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Abstract

Development of complex systems is usually preceded by detailed studies of their models.
For concurrent systems, Petri nets have proved to be a convenient modeling formalism

because of their ability to express
and nondeterminism. Timed Petri nets also take into account the durations of modeled

as well as itative analysis of models. The behav-

ior of Petri nets is represented by their state spaces, which are Markov (or embedded
Markov) chains. For large models these state spaces easily exceed the resources of a
single computer system. Readily available networks of computers provide an attractive
alternative to complex methods of state space reduction or aggregation.

The main objective of this project is to use a cluster of PC’s or workstations for
the state space generation of timed Petri nets. The distributed algorithm uses a divide
and conquer technique: disjoint regions of the state graph are constructed on different
machines. On each machine the ication is from the

part, and is d by two iali one receiving, and one

sending messages. The implementation is based on PVM (Parallel Virtual Machine)
using a modified version of TPN-tools, a software package for the analysis of timed
Petri nets. Experiments performed on a cluster of 32 PC's connected via a 100 Mbps

Ethernet show almost linear speedup for some classes of timed Petri nets.
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Chapter 1

Introduction

D of complex, real Id systems is usually preceded by detailed studies

conducted on formal models. Formal, mathematical models are used for the verification

of system’s ies and for the ivation of its isties [16, 20,

29].
For systems which exhibit concurrent activities, Petri nets are a good choice of mod-
eling formalism, because of their ability to express concurrency, synchronization, prece-

dence ints and inis Petri nets “with time” (stochastic

or timed) include the durations of modeled activities into the system’s description and
this allows the study of performance aspects of the modeled system. The analysis
of a Petri net model of a system provides many useful insights; the net’s qualitative

ies ch ize the system’s behavioral ies [1, 26], while the ability to

incorporate time into the description allows the derivation of that system’s quantitative
characteristics [4, 20, 39].
Three basic approaches to the analysis of Petri net models are known as structural

analysis, reachability analysis and, for ti nets, di

(32, 38]. Structural methods predict the properties of net models on the basis of their



(ie., i between el ) analysis is usually rather
simple, but it can be applied only to nets with special properties. Net simulation [45]
is based on the fact that a (timed or stochastic) Petri net is a discrete event system,

where the events are related to the net ition firings i ion can
be applied to a larger class of nets, but may sometimes not capture events which occur
very rarely.

Reachability analysis is the most suitable method when a detailed analysis of the
model’s behavior is needed. Based on the exhaustive generation of all model’s states and
transitions between the states, reachability analysis answers questions about reachable
states, liveness, ds i deadlock exi: etc. [26, 32]. The first

and most memory consuming step in reachability analysis is to determine all the states
of the net and the possible relations among them. This information is organized in a
directed graph, called the reachability graph (in which the nodes are the net’s states
and the directed arcs the possible stats iti The ility graph is

used for checking the properties mentioned above. For timed and stochastic Petri nets
(with inistic or ially distri firing times), this graph is a Markov

chain, whose steady state behavior can be determined using known numerical methods
(22, 34]. The steady state probabilities are used to derive performance measures of the
net, from which performance aspects of the system can be obtained [4, 11].

The power of reachability analysis lies in its ability to characterize the exact behavior
of the system. However, while yielding good results for simple models, this method
cannot be applied to nets with very large state spaces. For such nets, the memory and
computational requirements can be too large for a single machine. There are two basic
methods to cope with this problem [10]: avoidance methods, which use net properties

to obtain a smaller state space, and tolerance methods, which accept that the state



(in icular parallel /distril
to generate it. The current availability of clusters of workstations and portable libraries

space is large and use various

for distributed computing makes the second approach very attractive: the state space
can be constructed in a distributed manner, using a collection of processors.
While there have been several papers published on distri ion of state

spaces of systems [28, 30] and on parallel and distributed state space generation for
stochastic Petri nets [8, 6, 7, 9, 23], very little i ion is for distril

analysis of timed Petri nets.

This thesis proposes a distril il for the ion of state space for

timed Petri nets. The algorithm has been implemented in C++ using the TPN-tools
(38], STL [36], and PVM [18] libraries, and then tested on the network of PC’s and
workstations in the Department of Computer Science, Memorial University of New-
foundland. Experimental results show almost linear speedup for some classes of timed
Petri nets.

This thesis is organized as follows: Chapter 2 presents the theoretical background
of the problem and an overview of the literature. Chapter 3 introduces the proposed
distributed algorithm. Chapter 4 presents experimental results. Performance analysis,

and possible ions are di d in Chapter 5.




Chapter 2

Petri nets and state space

generation

The first two sections of this chapter provide a short introduction to place/transition
Petri nets and the generation of their markings (in the case of basic and stochastic
Petri nets, markings are often called states; for timed nets, markings and states are

two different concepts). Section 2.3 presents Petri nets augmented with the durations

of activities and di the ion of their state space. The final section reviews
the current li on distri ion of the state space for stochastic Petri
nets.

The presented definitions are similar to those in [39]. The notation follows [39, 38].

2.1 Introduction to basic Petri nets

All basic place/transition Petri nets are characterized by their structure, their current
marking, and execution rules defining their behavior. Basic concepts of Petri nets are

introduced in the following section.



2.1.1 Basic Petri nets

Definition 2.1 A Petri net is a triple N = (P, T, A) where:
e P is a finite set of elements called places,
e T is a finite set of elements called transitions,

with

e Ais a set of directed arcs ing places with itions and

places, ie, ACPxTUT xP. O

Definition 2.2 Let N = (P, T, A) be a Petri net, ¢ a transition, ¢ € 7', and p a place,
p € P. The input set, Inp, and the output set, Out, of a transition ¢ or a place p
are defined as follows:

Inp(t) = {p | (p,?) € A}, Out(t) = {p | (,p) € A},

Inp(p) = {t | (t,p) € A}, Out(p) = {t | (,t) € 4}. O

The dynamic behavior of the net is represented by the distributions of the so-called
tokens associated with places of the net. This association is called a marking of a net.
A net with a marking is called a marked net.

Definition 2.3 A marking of a Petri net N = (P,T, 4) is a functionm : P — N
which assigns a non-negative number of tokens to each place of net N. A place p is
marked by the marking m if it contains at least one token, m(p) > 0, otherwise it is
unmarked by m. A marked net is a pair M = (N, mg), where N is a Petri net and
m is a marking of N, called the initial marking. O

A basic Petri net is a bipartite graph, usually drawn with circles representing places

and 1 i iti The tokens are represented as black dots inside

the circles.



Example 2.1 [38] The Petri net in Figure 2.1 models a consumer-producer bounded-
buffer system. The subnet (¢,, py, 2, p2) represents the producer process which produces
an item (¢,) and stores it in the buffer (t,) provided that there is space for it (condition
ps)- The subnet (Z3,ps, t4,ps) represents the consumer process, which fetches an item
from the buffer (t5) provided that the buffer is not empty (condition ps) and consumes
it (t). O

Figure 2.1: Producer-consumer bounded buffer model.

The behavior of a basic net is reflected by the changes of the marking function. A
change of a marking function is performed by an occurrence (or a firing) of an enabled
transition. A transition is enabled if all its input places contain at least one token. A

oceurs by si ing one token from all its input places and

adding one token to all its output places.

Definition 2.4 Let N = (P, T, A) be a Petri net, ¢ a transition, and m a marking of

N. The transition ¢ is enabled by m iff:
Vp € Inp(t) : m(p) > 1.
The set of all transitions enabled by a marking m is denoted E(m). O

A marking m' is directly reachable from a marking m if m’ can be obtained from m

by an occurrence of an enabled transition.



Definition 2.5 Let N = (P, T, A) be a Petri net, and m and m’ be two markings. m’
is directly reachable from m iff there exists a transition ¢ € T enabled by m such

that:
m(p) +1, ifp € Out(t) and p ¢ Inp(t);
VpeP: m'(p) =q m(p)—1, ifp € Inp(t) and p ¢ Out(t);
m(p), otherwise. O

The notation m-sm’ indicates that m' is directly reachable from m by firing the
transition ¢, and the notation m—m’ indicates that m' is directly reachable from m
by firing some transition.

The general reachability relation between markings is defined as the reflexive tran-
sitive closure of the direct reachability relation.

Definition 2.6 A marking m’ is (generally) reachable from a marking m (m=>m’)

if there exists a sequence of markings mq, - . ., My such that mq = m, m, = m’', and

Y0 <i<n:miypomi O

Definition 2.7 The ility set, R(M), of a marked Petri net M = (N, mo) is
the set of all possible markings reachable from the initial marking my, i.c.,

R(M) = {m | mg-5m}.
If the set R(M) of a marked net M = (N, my) is finite, the net is bounded, otherwise

it is unbounded. O

‘The reachability set of a marked net, together with the direct reachability relation,
form the reachability graph, which is a complete description of a marked net’s behavior.

For bounded nets this graph is finite.



Definition 2.8 The ility graph of a marked Petri net M = (N,mg) is a

labeled directed graph G(M) = (V; D, ) where:
© V is the set of vertices, V = R(M),
® D is the set of directed arcs, D = {(m;,m;) | m;,m; €V A masm;},

o L is the arc labeling function, [ : D — 2T; for each arc (mi,m;) € D, I(my, m;)

contains all those it whose firing m; into m;:

I(mq,my) = {t | t € E(m;) A mpm;}.0

Example 2.2 Figure 2.2 shows the reachability graph for the net in Figure 2.1. O

01.01.20]
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Figure 2.2: Reachability graph for the producer-consumer bounded-buffer model.

2.1.2 Extensions of basic Petri nets

Several extensions of basic Petri nets have been proposed in the literature. The most

common one is attaching weights to arcs (26, 32]. Petri nets with weights have the

8



same expressive power as the basic nets, so the weights are used only as a modeling

convenience.

An extension of basic Petri nets which signi increases the power of

the basic model is the addition of the so-called inhibitor arcs [2]. Nets with inhibitor
arcs are called inhibitor nets.

Definition 2.9 An inhibitor Petri net is a quadruple N = (P, T, A, B) where (P, T, A)

is a basic net, and B is a set on inhibitor arcs, B C P x T, which is disjoint with A,
ANB = 0. The set of places connected by inhibitor arcs with a transition ¢ is called the
inhibitor set of ¢, and is denoted Inh(t), Inh(t) = {p € P | (p,t) € B}. In inhibitor
nets, a transition ¢ is enabled by a marking m if all its input places are marked and all
places in its inhibitor set are unmarked:

(Vp € Inp(t) : m(p) > 0) A (¥p € Inh(t) : m(p) =0). O

Another important extension of basic Petri nets introduces the durations of modeled
activities (Section 2.3).

There are several important structural properties of inhibitor nets.

Definition 2.10 Let M = (N, mq) be a marked inhibitor net. A place is shared if it
belongs to the input set of more than one transition. A shared place is guarded if for
each pair of transitions sharing it, there is another place which is in the input set of one
transition, and in the inhibitor set of the other transition. A place is free—choice if the
input sets and inhibitor sets of all transitions sharing it are identical. All transitions
sharing a free-choice place are in a free—choice relation. A place is a conflict place if it

is shared but it is neither guarded nor free-choice. Transitions sharing a conflict place

are in ial conflict icti iti An inhibitor net is free—choice iff

each shared place is either guarded or free—choice. O

9



In free—choice nets, the free-choice relation is an equivalence relation in the set
of transitions, T, and therefore determines a partition of the set of transitions into

free—choice equivalence classes:

Free(T) = {T1, Ta, .. Te}.

2.1.3 Selection of firings for conflicting transitions

For the net shown in Figure 2.3 , the transitions sharing place py, i.e., t, 4, and tg,
are in potential conflict. Transitions ¢, and t4 are both enabled but only one can occur.

A i h is needed to ds ine all possible inations of

for nets with

Figure 2.3: Central server model.

