

Distributed generation of state space

for timed Petri n ets

by

Ir in a R.ada

A thesis submitted to the School of Graduate Studies

in partial fulfillmen t of the requirements for the degree of

Master of Science

Department of Corm pute r Science

Memorial University of Newfoundl and

May 20()O

St. John 's C anada

Abstr a ct

Development of co mplex sys tems is usually preced ed by detailed st udies of their models .

For co ncurre nt sys tems, Petri nets have proved to be a conveni ent modelin g formalism

because of thei r ability to exp ress conc urre ncy, synchronization. precede nce co nst raints

and nondetenninism. T imed Pe tri nets also tak e into acco unt the d urati ons of modeled

act ivit ies, facili ta tin g qual it a tive as well as qu an ti tative a na lys is of mode ls. Th e behav

ior of Petri nets is rep resented by their sta te spaces, which are Mark ov (or embedded

Markov) chain s. For large models these state spac es eas ily exceed the resou rces of a

singl e computer syst em. Read ily available net works of computers provide an attractive

alternative to complex methods of s ta te space redu cric n or aggrega tio n.

Th e main objective of this proj ect is to use a cluster of P C 's or workstations for

the state space generation of timed Pet ri nets . The distributed algorithm uses a divide

and conq uer technique: disjoint regions of tbe state gra ph are constructed 00. differeDt

machines. O n each machine the com munication is separated from the computation

part. and is perfo rmed by two specialized concurrent p rocesses: one receiving , and one

sending messag es . The implemeDtation is based on PVM (Par all el Virt ual Machine)

using a modifi ed versio n of T PN -tools, a software package for t he analysis of timed

Pet ri nets . Exp erim en ts perfo rmed on a clus te r of 32 P C' s con nec ted via a 100 Mbps

Et hernet show al most linear speedup for some classes of ti med Pe t ri nets .

Acknow led ge m ents

I wo uld Like to express my sincere th anks to my su pervisor, Dr. Wlo dek Zubcr ek ,

for his gui dance, help, and th oughtfulness throu ghout my program.

[am gra teful to t he Schoo l of Graduate: Stud ies and to the Department of Compute r

Science for financial support.

Many thanks go to my friend Ulf Sch iinemann for our disc ussions an d his helpful

comments, and to Nolan White for techn ical assistan ce.

Fin al ly, I want to thank al l my friends for makin g my stay here enjoya ble, and

espec ially my famil y for moral support.

Contents

1 In t ro d uct io n

2 Petri nets and s t a t e space generation

2.1 Introduct ion to basic Pet ri net s

2.1.1 Bas ic Petri nets .

2.1.2 Extensions of basic Pe tri nets

2.1.3 Selectio n of firings for conflicti ng tr an sitio ns

2.2 Generat ion of the reach a bi.lity gra ph

2.2.1 Seq uential algorith m

10

... 13

13

2.2.2 Net properties based on t he reacbability graph . . . 14

2.3 TIme-a ugmented Pet ri nets

2.3.1 Stochastic Pet ri nets

2.3.2 Timed Petri nets

. 17

_ . _ 18

19

2.4.2 Conclusions .

2 .4 Distributed state space generat ion for stochastic Pet ri nets . .

2.4.1 General fra mework .

2.3.3

2.3.4

M-timed Pet ri nets _ .

D- t imed Pet ri nets

2.
25

29

3.
36

3 Distributed stat e s p a ce ge nerat io n for t imed P etri nets

3.1 General consi derations . .

3 7

37

3.2 System temporal organization 39

3.2 .1 System startup 40

3.2.2 Const ruc ti o n or the state subgraphs 41

3.2.3 Termination de tection 42

3.2.4 Integration of resul ts 44

3.3 System architect ur e . 45

3.3. 1 T he co m po nents 45

3.3.2 Local co mmunicati on . 47

3.3.3 Messa ge bas ed comm unicati on . 48

3.4 Algorith ms . 51

3.4.1 Th e Spa wne r 51

3.4.2 Th e Worker 54

3.4.3 T he Sen de r 58

3.4.4 The ordinary Receive r 59

3.4.5 T he ini tiato r Rece iver 61

3 .4.6 Th e Collector 63

4 Examples

4.1 D-timed nets

4.1. 1 Exam ple 1 .

4.1.2 Exam ple 2 . .

4.2 M-t imed net s

4.2 .1 Exa m ple 3 .

4.3 Concluding rema rks .

iii

6.
66

66

70

71

71

74

5 Co ncl usions

Re ferences

iv

75

79

List of Tables

2. 1 State space for the net in Figure 2.6 .

2.2 State space for the net in Figure 2.1.

2'
28

List of Figure s

2.1 Producer-consumer bounded buffer mod el.

2.2 Reach a bility graph for t he producer-consum er boun ded- b uffer model .

2.3 Cen tral server mod el. .

2.4 Selection gra ph for F igure ~.3 . ..

2.5 G raph of reach able markin€S for th e net in Figure 2.3.

2.6 Th ree dining phil oso phers . . .

3.1 Distributed genera t ion sys t-em 3 processo rs .

3.2 T he st ruc ture of a GenerotoQT.

3.3 Inter -components communi ca.t ion sum ma ry.

4.1 Execution time for Exampl-e 1 (a) and Exa m ple 1 (b).

4.2 Speedup for Exam ple 1 (a) and Example 1 (b).

4.3 Speedup cu rves for Example 1 (a) and Exam ple 1 (b) . ..

4.4 Speed up comparison for Example 1 (a) an d Example 1 (b) .

4.5 Execut ion t ime for Exam plE 2. .

4.6 Speed up for Examp le 3.

4.7 Execution t ime for Example 3. . .

4.8 Speed up for Examp le 3.

vi

10

13

17

21

38

47

51

67

68

69

69

7l

7l

72

73

Chapter 1

Introduction

Development of complex, real -worl d systems is usually preceded by detailed studies

co nd uc ted on formal models. Form al , mat hema tical models are used for t he verification

of system's properties and for the derivation of its performance characteristics [16. 20,

221·
For systems which exhib it concurre nt ac t ivit ies , Petri nets ar e a goo d cho ice of mod

eling formalism, beca use of t heir ability to express concurre ncy, sy nchroniza tio n, prece

den ce co ns t rai nts and non-d eterm in ism . Moreover , Pe tri nets "wit h t ime" (stoch as tic

or ti med) inclu de t he d urat ions of mod eled activities into the system's descript ion and

t his allows t he st udy of pe rformance aspects of t he modeled sys te m. T he analysis

of a Petri ne t mode l of a sys tem provides many useful insights ; t he ne t' s qualitative

pro pe rt ies characterize the system's behavioral properties [1, 261. whil e the ability to

incorpora te tim e into t he description allows the derivation of that system's quantitative

characteristics [4, 20, 39}.

T hree basi c approaches to t he anal ysis of Pet ri nct models are known as st ructural

anal ysis, reach ability an al ysis and , for t ime-augm en ted nets , discrete-event simula tion

[32, 38]. St ruct ural methods pred ict the prop ert ies of net models on th e basis of their

structure (Le., connec t ions between elements) . Structural analysis is usuall y rather

simple, but it can be applied on ly to nets wit h speci al prope rti es. Net si mulation [451

is based on the fact that a (timed or stochastic) Pet ri net is a disc ret e event system,

where the events are rela ted to th e net tr ansition firings (occ urr ences) . Simulat ion ca n

be a pplied t o a larger class of nets , but may sometimes not cap t ure events which occu r

very ra rely.

Reacbability anal ysis is the most suitable me thod when a detailed anal ysis of t he

model's beha vior is needed . Based on t he exhausti ve generation of all mode l's states and

t rans itions between t he states, reacha bility anal ysis answers quest ions abo ut reachable

states, liveness, boundedness, persistence, deadl ock existence , etc. [26, 32J. The first

an d most memory cons umi ng ste p in reach ab ility analysis is to det erm ine all the states

of the net and the possible relations amo ng t hem. T his Iafor mauc c is organized io. a

d irected graph, called the reachability graph (io. which t he nodes are the net 's st a tes

an d th e directed arcs represent th e possible sta te-transitions). Th e reachability grap h is

used for checking th e properties menti oned above . For timed an d stoch ast ic Pet ri nets

(wit h determio.ist ic or exponential ly dis tributed firing times), th is graph is a Mar kov

chain, whose stead y state beh a vior can be determined using know n nume rical methods

(22, 34J. T he steady st at e pr obab ilit ies are used to derive performance measu res of t he

net , from which perfo rmanc e aspec ts of the system can be obtained (4, 11J.

The powe r of reacbability anal ysis lies in its ability to cha rac te rize the exac t behavior

of t he syst em. However, while yie lding good results for simple mod els, this met hod

can not be applied to nets with very lar ge state spaces. For such nets , the memory and

computa tional requ irements can be too large for a single machine. There are two basi c

methods to cope with t his probl em [101; avoidance meth od s, which use net properties

to obtain a smaller state space, an d to lerance meth ods , which acce pt th at t he state

space is large and use various tech niques (in particular parallel/distrib uted algorithms)

to generate it. T he current avai lab ility of clusters of workstations an d portable libraries

for distributed compu ting makes the second approach very attract ive: the sta te space

can be constructed in a d istributed manner. using a collectio n of processors.

While there have been several papers pub lished on distributed generation of state

spaces of systems [28. 30] and on parallel and distributed sta te space generation for

stochasti c Petri nets [8. 6. 7. 9, 23]. very little informa tion is available for distributed

analysis of ti med Petri nets.

T his t hesis proposes a d istributed algorit hm for th e gene ration of sta te space for

t imed Pet ri net s. Th e algo rit hm has been implemen ted in C+ + using the TP N- tools

(38). STL [36], and PVM [18] librari es, and then test ed o n the network of PC's and

workst a tions in the Dep ar t ment of Computer Science, Mem orial University of New

foundlan d. Experimental resu lts show alm ost linear spee d up for some classes of ti med

Pet ri nets .

T his thesis is organized as follows: Chapter 2 presents th e theoretical background

of th e problem and an overvie w of t he literature. Ch a pte r 3 introd uces the pro posed

d ist ributed algorithm. Cha pte r 4 presents experimental resu lts. Performance analysis.

limi ta tions . and possible extensions arc discussed in Chapter 5 .

Chapter 2

Petri nets and state s p a ce

generation

The first two sections of this cha pte r provide a short. introduct ion to place /transit ion

Petri nets and t he gene ra tion of their markings (in t he case of bas ic and sto chas t ic

Petri ne ts , markings are often caUed states; for timed nets , markings and st at es are

two different conce pts) . Sect ion 2.3 prese nts Pe tri nets au gme nted wit h the dur at ions

of activities and d iscuss es the generat ion of thei r s ta te space. T he final sec tion reviews

the curre nt literature on distributed generation o f t he sta te spac e for stochas tic Pe t ri

T he presented definitions ace sim ilar to t hose in [39}. T he notat ion follows [39, 38J.

2 .1 Int roducti on to basic P e t r i n et s

All basi c place/tra nsit ion Petri nets are characterized by their structu re , t heir curr ent

marking , and exec ution ru les defining t heir beh avior . Basic concepts of Petri nets ar e

int rodu ced in th e following section .

2.1.1 B as ic P etri nets

D e fini tio n 2 .1 A Pet ri net is a t rip le N = (P, T , A) where :

• P is a finite set of elements call ed places,

• T is a finit e se t of elements called tr ansit ions,

• A is a set of di rected arcs con necti ng places with t ransi tio ns an d transi t ions with

places, i.e., A ~ P x TuT x P . 0

D e fin it ion 2.2 Let N = (P,T , A) be a Petri net , t a t ransi t ion , t E T , an d p a place ,

PE P. T he in put set, l np, and t he o u t p ut set , Out, of a tr ans iti on t or a place p

are defined as follows:

l np(t) ~ {p I (P,t) E A} , Out(t) ~ {p I (t, p) E A },

l np(p) ~ {t I (t, p) E A}, Ou t(p) ~ {t I (P,t) E A }. 0

T he dynam ic beha vior of the net is represented by the distributions of the so-called

tokens associated with places of th e net. T his associa t ion is cal led a marking of a net .

A net with a marking is called a marked net .

Definition 2.3 A marking of a Petri net N = (P.T . A) is a function m : P -+ N

which assigns a non-negative number of to kens to each place of net N . A place p is

marked by t he marking m if it contains at leas t one token , m(p) > O. otherwise it is

unmarked by m . A marked. ne t is a pair M =(N, mol. where N is a Pet ri net a nd

mois a marking of N , cal led the in it ial marking. 0

A basic Petri net is a bipartit e graph , usu ally drawn with circles represent ing places

a nd rectan gles rep resenti ng tra nsitio ns . T he tokens are represen ted as black dots inside

t he circles .

Example 2 .1 [38] The Petri net in Figure 2.1 models a consumer-producer bounded

buffer sys te m. Th e subnet (tItPt .~,P2) represents th e producer process which prod uces

an item (td and stores it in the buffer (t2) provided t ha t there is space for it (condi t ion

P$). The subnet (t3,P3,t.e, P4) represents the cons umer process , which fetch es an item

from th e buffer (t3) provided th at t he buffer is not empty (condit ion Pl;) and consumes

Ot()
"

00

n l2 C ..

o .. 0.. ..
Figure 2.1: P roducer-consumer bounded buffer modeL

T he be havio r of a bas ic net is reflected by the changes of t he marking func tion. A

change of a mar king funct ion is perform ed by an o cc u r re nce (or a firi ng) of an enab led

t ran sition . A t rans it ion is enabled if al l its input p laces contain at leas t one toke n. A

transition occurs by simu ltaneously removing one to ken from all its inpu t places and

adding one token to all its output places.

Definition 2.4 Let N = (P,T . A) be a Petri net , t a transition, an d m a markin g of

N . T he tr ansi t ion t is ena b led by m iff :

"Ip E I np(t) ; m(p) 2: L

T he set of all t ransitions enabled by a marking m is denoted E (m). 0

A marking m' is direc tly reachable from a marking m if m ' can be obt ain ed from m

by an occ urre nce of an ena bled trans ition.

D efiniti o n 2 .5 Let N = (P,T , A) be a Pet ri oet , and m and m' be two markings. m'

is direc tly r ea chable from m iff th ere exists a transition t E T enabled by 111 such

that:

{

m(p) + I, if p E Out(t) and p f. In p(t) i

"tp E P : m'(p) = m(p) - 1, if p E I np(t) and p;; Ou t(t) i

m(p), oth erwise. 0

The notation m"";'m' indi cates th a t m' is di rectly reachab le from m by firing the

transi t ion t , and the notation mo-+m' indica tes t ha t m' is directl y reachable from m

by firing some t ransi tion.

T he gene ral reachab ility relation betwee n markings is defined as the reflexive t ran

sitive closure of the direct reach ability rela tion.

De fin iti on 2.6 A marking m' is (ge ne rally) reachab le from a mar king m (m H.m ')

if t here exists a sequence of markings mo, .. , m..such that l110 = m, m..= m' , and

"to < i :S n : mo _ l l-+ffit . 0

Defini ti on 2.1 The r ea ch a bi li t y se t , 'R(M), of a mar ked Pet ri net M = (N, mo) is

the set of al l possible mar kings reachable from th e ini t ial mar king mo, l.e.,

R (M) = {m I meH.m}.

If t he set 1l.(M) of a marked net M = (N,tn(I) is finite , the net is bo u nded, oth erwise

it is unb ounded . 0

T he reachability se t of a mar ked net , to get ber with the dir ect reacbability relat ion ,

Conn th e reacha bility graph, wh ich is a comple te descr iption DCa marked net 's be havior .

For boun ded nets t his graph is finit e.

Definition 2 .8 Th e re a cha bility graph of a marked Petri net M = (N, mo) is a

labe led di rected gra ph G(M) = (V, D , l) where:

• V is the set of vertices , V = 'R(M),

• I is t he arc labeling (unction, l : D --t 2T ; (or each arc (m.:. mj) E D, l (m;, m j)

contains all those tr ansiti ons whose firing tran sforms m,; in to mj:

Example 2.2 Figure 2.2 shows t he reacbab ility graph (or the net in Figure 2.1. 0

.
[IAl1.lA21 ~" _ _"_ . ' .'.0.0.>:1•..~.... /

" / "
[IA'Ao2I

Figu re 2.2: Reachab ility gra ph for t he p rodu cer-consum er bo und ed -buffer model.

2 .1. 2 E xtensions of basic P etri nets

Several extensions of basic Petri net s have been prop osed in the literature. Th e most

common one is attaching weights to arcs (26, 32J. Pet ri nets wit h weights have the

sam e expressive power as the basic nets , so the weights are used only as a modeling

convenience.

..0\.0 extension of bas ic Pet ri nets which significantly increases tbe modeling power of

the basic mod el is the add it ion of the so-call ed in hibitor arcs [21. Nets wit h inhibito r

arcs are called inhib itor nets .

D efin it io n 2 .9 An inhibitor Petri net is a quadruple N = (P, T , A , B) where (P, T , A)

is a basic net , and B is a set on inhi bitor arcs , B ~ P x T , which is disjoint with A,

AnB == 0. Th e set of places conn ected by inh ibit or arcs with a t rans iti on t is cal led t he

inhibitor set of t . and is denoted f nh (t), f nh (t) = (p E P I (P. t) e B }. In inh ibi to r

nets , a t ran sit ion t is enabled by a mar king m if all its inp ut places are mar ked and all

places in its inhib itor set are unmarked:

(Vp E f np(t) : m(p) > 0) 1\ (Vp E I nk(t) : m(p) = 0). 0

Anoth er impo rt an t extension of bas ic Petri nets introduces the d urations of mode led

ac t ivities (Sect ion 2.3).

There ar e several impor tan t st ruc tural properties of inhi bito r nets .

