor, aj;, is defined as

o= gk ©
where &4 is dynamic displacement of pile i due to load on pile j and é,,, is static
displacement of pile j due to its own load. Both dynamic and static displacements

are referred to the pile head.

Dynamic interaction factors are frequency dependent complex number, i.e., & =
@y + tay, having a real part a; and an imaginary part a;. Their values depend on,
ainong other factors, a,, E,/E,, and $/d where E,,d are the Young's modulus and
diameter of the pile respectively, E, is the soil Young’s modulus and § is the spacing
between the piles. Example of the dynamic interaction factors are shown in Fig. 6.1

for a limited range of parameters.
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Figure 6.1: Interaction curve for horizontal and vertical displacement of pile 2 due
to horizontal and vertical force on pile 1 (Kaynia and Kausel, 1982)
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6.2 Stiffness and Damping of Pile Group

The pile group stiffness may be established either through direct analysis or by
means of the superposition method. In direct analysis, all piles of the group are
considered to interact at the same time. In the superposition method, the inter-

- dored |

action between each two piles is and used to formulate the

flexibility matrix of the entire group. The superposition method which is used to
establish theoretical results in this study is computationally advantageous and was
shown to be in good agreement with the direct analysis for the case of floating
piles in a homogeneous soil. The application of superposition method is facilitated
through the use of pile-soil-pile interaction factors. With rigid caps, the complex
stiffness of pile group in different modes of vibration is calculated by applying the

pertinent boundary conditions.

Vertical Group Stiffness

From the definition of dynamic interaction factor in eq. (6.4), the compatibility
equation can be expressed in terms of flexibility as
{v} = flau{P} (6.5)

where f, is the static vertical flexibility of a single pile, { P} and {v} are the vectors

of vertical forces and vertical displacements at the pile heads, respectively, and [a],
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is the interaction matrix of the vertical displacements, written as

fooan..0m

Qe fy o in (6.6)

T O e 19
in which the ratio
£ =ik (6.7)
where f, = complex vertical dynamic flexibility of a single pile arid ai; = complex
vertical interaction factors between piles i and j. The boundary conditions in this
case arey; = 1 fori = 1,2,..., n and yield the vertical forces on the piles
Lo
= 7[“]»'(1} (6.8)
i
Denoting the static stiffness of a single pile £, = 1/f, and the complex elements of
of;" by ¢, the vertical force P, acting on pile 7 is
Pr= kY el (6.9)
1=
In above equation, ¢}) are to be seen as multiplied by unit displacements. The group

complex stiffness is the sum of all the vertical vertical forces, i.e.,

K¢ =¥ P, =L-}Z":is,",. (6.10)
=

=13

Horizontal Group Stiffness

For horizow.tal translations and rotations in either of the two vertical planes of
symmetry, the compatibility equation are
{8} = fulalu{P}a (6.11)
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where f, is the horizontal static flexibility of a single free-head pile, {P}u is the

vector of horizontal forces ; and moments M, at the pile head. i.e.,

(Pl = (MM .. H M

kMR (6.12)
The vector {6} lists the horizontal translations and rotations at the pile heads, i.c.,
{6} = [wtn .. wi . uninT (6.13)

Finally, [a}y is the matrix of i i flicients for the

and rotations. For a group of n piles, the matrix [a]y has n x n submatrices and is

Biy...Byi...Bia

el = | Bu-..Bi... B (6.11)

Bar.o By Bun

where each of the submatrices is 2 x 2,

4 l:}
Bi= (6.15)
LR
B, - 5 (6.16)
L3 8y
where s
fi=Lif
o (6.17)
3, = (/e i#5

In above, f, are single pile dynamic flexibility coefficients and r stands for u,3 or ¢

and indicates the horizontal translation, rocking or coupling directions, respectively.
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For horizontal stiffr the boundary conditions are u; = [ and ¥; = 0 for

= 1.2.---.n and the horizontal force on pile i follows from eq.(6.11) as
.
Hi=BY el 5, (6.18)
=1

wherek, = 1/f, and e/ are the complex elements of [a];'. The complex horizontal

group stiffness being the sum of all these forces becomes
n
S D B (6.19)
==t

‘The summation extends only over those elements of [a]7' that correspond to the

| forces iated with hori | displ i.e., elements with po-

sitions 2i — 1,2j — 1. In eq.(6.19), K, is static horizontal stiffness of a free-head
(pinned-head) pile but the group stiffness K is obtained for fixed-head piles. Al-
ternatively, the group horizontal stiffness can be calculated for both pinned-head
and fixed-head piles from eq.(6.10) with pertinent values of &, f, and [a]y substi-
tuted for either pinned-head or fixed-head piles.

Rocking Stiffness

Rocking group stiffness derived from two components: the moments required to
produce unit rotations at the pile heads and the moments resulting from the vertical
pile forces. The moments required to produce unit rotations at the pile heads are
obtained by applying the boundary conditions ; = 1, u; = 0(i = 1,2,--+,n) to eq.

(6.11). This yields the moment on pile ¢

n
My =k Y el (6.20)
e
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The vertical pile forces associated with cap rotation are obtained by applying the

boundary condition v; = | x z,(i = 1.2, -+, ) to q.(6.3) giving

In above, z, and z, are pile distances from the rotational axes. These forces produce

a moment on each pile

"
My = ka2 Y

7=

The rocking group stiffness is the sum of both moments shown in ¢q.(6.20) and

(6.22) over all pile heads, i.e.,
o o
KS =Ry Y ey +h Y Tehas, (6:23)
=)=t i=)=t
Cross Stiffness
This stiffness is obtained by applying the same boundary conditions, pertaining

to the horizontal translations and rotations, s in the previous case to ¢q.(6.11) and

evaluating the resulting horizontal pile forces. these become:

Hi=Fk, Z} e (6.24)
=
The group cross stiffness is the sum of all horizontal force on the pile heads and
hence
REL= zn} z‘: el (6.25)
and ’
KG = KS, (6.26)

The effects of pile-soil-pile interaction on the stiffness and damping of pile group

with a rigid cap are best illustrated by the group efficiency ratio (GER) defined as
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for stiffness

G
GER= K
nxk
and for damping
ce
GER= (6.28)
nxc

In above, KC,CC are stiffness and damping of group, respectively; k, c are stiffness

and damping of a single pile, respectively; n is the number of piles in the group.
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Chapter 7

Dynamic Experiments of Pile
Group

Because of the complicated nature of dynamic pile-soil-pile interaction, experi-
mental research is needed to verily the applicability of different theories. Although
there are a number of methods available for analyzing the dynamic response of pile
groups, very little information is available on the field validation of these techniques.
The lack of calibrated parameters makes it rather difficult to perform reliable anal-

ysis of practical projects using the relevant models.

