








Dyx.HflC lJEH.·\VIOl'R OF PILE FOCXDATIONS

WITH SOIL·PILE IxTERACTION

by

Yingt.:ai Han

r\ thesis subm;~kd to the S.:hooluf f:radufLlc Slllllit~~

in partial fulfillment of the fj''luin:llllmls for

the degree of Doctor Philosophy

Faculty of Engin<.wing and Applied Scil:ncc

~"cmorial Vllil'crsily of Ncwfolldland

Aprill!J!lii

; St. John's Ncwfoum.ll/lnd



.+. NalionalLibrary
oIC8Mda

===~B'ancn"'_.....~Qnl,--

:'b~nalionale

Direction des acquisilions el
desservieeSbibliographiQues

~~

The author has granted an
irrevocable non-exclusive licence
allowing the National library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to Interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L'auteur a accorde une licence
irrevocable et non exclusive
permettant a la Bibllotheque
natlonale du Canad~ de
reproduire, priUer, distribuu au
vendre des copies de sa these
de quelque maniere at SOUS
quelque forme que ce salt pour
mettre des exemplaires de cette
these a la disposition des
personnes intl!ressees.

l'auteur conserve la propriete du
droit d'auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent etre imprimes ou
autrement reproduits sans son
autorisation.

ISBN 0-612-17597-9

Canada



ABSTRACT

Pile foundations are often used in soft soils to support heavy structures. such il5

offshore lowers, nuclear power plants, tall buildings, dams and bridges. There Me

many situat,ions where these structures may undergo dyni\mic loading, for example,

earthquake forces, wave forces, wind forces, blasting and unbalanced machines etc.

There has been a remarkable increase in the study of pile dynamics in the lnsL twenty

years, although piles have been used for hundreds of years.

In this study, the dynamic behavior of ~ingle piles and pile groups are investi·

gated theoretically and compared with experimental results performed earlier. Both

theoretical and experimental studies have shown that the dynamic response of the

piles is very sensitive to the properties of the soil in the vicinity of the piles. The

impedances of Ute soil layer are formulated for different modes of vibration b;u;ed

on a. new model of the boundary zone with non-reflective interface, which is more

realistic and robust than the current leading models of Novak and Veletsos.

With the impedances of the soil media derived, the stiffness and damping rot sin­

gle piles and pile groups are presented. The validity of the boundary zone model rot

the soil-pile system is verified by comparison with the dynamic experiments which

were conducted on single steel piles and on a concrete pile group in the field, respec­

tively. The effects of non-linearity (j~ the soil·pile system under strong excitation,

the pile-soil-pile interaction (group effect) and the influence of frozen soil on the pill'S

are investigated comprehensively. The results obtained from this study provide a

guideline for engineering design, to increase the safety of the piles and the structures.
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Chapter 1

Introduction

Pile foundations are often usc<Hn soft soils to support heaYJ "tructurcs. such

a.s offshore towers, nuclear powerplants, tall buildings, dams and bridges. There arc

many situations where these structures may undergo dynamic loading, for example,

earthquake forces, wa.ve forces, wind [orces, blastin! and unbalanct'<i machines t."c.

Modal characteristics of a. plleosupporled structure and its response to dynamic

loads depend to a high degree on foundation flexibility. For pile-supported 5truc~

lures, the Rexjbllity of individual piles is routinely taken into account, but the in·

tcraction of piles in a group, referred to as pile-soil.pile interaction or group effect,

is often neglected. The group effect has been considered in offshore engineering by

only a few researchers ( O'Neill. 1983; :\litll'ally and Novak, 1987; Novak and Mit­

wally, 1990).

The studies undertaken here are concentrated on the dynamics of pile founda­

tions. involved with the impedances of a single pile and the behaviour of a typical pile

group. The linear and nonlinear vibration and the seismic response are investigated



eXpt'rimenull}' and tbeoretinlly with (he consideration of pile-soil-pile interactiun.

Once the propenies of the pill! foundation a.re eslablishtG, they Clon be incorporall'tl

into the examination of pile-structuft inlera.ction using the substructure appro;\ch

just.u with other types of foundation.

Organization of the thesi!:

In C:'hapter 2, a comprehensive review of thlliiterature is presenter!. In Chapter

3, the impedances of soil medium are formulated as a plane strain problem by means

of an analyticalso(ution, Chapter ~ deal! with stiffness and damping of single pile

using the finite element method. Chapter 5 describes tesh on single pile per{ormClI

by the author prior to this thesis and comparison of computed and the mcl\.'1Ufr.d

response using the theory in Chapters 3 ilnd --l. Chapter 6 deals "ith stiffness and

damping for pile group using pile·soil-pile interaction faclors of Poulos (19aO) for

static condition ilnd Ka.ynia and Kausd (1982) for dynamic condition. Chapter 1

describes full scale tests on pile group ,gain performed by the aulhor prior to this

thesis and comparison of the measured roponse with computed result!. Chapter

8 deals with effect of frozen soilla.yer (I~ the responlSe of single pile as well as the

group. Chapter 9 tists summary, conclusion and recommendations.



Chapter 2

Review of Previous Work

Piles nav~ been used for hundreds of years bu~ in the last twenty year! or so

there hu been a. remarkable increase in the study of pile dynamics. The dynamic

behaviour of piles is, of courM!, very complex an~ this might have lead Ternghi and

Peck ( 1967 ) to state that" ... theoretical refinemc!nts in dealior; with pile prob·

lems... are completely out of plaa md can be safely ignored".

Fortunately, not everybody became discouraged by this pessimistic evaluation,

and a number of walytical and numericallpproaches to the analysis of pile dynamic

behaviour have been developed. These approaches ba.ve provided a much sounder

lheoretical ba.sis for pile design tha.n th-': equivalent untilevtr concept or other purely

empirinl method, which dominated the field for decades. Neverthele:l!, some differ-

ences between the variOU! theoretical approaches exist a.nd the experiments reported

are som mes inconclusive; also, some uncett,\jnti~ are inevitable when applying an

idealized theory to field conditions. Thus, rurtl,er !tudies or pile dynamics in theory,

or from experiments and field obser~'ations, ate needed for engineering applications.



The subject of pile dynamics rel:ei\'ed a comprehensive treatment in the ~tate­

of·the-art report by ';ajimi (1977), covering developments up to WiT. and in a few

special volumes, Le., De Beer et at. (1977), O'i'Jeill and Dobry (1980). Nogami

(1987), Prakash and Sharma (1990) and Novak (1991).

2.1 Single Pile

The earliest systematic, theoretical studies of dynamic soil· pile interaction are due

to Parmelee et al. (1964), Tajimi (l969), Penzien (1970), Novak (1914) and a few

others. Parmelee and Penzien employed a non-linear discrete model and a static

theory to describe the dynamic elastic stress and displacement fields. Tajimi used

a linear viscoelastic stratum of the Kelvin·Voigt type to model the soil, but in his

analysis of the horizontal te!ponse neglected the vertic&! component of the soil mo·

tion. Novak assumed linearity and an elastic soil me<lium composed of independent

infinitesimally thin horizontal layers extending to infinity.

The problem of the interaction between the pile and the soil is very difficult

to solve, even for the idealized assumpTions of linear elastic or viscoelastic homo­

geneous soil and the pile being honded to the soil. Thus, approximate procedures

were formulated fint. In 1974, ~ovak formulated a very simple approach for the

horizontal response of an end bearing pile in a homogeneous ~oH based on plane

strain soil reactions, which call be interpreted as a dynamic Winkler medium or a

plane strain assumption. This solution identified dimensionless parameters of the

problem, yielding a number of design charts and tables for dynamic stilfn~s and



flamping of piles. :\lilteriill dilmpin~ Wils lat~r included in a closed fonn exprwion

for the soil r~actions in ~ovU: et aI. (l9i8). The application of the same approach

to ~rtical response of 80ating piles was m&d~ by Novak (1977). Torsional response

was also ~x&mined. in this way (NoVll.k and Howell, 191i, 19i8) and th~ importance

of material damping for this vibration mode wa.s d~monstrated.

A somewhat more rigorous solution was formulated by Nogami andNovak(19i6)

a.nd Novak a.nd Nogami (1977). These approximat~ solutions offered a basic insight

inlo the behaviour of the soil· pile system.

Much of the aHention was focussed 00 th~ complex dynamic stillnesses of the

pile (imped.anc~ functions\ because they have a strong influence on the response of

pile supported buildings and structures. Th~ impeda.Dc~ functions we~ also used in

the dynamic analysit of embedded foundations (Han, 1989).

More ~«nt. analysis based an the 5OlutM>D of governing equa.tioos of a th~

dimensional continuum were formulated by Sen et 1.1. (1985) and Pak and Jennings

(198i). All vibration modes were investigated by Rajapakse and Shah (1981a, b,

1989). The la.tter a.uthors evaluated the accura.cy of some of the existing solutions

and generated an extensive set of charts for impedances of 80ating piles.

Finite element solutions were formulated by Kuhlemeyer (1979a, b), Blaney et

al. (1976), Wolf and Von Arx (1978). Waas and Hartmann (1981), Sanchez·Salinero

( I!I82) and others. Boundary element approaches were developed by Banerjee



(19i8). Banerjee and Sen (198i) and a few others. Ready to use charts and ror.

mulae were produced for homogeneous soil by Roesset (1980). Dobr:-" et 0\1. (198'1),

~ovak and El-Sharnouby (1983) and a few others.

Comparing the result-s of experiments with theoretical prediction! repei\tetlly

showed that if the soil was assumed to be homogeneous, both pile stHfnc.;.j and

damping can be grossly overestimated. In fact, the soil is not homogeneous since

the soil shear modulus varies with depth. In particular it reduces toward the ground

surface which results from the diminishing confining pressure. In this situaLion the

pile may be separated from the soil, even producing gaps.

Observations of this kind lead to the development of approaches better suited (or

nonhomogeneous soils. Significant progress was made by Kaynia(1982) and Kaynia

and Kausel (1982, 1990) who b<C:ied their solution of piles, in layered media, on the

formulation of displacement fields due to uniformly distributed forces on cylindrical

surfaces. Banerjee and Sen (1981) presented a boundary element solution for piles

embedded in a semi-infinite nonhomogeneous soil in" which the shear modulus varied

linearly with depth. A few other methods suitable for linear layered media lise A

semi-analytical finite element approach. Solutions of thi~ type were formulated by

Waas and Hartmann (1981, 1984) and ~[jzuhataand Kusakabe (1984).

A much simpler and very verutile solution was formulated by Novak and Aboul­

Ella (19i8a, b) who extended the plane strain approach to include layered media..

Roesset et al. (1986) also found the plane strain approach to work verj well for



high frequencies. For very low frequencies, an adjustment to the plane strain soil

reaction was made by :'lovak and El-Sharnouby (1983).

The sensitivity of the response lo pile separation and free length shows when

evaluating most experiments. The prediction of the separation length is difficult

a.nd only empirical suggestions can be made (Han and :'lovak. 1988a).

While the consideration of a free separation length in the analysis may produce

the reduction in both pile stiffness and damping often observed in experiments, a

better measure to this effect, or a compJemullary one, may be to account for soil

non homogeneity in radial direction. A simple way of doing this is to assume a weak,

cylindrical boundary zone around the pile. The purpose of such a zone is to account

in a I'ery approximate way for soil nonlinearity in lhe region of lhe highest stresses,

pile separation, slippage and other deficiencies of the pile-soil interface. Such a 7..one

was proposed by Novak and Sheta (1980). In their plane strain solution, the mass

of the boundary tone was neglecled in order to prevent wa,'le reflections from the

fictitious interface between the cylindrical zone and the outer region. The omission

of the mass of the boundary zone in t~le original solution lead Lakshmanan and

~linai(1981) and Veletsos and Dotson (1986, 1988) and Dotson and Veletsoa (1990)

10 further develop the concept and to include the mass of the boundary zone in the

analysis. Some of the effects of the boundary mass were investigated by Novak and

Han (1990) who found that a homcgeneou~ boundary with a. non-zero mas~ yielded

undulating impedances due to wave reflections from the fictitious interface between

lhe two media. The ideal boundary lone should have properties smoothly approach-



ing those of the outer zone to alleviate wave reflections frorn the interface. Wil.!I

the consideration of the separation effect and weakened soil in the b\lllndi\r~' roolle. a

reasonable agreement between the theoretical re~iUlts and experiment data were ob·

tained (Woods, 1984; Han and Novak. 1988b; Han and \',uiri, 1991; EI-.\farsafawi.

Han and Novak, 1992).

At large displacements. piles beha.ve in a. nonlinear fashion because of soil nonlin·

earity at high strain, pile separation (gapping), slippage and friction. The incorpo.

ralion of these factors into a continuum theory is extremely difficult, and tllCrcforc

lumped mass models are most often used when nonlinear analysis is required. Such

models fea.ture nonlinear springs, nonlinear dampers, gaps and Coulomb friction

blocks, as proposed by Penzien (1970), Matlock et al. (t978, 1980) and a nurn-

ber of others. The combination of these elements makes it possible \0 generate a

variety of nonlinear force-displacement relationships. Models of this type are very

versatile but it is difficult to relate the characteristics of the discrete elements to

standard geotechnical parameters of soil. To help overcome this difficulty, various

nonlinear soil resistance-deflection relationships known as P . Y curves have been

recommended in the literature. For a~p1ications in offshore structures, the .'\mer­

ican Petroleum Institute (1986) specifics the P . Y curves for clay as well as sand

making a difference between static and cyclic loadings.

\Vith the boundary zone model, the nonlinear vibration of piles under steady­

state excitation was investigaled by Han and ~ovak (1988a, b), and Han (1989a, hi

1992). If a nonlinear transient response rather than the steady·state rellponse is to



Iw investigated, then a time·domain analysis is called for. A time-domain anal)'sis

Wllkh extr.nded the dynamic Winkler model to allow for nonlinearities. was formu-

lated by ~ogami and Konagai (1987.1988), :\'ogami et al. (1988), and ~!itwalJy and

Xovak (1988).

2.2 Pile Group

Piles are usually used in groups, <llld if they are not very widely spaced they inter­

act with each other generating the phenomenon known as pile-soil-pile interaction

or group effed.

Under static loads, pile interaction increases group settlement, redistributes the

loads on indivie!ual piles and reduces the bearing capacity, unless this reduction is

counteracted by densification of the soil within the group due to pile driving. The

investigation of static group effects was put on a rational basis, relying on contin-

uum mechanics, by Poulos (1968,1971,1979) and Butterfield and Ba.cerjee (1971).

Extensive data on static group effects are available in Poulos and Davis (1980), £1­

Sharnouby and Novak {1985, 1986. t99/l.

Dynamic investigations of pile groups are more recent. The techniques employed

are extensions of the approaches used for single piles and most of them are limited

to linear interaction with no allowance for gapping. The first theoretical analysis of

pile-soil-pile interaction was carried out by Wolf ane! Von Arx (1978) who employee!

an axisymmetric finite element formulation to establish the dynamic displacement



~eld due to ring loads. Wus and Hartmann (19SI. 1984) formulated oln c1ficienl

semi-analytical method which used ring loads and is well sUlletl for layered mt.-dia,

properly accounling for the far field. Kayni.. (1982) and Kaynia and l\ausel (1982.

1990) further impro\'ed the accuracy by combining the cylindrical loads, ;"dually a

boundary element formulation, with the consistent stiffness malrix of layered media

to account for the far field. A very simple a.pproach was employed by Kobori el al.

(l991) who used the cylindrical loads for the pile and disk loads for tbe base. Baba

(1991) formulated a three·dimensional analysis of end bearing piles.

The thin. layer method was used by Shimizu ct aI. (1977), Muuda et al. (1986)

and a few othen. Boundary element solutions, employing Croen's function! of gen·

erally layered media, were formulated by Banerjee and Sen (1987), Mamoon ct al.

(1990). Simpler solutions based on the dyn..mic Winkler medium were developed

by ~ogami (1985). Sheta and Novak (1982) and Otani et al. (1991).

With the pile-soil-pile interaction theories being so complex, it is of importance

to examine how the theories perform when compared with experiments. Dynamic

experiments with a group of 102 model piles, each 1.06 m in length, were done hy

.'iovak and EI-Sharnouby (1984). Succcssful experiment! conducted on a group ...f

56 full scale piles were reported by ~Iasuda et al. (1986). Six full scale piles were

tested and very good resulls were obtained but the weak zone and separation had

to be included in analysis for a satisfactory match with experimental results (Han,

1992; Han and Vazifi, 1991. L992; El-~Iar!afawi, Han and Novak, 1992). Kobori ct

al. (1991) also found the theory to be of sufficient applicability. Tbus. it may be

10



concluded that the linear theory works quite well as long as the experiments do not

deviate too much from the theoretical assumptions. as might be expected. Often. a

correction for separation, gapping and nonlinearity is needed. howe\'er, at least in

the form of a weak zone and a pile free length.

The dynamic interaction factors were formulated by Kaynia and Ka.use1 (1982),

which is an extension of the widely used static interaction fa.ctor a.pproach. It was

observed that the accura.cy, of the interaction factor approach, was quite sufficient

for a homogeneous medium but less accurate for a nonhomogeneous one. A re­

markably simple approximate method for dynamic interaction factor evaluation was

proposed by Dobry and Guetas (1988) and extended for nonhomogeneous soil by

~fakris, Gazetas and Fan (!989) and Gazetas and Makris (1991).

Nonlinear dynamic analysis of a pile group is very difficult and this may be the

main reason why it has received very liltle attention than the linear analysis. Nogami

and Konagai (1987) developed a group analysis assuming that in the vertical vibra­

tion. response nonlinearity stems mainly from slippage at the soil-pile interface; they

represented the soil using the dynamic Winkler model. Nogami et al. (1988) and

Otani et al. (1991) extended the concept of the dynamic Winkler medium further to

include horizontal response, slippage. gapping and inelastic soil behaviour and were

...ble to generate a variety of degrading hysteresis loops. The dynamic experiments

of nonlinear vibration or pile groups under la.teral loading were conducted by Han

(1992) and compared with theoretical results that incorpora.ted a boundary zone,

which included weakened soil and gapping in the interface between the pile and the



soil.

2.3 Soil - Structure Interaction (SSI)

It is well-recognized now that the foundation material on which a building i~ COll­

structed may interact dynamically with ~he s~ructure during its response to earth­

quake excitation or o~her excitation - to the extent that the maximum strt'SSt.'S anu

deflections in the system are modified significantly from values ~ha~ would have been

developed if it were on a rigid foundation. However, forty years ago when ~he meth­

ods of analysis of structure response to earthquake motions were just beginning to

be developed, such interaction effects wefC considered to be of little consequcnce.

and hence were ignored. It was concluded that the base shear force due to earth­

quake excitation in a. typical tall building is hardly affected by foundation flexibility

even for the most flexible foundation that might be considered suitable for such a

building ( Merritt and Hausner, 1954). rn~rest in 551 effects on the response of

structures to earthquakes was expanded dramatically during thc next two decad~

owing to de\'elopments in the nuclear power industry and offshore engineering. The

effects of 55I on seismic response of str'~:tures were outlined by Clough (1992).

The analysis of the soil-structure inleraction problem may be carried oul on the

basis of a direct finite element or boundary element approach and by use of a sub­

s~ructure or subsystem procedure. In the first approach, a finite element model of

the entire system is made and the response of the model is evaluated in one step.

The direct approach is more time consuming ol'ld costly than ~he substructure ap-

12



proach wnicn will be employed in this study.

In tnt: substructure approach the problem is solved in two stage:!: in the first

stage, elemen.ts of the response of superstructures, foundations and soil are obtained

independently; in the second stage, the individual responses are combined so as to

satisfy the interaction conditions and the response of the complete system is ob-

tained (Sarrazin et al., 1972; Roesset et al., 1973, 1982).

The subject of linear soil·structure-interaction analysis was reviewed by Luco

(1982), and a thorough treatment of the substructure method, including all deriva·

lions and a discussion of the assumptions and limitations, as well as illustrative

examples from actual practice, was included in textbooks (Wolf, 1985, 1988).