Definition 2 .10 Let M = (N , rna) be a mar ked inh ibito r net . A place is s hared if it

belongs to the inpu t set of mo re than one t ra nsit ion. A shared p lace is g uarde d if for

each pai r of transitions shari ng it, th ere is another place which is in the input set of one

transition, and in th e inhi bitor set of t he ot her transition. A place is free-cho ice if th e

inp ut sets and inhibi tor sets o f all t ransitions shari ng it are ident ical . All tr ansitions

sharing a free-choice place are in a free-c hoice relati on . A place is a co nfl ic t p lace if it

is shared but it is nei ther guarded nor free-choice. Transitions sharing a conflict place

are in potential co nflict (conflict ing t ran sitio ns) . An inhib itor net is Cr ee-cho ice iff

each shared place is eith er guarded or free-choice. 0

In free-choice nets, the Iree-chctee relation is an eqcaivale nce relation in the se t

of t ransitions, T , and th erefore determines a partiti on of th e set of t ransi t ions in to

free-choice equivalence classes ;

2.1.3 Selection of fir ings for co n flic t ing transitions

For th e net shown in Figure 2.3 , the transi tions shari ng place Ph i.e., t 2, t 4, and ee,

are in po ten tial con8i ct . Trans it ions t2 and t 4 are bo th enab led but only one ca n occ ur .

A systematic approach is needed to det erm ine all possible comb inations of transition

occu rr ences for nets wit h conflicti ng tr ansit ions.

Figure 2.3; Central server mod eL

Definition 2. 1 1 Let N = (P.T, A) be a net , and m a m.arking. For each t rans it ion

t e T , enabled by m , its co nfl ic t cl as s CC (m . tl, is defined as follows:

CC (m, t) = (t' E E(m) J I np(t) n I np(t') ¥-0 V

3t" e E (m) ; I np{t }n I np(t") 4 0 A t" E CC(m ,t '). 0

10

The not ion of choice of t he firin g transi tion can be exp ressed formally as a cho ice

function c ; T ~ (0,11, which ass igns free-choice probabili t ies to free-choice equl va-

tecce classes and relet lve frequ en cies of firin gs to t he con 6 ict in g t ransit ions .

T he di ffe rent comb inations of transit ions which can start thei r firings for a given

marking are described by t be select ion set , a set of selectio n functions which describe

di fferen t "se lect ions" of firi ngs.

D efinition 2 .12 (441 Let N = (P,T ,A) be a Petri net , and m a marking. A se lec -

tion of t he marking m is a fun cti on g ; T -+ N, describing a possi ble combinat ion of

transitions wh ich can s tart their firings for m, i.e., g is any function such t ha t;

1. T he re exists a sequence of markings, 0' = (mo,m " .. , mt) , and a correspondin g

sequence of tr an s iti ons , (tit .. , tt l , such that m = mo , tj E E(mj_l) for j =
1, .. , k , and :

{

I , if P E [np (t j) ;
Vp E P : mj(p) = m j _I(P) -

0, o t he rwi se .

2. T he set of t rans itio ns enabl ed by th e final marking mt is emp ty, Le. , B (mt) = 0.

3. For each t ransit ion t. get) is the num ber of occurrences of t in t he seq uence a ,

T he se t of all selec t ions of a marking m is denoted by Sei(m). 0

D efinitio n 2 .13 Let N = (P, T , A) be a Pe tri ne t, c a cho ice fun ct ion fOT N , and m

a marking of N . A se lec tion grap h of th e ma rkin g m is a ro oted, directed , labeled ,

(ac yclic) graph G = (V, U,vo, / ,q,qn) where :

• V is a finite set of vert ices , which are pa irs of funct ions (m; , no), I7l.i ; P -+ N,

no : T -+ N, such that;

Vp E P , m; (P) + L n,(t) - m(p) ;
IEOuI(P)

11

• U is a se t of di rected arcs , U C V x V , such t hat :

«m;, n;), (mj , ni)) E U <==* 3t1:E E (m,:) ; mi = 5ub(mo, tl:) " ni = add(n,;, t,,),

where;

V P
. b()(P) _ { mo(P), if p ~ lnp(tl:);

p E . 5U mo, t" -
mo(P) - I, if p E l np(tl:);

{

n,;(t), if t-:jt,,;
"It E T : add (n,;, tl:)(t) =

n,;(t) +1, ift= t,t;

• Vois the root , va = (m , no), where no(t) = 0 for al l t E T ;

• f is an arc-labeling funct ion which associates a transit ion t E T with each arc

(v;, vi) e U;

!«TTli,n,;l ,(mj,ni » = tot <==* totE E (mo) 1\ m i = sub(mo, t,t) 1\ ni = add(n,;, t,t);

• q is another arc-lab eling function which assign s, to each arc (v"vi) E U , t he

probability of tran sform ing V; into vi;

!10 if t t»; vi) is conflict -free,

V(v;, Vi) E U ; q(v;,vi) = ;;(V;,vi)) , if l eVi,vi) is free-choice,

o::(/I.. ,,,, J) ot herwise .
L Il:CCC....J I ... " /)) C(t)

• qn is a node labeling funct ion , q.. : V .-..+(0, I I, which assigns a probabili ty q(x) to

each node x of t he selectio n graph such that q.. (VO)= 1 an d:

vxe v - {v, } , q(x) ~ L: q. (y)·qC•• x). O
wEp,.~d("' 1 L ZES-=(, l q(y , z)

Example 2. 3 Let c be a choice funct ion for the net in F igure 2.3 such th at c(t;) =0.1

for i = 1, 3,5, 6, c(t~) =0.3, an d c(t~) = 0.2. Figur e 2.4 shows the select ion graph for

the initial marking (1,1 , 0,1, 0,0 , 1). Th e p robab ilit ies q(v,) are shown in brackets. 0

12

W2~~W,.oJ"FJ wl .(I.I. O. I. O'O'I , O'O.O. O. O'OJ

I
.. ------"--j w2_(O .o.O.I .0.0. 1, 0. 1. 000.o. OJ

lSl.D <$ 1.0 lSl.o w).(I . I. O. t.O .O.o: o.o.o.O.I .Ol

.... _ fO. I. O. o. O. o. t , O'O'O' I. O. Ol

a .. . d .fo. l.o.o.o.O. I :D.D.D.I.o.Ol

w~ lO-5l IU d llkSt u ~ w6_(D. 1.D. O.o.o. l :o.O.o. 1. 0. 0)

Figure 2.4: Selecti on graph for Figure 2.3 .

2 .2 Gen eratio n of t he reachabilit y grap h

A typi cal algori thm for th e genera tion of t he reachability graph of a (bounded) net

is given below. Th ere ace sever al variat ions of t his algori thm, but th e differences a re

rather ins ignificant [e .g., usin g a stack instead of the q ueue [7]).

2.2.1 Sequential a lgorith m

1. algo r ithm sequentiaLr each ab ility.graph...generat ion ;
2. vat' >no; (* ini tial mar king *)
3. r set ::::{mol ; (* se t of mar kings *)
4. orcs;::: 0; (* set of arcs *)
S. l.Inuplored := 0; (* que ue of unexplored markings "}
6. search.set := 0; (* sean:h tree *)
7. begin
8. ins ert(search..sd. mo);
9. insert(l.Inuplored.mo);
10. while nonempty (l.In uplor-ed) do
11. TII:= remot'e(l.Ine%plored) i
12. for all m ' e &l.Icx:eu or ,,(m l do
13. if m' tt &earch ..8et t he n
14. r"et :_r"et U{m' };
1S. in.sert(l.Ine%pl ored.m');
16. insert(&earch.set , m'l
17. e Ddif;
18. ar cs := arcs U {(m, m' l)
19. endfoe
20. endwhile
21. e nd .

Th is algorithm constructs the reachability graph G = (rse t, arcs) for a Petri net N

13

with an ini t ial marking mo. It uses a que ue, u~ored, for the unexplored markings ,

and an a uxiliary search da ta st ruct ure, sear ch..set , for efficien t checking of whether a

mar king has already been ge nera ted. The fun ct ion succe ss or(m) ret urns th e markings

directly reachable from m.

The al gori thm terminates for nets havi ng a finit e readability graph. lt does not

terminate, however, for ne ts wit h infini te st a te spaces [l.e., for unbounded nets).

The in finite state sp ace of an unbo unded net can be com pressed to its ccver a bility

trce or to its covera bility graph [261. A mar king in t he coverability tree uses a special

sym bol to exp ress that the number of to kens in a place can grow infinitely. T he cov

erability graph can be obtained from the cove rab ility tree by co llecti ng toge t her th e

nodes wi th th e sam e marking an d redirecting the arcs correspondingly.

Research has been cond ucted on handling th e case of unbo unded nets (14, 17, 35J. In

(17), a sol ution is given for a speci al class of u nbounded stoch ast ic Pet ri nets (nest with

exactly one unbounded place) . Other app roaches are based on using t he covera bility

graph as a compressed represen tat ion of th e rea cha bility gra ph . Several method for

co nst ructing covera bility grap hs are given in [14, 35].

2 .2 .2 N et properti es based on the r ea ch ability grap h

lmportant net properties rela ted to the reachability graphs includ e bo unded ness , reada

bili ty , cove rability, persistence, conse rva tiveness, Iiveness , etc . Th ese pro pe rt ies are very

usefu l in th e mode ling of sys tems beca use they can be direc tl y re lated to t he modeled

systems ' qu al itative properties {20, 26 , 31, 32].

Definition 2.14 Let M = (N, rna) be a ma rked net and k a natural number, kE N.

A pla ce p of the net is k-bounded iff th e numbe r of to kens ass igned to p by any

reachable marking does not exceed k. T he net is k- bounded iff th e number of tok ens

14

assigned to any place by any reachable marking does not exceed k:

vm E R (M) Vp E P : m (p) :$ k .

A net is b ounded if it is k- bounded for some kE N. A l-bounded Petri net is called

safe . 0

Bounded nets are useful in mode ling systems with finite capacity resources; finit e

capacity buffers, for inst ance, ar e usuall y represent ed by bounded places. The safeness

property must usually be sa t isfied by nets in which places model conditions: the true

or false value of t he cond ition is reflected by the existence or absence of a token in th e

corresponding place .

D efinition 2.15 A mar king m of Petri net N is dea d uno t rans ition is ena bled by m .

i.e., E (m) = 0. A marked nct M = (N . molcontains a d eadlo ck if its set of reachable

mar kings contains a dead mar king:

3m E 'R(M) : E(m) = 0.

A marked net M = (N,mo) has a livelock if the re exists a proper subset S of its

reachabili ty set , S C 'R(M), such t hat once a marki ng from S is reached, no ot her

eleme nt from 'R(M) - S can be reach ed :

3S C 1<.(M) 'dm ES 'dm' E 'R(M) : mHm' => m' E S. 0

D efin it io n 2 .16 Let M = (N ,mo) be a marked net . The net is li ve iff for any reach

ab le mark ing m and for a ny t ransition t E T t here exists a markin g reachable from m

which enables t :

'dm E R (M) 'dt E T 3m ' E R.(M) : m~m' A t E E (m') . 0

15

Net models of operating sys tems are usually requ ired to be live; the property of

liveness implies th e abse nce of deadl ocks.

Definit ion 2 .17 Let M =(N,mo) be a marked net . A marking m e 'R(M) is cover

a b le iff th ere exists ano ther mar king, m', reacha ble from m , such th at every place has

at least the sam e number of to kens in m' as in the marking m :

3m' e 'R(M) : I1'Hm' 1\ (Vp e P: m'(p) ~ m(p» . 0

D efinitio n 2 .18 [26] Let M = (N , mol be a mar ked net . Th e net is pe rs ist e n t if,

for any reachab le mar king m , m e 'R(M), and for any two tr ansit ions enabled by m,

the firing of one tran sition does not disa ble the ot her :

"1m e 'R(M) Vt Lt t, E E(rn) :m~m' ::::?t, E E(m'). 0

D efinit io n 2 .19 Let M = (N , mol be a mar ked net . Th e net is co nservative iff for

any marking m reachable from mo the total number of tokens in m is the same as in

Vm E R (M) , L m(p) - L ",,(Pl . 0
PEP PEP

fo r nets in which tokens represent resources, the prope rty of conserva tion reflects

t he preservation of resources in a system.

Because bou nded. nets have finite reacha bility graphs, al l t heir behavioral properties

can be verified by t he exh austive analysis of th e reacheblli ty graph. For unbounded

nets (which have infinite reacbability sets) some of t hese properties , such as persistence

and coverability, can be a nalyzed using t he coverability tree (26, 31, 321.

Examp le 2.4 The net in Figu re 2.3 models a cent ral serve r with three kinds of jobs.

Fro m its st ate grap h {shown in Figur e 2.5) it can be seen that the net is live, 'safe, and

conservative. 0

16

v t

vi : 0 ,1 . 0. 1.0.0.1)
v2 . (I , O. I, 1,0.0. I)
vJ:oCl . 1. 0.0. 1. 0. I)
v4 .. (I. I. O. I , O. 1. O)
0"'0,0. 1.0 . 1.0,1)
\'6 _0.0. 1.1 .0.1 .0)
v7 "" (I . 1.0,0. I, 1.0)
y8 = (I . O.I . O.I,I . O)

F igu re 2.5: G raph of reacha ble m ar kings fo r t he net in Figure 2.3.

2.3 Time- augmented P etri n e t s

While basic Petri nets a re usefu l for the analys is of qualitati ve properties of systems,

th ey cann ot be used for performance evaluation becau se th ey do not repr esent the

du rat ions of mode led activities. Se vera l Pe t ri ne ts "wi th t ime" have been proposed by

introducing temporal descript ions in different ways [3, 4, 13, 5, 11, 24, 25, 27, 39, 41 , 44).

The re ar e three main aspects with regard to the addition of temporal information

to Pe tri nets: time can be associated with places or with transi tions , t imed activities

can be detenninistic or stochastic, and different "firi.ng execution po licies" can be used .

Two classes of nets in which time is associated with transi tions (t imed transitions)

are known as stochastic Petri nets and timed Petri nets. [0 s toch as t ic nets , the tim e is

introduced in terms of a de lay before the (instantaneous) firing of a transi tion occurs;

in t imed nets , the time determines the duration of the tr a nsit ion's firings. Fo r bot h

these classes of nets the graphs of reachable states are Markov chains . T he steady state

p ro bab ilities of th e states of a Ma rkov chain ca n be det ermined us ing known techniques

[34], and can be used for determin ing quantitative prop e rti es of the net mode ls.

Thi s thes is is concerned with t he generation of th e state space of timed Petri nets.

An overvi ew of similar research that bas been cond ucted for s toch as t ic Pe tri nets , is

17

given in the last sectio n of this chapter. A brief int rod uct ion to stochastic Pet ri nets

follows.

2.3 .1 Stochastic P etri nets

In stoch.as tic Pe tri nets [4, 11, 13, 24, 25, 27) the re is a tim e delay from t he moment

when a tr an sit ion becom es enabled to t he moment when it fires . Th is t ime is a ra ndom

variable with an exponential d ist ribution.

D e fini t io n 2 .20 A stochast ic Petri net (SPN) is a pair S = (M, d) , where:

• M = (N ,mo) is a marked net,

• d is a funct ion which , for each transit ion t E T . specifies the rate of the firing

de lay associated wit h it . d : T -+ R+ . The firing d elay of a transition t E T is an

expo ne ntially distributed random variable X, with t he ra te d(t) ; the p robab ility

t hat t he de lay is greate r than Y. Y > O. is:

Prob(X, > y) =e -rod(tl. 0

In stochastic ne ts the firing delays asso ciated with transitions can be marking de

pendent.

A stochastic net has the following firi ng behavior: once a transition t is enabled,

the tokens must remain in t 's input places for the time described by the firing delay

function. When this time has elapsed, t he to kens are remo ved from the in put places of

the firing t rans iti on and added to t he out put places of this t ran sit ion.

Similarly to basic Petr i nets , a s ta t e of t he net is com plete ly described by the toke n

di stribut ion in places. Th e sta te space of stoc hastic nets is therefo re t he reach abil ity

set of b as ic Petri ne ts .

18

Molloy has shown [241that d ue to t he Qlemot')..tess property of the exponential dis

tribution, the reacha bility graph of an SPN is a continuous-time Markov chain (16, 20).

For ergodic cont inuous-time Mark ov chains [i.e., for Mar kov chains which have a st eady

state solution), th e steady-sta te p robabilit ies can be determ ined by solving a system of

linear equations [34]. T he steady-state prob abilities can be used for determin ing the

mean number of to kens in a place, the mean number of a transi t ion 's firings in t he time

unit, the thro ugh put of a transition. and many other properti es {4, 11)_

A popular general ization of stoch asti c Petri nets is known as generalized stochastic

Pe t ri nets (GSPN) . In GS PNs [3. 5, 13], there are two classes of transitions: trans it ions

with expon enti ally distributed firing times (timed t ransit ions) , an d transitions having

t he firing delay equa l to zero (im medi ate trans itions). Th e reachability gr aph of a

GSP N is an embedded Mar kov chain {3, 4]-

2. 3. 2 T im ed P etri nets

In t imed Petri nets {39. 41. 441. t he firing of a tcansition is a non -instantaneous activity;

t he transition starts the firing by removi ng the tokens from the in put places , it continues

t he firing for a spec ified perio d of t ime, and then finis hes the firing by adding tokens

to t he out put places. T he firing of a transiti on starts as soon as the t ra nsitio n is en-

ab led (alt hough some ena bled transi t ions do not start their firings becau se of conflicts).

Several concurrent occ urre nces of a transition's firing can take place if the transition

rem ains enabled afte r staning a firing.

T imed Petri nets whose transi t ions have deterministic firing tim es are known as

D-timed Petri nets, while those whose t ransi tions have exponential ly d ist ribu t ed firing

t imes are called M-timed Pe tri net s (Mar kovian nets).

19

2 .3 .3 M -timed P etri ne t s

In M-timed Petri nets (39, 41, 42, 44J, the transi tions ' firing t imes are exponentially

dis tributed. random variables.