Most of the previous work involving dynamic response of pile group has been
limited to small-amplitude vibration or linear vibration. A problem that is of more
practical interest, however, is the nonlinear response of pile group involving soil
vielding, pile slippage, or even partial sep.aration of the piles from the adjoining soil

(gap development) as they may occur under a reasonably stcong earthquake event.

Since the nature of pile-soil-pile interaction depends on the actual confining pres-
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sure and the contact situation between the piles and soil, full-scale tests on piles are

considered to provide valuable data for practical applications.

A comprehensive study involving both theoretical analysis and full-scale testing
of a pile group is described in this chapter. To investigate the dynamic behaviour
of pile group, the experiments on the full-scale pile group were carried out under
different, conditions: linear vibration and nonlinear vibration. In the cold region,
the ground surface may covered by a frozen soil layer. In order to investigate the
influence of frozen soil layer on dynamic behaviour of the piles, the experiments were
conducted first during the winter time when the surface was covered by a frozen soil
layer and then during the summer time when the frozen soil had completely thawed
out. In the next year, the nonlinear vibration tests on the pile group subjected to
strong excitation were done. For comparison, the dynamic experiments were also
carried out on two single piles which had the same properties and size as thcse in

the group and were placed in the same test site.

7.1 Experimental Setup

Subsurface Conditions

Field tests involving a full-scale pile group, comprising six piles, were carried
out at a site within the grounds of the Institute of Engineering Mechanics, Harbin,
China, as described by Han and Novak (1992). The subsurface investigation in-

dicated that the test site was underlain by a relatively homogeneous layer of silty
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Depth  Unit Weight Void Ratio Moisture Content

(m)  2(KN/m%) e
2 20.2 0.58
4 18.5 0.75
6 19.7 0.60
8 20.0 0.59

Table 7.1: Soil properties

clay with occasional lenses of sandy clay mixture down to a depth of 30 meters.
The ground-water table was established at 20 m below the ground surface. Both
laboratory and in situ tests were performed to characterize the dynamic and static
properties of the soil. Laboratory tests were performed on undisturbed samples
extracted at every one meter interval. The experiments included triaxial tests to
measure the variation of shear modulus and damping ratio with shear strain; specific
gravity; bulk density and Atterberg Limit tests. The dynamic in situ test consisted
of seismic cross-hole tests for determining the shear wave velocity of the soil. Fig.

7.1l the adopted in p ing the hole tests in relation

to the piles. Some of the measured soil properties used in this study are listed in
Table 7.1.

The variation of shear modulus and damping ratio against the shear strain are
shown in Fig. 7.2, which were measured in the triaxial system. The variation of
void ratio, e, degree of saturation, 5. and Atterberg Limits over the length of the
pile (i.e., 7.5 m) are shown in Fig. 7.3. The specific gravity, G,, was almost constant
throughout the depth, ranging between 2.66 to 2.68. The Poisson's ratio for the soil

is assumed to be 0.3.
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Unit Weight Moment of Inertia Modulus Poisson's Damping
A(KN/md) I(m*) Ey(MPa) Ratioy, Ratio, D,
255 505 x10— 196 x10' 025 001

Table 7.2: Pile properties

Pile Test Setup

The pile group under study was comprised of six cast-in-place reinforced concrete
piles; each pile was 7.5 m long and 0.32 m in diameter. Fig. 7.4 (a) shows the layout
of the pile group; the concrete cap was 2.5 m long (X - direction), 1.6 m wide (Y -
direction), and 0.5 m thick, weighing 49 kN and having a clearance of 0.25 m above
the ground surface. The arrangement of the piles was different for the X - direction
and Y - direction. Three piles were placed in one row in X - direction and two
piles in one row in Y - direction. Fig. 7.4 (b) shows the variation of shear wave
velocity and mass density of soil over the length of the pile. The properties of the
piles are shown in Table 7.2. The pile slender ratio, L/d = 23.4 and spacing ratio,
s/d = 2.81, where L is pile length, s is pile spacing, and d is pile diameter.

An exciter with two counter-rotating *centric mass was bolted to the pile cap to
produce the harmonic excitation as shown in Fig. 7.5. The exciting force is given
by

F(t) = meew’ coswt (7.1)
where m.e is the excitation intensity. w is the circular frequency, and ¢ is the time.
Different excitation intensities were used in the experiments, and the magnitude of

exciting force was changed by adjusting the angle of cccentric mass. Two exciters
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were used in the experiments respectively. The smaller one was used to produce lin-
ear vibration of the pile group and the larger one was used for nonlinear vibration.

The detail will be described in next section.

Two horizontal displacement pick-ups ( to measure the horizontal vibration)
and two vertical displacement pick-ups (to measure the rocking vibration) were
mounted on the pile cap. The steady-state dynamic response of the pile group
under horizontal excitation was measured under different frequencies and different

excitation intensities.
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Figure 7.1: Plan view of piles and cross-hole test
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Figure 7.5: Test setup for the lateral vibration of the pile cap
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7.2 Linear Vibration of Pile Group

A smaller exciter, weighing 1.18 kN, was fixed on the pile cap by foundation bolt to
produce the harmonic excitation in Y - dircction only. The active component of the
horizontal excitation was situated 0.2 m above the cap surface, and the center of
gravity of the cap-exciter system was 0.25 m below the cap surface. The magnitude
of exciting force was changed by adjusting the angle of eccentric mass, 0. Several
levels of excitation intensities, m.e, were used in the experiments, as indicated in
Table 7.3. As shown later, 6 is used to represent the excitation intensity. The
maximum horizontal amplitude of the pile group was measured to be 0.104 mm at
top of the pile cap; this is considered to be a small amplitude vibration, say lincar
vibration. Under horizontal excitation, the cap produced coupled horizontal and
rocking vibration. The horizontal and rocking response curves measured on the cap

of the group in different excitation intensities are shown in Fig. 7.6.