Definition 2.11 Let N = (P, T, A) be a net, and m a marking. For each transition
t € T, enabled by m, its conflict class CC(m, ), is defined as follows:
CC(m,t) = {t' € E(m) | Inp(t) N Inp(t') #0 vV

3t" € E(m) : Inp(t) N Inp(t") # 0 A '€ CC(m,t). O

10



The notion of choice of the firing transition can be expressed formally as a choice
function ¢ : T ~ [0,1], which assigns free—choice probabilities to free-choice equiva-
lence classes and relative frequencies of firings to the conflicting transitions.

The different combinations of transitions which can start their firings for a given
marking are described by the selection set, a set of selection functions which describe
different “selections” of firings.

Definition 2.12 [44] Let N = (P, T, A) be a Petri net, and m a marking. A selec-
tion of the marking m is a function g : T — N, describing a possible combination of
transitions which can start their firings for m, i.e., g is any function such that:

1. There exists a sequence of markings, o = (mg, my, .., mx), and a corresponding
sequence of transitions, (ti,... %), such that m = myg, t; € E(m;-y) for j =
1,...,k, and:

e P m) =m) - | 1 7S P
0, otherwise.

2. The set of transitions enabled by the final marking m is empty, ie., E(m) = 0.

3. For each transition t, g(t) is the number of occurrences of ¢ in the sequence o.
The set of all selections of a marking m is denoted by Sel(m). O
Definition 2.13 Let N = (P, T, A) be a Petri net, ¢ a choice function for N, and m
a marking of N. A selection graph of the marking m is a rooted, directed, labeled,
(acyclic) graph G = (V, U, vo, f,q, qn) where:

o V is a finite set of vertices, which are pairs of functions (m;,n;), m; : P — N,

n; : T — N, such that:

VpePimp)+ D, mult) =mp)
teOut(p)

11



© U is a set of directed arcs, U C V x V, such that:
((mi,n:), (mj,n;)) €U <= 3te € E(m;) : mj = sub(m;, t) A n; = add(n;, t),

where:
mi(p), if p & Inp(te);
mi(p) — 1, if p € Inp(te);

Vp € P : sub(m;, te) (p) =

ni(t), ift#t;

n(t) +1, ift =ty

vt € T : add(ns, t) (£) =

© v is the root, vy = (m, np), where no(t) = 0 for all t € T;
e f is an arc-labeling function which associates a transition ¢ € T with each arc
(vi,v;) € U:
F(mene), (msymy)) = te <= te € E(me) Amy = sub(my, t) Any = add(n, te);
® g is another arc-labeling function which assigns, to each arc (v;,v;) € U, the
probability of transforming v; into v;:
10, if f(v,v;) is conflict-free,

V(vs, v;) €U : q(vi,vy) =4 e(f(viv5)), if f(v;,v5) is free—choice,

® g, is a node labeling function, g, : V + [0, 1], which assigns a probability g(z) to
each node z of the selection graph such that gs(v) = 1 and:

Vz eV - {u}:qlx) = W *alv.z) o
z €V — {w} : g() ﬁ;ﬂz)zlsﬁ‘&mq(%z)

Example 2.3 Let ¢ be a choice function for the net in Figure 2.3 such that c(t;) = 0.1
for i =1,3,5,6, c(t) = 0.3, and c(ty) = 0.2. Figure 2.4 shows the selection graph for
the initial marking (1, 1,0,1,0,0,1). The probabilities g(v;) are shown in brackets. OJ

12
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Figure 2.4: Selection graph for Figure 2.3 .
2.2 Generation of the reachability graph

A typical i for the ion of the hability graph of a (bounded) net

is given below. There are several variations of this i but the di are

rather insignificant (e.g., using a stack instead of the queue [7]).

2.2.1 Sequential algorithm
graph i

(* initial marking *)

(* set of markings *)

(* set of arcs *)

(* queue of unexplored markings *)
(* search tree *)

insert(search_set, mg);
insert(unezplored, mo);

11 m := remove(unezplored);

12. for ail m' € successors(m) do
13. if m' & search_set then
14. Tset :=rsetU {m'};

15. insert(unezplored,m');
16. insert(search_set,m')
17. endif;

18. arcs == arcs U {(m,m')}

19. endfor

20. endwhile

21. end.

This algorithm constructs the reachability graph G = (rset, arcs) for a Petri net N

13



with an initial marking mq. It uses a queue, unezplored, for the unexplored markings,
and an auxiliary search data structure, search._set, for efficient checking of whether a
marking has already been generated. The function successor(m) returns the markings
directly reachable from m.

The algorithm terminates for nets having a finite reachability graph. It does not
terminate, however, for nets with infinite state spaces (i.e., for unbounded nets).

net can be to its

The infinite state space of an
tree or to its coverability graph [26]. A marking in the coverability tree uses a special
symbol to express that the number of tokens in a place can grow infinitely. The cov-
erability graph can be obtained from the coverability tree by collecting together the

nodes with the same marking and the arcs
Research has been conducted on handling the case of unbounded nets [14, 17, 35]. In

[17], a solution is given for a special class of unbounded stochastic Petri nets (nest with

exactly one place). Other hes are based on using the coverability

graph as a fon of the reachability graph. Several method for

constructing coverability graphs are given in [14, 35].

2.2.2 Net properties based on the reachability graph

I net ies related to the ility graphs include boundedness, reacha-

bility, ility, persi i liveness, etc. These properties are very
useful in the modeling of systems because they can be directly related to the modeled
systems’ qualitative properties [20, 26, 31, 32].

Definition 2.14 Let M = (N, mo) be a marked net and k a natural number, k € N.
A place p of the net is k-bounded iff the number of tokens assigned to p by any
reachable marking does not exceed k. The net is k-bounded iff the number of tokens

14



assigned to any place by any reachable marking does not exceed k:
¥m € R(M) Vp€ P:m(p) <k.

A net is bounded if it is k-bounded for some k£ € N. A 1-bounded Petri net is called
safe. O

Bounded nets are useful in modeling systems with finite capacity resources; finite
capacity buffers, for instance, are usually represented by bounded places. The safeness
property must usually be satisfied by nets in which places model conditions: the true
or false value of the condition is reflected by the existence or absence of a token in the

corresponding place.

Definition 2.15 A marking m of Petri net N is dead if no transition is enabled by m,
ie., E(m) = 0. A marked net M = (N,mo) contains a deadlock if its set of reachable
markings contains a dead marking:

Im € R(M) : E(m) = 0.

A marked net M = (N, mo) has a livelock if there exists a proper subset S of its
reachability set, S C R(M), such that once a marking from S is reached, no other
element from R(M) — S can be reached:

3SCR(M)Vm e S Vm' € RM) :moHm’ =>m' € 5.0

Definition 2.16 Let M = (N, m;) be a marked net. The net is live iff for any reach-
able marking m and for any transition t € T there exists a marking reachable from m

which enables #:
Vm e RM) Yt € T 3m’ € R(M) : m5m’ At e E(m'). O

15



Net models of operating systems are usually required to be live; the property of
liveness implies the absence of deadlocks.

Definition 2.17 Let M = (N, m) be a marked net. A marking m € R(M) is cover-
able iff there exists another marking, m’, reachable from m, such that every place has

at least the same number of tokens in m’ as in the marking m:

3m' € R(M) : mSm' A (Yp€P:m'(p) 2m(p). O
Definition 2.18 [26] Let M = (N,mg) be a marked net. The net is persistent if,
for any reachable marking m, m € R(M), and for any two transitions enabled by m,
the firing of one transition does not disable the other:

Vm € R(M) Vit t; € E(m) : mim’ = t; € E(m). O

Definition 2.19 Let M = (N, mo) be a marked net. The net is conservative iff for
any marking m reachable from mq the total number of tokens in m is the same as in
mg:

vm e R(M) : Y m(p) = mo(p). O
pEP PEP

For nets in which tokens represent resources, the property of conservation reflects
the preservation of resources in a system.

Because bounded nets have finite reachability graphs, all their behavioral properties
can be verified by the ive analysis of the ility graph. For unbounded

nets (which have infinite reachability sets) some of these properties, such as persistence

and coverability, can be analyzed using the coverability tree [26, 31, 32].

Example 2.4 The net in Figure 2.3 models a central server with three kinds of jobs.
From its state graph (shown in Figure 2.5) it can be seen that the net is live, safe, and

conservative. (]
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Figure 2.5: Graph of reachable markings for the net in Figure 2.3.
2.3 Time-augmented Petri nets

‘While basic Petri nets are useful for the analysis of qualitative properties of systems,
they cannot be used for performance evaluation because they do not represent the
durations of modeled activities. Several Petri nets “with time” have been proposed by
introducing temporal descriptions in different ways (3, 4, 13, 5, 11, 24, 25, 27, 39, 41, 44].

There are three main aspects with regard to the addition of temporal information
to Petri nets: time can be associated with places or with transitions, timed activities
can be deterministic or stochastic, and different “firing execution policies” can be used.

with itis (timed

Two classes of nets in which time is

are known as stochastic Petri nets and timed Petri nets. In stochastic nets, the time is

introduced in terms of a delay before the (i firing of a ition occurs;
in timed nets, the time determines the duration of the transition’s firings. For both
these classes of nets the graphs of reachable states are Markov chains. The steady state
probabilities of the states of a Markov chain can be determined using known techniques
[34], and can be used for determining quantitative properties of the net models.

This thesis is concerned with the generation of the state space of timed Petri nets.

An overview of similar research that has been conducted for stochastic Petri nets, is
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given in the last section of this chapter. A brief introduction to stochastic Petri nets

follows.

2.3.1 Stochastic Petri nets

In stochastic Petri nets [4, 11, 13, 24, 25, 27] there is a time delay from the moment
when a transition becomes enabled to the moment when it fires. This time is a random

variable with an exponential distribution.
Definition 2.20 A stochastic Petri net (SPN) is a pair § = (M, d), where:
e M = (N, mq) is a marked net,

e d is a function which, for each transition t € T, specifies the rate of the firing
delay associated with it, d : T — R*. The firing delay of a transition t € T is an
exponentially distributed random variable X, with the rate d(t); the probability

that the delay is greater than y, y > 0, is:
Prob(X, >y) =e v 0O
In stochastic nets the firing delays associated with transitions can be marking de-

pendent.

A stochastic net has the ing firing ior: once a ition ¢ is enabled,

the tokens must remain in ¢’s input places for the time described by the firing delay
function. When this time has elapsed, the tokens are removed from the input places of
the firing transition and added to the output places of this transition.

Similarly to basic Petri nets, a state of the net is completely described by the token

distribution in places. The state space of ic nets is the

set of basic Petri nets.



Molloy has shown [24] that due to the memoryless property of the exponential dis-
tribution, the reachability graph of an SPN is a continuous-time Markov chain [16, 20].
For ergodic continuous-time Markov chains (i.e., for Markov chains which have a steady—

state solution), the dy ilities can be ined by solving a system of

linear i [34]. The dy-st; bilities can be used for determining the
mean number of tokens in a place, the mean number of a transition’s firings in the time
unit, the throughput of a transition, and many other properties [4, 11].

A popular generalization of stochastic Petri nets is known as generalized stochastic
Petri nets (GSPN). In GSPNs [3, 5, 13], there are two classes of transitions: transitions
with exponentially distributed firing times (timed transitions), and transitions having

the firing delay equal to zero (i di iti The hability graph of a

GSPN is an embedded Markov chain [3, 4.