Definition 2 .2 1 [441 An M-timed Petri net is a triple TM = (M , c; f) where:

• M = (N, mol is a mar ked Petri net ,

• c : T -+ [0, 1]is a choice func t ion which assign s free-choice prob ab ilit ies to free

choice equivalence classes an d relati ve frequencies of firings to t he co nflict ing tran

sit ions ,

• I : T R+ is the firing -rate funct ion , which assigns the rate of firings , J (t), to

each transi ti on t of th e net. The firin g time of a transition t is an exponentially

distributed random variable X (t), wi t h th e ra te I (t); the probability t hat th e

firi ng time is grea te r than 1/', 1/'> 0, is:

P rob(X(t) > y) = e -,- f(I). 0

E xample 2 .5 Figure 2.6 shows an M-timed net for the problem of th ree dining ph iloso

phe rs . Places A , B , and C represe nt t he for ks , p laces p l b, p2b, an d p3b represe nt , re-

spectively, philosopher "1", "2" and "3" wan t in g to eat, and places p la, p2a, an d p3a

represent th e sta te of a ph ilosopher after eating. There are t hree "ea t " t rans it ions and

three "t hin k" transitions. An "eat" transition (for instance eat a) is enabled if bo th

Corks are available and th e ph iloso phe r is hungry (i.e. places A , B and plb are mar ked).

F iri ng times associated with "ea t" an d "t hin k" trans it ions are exponent ial ly distri buted

ran dom variables with th e rates 5 an d 3, respect ively. 0

A state descrip tio n of a t imed P etri nee mu st spec ify t he distributi on of to kens over

net 's places and also th e numbers of (ac t ive) firin gs of t ransitions .

20

Figure 2.6: Three dini ng philosophers .

A state (o r an "instantaneous descri pt ion") of an M-timed net is a pai r of funct ions :

a marking function specifying the dist ribu t ion of tokens in places , and a firing function

which describes the num bers of the act ive firin gs of all transitions.

Defin i t io n 2. 22 [(4) A st a te of an M-timed Petri net T,.,- = (M, c. f) is a pai r

8 = em,n) wh ere :

• m is a marking function, m : P -+ N,

• n is a firin g funct ion, n : T -+ N. whe re n et) is t he number of active firin gs (firings

wh ich ha ve been init.iated but not finish ed) of transition e. 0

Definition 2 .23 An initial stat e of an M-timed Petri net T,.,- = (M . c; f) is a pair

s = (m , n) where n is a selection function for mo. n E Sel{mo), and the marking m is

defined as :

.P E P , m(p) ~ mo(P) - L n(t) .O
IEO.dCJl')

An Me-t imed Pe tr i net ca n have several initial s ta tes .

21

Examp le 2.6 States are ofte n re prese nted using vecto r notation for fun ct ions m an d

n. t.e.• assuming so me orderi ng of places and transiti ons. For this exam ple, the ord ering

is:

8 = [A, H, C , pl a , p l b, p2a , p2b,p3a ,p3b; th in k" thin~, th ink3 , eat" eat2, eat31.

For t he given ini tial marki ng (places A , B , C . pl b, p2b, and pJb are marked, i.e. ,

initially all philosophers are hungry and all forks are avai la ble), t here are three enab led

conflict ing tr ansi t ions (eat r, eat2, and eat,) . bu t only one of t hem can start its firing .

T he net has t hus t hree initial s tates:

81 = [0, 0, 1, 0 ,0, 0, 1, 0, 1;0, 0, 0, 1, 0, 0), if eat, is selected to fire, or

82 = [1, 0, 0, 0 , 1, 0, 0, 0, 1; 0, 0, 0, 0, 1, 01 , if eah is se lected to fire, or

83 = [0, 1, 0, 0, I , 0, 1, 0, 0; 0, 0, 0, 0, 0, IJ, if eat, is select ed to fire. 0

For M- timed nets t he "direct reach abili ty" relation is an extension ofthat for marked

nets (Section 2.1).

D efi nition 2.24 (44J Let T M = (M, C, f) be an M-t imed Pe tri net. A state 5i =
(m il nil is d ir ectly re achable (or (tk, 91)-re ach a ble) from a state Si = (711;, nt) iff:

L n;(t/i:) > 0;

2. 9' E Sd(m;) ;

3. 'tip E P : m,(p) = ~(P) - L IEo..t(p) 9,(t);

{

I , if t =t/i:;
4. 'tit E T : nj(t) =n;(t) + 9j(t) - .

0, ot herwise;

{

I if p E O ut(t/i:),
5. 'tip E P : ~(P) = 711; (P) + '

0, othe rwise . 0

22

State ss is transformed into state Sj when one of the firing transitions (in this case

t l,) ends its firing (1) an d dep osits to kens into its out put places (5), transforming the

marking m, into a markin g m' , and m' enables new firings , which are described by the

selection funct ion 9/ (2, 3, 4).

Examp le 2.1 T he state S4 = [1, 0,0, 0, 0, 0, 0, 0, 1; 1,0,0,0, 1, 0] is directly reach able

from sta te Sl = [0, 0, 1, 0, 0, 0, 1, 0, 1; 0 ,0, 0, I , 0, OJ; when transit ion eatl ends its firing,

the tokens are de posited into A, 8 , a nd p ia , th e new marking ([1,1,1,1,0,0,1 ,0,1]) enab les

transition think" which can immedi a tely st art its firing , and transit ions eat 2 an d eats ,

which are in conflict , so only one can fire. Th ere are two possible selection funct ions,

one se lecting think l and eat, to fire , the other selecting think\ an d eats. If the first

selection funct ion is used, the next state is S4 _ 0

The relat ion S i >-+Sj de notes that Sj is d irectly reachab le from Si, while Si~Sj

indicates t hat S j is (t ot,91)- reacbable from S i '

As in t he cas e of basic Petri nets , th e general reachability rela t ion is defined as t he

reflexive t ransitive closure of t he di rec t reach abi lity relation.

D e fini ti o n 2 .25 Let TM = (M , c, f) be an M-timed Petri net . A state S j is (ge ner

ally) r ea ch a b le from a state S i (Si~Sj) if there is a sequence of sta tes s.. ' ... , Si~ such

th at sio = S i , S i. = Sj , and s;, is directly reachable from s;, _, for I = 1, . . . , k. 0

Definition 2.26 The set o f reach a b le sta tes, 'R.(7,w) of an M- timed net 7101 =
(M, Co/) is the set of al l states which are (general ly) reachable from an y initial state of

7101. 0

Defi n iti o n 2.21 [441 A stat e graph of an M-timed Pet ri net TM is a labeled d irec ted

gra ph G(TM) = (V,D,h,q) where:

• V is a set of vertices, V = 'R.(TM = (M , c, f)) ,

23

• D is a set of directed arcs : D = {(s;, s/) I s. ,sj E VASi........Sj } ,

• h is a node labeling functi o n, h : V -+ R+, which specifies t he average holdin g

times of states:

"Is = (m, n) E S : h(s) = I f ~ f(t) • n(t),

• q is an ar c labeling functi on , q : D --+ [0, II, which ass igns th e probability of state

transit ion from Si = (m; , n;) to sl to each ar c (Si' s l) ' whe re sl is (tk , 9d~reachable

from So; q(s ;, Sj) = 1 • l' where 1 is t he probability t hat t. te rm inates its firin g

in state "'i:

q = E:·~;l~ti~t)'
an d q" is t he pro bab ility of the select ion 9/ after- the end of the firing of t. ,

l' = q(m;.. , g,) where m; .. is th e marking of th e net afte r t he end of tt 'S firing :

{

m;(P) + 1, if p E Out(tt),
Vp E P : m;,.(P) =

m;(P), ot he rwise ;

an d q(m;,,t,g l) is th e probability of the nod e corresponding to 91 in the selectio n

gra ph for m;,.l: (Section 2.1.3) . 0

A sta te gra ph of an M- t imed net is a cont io.uous-t ime Mar kov chain whose st ationa ry

probabiliti es of states, :t"(s), S E 'R.(Tu), are d ete rmi ned from t he set of equilibrium

eq ua tions (44]:

{

EI$.i~K q(Sj , Si) • :t"(sJ)fh(sj) = z (s;)f h (si); i = 1, ... , K - 1;

EI9~KX(Si) = 1;

where K is t he number of reach ab le states.

Many perfor ma nce measures can be derived from these probabili ties 144].

Example 2. 8 Ta ble 2.1 show s the st ate space of th e net shown in Figure 2.6 . 0

2.

Tab le 2.1: State space (0[" the net in Figure 2.6.

, m in h , next sta tes t reastetcn prob.

" 0,0, l, O,O,O,l, O, l iO, 0, 0, I , O, O! z.c ·· {S4' SS \~5. a.~!s, (1, 0, 0, 0, L,O, 0, 0, i .o, 0, 0, 0, I , OJ a.o {Sl,Sr} [o.s.o.s]
s [0, 1, 0, 0, 1,0, I ,D, 0iO, 0, 0, 0 ,0, I) ao {S8' Sg} (o.s.o.sj
'. [1, 0, 0, 0,0, 0, 0, 0, I i 1, 0, 0, 0 ,1 ,0) 1.42 {S2, SIO } [o.es.o.n]

'. [0, 1, 0,0, 0,0, I , 0, o, I, 0, 0, 0 ,0, I) 1.42 {S3' SU} {0 .29, O.71}
s [0, 0, 1, 0,0,0, 0, 0, i .o, 1, 0, 1, 0, 0] 1.42 {Stt s\o} (a .29. a.7l }
sr [0, 1, 0, 1,0,0,a,0, 0;0, 1, 0, 0, 0, I] 1.42 {S3,SI2} (a .29. a.7l}

'. [0, 0, 1, 0,0, 0, 1, 0, 0; 0,0 , I , 1, 0, 0] 1.42 {Sb Sn } [o.zs.o.n }s, (1, 0, 0 ,0, 1, 0,0, 0,0; 0,0, 1, 0 , 1, 0] 1.42 {S2, SI2} (a.29.a .7l }
s re [0, 1, 0, 0, 0, 0, 0,0, 0; I, I , D, 0, 0, I] 1.11 {S7,SS,S I3} {0.22, 0.22, 0.56}
s u [1, 0, 0, 0, 0, 0, 0, 0, 0; 1,0 ,1 , 0,1 , OJ 1.11 { S9 , $4,$t3} {O.22, 0.22 , 0.56}

:;: If~ : ~ : ~ : ~:~ :ri: ~:~: ~~ ~ : ~ : ~ :ri :ri:~l
1.11

(~:: : :~; ~;~!l I lg ~: g ~: g ~;1.66

2 .3 .4 D-timed P et r i ne ts

In D-timed Petri nets (40, 44J, th e transitio ns' firing t imes are constant (posit ive real

numbe rs) .

D e fini ti o n 2 .28 [44] A D- t im ed P et r i net is a t riple To = (M, c.f) where:

• M = (N , mol is a mar ked Petri net ,

• c : T ~ [0, 1] is a choice funct ion which assigns free-ch oice probab ilities to free

choic e equivalence classes and relative frequ encies of firings to t he confl icting rran -

sit ions,

• J ; T ~ R+ is a firing-time function wh ich assigne the firing t ime J (t) to each

trans it ion t E T . 0

Because D- t imed nets do not have t he mem oryless property, in ad d it ion to t he to ken

distribut ion over places of the net and t he number of firings of transi t ions, a state of

25

a D--timed net must also specify the rem aini ng-firin g-t ime for each occ urre nce of each

acetve transition.

Definiti o n 2.29 [44J A st ate o f a D-timed Petri net To is a triple s = (m, n , r)

whe re;

• m is a marking fu nct ion, m ; P -+ N,

• n is a firin g function (as for M-timed nets), n T -+ N,

• r is a remaining-tiring-time fun ct ion r : T 0-+ N>-+ R+, which assigns t he rem ain -

ing firin g tim e to each independ ent firin g (if any) of each tr ans ition. Fun ct ion

r is partial ; if net) = k and k > 0, then ret) is a vecto r of k nonnegative non-

decreasing real num be rs denoted by r (t)[l l, r(t)[2j, ..., r (t)(kli if net) = 0, r et) is

undefined. 0

D e fin it io n 2 .30 (441 An init ial state s of a D-timed Pet ri net To = (M ,c./) is a

triple s = (m;, n; , r i) where :

• m; is a marking (un ct ion ,

Yp e P , m;(P) ~ m,,(P) - L: n;(t) ,
IEOut(p)

• n; is a select ion func t ion of mo, n; E Sel(mo),

• r s is a remai ning-firin g- t ime functio n defined as :

{

J (t), if n;(t) > 0 and 1 ::5 k ::5 n;(t);
Yt e T , r, (t>lk)=

undefined , othe rwise. 0

A D-timed Pe tri net ca n have seve ra l init ial states.

Definiti on 2 .31 (441 Let To = (M, c. f) be a D- timed Petri net . A sta te 5i =
(mi' n jori) is directly re a ch a b le (or 9,,-reachable) fro m a st ate Si = (m; , n"r,) iff t he

followin g co nditions are satisfied:

26

1. gt ESd (mi) i

3 . veE T : nj (t) = no(t) - d,(t) + gt (t);

{

, .(.)(/+<I, (')) -h" ifl '; / '; " (')- <1,(');
4. 'VtET:rj (t)[I] =

f (t) , if no(t) - d,(t) < I :5nj (t) ;

where :

5. 'Vp E P : ~(P) = m.;(P) + E I€ / ..p{p) d,;(t) ;

{

e, if no(t) ~ z and r;(t)[l] =h i for 1 :5 l :5 a,
6. Vt E T:d,;(t) =

0, othe rwise;

7. h; = IET~&l>O (ri (t)[lJ) . 0

Th e general reacha bili ty relat ion between states and the set of rea:.cbab le s ta tes

'R.(()To) are defined in a simil ar man ner as for M-timed nets .

Defini ti on 2.3 2 (44) A state grap h of a D- timed. Petri net is a la beled di rected

graph G(To) = (V,D,h,q) where:

• V is the set of vertices , V = 'R(To),

• h is a node labeling funct ion , h : V -+ R+, which specifies the holding ti mes of

states:

V$i = (m;, no, r;) E S : h(Si) = min (r i(t)[tJ) ,
lET.....; (r) i!:O

• q is an ar c labeling functi on, q : D -+ [0, 11, whi ch ass igns th e psrobahillty of

trans ition from Si to sJ t o each arc (s; , Sj) where 8j is 9t·reachable from Si:

q{S;,S j) = q(m ' , 9t)

27

an d m' is the markin g after th e terminat ion of th e firings with th e smallest rem ain

ing firing time (as de termined in Definit ion 2.31) , and q(m', 91,) is the probabili ty

of the node correspondi ng to 9 11: in t he se lection graph for m' . 0

Example 2 .9 For the net shown in Figure 2.1 with firing times I(tl) = 1, l(t2) =
I (h) = 0 .5, and l(t4) = 2.5, the on ly ini ti al state is So = [0, 0, 0 , 1, 2, 0; 1, 0,0 ,0; 1,0, 0, 0].

The rea chab ilit y set of the net is s hown in Table 2.2. T he net is con flict - free , so t here

is on ly one next state for each reacha ble state. a

Table 2.2: St at e space for the net in Figure 2.1.

S m; n; r hs next state t ransition prub.
s, !~, 0, 0, 2, 2, 0; 1,0 ,0 ,0 ; 1, 0, 0,01. 1.0 s, 1.0
s, (0 , 0 , 0, 1, 1, 0; 0,1 ,0,0 ; 0,0.5, 0,0) O.S s, 1.0
s, [0,0,0, 0, 1,0 ; 1,0, 1,0; I , O, O.S, Oj O.S s, 1.0
s, [0, 0, 0, 0, 2, 0; 1, 0, 0 ,1 ; 0.5,0,0 ,2 .5] O.S ss 1.0
s, [0, 0, 0, 0, 1,0; 0, 1,0,1; 0,0.5, 0,21 O.S s, 1.0
ss [0, 0, 0, 0, 1, 1; 1, 0, 0,1 ; 1, 0, 0,1.5] 1.0 s, 1.0
s, [0,0 , 0, 0, 0, 1; 0, 1,0,1 ; 0, 0 .5, 0 , 0.5J O.S s, 1.0
s, [0, 0, 0, 0, 0, 1; 1, 0, 1, 0; 1, 0, 0.5, 0] O.S s, 1.0
s, [0, 0, 0, 0, 1, 1; 1,0 ,0 ,1 ; 0.5,0,0,2.5] O.S s" 1.0
ere [0, 0, 0, 0, 0, Ii 0, 1,0 , 1; O,O.5 ,0 ,2J 1.0 s u 1.0
sn [0, 0, 0, 0, 0, 2; 1, 0,0 , I; 1, 0, 0, 1.5] 0.5 au 1.0

s" (1, 0, 0, 0, 0, 2; 0,0 ,0 ,1; 0, 0, 0, 0 .5] 0.5 Su 1.0
s" (1,0,0,0,0, 1; 0,0, 1,0; 0,0,0.5,0] 0 .5 s" 1.0
s.. [0, 0, 0, 0, 0, 1; 0, 1, 0 , 1; 0, 0.5 , 0, 2.5) 0 .5 si s 1.0

::: I f~: ~: ~:g:6:~:
1,0,0,1;

~:g: g: il
1.0 '" 1.0

0,0,0,1 ; 1.0 S" 1.0

The state graph of a Iree-chclce D-t imed net is a discrete-time discrete-st ate semi -

Mar kov p rocess (16] whose embedded stationary p robabi lit ies y(s) , s E 'R.(Tv), are

de te rm ined by solving a system of lin ear equations [441:

{

E l$i SK q(s; ,s~ ~ yes;) ; i = 1, .., K - 1;

L ISt SK yes ;) - 1,

28

The statioD.ary probabili t ies of sta tes, zo(..),,, E R{I O), are determined from the

embedded. stationary probab ili ties [44]:

"18 E 'R.(ID) ; ZO(8;) = y(s;) . h (s;)f L Y(SJ) . h(S j).
L:SJ:SK

where K is t he num ber of states in the reachability set 'R(/ D).

Detailed information on timed Pet ri nets , t heir analysis and ap p lica tions can be

found in [39, 40, 41, 42, 441_ A software packag e, T PN-tools [381, has been developed

for t he anal ysis of timed Pet ri nets .