For linear vibration, the response curves of the group can be normalized. Nor-

malized response amplitude for translation is defined as:

A=(m/m.e)U (7.2)
and for rotation by:
b = (I/(meeZ.)|¥ (7.3)

where U and ¥ are the real and rotation, respectively; m and [ are the
mass and mass moment of inertia for the cap; Z. is the height of the horizontal

excitation above the center of gravity.
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Angle of eccentric mass  Excitation intensity

mee(kg.mm)
8
14 171
28 259

Table 7.3: Excitation scheme adopted for linear vibration

Comparison of experimental response curves with the theoretical predictions is
shown in Fig. 7.7 for horizontal and rocking vibration of the group. The theoretical
predictions were done in two way. In one way, the boundary zone is accounted for
cach pile in the group. The relevant parameters of the boundary zone are as fol-
lows: G,(G, = 0.1,tm /1o = 0.5, ; = 0.07, and B, =0.035. Poisson’s ratio of soil is

assumed, » = 0.3. The calculated curves are shown by solid line in Fig. 7.7.

In another way, the analysis were repeated with no regard to the boundary zone
cffects (i.c., the boundary zone was omitted). In this case, in order to properly ac-
count for the actual soil and pile contact, allowance was made for a free pile length
frquivalent separation between pile and soil) at the top of the pile. Separation of
the top segment of the pile from the soil can occur because of the very low confin-
ing stress that exists in soil layer within the close proximity of the ground surface.
Herein, the free pile length is taken as 0.5d, where d is the diameter of pile. This
is based or a specific case in an experimental site. In this depth, the sand backfill
is very loose in the sand pit. The dashed lines in Fig. 7.7 represent the theoretical
calculation without boundary zone. It can be seen that the solid lines (calculated

with boundary zone) agree with the measured results quite well, particularly for the
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horizontal vibration; the agreement with the dashed lines (without boundar:- zone),

albeit reasonable, is not as good as the case with the boundary zone.

In order to demonstrate the influence of pile-soil-pile interaction on the dynamic
response of the pile group, the dynamic response was calculated with interaction ef-
fects omitted. the comparison of horizontal and rocking vibration against measured
data is shown in Fig. 7.8. It can be seen that the theoretical predictions without
interaction (dashed lines in the figure) result in a higher resonant frequency and a
larger displacement amplitude. [t can also be noticed that another resonant peak
develops around the frequency of 100 Hz; this is primarily due to the second mode

of vibration for the coupled horizontal and rocking vibration of the pile cap.

The stiffness and damping for horizontal and rocking vibration of the pile group
are shown in Fig. 7.9, From this igure it can be seen that the stiffness of pile group

is reduced and damping is increased by the pile-soil-pile interaction, as was noted

previously. For i the fi response curves of stiffness and damping

for a single pile are included in Fig. 7.9.

The group efficiency ratio, GER, for the horizontal vibration is shown in Fig.
7.10. It can be noticed that the GER for stilfness is less than 1, implying that
the stiffness of the group is reduced by the pile-soil-pile interaction (by more than
50larger than | for damping, implying thal the damping of the pile group is increased

by interaction. Further more, it can be noted that the GER for stiffness and damping

is not constant, rather it varies with fi With the frequency range icl
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here, GER for stiffness is reduced and that for damping is increased with an increase

in frequency.

7.3 Nonlinear Vibration of Pile Group

A larger exciter, weighing 4.9 kN, was fixed on the pile cap by foundation bolt to
produce the harmonic excitation in both X - direction and Y - direction. The active
component of the horizontal excitation was situated 0.2 m above the cap surface,
and the center of gravity of the cap-exciter system was 0.24 m below the cap surface.

R ing the number of additional eccentric masses placed in the slotted steel

plate capping the exciter with L, Table 7.4 provides the range of excitation intensi-
Lies, m.e, employed in the experiments. As shown later, L is used in this section to
represent the excitation intensity that were applied in the nonlinear vibration tests.
"The maximum horizontal amplitude of the pile group was measured to be 1.4 mm (

or 4.4 x 1073d) at top of the pile cap, with a cor ion of

1.13g; this represents a rather intense harmonic vibration, resulting in a nonlinear
vibration of the pile group. Under horizontal excitation, the cap produced coupled
horizontal and rocking vibration. The hurizontal and rocking displacement response
curves measured on the cap of the group in different excitation intensities are shown
in Fig. 7.11 and 7.12 for X - direction and Y - direction, respectively. It should be
explained that the results for the excitation intensity L = 6 are missing from Fig.
7.11 and 7.12 because of problems encountered in measuring the rocking vibration

for this case.
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No. of additional mass Excitation intensity

m.e(kg.mm)
0 472
L 887
2 1360
6 3870

Table 7.4: Excitation scheme adopted for nonlinear vibration

from the measured response curves shown in Fig. 7.11 and 7.12, it can be ob-
served that the resonance peaks reduce with increasing excitation intensity and the
vibration amplitudes are not proportional to excitation intensity at all frequencies.
These are typical features of nonlinear vibration. The detail nonlinear features of

the group vibration will be described in the following.

"To depict the nonlinear response theoretically, the boundary zone concept, which
accounts for yielding of soil around the pile, was incorporated into the linear-elastic-
based mathematical model. This model provides for the gradual expansion of the
yicld zone as the excitation level increase. Tables 7.5 and 7.6 show the parameters
of houndary zone chosen for matching the theoretical results with the measured

response curves for the X- and Y-direction tests, respectively.

As can be noted from Tables 7.5 and 7.6, the damping ratios of inner and outer
zoues remain unchanged for the cases studi~! 's in the case of linear vibration;
thickness of the boundary zone, however, vari's o~ the cases considered. From the

comparison of the parameters of boundary zone in linear vibration and in nonlinear



vibration. it can be observed that for the excitation intensity L = 0 the thickness of
the boundary zone is red uced from 0.3r, for the lincar case to 0.3 r, for the nonlinear
case. It is also of interest to observe that the boundary zone behaves in a stiffer
manner after having been yield during the experiments that were conducted a year
earlier in tesli‘ng the pile group under linear vibration conditions.