However, most of the studies on soil-structure interaction were done with respect

to shallow foundations or on an elastic half space. Relatively few studies were de-

voted to deep foundations and considered pile-soil-pile interaction. Seismic response

analysis of a pile supported structure was carried out by Nogami et al. (1991), Rad­

jian et a\. (1990), El-Hifnawy and ~o:d.k (1986,1987). Random response analysis

of an offshore tower, considering pile·soil-pile interaction, was studied by Novak and

:\litwally (1990).

The lastest developments in dynamics of pile foundation and soil-structure inter-

action are included in this literature survey. From the review above, it can be seen

~hat further research must be done in bo~h theory and experiment, in order to apply

13



the advanced theory of pile dynamics to engineering practice. The contact sittla~ion

between the pile and soil is ~'ery sensitive to the dynamic response of piles. Thus the

boundary zone model should be improved to better account for this phenomenon,

Soil·structure interaction depends on the real confining pressure of soil deposits and

on the contact'situation, so the dynamic experiments of full scale piles i\nd other

model pile tests should be studied further. The research project proposed in the

following section will attempt to answer these questions,
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Chapter 3

Impedances of Soil Layer

3.1 Introduction

One of the more importiLllt problem in soil-structure interaction is how to model

the soil. A number of approaches are available to account for dynamic soil-structure

interaction but they are usually based on the assumptions that the soil behaviour

is governed by the laws of linear elasticity or viscoelasticity and the soil is perfectly

bonded to an embedded foundation or a pile. fn practice, however, the bonding be­

tween the soil and the footing is rarely perfect and slippage or even separation oCten

occurs in the contact area. Furthermore, the soil region immediately adjacent to the

footing can undergo a large degree of straining which would cause the soil-structure

system to behave in a nonlinear manner. Both theoretical and experimental studies

have shown that the properties of the soil in the vicinity of the footing are very

sensitive to the dynamic response of the footing ( Han and Novak, 1988; Han, 1989;

Han and Vaziri, 1992, a.nd El·;...rarsafawi et ai, 1992).

To account for the nonlinearities resulting from loss of contact between the soil



and the fooling, :\'o...ak and Sheta (1980) proposed including a cylindrical annulus

of \I'eakened soil (an inner weakened zone or so-called boundary zone) around lh~

footing in their plan! strain analysis. Although their analysis allowed for different

properties in the weakened boundary 7.one and the outer zone, each zone is assumed

to be homogeneous. One of the simplifications involved in the original bonnduy

zone concept was that the mass of the inner zone was neglected to avoid the Wil.\·C

reflection from the interface between the inner zone and the out<!r zone. Toovcrcome

this problem Lakshmanan and ~F1a.i (l981), Veletsos and Dotson (1986, 1988) and

Dotson and Veletsos (1990) proposed schemes that could account for the mMS of the

boundary zone. Some of the effects of the boundary zone mass were invC!itigated

by Novak and Ha.n (\990) who found that a homogeneous boundary zone with a

non-zero mass yields undulating impedances due to wave reflections from the inter,

face between the two media. Since in reality the interface between the two media

is only fictitious ( actually nonexistent ), the undulating impedances may be not

suitable br practical applications. The ideal boundary zone should have properties

smoothly approaching those of the outer zone, to alleviate wave reflections {rom the

interface.

In this study the impedances for a composite soil layer are formulated ha.!led on

a new model of the boundary zone with non-reflective interface, A parabolic VAria­

tion of the medium properties is assumed, so that the boundary 'Zone hM properties

smoothly approaching those of the outer zone to alleviate wave reflections from the

interface. The impedances of the soil layer are presented for different modes of vi­

bration . The results are evaluated over y;ide range of the parameters involved and
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compared with those obtained for a homogeneous layer, as well as compared with

\ovak's and Veletsos's results. Since the boundary zone mass is accounted in this

model and the non-reflective interface is formed, the impedances (soil stiffness and

damping) are considered to be more suitable to practical applications than previous

3.2 Model of Soil Layer with Non-reflective In­
terface

The system examined is a linear viscoelastic layer of unit depth and infinite

extent with a circular hole of radius r~, as shown in Fig. 3.1 (a). The impedances

of the composite layer are derived based on the following assumptions: the outer

zone medium is homogeneous, isotropic and viscoelastic with frequency independent

material damping; within the boundary zone, the complex shear modulus, CO(r),

varies parabolically, as expressed by the function fer), shown in Fig, 3,1 (b). The

variation of GO(r) is continuous within the boundary zone both in the function itself

and its derivatives, so that no reflective wave can be produced at the interface (this

is referred to as non-reflection inter[aceJ~

The properties of the soil medium for each region are defined by the complex­

\'alued modulus
r= r.

{

G'

GO(r) = G;f(r) r~ < r < R

G; r;::: R

(3.l)



.od

{
G; = G,(l + i2J;)

p.'}
G; =C.(I + i2J.l

in which G; and C. = !hlear moduli of the inner and ouler ...ones: r~ =radius or the

cylindrical cavity in the medium; R = radius of boundary zone; r =radial distance

to an arbitrary point; {1. and .at> = damping ratio for the two lones; and i =..;=T.

The parabolic function, f{r), can be exprnsed as :

.od

(3 ..1)

where t .. =thickne!5 of boundary lone; m =a constant whOlie value depend, on

Gi IG; and !... /c. , as shown in eq.(3.4). It should be explained that the soil in the

boundary zone may be weakened. as well as may be stren&then~ in some cases, such

as pile driving. When the soil is \Oo'eakened, GdC.. < I; when the soil is strengthen.

C;fC.> 1.

Denoting

then

:= rlr.

II() = I - m'( - RI'.)'

IS

13.5}

(3.6)



(l) Composite layer

Hr)

Non· rrnttlive
Inlefface

Pile : Boundary' Outer zone
zone

(b) Vuiation~sbearmodulus

Figure 3.1: Model of boundary lone with non-reftective interface, (A) compoeition
of the zoees, and (8) variation of shear modulus with radial distance.
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(3.7)

(3.8)

3.3 Differential Equations in Cylindrical Coor­
dinates

for a homogeneous iso~ropic medium, the differential equations can be derived

from th~ standard form, written in cylindrical coordinates, ( Sokolnikotf, 19.16 I

~ + ; 0;;' +8;:, + (T. ~ IT, =p~
or., 11M, /h,. 2 {fJv
&;: + ;ai +a; + ;Tr , =P/iii

a;;. + ~~;. +~ + ;Trz =p~!~

in which Il, u and w =- radial, tangential and vertical displacement, respectively; r,O

and: =radi ...l, angular and vertical variables; (1; =normal stress; T;J =shear ~tl'C5S:

p = mass density and I =time.

Hooke', law for the medium assumes the (orm

{

IT, =~..(~.+t'+t.)+2G·ti

T'J ='lG 1i,

when! .\" =complex Lame constant of the m~ium and the strains, t, and 7il' can

be expressed as

(3.9)
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,.,
3.4 Impedance Functions of Soil Layer

3.4.1 Vertical Excitation

Within the Boundary Zone

The radia.l a.nd tangential displ:.cements are assumed to be very small in com­

parison to the vertical displacement and hence can be neglected. That is u =u =0,

and also the variation of vertical displacement' with depth is not considered. The

governing equa.tion ca.n be Jeri\-ed from eq.(3.7) ror the composite layer excited

\'ertically,

G.(r)~~ +(dC;;r) +G·;r)l~ = p~2!~ (3.10)

The mass density for the inner zone is assumed to be equal to that of the outer

Under harmonic excitation

eq.(3,lO) can be written as

w::: w(r)e,wl (3.11)

21
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in which

\-~... - vi +i23.. (:U~)

where dimensionleu rr~quency. a.. = ,.Jr.. /V.,UJ is circular frequency, i\nd V. is Slll'ilr

wave y~locity qf soil.

L.t

then

z=m(R/r.-O

1(0 =1 -x'

(HI)

(:1.15)

Substituting eq.(3.14) a.nd (3.15) into eq.(3.12), yi~lds

.PID Z2 - l' dw >.
(z'-I)dz' +[2z+ z_mR/r.Id;+(~)2w=o (:1.16)

Denoting

a=mR/r.

b=(~)'
Eq.(3.16) can be rewritten as

(z2 _ l)~ + [2z+ :~~:I~ thw =0

Th~ displa.c~~nt,w.can he ell:pressed. by a pow~r series as

(:1.11)

(3.18)

Substituting eq.(3.18) into eq.(3.1'i'), lh~ coefficients in the pow~r series ca.n be de·

terrnined as
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~ (3.19J
ult.4~ +AI
~
{II - l)2A~_1 + arb + IT! - 2)(11 - 1)1..1._1 - [b+ (II - 3)(11 - 111.4 ..._3

lI(n-l)a

where C I .J.nd C1 are eomplel<-\'a!ued eonstllnls which elln be determined b~'

considering the boundllry conditions.

Fin.J.]Jy, the shear stress is

r, = G'{r)~ = -~G'(r)~ (3.20)

The &overnin& equlltion (or the vertica.l vibration of the homogeneous medium

can be derived from eq.(3.7), but C' is taken il5 constant in the outer zone. The

equation is derh~ as

This is il Bessd equation for which its solution is

w((J =C,F.(J..(J + C.I.'.... )

(3.211

(3.22)

where I. and K. a.re modified Bessel functions of zero order of the first and second

kind. respectively; C3 and C~ are cOffip\cx'\'alued constants of integration which can

h'l determined from the boundar~' conditions.

23



The boondary conditions ilre :

1

",,=1

r/)o =0

Wi = Wo

r, = T~

at ~ =I

i\t(= ,:,c

at <= R/r~

at ~ = R/r.

To satisfy these boundary conditions, C4 = 0 must hold.

Eq.(3.22) can now be written as

At the boundary of th~ hole. r = r. t 50 { = I. Thus, tq.(3.l4) reduce! to

z, = VI - G,IG;

and likewise eq.(3.18) becomes

(3.2-1)

(3.25)

(3.2£)

At the interface of the tlVO zones, ~ = Rfr., so % = O. From eq.s(3.18) and (3.2.1),

it follows that

. and the shear stresses is

T, =Cl(-~)G:
'.

r. = -C3~Kl(..\.~)G:
r~ r.

[3.27)

(3.28)

(3.29)

where K 1 is modified Bessel function of first order and the second kind. Using T, = T.

a.t the interface it follows tha.t

(3.30)
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From e'l.s(:J.26),(:J.27) and (3.30). C,C2 and C3 can be calculated.

The impedances of the composite layer for vertical vibration is defined as

(J.3l)

then, kv can now be determined from

(3.32)

ft is desirable to express kv in the following form

(3.33)

in which

(3.34)

where V~i = fGJP is the shear wa\'e velocity for the boundary zone; Svl and S.'2

are dimensionless factors that depend on a~,I",lro,GdG~,f3; and fJo. The factors

SVI and 5., are referred to as the vertical stiffness and damping of soil, respectively.

In this study, the impedances of the soil layer was expressed in terms of the

shear modulus of the inner region. Gil foHowing the format employed in Veletsos

and Dotson(1988). The stiffness and damping factors, 5vl and 5.'2, obtained from

Ihe present analysis are compared with those obtained for the Novak·Sheta (N-S)

and Veletsos-Dotson (V-D) idealizations. as shown in Fig. 3.2. These solutions are

for a soil layer with l",/r" =1.0. G,/G. =0.25,.8i =OJ, and {J. = 0.05. The mass

density for t~e inner zone is laken to be the equal to that for the outer region in
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the present solution and V-D solution. for the ~·S solution the mass dcmilY ror lhe

inner zone is assumed 10 be zero. It can be obserw~d thatlhe lhm~ sets of results

arc significantly different: the r·D solution results in pronounced oscillations ( IlIl'

dulations) caused by wave refl.ections from the interfa.ce between the tIVO media.. It

is a defect in theory to assume zero-mass in the inner zone for N-S solution. The

results from the present analysis are smooth Clltl'eS over a wide range, the Vi\luc

of a; from 0.0 to -1.0, which indicates that the wave reAections from the inlcd..l.Cr.

are alleviated because it embodies a continuous variation in soil properties ill the

boundary zone witn smootn (continuous derivatives) transition into the outer zone.

For comparison, the results for a homogeneous layer are also included in Fil!,. :1:1.

To illustrate the influence of paramelers involved, the stiffness and damping

factors for a ..-ertically excited la~'er are plotted in Fig. 3.3 and Fig..1..1 as a function

of ll; for several different combinations of I../ro and Go/Gi , with material clamping,

3; = 0.1 and ,30::: 0.05, It should be noticed that the undulations caused by wave

reflection ·..anish as expected in all of the cases presented, owing to the lilodel of

non-refl.ettive interface. The influence of the material properties in the boundary

zone is sensitive to the stiffness and damping of the !oillaycr, The stiffness factor,

S.1I increa.ses wi~h ~he level of G4 /G, and is smallest for the homogeneous caSIl

(G~/G; = I). The damping factor, 5,,2, at lower frequency levels becomes larger

as the magnitude of Go/C; increases; however, at higher frequencies this tendency

diminished.

The effects of material damping on the impedances of the soil layer a.re ~tmwn
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Figure 3.2: Comparison of impedance funclions for vertical llibration by different
solutions, tm/ro =LO, G;IG~ == O.25,fJ,· == O.I,Po =0.05; (A) stitrne:u {actor S~h
and (B) damping factor S1/J.
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Figuft 3,3: Vertical impedances for a composite layer with material dampius Pi =
0.1, P. "" 0.05 and different p&t&mt:len: (A) (or 1./rD "" 0.1; (B) for ~",/r. "" 0.2.
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Figure 3.4: Vtttial impedances for ~ composite layer with mauna! d&mpins: p~ =
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stilfneu factor S.h aDd (8) damping (ador Sd.

30



in Fig. ;],,5. Se\'eral \'a!ues of damping ratio are selected, in one case both 3, and

J~ arc zero and in other cases J.:= 0.05 and 3;:: 0.05,0.\ and 0.2, respectively. It

can be seen that the stiffness fa"or, SUI' reduces with material damping increasing,

but the effect to damping factor,s,,~, are small. This trend in damping response

can be explained by reference to the fact that the radiation damping becomes more

dominant (relative to the material damping) at higher frequ~ncy le\·els.

3.4.2 Torsional Excitation

Within the Boundarv Zone

The assumptions that are made for the case of torsional vibration o£ the m~dium

Mound the vertical axis of the cylinder are that the radial and vertical displacements

are i. ;nitesimally small and hence can be neglected. That is II. = W = O. variation

of tangential displacement with depth is not considered. The governing equation

can be derived from eq.{3.j) for the layer excited torsionally,

G'(r)(~ +~~ - ~v) + dG;;r)'(~ - ~l = P~ (3.35)

The mass density for the inner ?One is assumed to be equal to that of the outer

l'nder harmonic excitation

(3.36)

31



eq.(3.35) can be written as

Substituting eq.(3.l-l) and (3.1::» into eq.(;Uil, yields

The displacement,u, can be expressed by a power series as

(3.39)

Substituting eq.(3.39) into eq.(3.38), the co~fficients in the power seric! can bl;l de-

termined as

with denoting

A,

A,

A,

C,

(a1b+ I)A.+aAt

2a'
2a(1 - b)A. + a'(b +2)A I t 6aA,

6,'

1

,1 ~ (n-I)(2"-:II'

62=(n-l}(n-2)a1 -(n-2)'tba2
+\ n.·II)

63 =-'11"- ")(2" -31+2(6-111

64 = (n - 2)(n - ·1) +b - 3

the general term can be expressed as



where C1 and C:z are complex. valued constants which can be determined by

mnsidering the boundary conditions.

Finally, the shear stress is

T, = C'{r)(~ -~) =-C'(r)(~~ +~)
dr r r.dx r

(3.43)

The \!" \'erning equation for the torsional vibration of the homogeneous medium

can be derived from eq.(3.7), but C" is taken as constant in tlte outer zone. The

equation is derived as

This is a Bessel equation for which its solution is

0(1) =e,g,p.() +G"I,ll.1)

(3.H)

(3.45)

where It and K 1 are modified Bessel functions of order one of the first and seeond

kind. respectively; CJ and C~ are complex-valued constants of integration which can

be determined from the boundary cD~ditions.

The boundary conditions are:

1

"./'.= I

Vo =0

Vi =V.

T, =r.

at(= 1

at (= 00

at(= Rlr.
at{=R/r.
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from these boundary l:onditions. Ct. C~ . CJ and C~ can be calculated.

The impedance! of the composite layer for torsional vibration ill ddint.'d all the

moment of the shear stresses around the cylinder axis with respect to unit torsional

angle (tJ;fr", = I l,

(3..1il

then, k~ can now be determined from

It is desirable to express k9 in the following form

k9 = 21l'r~G,ISu + iaiSnl

(3..18)

(a"I!))

where 5fl and 591. are dimensionless factors that depend on a",lm/ro,Gi/G.,P, and

3",_ The factors Sit and S~~ are rderred to as the torsional stiffness and damping of

soil, respectively.

The stiffness and damping factors. 5'1 and 591' obtained from the present analy­

sis are compared with. those obtained for the Novak·Sheta (N-S) and Veletsos-Dotson

(V-Oj idealizations, as shown in Fig. :3.6. These solutions are for a soH layer with

t... /r", =1.0,0;/0. '= 0.25,,3; =< J. '= 0.0. The mass density for the inner zone is

taken to be the equal to that for the outer region in tne prescnt solution a.nd V-D

solution, for the N-S solution the mass density for the inner zone is assumed to

be zero. It can be observed that similar to the case of vertical vibration the V-D

solution results in pronounced oscillations (undulations) caused by wave reflections



from the interface between the two media. The results from the present analysis

are smooth cun'es over a wide range, indicated that the wave reflections from the

interface are alleviated because it embodies a continuous variation in soil properties

in the boundary zone with smooth (continuous derivatives) transition into the outer

For comparison, the results for a homogeneous layer are also included in Fig.

:1.6.

To.illustrate the influence of paramet.:rs involved, the stiffness and damping fac·

tors for a torsionally excited layer are plotted in Fig. 3.7 and Fig. 3.8 as a function

of ai for several different combinations of t",/ro and Go/G;, with material damping,

ili = 0.1 and ,8. = 0.05. It should be noticed that the undulations caused by wave

reflection vanish as expected in all of the cases presented. The torsional stiffness

factor, S'1I increases with the level of G./G; and is smallest for the homogeneous

case (G./G; == I).

The effects of ma.terial damping on the torsional impedances of the soil layer are

shown in Fig. 3.9. Several values of damping ratio are selected, in one ca-se both Pi

itnd fl. are zero and in other cases J" = ~.05 and ~; == 0.05,0.1 and 0.2, respectively.

It can be seen that the stiffness factor. S,1> reduces with materia.l damping increas­

ing, but the eff&t to damping factor's92, are small. This trend in damping response

can be explained by reference to the fact that the radiation damping becomes more

dominant (relative to the material damping) at higher frequency levels.
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(3.51)

3.4.3 Radial Excitation

Within Boundarv Zone

The composite layer is subjected to an axisymmetrica]' \'olumetrical ddoflllatioll

associated witl). the propagation of P·wave in the radial Jirt"Ction. or say breathing

vibration, such as in the cases of cavity expansion. pile vibration and driving. In

this case, v ::: W =O,the governing ~ualions can be derived from eq.(:I.7) a~

where, a. == normal str~s. a, ::: tangent stress. and u(r,/) == radial displacement.

The stresses, a. and a" can be expressed as

{

a. '=' (>." +20.)au~~,t) + ~.u{~,t)

a, '=' .\.au~:,t) +(>." +2C")u(:,1)

where >." ::: complex Lame c·~nstant of medium in boundll.Ty zone, and expressed as

>."::: I ~1I2I1C· (3.,')2)

where II "" Poisson's ratio, to be assumed a constant in the boundary zone and the

same as that in the outer medium.

Substituting eq.(3.S1) into eq.(3.50), yields

t[(>." +20")au~,t)+ ,\"u(:_/)j + 2~" (au~~,t) _ u(:,I))::: /~~t:'!} (3..',:1)

\Vithin the boundary zone, >." and C" are variable. eq.(3.53) can be written as

('\'+2G'lIa~~~,o +; au~:_t\ -~u(r.tJJ+ JP";r20") au~,t)+?J,; u(:,t) ::: /~~;~:,t)

1:1,,\'11

·10



Lnder hArmonic excitation

u(r,t) = u(r)e'''''

eq.(:l.54) becomes

(3..55)

in Ivhich

and denoting

I
ia.