2 .4 Distributed state space generation for st ochas-

tic P etri nets

State space gene ra t ion for ne ts with large num bers of st ates is a d ifficul t tas k because

of the large memory requirements . Th is imped iment can be avoided by using the

(com bined) memory availabl e in a cluster of com pu ters. Research in this direct ion

has been condu cted in t be las t few years [8, 6, 7, 9 , 19, 21, 23, 28, 3OJ. Most of

t he a ut hors em phas ize that t he mai n adva ntage of t he dist ributed algorithm is the

possib ility of genera ting state spaces which were to o lar ge for the memo ry of a single

works ta tio n. However, such an approach intro d uces a commu nica tion overh ead indu ced

by the necessary coo rdinat ion betwee n the processes coo pera t ing in t he d istri buted

algo ri thm.

T his sect ion revie ws several aspects of distributed state space genera tio n for sto

chast ic Pet ri nets .

29

2.4.1 G eneral framework

A natucal approach to distributed state space ge ne ra tion is to use a "di vid e and conq ue r"

technique, i.e. , to construct disj oint state su bgraphs on di fferent computers, and then

integrate them to obtain the ent ire state graph.

R equirement s: In order to minimize tbe communication overhead and to achieve a

good speedup, a distributed algorithm for sta.te space gene ration should satisfy (a t least)

the following req uir ements : balance (the states should be equally distrib uted among

processo rs, call ed spat ial balance (or memory balance) , and all processors sho uld be

busy almost all th e ti me , called t emporal balance) an d lo cali t y (whenever poss ib le,

a successor s t ate should be processed by the sa me processor as its paren t state).

G eneral approach: Th e reachab ility grap h is partit ioned into disjoint regions which

are co nst ructed separately on differen t processors . T his partitioning sho uld be done in

such a way t hat al l processors are assign ed approxi ma tely the sam e num ber of states.

However , it is rather difficult to determine a mechanism to do such a partitioning

with out knowing the state space.

The algorithm used by each processor is based on the sequential algorithm, but so me

ad di t ional aspects must be taken into cons ideration .

T he first mod ification to the seque ntial algorithm is related to the initial state (t here

is only one initial state for stoch as tic nets). Each process is provided with the sa me

initi al state, bu t only t he process which is responsible for it adds this ini t ial state to

t he working list unezplored.

Second ly, when a state is gene rated. it mus t b e decided wheth er it has alread y bee n

genera ted earlier or not (Le., wheth er it is a new st ate or not). This quest ion ca n

be answe red if th e processor which processes this st ate is known. This lea ds to the

30

idea of defining a partit ionin g mechanism (partit ioning fun cti on) which can be used

by all processors in order to de te rm in e the processor resp onsible for a state wlthO'Ut

additio nal com mWlication. In ot her words , t he s ta te space is "sp lit " into regions before

t he com putation .

Wh en eve r a processor generates a ne w st a te, it checks , usin g the partit ion ing mech

anism , wh et her the state is local or no t . If t he s ta te is local (which is t he d esired cas e,

a ccordi n g t o the localit y requ irement, so th a t t he co mmunica t ion is min imized) t hen

lin es 19-27 in the followi ng algorith m are executed . O therwise th e s ta te is sent to the

processor responsible for its further pr ocess ing .

T he t hi rd impo rtant issue is t ha t the term in at ion co ndi t ion from t he seq ue nt ial al

go ri th m is not sufficient an ym ore : th e process cannot te rminate when its queue of unex

pl ored states is empty, because it can st ill recei ve states generated by ot her processors.

Ther efore , a glo bal termina t io n detection m et hod is need ed. Dij kst ra 's "c irc ula t ing

pr obe" [15] is used in [19, 301. In [231 termina t ion is detected using bar ri er synchro

nizati on. In [281 t he authors use t he non- commit ta l bar r ier sy nchro nization algo ri t hm

[29J.

In ge neral , all proc esso rs follo w t he algorithm given below. It is ass umed t hat upon

t h e detect ion of the global termina tion, a "tennina t ion messag e" is se nt to all processes

engaged. in the com pu ta t ion.

1. algor itblD distributed..state-'l~eneratioD;

2 . var 31);

3. lIta tes:= I;
4 . ara := e;
5. lIea rch-llet := t'l;
6 . unexplored := 0;
7. ex tern-llta te" := 0;
8 . th ill..pr oce llll..id := pr oceJlll.id(pr ocellsor);
9. be gin
10 . If partition (so) = thi ll..proceslLid then
11 . " ta ull := s tates U (,,0};

3 1

12. insert(.lIearchset • .1(1);
13. insert(unexpl ored, .so)
14. endi£;
15. whil e not -recrived ...termina tion...mu.sage do
16. while tWr'lefl1.ptl/{unexplored") do
17. .s:= remove (unezplored");
18. for all ¥ E .uoc::u.sor(.s} do
19. if partition' ¥) 'Fthi3...proceu.id tb en
20. .lIenddate(" .pa.-tttiorl.(3'));
21. 3end ..arc(.s,s). po:rtition(.r'»)
22. e lse
23. if .s' ~ .lIe4 r chsettb en
24. .lItate3:= 3w.~$ U {$'};

25. iR.'lert(lIe4 rch....set , s');
26. irnlert(u~ored, r')

27. e n di f;
28. arc.s := arCJIU {(s , .lI')}
29. e n d if
30. endfor
31. endwhile ;
32. extern....state$:_ rece1ve....states - stat e.'!;
33. stat e.'!:= state.sU extern_d a te.'!;
34. ar c.r = arcs U r eceiv e..arc.s;
35. for all $" E ext ern....state.lld o
36. insert(une xplored•.'!")
31. end for
38. end while
39. en d .

Lines 32 and 34 from the above algo ri thm describe the receiving of states and cor-

respo nd ing arcs from othe r processors, and t heir integr atio n in to t he current processo r

data st ruct ures. Th e new ext ern al states (Le.• st ates which do not be long already to

the set states) are inse rted in the reachability grap h..""-'1 t he arcs are added to th e set

Architec ture: In th e dist ributed approach, the state space is generated by several

processors performing th e same algori t hm. In [30] several processes following the a bove

algorit hm are used . T he state space is partitioned into class es. Each processor is

ass igned a number of classe s . T he sear ch da ta st ructure, searc h..set, consists of several

32

search trees , one per class .

Additionall y, a cent ral pro cesso r can be used to provi de global coordinat ion. A

maste r-slave architec tu re is used in {7J. The slave pr0ce5S0IS are organ ized in a chain

and th ey actually construct th e rea.chab ility graph. Each of the sla.ve processors uses a

balanced search t ree as the search structure. Th e master processor controls t he process

of load bal ancing.

Partitioning mechanism: A partit ioning mechanism must ensure a uniform dlsrri

hution of states . A pa rtitioning mechanism which does no t dist ri bu te the sta tes evenly

among processo rs ca n have two negat ive conseq uenc es: (a) if a processor is assigned too

many states to process it may run out of mem ory and th e ent ire com putation will sto p;

(b) uneven distrib ution of st a tes can result in lar ge difference s in exec ut ion tim es, and ,

therefore, low speedup.

Moreover, t he loca lity aod th e memory balance of th e meth od depend on the chosen

partitioning mechanism:

• locality can be achieved if the parti tioning mechanism ma ps t he SUCCeiSQr states

on th e same processo r as t heir paren t states;

• balance can he achieved if the partitioning mechanism uniformly distributes t he

states among processors. This is high ly model-dependent and especially difficult

because t he state space is not known in advance, SO the st rategy of partitioning

can only be based0 0 st ructural properties of the model.

Hash Function: A first cho ice for t he par tit ioning mechanism is a hash fun ct ion

[23, 30]. T his funct io n typica lly depends on a (well chosen) set of plac es of the Petr i

net , C = {Pt,P2, .., PICI}, C ~ P , called control set. The general form of the hash

function is [23):

33

101

partition(m) = (~Oj m(pi» mod (n).

In t he formula above , n is the num b er of processors, m is a mar king function (or

t he state in th is case), and th e coe fficients CGare in tege r (prime) numbers which are

determined expe rimentally for th e a na lyzed net.

T he efficiency of the hash function de pe nds on the select ion of the control set C and

the coefficie nts O J .

F indi ng a good hash funct ion , which ensu res a uni form dis tributi on of s t a tes am ong

processors, requ ires some know ledge o f th e mo del. This is why there is no ge neral rule

on how a hash funct ion should be determined.

Balanced search t r ee : A method to a uto ma t ically construct a partitioning mecha-

nism is given in [28]. Th e state space is partit ioned into classes . Each class is assigned

to a pro cesso r but a processor ca n have several classes assigned to it . T he classes are

imp lemen ted as ba lanced sea rch t rees . Class 0 (ac t ual ly, t he corresponding balanced

tree) is used as a partitioning mechan ism. I t will reside on all processo rs.

In orde r to dete rm ine t he class of a s ta te, t he tree is search ed . If t he st a te is found ,

then it be longs to class o. Otherwise, th e terminal nod e (and, imp licitly, t he class) is

determined where the state should be inserted. For a given size of the class 0, this tree

is "a uto ma tical ly" co nstructed before th e state space generation starts: all p rocessors

generate a "rand om walk " thro ugh the state space determining a set of s ta tes . Then

these sets of states are combi ned into t he ba lan ced search tree . Wi t hou t going into

further detail s , t his requires com municat ion and coop eratio n. Th is process is no t fully

a utom a ted because ex perimental work is s till necessary in order to determine the best

size of class O.

34

The advantage of such a mechanism over a hash funct io n is tha t it is (partiall y) au

tom a tically constructed, and it does not require (much) model-dependent inform a tio n.

However, t he process of cons tructing this partit ioning mechanism is rather com plicated.

Remapping o f st a tes t o pro cessors : Because it is very diffic ult to defin e a good

partitio ning mech anism, memory imbal ances can be am elio rated by chan ging th e state

ass ignm ent to processo rs . This operati on is called. remapping .

The following "m ixed" approach has been found successful [8, 281: a partit ion in g

function is defin ed. and used. during the sta te sp ace generation . However, from ti me

to time , the memory usage of each processor is checked . If large di fferences are found ,

a rem apping process is initiated and some st ates from "overload ed" processo rs are

reassi gned to "unde rloaded" processors .

Remapping can be do ne for differe nt purpos es: for ach ievin g memory balance , or to

p revent overloaded processors from the danger of exhausting th eir memory (m e m o ry

balance-oriented remappin g) or to improve the execution time (tem p o r al - b al ance

o r ie n t ed r e m a p p in g).

In [28J remapping is done by reassigning whole classes to different processo rs . Two

remappi ng st rategies are pro posed ; one is an at te m pt to balance memory ut ilisation ,

an d the ot her is an attempt to minimize t he execu ttc n t ime . The data transfer is do ne

be tween processors with high load d iffere nces, i.e ., overloaded processors send d ata to

un derloaded. processors.

A different ap proach is used in [8J. The master process checks the sla ve work loads

from time to tim e. In case of di fferences in memory utilization higher than some pred e

termined value , a load ba lanci ng is init iat ed , but the d ata are transferred only between

neighb orin g pr ocessors (a chai n topol ogy is used).

35

2 .4 .2 Conclusions

.4...lJ. t he distributed approaches to state space generation use a partitio ning mechanis m

which divides the state space before generating it .

The distributed vers ions of algori t hms brin g an import ant benefit over th eir sequen

tial counterp ar ts : they can hand le la rge nets whose mem ory requir ements are unman

agea ble for a single comput er. T heir performance (mem ory balance, execu t ion time ,

sp eedup}, however, is influenced by t he (st atic) partitioning mechanism emp loyed . Th is

infl uence can be red uced if th e partitioning mechanism can be modified at run -tim e,

acco rdi ng to t he current workload distribut ion amo ng the processors. For t his pu rpose ,

some a lgorithms use dy nami c load dist ri buting techniques , improving the perfor man ce.

36

Chapter 3

Distributed s t a t e space generation
for timed Petri nets

T his chapter describes a distributed algorit hm for th e genera tio n of the sta te graph of

t ime d Pe tr i nets.

Sect ion 3.1 out lines the met hod used. Secti on 3 .2 describ es t he t emporal organ iza

t ion of t he sys tem . Section 3.3 p resents the top-level design of the distributed system

(the components' funct ions and inte r-ec mponent cooperation). F inal ly, Sect ion 3.4 de-

scri bes each component in detail with PVM -pseudo-eode algorithms.

3 .1 Gen e r al considerat io ns

Let T = (M , c, f) be a t imed Pet ri net , where M = (N . mol is a marked Petri net .

T he sta te graph of T can be generated using a "d ivide an d conq uer" technique as fol

lows: t he (yet unknown) state space is partitioned into n dis joint regions R l. R2• "', R.,.

which are constructed ind ependently, and the n integrated in one sta te graph if needed .

Th e constru ction of these regio ns can be distributed to n ident ical processes runn ing

concurrent ly on different machines. The ent ire dist rib uted generation has th ree phases:

L the initi alization phase during which the syste m is set u p by creating t he co-

operat ing processes and exchanging th e inform a tio n necessary for inter-process

37

communicat ion ,

2. the com putational phtUJe during whi ch the regions of th e s tate space are con -

st rutted,

3. t he (opti onal) integro.tI'on ph a..se, during which ell th e states and arcs of t he regions

are co llec ted , an d integrat ed into the com plete state gra ph.

This ap pro ach req uires th e exis t ence of t hree kinds of logi cal processes (as shown in

Figure 3.l): a pr ocess start ing th e dis tri buted syst em an d init ia t ing t he co mp utat ions ,

cal led Spawner; se veral processes cons t ru ct ing the regions gr aphs, call ed Gen erotor3,

and a pro cess collecting an d integrating the results , cal led Collector 1 . Sectio n 3.3.3

di scusses the messages exchanged between these processes .

Figure 3.1: Dist ri buted. genera tion system 3 processo rs.

Ph ys ical processes correspondi ng to these logical pre cesses co nsti tute a "virt ual

machine." This virtual machine runs on a clus ter of com puters.

State gra p h partitioning

Th e first problem is to det er m ine, for a given net , th e di sjoint regions in which t he

(not yet construct ed) sta te gr aph shoul d be part ition ed . T he so lut ion is a partiti oning

ITechnical l}', as a pro«SS, the Collector can be the same &!I th e Spawner, because they exis t in
d isjo int periods of tim e, th e SpaW1lerperionns th e initialization phase , while t he Calleetor works in
th e integr ation phase . T he dilitinct ion bet ween tbem ill made for clarity only.

38

mechan ism. residin g on each processor. which de te rmin es , for each state, the region to

which it belongs. In this way all processo rs are awar e of th e st ructure of t his part ition .

This mechanism is a has h function which ass igns states to processo rs according to

t he dist ribution of to kens in places and t he num bers of firin g trans it ions:

part iti on : "R(T) -+ {l •...n} ,

' " IT1part ition(s) = (~ Q' m(p ;) + ?;(J; 1(4)) mod (n) .

where t he coefficients o , and {J; are intege r numbers and s = (m , I .r) if r is a 0

timed net (Sect ion 2.3.4) . or s = (m, f) if r is an M· t im ed net (Section 2.3.3). Th is

functi on implicitl y partit ions t he graph into n regions R 1 , ••• R.. such t hat for each

region R.;= (S tates. , Arcs;):

S tates; = (s I s E R (T) I\ par ti tion (s) = i}

and

ArC6; ={(s , s')ls' € States.} .

The part itionin g function is simi lar to t he one used in (231, wit h the difference th at

the co mponents of t he st ate correspond ing t o th e firing t rans itio ns are also ta ken into

account for det erm ining t he region of t he st ate.

Process Gener ator; is responsi ble for the sta tes in region R.;an d for the arcs direc ted

to th ese states. P rac t icall y, if a Generator is respo nsible for a sta te. it deter mines its

successo rs. A successo r state can be in t he same region (in this case t he connecting arc

is an internal arc) or in a di fferen t region (in which case the connect ing arc is called

a croas-arc).

3.2 System temporal organization

Th e dis tributed generat ion of t he sta te space is composed of t he following steps ;

39

1. Syste m startup (Section 3.2.1), which includes :

(a) set ting up the virtual machine (i.e., starting al l processes of the dis t ributed.

system) ;

(b) providi ng all processors wit h the add resses of the processes they need to

interac t with.

2. Computational phase (Sect ion 3.2.2), which includes:

(a) generation of all the states and ares starting from th e initial sta tes; this

includes sendi ng states to t heir appro priate processors;

(b) tran sfer of remaining cross-arcs to the processors responsible for them .

3. Result integration (Sect ion 3.2.3).

3 .2 .1 Sys t em startu p

During t he startup phase, all pr ocesses are created, and the y exchan ge t he informa tion

that is needed for coopera tive const ruction of t he sta te gra ph .

T he program bas two input files: one containi ng the n + 1 avai lab le hosts and t he

ot her containing the Pet ri net description.

T he dis tribu ted state space generation starts with t he executi on of th e Spawn er. Th e

Spawn er creates the Collector an d spawns n Generators on t he other hosts, providing

th em wit h the add resses of itse lf and of t he Colled or, so tha t t hey can direct messages

to them .

The commun ication address of each Generator must be known to a ll processes which

wan t to send th at Genera tor messa ges, i.e., the Spaume r and other Genera tor.!. For t his

purpose, each Generat or sends its communicat ion add ress back to the Spawn er as soou

40

as it is ready . The Spawner collects all addresses into the process table, and broadcas ts

it back to all Generoton.

3 .2 .2 Cons t r u c t io n o f t he s t a t e subg r aphs

T he st ate grap h is constructed in a mann er similar to t he seq uential algo rithm described

in Section 2.2.1, wit h some d ifferences d ue to th e workload di st ributed among a set of

pro cesso rs.

A state 8 crea ted by Gene rator; is lo cal to it if Generator; is res pons ibl e for s,

an d it is no n- local o therwise. A state s is exte r n al to Generator; if Generator; is

respo ns ible for s , bu t s has been created by another Generator. A non-local state can

be generated many times by Generators. Non-local states generated for the first -time

are called firs t - ti.me non- lo cal states, and t he corresponding cross-arcs directed to

t hem are called firs t - time cross-arcs.