2.3.2 Timed Petri nets

In timed Petri nets [39, 41, 44}, the firing of a transition is a non-instantaneous activity;
the transition starts the firing by removing the tokens from the input places, it continues
the firing for a specified period of time, and then finishes the firing by adding tokens
to the output places. The firing of a transition starts as soon as the transition is en-
abled (although some enabled transitions do not start their firings because of conflicts).
Several of a ition’s firing can take place if the transition

remains enabled after starting a firing.
Timed Petri nets whose transitions have deterministic firing times are known as

D-timed Petri nets, while those whose have i istri firing

times are called M~timed Petri nets (Markovian nets).
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2.3.3 M-timed Petri nets

In M-timed Petri nets [39, 41, 42, 44, the transitions’ firing times are exponentially
distributed random variables.
Definition 2.21 [44] An M-timed Petri net is a triple 7is = (M, c, ) where:

e M = (N, mp) is a marked Petri net,

e c:T — [0,1] is a choice function which assigns free—choice probabilities to free—
choice equivalence classes and relative frequencies of firings to the conflicting tran-
sitions,

e f:T — R¥ is the firing-rate function, which assigns the rate of firings, f(t), to
each transition ¢ of the net. The firing time of a transition ¢ is an exponentially
distributed random variable X (t), with the rate f(); the probability that the
firing time is greater than y, y > 0, is:

Prob(X(t) >y) =e/®.0

Example 2.5 Figure 2.6 shows an M-timed net for the problem of three dining philoso-
phers. Places A, B, and C represent the forks, places plb, p2b, and p3b represent, re-
spectively, philosopher “1”, “2" and “3” wanting to eat, and places pla, p2a, and p3a

the state of 2 phil after eating. There are three “eat” transitions and

three “think” transitions. An “eat” transition (for instance eat,) is enabled if both
forks are available and the philosopher is hungry (i.e. places A, B and plb are marked).

Firing times associated with “eat” and “think” itions are

random variables with the rates 5 and 3, respectively. O

A state description of a timed Petri net must specify the distribution of tokens over

net’s places and also the numbers of (active) firings of transitions.
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Figure 2.6: Three dining philosophers.

A state (or an “instantaneous description”) of an M-timed net is a pair of functions:
a marking function specifying the distribution of tokens in places, and a firing function
which describes the numbers of the active firings of all transitions.
Definition 2.22 [44] A state of an M-timed Petri net T3 = (M,c, f) is a pair

s = (m,n) where:
e m is a marking function, m: P — N,

e nis a firing function, n : T — N, where n(t) is the number of active firings (firings
which have been initiated but not finished) of transition ¢. O

Definition 2.23 An initial state of an M-timed Petri net Toe = (M, ¢, f) is a pair
s = (m,n) where n is a selection function for mg, n € Sel(my), and the marking m is
defined as:

Vpe P:m(p) =mo(p) = 3 n(t). O

t€0ut(p)

An M-timed Petri net can have several initial states.
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Example 2.6 States are often represented using vector notation for functions m and
n, i.e., assuming some ordering of places and transitions. For this example, the ordering

is:
s = [A, B, C, pla, plb, p2a, p2b, p3a, p3b; think,, thinky, thinks, eat, eats, eata].

For the given initial marking (places A, B, C, plb, p2b, and p3b are marked, ie.,
initially all philosophers are hungry and all forks are available), there are three enabled
conflicting transitions (eat,, eat,, and eat), but only one of them can start its firing.
The net has thus three initial states:
$1=1[0,0,1,0,0,0,1,0,1;0,0,0,1,0,0], if eat, is selected to fire, or
$2=11,0,0,0,1,0,0,0,1;0,0,0,0,1,0], if eat, is selected to fire, or
s53=10,1,0,0,1,0,1,0,0;0,0,0,0,0, 1], if eaty is selected to fire. O

For M~timed nets the “direct ility” relation is an ion of that for marked

nets (Section 2.1).
Definition 2.24 [44] Let 7Ty = (M,c, f) be an M-timed Petri net. A state s; =

(my, ;) is directly reachable (or (t, g:)-reachable) from a state s; = (m;, ny) iff:

1. ni(te) > 0;
2. g € Sel(m});
3. Vp € P:m;(p) = mi(p) — Trcoup) 9(t):
1, ift=1y
4. Vt € T : nj(t) = ni(t) + at) —
0, otherwise;

1, if p € Out(ty),

o

Vp € P:mi(p) = mi(p) +
0, otherwise. O
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State s; is transformed into state s; when one of the firing transitions (in this case
t:) ends its firing (1) and deposits tokens into its output places (5), transforming the
marking m; into a marking m’, and m’ enables new firings, which are described by the

selection function g (2, 3, 4).

Example 2.7 The state s, = [1,0,0,0,0,0,0,0,1;1,0,0,0,1,0] is directly reachable
from state s, = [0,0,1,0,0,0,1,0,1;0,0,0,1,0,0]; when transition eat, ends its firing,
the tokens are deposited into 4, B, and pla, the new marking ([1,1,1,1,0,0,1,0,1]) enables
transition think,, which can immediately start its firing, and transitions eat; and eats,
which are in conflict, so only one can fire. There are two possible selection functions,
one selecting think, and eat; to fire, the other selecting think, and eats. If the first

selection function is used, the next state is s;. O

The relation sp—»s; denotes that s; is directly reachable from s;, while s;%¥'s;
indicates that s; is (£, g;)-reachable from s;.
As in the case of basic Petri nets, the general reachability relation is defined as the

reflexive transitive closure of the direct reachability relation.

Definition 2.25 Let Tar = (M, ¢, f) be an M-timed Petri net. A state s; is (gener-
ally) reachable from a state s; ( s;—+s; ) if there is a sequence of states s, ..., 5;, such
that s;, = 8;, 8, = s;, and s;, is directly reachable from s;,_, for [=1,... k. O
Definition 2.26 The set of reachable states, R(7y) of an M-timed net 7y =
(M, ¢, f) is the set of all states which are (generally) reachable from any initial state of
Twe- O
Definition 2.27 [44] A state graph of an M-timed Petri net 7y is a labeled directed
graph G(Ti) = (V, D, h, q) where:

® Vis a set of vertices, V = R(Tir = (M,¢, f)),
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e D is a set of directed arcs: D = {(s;,s;) | 8:,5; € V A se—s;},

® h is a node labeling function, i : V — R¥, which specifies the average holding

times of states:
Vs =(m,n) € S:h(s) =1/ f() * n(t),
teT

g is an arc labeling function, g : D — [0, 1], which assigns the probability of state
transition from s; = (my, n;) to s; to each arc (s, s;), where s, is (£, gi)-reachable
from s; q(s:, 55) = ¢’ * q" where ¢’ is the probability that ¢, terminates its firing
in state s;:

s n(te) * f(t)
eernlt) = £()’

and ¢" is the probability of the selection g; after the end of the firing of ,
q" = q(mix, g) where m;, is the marking of the net after the end of t;'s firing:

mi(p) +1, if p € Out(te),

Vp € P:m(p) =

mi(p), otherwise;

and q(mx, @) is the probability of the node corresponding to g; in the selection

graph for m;x (Section 2.1.3). O

A state graph of an M~timed netisa i time Markov chain whose i y

probabilities of states, z(s), s € R(7a), are determined from the set of equilibrium
equations [44]:
Ficicx (55 50) * z(s5)/h(s;) = z(si)/h(s:); i=1,.. K= 1;
Tigexz(s) =1
where K is the number of reachable states.

Many performance measures can be derived from these probabilities [44].

Example 2.8 Table 2.1 shows the state space of the net shown in Figure 2.6. O
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Table 2.1: State space for the net in Figure 2.6.

s [min] h(s) | next states prob.
s |[0,0,1,0,0,0,1,0,1;0,0,0,1,0,0] | 2.0 {54,535} 05,05}
s2 [[1,0,0,0,1,0,0,0,1;0,0,0,0,1,0] | 2.0 {36, 57} 0.5,0.5}
53 ([0,1,0,0,1,0,1,0,0;0,0,0,0,0,1] | 2.0 |  {ss, 50} 0.5,0.5}
s4 |[1,0,0,0,0,0,0,0,1;1,0,0,0,1,0] [ 1.42 |  {sz, 510} {0.29,0.71}
s5 |[0,1,0,0,0,0,1,0,0;1,0,0,0,0,1] [ 1.42 | {s3, 511} {0.29,0.71}
ss |[0,0,1,0,0,0,0,0,1;0,1,0,1,0,0] [ 1.42 |  {s;, 510} {0.29,0.71}
s7 |[0,1,0,1,0,0,0,0,0;0,1,0,0,0,1] [ 1.42 | {s3, 512} {0.29,0.71}
s |[0,0,1,0,0,0,1,0,0;0,0,1,1,0,0] | 1.42 |  {sy, 511} {0.29,0.71}
s9 |[1,0,0,0,1,0,0,0,0;0,0,1,0,1,0] | 1.42 | {sz, 512} {0.29,0.71}
s10 [ [0,1,0,0,0,0,0,0,0;1,1,0,0,0,1] | .11 | {s7,55, 513} |{0.22,0.22,0.56}
su ([1,0,0,0,0,0,0,0,0;1,0,1,0,1,0] | L11 | {s, 54,513} |{0.22,0.22,0.56}
512 ([0,0,1,0,0,0,0,0,0;0,1,1,1,0,0] [ 111 | {ss,5, 513} |{0.22,0.22,0.56}
513 [[1,1,1,0,0,0,0,0,0;1,1,1,0,0,0] | 1.66 | {s12, 511, 510} | {0.33,0.33,0.33}

2.3.4 D-timed Petri nets

In D-timed Petri nets [40, 44], the transitions’ firing times are constant (positive real
numbers).

Definition 2.28 [44] A D-timed Petri net is a triple 7p = (M, ¢, f) where:
e M = (N, my) is a marked Petri net,

e c:T = [0,1] is a choice function which assigns free—choice probabilities to free—

choice equi 1 and relative fre

of firings to the conflicting tran-

sitions,

e f:T — R* is a firing-time function which assigne the firing time f(£) to each

transition t € T. O

Because D-timed nets do not have the memoryless property, in addition to the token

distribution over places of the net and the number of firings of transitions, a state of
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a D-timed net must also specify the ining-firing-time for each of each
active transition.
Definition 2.29 [44] A state of a D-timed Petri net 7p is a triple s = (m,n,r)
where:

o m is a marking function, m : P — N,

e n s a firing function (as for M-timed nets), n: 7' — N,

 r is a remaining-firing-time function r : T — N+ R*, which assigns the remain-
ing firing time to each independent firing (if any) of each transition. Function
7 is partial; if n(f) = & and k > 0, then r(¢) is a vector of k nonnegative non-
decreasing real numbers denoted by r(#)[1], r(t)[2], .. (¢)[k]; if n(2) = 0, r(?) is
undefined. O
Definition 2.30 [44] An initial state s of a D-timed Petri net 7p = (M, ¢, f) is a
triple s = (my, ny, 7;) where:
e m; is a marking function,
VpePimp) =mo(p) — Y. milt),
t€Out(p)

o n; is a selection function of mg, n; € Sel(mo),
o 7, is a remaining-firing-time function defined as:

f(@), ifn(t) >0and 1 <k < ny(t);
undefined, otherwise. O

vte T )k =

A D-timed Petri net can have several initial states.
Definition 2.31 [44] Let 7p = (M,c,f) be a D-timed Petri net. A state s; =
(mj,nj,r;) is directly reachable (or gi-reachable) from a state s; = (mq, n;, 7;) iff the
following conditions are satisfied:
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1. g € Sel(m});

2. ¥p € P :m;(p) = mi(p) — Lrcoup) %(t):

3. Vt € T = ny(t) = nu(t) — du(t) + u(t):

LVeeT n0N = ri(@)[l + di(®)] — ki, i1 <1< myt) —di(2);
f@®), if ni(t) — di(t) <l < my(td;

where:
5. Vp € P : mi(p) = mi(p) + Crermpp) 4ilt);
o veeT a | @ MO zadr@OU=hfor1si<,

0, otherwise;

7. k= ). O

rsn
The general reachability relation between states and the set of rea.chable states

R(()Tp) are defined in a similar manner as for M-timed nets.