JrD=~

,=)'(1-"1/(1-'")

" : )"/(1 - v)

(3.57)

B=(~)'

With reference to eq.(3.14) and (3.15), eq.(3.56) can be written as

(3.58)

(.r' - 1)~ +[2. +~l~ -:-f~ + 1/~--.3=.... + BIll. = 0 (3.59)
dz' z - 0 d. (.1' - 0)2 X - a

The displa.ce~n\,u,can be expressed by Ii power series u

(3.60)

Substituting eq.{3.60) into eq.(3.59), the coefficients in the power series can be de-

terrnined as

A, c,

'I

(3.61)



(a~8 + llAo +a.-ll
~al

-~a(8 + l/fl.-to + 1.1'(8 + ~l:ll +oatl,
60'

with denoting

!
"=(n-I)(2n-3)0

82 :::::(n-2)(n-3){a'- l)+(n -2)(2a'-I) + 8a'+ 1

63::::: -a[(n - 3)(2n - 3) +2(8 + IJtll (:um
64::::: (71. - 2)(71. - -I) + B + 21/~ - {

the general term can be expressed as

A _ 81.-1.~_1 +62A~_, +83A~_J + 64A~_.

n - n(n _1)ttJ (3.63)

where C, and C, are complex-valued constants which can be deterrr...dl: by wnsid­

ering the boundary conditions. Finally, the normal .~tress is

(:1.64)

The governing equations of the homogeneous medium can be derived from eq.(:1.5:1),

but ,\" and Go are taken as constants. for the axisymmetric, volumelric deforma­

tion associated wilh the propagalion 01 P-wave in the radial direction. breathing

vibration, the equation is

where .\; ::::: complex Lame constant of meclium in outer zone. for harmonic cxcita-

tion, eq.(3.65) becomes

rFd~~r) +; d~~) _ (;;2 + ~)u(r) = 0

·'2

(3.66)



This is a modified Bessp.I equation. for which its solution is

13·671

where II and 11.', are the modified Bessel function of order one, the first and second

kind, respectively; C3 and C~ are complex-valued constants of integration which can

be determined from the boundary conditions.

The boundary conditions are: the displacement a.mplitude is unity at the bound·

ary of the hole and displacements vanish as r __ co; displacements and stresses are

equal at the interface between the two lanes. To satisfy these boundary conditions.

C~ = 0 must hold. Eq.(3.67) can now be written as

,\t the boundary of the hole, r = rd , and (= 1

'. = JI- G;/G;

and likewise eq.(3.60) betomes

(3.681

(3.69)

(3.70)

At the interface of the two zones. r = Rand z ,. 0, from eqs. (60) and (68), it

follows that

(3.01)

F'rom eq.(3.1) and eq.(3.52) one knows that .\" =:.l.; and C" = C; at the interface

(r = R). and the norma! stresses a, = a•• then

(3.12)

13



From eq.s(.3.iO), (3.il) and (:J.i2), Cl'C~ and C1 (an be obtained. Since the dis·

placemenl amplitude is unity at r = ro, the r,ldial stilfness is defined as

then, k, can now be determined from

Separating the real and imaginary parts of eq.(3.74). the cOfllplcx'\',llueu radi,ll

stiffness can be written as

(3.75)

The real part 56l is a dimensionless stiffness factor and S'~1 is a damping factor. The

\'alues of 561 and 562 depend on frequency ao, damping ratio Po and Poisson's ralio

10'; also on the boundary zone parameters, such as, modulus ratio Gi/Gn , thicklle:u

ratio t"..fro and damping ratio ;J;.

The stiffness and damping factors, 56l and 5 62 , obtained from the present anal­

ysis are compared with those obtained for the Novak and Mitwally idealizations

(1988), as shown in Fig. 3.10. These solutions are for a soH layer with t",lr" =

2.0.G;/G" = 0.5,13, = a.l,p" =0.0.) and Poisson's ratio,/I = 0.25. The mass for the

inner zone is accounted in both X",'·.,k's solution and the present, solution, however,

the properties of soil for lhe inner zone were assumed to be constant in the former so

that resulting in pronounced oscillations ( undulations) caused by wave reRections

from the interface between the two media. The results from the present analysis

are smooth curves over a wide range, indicated that the wave reRections from the



interface are allevi ... ted because it embodies a continuous variation in soil properties

in the boundary zone with smooth (continuous derivati\'es) transition into the outer

for comparison, the results for a homogeneous layer are also included in fig.

:1.10.

To illustrate the influence of parameters invoh'ed, the stiffness and damping fac­

tors for a radially excited layer are planed in Fig. 3.1t as a function of ai for several

different combinations of t... lro and GoIGi , with material damping, .3i =: 0.1 and

J. =0.05. It should be noticed that the undulations caused by wave reflection van­

ish as expected in all of the cases presented. The radial stiffness factor, 5 611 increases

with the le\'el of GolC, and is smallest {or the 'homogeneous case (CoiC i =1),

The effects of Poisson's ratio on the radial impedances of the soil layer are shown

in Fig. 3.12. Several values of Poisson's ratio are selected, II = 0.0,0.2,0.3 and 0.4,

respectively. It can be seen that the stiffness factor, S.ll reduces with Poisson's

ratio increasing, but the damping factor.S.~, increased with II increasing for highl7f

frequency range.
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3.4.4 Rocking Excitation

\....ithin the lJoundary Zone

In this case it is assumed that the particles of soil move vertica.lIy up and down

along the cylinder a.xis. This case is very simila.r 10 the vertical case. The assump­

tions are u -= II = ~ -= O. The governing equation can be derived from eq.(3.7) for

the rocking vibration of the composite layer

The mass density for the inner zone is assumed to be equa.l to that of tbe outer

Assuming

eq.(3.76) can be written as

w -= w(r)cosgeiwt (3.i7)

f(()~(~ + Id~~() + I~()I~ _II;;) + ~:Jw = 0 (3.78)

in which

1. = JI ~~2J.
Substituting eq.(3.l4} and (3.15) into eq.(J.78), yield!

(3.19)

Denotin!

d::mRlr.

'9



A,

b=(~P

Eq.(3.dO) can be rewritten as

The displacement,w, can be expressed by a power series as

(:1.82)

~ubstituting eq.(3.82) into eq.{3.Sl), the coefficients in the power :serirs can be de-

termined a!

A. 1 = C1

(a 1b+l)AQ +aA1

2a1

-2abAQ + 4 1 (b .... 2)A 1 +6aA2

60'

with denoting

1

61 =(n - 1)(2n - 3)0

62 ={n. - l)(n. - 2)a1
- (n - 2)' +ha' + I (:l.84)

63 =-a[(n - 3)(2,' - 3) +26)1

64 =(n -2)(n -4)+6-1

the general term can be expressed as

A _61A,,_1+62.'1,,_2+6.1A,,_3+64A.. _4 (:).85)
.. - (n _ \)a1

where C1 and C, are complex-valued constants which can be determined by

considering the boundary conditions.

.jO



Finally, the shear stress is

T;: G"(r)~cos9=-~C'(r)~CosB (3.S6)

The governing equation for the rocking vibration of the homogeneous medium

can be derived from eq.(3.7), but C" is taken as constant in the outer zone. The

equation is derived as

e~~ +<~-('\~e + l)w(~) =0

This is a Bessel equation for which its solution is

(3.87)

(3.88)

where hand K1 are modified Bessel functions of order one of the first and second

kind, respectively; CJ and C. are complex· valued constants of integration which can

be determined from the boundary conditions.

The boundary condi~ions are:

I
w, = 1

u.·o =0

Wi :W"

T, =To

at~= landB=O

at{=~

at ~ =Rjr.

at~ = Rjr.

(3.89)

To satisfy these boundary conditions, C~ =0 must hold.

Eq.(3.SS) can now be written as

51
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At the boundary of the hole. yield!

(3.911

At the interface of the two zone!. { = R/ro. so.r =O. From eq.s(3.S2) and (:1.!lO).

it follows that

(3.!J2)

l.'sing T, = To at the interface it follows that

(:1.9:1)

From eq.s(3.91 ),(3.92) and (3.93), el , C2 and C3 can be calculated.

The impedances of the composite layer ror rocking vibration is defined as

(3.94)

where .'tf", =is the soil reaction moment to the motion or the cylinder, expressed as

.\t.. = - {" r~T,cos6d9 (3.951

and the rocking amplitude of the cylind~r is .p =w(r =ro)/{r"co! 0). then, k. can

now be determined from

(3.96)

It is desirable to expreu k.. in the rollowing rorm

(3."7)
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where S... l and 5.2 are dimensionless facto~ that depend on a~,t ... /r•• G;/G•. J, and

.I~. The factors 5•• and S..2 are referred to i5 the rocking stiffnes3 and damping of

soil, respecth·ely.

To illustrate the influence of p&r&meters in...olved. the stiffness and damping fac­

tors for the layer in rocking vibration are plotted in Pig. 3.13 and Fig. 3.14 as a

function of 0, for several different combinations of t... /r~ and G~/G;, lYith material

damping, fl,' "" o. ( and 3~ =;; 0.05. It should be noticed that the undulations caused

by wave reflection vanish as expected in all of the (iUes presented, olYing to the

model of non-reflective interface. The influence of the materia.! properties in the

boundary zone is stnsitive to the stiffness of the soil layer. The stiffness factor,

S,,1t increases with the level of G./G, and is smallest for the homogeneous cue

(G./G, =1).

The effects of m&teria.l d&mping on the impedancell of the soil layer are shown

in Fig. 3.l.i Several values of damping ratio are selected, in one case both 9; and

J. are zero &ud in other cases 8. "" 0.05 and ~i = 0.05,0.1 iUld 0.2, respectively. It

can be seen that the stiffness factor, 5"10 reduces with ma.terial damping increasing,

but the effect to damping factor.5... 2• is small in this case.

• 3
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3.4.5 Horizontal Excitation

Within Boundarv Zone

\Vith the assumption that the vertical displacement are negligibly small in com­

parison to the radial and tangential displacements. that is w = O. the equilibrium

equation under horizontal excitation can written as

(3.98)

:\ general solution involving \'ariations of soil properties in the boundary zone prol'es

to be extremely difficult because of cross coupling between the radial and tangen­

tial displacements, and higher order differential equations that result from abol'e

equations. lienee. in this study it is M1Umed tha.t '\i and G; are constants in the

houndary ZOlle under horizontal excitation.

for uncoupling of eq.s (3.98). the potential functions, dJ and I/J, are introduced,

such that

:\ssuming
J 0 =~cos 8ei~1

l Ii; =_\~ sin8eieo ,

57
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in which

the gO\'ernin!; equation may be deri\'ed as

{

'; = ;r-';?t;J:
>. _ '\i

II - J2(1 11)/(1-211)

Eq.(3.10l) is modified Bessel equations. and the solulions are

J $ = C,/l(·\"el +C1 K,{A i,O

1~ =CJJl().,O+C.K,(Ai{)

1'1,101)

1:1.1021

1:1.103)

where CllC" CJ and C. are complex-valued constants which can be determined hy

considering lhe boundary conditions. The boundary conditions are:

From eq.(3.99), yields

1

'(0 =I

,({I =-1

'(0 =0

'10=0

at e= I and 0 = 0

at e= I and 9 = i
ate= Rfr.

ate= Rfr.

(:l,104)

'({I = C,I'HI.(~,O - ZI,I'H{)/-C,I",K,(,,,{)+ Zn,I'"OJ

- C3~Jl('\'{) -C.~KI(A,n (:I.I05)

<>(0 = -C'ZI"'"O - C'Z",(,,,O + C,I~I.Po()- ZI,PoOI

- C.(',h',(.\,{) +ZK,(';()/ 1',106)
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denoting

'" .\'I/.(.A,d-/d"x,r)

'n -I.\,d<o(.\'l) + l<t(A,dl

'n -I,P,)

'" -h',P,)

'" -h(.\,d

'n -1\1(-\'1)

"u .\/,(.\,) -/,1',)

'" -I;,/{.(.I,)+K,(.I,II

a" -.\'I{'(.\il~)+ ~(I(.\H~) (3.107)

au .\i1K'(.\H~)+ ~KI(.\;l~)

au :!/I{.\;!!)
R '.

a,. ~Kl(.\'~)
R '.

a" ~(I(.\'I~)

a" ~KI(.\ol~)
R '.

au -.\,I.(.\.~)+~Jt('\;~)

a .. .\,f\.(.\,~)+~J<l(.\;~)

Sati~rilction of these boundary conditions shown in eq.(3.104) leads to the follow­

inp; systems of algebraic equations for the l:-'''rlolination of the remainill& constants:
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The rollowing expressions for the stress amplitudes Ol1\ be ohtained (rom c(l'latiuns

(3.8) i.nd (3.9) by m&king U5t of eq.s (3.99) and (3.100):

I
.1: du H, 2G-d,

u. =[;:(dl+T)+~d{lcosO
(3.109)

T., =~(~_1I;11)5in9

in whkh the expresliions fr'Jr the derivath-es of displacement can be derived. from eq.s

~ = CLf(.\f. +~ )/\(A;\{) - ~1"(.\1101 + Cll(A~1 + ~)KI(.\il() + fKo(..\;'(11

+ C,I~I'P,()-1,.I',Ol +C.1f,K,(>,O +tK.1',(JI (3.110)

~ = Cd~/I('\i1{)-~l.(>'il{II+Cll~~I(.\'IO+~K.(,\,,{)J+Cl((>';+~)/1 (.\,{)

-1,.I"~)J +C,li-l: +f,)K,I',O + tK.i",()l (3.111)

The impedance function of the inner l"It('l!i":m is defined as

K", _lh(tT. cosB - r•• sin8)r.d8

1I'"G:t~ _1J1~ _ (I +?~)U;VII(=1
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where '1 and 'II are the sa.me as those defined in eq.{3.57).

for the outer medium eq.s (3.98) to (3.lOl) again hold with the changes of

parameters from inner zone to outer zone.Then, the governing equations shown in

(3.113)

in which

{

l _ i,•.-~
'\.1 = A.

)2(1 - .1/(1 - 2.)

(3.114)

The solutions (or eq. (3.113) an~

{

¢I = CI/I(A.lO + C1KI(~.I{)

>I< = C,l,!,.() +C.K,('.()
(3.115)

where C.. CJ.C3 and C4 are complex-\-\''led consh.nts which CAn be determined by

considering the boundary conditions. The boundary conditions ue:

I
u(J = I <1(= R/,• •nd 8=0

11({)=-t al{=R/r.andO=i

u({)=O at{=co

11({) =0 at~=:o

(3.116)

Since the displacements &nd stresses dec.ay with horizontal distance {, the constants

C, and CJ must be zero. The solutions shown in eq. (3.115) can now be rewritten
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$ =C,h·,(.Io'O
(3.[li)

IJr = CIh'I(.\~O

From eq.s (3.99) and (3.11 i) the displacement amplitudes can be derived ,lS

{

u({) == -C1['\.l/{.. (.\.IO + ~({\(.\,,\e)l- C~ZKI('\o{l
(:1.1181

v«() = -C,~K,(.\oO() - C.{.I,K.('.<I +~n'I''<)J

The co.nstants C, a.nd C~ can now be soh~ from lhe boundary conditions shown

in eq. (3.116).

Simila.r to tq. (3.t09), the expressions of tile SlfC!5 amplitudes for the outer don can

p.l!!))
{

•. ={::;(~+~I+~~I,mO
r" de e ro d{

T,,= Q;.(~- ~)sinO
'. d( (

in \\'hich the expressions for the derivatives of displacement un be d~iycd from cq.s

Oe written as

(:LIIS),

{

~ =C,I(.I~, +~)K,l'oO() +¥J<.ll"OI +C.I~K'I"O + ~K.P'<II*= C2(~KI(~.IO +~ g.(.\.len +C.I('\: +~)K,(.\.() + ?Ko('\'(ll
('..,01

The impedance function of the outer medium is defined as

- t~(t7rCO!O- T,,3inO)Rdl.l

ll'G;{~)(~ _ ,"l~ -(1 +,,~)u; 1I11{"R/~. ('.1211

62



where '1 and '11 ue th~ ume as those d~6ned in eq.(3.5i).

Using the separate impedanm of th~ inn~r and outer media givm by eq.s (3.112)

a.nd (3.121), th~joint impedanc~of the combined medium in the horizontal vibration

k _ KoI K ..1
.. - Kol+Kd

It is desirable to express k.. in the following form

(3.1221

(3.123)

where S.l and 502 are dimensionless factolS that dep~nd on a., t"'/"o,G;jGodJ; and

P.· The factors SOl and 501 are referred to as the horizontal stiffness and damping

of soil, rupectively.

The stiffness and damping factors, 5.1 and 5.1• obtained from the present anal-

ysis are compared with those obtained for the Novak's idealizations, a.s shown in

fig. 3.16. These solutions are for a soilla)'ef with I./r. = 0.5, G;/G. = O,~,.8; =

0.1,.3.. = 0.05, and II = 0.25. Th~ mass density for the inner zone is taken to be

equa.l to that for the outer region in the present solution. whil~ for the Novak's so­

lution the mass density for the inner lone is assumed to De zero. It can be observed

that the difference between the two solutions appears with increasing of frequency

ai. although the difference is small. [t can also be noticed that undulations caused

by lVa\'~ reflection! from the interface betw~n the media. can not be observed in the

low~r frequency region ( maximum frequency ai = 2.0). For comparison, the results

for a. homo!eneou! Ia.yer are also included in F:6. 3.16.
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To illustrate the influence of parameters involved, the stilfn~s and damping fac­

tors for a horizontally excited layer are planed in Fig. 3.17 and Fig. :J.l8 as a

function of ai, maximum frequency ai = 2.0, for several different c.ombinations of

t ... lr~ and G~/G;, with material dampin~, Pi = 0.1,8.. = 0.05 and Poisson'~ ratio

u '" 0.25. il should be noticed that the undulations caused by wave reflection are

not Obvious in the lower frequency region, except for the case with larger thickness (

ttn/r~ = 1.0 ). The inlluenceof the materia! properties in the boundary zone is sensi­

tive to the stiffness and damping of the soH layer. The stiffnc5S factor, SUI, incrcases

with the level of G~/G. and is smallest for the homogeneous case (G~/G; = I).

The damping factor, Sua, at lower frequency level.s becomes larger as the magnitlJQp.

of G./G, increases; however, at higher frequencies this tendency diminished. This

trend in damping response can be explained by reference to the fact that the radia­

tion damping becomes more dominant (relative to the material damping) at higher

frequency levels.

The effects of material damping on the impedances of the soil layer are shown in

Fig. 3.19. These solutions arc for a soil layer witn trn/rq = 0.5,G;/0.:: 0.5" and

v '" 0.25. Several values of damping ratio are selected, in one ca!e both fJ. and P.

are zero and in other cases fJ. = 0.05 and 13; = 0.05, 0.1 and 0.2, rc!pectivcly. It can

be s~n that the stiffness factor, S"I, reduces with material damping increasing, but

the damping factor,S~a, increases with material damping increasing.

The effects of Poisson's ratio on the horizontal impedances of the 30il layer are



~hown in Fig. 3.20. These solutions are for a soil layer with t.... /ro :::: O..;.G',IGo :::

1).."J,3, :::: 0.1. and IJo '" 0.05, Se~'eral vah.le5 of Poisson's ratio are selected, II ::

i).0,0.1.;,0.3 and 0.45, respectively. It can be seen that the stiffness factor, SDlt

increases with Poisson's ratio increasing. and the damping factor,SD2' ~.Jso increases

with II increasing.

t\lthough values of layer impedances for a, > 2 are needed infrequently in prac­

tIce, it· is nevertheless desirable to e;ocamine their behavior for this frequency range.