Because a Genemtor is responsible on ly for the states in one region of t he graph, it

sends a ll non-loca l s ta tes wi th th e a pp ropriate cross-arcs to t he ap propriate Generotors.

Also, each Genera tor must be able to receive the states an d ar cs sent to it . T he refore,

ea ch Generator mus t have pri mi tives to sen d and receive messages. In ord er to be ab le

to send messages directly to othe r Generators, t he processes must know each other's

communication addresses. All necessary addresses are kept in a process ta ble, which is

an array of process id ent ifiers.

When an exte rnal state does not already exist in the region of the dest ination proces

sor, it is inserted there and then processed. External cross-arcs are treated di fferently

beca use t he insertion of cross-arcs int o their ap prop ria te regions is no t critical for the

state space gener at ion. This leads to t he idea th a t the sending th e cross-arcs to t he Gen

erators responsible for them can be pos tponed to t he mome nt when al l t he s t at es hav e

been generated in all regions red ucing the commu nica ti on d urin g t he state generat ion

41

phase.

A two-stage algo rithm for generating the state graph is used : in the first s tage

all the states and all the arcs are gen erated and all nco - local states are sent to their

corresponding regions. During this stage only the inte rn al arcs , and the first -time

cross-arcs are sto red in t he a pp rop ri ate regions, al l ot her cross-arcs are sto red in the

Gen erntor$ which have creat ed t hem . During the second st age, th e remaining cross-arcs

ar e t ra nsferred to thei r corr esp ond ing regions.

In this distributed algori t hm , so me Generators may Dot be pr ovided with start

st ates. Instead , they wait to receive non-local states to be processed. T he Spawner

sends the init ial state(s) of the Petri ne t to the Genemtors responsible for the m. The

other Generw:on must wait until they receive their first states from the initiafued

Generators.

An important aspect of distributed generation of the state space is the te rminatio n

condi tio n. The Generator ca nno t simp ly hal t when its working queu e is empty, beca use

it may st ill receive ext ernal states fro m ot her Generato rs later. A Generator may ha lt

only when al l o ther Generators have finished as well . Th erefore, ea ch Genera tor mu st

kn ow if all other Genera tors ha ve finished the comp utat ion of th ei r respect ive s tate

spaces.

3 .2.3 Terminatio n d e tect ion

When a Generator runs out of states which need to be processed, it waits for states from

other processes. In ord er to prevent a deadlock situation in which al l Generntors are idle

an d wait for external da ta , a global termination detection algori t hm is interleaved with

t he comp utation . T his te rm ination algorit hm checks if a ll processors have finished th eir

first stage computa t ions . In the following descrip t ion, the term te rm ination de tecti on

refers to t he te rm inat ion d et ect ion of the firs t stage.

42

Global term inat ion detection is a classical pro blem in distributed comput ing . Th e

algorithm used here is the one proposed by Dijkstra et &1. (15J. It assumes that th e

cluster of processors has a ring topology, P l _ P,., P2 --+P3 • . •• • P..- 1 --+p... p.. --+Pl ·

Th e me thod is based on the use of a token , which , t ransm itt ed over the ring . checks

whether al l processors have terminated t heir tasks. It uses two colors , black and white,

to rep resen t two states of t he distribu ted system: t he white color corresponds to t he

sit uation when all processors are found id le; the black color corresponds to the si t uat ion

where it has been found that some act ivity existed prior to the momen t of checking,

and, therefore , it cannot be concluded tha t the system is idle. A processor remembers

that its state is idle or ac tive by making its color white or black. When ever a processor

induces activity in the sys tem by sending a data message , it also sets its color to black .

The process of determining if all processes are idle is start ed by a designated init ia to r

processor (it can be assumed, wit hout loss o f general ity, that th is process is Pd by

marking itse lf white and sendin g a whi te to ken to processor P2 • The token message is

further propagated over t he ring acco rd ing to th e following rules [151;

1. Upon t he receipt of the token , processor Pi holds the token if it is not idle, or it

propagat es t he toke n t o P; + 10 if it is idle.

2. Whe n Pi propagates th e token, it sends a black to ken ifi t is black itsel f, ot herwise,

it sends th e token that it has received (wit hou t changing its color).

3 . Upo n propaga ting the token to Pi + lo t he processor Pt makes its own color whi te.

4 . If P I is black when it receives the to ken back , or it receives a blac k token, t hen

it ini t iat es a new term inat ion de tec tion process beca use it is not sure th a t a ll

processors have comp leted th eir work.

[f the initiator receives a message containing a whi te token while it is marked as

white, it concludes that all t he processors ar e idle, so it in forms the ot her processors

abo ut this by sen ding a termination notification messa ge.

ITt he ini tia tor does no t recei ve back the token message, the token must have been

lost when it has reached an act ive processor. In t his case th e in it iato r cont inues its exe

cu tion and , upon becomi ng idle, it starts again the process of checking for te rmination .

3 .2.4 In t egra t io n of resu lts

wbee the construction of all regions is completed, each Generator sends the states

and ar cs to the Collector an d the n terminates. T he Collector combines th e received

information creating the en tire graph , i.e., the uni on of t he reg ions.

Th e Collector inserts t he states in the final graph, and creates arcs bet ween these

sta tes . For inserting an arc (as a link from a state to its successor sta te), the Collector

determines the two states in the final gra ph, and then creates t he connection.

For optimization reason s each sta te is given an ide ntifier, so t ha t an arc can be

rep resented by a pair of ide nt ifiers. For each state, th e Generator sends a complete

descrip tion of the sta te whil e for each arc it sends a tri ple contai ning the parent state

id , t he successor state id and th e t rans ition probability .

In t he state graph, all state identifiers must be un ique . Their uniqueness is ensured

by the following approach : each Generutor keeps a counte r of states, cnt, which is

increased each time a state is inserted in t he set of states of its region ; a state id

is determined upon its inse rtion in t he set of states of region Ro usi ng t he following

formula:

id = cnt * K + i

where K is the maximum num ber of Generators.

44

This a pproach of creatin g sta te identifiers mak es it im possible for a Generator to

insert locally the cross -arcs it creat es (a Genera tor creat ing a non- local st ate s' does

not know in ad vance the id which will be given to s' by th e Generator res po nsible for

it). Th erefore each cross-arc {s, s' ,prob) is sen t to t he region to which s' bel ongs.

It should be not ed tha t the ids of non -local s tates cannot be ass igned by the gener

ati ng processes, because di ffere nt processes generatin g t he same (non-local) state could

ass ign d ifferent ids to it .

3.3 System architecture

This section provides an overview of the d ist ri bu ted pro gram, by discuss ing t he com

po nents and the ir functions, as well as th e way in which t hey interact . In order to keep

thi s desc ripti on at a system level, compo nent im plementat ion details are omi tt ed here;

th ey are discussed in Sect ion 3.4.

3 .3 .1 The co m po n ents

The Spavmer is responsible for:

• establishing the system's physical con figuratio n,

• spa wning othe r processes ,

• d ete rmining initial states an d sen ding t hem to t he appropriate Generotor.s,

• construc ting t he "process ta ble" ,

• broadcasting th e "process- t able" to all processes which need it .

The Collector gathers all t he states and arcs sent by Gen erators and combi nes th em

into the compl ete state grap h .

45

Each Genen:dor constructs its region of t he gr ap h and has the following responsibil

it ies :

• determining t he successo r states for each state in its working queue ,

• creating glob al ly unique ids for t he st ates in its region ,

• send ing non-local sta tes and cross- a rcs to t he Gen erators responsible for them,

• receivin g ext ernal states,

• co nstructing its region and sendin g it to t he Collecto r,

• cooperating in termination detection.

One Genemtor plays the role of initiator in t he process of termination detec t ion.

D ecompo si t ion o f a Generator

In orde r to per form some tasks concurre nt ly, each Generator is composed of th ree

pro cesses (F igur e 3.2): the Worker, responsible for th e generation of the state spa ce,

the Send er , responsible for sendi ng messa ges to other processes , and the Receiver , re

sponsible for rece iving messages from ot he r processes an d for the termination detection.

When the Spaumer creates t he Genen:dors , it actually crea tes Worker process es. As its

first steps, Worker creates the RB:eiw:r an d Sender processes.

It is the Senders responsibility to keep t rack of states sent, and to send, in t he first

stage, only the first -time cross-arcs.

The R«river respo nsible for t he ini tiation of t he termination detection is cal led th e

"ini tiator" Receiver. Th e others are ju st "ord inar y" Reuivers. In t he desc ription t ha t

follows, th e ter ms "Generator" and "t ri ple" are used interchangeably.

46

~
'. '''''''' 'Q.=ReceiYef llel'ntin.ariondcle<;tion

~m

~ Werla- '=
kK:a.lswes &tan;:s

...... <me.-.oo

non-local
stal e$andan:s

Figure 3.2; T he stru cture of a Gen erator .

Processes Receiveri , Sender ;, an d W orker. constitute Gener ator;. Each Generator;

has a logical identifier i and a task ide ntifier ti d, which is used as the commun ica t ion

address.

3 .3 .2 Lo cal co m m unication

T he Worker, Ra;eiver , and Sender of each Genera tor reside on the sam e processo r.

Th eir communicatio n is based on sha red vari ables.

Inside t he Generator , the Worker communicat es with the Receiver using a share d

memory segm ent recv-buffer. T he Rsceiuer ad ds sta tes into this buffer an d t he Worker

retrieves them. T his is a standard produ cer -consumer sche me with the b uffer rece-

buffer . Similarly, the WOTker and the Sender communicate via a shared memory seg-

men t 8en d-buJfer in a produ cer-consumer fashion where the Wo'*er is th e producer and

the Sender is tbe consumer.

T he mutual exclusion for accesses to th e bu ffer inside the typical prod ucer-consumer

sche me is based on th ree semaphores, em not -emp ty, nOLfulI an d mute%;t he operation

put(state . buffer) sto res the state s tate in th e buffer buff er an d th e £unct ion get(bufler)

retri eves a.st at e from th e buffer buffer, and ret ur ns it .

Th e Sen der-and the Receiver shar e the semaphore sender_ready, In the init ial iza tio n

47

phase , the Rt!C1:iver waits at th is sem ap hore unt il the Sender signals it . This ensures

that the Il«eiver indicates to the Spawner to broadcast the process table only when

the Sender is ready to receive it .

Also the mach ine colo r (see Section 3.2 .3) needs to be accessed by both WoTker and

Receiver . The refore, it is sto red in a memory segment shared by th e WoTker an d the

Receiver.

3 .3 .3 M e ssa ge based com m u n ica t io n

System components res iding 0 11 diff ere nt hosts need to co mm unicate during the execu

tion of th e program. T hey com municate by message passing using t be PVM (Parallel

Virtual Machine) package (181 . PVM is an integrated. set of software tools that emulate

a concurrent computing environment using a collection of interconnected com puters.

The PVM system is composed of two parts: the first part is a demon resid ing on each

of the coo perating computers; the secon d part is a lib rary of ro utines for typical op era

t ions needed for par al lel com puting (message passi ng, spa wning processes , coo rdinating

tas ks, etc.) :

In t he startup phase, t he Spatuner and Generators must communica te to de te rm ine

th e addresses of ail processes they need to cooperate with . Each Generator prov ides its

"co mmunication ad dress" by se nding to t he Spawner a message containing th e triple 's

id and the task id (tid) of its RetX:iver. The Spawner collects all these ids into the

process table and broadcasts it back to all Generators (act ual ly to thei r Senders and

t hei r Receivers) . For this pu rpose, the Senden and the Il«eiven join a PVM process

grou p, called genemton. T he Senders need to kn ow where to sen d non -local states

to, while the Receivers need to kno w t heir successors in the pr ocesso r-ring used for

term inatio n det ectio n. To ensure tha t all Send ers are ready to receiv e, ea ch Receiver

only send s its add ress after its Send er is read y. Two kinds of messag es a rc used :

48

EXIS T (i, tid) - message containing the triple's id i and the task id tid of t he Receiver ;;

it is sent by eac:b.RecrilJer to the Spawn er,

INFO(r ecvJ id..f) - message cont aining an array with the ids of aU n Receiv ers; sent

by Spawner to all Sender$ and R«eiVer3 .

In t he computa t ion phase , th e GeneratorJ exchan ge non-local st at es and cross-a rcs

by using DATA messages. A DATA message con ta ins one or mo re items , each ite m

con tain ing sta te and arcs direc ted to t ha t state. T he arc informatio n contains the

parent state id, and the probability associated with the sta te transition .

DATA« 5J' (parentj,i , probJ") ;_ l_"Jh"' l~,.t) - messag e containing k items , each of th em

comprisi ng a state 5 j and info rm ati on about nj incoming arcs ; t he message is sen t

to t he Genera tor resp onsibl e for the states and arcs .

During the computa tion phase, the Gen ernt or" must also communicat e to determine

when th e first stage is globa lly finished. Firs t token messages ar e sent between ReaiverJ

for the ter minat ion detec tion as desc ribed in Sect ion 3.2.3. If t he det ection is successful,

t he initia tor Receiver sends a special message indicating th is situation to al l oth er

ReceiveT$. Th e messages used are:

C HECK _TERM(token) - messag e propagated to check t he global te rm ination; this

message is transmit ted ring-wise between Recei verS;

TER.M:INATE - message sent by tbe initiator Recriver to inform all processes t hat

t he end of the first stage has been global ly reached; upon recept ion of the T ER

MINATE messa ge, th e Receiver in terrupts its Sender, and puts a special it em into

th e Worker's sta te buffer , which mak es t he lat ter finish the firs t stage .

49

The Genemtors need also to comm unica te to start and to determine the termination

of the seco nd stage . The Send er starts the second stage immediately after being inter

rup ted by the Receiver , by sending t he remaining cress-arcs packed in DATA messages.

Afte r thi s, each Sender broadcasts a message DONE...ARCS...EXPO RT, ind icati ng

that its t riple will not send any more data to other Generato TIJ.

During the result collect ion phase, each Generator send s t hree kinds of messages to

the Coll«tor.

STATE« oS';);",l...l) • message co ntaining k ite ms, each item comprising a state descri p

tion and a sta te id;

ARC « su cce88or..atate-id;, s tatld di , pr ob;};_ I..•) • message con taini ng k items, each

item contains arc information : the ident ifiers of two states , and t he probability of

transition between sta tes ;

FINISHED - message ind icat ing th at the Generato r has finished sending the results :

up on receiving such messag es from all Generators, the Collt:elor knows th at it will

not receive any subsequent data.

F igure 3.3 shows a summary for int er-component comm unic at ion for a syste m with

three Generator.s, the init iator being Generatorl '

The Spa lJJfler receives EXIST messages and sends out INFO messages and DATA

messages.

Each Genera.tor receives INFO messages from Spaumer, DATA messag es from the

Spaumer and from al l othe r Gen en1tors, and CHEC K_T ERM messages from th e pre

vious neighbor in t he ring; all Generators except of Generatorl receive TE RM INATE

messages from Generatort . Ea ch Genera tor sends EXIST messages to th e SpuWTler,

50

'PO

r. EXIST
a INFO
3. DAT A
• •CHECK.....TERM
S. TERMINATE
6. STATE
7. AR C
8. FIN1SHED
9. EXPOR T..AR CS_OO NE

f igure 3.3: In ter-co mponents comm unica tion su mm ary.

DATA messages to all ot her Generators, CHECK_TERM messages to its next neighbor

in the ring , and STATE , ARC, and FINISHED messages to th e Collector.

T he Collectorrecei ves STATE, AR C , and FINISH ED messages from t he Generator".

Th e messages are d isti ngu ished. by marking them with di stinct t ags.

T he communicat ion between processes is done using stan da rd message passing prim.

irives [18].

3.4 A lgorithms

T b js secti on presen ts the algo rithms for th e six kind s of proc esses (Spawner . Collector ,

Worker, Sender. ini tia tor Receiver. an d ordinary Recriver) in an untyped pseudo-code.

Some of the algorit hms use th e gene ric sema phore routines wait(semaphore) and

81!1naJ(semaphor e).

3.4.1 The Spawner

T h e Spawner performs init ial izat ion tasks:

L algoritbm. Spawner.
2. va.r h-t f il e;
3. Ipn etJile;
4. net;
S. hosts(];
6. n ;

7. iniLstat~.1ist;

8. id;

(* fiJe co ntaining t he virt ual machine co n.figuration *)
(* file co ntaining t he descrip tio n of t he P etri ne t *)
(* th e Pe tr i net *)
(* ar ray with the hos ts in th e virtual machine *)
(* number of processors in th e vi rtual machine *)
(* a U.st containing the ini t ial s ta tes of t he Pet ri ne t *)
(* identifier *)

51

(. identifier of the initia tor "}
(. PVM task identifier .)
(. PYM task identifier of the CoUector .)
(. gro up of all Senders and Receivesa"}

9. ini tiatcl-..id;
LO. tid;
11. tid ...aJlledQr ;
12. generator,,;
13. b egin
14. (n , ho.Ju) := read(ho.Jtjile);
IS. tid..colledor := spa wn CoIledQr'(n) o u ho&t...name{O];
16. net:= read (tpn eLj il e);
17. ini t ...sta1e.s.1ist :_ get..initic1l-"ta1e.s{net);
18. ini tia tor ..id := partition(head(ini L rta tesJis t));
19. for i := lto n d o
20. spa -a. W ork er (in it iaeor-..id, tid..c:olledQr, ml/Jid, Rd , i ,n) on host.s{iJ
21. endfor;
22. for i := lto ndo
23. (id, t id) := recei ve (E X I ST);
24. proce.ss..table[id] : = tid
25. e nd for ;
26. broadcc.st{generators , INFO(process.table) ;
27. while not..emptl/(init ...states .Ust) do
28. "t ate := head(init ..$tat e".1i"t);
29. init-"tates.1i st := tail (in it ...atate.s.1i"t);
30 . send(proces s .table fparti ti on (state)],DATA (eee ee, 0. state.prob))
31. endwbil e
32. end.