Definition 2.32 [44] A state graph of a D-timed Petri net is a labeled directed

graph G(Tp) = (V, D, h,q) where:
e V is the set of vertices, V = R(7p).
e D is the set of directed arcs, D = {(s:,55) | 5:,5; € V A s—s;},

o h is a node labeling function, h : V — R¥, which specifies the holding times of
states:
(ri(®)(1)),

Vs; = (mq,ni,m5) € S:h(s;) = mﬂiﬂpo

o g is an arc labeling function, ¢ : D — [0,1], which assigns the probability of
transition from s; to s; to each arc (si,s;) where s; is gs-reachable Erom s;:
a(sis5) = q(m', gi)
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and m’ is the marking after the termination of the firings with the smallest remain-
ing firing time (as determined in Definition 2.31), and g(m’, ) is the probability
of the node corresponding to g in the selection graph for m'. 0
Example 2.9 For the net shown in Figure 2.1 with firing times f(t,) = 1, f(t:) =
f(ta) = 0.5, and £(t;) = 2.5, the only initial state is s = [0,0,0,1,2,0;1,0,0,0;1,0,0,0].
The reachability set of the net is shown in Table 2.2. The net is conflict—free, so there

is only one next state for each reachable state. O

Table 2.2: State space for the net in Figure 2.1.

B m; n; ] A(s) [ next state ition prob.
s |[0,0,0,2,2,0; 1,0,0,0; 1,0,0,0] 1.0 S2 1.0
s ([0,0,0,1,1,0; 0,1,0,0; 0,0.5,0,0] | 0.5 53 1.0
s3 |[0,0,0,0,1,0; 1,0,1,0; 1,0,0.5,0] 0.5 Sg 1.0
s¢ |[0,0,0,0,2,0; 1,0,0,1; 0.5,0,0,2.5]| 0.5 ss 10
ss |[0,0,0,0,1,0; 0,1,0,1; 0,05,0,2] | 05 s6 1.0
ss |[0,0,0,0,1,1; 1,0,0,1; 1,0,0,1.5] 1.0 57 1.0
sz |[0,0,0,0,0,1; 0,1,0,1; 0,0.5,0,0.5] | 0.5 S 1.0
sg |[0,0,0,0,0,1; 1,0,1,0; 1,0,0.5,0] 0.5 59 1.0
se |[0,0,0,0,1,1; 1,0,0,1; 0.5,0,0,2.5] [ 0.5 S10 1.0
s10 | (0,0,0,0,0,1; 0,1,0,1; 0,0.5,0,2] 1.0 s 1.0
su [ [0,0,0,0,0,2; 1,0,0,1; 1,0,0,1.5] | 0.5 s12 1.0
s12 | [1,0,0,0,0,2; 0,0,0,1; 0,0,0,0.5] 0.5 S13 1.0
s13[1,0,0,0,0,1; 0,0,1,0; 0,0,0.5,0] 0.5 Su 1.0
s14 [ [0,0,0,0,0,1; 0,1,0,1; 0,0.5,0,2.5]| 0.5 s1s 1.0
s | [0,0,0,0,0,2; 1,0,0,1; 1,0,0,2] 10 S5 1.0
s16 | [1,0,0,0,0,2; 0,0,0,1; 0,0,0,1] 1.0 S13 1.0

The state graph of a free—choice D-timed net is a discrete-time discrete-state semi-

Markov process [16] whose embedded ionary ilities y(s),s € R(7p), are

determined by solving a system of linear equations [44]:

ik s sy) =y(s:)i i=1,
Diger V() =1
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The stationary probabilities of states, z(s),s € R(7p), are determined from the

embedded stationary probabilities [44]:
Vs €R(To) = alsi) =yls) «h(s)/ 3 ulsy) «hlsy)-
1SSK

where K is the number of states in the reachability set R(7p).

Detailed information on timed Petri nets, their analysis and applications can be
found in [39, 40, 41, 42, 44]. A software package, TPN-tools [38], has been developed
for the analysis of timed Petri nets.

2.4 Distributed state space generation for stochas-
tic Petri nets

State space generation for nets with large numbers of states is a difficult task because
of the large memory requirements. This impediment can be avoided by using the
(combined) memory available in a cluster of computers. Research in this direction
has been conducted in the last few years [8, 6, 7, 9, 19, 21, 23, 28, 30]. Most of

the authors emphasize that the main ad: of the distril i is the

possibility of generating state spaces which were too large for the memory of a single

workstation. However, such an h i d a icati head induced
by the necessary coordination between the ing in the
algorithm.

This section reviews several aspects of distributed state space generation for sto-

chastic Petri nets.



2.4.1 General framework

A natural to distril ion is to use a “divide and conquer”

technique, i.e., to construct disjoint state subgraphs on different computers, and then

integrate them to obtain the entire state graph.

Requirements: In order to minimize the communication overhead and to achieve a
good speedup, a distributed algorithm for state space generation should satisfy (at least)
the following requirements: balance (the states should be equally distributed among
processors, called spatial balance (or memory balance), and all processors should be
busy almost all the time, called temporal balance) and locality (whenever possible,

a state should be by the same as its parent state).
G 1 : The ility graph is itioned into disjoint regions which
are constructed on different This itioning should be done in

such a way that all processors are assigned approximately the same number of states.

However, it is rather difficult to ine a it to do such a

without knowing the state space.
The algorithm used by each processor is based on the sequential algorithm, but some

additional aspects must be taken into consideration.

The first i ion to the is related to the initial state (there

is only one initial state for stochastic nets). Each process is provided with the same
initial state, but only the process which is responsible for it adds this initial state to
the working list unezplored.

Secondly, when a state is generated, it must be decided whether it has already been
generated carlier or not (i.e., whether it is a new state or not). This question can

be answered if the processor which processes this state is known. This leads to the
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idea of defining a itionil i itioning function) which can be used

by all processors in order to ine the il for a state without

additional communication. In other words, the state space is “split” into regions before
the computation.

‘Whenever a processor generates a new state, it checks, using the partitioning mech-
anism, whether the state is local or not. If the state is local (which is the desired case,
according to the locality requirement, so that the communication is minimized) then
lines 19-27 in the following algorithm are executed. Otherwise the state is sent to the

for its further

The third important issue is that the inati dition from the ial al-
gorithm is not sufficient anymore: the process cannot terminate when its queue of unex-
plored states is empty, because it can still receive states generated by other processors.
Therefore, a global termination detection method is needed. Dijkstra’s “circulating
probe” [15] is used in [19, 30]. In [23] termination is detected using barrier synchro-

nization. In (28] the authors use the i barrier
[29].
In general, all processors follow the algorithm given below. It is assumed that upon

the ion of the global ination, a i message” is sent to all processes

engaged in the computation.

state_space.

process_id(processor);

10. if partition(sp) = this_process_id then
11. states := states U {so};
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12. insert(search_set, so);

13 insert(unezplored, so)
14.  endif

15.  while not_received_termination message do
16. while nonempty(unezplored) do

17. s == remove(unezplored);

18. for all s’ € successor(s) do

19. if partition(s’) # this_process_id then
20. send_state(s', partition(s'));
21. send_arc((s, '), partition(s'))
22. else

23. if s’ € search_set then

24. states := states U {s'};
25. insert(search_set,s');

26. insert(unezplored, s')
27. endif;

28. arcs = arcs U {(s, ")}

29. endif

30. endfor

31. endwhile;

32. extern_states := receive_states — states;
33. states := states U eztern_states;

34. arcs = arcs U receive_arcs;

35. for all s” € eztern_states do

36. insert(unezplored, s")

37. endfor

38. endwhile

39. end.

Lines 32 and 34 from the above algorithm describe the receiving of states and cor-

arcs from other and their i ion into the current processor

data structures. The new external states (i.e., states which do not belong already to
the set states) are inserted in the reachability graph. All the arcs are added to the set

arcs.

Archi In the distril the state space is generated by several

the same i In [30] several precesses following the above

algorithm are used. The state space is partitioned into classes. Each processor is

assigned a number of classes. The search data structure, search_set, consists of several
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search trees, one per class.

Additionally, a central processor can be used to provide global coordination. A
master-slave architecture is used in [7]. The slave processors are organized in a chain
and they actually construct the reachability graph. Each of the slave processors uses a
balanced search tree as the search structure. The master processor controls the process

of load balancing.

Partitioning mechanism: A partitioning mechanism must ensure a uniform distri-
bution of states. A partitioning mechanism which does not distribute the states evenly
among processors can have two negative consequences: (a) if a processor is assigned too
many states to process it may run out of memory and the entire computation will stop;
(b) uneven distribution of states can result in large differences in execution times, and,
therefore, low speedup.

Moreover, the locality and the memory balance of the method depend on the chosen
partitioning mechanism:

o locality can be achieved if the partitioning mechanism maps the successor states

on the same processor as their parent states;

® balance can be achieved if the itioni the

states among processors. This is highly model-dependent and especially difficult
because the state space is not known in advance, so the strategy of partitioning

can only be based on structural properties of the model.

Hash Function: A first choice for the partitioning mechanism is a hash function
[23, 30]. This function typically depends on a (well chosen) set of places of the Petri
net, C = {p1,p2,.,Pict}, C C P, called control set. The general form of the hash
function is [23]:



icl
partition(m) = (3 _ a; m(p:)) mod (n).
=

In the formula above, n is the number of processors, m is a marking function (or
the state in this case), and the coefficients a; are integer (prime) numbers which are

it ined i for the analyzed net.

The efficiency of the hash function depends on the selection of the control set C' and
the coefficients o.
Finding a good hash function, which ensures a uniform distribution of states among

requires some ledge of the model. This is why there is no general rule

on how a hash function should be determined.

Balanced search tree: A method to i a itioning mecha-

nism is given in (28]. The state space is partitioned into classes. Each class is assigned
to a processor but a processor can have several classes assigned to it. The classes are
implemented as balanced search trees. Class 0 (actually, the corresponding balanced
tree) is used as a partitioning mechanism. It will reside on all processors.

In order to determine the class of a state, the tree is searched. If the state is found,
then it belongs to class 0. Otherwise, the terminal node (and, implicitly, the class) is
determined where the state should be inserted. For a given size of the class 0, this tree
is “automatically” constructed before the state space generation starts: all processors
generate a “random walk” through the state space determining a set of states. Then
these sets of states are combined into the balanced search tree. Without going into
further details, this requires communication and cooperation. This process is not fully
automated because experimental work is still necessary in order to determine the best

size of class 0.



The advantage of such a mechanism over a hash function is that it is (partially) au-

tomatically constructed, and it does not require (much) model-dependent information.

However, the process of ing this partitioni hanism is rather i

Remapping of states to processors: Because it is very difficult to define a good

by changing the state

memory imb can be

to This ion is called

The following “mixed” approach has been found successful [8, 28]: a partitioning
function is defined and used during the state space generation. However, from time
to time, the memory usage of each processor is checked. If large differences are found,
a remapping process is initiated and some states from “overloaded” processors are

to

Remapping can be done for different purposes: for achieving memory balance, or to

prevent overloaded processors from the danger of exhausting their memory (memory-

balance-oriented remapping) or to improve the ion time (1 I-bal
oriented remapping).
In [28] remapping is done by reassigning whole classes to different processors. Two

are d; one is an attempt to balance memory utilization,

and the other is an attempt to minimize the execution time. The data transfer is done

between processors with high load di ie., loaded send data to
underloaded processors.

A different approach is used in [8]. The master process checks the slave workloads
from time to time. In case of differences in memory utilization higher than some prede-
termined value, a load balancing is initiated, but the data are transferred only between

neighboring processors (a chain topology is used).



2.4.2 Conclusions

All the distributed approaches to state space ion use a

which divides the state space before generating it.

The distril versions of algorithms bring an i benefit over their sequen-

tial counterparts: they can handle large nets whose memory requirements are unman-
ageable for a single computer. Their performance (memory balance, execution time,
speedup), however, is influenced by the (static) partitioning mechanism employed. This
influence can be reduced if the partitioning mechanism can be modified at run-time,

according to the current workload distribution among the processors. For this purpose,

some algorithms use dynamic load distributi i improving the perfc



Chapter 3

Distributed state space generation
for timed Petri nets

This chapter ibes a distri i for the ion of the state graph of

timed Petri nets.
Section 3.1 outlines the method used. Section 3.2 describes the temporal organiza-

tion of the system. Section 3.3 presents the top-level design of the distributed system

(the § ions and int ion). Finally, Section 3.4 de-

scribes each component in detail with PVM-pseudo-code algorithms.