In Fig. 3.21 are given representive plots of SDI and Su2 for a soil layer with values

of ai up to 4. These solutions are for the soil layer with t",jro := 1.0,11:= 0.25,p;::

0.1.;1" :: 0.05; in one t..'\Se C,IG. = 0.25 and in another case G;/Go :: 1 (homoge­

neolls). Note that, for the higher values of ai, the curves for inho;nogeneous layer

are undulatory. [t can be e;ocplained that '\i and Gi are assumed to be constant in

the inner zone, resulting in undulations. As a consequence of the discontinuity of

material properties at the interface of the two zones, wave reRections occur at the

interface.

:\ general solution involving ...ariatio~s of >.; and Gi proves to be extremely diffi­

cult because of cross coupling between the radial and tangential displacements, and

higher order differential equations resulted. Hence, constant Ai and Gi are assumed

for the case of horizontal excitation in this study. Even under this assumption it is

Iht.'Oretically more complicated to derive than the other cases dealt herein. such as

lhe cases of vertical, torsional. radial and rocking vibration.
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Figure 3.16: Comparison of bori7..onh.1 impedaoce func:tiol1l by dift'arent IOlutionl,
Im/ro == 0.5,G;fGo = 0.25,.8; = 0.1',,"0 = 0.05,11 =0.2:1; (A) Btiffne81 fwot S..a.
&.Dd (B) damping factor 5"2'
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Pigure 3.17: Horizontal impedances tor a composite layer with mateial dampio&
Pi =0.1, P. = 0,05,,, =0.25 and different parameters: (A) ror t...lr. ". 0.1; (8) tor
t",lr.=O.25.
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Figure 3.18: Horizontal impedances for a comp08ite layer with material d&ltlpiol
fJi = 0.1, flo = 0.05, v = 0.25 llnd different pUlUIleten: (A) fot t"./ro = O.S; (9) ror
t",lro=1.0.
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Figure 3.19: Effects of materia.! damping on horizontal impeda.nces o( soil layer, (A)
stiffom factor SYlI and (8) da.mping factor 5..2 ,
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Figure 3.20: Eft'eda of Poi,son's ratio OD horizontal impedUlct::l of .oil layer, (A)
stifJ'aeu factor SUI! and (B) damping factor Sd'
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Figure 3.21: Hi&h·frequency behavior of hcrizootaJ impedaoca of a compa.ite la~
with t ... lr. = 1.0, II = 0.23,8i =0.1,8. = O.O~; (A) diffnes$ factor 5.1 , aDd (8)
dampiD! f&Clor 5.,.
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Chapter 4

Stiffness and Damping of Single
Piles in Layered Media

4.1 Introductior,

The main assumptions are: The soil is composed of horizonliU layers thin atc homo-

geneous, isotropic. and liota-fly viscoelastic with material damping of the frequency

independent hysteretic type. The soil properties arc constan~ within u.ch layer but

milY be different in individua.l IAym. To account approximltdy for the e!feds of

slippage and nonlinearitr. the boundary zone around ~he pile is assumed as described

in last chapter.

The pile is vertical, linearly elastic. and of circular cross section that may VII.rY

stepwise at the interface of the layeu; it is bonded to the soil. If the pile head lir.!

above the grade or the pile is assumed to be separated from the soil, the boundary

zone are modeled as void.

The soil reactions acting on a unit Icn~th or the pile are described hy COmpll!K



soil stiffnesses as shown in last chapter. associated with \·ertica.l. horizontal. rocking

...nd torsional displacements of the pile. The complex stiffness of one single pile can

be written as

(4.1)

in which K11 == real stiffness of one pile. C; -= the coefficient of the equivalent vis­

cous damping, i =A, w =circular frequency and j =direction of vibration. The

5tiffness constant, KJ1 , and damping constant. C}l can be determined. experimen-

tally or theoretically. The latter approach is preferred because experiments, though

very useful, are difficult to generalize. In the theoretical approaches, dynamic stilt·

nelS is generated by calculating the forces needed to produce vibration of the pile

head having a sole, unit amplitude in the direction coruidered.. These correspond

to \·«tical vibration, horizonta.l vibration, and rolation in vertical plane and tonion.

4.2 Element Stiffness Matrices

:\ pile is divided into be&m elements along with the soil layers and the soil below

the pile is an elastic half·space, as shown in Fig. 4.1. The properties of each element

are fully described by its stiffness matrix which is complex due to energy dis:tipa.tion

in the soil and includes the properties of both the pile and the soil. Because the

pile is axisymmetrical all the stiffness are nol coupled and can be described by three

independent matrices.
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Figure 4.1: Pile embedded in layered media and node Dumberins

Vertj,,1 Yibratipn

With the vertie&l impedances of the composite layer described by eq.(3.33), the

differential equa~ioD of motion in the vertical direction i.

m82~:,t) +Caw~,t) _E,Aa1~~~,t)+k..w(z,t) =0 (4.2)

wbere m = n1UI of the pile per unit length; C = coefficient of internal damping of

the pile; E, and A "" YouDs'a modulus and the ao•• aectional &rea of the pile; /c. =

vertical complex stiffness ( impedance) of soU; w(z,~) = vertiC&! amplitude or the

14



pile; z = depth of the pile; and t = time.

for harmonic motion w(:,/) = w(z)e';'>!, the complex amplitude u;(z) can be

determined as

('.31

in which B l and B1 = integration constantll; h = height of the clement of the pile;

and the complex frequency parameter, ti, is

(4.4)

The dynamic stiffnesses are defined by the boundaries w(O) = I, w(h) = 0 and

w(O) = 0, w(h) =1; from these conditions Bt and B1 can be determined.

The amplitude of th.e axial force, N, is

N(:) = EpAd~~z) (4.5)

The stiffnesses being external end forces are kt =-N(O) and k1 =N(h).

Mter substituting for w(z), the element stiffness matrix in th.e vertical direction

becomes

[kJ= EpAn[cotti _ -cs_cn]
~ h -csc n cotn

The end forces Nt, N, corresponding to end displacements Wt,W, then are

{ .V, } = [k.1 { w, }
'\'1 Ill,
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Horizontal and Rgtational Vibration

Horizontal \'ibration of a pile can be associal<:d with both horizontal translation

and rotation of the head. This horizontal vibration meet the horizontal soil rl'aclion

gi\'en by eq. (3.123) and the rotation reaction, eq. (3.9;). For slender piles. the

lAtter can be ignored and the equAtion of the horizontal vibration, u(~,l), is

in which tV" =static axial force (load of the pile): and E,I =bending stiffness of

the pile. (The value Nil is positi\"e if it acts downward.) This inclusion of IV., is

accurll.te with. end bearing piks; with. friction pile., N'I varies with depth but is less

important and can be neglected.

With harmon~c motion u(.:,t) = u(.:)e".. t, the complete solution (or the ampli­

tude, u(.::). is

in which the complex rr~uency parameter G,b are

a,b= ~{ ':f~ +J(~F~ ~[mw2_ ".. -iewll'"
.j2 Nf; ,vf; .V£

in which Ns = ~2E,llh2.

The moment, M, and horizontal transverse (orce, H, are

(·1.10)

(.... '1



(4.13)

(4.12)

The inl~ralion constants for the calculation of sliffnesses are given by end transla­

tions III = l,u2 = I and end rotation rut = I,¢" = I applied one at a time. The

subscripts I and 2 refer to the upper and lower ends of the element, respectively.

Then, the element stiffness matrix for the horizontal translation and rotation is

r ~F, ~F4 ~Fs ~F3

~F~ ~F1 ~F3 *F1

{'.J = £.1

bFs bF3 bF, ~F4

FF, XFt ~F4 XF1
in which dimensionless functions F i =F;(d,6) are

Ft(d,b) = 7(d1 +bl)(asinhb - bsind)

F1(d,o) = =;-(d1 +b2 )(bcoshbsina -lisinhbcosd)

F,(a,b) = Tdb(iJ1 + b'l)(coshb - cMd)

F4(d,b) = ~ab((b2 - a2)(cosh6c05iJ - 1) +2dbsiobbsind}

Fs(a,6) =~eb(e1 + b1)(6sinhb+ asine)

Fs(a,bj =Tiib(iJ1 +b1)(acosh6sinli + bsinhbcosli)

where

~ =2ii:b(coshbcosii - 1) + (ii1 - b2 )sinhbsind (4.14)

The soil resistance enten the element properties only ~brough frequency parameters

d,li.
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\Vith the stiffness matrix given byeq. (12), the dement end forces tlnd cllIl

moments due to displacements ul.1 and rolalion l.!'L.l arc

(·1.1.1)

Tip Reactions

The reactions of soil acting on the tip call be described approximately by lIlt!

viscoelastic half-space solutions. They can be written in the following form:

Verticalstilfness:

('Llfi)

Horizontal stiffness:

1,1.17)

Rocking Stiffness:

1....8)

in which rn := pile radius at the tip; Gb == the shear modulus of the soil below the

tip; a~ == rnw/l1 where 11 =shear wave velocity orsoi! below the tip. Dimensionless

parameters C can be taken from available solutions by Vcletsos and Verbic (1973),

Luco (l974), and others. Details of the dimensionless parameters C are given in

Appendix A. The cross stiffness is less significant and can be neglected.
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\rith eq.s 16·IS lh~ uiffness matrix of '!u~ soil (dclnl:flll \Illl1~rl.\"ir.~ lhl' "ilt· lip

i,

[

I"., 0 0 ]
[k,1 = 0 k.. 0

o 0 kll"

4.3 Complex Stiffnesses of Pile

The complex stirrnesses (impedance functions) of the whole embedded pile MI: Ill:,

fined as external forces tbat have to act at the head of the pile in order to produce

just one unit vibration amplitude of the head at a time. These stilfnC9sC9 of the

whole pile can be established by means of the overall (:Hructure) stilfnL'Ss matrix

{Kj that relates forces and displacements at all joint! of the pile. The r.ll·lllcllls

of the structure matrix. K'l' are obtained a:I a sum of clement (member) stilfnl.'5s

having the same subscripts. For a o:le·dimensional structure such a:I the pile tIll:

structure stiffness, K.J , is just a sum o( stiffnesses o( t....u elements meeting at II. joint.

Therefore. the structure stiffness matrix is banded in addition to he symmetric.tl.

The structure stiffness of the tip is a slim of the jOlliest element stilrnes!! and tile

corresponding tip stiffness. eq.(I9).

As the vertical and horizontal slilfnesscs of tbe pile iHC nol couplt.'d lbey r.an be

determined independently.

Vertical Stjffneu or Pile

For the vertical direction, the structure stiffne55 matrix IK.I is assembled from "pl

(5) and (19). l."sing this stiffness matrix. lhe complex vertical stiffness of Imc pil,:
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;It lh~ Iwad, K,;. is ..,blaincd from these equations

(.1.20)

in which the bandwidth of (Kul is equal to 2.

The node numb~ring is indicated in Fig..t.l. In eq.(20), Wl to Wn+1 are unknown

and will be denoted as a vector of unknown displacement, a.. Matrix [K,,] can be

partitioned with the submatrices denoted by capital letters. Then, eq.(20) can be

rewritten as

(.1.21)

From the lower equations, displacements

("'2)

Then. from the first equation

K~ =A x l +CT~ =A x 1 - cT a-I x 1 (·1.23)

.-\fter evaluation of eq.(23) it is convenient to split the complex stiffness, I{~, into its

rcal part (true stiffness) and imaginary part (damping) and introduce the constant

of Nlui\"alent viscous damping, ct. Thus, the complex vertical stiffness of one pile is

also

('.24)

so



[ntroducing the dime"nsionless stiffness and d~lIlping parAmCIt'rs f" •. f~:. Ilw rI'al

stiffness of one pile

,.:;:: realA": = £~ ..I. f,.,
"

and the constant of equl\'alent \'iscous damping

In the5e equations, A~,r, = the area anJ radius of lhc topmost element of the pile.

respectively: and V" = shear wave velocity of soil in the lowest layer"

Horizontal Stjffneu pC Pile

The complex stiffness of the pile head in the horizontM d;tc.:lion i~ ChaTi\Clr.ri"lI~1

by three constants. They are l\~. associated \'o"ith the horizontal tran!lation of the

head, Ill; 1\';. associated with the rotation of the head, fbI; and ,.,.~.. = 1\";• •llle
to coupling between the end forces and moments. These con31an13 can be found

from equations employing the structure stilfness matrix for the horizontal vihratioll

[H.I" This stiffness matrix is assemb\<-: from the clement stiffness malrir:e'l given hy

eq.{!2) and the tip reaction matrix described byeq.(19).

With the structure stiffness matrix assembled, tht' complex stifTncsscs of the pile
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,Il the head arc available from equations

K~" K~ ..

K~" "";'

UI = I Ul = 0

61 =0 v\ =l

" (·1.2;)

ill which thc vcrtical dashed lines separate the two loading conditions. requirer! to

generate the desired stiffnesses. The bandwidth of [K..! is·t In this approach, ex­

plicit mass and damping matrices need not be formulated as is the case with the

standard finite clement method. The mass and damping of both the pile and soil

oue contained in the stiffness matrices IK"j,{K.I, which .\re, therefore, complex and

rr~uency variable.

The matrices in eq.(21) can again be partitioned into submatrices denoted by

capilalletters to facilitate the solution. Then

[
,., , K'] [" CT] [I ' 0]°11.. ' ".. .. .
K~" : Kl.. =: 0 : 1

o : 0 C : 8 ~1:!l2

('.28)

I'his time the submatrix ,.\ is 2 J( 2, Cr is 2 J( 2n, and C is 2n x 2. The solution

of cq.(2Sl for the sought for stiffness, f\"1, follows the same pattern as in the case of

\"ertical vibration, i.e., vector ~I, ~2 are determined first from the lower equation

and. then. stiffness Kl are calculated from the upper two equations.
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After t\'aluation or the complex Sliffnesse5. ,,-"I. Ihl'SC (an b~ rcwriucn .1nalo-

gously to erj.t:~-1). Thus. the horizonta.l stiffness

(L!!l)

in which the true horizontal stiffness

(LIO)

and the constant or equinlent viscous damping

(-1.3'1

Tht rotatory stiffness

in which the true rotalory stiffness

k~. = rtall\~. = E;1111.1

and damping constant

The cross-stiffness

in which the true cross-stiffness

and the cross-damping con!tan~

c~" =:ima9K~l:> = ~':~ fd
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Finil.lly. k~... = k,~ ... and c~" =:. c~....

The dimensionless parameters f are suitable for parametric studies. \Vith onc

homogeneous layer. they are also advantageous for presentation of pile properties.

With several different layers. a general presentation of dimensionless data is not

practicable and a direct calculation of k ' and c l using a computer appears preferable

for any particular situation.

In this chapter, an example of the calculation of the dimensionless parameters

f is given based on a particular case. The pile was a steel pipe with a diameter

of 133 mm and a length of :l.38 m, embedded in loose sand. The distribution of

shear modulus in sand is parabolic with depth. and the shear wave velocity of the

sand at the pile tip is 93m/s. The detail of the soil and the pile will be described

in next chapter. For tbis single pile, the dimensionless parameters, 1.1>/.1. for

vertical vibration and / ..\,/..1, for horizontal vibration are computed as shown in

Fig. ·1.2 and Fig. 4.3, respectively. A boundary zone around the pile is assumed,

with t",/r" = O.5,G;/G" = 0.25.ai = U'.l,,3o = 0.05 and 11 = 0.4. For comparison,

the parameter.!! are also computed based on Novak's solution. From Fig. 4:2 it can

be noted tha.t the present solutions give higher stiffness parameter 1.1 and lower 1.1

than :\!ovak's solution does. As described in last chapter, a non-reflective interface

is includt'd in the boundary zone for the present solution and non-mass is assumed

for Novak's solution. From Fig. 4.3 it can be noted that the horizontal parameters

f~l' 1.1 for present solution come close to those for :'IJ"ovak's solution.
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Chapter 5

Dynamic Experiments of Single
Pile

Althougb there have been a large number of analytical studie! on the dynamic

response, the published record of experimental data. is rAther scarce. In tltis s~lldy.

dynamic experiments on large-scale model piles with strong horizontal and vertical

vibration are described. The obj«tive is to detennine whether the buically lin-

eM theory can reproduce the behaviour of piles under sLrong excitation if suitable

adjustments of the input parameters afe made. To this end. frequency rc:l:ponse

cun"es and deflection curves of piles .....ere experimentally established in the field for

different intensities of excitation and contact conditions between the pile cap and

the soil surface and compared with those calculated using the theorif>.! described in

chapter 3 and chapter 4,
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Type
Outer Diameter
Inner Diameter
\-Iomentoflnertia
Area of Section
Length
Young's \-fodulus
Poisson's Ratio
Damping Ratio
Spednc Weight

Steel Pipe
133mm
i21mm

LS4 x 106mm4

2390mm2

338Qmm
2.06 x IOsN/mm2

0.25
0.01

i.65 x i.65 x lO-sN/mmJ

Table 5.1: Pile Properties

5.1 Experimental Setup

The field tests of the single pile subjected to strong ~,armonic excitation were con­

ducted. at the [nstitute of Enginee":ng \-lechanics, Harbin, China, as described by

Han and ~ovak (1938).

The pile was a steel pipe with a diameter of 133 mm and a length of 3.38 ffi. The

pile properties are given in Table 5.\. The pile was first place in a pit approximately

3.u m deep and 1.5 m in diameter. The pile cap was a concrete block 200 rrun thick,

iiO mm long, and 690 mm Wide with a mass of 250 kg. The exciter was fixed on

the cap: its mass was 120 kg. The center of gravity of the cap-exciter system was 3

mm below the cap surface.

rhe washed medium sand was then placed in the pit in 200 nun lifts after the

pile had been positioned in the centre of the pit. The sand was compacted in place

with a mechanical vibrator. Density and waLer content measurement were laken for
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('ach lift, In this way good contact bel ween lhe pile aud soil was !It'l,'urt.·d,

Soil properties that are basic in dynamic analy~is arc the hulk dcnsity 'Illd til<'

shear wave \·elocity. Se\'eral types of static and dynamic le!lls were TlIII in thc lahti,

ratory and in situ on the washed medium sant.l and the undisturbed natural deposit

around the pit. The static tesrll included specific gravity, density. anti water contcnt,

Ivhile the d~"namic tcsts were tria.xial and seismic cross·hole te5ll1. The samples of

sand tAken from the pit were tested under d~'namic tria.xial conditions in the labo­

ratory. The Young's modulus \'arialion ..... ith strain and effective stress rio are lIhown

in fig. 5,1. At II dynamic strain of ( = 10-3 , the shear modulus at the pile tip W,l.'

G{:= l4.7:HPo.. With the mass density of sand P.:o:: 1700ky/m3 , the shear W11....(~

velocity was ~ = jGJ';. =93mf.s.

The density and water content of the medium sand were uniform in every lirt.

The properties of the backfill soil are given in Table 5.2. It is assumed thd the

distribution of shear modulus in the sand is parabolic ..... ith depth.

The soil profile around the pit wilS't5tablished from ground surface to a depth

of 20 m, The soil is homogeneous sandy clay, with yellow and brown colorinll. The

shear wave velocity of the undisturbed natural deposit was measured using sei~mic

cross-hole tests, The properties or the natural deposit arc given in Tablc .'),:1.
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Type
Bulk Densitv
Dry Density·
Void Ra.tio
~loisture Content
Shear Wave Velocity

\lcdium Sand
16.if{N/m3

15.71<N/m3

0.67
0.07

91m/"

Table 5.2; Properties of Backfill Soil

Depth L"nit Weight Void Ratio Shear Wave
1m) (/{.V/m3) Velocity (m/,,)

0.0-2.0 18.5 0.78 185
2.0·5.0 l6.8 0.95 179
5.0·12.0 l!).l 0.68 256

Table 5.3; Properties of ~atural Deposite

The shear wave velocity of the clay outside the pit is about twice that of the sand

backfill and therefore the effect of the interface between the two soil media has to

he assessed. To approximate this effect the pile dynamic deflections were evaluated

for two cases; a horizontally homogeneous medium comprising only the sand and a

composite medium comprising the inner zone of sand in the pit and the outer zone of

clay. For low dimensionless frequencies QQ. typical of pUe response, the difference in

! he deflections were quite small. However, it is possible that the geometric damping

of the pile tested was smaller than it would have been in a horizontally homogeneous

medium. This question is discussed in more detail in the last part of this chapter.