F irst the Spawner reads (line 14) th e configu ration of the vinual machi ne from t he

file JuntfiIt';". n is t he nu mber of Generator", and Junt.! is an arr ay wit h n + 1 names o f

the hosts on which to crea te t he ot her processes (n Gen era1or8 and the CollectoT).

Next, the Spawn er crea tes t he Collector on th e first hos t , by call ing th e funct ion

spawn (line 15). This func t ion has as parameters t he host on which to spawn t he

process , the process to be spawned , and its program ar gum ents . Th e Collt!dor receives

only one ar gu men t . t he number of GeneraWn, n . The Collector is spa wned before th e

Generators because. in t his way, the Genera tor.!can be given t he Collector's address a t

spawning t ime. If the Collector is no t created as a sepa ra te process , the spawn functi on

is not needed , an d t he C ollector funct ion is called aft er t he term ination of the S pawner.

In t his case tidcoll ector = tid . spaumer,

52

The Spawn er tb en reads tb e net description from t be file tpneL/ile (lin e 16), an d

determi nes the net 's ini ti al s tates by invoking t he fun cti on get..initial.states (line 17).

Each of t hese states has a proba bility associated wit h it . The te rmin at ion detecti on

ini tiator is th en determined as the ReaiVeT process of tbe GenerntoT responsible for the

first initi al st a te (line 18). It is important t hat the initiator is not a processor which is

id le al l t he time , because, otherwise, it would burd en the com putation wit b unnecessary

terminat ion checking messages.

The n Worker" are spawned by catling th e fun ct ion 8pawn (line 20). As ar gum ents

each Worker recei ves the ini ti ato r's logical iden t ifie r, (in iti ator ..id), the Spawner' s ed

dress , the Collector s address (tid..coll ector), the net d escription (ne t), and t he tot al

num ber of Generators (n). T he tid of t he Spawner is dete rm ined by calli ng tbe funct io n

my..tid, which returns th e t id of t he calling process .

Afte r spawning t he WorkeT.!, the Spawn er waits for n EXIST messages from t he

Generat ors (lines 22· 25). In general, t he syntax used for a messag e receive function is

ffle.fSage := r ecei ve . If a processor wants to rece ive only a spec ific type of messages ,

then receive bes one of t he message types (desc ribed in the p revious subsection) as an

argument; in line 23 , an EXIST message is expected.

Each EXIST message contains t he Genera tor' s Reaiver logical id and the task id .

Upon receip t of such message, the task id contained in the message is added to the

p rocess- ta ble. Wh en t he process table is co mp lete, it is broad cast back to a ll GeneratQ",

(line 26) .

When the en tire virt ual machine is set up , t he Spawn er initi at es the process of

s ta te space gene ration by det ermi nin g and sending the initial st at es of the net to th ei r

corres ponding Generators (lines 27~31) . As in [38], a dummy sta te, wit h id 0, is used

as a com mon pa ren t of al l initial states. Therefore, each initial sta te is packed into

53

a DATA messa ge co ntaining th e st ate repr esentation, it 's pare nt id [i.e., 0) and t he

corresponding transition probability.

3.4.2 The Worker

Process Worker. constructs the region Ro = (arCil"s tate".) of the state graph. T he

set of generated states, .nates., is im plemented using th e C++ standard class sa 136],

which guarantees logarithmic search tim e. Each element of the set is a t up le (s tate , id)

containing a state description and a state id. The set of arcs is a lin ked list of trip les

(id" id2 , pr ob), where id l and id2 are st ate ide nt ifiers and prob is the state transi ti on

probab ility .

T he outline of each Worke r is as follows;

1. al gorithm Worker; (ini ti ator _id, tid...collector, ti d_spawner, ne t, n);
2. var states. := 0; arcs, ;. 0; (* states and arcs of reg ion R;*)
3. mach in e...color shared with Rece ivee.; (O' th e stlLte of the genera tor O')
4. l en tLbuffer shared wi t h Sen der;; (O'buffer with incomi ng states O')
S. 1"eadroffer s bu ed with Recei verr ; (O'buffer with outgoing states ·)
6• .tate; (·state "')
7. ne:rt...stote; (O' state *)
8. ill; C· identifier O')
9. parcl"IUd; C· identifier ·)
10. parent; ; (O' identifier *)
n . prob; (O' an: prob&bility .)
12. conti (. loop continuation Bag *)
13. begin
14. if i = il"li tiaWr".idtbe n
15. spawn I n i ti ator Rec::riw:ri (tid ..colledor, tid ..8paumer, n) O D. this..ho.t
16. else
17. spawn OrdinaTl/Rec::river.(tid...t:ollector,tid...lpaumer,n) OD. thU.Ao81
18. endif;
19. spawn Sender(n) on th is..host;
20. execute main.100pi (O' main loop is show n on t he nex t page .)
21. cont ; = true;
22. while cont do
23. (s tate, (por enti,prob,). _ I..I:) ;= get(recv _buffer) ;
24. if s tate = null then
25. con.t := fabe
26. else

54

rt, id;= .state.si.find(,tate);
28 . arcs ,= a rcs U{(parent;,id., po-o6;) ;_ I.....}
29. endiC
30. e nd w bile ;
31. .send(tid..collector,.staU.s i) ;
32. .send(tid.collector, ar cs;);
33. ,end(tid.collectar, F I N I S H E D)
34. end.

Firs t, the Worker; creates its Receiver; (Init iatorReceiver or O rdi naryRece iver) an d

its Se nder; (lines 15, 17, 19), on the same host as itse lf (thi s ..host). Then it enters the

main loo p in which all reachable s tates and their descendants ar e det ermi ned. This

loop is described below.

'When t he main loop is finis hed , aU Work er.! have generated all the states of t he ir re

gions , but if a Generotor has created more arcs lead in g to non local states, on ly the firs t

arc has been sent to the Gen erot orres ponsi ble (or it . T here fore , th e Worker looP5 again

(lines 22 to 30) to co llect all t he remaining arcs lead in g to its region , which are sto red

in nxv_buJJer by its Receiver. This loop continues un til a nul l ite m is retrieved from

the recv_buJJer (lines 24 and 25). When a non-null ite m (s tate, (parentj ,proo;);""l.....) is

ret rieved , th e id of t he state s ta te is looked up in t he region (t he state al ready exist s

t here, because it has been inse rted during the mai n loop), and t he arcs are inserted in

th e list of arcs.

After co mp let ing its region , the W orker sends the states and arcs to the Collector.

States and a.ra are sent clustered in two messages. one for states, and t he other for

arcs. A final message FINISHED noti fies t he Collector that the entire region has been

T he Work er dea ls with sta tes gene rated. locall y and sta tes received from other

processes . It mai ntains two queues, w..que, the working queue for loca l st a tes , and

recv_buJJer, the queue for externa l s ta tes.

55

The main loo p is as follows :

1. main.100p; OOI1t := t ru e;
2. while cont do
3. if se..uLlroffer.~pty A w..que.not..emptSl then
4. (J ta te, id);= w..que.r t:mClle
5. els e
6 . (aeeee, parent.id ,prob) ;= get(n!CtI_lroffer);
7. if sta te = null t he n
8. cont ;:;;:false
9. els e
10. id := JtateJ;.find(.state);
11. iCid # nolD then
12. arc.! ;= a r c.! U {(paren t..id,id,prob) }
13. else
14. id = Jta te.s;. cr ea te .1orol..id;
15. .state.s;;_ .sta te.Ji U(s ta te , i d);
16. arc.! ; = arc.! U {(paren t ..id , itt, pr ob)}
17. endiC
18. endif
19. e nd if;
20. if cont 1\ ill '" nol D tb en
2 1. for all nen ...ta te in .sua:e .u ors(sta te) do
22. if pa rt it iml (nert ...tatll) = i then
23 . id:= Jtat e.s;.find(next...state) ;
24. if id '" nQ! D then
25. arc.! ;= arc.! U {{statll.id , id, nez/...state .prob}}
26. e lse
27. id = creat ll.1ocal..id ;
28. Jt a te.Ji ; = .states; U {(nez t...sta te , id) };
29. arc.! :_ a rc.! U { (.state .id , next..8ta te.id ,nezt...state.prob)};
30. w..que.i1Uert«next ...stat e ,id))
3 1. endif
32. else
33. prt:lCeSsor.£Olor := B lack ;
34 . put(nert... tate, pcrent..id, nezt-8tate.prob), Jen d-buff er)
35. en dif
36. endfor
37. e nd if
38. endwbile;

If ruv_buffer is empty but t he working qu eu e is not em pty, th en t he st a te to process

is taken from the working queue (line 4); o t herwise, t he function get is cal led to get an

item from rec 1J-1Juffer (line 6), which will invo lve waiting if th e buffer is em pty. This loop

56

is discontinued when a nul l ite m is ret rieved from th e buffer , i.e., when the function get

returns a nuUstate (line 8) j the Recri verputs this null item in t he buffer after recei ving

the message that the first stage 's global termination has been detected.

If func t ion get returns a non-null item from th e buffer (line 6), a state st ate, th e id

of its parent on the remote processor, parent..id, and the proba bility of the transition

betw een the two st ates are retrieved from t his item. T he Worker checks whet her the

sta te already exists in t his regio n by cal ling t he met hod fin d (line 10). If t his state

exists , find ret urns the id of th e sta te, and the state is not processed any further , only

the arc (paTent..id, id, prob) is added to the set of arcs (line 12). If the functi on returns

no!D , th e sta te is new t o the Worker, and it mus t be inserted into the graph wit h a

new , unique id (line 14). Th e correspo ndin g arc from the parent state is inserted in the

set of ar cs (line 16).

For each new state , th e Worker creates t he successo r states (line 21) wit h t heir

proba bilit ies, and analyzes t hem as follows: firs t , it determines if a successo r state is

loca l or non-loca l (line 22) using the function partition. Ea ch successor state in t he

region i , (l.e., loca l successor state) is looked u p in the set of alr eady generated states

state s; (line 23). If it is found , only the arc fro m the current sta te to the child state is

insert ed into the set of arcs (line 25); otherwise the sta te is inserted. into seezes , (line

28) and in w.que (line 30) for furt her process ing, and the arc is inserted into arcs ; (line

29).

Non-local successo r states are deposi ted, together with t heir arcs , into send..buffer

by calling the function pu t (line 34). From t here th ey will be subsequently ext rac ted

and sent away by Sender; . The Worker also changes the color of the Generator to

Black (line 33) as t he pro cessing of states is not finis hed yet .

57

3.4 .3 The Se nd er

The Sender-is mainly resp onsible fer sending t he nee-local states and c-ross-arcs to their

corresponding Generatonl .

1. algorithm. Sender;(n);
2. ver " ti1te; (* stAte or t be Pet ri net *)
3. .sent..statu; (* sta1elJ already sent *)
<t. .sentkT-ready se m a p h o re sh ared with Reeei~;;

5. '~iJer s hared w it h Worker;:
6. pr~"..PJble; (* communicat ion addressees *)
7. cont := t ru e; (* loop continuation Hag "I
8. begin
9. join¥oup (genero.tor,) ;
10. "ignaJ(sender-ready) ;
11. pr oce$.s..tahle := receive(l N F O);
12. wh ile cont do
13. (state,parent.id, prob) := get($end~bv.fJer);

14. ir state = n u ll th e n
15. "en d-re"t(proce.s.s.iable, "ent..staU$, clv..ster -,ize);
16. cont := false
17. else
18. if state tI.$ent -"tat u t he n
19. "end (proceu ..table[parti tiQn(.sta te)] , D ATA (" tate, p4TeTl t!..id. prob » ;
20. .sen t-,ta tes.in.ller1(.Itate)
21. e lse
22. $tate.add.areJink (paren t.i d. pr ob)
23 . e ndif
24. eodif
25. e ndwbile ;
26. bo.:n.st(generators ,ARCS.EXPOElI'.DQNE)
27.e od.

First, the Sender, jo ins the gro up or Generators (line 9) in orde r to c ece tve t he table

or process identifi ers from the Spaumer. The Sender . signals to Rec.eiver. that it is

read y to receive a messag e containing the process table room t he SpaW"JIer-(line 10) . It

then receives th is table and sto res it in the proceu..table (line 11).

The S ender invokes th e rout ine get (line 13) to obta in the d at a whbch it must send.

In the case or non-null s tate (lines 18 to 23), get ret urns an item put by the Worker

into th is buffer, which co mpris es: a state (s tate) , its parent id (parent..id), and the

58

probability prob of transi t ion between the parent sta te and $. T he ite m is sent to its

destination only if the state s has not been sent before (line 19) .

T he Sender uses a st ructure sen t...states- to keep track of the states sent. Th is

s truct ure is organized as a sear ch tr ee, using t he sta te represent ation as the key. Eac h

node is lin ked with a list of ar cs. Whenever an item is ret rieved from 3end.buff er,

t he state state is sear ched in sent..s tates (line 18). If state is found , then a new arc

(par ent.id, prob) is added. to its list of arcs (line 22), otherwise th e state is inserted. into

the tree and then sent together with its arc to the appropria te Gent:rOUJr(lines 19 and

20).

Senders loop is terminated. when the function get ret urns null, as a consequence t he

globa l term inat ion of the first st age . The Sender then se nds away the remaining arcs.

together with their states (states ar e needed to determine th eir ids at t he destination),

by cal ling the function send..r est (line 15). All arcs di rec ted. to the same state are

already clustered. toget her (from the way t he tree and th e ar cs list are constructed).

After sending this data., the Sender broadC&Sts a message A RCS.EXPORT .D Ol'll"E

and terminates .

3 .4 .4 T he o rd inary R ec e ive r

All Recei vers excep t t he one used for initia ti ng te rm inat ion detection imple ment the

following algori thm .

1. algoritblD Ordin.a.ryReceiver (tid..collectQr,tid....spaumer, n);
2. var rneslJage;
3. token;
4. Jinuhed := Jalse;
5. processor..color s b aeed wi tb Workeri ;
6. sen der .reMit semaph ore shared with Sender,;
7. rteJ_bujfer shared wi th Work er; ;
8. process..tableO;
9. k := 0;
10. b e gin

59

11. wcr.it (&ender.r eady);
12. join..grou.P(9en~);

13. -'Cld{t id...1paumet", E X I ST(i. mll J id»;
14. proceu..t4ble ;"" receive(INFO);
15. wbile k < n -I d o
16. me3sag e := receive;
17. case m enage.type of
18. DAT A :
19. put(recldJT>!!er, me Jlsage.S};
20. CH EC K .:I'ERM;
21. if Worker .is.idie A Sende:r.i Jl.idle t he n
22. if pr~Jlor.DOlor = B lack t he n
23. token. ; = Black
24. endif;
25. send(&ceiveriS l , C H EC K .:I'E RM{meJlJlage.token»;
26 . pr o=u or .DOlor ;= W hite
27. end if;
28. T ERMINATE:
29. be gin
30. in t er r u pt-Sender;
3 1. pu t(reev_buff er, null)
32. end ;
33. DONE.EX PO JrI' ..ARCS:
34. begin
35. k :=k +l;
36. if k =n - I t hen p.,d (rYeV_VuJ!er , nul l) e ndif
37. e nd
38. endease
39 . e n d w h ile
40. e nd .

T he initializat ion part is common for al l Receivers: befor e sending an E X 1ST

messag e to the Spawn er, the Receiver waits for its Sender to be ready (the Sender

shoul d be able to receive messages when th e process tab le is sent to it by the Spaumer ,

oth erwise t he messag e wi th t he process table is lost). For t his purpose , t he Ra:river an d

th e Sender share & semaphore sender ..ready , and the Receiv er waits at t his semaphore

until it receives a signal from th e Sender, and then it send s to the Spawn er an EXIST

message contai ning t he trip le's id an d t he Receiver's addr ess (line 13). After t his th e

Receiver receives the process ta ble, storing it in t he proces stable.

60

T he lUt:river reacts to different messages as follows.

For DATA messages . wit h the contents {.sj' {parentj,i. prooj ,i}."'I......... }j21.....k.the en

closed k st ate descriptions are extracted from the message and stored in recv.bll.Jfer.

In the case of a CHECK _TERM message. t he~ver checks wheth er its t ri ple is

idle by calli ng t he rou tin es W orker.i s .i dle an d Sender.is.idle. T he W orker is idle when

it is wait ing with empty recv_bll.ffer, i.e .• it is susp ended on the semaphore no t- em pty.

Similarly, t he Sen der is idle when it is also suspended 00 a semap hore no t-em pty. If

t he triple is idle, the R eceiveri propaga tes the token (line 25). ensuring to change the

to ken 's color in the case when processor's colo r is Black (line 23) . Recei ver ;e l is the

next Recriver in the rin g, where ie l = i + 1 if i < n, and i el = 0 if i =n.

For a TER..\UNATE message , the Receiver must make the Worker end its first stage

and t he Sender send the remaining arcs. T here fore, the Rettiver add s a speci al null

it em to recv_buffer (line 31) ; upo n retrieving this item , t he W orker finishes the first

stage. Th e R«:eiv er also discontinues its Senders loo p (line 30) . Fi na lly, t he Worker

receives all th e remai ning cross-arcs, which come as DATA messa ges.

All DONE.E XPO RT...ARCS messages are counted (Hne 35) . Afte r n - 1 such mes-

sag es. the Ru.eiver knows tha t it will not receive any subseq uent data (PVM ensur es

t hat t he order of sent messages is preserved at t he receiver side) an d puts a nuU item

into recvJJuff er (line 36). When t he Worker retrieves this message, it terminates its

second stage.

3 .4 .5 T he in it iator Receiver

Th e ini t ia tor R.«river has a slig htly different algori t hm t hen the others, because it has

the sp ecial res ponsibility of starting the proc ess of terminatio n det ecti on.