3.1 General considerations

Let 7 = (M,c, f) be a timed Petri net, where M = (N, my) is a marked Petri net.

The state graph of 7 can be generated using a “divide and conquer” technique as fol-

lows: the (yet ) state space is itioned into n disjoint regions Ry, Ry, ..., Ra,

which are constructed i and then i in one state graph if needed.

The construction of these regions can be distributed to n identical processes running

on different The entire distri ion has three phases:

1. the initialization phase during which the system is set up by creating the co-

and ing the i ion necessary for inter-pi
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communication,

2. the computational phase during which the regions of the state space are con-
structed,
3. the (optional) integration phase, during which all the states and arcs of the regions

are collected, and integrated into the complete state graph.

This approach requires the existence of three kinds of logical processes (as shown in

Figure 3.1): a process starting the distril system and initiating the

called §; several ing the regions graphs, called Generators,

and a process collecting and integrating the results, called Collector '. Section 3.3.3

di: the h d between these
Generator |
—®)
Spawner ollector
‘Generator,
Figure 3.1: Distri ion system 3

Physical processes corresponding to these logical processes constitute a “virtual

machine.” This virtual machine runs on a cluster of computers.
State graph partitioning

The first problem is to determine, for a given net, the disjoint regions in which the
(not yet constructed) state graph should be partitioned. The solution is a partitioning
I Technically, as a process, the Collector can be the same as the Spaumer, because they exist in

disjoint periods of time: the Spawner performs the initialization phase, while the Collector works in
the integration phase. The distinction between them is made for clarity only.
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mechanism residing on each processor, which determines, for each state, the region to
which it belongs. In this way all processors are aware of the structure of this partition.
This mechanism is a hash function which assigns states to processors according to
the distribution of tokens in places and the numbers of firing transitions:
partition : R(T) = {1,..n},

1Pl 1]
partition(s) = (}_ a: m(p) + Y B: f(:)) mod (n).
=0 =0

where the coefficients o; and f§; are integer numbers and s = (m, f,r) if 7 is a D-
timed net (Section 2.3.4), or s = (m, f) if T is an M-timed net (Section 2.3.3). This
function implicitly partitions the graph into n regions R,..., R, such that for each
region R; = (States;, Arcs;):
States; = {s | s € R(T) A partition(s) = i}
and
Arcs; = {(s,s')|s' € States;}.
The partitioning function is similar to the one used in [23], with the difference that

the components of the state ing to the firing itions are also taken into

account for determining the region of the state.
Process Generator; is responsible for the states in region R; and for the arcs directed

to these states. Practi ifa G is for a state, it di ines its

successors. A successor state can be in the same region (in this case the connecting arc
is an internal arc) or in a different region (in which case the connecting arc is called
a cross-arc).

3.2 System temporal organization

The distributed generation of the state space is composed of the following steps:
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1. System startup (Section 3.2.1), which includes:
(a) setting up the virtual machine (ie., starting all processes of the distributed
system);

(b) iding all with the of the they need to

interact with.
2. Computational phase (Section 3.2.2), which includes:

(a) generation of all the states and arcs starting from the initial states; this

includes sending states to their appropriate processors;

(b) transfer of ini to the ible for them.
3. Result integration (Section 3.2.3).
3.2.1 System startup

During the startup phase, all processes are created, and they exchange the information
that is needed for cooperative construction of the state graph.

The program has two input files: one containing the n + 1 available hosts and the
other containing the Petri net description.

The distril d state space ion starts with the ion of the Spawner. The

Spawner creates the Collector and spawns n Generators on the other hosts, providing
them with the addresses of itself and of the Collector, so that they can direct messages
to them.

The ication address of each G must be known to all processes which

want to send that Generator messages, i.e., the Spawner and other Generators. For this

purpose, each G sends its ication address back to the Spauner as soou
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as it is ready. The Spauwner collects all addresses into the process table, and broadcasts
it back to all Generators.

3.2.2 Construction of the state subgraphs

The state graph is constructed in a manner similar to the sequential algorithm described

in Section 2.2.1, with some diff due to the among a set of
Pprocessors.

A state s created by Generator; is local to it if Generator; is responsible for s,
and it is non-local otherwise. A state s is external to Generator; if Generator; is

responsible for s, but s has been created by another Generator. A non-local state can

be generated many times by Ge Non-local states for the fi
are called first—time non-local states, and the corresponding cross-arcs directed to
them are called first—time cross-arcs.

Because a Generator is responsible only for the states in one region of the graph, it

sends all non-local states with the it to the iate G

Also, each Generator must be able to receive the states and arcs sent to it. Therefore,
each Generator must have primitives to send and receive messages. In order to be able

to send messages directly to other Generators, the processes must know each other’s

dd All 'y add: are kept in a process table, which is
an array of process identifiers.

‘When an external state does not already exist in the region of the destination proces-
sor, it is inserted there and then processed. External cross-arcs are treated differently
because the insertion of cross-arcs into their appropriate regions is not critical for the
state space generation. This leads to the idea that the sending the cross-arcs to the Gen-
erators responsible for them can be postponed to the moment when all the states have

been generated in all regions reducing the communication during the state generation
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phase.

A two-stage algorithm for generating the state graph is used: in the first stage
all the states and all the arcs are generated and all non-local states are sent to their
corresponding regions. During this stage only the internal arcs, and the first-time
cross-arcs are stored in the appropriate regions, all other cross-arcs are stored in the
Generators which have created them. During the second stage, the remaining cross-arcs

are transferred to their corresponding regions.

In this distril ithm, some may not be provided with start
states. Instead, they wait to receive non-local states to be processed. The Spauwner
sends the initial state(s) of the Petri net to the Generators responsible for them. The
other Generators must wait until they receive their first states from the initialized
Generators.

An i aspect of distri ion of the state space is the termination

condition. The Generator cannot simply halt when its working queue is empty, because
it may still receive external states from other Generators later. A Generator may halt
only when all other Generators have finished as well. Therefore, each Generator must
know if all other Generators have finished the computation of their respective state

spaces.
3.2.3 Termination detection

When a Generator runs out of states which need to be processed, it waits for states from

other processes. In order to prevent a deadlock situation in which all Generators are idle

and wait for external data, a global ination detecti i is i with
the ion. This inati il checks if all have finished their
first stage computations. In the following iption, the term

refers to the termination detection of the first stage.
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Global termination detection is a classical problem in distributed computing. The
algorithm used here is the one proposed by Dijkstra et al. [15]. It assumes that the

cluster of processors has a ring topology, Py = P2, P, = P, ..., Pa_y = Pp, P = P1.

‘The method is based on the use of a token, which, transmitted over the ring, checks
‘whether all processors have terminated their tasks. It uses two colors, black and white,
to represent two states of the distributed system: the white color corresponds to the
situation when all processors are found idle; the black color corresponds to the situation
where it has been found that some activity existed prior to the moment of checking,
and, therefore, it cannot be concluded that the system is idle. A processor remembers
that its state is idle or active by making its color white or black. Whenever a processor
induces activity in the system by sending a data message, it also sets its color to black.

‘The process of determining if all processes are idle is started by a designated initiator
processor (it can be assumed, without loss of generality, that this process is P;) by
‘marking itself white and sending a white token to processor P,. The token message is

further propagated over the ring according to the following rules [15]:

-

. Upon the receipt of the token, processor P; holds the token if it is not idle, or it

propagates the token to Piy, if it is idle.

o

. When P; propagates the token, it sends a black token if it is black itself, otherwise,
it sends the token that it has received (without changing its color).

w

. Upon propagating the token to P;,, the processor P; makes its own color white.

»

If P, is black when it receives the token back, or it receives a black token, then
it initiates a new termination detection process because it is not sure that all

processors have completed their work.



If the initiator receives a message containing a white token while it is marked as
white, it concludes that all the processors are idle, so it informs the other processors
about this by sending a termination notification message.

If the initiator does not receive back the token message, the token must have been
lost when it has reached an active processor. In this case the initiator continues its exe-

cution and, upon becoming idle, it starts again the process of checking for termination.
3.2.4 Integration of results

When the construction of all regions is completed, each Generator sends the states
and arcs to the Collector and then terminates. The Collector combines the received
information creating the entire graph, i.e., the union of the regions.

The Collector inserts the states in the final graph, and creates arcs between these
states. For inserting an arc (as a link from a state to its successor state), the Collector
determines the two states in the final graph, and then creates the connection.

For optimization reasons each state is given an identifier, so that an arc can be

For each state, the Generator sends a complete

by a pair of i
description of the state while for each arc it sends a triple containing the parent state
id, the successor state id and the transition probability.

In the state graph, all state identifiers must be unique. Their uniqueness is ensured
by the i each G keeps a counter of states, cnt, which is

increased each time a state is inserted in the set of states of its region; a state id
is determined upon its insertion in the set of states of region R; using the following
formula:

id=cnt*x K +1i

where K is the maximum number of Generators.



This approach of creating state i i makes it i ible for a Generator to
insert locally the cross-arcs it creates (a Generator creating a non-local state s’ does
not know in advance the id which will be given to s’ by the Generator responsible for
it). Therefore each cross-arc (s, s’, prob) is sent to the region to which s’ belongs.

It should be noted that the ids of non-local states cannot be assigned by the gener-

ating processes, because different ing the same (; local) state could
assign different ids to it.
3.3 System architecture

This section provides an overview of the distributed program, by discussing the com-
ponents and their functions, as well as the way in which they interact. In order to keep
this description at a system level, component implementation details are omitted here;

they are discussed in Section 3.4.
3.3.1 The components
The Spawner is responsible for:
 establishing the system’s physical configuration,
e spawning other processes,
e determining initial states and sending them to the appropriate Generators,

« constructing the “process table”,

® broadcasting the “p table” to all which need it.

The Collector gathers all the states and arcs sent by Generators and combines them

into the complete state graph.



Each Generator constructs its region of the graph and has the following responsibil-

ities:
o determining the successor states for each state in its working queue,

e creating globally unique ids for the states in its region,

« sending non-local states and to the Gi ible for them,
o receiving external states,

e constructing its region and sending it to the Collector,

One Generuator plays the role of initiator in the process of termination detection.
Decomposition of a Generator

In order to perform some tasks concurrently, each Generator is composed of three

processes (Figure 3.2): the Worker, responsible for the generation of the state space,

the Sender, ible for sending to other and the Receiver, re-
sponsible for receiving messages from other and for the

‘When the Spawner creates the Generators, it actually creates Worker processes. As its
first steps, Worker creates the Receiver and Sender processes.

It is the Sender’s responsibility to keep track of states sent, and to send, in the first
stage, only the first-time cross-arcs.

The Receiver ible for the initiation of the ination d ion is called the

“initiator” Receiver. The others are just “ordinary” Receivers. In the description that

follows, the terms “Generator” and “triple” are used interchangeably.
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Figure 3.2: The structure of a Generator.

Processes Receiver;, Sender;, and Worker; constitute Generator;. Each Generator;
has a logical identifier  and a task identifier tid, which is used as the communication
address.

3.3.2 Local communication

The Worker, Receiver, and Sender of each Generator reside on the same processor.

Their communication is based on shared variables.

Inside the , the Worker i with the Receiver using a shared
memory segment recv-buffer. The Receiver adds states into this buffer and the Worker
retrieves them. This is a standard producer-consumer scheme with the buffer recv-
buffer. Similarly, the Worker and the Sender communicate via a shared memory seg-
ment send-buffer in a producer-consumer fashion where the Worker is the producer and
the Sender is the consumer.

‘The mutual exclusion for accesses to the buffer inside the typical producer-consumer
scheme is based on three semaphores, em not_empty, not_full and mutez; the operation
put(state, buffer) stores the state state in the buffer buffer and the function get(buffer)
retrieves a state from the buffer buffer, and returns it.

The Sender and the Receiver share the semaphore sender_ready. In the initialization
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phase, the Receiver waits at this semaphore until the Sender signals it. This ensures
that the Receiver indicates to the Spawner to broadcast the process table only when
the Sender is ready to receive it.