Displacement pickups, strain gauges, and compressive stress transducers were
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Angle of Eccentric. ).lasses. 8 ~ \·1
Exciting Force ( ~ ) '2.39[1 3.79r 6.75/)

Table 5.4: :-'Iagnitude of Horizontal Exciting Force

fixed along the pile shaft. Displacement and acceler1Ltion pickups were mounLed on

the pile cap. A diagrammatic sketch of the pile and th~ arrangement of the instru­

ments are shown in Fig. 5.211..

An exci~er with two counterrotating eccentric ml\5ses was used to produce the

harmonic excitation. The magnitude of the exciting forces was changed by adjusting

the angle of the eccentric masses. O. Several magnitudes of the exciling force wr.re

selected in the experiment as shown in Table 504 ( f in the table is frequency of the

exciting force in hertz).

In the experiments, two types of contact conditions between the pile cap ant! ~hc

soil surface were considered. In ~he first case, the pile cap rested directly on the soil

surface ( connected situation) and two different excitation intensities were applied,

o = ·5 and 8 ( the symbols 0 = 5c . 'ld 8e are used to identify this case latcr in

this chapter). In the second case, the pile cap was situated 0.20 m above the soil

surface ( unconnected situation) and the excitation intensities were 0 =.OJ, 8, and 14.

Because of the nonlinearity of the soil-pile system, the magnitude of exciting

force and the sequence of loading would affect the dynamic characteri9tic9 of the

system. The steady-state response of the pile to harm~''1ic forces was mea.surcd with

increasing excitation intensities and different frequencies.
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5.2 Pile Response under Horizontal Excitation

Experimental Horizontal Response

(j~ing the eqnipment and technique described, response to horizontal excitation was

measured.

Three frequency response curves obtained with 0 "" 5, 8 and 14 for the uncofl­

neeted case are shown in Fig. 5.3 and denoted by the angle 8 of the exciter, The

horizontal displacements of the pile cap vary with frequency and indicate a sharp

resonance peak in all cases. The maximum displacement measured on the top of

the cap amounts to 2-3 mm, the maximum acceleration amounts to 0.g-0.9 g. For

steady·state vibration this represents very intense motion.

In a linear system the resonance peaks occur at one frequency, no matter what

the excitation intensities is. However, Fig. 5.3 shows that with increasing excitation

intensity, the measured resonance peak shifts from about 7.6 to 4.7 Hz. This indi­

catCll a. reduction of stiffness -proportional to f2_ to almost one-third of the highest

value associated with the lowest excitation intensity. Also, the vibration amplitudes

are not proportional to excitation intensity at all frequencies. These are typical

rcatures of nonlinear lIibrations. However, the individual response cunes obserlled

int.ersected each other and are not centered around a joint backbone curlle, Omega,

as is inherent to a system whose properties are defined by one nonlinear character­

istic of the restoring force a.nd one nonlinea.r characteristic of nonlinear damping.

94



..\.n example of such theoretical response cun-es is shown in Fig. 5..\. This rl'sponst!

curve was calculated for one softening characteristic of the restoring force nnd non­

linear damping proportional to the nth power of vibration velocity with Il < I.

that is, with damping decreasing with vibration amplitudes. using the Ll~chlliquc

described in Novak (1971). Such nonlinear characteristicsof the restoring force and

damping are, in general, indicated by Fig. 5.3. The amplitude increments grow with

excitation intensity, and are comparable to the amplitude increments of the theo­

retical system (Fig. 5A) at the frequency of the linear system, woo The presence of

the response curve intersections in Fig. 5.3 and their absence in Fig. 5,4 suggest

that the restoring forces of the rea.l system do not follow one nonlinear character·

istic. Rather, it .seems that with increasing excitation intensity the restoring force

characteristic stabilized after many cycles of load application and to a high degree

linearizes within a range of peak amplitudes, A; with a further increase in excita­

tion intensity the restoring force again stabilizes but on a lower level of stilTness_

These notions are further supported by observations made with horizontal repeated

loading and by the analysis of the \'ertical response later herein. The features of the

response observed suggest that a linear theory might reproduce the main nonlinear

features of the steady-state response if the input parameters are suitably adjusted.

This p05sibility is explored in the next paragraphs.

Comparison of Experimental Horizontal Response with Theoretical Predictions

With the stiffness and damping constants of the pile established in la.,t chapter, the

response of a pile·supported footing (cap) to dynamic loading can be predicted., as

described by Han (1989). Under horizontal excitation the coupled horizontal Lrans-
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!alion and rotation are produced on the cap. The boundary zone around tbe pile

included in the tbeoretical model gh'es tbe analY5is considerable versatility.

The shear 'modulus distribution of tbe sand backfill is assumed to be parabolic

along the pile sbaft, which is consistent with the effect of confining pressure apparent

in Fig. ';.1, and the soil below the pile tip is assumed to be homogeneous. For

different excitation intefl5ities, the soil properti.es in the boundary zone and at the

top of the sand backfill are adjusted so that the theoretical response curves approach

the measured data. It should be explained that the theoretical response curves are

hack-calculated results, but not the ~predicted" results because there is no way to

predict the parameters needed for the boundary zone model. From tILe comparison

with the back-calculated results, engineers can understand how soil properties va.ry

with different excitation intensities. In practice when the back-calculated parameter

values are not available it is still possible to calculate upper and lower bounds on the

nonlinear response. The chara.cteristics of the pile and soil used. in tbe calculations

are given in Fig. ';.2. The material damping of the weak 1.one is of less important

than the thickness of the weak zone a~d its shear modulus. The comparison of

experimental results with ~heorelical response curves is shown in Fig. 5.3 and 5.5.

F'rom fig. 5.2 it can be seen that the soil properties in the weak zone and at the

top of the backfill varied with the intensity of excitation a.nd the change of the contact

condition between the pile cap and the soil surface. As the excitation intensity

increases, the shear modulus ratio, GdC", is reduced, whereas the thickness ratio,

1,.lr", and the material damping are incrcilScd (Gi and t", are the ,hear modulus
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and thickness of the weak zone. resper.tively). For the connected situation (8 = ·jc

and 8<), the ~oil shear modulus at the top of the backfill is reduced with the increase

in ex.::itaticn intensity. When the connected situation change; ~~ the unconne<:ted

situation (from 9 =8e ta8 =8, G,/G~ decreases, I .../r~ increases, and material

damping increases./I

Using the ratio G,/GO =0 in the topmost layer, the separation between the pile

and the soil is accounted for. For the unconnected situation, the separation was

caused by strong excitation. The depth of the anticipated separation, e~, ranges

from 6.8d for 0 = 8 to 9.8d for e= 14, where d is pile diameter.

F'rom Fig.s 5.3 to 5.5 it can be seen that as the excitation intensity increases,

from 0 = 5 to t4, the resonant frequency of the pile decrease and the resonant

displacement increases. Meanwhile, for the same magnitude of exciting forces, the

resonant frequency of the unconnected situation is markedly lower than that of the

connected .situation. Apparently, for the single pile tested, the cap contributed to

the stiffness and damping of the pile, as was also found by Novak and Grigg (1976);

ho\\'e~'er, in practice this observation should be applied with caution be<:ause the

sand under the cap may settle more than the piles. particularly with end bearing

pi les. ror embedded caps the soil reactions acting on the vertical sides can generate

a significant amount of damping and be quite l'enef1.cia.l.

Pile Stiffness and Damping

The theoretical stiffness and damping coefficients of the pile for the horizontal and

rocking directions are shown in Fig. 5.6 and 5.7, respe(tively. The subscript u

indicates horizontal translation \\·hile 6 stands for pile head rota.tion (rocking).
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The stiffness is almost frequency independent, as would be expected, because of

low dimensionless frequencies the pile dynamic stiffness is known to be dose to

the static one. Fig. 5.6 and 5.7 also show the pile damping cocfficien~s. These

rapidly incre~se as frequency decreases. This is primarily due to the conversion or
frequency-independent soil material damping to equivalent viscous damping coelli·

cientc=2{3/w.

To provide a dimensionless measure of pile damping, the damping rlLtio can be

evaluated from the stiffness and da.mping coefficients as cw/{2k). These da.mping

ra.tios are shown in Fig. 5.8 and 5.9. The damping ratios increase with frequency bu~

the rate of increase is lowest for the strongest excitation. It can also be seen from

Fig.s 5.6 to 5.9 that the damping coefficients and damping ratio mostly dccreastl

with excitation intensity and thus with vibration amplitudes for frequencies higher

than the lowest resonance frequency observed (4.7 H"l;). This is further illustrated

by Table 5.5. In soils, an increase in damping with strain is usually assumed. This

apparent discrepancy susgests a growth in pile separation with vibration amplitudes

and the weakening of the soil around the pile, as reflected in the necessary reduction

in the shear modulus in the weak zone.'

Pile DeflectioD!!

The measured deflections of the pile varied with frequency and excitation in·

tensity. A comparison of the measured data with the theoretical curves is shown

in Fig. 5.10 and 5.11 (or (J = 8 and l4, respectively. The theoretical charactcris·
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Figure ii.lt: Comparison of theoretical curves and measured deflections aJong pile
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Excitation Tat 0,. 5, 9-8, 9 8 0 "Resonance Frequency (Hz) 12.2 8.5 5.6 1.7
Damping Ratio Horizontal 0.163 0.110 0.090 O.OW

Rocking 0.080 0.070 0.063 0.060

Tabl~ 5.5: Damping Parameters or the PUc
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tics of the pil..: and soillised are the same as those used in the response analysis, It

,',111 bc sr.en that the measuled data agree well I'lith the theoretical deflection cun"e5.

Comparing the dynamic deflection with the static deflection of the pile. it ap'

pears that the effective pile length is about 13.5d under strong horizontal excitation.

and about II.Od for static loading. That is, the effective pile length for dynamic

loading is slightly longer than for static loading, although the horizontal displace­

menu along the pile length caused by dynamic loading may be larger than those

due to static loading,

100



2.5

lSI
2nd
3rd

Data

.::o:.::e!::PQ=.:.rl:.::u~re:..--<,c,.'..'..\11lilf; ~
:;:

.:.:;,.:..:;
;:.:;':3rd Exciting

c

~~_ 1.5

"~
is

E
52.0

1.0 ...-----,

~."
~ 0,5

15

oL-_~:...L ..L___--l__.J

o 5 10
Frequency (Hz)

Figure 5.12: Theoretical "Dd experimental response curv~ for repea.ted loading
(8 =5, cap separated)

107



Data
1sf

-4-" 2nd
3rd

F!!l~

''''"'''".~
2nd Exciting " \ ;:'" .::;:

I sf ExcitlnQ'

0.7

o 0~q=---:I-:-O--,l15:--2.J,.0-...J25--30.i.-J
Frequency (Hz)

0.1

E 0.6
E

C 0.5..
E
~ 0.4

~
i5 0.3
o
;:
o
.~ 0.2
:r

Figure 5.13: Theoretical -.nd experimental rellpoMe curvee lor reputed loadinl
(8 = 5.. cap in contad ';th toil)

108



10

00,;-----7'-------:,e------J

MoJ.. Amplitude I PiI, DiameTer II 10-2

"0:
;;- 0..
J
"0:

Figure 5.14: Theoretica.l pile separation v~ -fimeosionles. amplitude

109



Effect uf Repeattd Loading

The soil around the pile softens iUld separates under repeated loading. Accordingly,

the stiffness. damping, and dynamic response of the pile vary with repeated loading.

To obtain dat~ on thele effect, dynamic experiments on a single pile under repeated

loading were also conducted. Another pile was embtdded in another sand pit, with

the properties of the pile lnd soil, as well as the lest conditions, being the same

as hefore. The contact condition between the pile cap and the soil surface was of

the two types, that is, connected and unconnected. For each case, the pile was

excited three times, from low to high frequency, with the excitation intensity kept

the same in all runs. The comparison of measured data with theoretical response

curves for the connected and unconnected cases is shown in Fig. 5.12 and 5.13,

respectively. The measured resonance peaks shift to lower frequencies and become

sharper with loading repetition, indicating reduction in both stiffnels and damping.

With judicious choice of input data, the theoretical response curves a.gree with the

experimental results quite welL the reduction in theoreticAl stiffness a.o.d dampins

with load repetition can be seen from Ta.ble 5.6. BecAuse of the gap a.round the pile

deeper. soil nonlinearity, and possibly slippage under the pile cap, the pile stiffness

is reduced in the connected condition ai'so.

The difficulty with the inclusion of the weak zone in the analysis is that its pol-

rlLmeters are difficult to assess beforehand. Thus the question arises of whether a

correction for .,ile separation in the form of a pile rree length would not be ~Ilfficient

lo account for the reduction in pile stiffness and damping observed in the experi­

ments. The need for a (ree length was already observed by other investigators, for

example. ~ovak and Aboul-Ella (1978). ~ovak and EI-Sharnouby (1984), and Roes-
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Connection Connected tnronncctcd
Order of ,,, 2nd ',d I" :?nd 3rd
Excitation
Resonant i3.S 12.6 12.2 7.6 6.5 5.;
Fequency (Hz)
Stiffness Horizontal 7..13 6.50 5.89 3.04 :?I5 LiS

K.(KN/mm)
Rocking 2.i5 2.64 2.59 2.29 2.08 1.96
K.:,I06{K.V - mm)

Damping Horizontal 0.L93 0.185 0.162 0.081 0.064 0.060
Ratio Roc ing 0.081 0.060 0.Oi8 0.060 0.054 0.052

Table 5.6: Dynamic parameters of pile under Repeated Loading

setet al. (1986).

For the unconnected cap, the theoretical separation between the pile <lnd snil is

e" = 3.Sd for the first excitation, e. = 5.3d foc the second, and e. = G.ad for the

third. The separation lengths required in the analysis to provide a good fit with

the experimental data for the different resonant amplitudes me&3ured OU"e plotted

in Fig. 5.14. Analyses both with and without the weak zone were employed &nd

gave satisfactory result!, ahhough the weak zone allows finer tuning. The separation

lengths needed increase with displacement amplitude and are Il:reater if no weak lOne

is considered. The maximum separation is about 10 pile diameters. The ,epantion

is given in terms of diameter but, in general, the absolute depth must be a b;uic

parameter because it controls the confining pressure. With the pile diameter of 13:1

mm the maximum separation lp.ngth was thus 1.33 m.
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5.3 Pile Response under Vertical Excitation

Experimental Vertical Response

Mlef the lestinp; of the pile under horizontal excitation, vertical excitation was ap-

plied, with all the other experimental con..:; .. ions remaining the same.

The excitation intensity was increased stepwise and three frequency response cuc\'es,

shown in Fig. 5.15, were obtained. Sharp intersecting resonance peaks are indicated

like the ones shown in Fig. 5.5. The maximum displacement meASured on the top

of the cap is about 1.4 mm and the maximum acceleration reaches il.bout 1.3 g.

~Iarkedly nonlinear features are again manifested particularly by the drop in the

resonant frequency with the increase in el(citat.ion intensity (9), but this drop is less

than it was under horizontal excitation.

In the case of vertical excitation, the nonlinear features of the measured response

cun-es can be studied more easily because this response can be treated in one de-

gree of freedom (S.D.a.F.) and is, therefore. quite amenable to linear analysis. Such.

analysis is employed in the next section.

E\'aluation of th.e Vertical Response

(1) ~onlinear S.D.a.F. analysis

fo identify the parameters of the soil· pile system from the measured response

displaying nonlinear features, the in\'erse problem of nonlinear vibration has to be

approached. This means that the system mau, stiffness, and damping have to be

established from the experimental response. To this end, the methodology formu·
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lated in :'Iovak (1971) is employed. This procedure assumes that sy~tcnl stitfnrss is

independent of frequency; this is also usually assunled for slender piles in ltll'l.liuni

soil in practical applications.

Assuming that the restorine; force is nonlinear but the damping forcc is linear

(viscous), the backbone curve, which defines the undamped natural frequencies n,
can be determined to a gi\'en response curve using the simple relation

(5.1)

in which, WI and ....·2 afe the frequencies corresponding to the point! of intersection

between the response curve and a line passing through the origin of coordinates (sec

rig. 5.15). Intersecting the response curve by a trace of such lines, the backbone

curve n(A) can be constructed to each response curve. These backbone curves arc

plotted in rig. 5.15. It can be seen that each response curve has its own backbone

curve, unlike the theoretical response curves shown in Fig. 5.4. This indicates that

the stiffness characteristic of the system varies with tbe overall level of vibration

intensity rather than being unique. This is confirmed by establisbing the stiffnen

characteristics corresponding to the il;·jividual backbone curves.

The stiffness characteristic can be assumed to be of two types: A truly nonlinear

characteristic that is followed. for all amplitudes A and a characteristic, F(A), that

is nonlinear but for every steady-state amplitude A linearized to give the equivalent

linear stiffness depending on amplilude A, that is,

/C,(A) =F(A)/,I
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The latter assumption appears more suitahle and is adopted here. Then. for a

restoring force expressed by .. power series

(';.3)

where Jr, are constants, the amplitude-dependent natural frequency is given by

in which m is the system effective mass.

The effective mass and damping can be calculated exploiting the geometric prop­

erties of the response curves. The mass and damping found are given in Table 5.7.

The value of the effective mass, m, is much greater than the total mass or the pile,

cap, and exciter, ,'1;1. The apparent additional mass can be expressed in terms of

the coefficient
m-M

t ...=~ (5.5)

which is also given in 'fableS.i. the additional mass is ~ry substantial and decreas~

with increasing excitation intensity, suggesting that partial separation of the pile

from soil might have occurred with higher excitation intensity. It seems that the

apparent mass increue results from the assumption that pile stiffnesS is constant,

that is, frequency independent. In the continuum approaches, no additional mass is

needed because soil mas~ IS automatically accounted for, making the pile stiffness

frequency dependent. This effect can be quite strong, particularly for stiff piles

vibrating vertically and will be demonstrated in the last part of th.is paper.

With the mass pertinent to each response curve the restoring force characteristic
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Excitation

9-;
9= 14
0=2&

Effective :\fass
:>'Iassm(k) :>.lassCoefficient
1730 3.01
1350 2.05
993 1.24

Damping
Ratio .1
0.042
0.060
0.075

Stiffness
k([\'S/mm)
23.9
15.7
7.39

·;."\ble 5.7: Nonlinear vibration parameters of pile in vertical direction

follows from eq,. (2) and (4) as

(.j.6)

For the three response curves shown in fig. 5.15 the corresponding restoring (orce

characteristic, cakulated by. eq. (6), are plotted in Fig. 5.16. A few observ~tions

emerge: each response curve has its own characteristic, the overallstiffncss markedly

decreases with increasing excitation intensity (9) but the nonlinearity of individual

characteristics is much less pronounced than the overall nonlinearity of the whole

set of the response curves. the latter observation is consistent with those made with

regard to the horizontal response and supports the assumption of linearization im-

plied in eq.{2).

The damping ratio derived from the response curves is also given in Table 5.7.

The damping found is much smaller than what would be expected for a lightly

loaded fully embedded pile and increases with excitation intensity. Under horizon­

tal excitation, the damping decreased with increasing amplitudes. This indicates

that the separation effect is somewhat less severe in the vertical vibration than it is

in the horizontal vibration and that slippage generating friction ma.y contribute to
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the increase in the vertical damping.

With the soil-pile system mass, damping, and restoring force characteristic de·

rived, the nonlinear response curves were back-calculated using the nonlinear theory

and are plotted as solid lines in Fig. 5.15. The theoretical nonlinear response cun'es

agree with the measured ones very well. Thus, a very good theoretical prediction

can be made assuming a nonlinear restoring force characteristic and a linear, viscous

damping whose constant depends all the peak amplitude.