1. algorith.m lDitiatorRccei':er (tid..collector. tid -spawn er,n);
2. var me"" age;
3. token;

61

4. pr0ce4 l1or.ool or shar ed -tth Worker; ;
5. . erukr.read!l se maphore , bared with Sender;;
6. rec.>. 'J14! er sban!d wit h Worker;;
7. pr0ce4,...tabl eO;
8. k :>=0;
9 . be gin
10. wait (,erukr.read!l);
11. ;oin..group(generato1'l);
12. pr oce u...table := receive(I NFO);
13. while k < n -ldo
14. mes, age := tim eou t.receive ;
15. if message "" md l then
16. ifWQI'"ker ..i, ..idle f\ Sender ..is .idle t be n
11. tok en := W hi te;
18. send(Recriveroe! ,CHECK ..TERM(tok en»;
19 proct:ll l1or.col or := White
20. e ndi f
21. else
22. case rnu.roge of
23. DATA:
24. pu t (rect1.buDer, me.uage. S) ;
25. CHECK.IERM:
26. if musage.tok en = W hi te 1\ prOC%lIl1or.color = W hite then
27. in terrupt ..sender;
28. pu t (rect1.buJJer,null);
2 9 . fO T ; = 1 to n d o
30. if ; "#in i tiator..id then
31. sen d(proc esll_table[jJ,T ERMINATE)
32. end if
33. en d fo r
34. eDdif ;
35. DON E .EXPO RT..AR C S :
36. begi n
36. k :_ k + 1;
37. if k .. n - 1 tben pu.t{rect1. bulfer, null) en di f
38. end
39 . e ndcese
40. end if
41. end w hile
42. end.

Th e initializa tio n part (lines 10-12) is t he same as for other Reaiver.t.

However , th e init iator Receiver has a slightly d ifferent loo p. F irst , it p erfor ms a

receive with t imeo ut (line 14) . If, wit hin a ti meo ut period of tim e, no message has

62

been received, the Rertiver checks wheth er the entire triple is id le , Le., whether the

WC1T"Ur and the Sender are also idle (lin e 16). If th is is t he case, all ot her Generaton

can also be idl e. So, the Receiver initiates the termina tion detection pr ocess by sending

a CHECK_TERM message to t he next Receiver in the ring (line 18).

On t he ot her han d , if a message is receiv ed , an action is perform ed acco rd ing to

the message type. DATA mess ages are t reate d in the sa me way as by the ordinary

Receivers. A CHECK _TERM message indicates tha t a token message sent before is

back. Upon its receipt, the Receiver checks th e processor color an d t he colo r of the

to ken in t he messag e. If bot h co lors ar e White (line 26) , all Genero toT3 ha ve finished

computations, the Receiver notifies the Worker and the Sender about th is (lines 27 and

28) and sends a TERMINATE message to all other ReceiVeT3 (lines 29 to 33).

3 .4 .6 T he Co llector

T he Collector ga thers all the resul ts construct ing the co mple te state gr a ph .

1. algorith m Collector(n) ;
2. var gToph := 0;
3. aTC/I' :_ 0;
4. f in i , hed := 0;
5. b egi n
6. w h ile fini shed 'Fn d o
7. m..!'uage := receitle;
8. case mel&age of
9. AR C(S) :
10. arcs...&et .in.sert(S);
11. STATES(S);
12. begin
13. graph.insert(S);
14. arC/l'.&et.iruert...arc(state.id ,pid)
15. end ;
16. FINISHED:
17. fini,hed := f ini3he d+ 1
18. end cas e
19. e nd w bi le ;
20. while nonempty(arC/l'.&et) do
21. arc :=arcs ..set .rernoue...a rc;

63

22. graph.i nsert..Drc
23. en d whi le
24. en d .

T he CoUeewr loops until it rece ives n FI NISHED messages, treating the other

incoming messages as follows ; if an ARC messag e is received , then t he arcs from the

message ace inse rted in the set arcs for later use; the arcs are not inserted into th e

graph righ t when t hey are received, because it may ha ppen that an ace arrives earlier

t han its corres ponding sta tes . Wb en a STAT E message is received , all its states (set S)

are inserted int o the gra ph.

Only at the end of t he al gorithm are all received arcs inse rte d into t he graph (lines

20 to 23).

64

Chapter 4

Examples

T his chapter presents some experimental results obtained for inpu t ne ts with a complex

structure an d a fairl y large state space size . Exp eriments are co nd ucted for D-timed

and well as M-timed nets because it is an t icipated that the performance res ults for th ese

two classes of ne ts can be q uite different; usually D- timed nets gen erate less st a tes than

comparabl e M-timed nets , but D-timed ne ts are more com putation al ly-dem anding for

state processi ng t ha t M-timed nets . Co nsequently, th e co m putation-to-eomm umcation

rat ios for th ese two classes of nets are quite different .

The perform ance measure used in the exp erim ent s is the speed up of t he pro gram.

Th e speedup S of a dist rib uted program is a function S : N R+ defined as the ra t io

of the program's execu t ion tim e on one p rocessor , T(l), to t he program's executio n

t im e on n pro cessors, T (n):

S(n) ~ ~~:\ .

The p rogr am' s speedup is inftu enced by the parti t ioning funct ion . Th e local ity

of a partition ing func tion is defined as follows : th e local ity of each processo r is the

ra t io be tween its number of loca l s tates and its region size. T he aver age loca lity of

t he d ist ributed p rogram is defined as the arithmetic ave rage of t he local iti es of anthe

processors involved .

All expe riments have been performed. on a cluste r of 32 diskless Linux PCS, each

with 128MB RAM, connected via a 100 Mb ps Et bern et .

Section 4.1 sho ws the progr am's behavior for D-timed.nets , and Section 4.2 prese nts

some results for M· timed nets . Sectio n 4.3 summarizes the resul ts obtained in these

experiments .

4 .1 D - t imed net s

4 .1.1 E xample 1

T he first exam ple is ta ken from (12J. T he net models a par al lel MIMD ar chitect ure.

T he descri pti on of Petri nets follows t he syntax used in TP N· to ols (381. Nets are

desc ribed as collect ions of transit ions, and each transition contains all parameters as.

sociated with it (firing rate or t ime, cho ice probability, inp ut and output places). T wo

differe nt ini t ia l mar kings are used to control the size o f the sta te space .

Th e description of rbe net is as follows:

Dnet (lTl- P2 , Pl ! P3 ;
I T2- P17 . P4! P5 ;
II-T3-P28 .P4!P6;
1I-T4.1 . 0-P4, P3!P7,P4, P2;
' TS*1 . 0- PS! P10 . P4 ;
. TS· l . 0- P6! P21 . P4 ;
' TT , O.S -P7!P9 ;
' TS , O. S-PU PS ;
' T9- Pl l , P10!P12 ;
' Tl O- P 13, P9/ P 14 ;
IT U - P37 , P13/P 15 ;
ITl2 *1 .O-P13 . P1 2!P 16 ,P1 3 , P11;
I T13 *1 . 0-P 14 ! P13 ,P 1 ;
I T14* 1 .0 - P1S/ P30 . P13 ;
. T1S , O. S- P16!P17 ;
er r s , 0 . S- P16/P18 ;
I T21 - P22 . P2 1/ P23 ;
IT22- P38 •P24 / P2S ;
IT 23- P24 ,P8 / P2 6 ;
. T24 *1 . 0-P24. P23/ P27 , P24 .P 22 j
' T2S*1 . 0- P2S/P 30 ,P24 ;
' T26 *1 . 0- P26/P 24, Pl ;
IT 27 ,O. S- P27!P28;
I T28 . 0 . S- P27/P 29 ;
I T29- P3 1 . P30/P 32 ;

66

n 30-P33 . PtS/P34 ;
fl31 " P33 .P29/P3 5 ;
.-r32- l . Cl-P33 .P 32 / P36 .P33 ,P3l;
jJ'f33 - l .o--P34/ P33.Pl 0;
. T34- l .o- P35/ P33 . P2l ;
. T35 . 0 . S- P36 / P38 ;
. T36 , o.S- P36/P 37)

mar k (Pl : 4 , P2 , P4 . Pl 0 : 2 ,P U, P13 , P2 l : l , P22 , P24 ,PJO: l , P31 , P33) ;
mar k (P l :4 , P2 . P4 .P l0:4 . PU, P13 , P2 l : l , P22 ,P24 ,P30 : 1 .P3 1, P33) ;

For th e first marking, t he st at e graph has 14487 stat es a nd 26675 a rcs (Exam ple 1

(a »), whi le for t he secon d marking it has roughly th ree times as many sta tes (46729)

and 92253 arcs (Exam ple 1 (b)) .

F igur e 4.1 shows t he executi on t imes for th e generat ion of t he st ate graphs for th ese

two initi&I mar kings . T he plo ts show that the dist ri buted algori thm's execu tion ti me

decreases when the numbe r of processors increases .

~~L~ ':.:.':. .
Figure 4 .1: Execu t ion tim e for Exam ple 1 (al an d Example 1 (b).

An irre gularity can be observed in F igure 4.1(a) for 18 processo rs; th e execution

t ime grows from 18 secon ds fo r 17 processo rs to 36 seconds for 18 processo rs , an d t hen

dec reases back to 15 seconds for 19 processors .

Th e gro wth of th e execut ion t im e from 17 to 18 processors in Exa mp le l (a) is d ue to

a lower average local ity in th e la ter case (5 % compared to 6 %) which resul ts in a large

67

difference in the (total) wai ting ti me (27 seconds compared to 10 seco nds) . T his wai tin g

t ime "dest roys" th e gen eral ad van tage of usin g mo re processors (on average t here are

less states to process , and less exte rn al messag es per processo r) . For 19 processors the

locali ty is the same as for 18, i.e . 5 %i because t he regions are smalle r for 19 proc esso rs ,

t he total execut ion time decreases from 15 seconds to 8 seconds .

Figu re 4.2 shows th e speedup for t he two cases, for the number of p rocesso rs from

1 to 32.

Figure 4.2: Spe edup for Exa m ple 1 (a) and Examp le 1 (b) .

In orde r to "smoo t h" the speed up curves shown in Figure 4.2, an approximation of

t he speedu p by a bes t fit t ing polynomial of degree 3 is shown in Figu re 4.3.

It can be obse rved that t he character of the speedup cu rves for the two cases is very

sim ilar , however, the speedup is better for t he larger state graphs. f igure 4.4 compares

the two cases with t he id eal speedup Sen) = n i line (i) represe nts the ide al speed up ,

cu rve (a) corresponds to th e speed up for Example l (a), and curve (b) cor responds to

results of Exam ple l (b).

68

LL... . ..'" ,---' -' --'""'""'"-.= =-- ---'
Figur e 4.3: Speedup curves for Example 1 (a) and Example 1 (b) .

:~.~ / .
. .
...

Figure 4.4: Speedup comparis o n for Example 1 (a) and Example 1 (b) .

69

4.1.2 Examp le 2

F igure 4.5 shows th e execution t ime for the problem of the 12 dining phil osoph ers . The

net has 705 states and 90 1 arcs . The relati vely small numbe r o f st a tes is due to t he

fac t that all eating times and all thi nking tim es are equal . If t hese times are different

for d ifferent ph ilosop hers, t he state sp ace grows very quickly. The net description and

t he ini tial mar king are as follows:

Dnet (.tbitlkl -S.oopla/p l b ;
Ilt hiD.k2 - S.oop2&/ p2b;
n hink3- s -p3&/p3b ;
ftb.i.nk4 _s-p4a/p4 b ;
'thi.D.ltS-S .oopSa/pSb ;
ft hink6-S-p6a/p6b ;
. 1;hi llla_s -p7a/p7b ,
IN;ll.inlr.a,,s-pSa lpSb ;
.1;hi.Dk9 "S""P9a/p9b;
'1;hiDklO "s""P loa/plOb ;
Ilt hinkl l"S-pl l a / p l l b ;
.thinkl2"S -pl:2a/pl2b ;
. e a t l"2-plb , j" BI A, S ,pla ;
. e a t :2"2 -p2b , S ,CI a , C,p2a ;
lle a t 3_20.p3b , c ,DIC ,O ,p3a ;
lle a t 4" 2-p4b , D, EID ,E,p4a ;
. e atS" 2-pSb , E, FI E , F , pSa ;
" at S"2 -p6b, F , G/F ,G, p6a ;
. e a t 7"2 zp 7b ,G ,HlG ,H ,p7a ;
. e at S"2 zp8b , K, IIH , I , pS a ;
lleat 9" 2-p9b , I , sri ,J , p9a ;
lJea t l O..2-p lOb , J ,KI J , K, p l Oa ;
ll. atU"2-pllb , K, L/K ,L , p Ua ;
lJeatl2" 2-pl2b , L , AIL ,A , p l 2a)

mark(A ,a ,C,D ,E ,F ,G, K, I, J , K, L,plb , p2b ,p3b , p4b ,pSb, p6b , p7b ,peb , p9b ,plOb ,
pUb,p12b);

Similar ly to t he previous example, the execu tion ti me is im pro ving very qu ickly at

t he begi nning, from 1 to 4 machi nes . It conti nues decreasing up to 19 mach ines, where

a "sa tur atio n" is reached. For 19 processors th e average region size is only 39 sta t.es

in th is case , so the ad vantages of d istributed co mput in g are becoming less signi fican t

because the utili za tion of pro cessors is d ecreasing; processo rs a re sp ending an increas ing

proport ion of time wai ting for data from other processors ; furt her increas e of t he number

of processors ac t ual ly increases the execu tion t ime.

70

Figure 4.5 : Execution t ime for Example 2.

Figure 4.6 shows the speed up and t he speedup fit t ing curve for this exam ple.

1~ §1 r/~

~ L
Figure 4.6: Speed up for Example 3.

4.2 M-timed nets

4.2 .1 Exam p le 3

T his exa mple is ta ken from [12J. The net mod els a paral lel MIMD a rchitec t ure. T he

st a te gra ph has 27399 states and approximately 7 times more ar cs (197337).

T he program has t he following inpu t :

Kne t C. T1" P4 ,P1/P2 ;

71

T2 1. Q-P 2/P7 . P4 ;
_T3" P4 . P3/P6;
_T4-1 . 0",P6 /P9 . P4 ;
_TS=PS . P4/P8 ;
-r6_1.0"P8/P21 .P4;
IIT7.0.S- P7!P12 ;
_T8 ,O. S_P7/P24 ;
_T9" Pll . P9 / P10;
. T10_ 1 . 0=Pl 0 / P14 . P l l ;
IITll" P12 . Pll/ P1S;
IIT12"P 13.Pll/P16;
lIT13_ 1. 0" P1S/Pll , P1 ;
If:T14_1 . 0=P 16 / P29 ,Pll ;
lIT1S, O, S"P1 4/P3 ;
lIT16, O,S "P14/P3 1;
1IT21=P2S. P21/P22;
_T22 _1 . 0"P22/P28.P2S;
lIT23"P2S .P23/P26;
lIT24=P2S , P24/P27;
lIT2S_1. O.P26/P29 ,P2S;
.T26_ 1 . 0" P27 / P2S . Pl ;
. T27, O. S=P28/P5 ;
'T2S, O.S "P28/P33;
lIT29"P 3 2 . P29 / P30 ;
lIT30_ 1 . 0-P30/P3S . P32 ;
lIT3 1"P 32 . P31/ P34 ;
lIT32"P33,P32/P36;
'T33- 1 . 0- P34 / P32 , P9 ;
' T34_ 1 . 0" P36 / P32 .P 2 1 ;
If:T3S ,0 . S=P3S/P23;
If:T36 ,0 . S=P3S/P 13)

mode-E;
mark(Pl:2.P4 ,P9,3 , P ll ,P21,3.P2S ,P29:2 , P32) ;

Figure 4.7; Execution time for Exam ple 3.

T he execut ion time, for the numb er of processors between 1 and 5, chan ges ir

regu larly, it first increases. th en decreases , increases again and only for more t han 5

72

Figur e 4.8: Speedup for Exam ple 3.

processo rs shows a mo re regular tren d. T he increase in the execut ion time from 1 to 2

processo rs is not surp rising . For 1 processo r t here is no communication, the refore t he

processor does not wait for data. Whe n 2 processors are used, 52959 messages are ex

chang ed; eac h processor's executio n time con tains a wait ing time due to this additional

communicat ion .

When the number of processors changes from 2 to 3, it appea rs that the local ity

decreases (from 72 % to 59 %), t he numbe r of messages in the system nearly doubles

(from 52959 to 93801), and the execu tion tim e increases from 27 seconds to 39 seconds.

Th e change from 3 to 4 processors improves th e execution times because the average

locality increases to 71%. For 5 processo rs , the local ity dro ps again to 46%, and t he

execut ion time beco mes large r once more.

Th e execu tio n t ime changes more regular ly from 5 to 32 processors . However , the

execut ion ti me is improving rather slowly. Alt hough the region size dec reases with

increasing number of processo rs , th e number of searc hes due to extern al data per region

is quite large , so t he com putational t ime does not decrease significantly .

T he speedup obt ained in this exam ple is shown in the Figure 4.8.

73

4.3 Conclu ding r emarks

The experiments indica te that the program's execution tim e depe nds on : (1) the average

time needed for processing a single st ate, (2) th e average number of arcs pe r state, and

(3) the locali ty of t he partit ioning fun cti on .

• If the avera ge st ate processin g time is high , the ti me a processor spends in cre at ing

t he successor sta tes is sign ifican t ly red uced with each addit ional processo r add ed

to the virt ual mach in e.

• If t he average num ber of arcs per sta te is lar ge. the number of messages in t he sys

tem grows with each additional processor I thus affecting processor's com putation

t ime (t he searching of external states), an d its wai t ing time.

• If t he locali ty decreases wit h additional processors, the number of messages in t he

sys tem increases , an d , on average, each processor 's wai tin g time increases.

For ne ts with larg e num ber of arcs per s ta te and small sta te processing t ime, th e

communicati on time seem s to dominate tile execu ti on t im e, so only mod er at e speed u ps

can be obt ained. Faster communicatio n medium mig ht im prove th e results.

Dist ributed processing is quite efficient for nets with high state processing t im e and

small number of arcs per state (like D-timed nets) .