In matching the measured data, allowance had to be made for the pile separa-

tion. For instance, for the strongest excitation used (L = 6), the separation between
the pile and soil, denoted by /,, was 310mm(0.97d) and 350mm(l.1d) for tests in
the X- and Y- direction, respectively. [t should be mentioned that the separation
lengths could not be physically measured yet in the field at present; the values given

here were inferred by using a trial-and-error technique of hing the theoretical

and measured response curves. The separation length between the pile and soil (free
pile length) depends on the vibration amplitude of the pile and the soil properties.
Based on large-scale tests repoited by Han and Novak (1988) involving strong vibra-
tion (nonlinear) of steel pipe piles in loose sand, curves relating separation length
to vibration amplitude were empirically developed. These curves, along with those
obtained from the full-scale tests in clayey soils described in this chapter are shown

in Fig. 7.13.

Comparison of the experimental response curves with the theoretical predictions
is shown in Fig. 7.14 for X-direction excitation and in Fig. 7.15 for Y-direction. It
can be noted that the theoretical predictions agree with the measured results quite

well for both horizontal and rocking vibrations. It can be concluded from these
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Excitation Modulus Thickness Damping Damping Poisson’s
Intensity ~ Ratio Ratio  Ratio  Ratio  Ratio

L Gi/G, tm/ro _ Inner,D; Outer,D, v

0 0.2 0.3 0.07 0.035 0.3

1 0.1 0.3 0.07 0.035 0.3

2 0.1 0.6 0.07 0.035 03

6 0.1 0.9 0.07 0.035 0.3
Table 7.5: Boundary zone for nonlinear vibration in X-directi

Excitation Modulus Thickness Damping Damping Poisson’s

Intensity ~ Ratio  Ratio  Ratic  Ratio  Ratio
L Gi/Gy __ lm/ro _ Inmer,D; Outer,Dy v
0 0.1 03 0.07 0,035 03
1 0.1 06 0.07 0.035 0.3
2 0.1 0.9 0.07 0.035 0.3
6 0.l 0.9 0.07 0.035 0.3

Table 7.6: Boundary zone parameters for nonlinear vibration in Y-direction
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tesults that the employed mathematical model, incorporating a boundary zone, is
capable of capturing the nonlinear vibration of a pile group. The results show that
the resonant frequency of the pile group reduces and the resonant amplitude in-
creases as the excitation intensity increases. For instance, when the excitation level
is increased from L = 0 to L = 6, the resonant frequency of the pile group reduces
from 27 Hz to 16.2 Hz for the X-direction text and from 24 llz to 15.8 Hz for the

Y-direction test.

The theoretically determined horizontal and rocking stiffness of the pile group
under different excitation intensities are shown in Fig. 7.16. It can be noted that for
both horizontal and rocking modes of vibration, stiffness of the pile group decrcases
as the excitation intensity increases. The reduction in stiffness of the pile group
as the excitation intensity increases is mainly due to development and growth of
the yield zone of soil. These reductions are quite pronounced. For instance, hori-
zontal stiffness of the pile group reduces by almost half ,for both X-direction and
Y-direction, when the excitation intensity increases from L =0 to / = 6. This re-
duction can principally be attributed to an increase in the thickness of the boundary
zone and the soil-pile separation effects. As can be expected, there is an appreciable
difference in the rocking stiffness between X- and Y-directions at all excitation lev-
els. This difference stems from different pile arrangements in these directions (see

Fig. 7.4).

Some of the salient features of the nonlinear vibration of the pile group are listed

in Tables 7.7 and 7.8 for X- and Y-direction, respectively. The stiffnesses and damp-
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Excitation Resonant Horizontal Rocking
intensity  frequency Stiffness Damping  Stiffness Damping

L (Hz) (MN/m) ratio,D: (102MN.m) ratio,Dy
0 27 119 043 10.1 0.056
L, 24 106 0.34 9.58 0.030
2 22 91 029 8.87 0.029
6 16.2 33.0 0.20 7.98 0.004

Table 7.7: ‘Theoretical dynamic behaviour of the pile group in X-direction

Excitation  Resonant Horizontal Rocking
intensity  frequency ~Stiffness Damping  Stifiness  Damping
L (Hz)  (MNJm) ratio,Ds (10*)MN.m) _ratio,Dy
0 24 T4 034 540 0.039
1 22 97.7 0.29 4.97 0.039
2 20 87.7 025 4.67 0.039
6 158 54.0 0.20 431 0018

Table 7.8: Theoretical dynamic behaviour of the pile group in Y-direction

ing ratios shown in these tables correspond to the resonant frequency for the first

mode of vibration of the pile group.

From the parameters shown in Tabies 7.7 and 7.8 and the response illustrated in
Figs 7.11 to 7.16, it can be concluded that the resonant frequency of the pile group
reduces and the resonant amplitude increases as the excitation intensity increases.
Horizontal stiffness and rocking stiffness of the pile group reduce as the excitation
intensity increases. The reasons may be that increases in excitation intensity result
in widening of the boundary zone and, at higher levels, separation of piles from the

surrounding soil. It can be noted that the damping ratio of the group reduces for
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both horizontal and rocking modes of vibration as the excitation intensity increases.
This trend can be attributed to the fact that development and spread of a weakened
zone of soil and a concomitant pile separation result in a reduction in the radiation
damping (at higher {requencies, radiaticn damping is the predominant component

of damping).

The range of parameters of the boundary zone is recommended as guide lines
for engineering practice : the thickness of boundary zone within 0.5r, or 1.0, and
G/G, within 0.5. As an example consider the experiments where excitation 0 = 8,
the measured horizontal displacements were shown in Fig. 7.6. The same param-
eters were used as in Fig. 7.7, i.e., tn/ro = 0.5,5; = 0.07 and f, = 0.035, but
G;/G, = 0.1,0.25 and 0.5 were taken to obtain different theoretical response curves
as shown in Fig. 7.17. From the comparison in Fig. 7.17, it can be seen that the
response curve for G;/G, = 0.1 is the upper bound and the curve for G;/G, = 0.5

is the lower bound. The range for G/G, is 0.1 to 0.5.