Also the machine color (see Section 3.2.3) needs to be accessed by both Worker and
Receiver. Therefore, it is stored in a memory segment shared by the Worker and the

Receiver.

3.3.3 M based icati

System components residing on different hosts need to communicate during the execu-
tion of the program. They communicate by message passing using the PVM (Parallel
Virtual Machine) package [18]. PVM is an integrated set of software tools that emulate
a i i using a ion of i

The PVM system is composed of two parts: the first part is a demon residing on each

of the cooperating computers; the second part is a library of routines for typical opera-
tions needed for parallel computing (message passing, spawning processes, coordinating
tasks, etc.).

In the startup phase, the Spawner and G must to d

the addresses of all processes they need to cooperate with. Each Generator provides its
“communication address” by sending to the Spawner a message containing the triple’s
id and the task id (tid) of its Receiver. The Spawner collects all these ids into the
process table and broadcasts it back to all Generators (actually to their Senders and
their Receivers). For this purpose, the Senders and the Receivers join a PVM process
group, called generators. The Senders need to know where to send non-local states
to, while the Receivers need to know their successors in the processor-ring used for
termination detection. To ensure that all Senders are ready to receive, each Receiver

only sends its address after its Sender is ready. Two kinds of messages are used:
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EXIST(i, tid) - message containing the triple’s id i and the task id tid of the Receivers;
it is sent by each Receiver to the Spauwner;

INFO(recv.tids) - message containing an array with the ids of all n Receivers; sent
by Spauner to all Senders and Receivers.

In the ion phase, the h local states and cross-arcs

by using DATA messages. A DATA message contains one or more items, each item
containing state and arcs directed to that state. The arc information contains the

parent state id, and the bili iated with the state

DATA((s;, (parent; s, prob;s)i=1.n;)j=1,..x) - message containing k items, each of them
comprising a state s; and information about n; incoming arcs; the message is sent

to the Generator responsible for the states and arcs.

During the ion phase, the must also it to
when the first stage is globally finished. First token messages are sent between Receivers
for the termination detection as described in Section 3.2.3. If the detection is successful,
the initiator Receiver sends a special message indicating this situation to all other

Receivers. The messages used are:

CHECK_TERM(token) - message propagated to check the global termination; this

message is i ing-wise between

TERMINATE - message sent by the initiator Receiver to inform all processes that
the end of the first stage has been globally reached; upon reception of the TER-
MINATE message, the Receiver interrupts its Sender, and puts a special item into

the Worker’s state buffer, which makes the latter finish the first stage.
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the

The G need also to i to start and to
of the second stage. The Sender starts the second stage immediately after being inter-
rupted by the Receiver, by sending the remaining cross-arcs packed in DATA messages.
After this, each Sender broadcasts a message DONE_ARCS_EXPORT, indicating
that its triple will not send any more data to other Generators.

During the result collection phase, each Generator sends three kinds of messages to
the Collector:

STATE((

tion and a state id;

1.x) - message containing k items, each item comprising a state descrip-

ARC((successor state_id;, state_id;, probs)i=1.x) - message containing k items, each
item contains arc information: the identifiers of two states, and the probability of

transition between states;

FINISHED - message indicating that the Generator has finished sending the results;
upon receiving such messages from all Generators, the Collector knows that it will

not receive any subsequent data.

Figure 3.3 shows a summary for inter-component communication for a system with
three Generators, the initiator being Generator,.

‘The Spawner receives EXIST messages and sends out INFO messages and DATA
messages.

Each Generator receives INFO messages from Spawner, DATA messages from the
Spawner and from all other Generators, and CHECK_TERM messages from the pre-
vious neighbor in the ring; all Generators except of Generator, receive TERMINATE

messages from Generator,. Each Generator sends EXIST messages to the Spawner,



DATA messages to all other Generators, CHECK_TERM messages to its next neighbor
in the ring, and STATE, ARC, and FINISHED messages to the Collector.
The Collector receives STATE, ARC, and FINISHED messages from the Generators.
The messages are distinguished by marking them with distinct tags.
The communication between processes is done using standard message passing prim-

itives [18].
3.4 Algorithms

This section presents the algorithms for the six kinds of processes (Spawner, Collector,
Worker, Sender, initiator Receiver, and ordinary Receiver) in an untyped pseudo-code.
Some of the algorithms use the generic routines it (. hore) and

signal(semaphore).
3.4.1 The Spawner
The Spauner performs initialization tasks:

1. algorithm Spawner:

2. var hostfile; (* file containing the virtual machine configuration*)
3. tpnet file; (* file containing the description of the Petri net *)

4. net; (* the Petri net *)

5. hosts[]; (* array with the hosts in the virtual machine *)

6. (* number of processors in the virtual machine *)

7. init_states list; (* a list containing the initial states of the Petri net *)
8. id; (* identifier *)
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initiator id; (* identifier of the initiator *)

tid; (* PVM task identifier *)
tid_collector; (* PVM task identifier of the Collector *)
generators; (* group of all Senders and Receivers*)

32.

file hostfile: n is the number of Generators, and hosts is an array with n + 1 names of
the hosts on which to create the other processes (n Generators and the Collector).

spawn (line 15). This function has as parameters the host on which to spawn the
process, the process to be spawned, and its program arguments. The Collector receives
only one argument, the number of Generators, n. The Collector is spawned before the
Generators because, in this way, the Generators can be given the Collector’s address at
spawning time. If the Collector is not created as a separate process, the spawn function

is not needed, and the Collector function is called after the termination of the Spawner.

— spawn Colledar(n) on host_namel0];
= read(tpnet_file);

m:.:_mm_lm get_initial_states(net);

vutu!-tm‘_td partition(head(init_states list));

spawn Worker (initiator.id, tid_collector, 1nytid, net,i,n) on hostsfi]

for ¢ tondo
(id, tid) := receive(EXIST);
process.tablelid) := tid
for;
broadcast(generators, INFO(process._table));
while not_empty(init_states list) do
state := head(init_states list);
init_states list := tail(init states list);
send(process_table[partition(state)],DATA (state, 0, state.prob))
endwhile
end.

First the Spawner reads (line 14) the configuration of the virtual machine from the

Next, the Spawner creates the Collector on the first host, by calling the function

In this case tid_collector = tid.spawner.
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The Spawner then reads the net description from the file ¢pnet_file (line 16), and
determines the net’s initial states by invoking the function get.initial_states (line 17).
Each of these states has a probability associated with it. The termination detection
initiator is then determined as the Receiver process of the Generator responsible for the
first initial state (line 18). It is important that the initiator is not a processor which is
idle all the time, because, otherwise, it would burden the computation with unnecessary
termination checking messages.

The n Workers are spawned by calling the function spawn (line 20). As arguments
each Worker receives the initiator’s logical identifier, (initiator_id), the Spawner’s ad-
dress, the Collector’s address (tid-collector), the net description (net), and the total
number of Generators (n). The tid of the Spawner is determined by calling the function
my-tid, which returns the tid of the calling process.

After spawning the Workers, the Spawner waits for n EXIST messages from the
Generators (lines 22-25). In general, the syntax used for a message receive function is
message := receive. If a processor wants to receive only a specific type of messages,
then receive has one of the message types (described in the previous subsection) as an
argument; in line 23, an EXIST message is expected.

Each EXIST message contains the Generator’s Receiver logical id and the task id.
Upon receipt of such message, the task id contained in the message is added to the

process-table. When the process table i it is broad back to all
(line 26).

When the entire virtual machine is set up, the Spawner initiates the process of
state space generation by determining and sending the initial states of the net to their
corresponding Generators (lines 27-31). As in [38], a dummy state, with id 0, is used

as a common parent of all initial states. Therefore, each initial state is packed into
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a DATA message ining the state ion, it’s parent id (i.e., 0) and the

3.4.2 The Worker

Process Worker; constructs the region R; = (arcs;, states;) of the state graph. The
set of generated states, states;, is implemented using the C++ standard class set [36],
which guarantees logarithmic search time. Each element of the set is a tuple (state, id)
containing a state description and a state id. The set of arcs is a linked list of triples
(idy, idp, prob), where id, and id, are state identifiers and prob is the state transition
probability.

The outline of each Worker is as follows:

1. algorithm Worker; (initiator_id, tid_collector, tid_spawner, net, n);
2. var states; := 0; arcs; := 0; (* states and arcs of region R;*)

3. machinecolor shared with Receiver;; (* the state of the generator *)
4. sendbuffer shared with Sender;; (* buffer with incoming states *)
5. recv.buffer shared with Receiver;;  (* buffer with outgoing states *)
6. state; (* state *)

. A nezt_state; (* state *)

8. id; (* identifier *)

9. parentid; (* identifier *)

10. parent; (* identifier *)

11.  prob; (* arc probability *)

12.  cont; (* loop continuation flag *)

13. begin

14.  if i = initiator_id then
15. spawn Initiator Receiver;(tid_collector, tid_spawner,n) on this_host
else

17. spawn Ordinary Receiver;(tid_collector, tid_spawner,n) on this_host

18.  endif

19.  spawn Sender(n) on thishost;

20.  ezecute main_loop; (* main loop is shown on the next page *)

21.  cont:= true;
22.  while cont do

23. (state, (parent;, prob;)i=1.k) = get(recv_buffer);
2. if state = null then

25.

26.

54



27. id := states;.find(state);
28. arcs := arcs U {(parent;, id, prob;)i=1_x}
endif

30.  endwhile;
31.  send(tidcollector, states;);

32.  send(tid.collector,arcs;);

33.  send(tid.collector, FINISHED)

34. end.

First, the Worker; creates its Receiver; (InitiatorReceiver or OrdinaryReceiver) and
its Sender; (lines 15, 17, 19), on the same host as itself (this_host). Then it enters the
main loop in which all reachable states and their descendants are determined. This
loop is described below.

‘When the main loop is finished, all Workers have generated all the states of their re-
gions, but if a Generator has created more arcs leading to non local states, only the first
arc has been sent to the Generator responsible for it. Therefore, the Worker loops again
(lines 22 to 30) to collect all the remaining arcs leading to its region, which are stored
in recv_buffer by its Receiver. This loop continues until a null item is retrieved from
the recv_buffer (lines 24 and 25). When a non-null item (state, (parent;, prob;)i=y ) is
retrieved, the id of the state state is looked up in the region (the state already exists
there, because it has been inserted during the main loop), and the arcs are inserted in
the list of arcs.

After completing its region, the Worker sends the states and arcs to the Collector.
States and arcs are sent clustered in two messages, one for states, and the other for
arcs. A final message FINISHED notifies the Collector that the entire region has been
sent.

The Worker deals with states generated locally and states received from other
processes. It maintains two queues, w_gue, the working queue for local states, and

recu_buffer, the queue for external states.
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‘The main loop is as follows:

1. main_loop: cont == true;

2 while cont do

3. if send_buffer.empty A w_que.not_empty then

4 (state, id) == w_que.remove

5. else

6. (state, parent._id, prob) := get(recv_buffer);

7 if state then

8. con false

9. else

10. id := states;. find(state);

11. if id # nolD then

12. arcs := arcs U {(parent.id, id, prob)}

13. else

14. id = states;.create_local id;

15. states; := states; U (state, id);

16. arcs := arcs U {(parent_id, id, prob) }

17. endif

18. endif

19. endif;

20. if cont A id # nolD then

21. for all nezt_state in successors(state) do

22. if partition(nezt_state) = i then

23. id := states;. find(nezt_state);

24 if id # nolD then

25. arcs = arcs U {(state.id, id, next_state.prob)}
26. else

27 id = create_local_id;

28. states; tates; U { (next_state, id)};
29. arcs := arcs U {(state.id, nezt_state.id, nezt_state.prob) };
30. w.que.insert((nezt_state, id))

31 endif

32. else

33. processor color := Black;
34. put((nezt_state, parent_id, nezt_state.prob), send-buffer)
35. endif
36. endfor
37. endif

38. endwhile;

If recv_buffer is empty but the working queue is not empty, then the state to process
is taken from the working queue (line 4); otherwise, the function get is called to get an

item from recv_buffer (line 6), which will involve waiting if the buffer is empty. This loop
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is discontinued when a null item is retrieved from the buffer, i.e., when the function get
returns a null state (line 8); the Receiver puts this null item in the buffer after receiving
the message that the first stage’s global termination has been detected.