74

Chapter 5

Conclusions

Distributed algorithms for the generation of state graphs of Petri nets have evo lved as an

alternative to sequential methods. which, d ue to th eir high computation al and memory

demands, become insufficient for nets with larg e state spaces. However, crea ting efficient

distributed algorithms for this problem is difficult because the irregularity of the st a te

space induces a (larg e) inherent communication overhead (non-local sta tes must be sent

to t heir corresponding processo rs), and a computation overhead (a processor may need

to deal with the sam e external state co ming from several processors).

T his th esis proposes a d istri buted a lgorithm for t he generatio n of state space for

timed Petri nets. The algo ri thm is bu ilt on top of the software package T PN-toois {381.

It is the first distributed algorithm for this class of nets. Similar resear ch has been

conducted for anothe r class o f Petri nets with time, stoch as tic Petri nets . There are

significant differences between these two formalisms , resulting in very different models

of the same syst ems. hut many issues related. to distributed implementation of t he

sequential algo rithms are similar, so a comparison with this other work is instructive .

T he al gori th m proposed in this thesis distinguishes itse lf from the others in the followin g

aspe cts :

• T he p roposed algori th m totally se par ates the co mp uta tio nal as pec t from t he com-

75

mu nica t ion, by the use of the t hree concu rr ent p rocesses pe r machine (Sectio n

3.3).

• Each Generator gives p rio rity to external states over local ones pre venting there

fore redu ndant incoming states from acc um ulating in the memory. All other

algorithms give prio ri ty to local states. T hey wait to receive external states only

after the available local states have been processed.

• T he construction of the state graph is deco mposed into two consecutive stages:

during t he first s tage all th e s ta tes and aces are crea ted, and al l states are sent

to t he proc esso rs resp ons ible for t hem. Du ring t his s tage, cross-arcs directed to

already sent non- local s t a tes are not sen t , bu t s to red. In the second stage, al l

cross-arcs directed to th e sam e non-local sta te are sent in one message. T his

de layed sendi ng has t'NOconseq uences: (I) it reduces the traffic netw or k, so that

th e external states , wh ich are need ed to comp lete t he cons truct ion of th e region,

can be transferred with red uced delays, imp rovin g th e perfo rm ance, and (2) no

ma tte r how m any cross-arcs a p rocessor creates for one no n-local st ate , all arcs

will be sent in at mos t two messag es. Also , the processor responsible for them

needs to search them a t most twice .

T he primary objective of this work , imple mentation of d istributed. state space gen

eration, has been successfully achi eved; the progr am is able to generate state spaces up

to a fairly large size on a cluster of medium memory sized machines (128 MB RAM

diskless Linux PC's).

Exp erimental results suggest that t he perform an ce of t he algorit hm is influenced by

both t he stru cture of th e m odel (the average state processi ng time, th e average num ber

of successo rs per sta te) , a nd th e choice of the par titionin g fun ction (which esta blishes

t he number of cross -arcs).

76

For the class of D--timed Petri nets with a high average state process in g time and

a small average number of arcs per state, the distributed im plementa t icn gives almost

linear speed up. The algorithm allows the generation of relatively large st ate spaces of

this class (an order of l(fi states) in very reaso nable run ti mes. For this class of nets ,

a "be tt er" behavior can be noted when increasing the state space size , which ca n be

attribu ted to large and more un iform ly distributed num bers of states assigned to each

of th e processors.

T he p roposed syste m can be extended in several directions:

• At present, the maxi mum problem size which can be handled is restricted by P VM

memory demands and resource limitations; e.g ., PVM uses dynamically allocated

mem ory for messages en route between processes. Messages sent but not yet

received accumulate in PVM's local daemon's memory. If messages are sent fast er

than the receiving processor consumes them , the dis kless PC runs out of memory.

This limitation will d isappear if a pro tocol wit h mess age ack now ledgm ents is

im plemented . This is a st raig ht forwar d extension; eac h Gener a tor would not send

data to another one befo re havin g a not ice spec ifying th at th e latter is ready for

receiving. It would be interesting to Dote how t his overhead for acknowledging

messages would affect the program's speedup,

• The experiments presented in Chapter 4, as well as the examples in t he lite ra t ure ,

corroborate the observation that the performance of the distributed state space

generation algorithms is in6uenced by t he partit ionin g funct ion . The partitioning

fun cti on used here achieves a very good memory bal an ce . However, a function

with a better locali ty would reduce t he traffic in th e sys tem, an d t here fore, the

commu nicati on overh ead . Un fort unately, finding a good partit ioning func tion

from tbe net's st ructure is a non- trivi al t ask , which clearly need s more research .

77

As an alte rna tive , the program's perform ance could be impr oved by using dynamic

partitioning mechanisms. Dynami c partitioning remaps states to processors ac

cording to two criteria: memory balance, and execution time.

Finally , the developed distributed implementat ion of the state space genera tion can

be used. as a starting point for a distributed steady sta te sol ut ion of the state graph, a

"natural " next step in quantitative analysis of timed. net mod els.

78

Bibliography

[11 T . Agerwala, "Put t ing Pet ri Nets to Work" ; IEEE Computer, vol. 12, no . 12,

p p . 85-94, 1979.

[2] T . Agerwala and M. Fl yn n , "Comments on Ca pabilit ies, Limitati on, an d 'Correct

ness' of Petri Nets" ; Proc. of the FiT3t Annual Symp . om Compu.!er Archit ecture,

pp . 81-86 , 1973.

[3) M. Ajm one Marsaa, G. Balbo, and G. Conte. "A Class of Generali zed Sto chasti c

Petri Nets for t he Perfonn ance Eval uat ion of Syst ems": ACM 1iunsac ti ons on

Computer Systems , vol. 2, no. 2, pp. 93- 122, 1984.

(41 M. Ajmo ne Marsa n, G. Balbo, and G . Conte , Perf orm ance Models of Multiproces

sor SysfemtJ. MIT Press, 1986.

[5J M. Ajmone Marsan , G . Balbo, G . Con te, S. Donate lli, and G. Franceschinis, Mod

elling with Generalized Stodttutic Pet ri N eu . Wiley Series in Par allel Comp uting,

Wiley, New York, 1995.

{6) S. C. Allmaie r and G. Hort on, "Par al lel Shared-Memory Sta te-Spa ce Explora t ion in

Stochastic Mo deling" ; Solving lrregularlV .ftructured Probtems in Parall el (lR R EG

ULA R'91) , Lecture Not es in Compu ter Science, vol. 1253, pp . 207-2 18, Springer

Verlag, 1997.

79

[7J S. C . Allmaier, M. Kowarschik, and G. Horton , "State Space Co nstruct ion and

Steady State Solution of G PS N on a Shared Mem ory Mult iprocessor" ; Proc. IEEE

Int . Worbhop Petri. Neb and Perf0TTn4ru;.t!. Models (PN PM '91), pp . 112- 121,

IEEE Co mputer Society, June 1991.

[8J S. Allmaier, S. Dalibo r, and D. Kreische , "Par allel Graph Generation Algorithms

for Share d and Distri but ed Memory Machines" ; Parall el Computing: Fund a

m entals, Appli cations and New Directions [Proe. of the Conference ParCo '91)

(E . D'Holian der, G. J oubert , F. Peters, and U. Tro t tenb erg , eda.] , Adv ances in

Parallel Com puting, vel. 12, pp. 581-588, Elsevier , Nort h-Holl and, 1998.

[9} S. Allmaier and D. Kre ische, "Par al lel App roaches to the Numeri cal Transient

Anal ysis of Stochastic Reward Nets"; App lication and Theo ry of Petri Nets 1999

(Proc. 20th Inmnational Conferen ce, IA CTPN'99) (5 . Don a telli and J . Klej n,

eds.), Let:ture Not es in Computer Scien ce, vol. 1639, pp. 141-16 7, Springer-Verlag ,

1999.

[1O} G . Balbo, "On th e Success of Stoc hast ic Pet ri Nets"; Proc. of the IEEE Conf. on

Petri Neb and Perf orm ance Models (P NPM'95) , Durham, NC , PP. 2-9 . October

1995.

[IlJ F. Bause and P. Kri nzinger , StocluuJtic Petri Nw - An Introd uction to the TheDryj.

Vieweg, Wiesbaden, 1996.

[12J S. Casel li and G. Conte, "G5 P N Models of Concurrent Arch it ect ures with Mesh

Topolo gy" ; Fourth Int . Workshop on Petri Nets and Performana Models (PNPM

91) , pp . 280-28 9, IEEE Co mp ut er Society, 1991.

80

(13) G . Chicle, M. Ajmone Marsan, G. Bal bo , and G. Cont e, "Generalized Stochastic

Pet ri Nets; A Definition a t the Net Level and its Implications" ; IEEE 7hmsaction.f

on SoftV14re Engineering , vol. 19, p p - 89-107, February 1993.

[14] C. Co ves, D. Crestan i, and F. Pruner, "How to Manage Cove rability Gra phs Co n

struction : an Overview" ; Proc. IE EE Int . Conf . on Systems, Man, and Cybernetics

(SMC'98), pp. 541- 546, 1998. San Diego, Califo rnia .

[151 E. Dijkstra, W. Feijen, a nd A. van Gasteren , "Derivation of a Termina tion De

tect ion Algorit hm for Dist ri bu ted Com putations" ; Information Prouning Letters,

vel. 16, no. 5, pp. 217-219, 1983.

[16] D. Ferrari, Computer Systems Per/orTrlan« EvaLU4tion. Prentice-Hall , Inc., 1978.

[17J G. Florin and S. Natkin , "One-P lace Unbounded Stochastic Petri Nets : Ergodic

Criteria and Steady-State Solu tions" ; Joum aLof Systems and Software, vol. 6,

DO. 1-2, pp. 103- 115, 1986.

[181 A. Geist , A. Beguelin, J . Don garra , W. Jiang, R. Manchek, and V. Sunderam ,

PVM; Parallel Virtual Machine. A Users ' Guide and Tutorial/or Networked Par

allel Computing. MIT Press, 1994.

[19] B. Haverkort , A. Bell , and H. Bohnenkamp, "On the Efficient Seq uential and Dis

tributed Generat ion of Very Large Markov Chains from Stochastic Petri Nets " ;

Proc. IEEE Int. Workshop Petri Neu and Perfonnana: Model.! (PNPM '99J,

pp . 12- 21, IEEE Comp uter Soc iety, Sep tember 1999.

[201 K. Kant , Introduction to Computer Syst ems Perfonna nce Evaluatio n. McG raw

Hill , Ine., 1992.

81

(211 W. Knotte nbelt , M. Mestem , P. Harriso n , and P. Kritzinger, "P ro ba bility, Paral

lelism and t he State Space Exploration Problem" ; Computer Perform once Eval

uation (TOOLS'98j , Lecture Now in Compukr Saena, ve l. 1469, pp . 165-179,

Springer-Verlag, 1998 .

(221 H. Kobayashi, Mod eling and An41ym : An Introd uctio n to Syst em P er/ orTRana.

Eva1uation Meth odology. Addison-Wesley Publish in g Co., 1978.

(231 P. Mare nzoni , S. Caselli , and G. Conte, ".o\na lys is of Large GS PN Models: a

Dist ributed Sol ution Tool" ; Proc. IEE E Int . Worb hop Petri N ets and Per/ ormana.

Mod~ls (PNPM'97j, pp . 122- 131 , IEEE Co mputer Society, J une 1997.

[241 M. K. Molloy , On the In f~gration 0/ Delay and Throughp ut M easures in Distribut~d

Proc~ssing Models. Ph D th esis, Univers ity of Cal ifo rnia, 1981.

[25J M. K. Molloy, "Pe rfo rmance Analysis Using Stochastic Pet ri Nets" ; IEEE nuR.!

actioR.! on Computer", vol. G-31 , no. 9, pp . 913-917, 1982 .

(261 T . Mur ata, "Pet ri Nets : Properties, Analysis, a nd App lica t ions " ; Proceeding" 0/

tk IEEE, vol, n , no . 4, pp . 541- 580, 1989.

(27J S. Natkin, De3 RU e4fU de Petri SWch~tique.s et leu r Ap plicat ion a l 'Eva1uotion

des System e.s In/ orTnatiques. PhD t hesis, CN AM, Paris, 1980 .

(28J D. M. Nico l and G . Ciardo, "Auto mat ed Peralleliaatica of Discrete State-Space

Generation" ; J ournal 0/ Paraild and Distributed Computing, vol. 47 , no . 2, pp . 153-

167, 1997.

(29J D. Nicol, "Nonco m mital Barrier Synchroniza tion" ; Pam llel Computing, vol. 21,

DO. 4, pp . 529-549, 1995.

82

(301 D. Nicol an d G . C lardo, "Dist ri buted State Space Genera tion of Disc ret e State

Stochastic Models"; INFORMS Journal on Computing. vol. 10, no . 1. pp . 82-9 2.

1998 .

[31] J . Peterson. "Pet ri Nets" ; AC M Computing Su",'eIJ~ vol. 9. no. 3. pp . 223-252.

1977.

(321 J. Peterson. Petri Net Th eo11land the Modeling 01 Systems . Prentice Hall . 1981.

(33] C. Snow , COnCUTnT1t Programming. Cambridge Unive rs ity Press. 1992.

[34] W. Ste wart. In troducti on to the Nume ri rol Solution oj Markov Chains. P rin ceton

University P ress . 1994.

135] P. Stotts and T. Pratt, "Covera biliry Graphs For a Class of Sy nchronously Ex

ecut ed Unbo unded Petri Nets"; Journ al 01 Pam/ lei and Distribu ted Comp uting .

vol. 10. no . 4. pp. 253-260, 1990.

[36J B. St roustrup. The C+ + Programming Lan!JU4ge(3-rd ed.). Addison-Wesley P ub

lishing Co. , 1997.

(37] G. Tel, Topics in Dis tributed A lgorithms . Cam bridge Universi ty Press , 1991.

[38] W . M. Zube rek, "'Timed Petri Nets: an In troduct ion - lecture notes for course

"Modeling and Analysi s of Computer Systems.... ; Memorial University of New

foundland, Canada . 1998.

1391 W . Zubere k, "M· t im OOPetri Nets, Pri orities, P ree mpt ions, an d P erforman ce Eval

ua t ion of Systems" ; Advances in Petri nets 1985 (G . Rozenberg, 00.). Lecture Not es

in Computer Sci ence . vol. 222. pp . 478-498 , Springer-Verlag. 1986.

83

(401 W . Zuberek, "On D-TLmed. Petri Nets, T imeouts, Protocols, an d Modelling of

Communicating Systems" ; Tech. Rep . # 8609 , Department of Com puter Science,

Memo rial University of Newfoundlan d, Canada , Novembe r 1986.

[411 W . Zubere k, "O n M- Timed P etri Net s, Priorit ies , Pr eempt ions, and Performance

Eval ua tion of Sys t ems"; Tech. Rep . # 8606, Department of Comp uter Scien ce,

Memo rial Un iversity of Newfound lan d, Canada, Au gust 1986 .

[421 W . Zuberek, "On Modelling and Evaluation of Multiprocessor Sys tems Using Ex

tended M- Timed. Pet ri Nets" i Tech. Rep. # 8605 , Department of Compute r Sci

ence, Memo rial University of Newfound la nd, Can ad a, August 1986.

[431 W. Zubere k, "O n Generati on of Sta te Space for T imed P etri Nets" ; Prec. of ACM

16th Annual Com puter Science Conference , Atl anta, Geor gia , pp. 239- 248, ACM,

Feb. 1988.

[441 W. Zuberek, "Timed Petri Nets , Definitions, Properties, and Applications" ; Mi

croelectroniC-' and Rd iabilit ll, vel. 31 , no. 4, pp. 627-644, 1991.

[451 W. Zub er ek, "Mo de ling wit b Timed Petri Nets - E vent- Driven Sim ulation " ; Tech .

Rep. #9602, Department of Co mputer Science, Memorial University of Newfound

land , C anada, Sep tember 1996 .

84

	0001_Cover
	0002_Inside Front Cover
	0003_Blank Page
	0004_Blank Page
	0005_Title Page
	0006_Abstract
	0007_Acknowledgements
	0008_Table of Contents
	0009_Table of Contents iii
	0010_Table of Contents iv
	0011_List of Tables
	0012_List of Figures
	0013_Chapter 1 - Page 1
	0014_Page 2
	0015_Page 3
	0016_Chapter 2 - Page 4
	0017_Page 5
	0018_Page 6
	0019_Page 7
	0020_Page 8
	0021_Page 9
	0022_Page 10
	0023_Page 11
	0024_Page 12
	0025_Page 13
	0026_Page 14
	0027_Page 15
	0028_Page 16
	0029_Page 17
	0030_Page 18
	0031_Page 19
	0032_Page 20
	0033_Page 21
	0034_Page 22
	0035_Page 23
	0036_Page 24
	0037_Page 25
	0038_Page 26
	0039_Page 27
	0040_Page 28
	0041_Page 29
	0042_Page 30
	0043_Page 31
	0044_Page 32
	0045_Page 33
	0046_Page 34
	0047_Page 35
	0048_Page 36
	0049_Chapter 3 - Page 37
	0050_Page 38
	0051_Page 39
	0052_Page 40
	0053_Page 41
	0054_Page 42
	0055_Page 43
	0056_Page 44
	0057_Page 45
	0058_Page 46
	0059_Page 47
	0060_Page 48
	0061_Page 49
	0062_Page 50
	0063_Page 51
	0064_Page 52
	0065_Page 53
	0066_Page 54
	0067_Page 55
	0068_Page 56
	0069_Page 57
	0070_Page 58
	0071_Page 59
	0072_Page 60
	0073_Page 61
	0074_Page 62
	0075_Page 63
	0076_Page 64
	0077_Chapter 4 - Page 65
	0078_Page 66
	0079_Page 67
	0080_Page 68
	0081_Page 69
	0082_Page 70
	0083_Page 71
	0084_Page 72
	0085_Page 73
	0086_Page 74
	0087_Chapter 5 - Page 75
	0088_Page 76
	0089_Page 77
	0090_Page 78
	0091_Bibliography
	0092_Page 80
	0093_Page 81
	0094_Page 82
	0095_Page 83
	0096_Page 84
	0098_Blank Page
	0099_Blank Page
	0100_Inside Back Cover
	0101_Back Cover