7.4 Summary and Conclusions

A comprehensive study involving both theoretical analysis and field testing on full-

size pile group was undertaken. Field tests were performed on a pile group comprised

bedded

of six cast-in-pl: i { concrete piles, in a relatively h
P P!

silty clay i The for matching the observed field

data were made using the approach of dynamic interaction factors. 'To properly

account for soil yielding under strong vibrations, provisions were made for the in-
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bl

clusion of a weakened zone in the theoretical model. R good ag
was obtained between the theoretical predictions and the field-measured data. The
findings from this study have provided some insight into the influence of pile-soil-
pile interaction on the dynamic response of pile groups. These findings include the

following:

(1) Dynamic response of the pile group under strong lateral excitation exhibits
typical nonlinear features; for both horizontal and rocking modes of vibration, stiff-
ness and damping ratio of the pile group reduce as the excitation intensity increases.
This in turn results in a reduction of the resonant frequency and an increase in the
resonant amplitude. For the case studied horizontal stiffness of the pile group under
the strongest excitation intensity was found to be reduced to almost half of that
arising from the lowest excitation intensity; this observation indicates that the pile

group response in a nonlinear manner.

(2) Horizontal stiffness was fuund not to be appreciably affected by the pile
group configuration. As to be expected, rocking stiffness was found to be strongly
dependent upon pile group configuration. For the case studied, rocking stiffness in
the X-direction (comprised of three piles in each row) was almost twice that in the

V-direction (comprised of two piles).

(3) Over the fr range employed, the pile-soil-pile i ion results in a

reduction in the stiffness and an increase in the damping of the pile group.
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(4) From comparison of the theorctical predictions with the iicld-measured re-
sults it was deduced that, under moderate levels of excitation, both pile-soil-pile
interaction effects and soil yielding play a significant role in the overall dynamic re-

sponse of pile groups. Inclusion of the mathematical aspects related to these effects

are, therefore, in ical models used for

such
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Chapter 8

Influence of Frozen Soil on Piles

Partially frozen subsoil conditions, such as the frozen of a 0.5 m thick layer just

below the surface, can be encountered in large regions of the world, particularly in

most of Canada during the winter months. G i i are

confronted with problems concerning the design and construction of structures on
sites underlain by permalrost, ice or simply frozen soil layers. The general prac-
tice under these conditions is to use pile foundations for the support of above-grade
heated structures. Although a considerable body of analysis and field observations
is now available to support some of the techniques thal have been proposed for the
static design of piles in frozen soils (c.g., Nixon, 1978, 1984; Nixon and McRoberts,
1976; Morgenstern et al., 1980 and Crowther, 1990), no field measurements arc

available for the dynamic response of piles in frozen soil.

8.1 Pile Group

To study the influence of a frozen soil layer on the dynamic response of a pile group,

a similar set of experiments as described in the last chapter was performed during
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the winter months when the ground surface was covered by a layer of frozen soil,
0.35 m thick. The shear wave velocity of the frozen soil layer was established by
employing the surface wave method, and the ineasured shear wave velocity of the
layer was 540 m/s which, incidentally, is about four times greater than the unfrozen

portion just beneath it.

The smaller exiter was used in Y-direction only, and the excitation intensities
were the same as in linear vibration tests as shown in Table 7.3. In this case, due
to the increased soil resistance resulting from soil freezing, the maximum horizontal
displacement that could be achieved (with the employed exciter system) was only
0.023 mm. For such small displacements and hence strains, it was considered inap-

propriate to allow for either soil separation or yielding in the frozen soil layer for

d b | response curves of

the analysis. The | and rocking di

the pile group for different excitation intensities are shown in Fig. 8.1.

The comparison of experimental response curves with the theoretical predictions
(approach of dynamic interaction factor) is shown in Fig. 8.2 for horizontal and
rocking vibration of the pile group. Because of the much higher resonant frequency
and the limitation of the exciter, the resonant peak could not be obtained. However,
the results, at least over the portion for which data were available, show a satisfac-

(ory agreement with the measured response.

In order to assss where the resonant frequency for the pile group with a layer

of frozen soil would occur, the theoretical calculations were extended to a frequency
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of 100 Hz. These results are shown in Fig. 8.3 for the horizontal and rocking vibra-
tion. For comparison, the results for the case without frozen layer as described in
preceding section are also plotted along with the measured data. From this figure it
can be seen that the resonant frequency for the group with frozen soil layer is much

higher than that without the frozen soil

The stiffness and damping of the group with and without the frozen layer is
shown in Fig. 8.4. From this figure it can be seen that the stiffness and damping
of the pile group with the frozen soil layer are much higher than those without the
frozen soil. For instance, the horizontal stiffness of the pile group is increased by a
factor of eight as compared to the case without frozen soil. From these observations
it can be concluded that the presence of even a thin layer of frozen soil (in the
order of 1/20 of the pile length) can have a profound influence on the response of
pile group, as was demonstrated by a significant reduction in displacements and an

increase in the resonant frequency.
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8.2 Single Piles

For comparison with the pile group, the dynamic experiments were also conducted
on single piles which have the same properties and the same size as those in the pile
group, and placed in the same site as shown in Fig. 7.1 The cast-in-place rein-
forced concrete pile was 7.5 m long and 0.32 m in diameter, capped by a 0.3 m thick
concrete block with 1.1 m long by 0.9 m wide. The pile cap had a clearance of .02
mand 0.1 m above the ground surface under frozen ground and thawed conditions,
respectively, weighing 7.25 kN. The smaller exciter, as shown in Table 7.3, was fixed
on the cap by foundation bolts, and the centre of gravity of the cap-exciter system
was 0.1 m below the cap surface. The active component of the horizontal excitation
was situated about 0.2 m above the cap surface. The steady-state dynamic response
of the single pile under horizontal excitation was measured under the condition with
frozen soil layer and without frozen soil, respectively. In the case with frozen soil,
vhe thickness of frozen soil layer was 0.4 m and its shear wave velocity was measured

to be 540 m/s.

The horizontal response curves for the single pile without the frozen soil were
measured and shown in Fig. 8.3, under excitation intensities corresponding to

0 = 8,14 and 28. The i displ litude and leration on top

of the pile cap were measured to be 1.25 mm and 1.2 g, respectively. From the
measured response curves shown in Fig. 8.5, it can be scen that the resonant peaks
reduced with the increase of excitation intensities, indicated that nonlincar response

occurred. The nonlinearity of dynamic response of the single pile will be discussed
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Jater in this section, The horizontal response curves for the pile in the presence of
a frozen soil layer under two excitation levels corresponding to § = 8 and 28 were

measured and shown in Fig. 8.6. The

on the cap was only 0.051 mm. Because of the much hirher resonant frequency and
the limitation of the exciter employed, the resonant peaks could not obtained in the

case with frozen soil.