If function get returns a non-null item from the buffer (line 6), a state state, the id
of its parent on the remote processor, parent_id, and the probability of the transition
between the two states are retrieved from this item. The Worker checks whether the
state already exists in this region by calling the method find (line 10). If this state
exists, find returns the id of the state, and the state is not processed any further, only
the arc (parent_id, id, prob) is added to the set of arcs (line 12). If the function returns
nolD, the state is new to the Worker, and it must be inserted into the graph with a
new, unique id (line 14). The corresponding arc from the parent state is inserted in the
set of arcs (line 16).

For each new state, the Worker creates the successor states (line 21) with their
probabilities, and analyzes them as follows: first, it determines if a successor state is
local or non-local (line 22) using the function partition. Each successor state in the
region 1, (i.e., local successor state) is looked up in the set of already generated states
states; (line 23). If it is found, only the arc from the current state to the child state is
inserted into the set of arcs (line 25); otherwise the state is inserted into states; (line
28) and in w_que (line 30) for further processing, and the arc is inserted into arcs; (line
29).

Non-local states are d ited, together with their arcs, into send buffer

by calling the function put (line 34). From there they will be subsequently extracted
and sent away by Sender;. The Worker also changes the color of the Generator to

Black (line 33) as the processing of states is not finished yet.
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3.4.3 The Sender

The Sender is mainly responsible for sending the non-local states and c-ross-arcs to their

corresponding Generators.
1. algorithm Sender:(n);

2. var state; (* state of the Petri net *)

3. sent_states; (* states already sent *)

4. senderready semaphore shared with Receiver;;

5.  send buffer shared with Worker;;

6.  process table; (* communication addressess *)
8 cont := true; (* loop continuation flag *)

8. begin

9. join_group(generators);

10.  signal(sender.ready);

11 process_table := receive(INFO);
12. while cont do

13. (state, parent.id, prob) := get(send_buffer);

14. if state = null then

15. send_rest(process.table, sent_states, cluster_size);
16. cont := false

17. else

18. if state & sent._states then

19. send(process_table[partition(state)], D AT A(state, parent®_id, prob));
20. sent_states.insert(state)

21. else

22. state.add_arc link(parent._id, prob)

23. endif

24. endif

2.  beast(generators, ARCS_EX PORT DONE)

27.end.

First, the Sender; joins the group of Generators (line 9) in order to meceive the table
of process identifiers from the Spawner. The Sender; signals to Recseiver; that it is
ready to receive a message containing the process table from the Spawrer (line 10). It
then receives this table and stores it in the process_table (line 11).

The Sender invokes the routine get (line 13) to obtain the data whisch it must send.
In the case of non-null state (lines 18 to 23), get returns an item put by the Worker

into this buffer, which comprises: a state (state), its parent id (paresnt.id), and the
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probability prob of transition between the parent state and s. The item is sent to its
destination only if the state s has not been sent before (line 19).

The Sender uses a structure sent_states to keep track of the states sent. This
structure is organized as a search tree, using the state representation as the key. Each
node is linked with a list of arcs. Whenever an item is retrieved from send.buffer,
the state state is searched in sent.states (line 18). If state is found, then a new arc
(parent_id, prob) is added to its list of arcs (line 22), otherwise the state is inserted into
the tree and then sent together with its arc to the appropriate Generator (lines 19 and
20).

Sender’s loop is terminated when the function get returns null, as a consequence the
global termination of the first stage. The Sender then sends away the remaining arcs,

together with their states (states are needed to ine their ids at the ination)

by calling the function send.rest (line 15). All arcs directed to the same state are
already clustered together (from the way the tree and the arcs list are constructed).
After sending this data, the Sender broadcasts a message ARCS_ EXPORT_DONE

and terminates.
3.4.4 The ordinary Receiver

All Receivers except the one used for initiating termination detection implement the
following algorithm.

1. algorithm OrdinaryReceiver (tid.collector, tid_spaumer,n);
2. var message;
token;

3. ;
4. finished := false;

5. processor_color shared with Worker;;

6.  sender_ready semaphore shared with Sender;;
7. reco.buffer shared with Worker;

8. process_table[];

9. k=0;

10. begin
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11.  wait(sender ready);
12.  joingroup(generators);
13.  send(tid_spauner, EXIST (i, my_tid));

14.

15.

16. message := receive;

17. case message.type of

18. DATA:

19. put(recv_buffer, message.S);

20. CHECK TERM:

21. if Worker.is_idle A Sender_is_idle then
22. if processor.color = Black then

23. token := Black

4. endif;

25. send(Receiveria1, CHECKJ‘ERM(m.mgg token));
26. processor_color =

27. endif;

28. TERMINATE:

29. begin

30. interrupt_Sender;

31 put(recu_buffer, null)

32. end;

33. DONE_EXPORT_ARCS:

34. begin

35. k=k+1;

36. if k =n — 1 then put(recv_buffer, null) endif
37. end

38. endcase

39. endwhile

40. end.

The initialization part is common for all Receivers: before sending an EXIST
message to the Spawner, the Receiver waits for its Sender to be ready (the Sender
should be able to receive messages when the process table is sent to it by the Spawner,
otherwise the message with the process table is lost). For this purpose, the Receiver and
the Sender share a semaphore sender ready, and the Receiver waits at this semaphore
until it receives a signal from the Sender, and then it sends to the Spawner an EXIST
message containing the triple’s id and the Receiver’s address (line 13). After this the

Receiver receives the process table, storing it in the process_table.
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The Receiver reacts to different messages as follows.

For DAT A messages, with the contents (s;, (parent;;, prob;:)iz,..n;)j=1,..k: the en-
closed k state descriptions are extracted from the message and stored in recu_buffer.
In the case of a CHECK_.TERM message, the Receiver checks whether its triple is

idle by calling the routines Worker_is_idle and Sender_is_idle. The Worker is idle when

it is waiting with empty recv_buffer, ie., it is ded on the t-empty.

Similarly, the Sender is idle when it is also ded on a b t-empty. If
the triple is idle, the Receiver; propagates the token (line 25), ensuring to change the
token’s color in the case when processor’s color is Black (line 23). Receiver;g, is the
next Receiver in the ring, where i®@1 =i+ 1lifi<n,andi®@l1=0ifi=n.

For a TERMINATE message, the Receiver must make the Worker end its first stage
and the Sender send the remaining arcs. Therefore, the Receiver adds a special null
item to recv_buffer (line 31); upon retrieving this item, the Worker finishes the first
stage. The Receiver also discontinues its Sender’s loop (line 30). Finally, the Worker
receives all the remaining cross-arcs, which come as DATA messages.

All DONE_EXPORT.ARCS messages are counted (line 35). After n — 1 such mes-
sages, the Receiver knows that it will not receive any subsequent data (PVM ensures
that the order of sent messages is preserved at the receiver side) and puts a null item
into recv_buffer (line 36). When the Worker retrieves this message, it terminates its
second stage.

3.4.5 The initiator Receiver

The initiator Receiver has a slightly different algorithm then the others, because it has
the special responsibility of starting the process of termination detection.

1. algorithm InitiatorReceiver (tid_collector, tid_spawner, n);

2. var message;

3. token;
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4. processorcolor shared with Worker;;
5.  sender.ready semaphore shared with Sender;;
6.  recu_buffer shared with Worker;;
7. process_tablel);
0

egin
10.  wait(sender_ready);
1. join group(generators);
12.  process_table := receive(INFO);
13.  while k <n-—1do

14. message := timeout_receive;

15. if message = null then

16. if Worker_is_idle A Sender_is_idle then

17 token := W hite;

18. send(Receiverigi, CHECK TERM(token));

19. processor_color

20. endif

21 else

22 case message of

23. DATA:

24 put( Jmﬂer.muuaas).

25. CHECK TERM:

26. if message.| !aken White A processor_color = White then
27. interrupt_sender;

28. put(recv_buffer, null);

29. for j=1to ndo

30. if j # initiator id then

31. send(process._table[j], TERMIN ATE)
32. endif

33. endfor

34. endif;

35. DONE_EXPORT ARCS:

36.

36. k +1;

37. if k =n— 1 then put(recv_buffer, null) endif
38. end

39 endcase

40. endif

41.  endwhile

42. end.

The initialization part (lines 10-12) is the same as for other Receivers.
However, the initiator Receiver has a slightly different loop. First, it performs a

receive with timeout (line 14). If, within a timeout period of time, no message has
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been received, the Receiver checks whether the entire triple is idle, i.e., whether the
Worker and the Sender are also idle (line 16). If this is the case, all other Generators
can also be idle. So, the Receiver initiates the termination detection process by sending
a CHECK_TERM message to the next Receiver in the ring (line 18).

On the other hand, if a message is received, an action is performed according to
the message type. DATA messages are treated in the same way as by the ordinary
Receivers. A CHECK_TERM message indicates that a token message sent before is
back. Upon its receipt, the Receiver checks the processor color and the color of the
token in the message. If both colors are White (line 26), all Generators have finished
computations, the Receiver notifies the Worker and the Sender about this (lines 27 and
28) and sends a TERMINATE message to all other Receivers (lines 29 to 33).

3.4.6 The Collector

The Collector gathers all the results constructing the complete state graph.

1. algorithm Collector(n);

2. var grapl
3. ares =

4 finished

5. begin

6.  while finished #n do

T ‘message = receive;

8. case message of

9. ARC(S):

10. arcs_set.insert(S);

11. STATES(S):

12. i

13. graph.insert(S);

14. arcs_set.insert_arc(state.id, pid)
15. end;

16. FINISHED:

17. finished = finished + 1

18. endcase

19.  endwhile;

20.  while nonempty(arcs_set) do

21. arc := arcs_set.remove_arc;



22. graph.insert.arc
23. endwhile
24. end.

The Collector loops until it receives n FINISHED messages, treating the other
incoming messages as follows: if an ARC message is received, then the arcs from the
message are inserted in the set arcs for later use; the arcs are not inserted into the
graph right when they are received, because it may happen that an arc arrives earlier
than its corresponding states. When a STATE message is received, all its states (set S)
are inserted into the graph.

Only at the end of the algorithm are all received arcs inserted into the graph (lines
20 to 23).



Chapter 4

Examples

This chapter presents some experimental results obtained for input nets with a complex
structure and a fairly large state space size. Experiments are conducted for D—timed
and well as M-timed nets because it is anticipated that the performance results for these
two classes of nets can be quite different; usually D-timed nets generate less states than
comparable M—timed nets, but D-timed nets are more computationally-demanding for

state processing that M-timed nets. C ly, the i

ratios for these two classes of nets are quite different.

The performance measure used in the experiments is the speedup of the program.
The speedup S of a distributed program is a function S : N— R* defined as the ratio
of the program’s execution time on one processor, T'(1), to the program’s execution
time on n processors, T'(n):

()

S =7y

The program’s speedup is influenced by the partitioning function. The locality
of a partitioning function is defined as follows: the locality of each processor is the
ratio between its number of local states and its region size. The average locality of
the distributed program is defined as the arithmetic average of the localities of all the

processors involved.



All experiments have been performed on a cluster of 32 diskless Linux PCs, each
with 128MB RAM, connected via a 100 Mbps Ethernet.

Section 4.1 shows the program’s behavior for D-timed nets, and Section 4.2 presents
some results for M-timed nets. Section 4.3 summarizes the results obtained in these

experiments.
4.1 D-timed nets
4.1.1 Example 1

The first example is taken from [12]. The net models a parallel MIMD architecture.
The description of Petri nets follows the syntax used in TPN-tools [38]. Nets are

described as ions of iti and each ition contains all as-

sociated with it (firing rate or time, choice probability, input and output places). Two

different initial markings are used to control the size of the state space.