(2) Linear soil-pile interaction allalysis

The theoretical response curves shown in Fig. 5.t5 were back-calculated using the

5.D.O_F'. data derived from the experiments. Another task is to predict the pile

response on the basis of soil-pile interaction analysis and the properties of soil as

well as the the pile, as described in chapter 3 and 4. This interaction analysis

confirms that extensive pile separation must have occurred. This can be seen from

fig. 5.1 i in which the large amplitude experimental response is compared with the

theoretical one. When no separatioll is assumed (curve A) the theoretical response

is heavily damped and the stiffness is -';ery high, bring the resonance peak beyond

the exp~rimentat frequency range. :\ large separation of 1.80 m, a weakened zone

around the pile, and a true mass of the system yielded curve 8 and a reasonable

agreement with the measured data. The discrepancy in the descendant branches of

the response curves is due to the linear theory employed in this case, which cannot

give a perfect agreement with the actual nonlinear response over the whole frequency

range.
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FFreel of I jrnjted Sjze qf Test Pit

Finally, it is of interest to examine the effect of the limited extent of the pit in which

the tests were conducted. The pit wa.~ filled with sand whose properties dilferetl

from those of the surrounding soil. Consequently, an interface occurs between the

two media from which waves may reRect back into the pit, complicating the wave

pattern within the pit and creating what is know in analysis as the "box clfecl".

To examine this effect, the vertical pile stiffness and damping were reanalyzed using

the model of boundary zone in which an annular zone is allowed for around the pile

with soil properties different from those of the oul.er soil. Because of the large t:xtent

of the pit the mass of the inner lOne (sand) was accounted for. The geometry <Lod

notations for this analysis are shOWn in fig. i).18.

The dimensionless stiffness and damping paramelers f~, and fU2 defined in chJ.p·

tet 4 arc plotted in Fig. 5.19 and 5.20. The results are shown for three pit dimensions

characterized by the ratio of the zone thickness, I"" to pile radius, ro, and the actual

soil properties of the site. Shown as solid line for comparison are the pile parameters

corresponding to homogeneous soil medium, that is, I", -. 00. The site l... /ro ratio

is close to to. The presence of the interface can be seen to have only a small effect

on pile stiffness (Fig. 5.19) but has a profound effect on radiation damping. At low

fretjueocies the damping is slightly increased but at higher frequencies it is dramati­

cally decreased compared with that of the horizontally homogeneous medium. This

effect of the interface on pile damping is marked but is much less significant t~an

pile separation, as the response curves plotted in Fig. 5,17 demonstrate.

119



1.5,----------- --,
o Measured

~ 0.5

;

5 10 15 W 2~

Fr.qufnC:y· 1Hz)

r ReGI Moss' 433 k9

. \00 Stporollol'l to 1.8m
\ Wtok Zone Grn/G • 0.1

.I \ 0 O~' O,25·
m

/R • 2.0

! AO ° 0

./'0 <01"'0'\ ~::{NoSf9Qr~l:
--o.--r 0 ~.~~~

o - -

Fig\;.,e 5.11: Experiment&! pile response in vertical direction v•. theoretical predic­
tion (9 =28)

120



The strong \'ariation in the stiffness parameter /.1 with frl!fl.uency (Fig. .'j.19) i~

also of interest. It is close to parabolic and can ~ interpreted as !'Il - Irh•.I
1 where

k'i is the pile static stiffness and m is the effective mass. Because lhe pile stilrncss.

like "", is assumed to be frequency independent in the S.D.O.F. nonlinear analysis.

the frequency variation of the actual stiffness call for the inertia term. 11l.... ~. and

hence for additional mass as found in Table 5.i.
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Fis'ue 5.18: Not&tioos &od seometry for pile In test pit.
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D~'namic e:<periments with luge-scale model piles subjected to slrong harmonic c:<·

citation in the field were conducted. The measured response cun-es are compared

with the theoretical turves. The comparison suuests tke following conclusions:

1. Pile response at large amplitudes exhibits typical nonlinear features.

2. Consideration of a weakened zone around the pile and pile separation is necessAlY

for piles subjetted to nrong vibration.

3. Good agreement can be achieved between the experimental and throretical re·

sponse curves when the characteristics of soil are suitably ehmen, without resort 10

truly nonlinear anal~is. The excitation intensity and contact conditions between

the pile and soil and between tbe cap and soil surface change the stiffness and damp­

ingofpiles_

The boundary zone model is 111 approximate approach rather than a rigorous nOll'

linear analysis for dynamic rtSponse 0( piles. How to select the charaderistia of

soil and the parameters of the bounduy zone depends on the puticular conditions

of the soi!- pile system, such A! the instolllation of the piles, the properties of soil and

piles. and the cxcitatton intensities.

The new finding in this study art that the gener&! recommendations ca.n be provided

as guide lines for engineering practice. such as the thickness of boundary zone And

the range of G;IG~.

4. Cnder repeated loading, the stiffneu and damping of single piles decrea.se, 50

that the resonant frequency detreases and resonant displacement increases.

5_ The wea.k zone around the pile considered in the theory yields lower damping or

the pile-soil system than that evaluated without a weak zone. The damping values
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c.a.lculattd in this way are closer to the experimentll results.

6. Cnder dynamic hOrlzonlll deAKlions the effective pile l~th is slightly longer

than it is under slll.ic loading.

7. Dynamic experiments conducted in a teu pit may be atrecttd by wave reflections

rrom the interface between the soil in the pit and soil outside it. Da.mping 01 the

tesl body can be more affected than its stiffness.

8. Further research is n~ed to develop criteria for pile separation prediction and

pile nonlinear dynamic analysis.
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Chapter 6

Stiffness and Damping of Pile
Group

6.1 Pile-Soil-Pile Interaction

Piles are usually used in groups. The behaviour of the group depends on the dis­

tance between the piles. When the distance between the piles is large, .'lay len evr.n

twenty diameters or more, the pile do not affect each other and the group stiffness

and damping are simple sums of contributions from the individual piles. If, however,

the piles are clO!ely spacw., they interact with each other il.nd this pile-soil-pile in·

teraction or group effect exerts considerable influence on the stiffness and damping

of the group.

The stiffness and damping are most often evaluated using the properties of a

single pile and accounting for the group effect by means of the interaction factors.

The interaction factors are derh'ed from the consideration of a group of two piles

and determine tbe displacement of one pile due to loading of the otber pile. Deta.ils

of the interaction factor for the two-pile group are given in Appendix B. For static
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loading, the factors were presented in the form or charts by Poulos (l979, \980) and

Butterfield ([971) and for dynamic loads by Kaynia and Ka.usel (1982). Dynamic

group effects may vary with frequency and group stiffnC'Ss, and damping can be

either reduced or increased by pile-soil· pile interaction. The relationship betwf(!n

the displacement, ltc, of a group of n piles and the displacement, II. of a single pile

carrying the same load as one pile in the group can be written as

(6.!)

in which Q~ = the interaction factor defined as the ratio of the settlement of the rth

pile due to the settlement of the reference pile; 01 = 1 and for static loads, the other

factors have absolute values smaller than unity. The sum of pile interaction factors,

L 0., can be viewed as a group interaction factor. Stiffness of the pile group, Ka,

is inversely proportional to displacement (f1exibility)and, thus, for the horizontal or

vertical direction can be approximately written as

[{G=L:~ (6.21

in which K = L k is the grollp stiffness calculated without the pile interaction

effect; and k =stiffness of a single (is<-'lted) pile, For a large group of piles, loads

are usually assumed to be carried equally hy piles and LO, may he calculated for

the middle pile of the outer row of the long direc~ion taken as the reference pile. A

similar but more consistent formula, which a....oids the somewhat arbitrary selection

of the reference pile, can he written for transla.tions as

(6.31
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in which oi. = the elements of the inverted matrix. [o,.J- 1 • with the n )( n matrix

[a,,] listing all interaction factor, 0", between allY tlVO piles. i and r: the diagonal

terms 0i, == 1; and n = number of piles in the group.

The static interaction factors were derived based on Mindlin'~ displacement field

in the elastic half-space. To extend the interaction factors approach to dynamic

situation, Kaynia and Kausel (1982) presented charh for dynamic interaction. In

the solution, the soil reactions acting on the piles were eva.luated numerically. The

dynamic interaction (ador, nij. is defined as

54;1
Oi}= 63jj (6.4)

where lidij is dyna.mic displacement of pile i due to loa.d on pile j and lim is static

displacement of pile j due to its own load. Both dynamic and static displacements

are referred to the pile head.

Dynamic interaction factors are frequency dependent complex number, i.e., 0 =

0\ + io~, having a real part at and an imaginary part a~. Their values depend on,

among other factors, a~, E.I£" and SId where E"d are the Young's modulus and

diameter of the pile respectively, E, is tnesoil Young's modulus and S is the spacing

between the piles. Example of the dynamic interaction factors are shown in Fig. 6.1

for a limited range of parameters.
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6.2 Stiffness and Damping of Pile Group

The pile group stiffness may be established either through direct all;l,l~osis or b~'

means of the superposition method. In dire<:t analysis, all piles of the youp <Ire

considered to interact at the SAme time. In the superposition method, the inter­

action between each two piles is considered separately and used to formulate the

flexibility matrix of the entire group. The superposition method which j, lI~cd 10

establish theoretical results in this study is computationally advantageous And WM

shown to be in good agreement with the diced analysis for the case of lIoating

piles in a homogeneous soil. The application of superp03ition method is facilitated

through the use of pile-soil-pile interaction factors. With rigid caps, the complex

stiffness of pile group in different modes of \'ibration is calculated by applying the

pertinent boundary condition5.

Vertical Group Stiffnen

From the definition of dynamic interaction factor in~. (6.4), the compatibility

equation can be expressed in terIT\JI of flexibility u

(6.51

where J. is the static vertical flexibility of a single pile, {P} and {v} are the vectors

of vertical forces and vertical displa.cements at the pile heads, respe<:tively, and [01"
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is the interaction matrix of the vertical displacements, written as

(6.6)

in which the ratio

(6.7)

where f. '" complex vertical dynamic flexibility of a single pile and Q;; = complex

vertical interaction [actors between piles i and}. The boundary conditioos in this

use are Vi =1 fur i = 1,2, .. , n and yield the vertical forces on the piles

(6.8)

Denoting the static stiffness of a single pile k" = 1//. and the complex elements of

{O];I by ~~i' the vertical force Pi acting on pile i is

P, = !C"te!j,., (6.9)

In above equation, t1'J are to be seen as multiplied by unit displacements. The group

complex stiffness is the sum of all the vertical vertical forces, i.e.,

Horizontal Group Stiffness

K;' ~ l: P, = d=i>~;
;::;IJ"'I

(6.10)

F'or horizOl.tal translations and rotations in either of the two vertical planes of

symmetry, the compatibility equation are

(6.ll)
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where J. is the horizontal static Rexibility of "single frroe-head pile, {P}" is the

\"!ctor of horizontal forces if, and moments ,\r, at the pile head, i.e.,

(ltl:.!)

The vector {6} lists the horizontal translations and rotations at the pile heads, i..:.,

16.1:1)

Finally, (alH is the matrix of interaction coefficients for the horizontal lransb,lions

and rota.tions. For a group of n piles, the matrix (alH has n x n submatrices ilnd is

[ 0"
.. 8"

""j[olH = 8" .. 8" .. 8,"

8., ... 8.. .. 8..

16.\·1)

where each of the submatrices is 2 x 2.

where
f f>/./f.
\ J:, .!i,I!.)oi,_ i" j

16.15)

16.16)

16.17)

In above, f. are single pile dynamic Rexibility coefficient! a.nd r stands for u, >Ji or c

and indicates the horizontal translation, rocking or coupling directions, rcspectively.
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For horizontal stiffnesses. the boundary conditions ue II; = I and !h; =0 for

I = I. "1. ' .• n and the horizont&l force on pile i {ollo.....s from eq.(6.1 \) as

Hi = k"I>f.-l.2i-1
J=I

(6.18)

wherek.. =11/. and t;l' are the complex elements of lolNI . The complex horizontal

group stiffness being the sum of all these forces becomes

f(~ = f .. LLe~_1,2j_1
i"'IJ=1

(6.19)

The summation extends only over those elements of [oliil tha.t correspond to the

horizonta.l forces associated with horizontal displacements, i.e., elements with p0­

sitions 2i - 1,2j - L In eq.(6.19), f.. is static bodzontal stiffness of a free· head

(pinned-head) pile but the group stiffness K: i~ obtained for fixed-head piles. AI­

ternati\'ely, the group horizontl'J stiffness can be cAlculated for both pinned-head

and fixed-head piles from eq.(6.1O) with pertinent values or f...f~ and [OIH substi­

tuted for either pinned-head or fixed-head pile!.

Rocking Stiffness

Rocking group stiffness derived from two components: the moments required to

produce unit rotations at the pile heads and the moments resulting from the vertical

pile forces. The moments required to produce unit rotations at the pile hea.ds are

obtained by applying the boundary conditions 1/Ji = I, U; = O(i =1,2, .. ,n) to eq.

{5.11). This yields the moment on pile j

.\1'01 =f .. L e~.2j,.,
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The vertical pile forces associated with cap rotation are obtained by applying the

boundary condition t·; = I )( .1,(; = l. 2, ", n) to eq.(6.5) gh'ing

P, -= kuL::~,.rl,., (6."1

In above, x, a~d J:) are pile distances from the rotational axes. These rorc:t~s pro(!uce

a moment. on each pile

Jf'(1) = k+uJ:, ~::>rjJ:,
j=1

(!i.22)

The rocking group stiffness is the sum of both moments shown in cq.(6.20) and

(6.22) over all pile heads. i.e.,

.. .. .. ..
Kg =kuLL!~.1J +kuLL!IJJ:iX)

'ool}.1 i .. I).1

(6.23)

This stiffness is obtained by applying the same boundary conditions, pertaining

to the horizontal translations and rotations, as in the previous case to cq.(6.11) and

evaluating the resulting horizontal pile forces. these become:

Hi = k.. L !~-1.2j
1=1

(6.21)

The group cross stiffness is the sum ~f all horizontal force on the pile heads and

hence

(6.25)

.nd

(6.26)

The effects of pile-soil-pile interaction on the stiffness and damping of pile group

with a rigid cap are best illustrated by the group efficiency ratio (GER) defined u
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for sliffness

and for damping

KG
GER~­

n:<k

CG

GER=­
n X<

(6.2t)

(6.28)

In above, t<G,CG are stiffness and damping of group, respectively; k,c are stiffness

and damping of a. singl'! pile, respectively; 11 is tbe number of piles in the group.
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Chapter 7

Dynamic Experiments of Pile
Group

Be<ause of the complicated nature of dynamic pile-soil-pile interaction, experi-

mental research is needed to verify the applicability of different theories. Althaugh

there are a number of methods available fOf analyzing the dynamic response of pile

groups, very little information is available on the field validation of these techniques.

The lack of calibrated parameters makes it rather difficult to perform reliable anal­

ysis of practical projects using the relevant models.

\lost of the previous work involving dynamic response of pile group has been

limited to small-amplitude vibration or linear vibration. A problem that is of more

practical interest, however, is the nonlinear response of pile group involving soil

yielding, pile slippage, or even partial seyaration of the piles from the adjoining soil

(gap development) as they may occur under a reasonably strong earthquake p.vent.

Since the nature of pile.soil·pile interaction depend5 on the actual confining pres·
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sure and the contact situation between the pil6 and soil, full-scale tests on pil6 are

ronsidercd to provide valuable data for practical application!;.

A comprehensive study in~1)lving both theoretical anaJysis and full-scale testing

of ill. pile group is described in this chapter. To investigate the dynamic behaviour

of pite group, the experiments on the full·scale pile group were carried out under

different conditions: linear vibration and nonlinear vibration. In the cold region,

the ground surface may covered by a frozen soil layer, In order to investigate the

ioAuence of frozen soilla)'er 00 dynamic behaviour of the piles, the experiments were

conducted 6rst during the winter time when the surface was covered by a frozen soil

layer and then during the summer time when the (rozen soil had completely thawed

out. In the next }'ear, the nonlinear vibration tests on the pile group subjected to

strong excitation wen: done. For comparison, the dynamic experimlffils were also

carried out on two single piles which had the same properties and size as these in

the group and were placed in the same test site.

'7.1 Experimental Setup

Subsurface Conditjons

Field tests involving a (ull-scale pile group, comprising six piles, were carried

out at a site within the grounds of the Institute of Engineering Mechanics, Harbin,

China. as described by Han and ~ovak (1992). The subsurface investigation in­

dicated that the test site was underlain by a relatively homogeneous layer of silty
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Depth
(m)

L: nit Weight Void Ratio
-:(I{Slm3 )

:l0.2 0.58
18.5 0.75
19.7 0.60
20.0 0.59

~toisture Content
ll'{%l
21.8
2:1.7
:l0.5
'20.2

Table 7.1: Soil properties

clay with occasional lenses of sandy clay mixture down to a depth of 30 met.ers.

The ground·water table was established at 20 m below the ground surface. ~oth

laboratory and in situ tests were performed to characterize the dynamic and static

properties of the soil. Laboratory tests were performed on undisturbed samples

extracted at everyone meter interval. The experiments included triaxial lests to

measure the variation of shear modulus and damping ratio with shear strain; spccilic

gra\'ity; bulk density and Atterberg Limit tests. The dynamic in situ test consisted

of seismic ctOss·hole tests for determining the shear wave velocity of the soil. rig.

7.1 illustrates the arrangement adopted in performing the cross-hole tests in relation

to the piles. Some of the measured soil properties used in this study are listed in

Table 7.1.

The variation of shear modulus and damping ratio against the shear strain arc

shown in Fig. 7.2, which were measured in the triaxial system. The variation of

mid ratio, c, degree of saturation, S. and Atterberg Limits over the length of Lhe

pile (Le., 7.5 m) are shown in rig. 7.3. The specific gravity, G~, wa.~ almost constant

throughout the depth, ranging between 2.66 to 2.68. The Poisson's ratio for the soil

is assumed to be 0.3.
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Coit WeiShl
·,(K.V/m')

24.5

~Ioment of Inertia
I(m·)

Table i .2: Pile properties

Poisson's
Ratio,v.
O.2~

Dampins
Ratio. De

O.Ol

Pile Test Setup

The pile group under study was comprised of six east-in-place reinforced concrete

piles; each pile was 7.5 m long and 0.32 m in diameter. Fig. 7.4 (al shows the layout

of the pile group; the concrete cap was 2.5 m long (X - direction), 1.6 m wide (V .

dirKtion), and 0.'; m thick, weighing 49 k~ and havin! a clearance of 0.25 m above

the ground surface. The arrangement of the piles was different for the X - direction

and Y . direction. Three piles were placed in one row in X . direction and t\lo"(l

piles in one row in Y • direction. Fig. i.4 (b) shows the variation of shear wa\"e

\~lo<:ity and m&S5 density of soil o\-er the length of tbe pile. Tbe properties of the

piles are shown in Table 7.2. The pile slender ratio, Lld:E 23.4 and spacint; ratio,

sId =2.81, where L is pile length, s is pile spadag, ilnd d is pile diameter.

An exciter with two counter·rotating •:centric mass was bolted to the pile cap to

produce the harmonic excitation as shown in Fig. 7.5. The exciting force is given

by

(7.1)

where m.e is the excitation intensity. -..J is the circular frequency, and t is the time_

Different excitation intensities were used in the experiments, and the magnitude of

exciting force 1'.'&3 changed by adjusting the angle of eccentric mass. Two exciters
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were used in the experiments respectively. The smaller one was used to produce lin­

ear ~'ibration of the pile group and the larger one was llsed for nonlinear vibration.

The detail will be described in next section.

Two horizontal displacement pick-ups ( to measure the horizontal vibration)

and two vertical displa.cement pick-ups (to mea.sure the rocking vibration) were

mounted on the pile cap. The steady-state dYnll.mic response of the pile group

under horizontal excitation was measured under different frequencies and different

excitation intensities.
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Figure 7.5: T~t setup for the lateral vibrat)on of the pile cap



7.2 Linear Vibration of Pile Group

A smaller exciter, weighing 1. 18 kN, was lixed on the pile cap by fOUlIlla\.ion holt til

produce the harmonic excitation in Y - direction only. The active component of llw

horizontal excitation was situated 0.2 rn above the cap surface, anti tllt~ ccntN of

gravity of the cap-exciter system was 0.25 m below the cap sllrfi\cc. The lIlagnitmlr.

of exciting force was changed by adjusting the angle of eccentric:: ffi1l.SlI, O. St~Vl'ral

levels of excitation intensities, m.e, were used in the clCpcrimcnls. as indicated ill

Table 7.3. :\5 shown later, 0 is used to represent the excitation intensity. TIlt!

maximum horizontal amplitude of the pile group was measured to be 0.10-1 nun at

top of the pile cap; this is considered to be a small amplitude vibration, say linear

vibration. Under horizontal excitation, the cap produce<! conpled horizontal and

rocking vibration. The horizontal and rocking response curves mea.sllrcc1 on lhe cap

of tne group in dift'erent excitation intensilies are shown in Pig. 7.6.