For the case without frozen soil, two approaches are employed for analysis of
dynamic response of the single pile. In one approach, the boundary zone around
the pile is accounted for. The weakened zone is assumed with Gi/G, = 0.1, tm/ro =
0.5, = 0.04 and B, = 0.02. Since nonlinear response occurred, it was considered
reasonable to allow for pile separation in the analysis. Using a trial-and-error tech-
nique, different separation lengths were chosen for each excitation intensity until the
optimum match between the theoretical and experimental results was obtained. In
this way, the separation lengths, /,, are 0.15 m, 0.19 m and 0.27 m corresponding to

0 = 8,14 and 28, respectively. C ison between the d and

calculations, as seen i1 Fig. 8.7, shows a close agreement at all excitation levels,

As another approach, the weakened zone is not accounted for. In the absence of
the yielded zone, a much larger pile separation (relative to the previous case) has to
be required to provide a close match with the observed data. In this way, the sepa-
ration lengths, /,, should be 0.32 m, 0.36 m and 0.44 m corresponding to 6 = 8,14
and 28, respectively. Fig. 8.8 illustrates the comparison between the calculated and

observed data for the three levels of intensity. It can be seen that the measured
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results agree with the calculated response curves with the larger pile separations

employed in analysis.

In the case with frozen soil, the maximum measured displacement was only 0.051
mm. For suci\ small displacements and hence strains, it was considered inappropri-
ate to allow for either soil separation or yielding in the analysis. Fig. 8.9 depicts the
comparison between computed and measured response of the pile. The results, at
least over the portion for which data were available, appear to satisfy the measured
response quite well. In order to assess where the resonant frequency for the soil sys-
tem underlain by a layer of frozen soil would occur, the theoretical calculations were
extended to a frequency of 100 Hz. These results, for excitation levels corresponding
to § = 8 and 28 are shown in Fig. 8.10 and 8.11, respectively. For comparison, the
calculated response curves for the case with on frozen layer also plotted along with
the measured data. It can be seen from these figures that the resonant frequency for
the pile with frozen soil layer is much higher than that without the frozen soil layer.
The theoretical results also indicate that a secondary mode of vibration develops at
approximately 100 Hz for the case with 1., frozen soil, which is primarily due to the

coupled horizontal and rocking vibratinn of the pile cap.

The theoretical horizontal stiffness and damping coefficient of the pile for both
cases with frozen soil layer and without frozen soil are shown in Fig. 8.12. It can
be noted that the pile stiffness in the case with frozen soil layer is much higher than
that without frozen soil. In the case without frozen soil, pile stiffness decreases with

increasing excitation intensity; however, with the frozen layer, stiffness remains al-
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Excitation | Resonant Soil-pile system, il ion/pil
Case intensity, | frequency | Horizontal response Jdy)

(Hz)

Stiffness, K| Damping | Wit Without

MNm) | rato,D | boundary | boundary
z0N¢ zone.
Witifrozen| 6=8 590 587 0.149 NA NA

soillayer. | =28

Without 9=8 176 40.5 0.168 0.47 1.00
frozensoil | 6=14 168 381 0.103 0.59 113
=28 156 338 0.09% 0.84 1.38

Table 8.1: Theoretical dynamic behaviour of the pile with and without the frozen
soil layer

most constant over the range of applied excitation (i.e., 8 = 8 and 28). This stems
from the fact that with the frozen soil layer the pile response is almost linear and its
theoretical resonant frequency, as shown in Fig. 8.10 and 8.11, remains unchanged
(59 Hz) at the two different intensities tested. Some of the salient features of the
pile response, with and without the frozen layer, are shown in Table 8.1. It should
be noted that the stiffness and damping ratio in the table are those corresponding

to the resonant frequency of the pile.

From the figures and Table 8.1, it can be concluded that the presence of frozen
soil, even in a relatively thin layer, can significantly affect the dynamic behaviour of
piles. Although the thickness of the frozen layer was about 1/19 of the pile length,

its presence increased the horizontal stiffness of the pile by 15 times and its res-
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onant frequency by about 3.5 times. Furthermore, the frozen soil layer, over the
excitation range tested, largely removed the nonlinearity in the vibration which was
manifested in the case without the frozen soil by a shift in the resonance frequency
(from 17.6 Hz to 15.6 Hz) and a reduction in stiffness (from 40.5 to 33.8 M v, m) as

the excitation level was increased from # = 8 to § = 28.

The experiments described in chapter 5, 7 and 8 were concucted before the Ph.D.
program. The measured results were used in this study to verify the new theory,
boundary zone model with non-reflective interface. The dimensionless frequency,
@, = wr,/V}, in the experiments is ¢, = 0.2 to 0 3. From Fig. 3.16 , it can be seen
that the new theory is identical with the old theory ( Novak's theory ) in the lower
frequency range. However, in some other case, a, < 0.5, the results from the theory
will be different with those ones from the old theory. It should also be remembered
that the mass was ignored in the boundary zone for Novak’s model, which is unreal-

istic. Therefore, the new theory presented in the thesis is reasonable for applications.
The new theory is verified by means of comparison with the experimental results.

In the lower frequency range, the results from the new theory are identical with those

previously published by Han and others.

182



i ¢
-1
iz
k]
g
3 3
i3 -
_j .

. r

3 §

!
2 caglitse
Yoo “n . e 160  ghes w0 Ne e e de

Frequency, f(Ha)

Figure 8.5: Measured horizontal displacement response of the pile with no frazen

soil

183



Horizontal disglacement, U (mm) x 107
2.0 3p.00

20

o0

Figure 8.6: Measured horizontal displacement response of the pile with frozen soil
layer

184



3y

Hertzontal dispiacement, U (mm)
ot

DL

2

Figure 8.7: Measured and theoretical response of the pile with bounday zone in
the case without frozen soil

185



-1 Symbols: Measured deta

1,00

Horizontl displacement, U (mm)
ww _em

oy

Figure 8.8: Measured and theoretical response of the pile with no bounday zonc in
the case without frozen soil

186



3.0

.00

39.00

Horizontal displacement, U (mm) x 107
43.00

e

o)

Figure 8.9: Measured and theoretical response of the pile in the case with a frozen
soil layer

187



Horizontal displacement, U (men) x 107

Figure 8.10: Relative influence of a frozen soil layer on the pile response at 8 =8

188



.00 1300 e e i

Horizonal displacement, U (mem) x 10

23.00

.