The description of the net is as follows:

Dnet(ﬂTl-P"’ Pl/P3:
T2=P17,P4/ P5~
CTS-P2E P4/
#T4s1. O-P‘I P3/P7 P4,P2;
#T5*1. 0-P5/P10 P4;
#T6+1.0=P6/P21,P4;

15;
#T12¢1.0=P13, PIZIPIS P13,P11;
#T13+1.0=P1.
#T14e1.0=P15/P30 13
#T15,0.5=P16/P1’
#T16,0.5=P16/P1!
#T21=P22,P21/P23
#T22=P38,P24/P25;
#T23=P24,P8/P26;
#T24%1.0=P24, P23/P‘27 1P24,P22;
#T25*1. 0-P25/F30
#T26+1.0=P26/P24, Pi.

#T29=P31,P30/P32;



#T30=P33,P18/P34;
#T31=P33,P29/P35;

#T32+1.0=P33 P32/P36 P33,P31;

#T33+1.0=P34/P33,P10
#T34+1 0-?35/?33.?2
#T35, !

0.5=P36/P38
#T36,0.5=P36/P37)

mark(P1:4,P2,P4,P10:2,P11,P13,P21:1,P22,P24,P30:
mark(P1:4,P2,P4,P10:4,P11,P13,P21:1,P22,P24,P30:1

1,P31,P33);
,P31,P33);

For the first marking, the state graph has 14487 states and 26675 arcs (Example 1

(a)), while for the second marking it has roughly three times as many states (46729)

and 92253 arcs (Example 1 (b)).

Figure 4.1 shows the execution times for the generation of the state graphs for these

two initial markings. The plots show that the distributed algorithm’s execution time

decreases when the number of processors increases.

R L
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Figure 4.1: Execution time for Example 1 (a) and Example 1 (b).

An irregularity can be observed in Figure 4.1(a) for 18 processors; the execution

time grows from 18 seconds for 17 processors to 36 seconds for 18 processors, and then

decreases back to 15 seconds for 19 processors.

The growth of the execution time from 17 to 18 processors in Example 1(a) is due to

a lower average locality in the later case (5 % compared to 6 %) which results in a large
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difference in the (total) waiting time (27 seconds compared to 10 seconds). This waiting
time “destroys” the general advantage of using more processors (on average there are

less states to process, and less external per ). For 19 the

locality is the same as for 18, i.e. 5 %; because the regions are smaller for 19 processors,
the total execution time decreases from 15 seconds to 8 seconds.

Figure 4.2 shows the speedup for the two cases, for the number of processors from

1 to 32.
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Figure 4.2: Speedup for Example 1 (a) and Example 1 (b).

In order to “smooth” the speedup curves shown in Figure 4.2, an approximation of
the speedup by a best fitting polynomial of degree 3 is shown in Figure 4.3.

It can be observed that the character of the speedup curves for the two cases is very
similar, however, the speedup is better for the larger state graphs. Figure 4.4 compares
the two cases with the ideal speedup S(n) = n; line (i) represents the ideal speedup,
curve (a) corresponds to the speedup for Example 1(a), and curve (b) corresponds to
results of Example 1(b).
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Figure 4.3: Speedup curves for Example 1 (a) and Example 1 (b).
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Figure 4.4: Speedup comparison for Example 1 (a) and Example 1 (b).
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4.1.2 Example 2

Figure 4.5 shows the execution time for the problem of the 12 dining philosophers. The
net has 705 states and 901 arcs. The relatively small number of states is due to the
fact that all eating times and all thinking times are equal. If these times are different
for different philosophers, the state space grows very quickly. The net description and

the initial marking are as follows:

Dnet (#thinkisS=pla/p1b;
#think2e5=p2a/p2b;

Cth.\.u.kttS‘p(l/
#thinkSs5=p5a/pSb
#think6e5=p6a/p6b
#think7+5=p7a/p7b
ﬂ:bna.kB‘S-pSl/pBb
#think9+5=p9a/pob
#think10+5=p10a/p10b;
#think11+5=p1la/plib;
#think12+5=p12a/p12b;
#eat1s2=pib,A,B/A,B,pla
#eat2¢2=p2b,B, c/s C,p2a
#eat3+2=p3b,C,D/C,D.
#eatds2=p4b,D,E/D,E
#eat5#2=p5b,E,F/E,F
G/F,G
H/G,H
I

#eat6+2=p6b,F,
#eat7+2=p7b,G,
#eat8+2=p8b,H,I/H, L,
#eat9x2=pob,I,J/I,J,p9a;
#eat10%2=p10b, J, K/J K,p10a;
#eat11s2=p11b,K,L/K,L,plla;
#eat12+2=p12b, .A/L A,p12a)

mark(A,B,C,D,E,F,G,H,I,J,K,L,pib,p2b,p3b,pdb,psb,p6b,p7b,p8b,p9b,p10b,
plib,pi2b);

.?????‘. ;

}

Similarly to the previous example, the execution time is improving very quickly at

the beginning, from 1 to 4 i It i d ing up to 19 hi where
a “saturation” is reached. For 19 processors the average region size is only 39 states

in this case, so the ad of distri ing are b ing less si

because the utilization of is i are an i

proportion of time waiting for data from other processors; further increase of the number

of actually i the ion time.
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Figure 4.5: Execution time for Example 2.

Figure 4.6 shows the speedup and the speedup fitting curve for this example.
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Figure 4.6: Speedup for Example 3.

4.2 M-timed nets
4.2.1 Example 3
This example is taken from [12]. The net models a parallel MIMD architecture. The

state graph has 27399 states and approximately 7 times more arcs (197337).

The program has the following input:
Mnet (#T1=P4,P1/P2;
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#T2x1.0=P2/P7,P4;
#T3=P4,P3/P6;
#T4x1.0=] PS/PQ P4;
#T5=P5 , P4/P!
#T6+1.0=] PE/P21 P4;
#17,0.5 P7/P12}

#T11=P12,P11/P15;
#T12=P13,P11/P16;

#T31=P32,P31/P34;
#T32=P33,P32/P36;
#T33+1.0-P34/P32,P9;
#T34%1.0=P36/P32,P21;
/P23 ;
35/P13)

mode=E;
mark(P1:2,P4,P9:3,P11,P21:3,P25,P29:2,P32) ;

P

=

L

Figure 4.7: Execution time for Example 3.

The execution time, for the number of processors between 1 and 5, changes ir-

it first increases, then increases again and only for more than 5
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Figure 4.8: Speedup for Example 3.

processors shows a more regular trend. The increase in the execution time from 1 to 2

processors is not surprising. For 1 there is no icati the
processor does not wait for data. When 2 processors are used, 52959 messages are ex-
changed; each processor’s execution time contains a waiting time due to this additional
communication.

‘When the number of processors changes from 2 to 3, it appears that the locality
decreases (from 72 % to 59 %), the number of messages in the system nearly doubles
(from 52959 to 93801), and the execution time increases from 27 seconds to 39 seconds.
The change from 3 to 4 processors improves the execution times because the average
locality increases to 71%. For 5 processors, the locality drops again to 46%, and the
execution time becomes larger once more.

The execution time changes more regularly from 5 to 32 processors. However, the
execution time is improving rather slowly. Although the region size decreases with
increasing number of processors, the number of searches due to external data per region
is quite large, so the computational time does not decrease significantly.

The speedup obtained in this example is shown in the Figure 4.8.
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4.3 Concluding remarks

The experiments indicate that the program’s execution time depends on: (1) the average
time needed for processing a single state, (2) the average number of arcs per state, and
(3) the locality of the partitioning function.

o If the average state processing time is high, the time a processor spends in creating
the successor states is significantly reduced with each additional processor added

to the virtual machine.

o If the average number of arcs per state is large, the number of messages in the sys-

tem grows with each thus affecting s
time (the searching of external states), and its waiting time.

o If the locality with additi the number of in the

system increases, and, on average, each processor’s waiting time increases.

For nets with large number of arcs per state and small state processing time, the
communication time seems to dominate the execution time, so only moderate speedups
can be obtained. Faster communication medium might improve the results.

Distributed processing is quite efficient for nets with high state processing time and
small number of arcs per state (like D-timed nets).
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Chapter 5

Conclusions

Distril if for the ion of state graphs of Petri nets have evolved as an

alternative to sequential methods, which, due to their high computational and memory
demands, become insufficient for nets with large state spaces. However, creating efficient
distributed algorithms for this problem is difficult because the irregularity of the state

space induces a (large) inherent ication overhead (3 local states must be sent

to their and a fon overhead (a may need

to deal with the same external state coming from several processors).
This thesis proposes a distri d i for the ion of state space for

timed Petri nets. The algorithm is built on top of the software package TPN-tools [38].

It is the first distributed algorithm for this class of nets. Similar research has been
conducted for another class of Petri nets with time, stochastic Petri nets. There are
significant differences between these two formalisms, resulting in very different models
of the same systems, but many issues related to distributed implementation of the
sequential algorithms are similar, so 2 comparison with this other work is instructive.
The algorithm proposed in this thesis distinguishes itself from the others in the following

aspects:

e The proposed i totally the it aspect from the com-




munication, by the use of the three concurrent processes per machine (Section
3.3).

 Each Generator gives priority to external states over local ones preventing there-
fore i ing states from ing in the memory. All other

algorithms give priority to local states. They wait to receive external states only
after the available local states have been processed.

o The construction of the state graph is decomposed into two consecutive stages:
during the first stage all the states and arcs are created, and all states are sent
to the processors responsible for them. During this stage, cross-arcs directed to
already sent non-local states are not sent, but stored. In the second stage, all
cross-arcs directed to the same non-local state are sent in one message. This
delayed sending has two consequences: (1) it reduces the traffic network, so that
the external states, which are needed to complete the construction of the region,
can be transferred with reduced delays, improving the performance, and (2) no
matter how many cross-arcs a processor creates for one non-local state, all arcs

will be sent in at most two Also, the ible for them

needs to search them at most twice.

The primary objective of this work, implementation of distributed state space gen-

eration, has been successfully achieved; the program is able to generate state spaces up

to a fairly large size on a cluster of medium memory sized machines (128 MB RAM

diskless Linux PC’s).

Experimental results suggest that the of the i is by

both the structure of the model (the average state processing time, the average number

of successors per state), and the choice of the partitioning function (which establishes

the number of cross-arcs).
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For the class of D-timed Petri nets with a high average state processing time and
a small average number of arcs per state, the distributed implementation gives almost
linear speedup. The il allows the ion of i large state spaces of

this class (an order of 10° states) in very reasonable run times. For this class of nets,
a “better” behavior can be noted when increasing the state space size, which can be
attributed to large and more uniformly distributed numbers of states assigned to each
of the processors.

The proposed system can be extended in several directions:

e At present, the maximum problem size which can be handled is restricted by PVM
memory demands and resource limitations; e.g., PVM uses dynamically allocated
memory for messages en route between processes. Messages sent but not yet
received accumulate in PVM’s local daemon’s memory. If messages are sent faster
than the receiving processor consumes them, the diskless PC runs out of memory.

This limitation will disappear if a protocol with message acknowledgments is

This is a strai; ard ion; each G would not send

data to another one before having a notice specifying that the latter is ready for
receiving. It would be interesting to note how this overhead for acknowledging
messages would affect the program’s speedup.

The experiments presented in Chapter 4, as well as the examples in the literature,
corroborate the observation that the performance of the distributed state space

isi d by the itioning function. The partitioning

function used here achieves a very good memory balance. However, a function
with a better locality would reduce the traffic in the system, and therefore, the

overhead. U , finding a good partitioning function

from the net’s structure is a non-trivial task, which clearly needs more research.
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Asan ive, the program’s 1d be i by using dynamic

itioni i Dynamic partitioning remaps states to processors ac-

cording to two criteria: memory balance, and execution time.

Finally, the istril i ion of the state space generation can

be used as a starting point for a distributed steady state solution of the state graph, a

“natural” next step in quantitative analysis of timed net models.
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