For linear vibration, the response curves of the group can be normalized. Nor­

malized response amplitude for tran~lation is defined as:

and for rotation by:

,~= [11(m.,Z.JI~

(7.')

(7.:1)

where U and IIi are the real translation ",nd rotation, respectivelYi m and I arc the

mass and mass moment of inertia for the cap; Z. is the heighl of the hori1.ontal

excitation above tne center of gravity.
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Angle of eccentric mass
o
8
14
28

Excitation intensity
m.e(kg.mm)

96
17l
259

Table 7.3: Extitation scheme adopted for linear vibration

Comparison of experimental response curves with the thooretical predictions is

shown in Fig. 7.7 for horizontal and rocking vibration of the group. The theoretical

predictions were done in two way. In one way, the boundary zone is accounted for

f'ilch pile in the group. The relevant parameters of the boundary zone are as fol-

lows: CdC. ;;: D.1 t lm/ro := 0.5, {3i:= 0.07, and Po := 0.035. Poisson's ratio of soil is

assumed, 1/ ;;: 0.3. The calculated curves are shown by solid line in fig. 7.7.

[n another way, the analysis were repeated with no regard to thc boundary zonc

clTccl~ (i.e., the boundary zone was omitted). In this case, in order to properly ac-

count for the actual soil and pile contact, allowance was made for a free pile length

r"quiva.lenl separation between pile and soil) at the top of the pile. Separation of

the top liegment of the pile from the soil can occur because of the very low amftn-

ing ~tress that exists in soil layer within the close proximity of the ground surface.

Herein, the free pile length is taken as 0.5d, where d is the diameter of pile. This

is based or. a specific case in an experiment,d site. In this depth, the sand backfill

is I"cry loose in the sand pit. The dashed lines in Fig. 7.7 represent the theoretical

calculation without boundary zone. It can be seen that the solid lines (calculated

with boundary zone) agree with the measured results quite well, particularly for the
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horizontal \'ibration: the agreement with the dashed lines (withollt boumb.r:. zone).

albeit reasonable. is not as good as the case with the boundar}' 7.on...

In order to demonstrate the influence of pile-soH· pile illleractKllI on the Ilynamic

resJ>Onse of the pile group, the dynamic r~ponse was CAlculated "'jth interaction cf·

fects omitted. the comparison of horizontal and rocking vibration i1.gain~t mCI1.:JIHcI[

data is shown in Fig. 7.8. It can be secn that the theoretical predictions witholll

interaction (dashed lines in the figure) result in a higher resonant frequency ami iI

larger displacement amplitude. It can also be noticed that another rl'Sonant IH:ak

develops around the frequency of 100 Hz: this is primarily due to the ~l'Cond mode

of vibration for the coupled horizontal and rocking vibration of the pile cap.

The stiffness and damping for horizontal and rocking vibr3.tion of the pile grOlll1

are shown in Fig. 1.9. From this figure it can be seen that the ~lilfncss of pile group

is reduced and damping is increased by the pile-soil-pile interaction, as was nolefl

previously. For comparison, the frequency relJ>Onse curves of stifflle!J!l and dampill&

for a single pile are included in Fig. 7.9.

The group efficiency ratio, G8R, for the horizontal vibration is shown in FiK.

7.10. It can be noticed that the GER for stiJfness is less lhan !, implyin~ thnl

the stiffness of the group is reduced by the pile·soil-pile interaction (hy more than

50 larger than 1 for damping, implying thal the dAmping of the pile group is incn:a.sf:t[

by interaction, Further more, it can be noted that the GER (or stiffness and damping

is not constant, rather it varies with frequency. With the frequency range conllidt:(l!d

1<9



h<:rc, GER for stiffness is reduccU ann that for damping is increased with an increase

in fn~j1JCncy.

7.3 Nonlinear Vibration of Pile Group

A larger exciter, weighing 4.9 kN, was 6xed on tbe pile cap by foundation bolt to

produce the harmonic excitation in both X - direction and Y . direction. The active

l:ornpollent of the horizontal excitation was situated 0.2 m above the cap surface,

and the center of gravity of the cap-exciter system was 0.24 m below the cap surface.

Representing the number of additional eccentric masses placed in the slotted steel

plate capping the exciter with L, Table 7.4 provides the range of excitation intensi­

ties, m.e, employed in the experiments. As shown later, L is used in this section to

represent the excitation intensity that were applied in the nonlinear vibration tests.

The maximum horizontal amplitude of the pile group was measured to be IA mm (

or ·1.4 x IO-3d) at top of the pile cap, with a corresponding maximum acceleration of

l.1;1g; this represents a rather intense harmonic vibration, resulting in a nonlinear

vihration of the pile group. Under horizontal excitation, the cap produced coupled

horizontal and rocking vibration. The hurizontal and rocking displacement response

I;urves measured on the cap of the group in different excitation intensities are shown

in Fig. 7,11 and 7.12 for X - direction and Y - direction, respectively, It should be

t')(plaincd that the results for the excitation intensity L =6 are missing from Fig.

T,11 illlQ i .12 because of problems encountered in measuring the rocking vibration

for this casco
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No. of additional mass
L

Excitation intensity
mee{kg.mm)

4i2
387
1360
3870

Table 7.'1: Excitation scheme adopted for nonlinear vibration

From the measured response curves shown in Fig. 7.11 and 7.12, it can be ob­

served tha\ the resonance peaks reduce with increasing excitation intensity and the

vib,aLion amplitudes are not proportional to excitation intensity at all frequencies.

These arc typical features of nonlinear vibration. The detail nonlinear features of

the group vibration will be described in the following.

To depiclthe nonlinear response theoretically, the boundary zone concept, which

accounts for yielding of soil around the pile, was incorporated into the linear-clastic-

based mathematical model. This model provides for the gradual expansion of the

yield ?:One as ~he excitation level increase. Tables 7.5 and 7.6 show the parameters

of houndary zone chosen for matching the theoretical results with the measl.lzed

response curves for the X- and Y-direction tests, respectively.

I\S can be noted from Tables 7.5 and 7.6, the damping ratios of inner and outer

7.011('5 remain unchaliged for the cases studi"·! :s in the case of linear Vibration;

thicknl'Ss of the boundary zon!!, howel'er, \'a!,,'~ fq - the cases considered. From the

comparison of the parameters of boundary zone in linear vibration and in nonlinear
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vibration. it can be observed that for the excitation ililensit:y L "" 0 tilt' thkkl\l'~sur

the boundary zon~ is reduced from O.5rofor t,he linear case to 0.:1 ro for the nonlillNr

Calle. [t is al50 of interest 10 obsene that the boundary zone bclH1Vl'li ill il stilfc'r

manner after having been yield during the experiments that were conducted a Yt'ar

earlier in testing the pile group under linear vibration conditions.

In matching the measured data, allowance had to he made (or the pil!.! Sllp,'lra­

tion. ror instance, for the strongest excitation used (f- := 6), the separation hetwccn

the pile and soil, denoted by I.. was 31Omm(O.9id) and 350mm(J.ld) for tellts in

the X- and Y- direction, respettively. [t should be mentioned that the separation

lengths could not be physically measured yet in the field at present; the ;'alues given

here were inferred by using a. trial-and·error technique of matching the theoretical

and measured response curves. The separation length between the pile and soil (free

pile length) depends on the vibration amplitude o[ the pile and the soil propcrticll.

Based on large-scale tests repolled by Han and Novak (19SS) involving stroug vihra·

tion (nonlinear) of steel pipe piles in loose sand, curves relating separation lCllg~h

to \'ibration amplitude were empirically developed. These curvcs, along with lho.~e

obtained from the full·scale tests in d;o.~·ey soils descrihed in this chapter arc !4hOWlL

in rig. 7.13.

Comparison of lheexperimelllal rr.sponse curves with the theoretical pn~uit:tion!4

is shown in Fig. 7.14 for X·direction excitation and in Fig. 7.].'j ror Y-direction. IL

can be noted that the theoretical predictions agree with the measured rC!4ull!4 Iluite

well for bolh horizontal and rocking vibrations. It can he concluded from thl~f:
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8xcitation
[ntensity

L

Modulus
Ratio
0;/00

0.2
0.1
0.1
O.L

Thickness
Ratio

'm/'o
0.3
0.3
0.6
0.9

Damping
Ratio

[nner,D,.
om
0.07
0.07
0.0"

Damping
Ratio

Outer,Do
0.035
0.035
0.D35
0.035

Poisson's
Ratio

0.3
0.3
0.3
0.3

Table 7.5: Boundary zone parameters ror nonlinear vibration in X-direction

Excitation
Intensity

L

Modulus
Ratio
O;/Go

0.1
0.1
0.1
0.1

Thickness
Ratio
lm/ro
0.3
0.6
0.9
0.9

Damping
Ratio

Inner,D;
0.01
0.01
0.01
0,07

Damping
Ratio

Outer,Do

0.035
0.035
0.035
0.035

Poisson's
Ratio

0.3
0.3
0.3
0.3

Table 7.6: Boundary zone parameters ror nonlinear vibration in V-direction
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results that the cmployed mathematical model, incorporating a boundary zOlle. i:s

capable of capturing the nonlinear \'ibration of a pile group. The re~llIts ~how that

the resonant frequency of the pile group reduces and thc resonant ilmplitude in­

creases as the excitation intensity increaSe!. For instance, when the excitation level

is increased from L = 0 to L = 6, the resonant frequenr.y of the pile group reduces

from 27 Hz to 16.2 Hz for the X-direction text and from 2" liz to 15.8 Hz for the

V-direction test.

The theoretically determined horizontal and rocking stiffness of the pile group

under different excitation intensities are shown in Fig. 7.16. It can be noted that for

both horizontal and rocking modes of vibratio.n, stiffness of the pile group decreases

as the excitation intensity increases. The reduction in st.iffnl..'Ss of the pile group

as the excitation intensity increases is mainly due to development and growth of

the yield zone of soil. These reductions are quite pronounced. For instance, hori·

zontal stiffness of the pile group reduces by almost half ,for both X·direction and

V-direction, when the excitation intensity increases from L = 0 to I, = 6. This re-

duction can principally be attributed to an increase in the thickness of the boundary

zone and the soil-pile separation effects. As can be expected, there is an appreciahle

difference in the rocking stiffness between X- and V-directions at all excitation lev­

els. This clifference stems from diITerent pile arrangements in these directions (Sl..'C

Fig. 7.4).

Some of the salient features of the nonlinear vibration of the pile group are listed

in Tables 7.7 and 7.8 for X- and V-direction, respectively. The stiffnesscs and damp-
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Excitation
inlensity,

o
1,.
6

f=:~:~ "'St"';ff;:,;~='o,:-,riZO=fi~~:::'~=p=;n""---;S,",l"';ff=o~=o",'k:::;"ingt:.m=p;"'o.C"
(Hz) pot/Nlm) ralio,Dr (I0'MN.m) ralio.D..
27 119 0.43 10.1 0.056
24 tOO 0.34 9.58 0.030
22 91 0.29 8.87 0.029

16.2 53.0 0.20 7.98 0.004

Table 7.7: Theoretical d.ynamic beha.viour of the pile group in X-direction

Excitation
intensity

{,

Resonant
frequency

(H'I
2.
22
20

15.8

Horizontal
Stiffness Damping
(IH Nlm) ratio,Dr

114 0.34
97.1 0.'29
87.1 0.25
54.0 0.20

Rocking

5.40 0.039
4.91 0.039
4.61 0.039
4.31 0.018

Table 1.8: Theoretical dynamic behaviour of the pile group in V-direction

ing ratios shown in these tables correspond to the resonant frequency for the fi~t

mode of vibration of the pile group.

From the parameters shown in Tab;.s 7.1 and 7.8 and the response illustrated in

Fig.s 7.11 to 1.16, it can be concluded that the resonant frequency of the ?ile group

reduces and the resonant amplitude increases as the excitation intensity increases.

Horizontal stiffness and rocking stiffness of the pile group reduce as the excitation

intensity increases. The reasons may be that increases in excitation intensity result

in widening of the boundary zone and, at higher levels, separation of piles fcom the

:surrounding soil. It can be noted that the damping raLio of the group reduces for
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both horizontal and rocking modes of vibration as the c){cilatioll intensil)' iIlCr('a~l's.

Thi! trend can be attributed to the fact that development and spread of;1 W('ilkl'lIc,1

zone of soil and a concomitan~ pile separation result in a reduction in the radiation

damping (at higher frequencies, radiat!( n damping is the predominant componellt

of damping).

The range of parameters of the boundary wne is recommended as guide lines

for engineering practice: the thickness of boundary zone within 0.5r" or 1.0,'" ;Ind

CdCo within 0.5. As an example con!ider the experiments where excitation 0 =Il,

the measured horizontal displacements were shown in Fig. 7.6. The same param­

eters were used as in Fig. 7.7, Le., Im/r" =0.5,,8; =0.07 and ,80 = 0.0:15, but

G;fGo = 0.1,0.25 and 0.5 were taken to obtain different theoretical response CllTVCS

as shown in Fig. 7.17. From the comparison in Fig. 7.17, it can be seen [hat thc

response curve for CdC" =0.1 is the upper bound and the curve for C;/G" = OIl

is the lower hound. The range for CdC" is 0.1 to 0.5.

7.4 Summary and Conclusions

A comprehensive study involving both theoretical analysis and field tc!lting on flll1­

size pile group was undertaken. Field tests were performed on a pile group comprised

of six cast-in-place reinforced concrete riles, embedded in a rclll.tivdy hOlllogcm.'UIlH

silty clay formation. The theoretical calculations for matching the observed field

da.ta were made using the approach of dynamic interaction fador:!. To properly

account for soil yielding under strong vihrations, provilliolls wen! made for the in-
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dllsion of 11. weakened zone in the theoretical model. Rea.sonably good agreement

Wil.... obtained between the theoretical predictions and the field-measured data. The

findin.l::s from this study ha~'e provided $Orne insight into the influence of pile-soil­

pile interaction on the dynamic response of pile groups. These findings include the

following:

(I) Dynamic response of the pile group under strong lateral excitation exhibits

~ypical nonlinear felLtures; for both horizontal and rocking modes of vibration, stiff­

ness and damping ratio of the pile group reduce as the excitation intensity increases.

This ill turn resulu in a reduction of the resonant frequency and an increase in the

resonant amplitude. For t:Hl case studied horizontal stiffness of the pile group under

the strongest excitation intensity was found to be reduced to almost half of that

arising from the lowest excitalion intensity; this observation indicates that the pile

group response in a. nonline"r manner.

(2) Horizontal stiffness WilS rvund not to be appreciably affected by the pile

group configuration. As to be expected, rocking stiffness was found to be strongly

<lelKlndent upon pile group configurati,:,n. For the case studied, rocking stiffness in

the X·direction (compriSCld of three piles in each row) wu almost twice that in the

Y·direction (comprised of two piles).

(:J) Over the frequency range employed, the pile-soil-pile interaction results in a

reduction in the stiffness and an increase in the damping of the pile group.
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(-I) From compari:wn of the theoretical predictions with tht' licld'IIICi\llUfL-n n"

suits it was deduced thaJ, under moderate levels of L"Xcitation. hath pile-soil-pile

interaction effects and soil yielding playa significant role ill the <)\'crl\lI tlynlunic re­

sponse of pile groups. Inclusion of the mathematical aspecu rclatctl to these dfcds

are, therefore, recommended in numetical models used for analyzing ~llch problems,
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Chapter 8

Influence of Frozen Soil on Piles

Partially frozen suhsoil conditions, such as the frOl,:cn of a 0.5 In thick layN just

below the surface, can be encountered in large regions of the world. particularly in

most of Canada duting the winter months. C~tC(hnical enginccrs arc sorndin~

confronted with problems concerning the design and construction of ~~rndlln~ 011

site5 underlain by permafrost, ice or simply frozen soil layers. The &cllcral prac­

tice under these conditions is to use pile foundations for the support. of Ahove-grade

healed structures. Although a considerable body of analysi, and field ohscrvo\tiollll'

is now available to support some of the le<:hniqucs that have bt..'Cn propoS<.-d for lin:

static design of piles in frozcn soils (c.g., Nixon, 1978, 198"; Nixon ,,-nd McRohcrt~.

1976; Morgenstern et al., 1980 and Crowther, 1990), no field l11eilllUrf~mellb an:

available for the dynamic response of rib in frozen soil.

8.1 Pile Group

To study the influence of & frozen soillaYN all the dynamic rr~pon:lt~ or a pile group,

a similar set of expeoriments ilS described in the lasl cha.pter was performl.'il '[Ilrin~
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the wintCf months when the ground surface WAS CO\'cred by a layer of frozen soil.

0.:1'1 m thick. The shear wave \'elocity of the froun soil layer was established by

IllJlploying the surface wave method, and thl;. mea.sured shear wa\'e \~Iocity or the

layer was 540 mls which, incidentally, is about four times greater than the unfrozen

portion just beneath it.

The ~mallcr cxitcr was used in V-direction only, and the excitation intensitie5

were the same as in linear vibration tests as shown in Table 7.3, In this case, due

to the increased soil resistance resulting from soil freezing, the maximum horizontal

displacement that could be achieved (with the employed exciter system) was only

0.023 mm. For such small displacements and hence strains, it was considered inap'

propriate to all<>w for either soil separation or yielding in the frozen soil layer for

the i\nal~is. The measured horizontal and rocking displacement response curves of

the pile group for different excitation intensities are shown in Fig. 8.1.

The comparison of experimental response curves with the theoretical predictions

(approach of dynamic interaction factor) is shown in Fig. 8.2 for horizontal and

rocking vibration of the pile group. B~ause of the much higher resonant frequency

"nu the limitation of the exciter, the resonant peak could not be obtained, However,

l,he results, at least oller the portion for which data. were available, show a satisrac­

lory agreement with the measured re;ponse,

In order to ass''Ss where the resonant frequency for the pile group with a layer

of rrozen soil would occur, the theoretical calculations IIICre extended to a rrequency
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of lOO Hz. These results Arc shown in Fig. S.J for the horizont ..1.l and rocking \'ibra'

tion, For comparison, the results for the case without frozen layer ,ts ,le~.:rib('d in

preceding section arc also ploned along with the measured data. From tltis tigUrt: it

can be seen that the resonant frequency [or the group with frozen ~()il l'l}"Cf i~ 111lH:h

higher than that without the fro:.:en soil.

The stiffness and damping of the group with and witllout the frozen lay,~r i~

shown in Fig. 8.4. From this figure it can be seen that the stilfnt.'Ss ann damping

of the pile group with the frozen soil la}'er arc much higher than those withollt the

frozen soil. For instance, the horizontal stiffness of the pile group is increa.~ed by a

factor of eight as compared to the case without [r01.en soil. From these ooscrv:l.tiolls

it can be concluded that the presence of even a thin layer of frozen soil (in dw

order of 1/20 of the pile length) can have a profound influence on the response of

pile group, as was demonstrated by a significant reduction in displacements and all

increase in the resonant frequency.
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Figure 8.1: Measured displacement response of pile group with frozen layer (a.)
horizontal vibration, (b) rocking vibration
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8.2 Single Piles

For comparison with the pile group, the dynamic cxpcrirn<.'lIts were also (:Ol\(hltll~ll

on single piles which have the same properties and the same size M those ill the pill~

group, and placed in ~he same site as shown in fig. i.1. The cast-ill·ph\cc rcill­

forced concrete pile was 7.5 m long and 0.32 m in diameter, cappL'd by i\ 0.:1 III thkk

concrete block with l.l m long by 0.9 m wide. The pile cap had a clearance of 0.02

m and 0.1 m above the ground surface under frozen ground and thawed (anditions,

fe5pf'ctively, weighing 7.25 kN. The smaller exciter, as shown in Table 7.:1, was fixed

on the cap by foundation bolts, and the centre of gravity of the cap-exciter system

was 0.1 m below the cap surface. The active component of the horizontal excilation

was situated about 0.2 m above the cap surface. The steady·state dynamic response

of the single pile under horizontal excitation was measured under the condition with

frozcn soil layer and without frozen soil, respectively. In the case with frol'.cll soil,

.he thickness of frozen soil layer was 0.'1 In and its shear wave velocity was measured

to be 540 rn/s.