Figure 8.11: Relative influeace of a frozen soil layer on the pile response at § =28

189



1000 ~

Frequeacy, f (H2)

Figure 8.12: Influence of a frozen soil layer on the stiffness and damping of a single
pile

190



Chapter 9

Summary, Conclusions and
Recommendations

"

A systematic study is i for dynamic b of pile foundations under

harmonic excitations. In this thesis we have accomplished the following:

(1) The imped for a ite soil layer are based on a new

model of the boundary zone with non-reflective interface. A parabolic variation
of the medium properties is assumed, so that the boundary zone has properties
smoothly approaching those of the outer zone to alleviate wave reflections from the
interface. The impedances of the soil layer are presented for different modes of vi-

bration, included vertical, torsional, radial, rocking and horizontal vibration.

(2) With the impedances of the soil layer formulated, the stiffness and damping
of single piles in layered media are derived using the finite element method. The
vertical, horizontal and rocking impedances of single pile are presented. To deter-

mine whether the basically linear theory can reproduce the behaviour of piles under
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strong excitation, dynamic experiments on large-scale model piles, steel pipe piles
with 2 diameter of 133 mm and a length of 3.38 m. were conducted with strong hor-
izontal and vertical vibration. The frequency response curves and deflection curves
of the piles were experimentally established in the field for different intensities of

excitation and contact conditions between the pile cap and the soil surface.

(3) Using the properties of the single pile and accounting for the group effect,
pile-soil-pile interaction, the group stiffness and damping are evaluated by means
of the interaction factor approach. To investigate the dynamic behaviour of pile
group, the experiments on a full scale pile group, comprised of six cast-in-place re-
inforced concrete piles with 7.5 m long and 0.32 m in diameter, were carried out
in the field under different conditions: linear vibration and nonlinear vibration. In
order to investigate the influence of frozen soil layer on dynamic behaviour of piles,
the experiments were also conducted during the winter time when the surface was

covered by a frozen soil layer.

The following conclusions may be drawn:

(1) The impedances of the soil layer are evaluated over wide range of the pa-
rameters involved and compared with those obtained from Novak’s and Veletsos's
model, which are the leading models at present, as well as compared with those for a
homogeneous layer. The results from the present analysis are smooth curves over a
wide range, which indicates that the wave reflections from the interface are removed

because it embodies a continuous variation in soil properties in the boundary zone
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with smooth transition ( continuous derivatives ) into the outer zone. Thus, the
impedances ( soil stiffness and damping ) presented in this study are considered to

be more suitable to practical applications than previous ones.

(2) Since the pile response at large amplitude exhibits typical nonlinear features.
consideration of a weakened zone ( boundary zone ) around the pile and pile sep-
aration is necessary. Good agreement can be achieved between the experimental
and theoretical response curves when the characteristics of soil are suitable chosen,
without resort the truly nonlinear analysis. The nonlinearity of the soil-pile system

is accounted for approximately by means of the model of boundary zone.

How to select suitable characteristics of soil depends on the specific conditions
in the field, such as the installation of the piles, the properties of soil and piles and
the excitation intensity. Under different excitation, the range of the thickness of

boundary zone within 0.57, or 1.0r, and G;/G, within 0.5.

(3) The excitation intensity and contact conditions between the pile and soil and
between the cap and soil surface change the stiffness and damping of piles. Under

repeated loading, the stiffness and damping of single piles decrease, so that the res-

onant fi d and resonant displ increases.

(4) Dynamic response of the pile group under strong lateral excitation also ex-
hibits typical nonlinear features; stiffness and damping ratio of the pile group reduce

as the excitation intensity increases for both horizontal and rocking mode of vibra-
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tion. This in turn results in a reduction of the resonant frequency and an increase

in the resonant amplitude.

(3) The pile-soil-pile interaction results in a reduction in the stiffness and an

increase in the damping of the group. Both pile-soil-pile interaction and soil yield-

ing around the piles (boundary zone) play a significant role in the overall dynamic

response of pile group, even under moderate levels of excitation.

(6) The presence of frozen soil, even in a relatively thin layer, can significantly
affect the dynamic behaviour of piles. In this study, the thickness of the frozen layer
was about 1/19 of the pile length, its presence increased the horizontal stiffness of

the pile by 15 times and its resonant frequency by about 3.5 times.

ions for Further R h

(1) In the case of horizontal excitation, a gencral solution involving variations
of soil properties in the boundary zone proves to be extremely difficult because of
cross coupling between the radial and vingential displacements. Hence, constant A}
and G are assumed for horizontal excitation in this study. In the lower frequency
region the undulations of the impedance {unctions caused by wave reflections from
the interface can not be observed, but wave reflections occur in higher frequency
region. If the demand for higher frequency rises in applications, further research

should be done for the case of horizontal excitation.
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(2) Since the properties of the pile foundation are established, they can be in-
corporated into the examination of pile-structure interaction using the substructure
approach just as with other type of foundation. With the better understanding

of the behaviour of piles, the dynamic analysis of structures supported with pile

can be conducted, such as the soil-pil interaction under wave
loading in offshore engineering or seismic response of buildings supported with piles.
Further research should be done in both theory and experiment in order to apply

the advanced theory of pile dynamics to engineering practice.

(3) Dynamic measuremnents on bearing capacity of piles, integrity testing and
pile driving ate often employed in constructions, using Wave Equation Analysis of
Piles (WEAP) or Pile Driving Analysis (PDA). One of the more important problem

in hing the dicati with the d data is how to simulate the soil-

4 pansval

pile interaction. The subject of soil-pile jon is i i ly

in both theory and experiments in this study. Further research of model tests on

centrifuge facilities and full-scale tests in the field are needed.
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Appendix A

Impedance Functions of
Viscoelastic Halfspace

A rigid disk of infinitesimal thickness and weight is supported at the surface of
a linear viscoelastic halfspace, which is idealized either as a standard Voigt solid
or as a constant hysteretic solid. The harmonic exciting forces investigated include
a horizontal force He'™!, a vertical force Pe™* and an overturning moment Me™*,
where w is the circular frequency of the excitation, ¢ is the time and i = v/=1.

Let u,v and ¢ be, ively, the itudes of the hori: I, vertical and

angular displacements of the disk. .\'eglecling the small coupling between the hor-
izontal and rocking motions, the relalionship between the force amplitudes and
displacement amplitudes may be stated as

H = kuu

P =ky (A1)

M = kg

where ky, are compl d stiffness or imped

functions of the form

kit = K,[Cpr(a..v, D) + ia,Cp(as, v, D) (A2)
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in which the subscript j is used in a generalized sense to denote u,v or ¥; a, is
the dimensionless frequency parameter, v is Poisson’s ratio , D = tan§ is hysteretic

material damping of the viscoelastic medium and § is loss angle.

The symbol K; in eq. (A.2) represents the static stiffness of the disk in the j

direction, defined as

- (A3)

where G is the shear modulus of the viscoelastic medium and r, is the radius of the

disk.

In eq. (A.2) Cj1 and Cj; are real valued function of a,,v and D. For the

horizontally excited disk, j = u, the following expressions are obtained for C,; and

Ca A
Cu = 1= 03(R=Daya,
. . (A4)
Cuaa= OSR+ Dan + =

where

R=V1+D?*=y/1+tan?§ (A3)
For the disk in rocking motion, j = #, the corresponding expressions are
Cur=1~xy ~Bs}

(A6)

D
Cuz—w+;
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where

= J,[R+,/0A5(R— 1)320,)(20,)?
T R 2SR ) (Baa) + (Braa?

o 8182y/05(R + 1)(fra,)?
T Rt 205(R - 1)(Bra,) + (Bras)?

For the disk in vertical motion, j = v, the corresponding expressions are

Cu =1 =xy = /05(R — )18, — 130
D
Cuoz = \05(R+ 1)y + ¢, + 5

= R+ 05(R ~ 1)(128,)|(1200)*
" R+205(R - 1)(ma.) + (n0)t
o= 172y/05(R + 1)(1a20)
"7 R+ 205(R ~ 1)(1280) + (1230)°

where

(4.8)

(A9)

In above equations, oy, §; and ¥; are numerical coefficients which depend on Pois-

sion's ratio, v.

Substituting eq.(A.3) into eq.(A.2), the impedance functions can be expressed

in the following form:
ku = Gro[Cut(a6,v, D) + iCuala6, v, D)]
ku = Gro[Cui(ao, v, D) + iCua(ao, v, D))
kot = Gr3[Cui(as, v, D) + iCya(o, v, D)]
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Appendix B

Interaction Factor of Two-Pile
Group

A group of two identical, equally-loaded piles is considered, as shown in Fig. B.1,
each pile is divided into n cylindral elements and a uniformly-loaded circular base.
If conditions remain purely elastic within the soil and no slip or yield occurs at the
pile-soil interface, the pile and soil displacements at the center of each element may
be equated. The equation for the pile displacement are identical with those for the

single pile. The soil displacements for a floating pile may be written as follows:
d
{v} = -l + al{P} (B.1)
s

in which d is diameter of the pile; E, is Young's modulus of the soil; {v} is vector of

soil displacement; { P} is vector of shear stresses; (I + Iza] is (n +1) x (n + 1) ma-

trix of displ infl factor, ining elements [y;; + Iy, where lijj, [zi;
are displacement-influence factors at element i on pile 1 caused by shear stress on

clement j of pile 1 and pile 2, respectively.

The soil displacements thus obtained may be equated to the pile displacements
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Figure B.1: Group of two floating piles

208



and the resulting system of equations solved, to obtain the unknown shear-stresses
and displacements along the piles. The analysis of a two-pile group is therefore
identical with that of a single pile, except that the soil-displacement-influence matrix
includes contributions from the second pile. The results of the above analysis may
be convcnient‘ly expressed in terms of an "interaction factor” a, where

a= %% (B.2)

where §;; is the additional settlement caused by adjacent pile j, and §;; is-the settle-
ment of pile i under its own load. The pile i and the adjacent pile j carry the same

load.

The value of I};; and I; may be obtained by integration of the Mindlin equation.
The geometry of a typical cylindrical pile element is shown in Fig. B.2. For a general

point i in the soil mass, the value of [;; is
ST ]
Ij=2 /U_m /ﬂ I,dode (B3)

where 1, is influence factor for vertical displacement due to a vertical point load,

and § is the length of element.

From Mindlin's equation, I, is given by

Tis 1+v ,i',‘_+3—4u+5—l.”.u+81/’ (3 — 4v)z* — 2z +2¢* Gczz(:—c)]
P Ri-n B R T R ]
(B.4)




siement 1

J "u‘.:.'..l )

Figure B.2: Single pile-basic geometry
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where

The integral with respect to ¢ in eq. (B.3) can be evaluated analytically to give

[ e = %{5‘7 ~4(1 = v)In(z + Dy) +8(1 — 20 + v¥)In(z + D)

2h%:/r? — dh— (3—dv)z _ Ahr? = W33/r%),
+ > + o ]

(BS)

where h and r are defined in Fig. B2,

Dy =(r 41

D=(r+ )

and the limits of integration in eq. (B.6) are
z fromh—(j—1)8to h-j§

and

zfomh+(j—1)6to h+j6

The integral with respect to  is, however, only conveniently evaluated numeri-

cally.

The geometry of the pile base is shown in Fig. B.3. To allow for an enlarged
base, a base radius ry(= dy/2) different from the pile shift radius is considered. For

a general point i in the soil -nass,

L e e
fo=g [7 [ praras (®.7)
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wrises

Figure B.3: Geometry for integration over circular area
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where [, is given in eq. (B.4), and for this case,

c=nd=1L
RE=22+1?+r? —2rzcosf
Ri=z}+22+r? ~2rzcosf
z=n+2

(B.8)

The integration with respect to r can be done analytically and yields
_ _1+v 23(rA— R?)
/[,rdr = By ”)((m ON, i W)X + Aln@yX,
+2r = 24)] + (5 - 120 + 8)) /X, + Aln(2y/X;

+2r = 24)] + [(3 - 4v)2? — 2cz+ 21:’](8 A’)\/—_

Alr = 4)

1 2
Scz’(z-c)[ \/— B-AvE X Bl

(B9)

where

(B.10)

~.,+2c

The integration with respect to 0 is again evaluated most readily by numerical

means.
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