The horizontal responsc curves for the single pile without the frolf,en soil were

measured and shown in Fig. 8.5, under excitation intensitics wrrcsponding to

o= 8,14 and 28. Tne maximum displacemen~ amplitude and acceleration on top

of the pile cap were measured to be 1.25 mm and 1.2 g, respectively. From the

measured response curves shown in Fig. 8.5, it can be seen that the resonant peaks

reduced with tne increase of excitation intensities, indicated that Ilonlinear responsc

occurred. The nonlinearity or dynamic response of the single pile will he discussed
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lal(~r in lhis section. The horizontal response cun'es for tht' pile in lhe presence of

,\ frown soil layer under two excitation levels corresponding to 0 = 8 and 28 Wf"re

measured and shown in Fig. 8.6. The maximum horizontal displacement measured

on the cap was only 0.051 mm, Because of the much ni'!'her resonant frequency and

the limitation of the exciter employed, the resonant peaks could not obtained in the

case with frozen soil.

For thc case without frozen soil, two approaches are employed for analysis of

dynamic response of the single pile. In one approach, the boundary zone around

the pile is accounted for. The weakened zone is assumed with G;/Ge = OJ,t ... /ro =
0.5,Pi = 0.04 and Po = 0.02. Since nonlinear, response occurred, it was considered

reasonable to allow for pile separalion in the analysis. Using a trial-and-error tech­

nique, different separation lengths were chosen for each excilation intensity until the

optimum match between the theoretical and experimental results was obtained. In

this way, the separation lengths, t" are 0.15 m, 0.19 m and 0.27 m corresponding to

o= 8. Hand 28, respectively. Comparison between the measured and theoretical

calculations, as seen h Fig. 8.7, shows a dose agreement at all excitation levels.

As another approach, the weakened zone is not accounted for. In the absence of

the yielded zone, a much larger pile separation (relative to the previous case) has to

he required to provide a dose match with the observed data. In this way, the sepa-

ration lengths, t" should be 0.32 m, 0.36 m and 0.44 m corresponding to 8 = 8, 14

and 28, respectively. Fig. 8.8 illustrates the comparison between the calculated and

observed data for the three levels of intensity. It can be seen that the measured
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results agree .....ith the ulculatcd rcsponse cum:'! with the l.uger pile Sl.'Jl"\r:ltioll~

employed in analysis.

In the cue with frozen soil, the maximum measured displact.·rnellt .....a~ un'y 11.05\

mm. For such small displacements and hence strains, it W/U con~idcrcd inappropri·

ate to allow for either soil separation or yielding in the analysis. Fig. 8.9 f!Cllir.t14th,:

comparison between computed and measured response of the pile. The rcsults, ilt

least over the portion for which data. were available, appear 10 satisfy the measurctl

response quite well. In order to assess where the resonant frequency for the soil Sy14'

tern underlain by a layer of frozen soil would occur, thc theoretical calculations were

extended to a. frequency of 100 liz. These results, for elicitation levels corresponding

to 8 =8 and 28 are shown in Fig. 8_10 and 8.11, respectively. For comparison, the

calculated response curves for the case with on frozen layer also ploued along with

the measured data. It can be seen from these figur~ that the resonant frequcncy for

the pile with froun soil layer is much higher than that without the frozen soil layer.

The theoretical results also indicate that a secondary mode of vibration develops at

approximately 100 Hz for the c.ue with I ..... frozen soil, which is primarily due to the

coupled horizontal and rocking vibrati'>n of the pile cap.

The theoretical horizontal stiffness and damping coefficient of the pile for bOUI

cases with frozen soil layer and without frozen soil are shown in Fig. 8.12. It <':1l.11

be noted that the pile stiffness in the case with fro:.:en soil layer is much higher lhall

that without frozen soil. In the case without rrozen soil, pile stiffness decrcasC!J wilh

increasing elicitation intensity; howc\'er, with lhe fro7.en layer, stiffness remains al-
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&:eilatioll Re5Qnant SoiJ·pikS)'$lcm. roo-~"'"
c.~ intensity. litqumcy HorilGntalrcsponse (I/d,)

(lid

SdfTncss,K """", Wo. w;"""

""""l flItio.D - """""1
Wi::-.frozen ,., 59.0 '" 0.149 NlA NlA
soUl) 1:1-21

Without g., 17.6 <40.5 0.1(,1 0." 1.00
&olCn~1 8_1<4 16.1 31.1 0.103 0.59 1.13

g." 15.6 33.1 0.... 0." 1.31

Table 8.1: Theoretical dynamic behaviour of the pile with and without the frozen
soil layer

most constant over the range of applied excitation (i.e., 8 = 8 and 28). This stems

from the fact that with the frozen soil layer the pile response is almost linear and its

theoretical resonant frequency, as shown in Fig. 8.10 and 8.ll, remains unchanged

(59 Hz) at the two different intensities tested, Some of the salient features of the

pile response, with and without the frOl:en layer, are shown in Table 8.1. It should

be noted that the stiffness and damping ratio in the table are those corresponding

to the resonant frequency of the pile.

From the figures and Table 8.1, it can be concluded that the presence of frozen

soil, even in a relatively thin layer, can significantly affect the dynamic behaviour of

pile!. Although the thickness of the {rozen layer was about 1/19 of the pile length,

its presence increased the horizontal stiffness of the pile by 15 times and its res-

181



onant frequency by about 3.5 times. Furthermore. the frozen soil layer. over the

excitation range tested, largely removed the nonlinearity in the vibration which W1\ll

manifested in the case without the frozen soil by a shift in th~ resonance frequency

(from 17.6 Hz to 15.6 Hz) and a reduction in stiffness (from ·10.5 to 33.8 ~:'I;o) as

the excitation level was increased from 0 = 8 to () = 28.

The experiments described in chapter 5, 7 and 8 were conr.uctoo beCore t.he Ph.D.

program. The measured results were used in this study to verify the new theory,

boundary zone model with non-reflective interface. The dimensionless frequency,

OQ =wrQ/y', in the experiments is aQ=0.2 to 0 3. From Fig. 3.16, it can be seen

that the new theory is identical with the old theory ( Novak's theory) in the lower

frequency range. However, in some other case, aQ :S 0.5, the results from the theory

will be different with those ones from the old theory. It should also be remembered

that the mass was ignored in the boundary zone for Novak's 1II0del, which is unreal­

istic. Therefore, t.he new theory presented in the thesis is reasonable for applications.

The new theory is verified by means of comparison with the experimental results.

In the lower frequency range, the resuJt~.rrom the new theory arc identical with those

previously published by Han and others.
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Figure 8.9: Measured and theoretical response of the pile in the cue with & frozen
50ill&yer

187



Fisure 8.10: Relative inftuence of a froun soil layer on the pile responlle at 9 "" 8
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Figure 8.11: Relative inftue':lce of a frozen soil layer 00 the pile respollJe &t 8 = 28
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Chapter 9

Summary, Conclusions and
Recommendations

A systematic study is presented for dynamic behaviour of pile foundations under

harmonic excitations. In this thesis we have accomplished the following:

(l) The impedances for a composite soil layer are formulated based on a new

model of the boundary zone with non·relJective interface. A parabolic variation

of the medium properties is assumed, so that the boundary zone has properties

smoothly approarhing those of the outer zone to alleviate wave reBedions from the

interface. The impedances of the soH layer are presented for different modes of vi·

bration, included vertical, torsional. radial, rocking and horizontal vibration.

(2) With. the impedances of the saillayet formulated, the stiffness and damping

of single piles in layered media are derived using the finite element method. The

vertical, horizontal and rocking impedances or single pile are presented. To deter­

mine whether the basically linear theory can reproduce the behaviour or piles under
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.strong excitation. dynamic experiments on large-sCAlt model pilei. steel pipe piles

with a diameter of 133 mm and a lent;th of 3.38 m. l\'ere conducted with ~tron& hor­

izontal and \'ertical vibration. The frequency response cun-es and dt'!leclion CUf\"t.'S

of the piles were experimentally established in the ~eld for different intensities of

excitation and coouet conditions between the pile cap and the soil surface.

(3) Using the properties of the single pile and accounting for the group effect.

pile-~oiJ-pile interaction, the group stiffness and damping are evalua.ted by means

of the interaction factor approach.. To ifl'lestigate the dynamic behaviour of pile

group, the experiment. on il full sCille pile group, comprised of six cast·in-place re­

inforced concrete piles with 1.5 m long and 0.32 m in diameter, were carried out

in the field under dilferent. conditions: linear vibration and noolinear vibration. In

order to in\'estigate the influence of frozen soilll.yer on dynamic behaviour of piles,

the experiments were also conducted during the winter time when the !urfac~ ·us

covered by & hozen soilla)·er.

The following condusions may be drawn:

(1) The imped.I.Dces of the soil layer are evaluated over wide ra.nge of the pa­

rameters involved. a.nd compared with those obtained from Novak's and Velcho!'s

model, which are the leading modeJ~ a~ present, as well il5 compared with those for 1\

homogeneous layer. The results from the present anal)'sil are !mooth curves over a

wide range, which indicates that the wave reflections from the interface are removed

beCAuse it embodies a continuous va.riation in soil properties in lhe boundary zone
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with smooth transition ( continuous derivatires ) into the outer zone. Thus, the

impedances ( sail stiffness and damping) presented ill this study are considered to

be more suitable to practical applications than previous ones.

(2) Since the pile response at large amplitude exhibits typical nonlinear features.

consideration of a weakened zone ( boundary zone) Around the pile and pile sep­

aration is necessary. Good agreement can be achieved between the experimental

and theoretical response curves when the characteristics of soil are suitable chosen.

without resort the truly nonlinear analysis. The nonlinearity of the soil-pile system

is accounted for approximately by means of the model of boundary zone.

How to select suitable characteristics of soil depends on the specific conditions

in the field, such as the installation of the piles, the properties of soil and piles and

the excitation intensity. Under different excitation, the range of tbe thickness of

boundary zone within O.5roor l.Oroand CdG. within (1.5.

(3) The eKcitation intensity and contact conditions between the pile and soil and

between the cap and soil surface change the stiffness and damping of piles. Under

repealed loading, the stiffness and damping of single piles decrease, so that the res­

onant frequency de<:reases and resonant displacement increases.

(4) Dynamic response of the pile group under strong lateral excitation also ex­

hibits typical nonlinear fea.tures: stiffness and damping ratio of the pile group reduce

as the excitation intensity increases for both horizontal and rocking mode of vibra-
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tion. This in turn results in a reduction of the resonant frequency and an increase

in the resonant amplitude.

(5) The p.Ue-soil-pile interaction results in a reduction in the stilfnen and an

increase in the' damping of the group. Both pile·soil-pile interadion and soil yield­

ing around the piles (boundary zone) playa significant role in the overall dynamic

response of pile group, el'en under moderate levels of excitation.

(6) The presence of frozen soil, even in a relatively thin. layer, can significantly

affect tne dynamic behaviour of piles. In this study, lhe thickn~sof ~he frozen layer

was about 1/19 of the pile length, its presence increased the horizontal stiffness of

the pile by IS times and its resonant frequency by about 3.5 times.

Suggestions for Further Research

(1) In the case of horizontal excitation, a general solution involving variations

of soil properties in the boundary zone proves to be extremely difficult because of

cross coupling between the radial and t:!ngential displacemenb. Hence, constant ).i

and Gi are assumed for horizontal excitation in this study. In the lower frequency

region the undulations of the impedance functions caused by wave reflections from

the interface can not be observed, but wave reflections occur in higher frequency

region. If the demand for higher frequency rises in applications, further research

should be done fOt the CMe of horizontal excitation.
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(2) Since the properties of the pile foundation are established, they can be in­

corporated into the examination of pile-structure interaction using the substructure

approach just as with other type of foundation. With the better understanding

of the behaviour of piles, the dynamic analysis of structures supported with pile

foundations Ciln be conducted, such as the soil-pile-structure interaction under wave

loading in offshore engineering or seismic response of buildings supported with piles.

Further research should be done in both theory and experiment in order to apply

the advanced theory of pile dynamics to engineering practice.

(3) Dynamic measurements on bearing capacity of piles, integrity testing and

pile driving are often employed in constructions, using Wave Equation Analysis of

Piles (WEAP) or Pile Driving Analysis (PDA). Ooe of the more important problem

in matching the predications with the measured da.ta. is how to simulale the soil­

pile interaction. The subject of soil-pile interaction is investigated comprehensively

ill both theory and experiments in this study. Further research of model testa on

centrifuge facilities and full-scale tests in the field are needed.
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Appendix A

Impedance Functions of
Viscoelastic Halfspace

A rigid disk of infinitesimal thickness and weight ;5 supported at ~he surface of

a linear viscoelutic halfspace, which i, idealized either as a standard Voigt solid

or as a constant hysteretic solid. The harmonic exciting [OfCCl investigated include

a horizontal force He"", & vertical force Pc"" and an ovenurning moment Me-,

where 101 is the circular frequency of the excitation. l is the time and i = .;::T.

Let u, v and JjJ be, respecth"cly, the amplitude of the horizontOll, vertical and

angular displacements of the disk. ~e~lecting the small coupling between the hor­

izontal and rocking motions, the relationship between the force amplitudes and

displAcement amplitudl!5 may be stated as

{

H = k.,u
p:::: 1e",V
:../ = k'IJlt/J

where kjf arc complex-valued stiffness or impedance func~ions of ~he form
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(A.I)

(A.2)



(A.3)

in which the subscript j is used in a generalized sense to denote tt, v or 1/;; ao is

the dimensionless frequency parameter, II is Poisson's ratio, D = t<l.06 is hysteretic

material damping of the viscoelastic medium and 6 is loss angle.

The symbol Kj in eq. (A.2) represents the static stiffness of the disk in the j

direction, defined as

Kv= :~r:

8Gr3

K~ = 3(1_°1/)

Kv = ~~r:
where G is the shear modulus of the viscoelastic medium and ro is the radius of the

disk.

In eq. (A.2) Gjl and GJ1 are real valued function of 0.0'1' and D. For the

horizontally excited disk, j = tt, the following expressions are obtained for Cv ! and

c.,

{

C., ~ 1 - .[o.5(R - I)" ••

CUl = .jO.;(R+ IJal + ~

where

For the disk in rocking motion, j =l/J, the corresponding expressions are
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(A.4)

(A.5)

(A.6)



where

('\.7)I
,,~ 3dR+JO.5(R-l)~,'.II;1".),

R+2JO.5(R - 1)(,I3,ao)+ (Pza"p

PIP,Ja.5(R+ l)(p,a,,)'

~,~ R +2JO.5(R - IHP,a.) + (P".)'

For the disk in vertical motion. j = v, the corresponding expressions are

{

C~l =1- .y~ - Ja.5tH - 1)""(:" - iJa~

C", = Ja.5{H + l);~ +"'" +;;:
(,1.8)

where

(,1.9)I
-,,[R +~("a.)II"a.)'

x. - R+2Ja.S(R _ 1)(i,ao) + (;,0,,)'1

il"'t~Ja.5(H + I)(;~a,,)'

~. = R +2JO.5(R - 1)("a.1 + ("a.1'

tn above equations, QIlf3i and "'ti are numerical coefficients which depend on Pois-

sion's ratio, II.

Substituting eq.(A.3) into e<j.{A.2), the impedance functions can be expressed

in the following form:

{

k"l =Gr"IC~,(a",v,D) + i.C~2(0", v, D)]

k~l = Gr"[C"I(a,,,v, D) + IC~2(a", II, D)!

kw, = Gr~[Cwl(aOlv,D) + iC...1(a",v, DJl
(,1.10)
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Appendix B

Interaction Factor of Two-Pile
Group

A group of two identical, equally-loaded piles is considered, as ,hown in Fig_ B.l,

each pile is divided into 11 cylindrd elements and a uniformly-loaded circular base.

I( conditions remain pu~ly elastic within the soil and no ,lip or yield occurs at the

pile.soil interface, the pile and soil displacements at the center of each element may

be ~uated. The equation for the pile displacement are identical wlth those for the

single pile. The soil displacements for a floating pile may be written as follows:

{o} = f.{lu + l"HP} (B.l)

in which d is diameter of the pile; E. is Young', modulus of tne soil; {v} is vettor of

soil displacement: {P} is vector of shear stresses; [/1\ + /ul is (n +1) x (n+ 1) rna.·

trix of displacement-influence factor, containing elements I\i; + 12i;, where [lib 11iJ

are displacement-influence factors at element i on pile 1 caused by shear stress on

clement j of pile 1 and pile 2, respectively.

The soil displacements thus obtained may be equated to the pile displacements
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Figure OJ: Croup of two B.O&tinS piles
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and the resulting system of equations solved, to obtain the unknown shear-stresses

and displacements along the piles. The analysis of a two-pile group is therefore

identical with that of a. single pile, except that the soil-displacement.influence matrix

includes contributions from the second pile. The results of the above analysis may

be conveniently expressed in terms of an "interaction factor" CIl, where

(B.2)

where Oij is the additional settlement caused by adjacent pile j, and Oii is· the settle­

ment of pile i under its own load. The pile i and the adjacent pile i carry the same

load.

The value of Ilij and 11ij may be obtained by integration of the Mindlin equation.

The geometry of a typical cylindrical pile element is shown in Fig. B.2. For a general

point j in the soil maliS, the value of Ii, is

IB.3)

where I, is inftuence factor for vertical displacement due to a vertical point load,

and 6 is the length of element.

From Mindlin's equation, Ip is given by

I _~I..:l. 3-4/1 5-12/1+8111 (3-411)zl-2cz+2cl 6cz1(z-c)1
P-Slt(l-ti) R?+ R t + R2 + ~ + lij

(B.4)
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Figure 8.2: Singlle pill!-basic geometry
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where

{;~~;:+Z'-Zd'''8+'' (B5)
R: = tP/4 +Z2 - rdc0!8 + z~

The integral with respect to c in eq. (B.3) can be evalua.ted ana.lytically to give

f [,dc = 81l'~t_vv/lk -4(1- 1I)ln(zt'" Dd +8(1 - 2v +v2)ln(z + D)

where hand r are defined in Fig. 82,

D1 =(r1 +zWf2

D = (r2 +z2 )'/2

and the limits of integration in eq. (8.6) are

:1 from h - (j - 1)6 to h - j6

aod

: from h +(j - 1)6 to h + j6

The integral with respect to (J is, however, only conveniently evaluated numeri­

cally.

The geometry of the pile b.ue is shown in Fig. B.3. To allow (or an enlarged

base. a base radius r~(= db/2) different (rom the pile shirt radius is considered. For

a general point i in the soil ';,,-'55,
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Fi!Ure 8.3: Geometry for integra.tion over eircul&l' a.rea
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where I~ is given in eq. (8.4), and for this case,

The integration with respect to r can be done analytically and yields

J I+IJ :HrA-R~) ~ ~
Iprdr :: 811"( 1 _ II) {(R~ _ Al).;A'; + (3 - 4v)lV X~ + AIn(2V X~

+2r - 2All + (5 - l211+8111)(~+ Aln(2..jX;

Ar-B
+2r - 2A)J + {(3 -411)Zl - 2ez+2C11~ +

1 -1 A(T-A) 1 2
6ez (z -e)(3~+ 3(8 _ Al)JX:"X; + B _ A2)J)

where

(B.8)

(B.9)

I
~~==z'l:/

~: : ~~ =~~~ ~ :: (8.10)

B:: R~+4c2+4c:1

: =:1 +2e

The integration with respect to 9 is again evaluated most readily by numerical
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