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ABSTRACT 

Coordination compounds of the ligand l,4-di(2 1 -pyridyl}­

aminophthalazine (PAP) and various nickel(II} and zinc{II} salts are 

studied. In the case of the nickel{II) complexes, infrared and 

electronic spectra, and elemental analyses indicate the compounds 

formed are binuclear and dimeric, containing nickel in a pseudo­

octahedral environment; four of the coordination sites are occupied 

by ligand nitrogen atoms . In the nickel halide complexes the remaining 

coordination sites are occupied by water or, in some cases, coordinated 

halogen atoms, which are replaced by water in aqueous solution. Two 

complexes are formed with nickel nitrate, both of which contain 

coordinated nitrate groups, and one of them contains a bridging 

hydroxy group. In the coordination compounds of PAP with nickel 

perchlorate and tetrafluoroborate the metal atoms have coordinated 

water and are joined by a bridging hydroxy group. Magnetic suscept­

ibility studies indicate antiferromagnetic exchange between the nickel 

atoms in the hydroxy bridged species. 

When reacted with halides or pseudohalides of zinc, PAP acts in 

either a bidentate or tetradentate manner , depending on the anion 

present . All of the PAP-zinc complexes contain coordinated anions. 
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INTRODUCTION 

The title compound, 1,4-di(2'-pyridyl)aminophthalazine (PAP) was 

originally prepared by Lever
l 

via ring expansion of 1,3-di(2'-pyridyl)-

iminoisoindoline with hydrazine hydrate (Fig. 1). This original 

synthesis is quite lengthy, since the preparation of the "isoindoline" 

precursor requires two reaction steps. The procedure was simplified by 

2 
Thompson , who prepared the "pyridylisoindoline" directly by fusion at 

250 0 of phthalonitrile and 2-aminopyridine in a 1:2 molar ratio (Fig. 1). 

The structure of PAP allows it to have three tautomeric forms: 

a) both hydrogens on the phthalazine nitrogens, b) both hydrogens on 

the exocyclic nitrogens, c) one hydrogen on a phthalazine nitrogen and 

one on an exocyclic nitrogen (Fig. 2) . 

-1 
Between 4000 and 3100 cm , the infrared spectrum of PAP exhibits 

-1 
two absorptions, one at 3260 and the other at 3180 cm ; both bands 

. . 2 
have been asslgned to N-H stretchlng Based on a comparison of the 

infrared spectrum of PAP with that of phthalaz-l,4-dione, the absorption 

-1 
at 3180 cm was assigned to phthalazine N-H stretch. However, this 

absorption shows up in all of the PAP complexes of nickel, and does 

not shift when the complex is prepared from anhydrous nickel salts in 

-1 
On the basis of these data, the absorption at 3180 cm has been 

reassigned to aromatic C-H stretch; 
- 1 

the band at 3260 cm is assigned 

-1 
to N-H stretch, this absorption shifts to lower energy by 860 cm in 

complexes prepared from D
2
0. 

Although the infrared spectrum of PAP is complicated, it has been 

found that one of the pyridine ring absorptions is of diagnostic use in 

spectroscopic studies of PAP metal complexes. The infrared spectra of 
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pyridine and substituted pyridines show no remarkable changes when the 

ring is coordinated to the metal atom, but a ring breathing mode 

-1 -1 
absorption at 990 cm for the free pyridine does shift by 30-40 cm 

° h dO ° 3-6 to h~g er energy on coor ~natl0n . For such complexes as CU(PY)2C12' 

CU(PY)2Br2 and CO(PY)4(NCS)2 the pyridine ring breathing mode absorption 

-1 
appears around 1020 cm . For 2-aminopyridine complexes, the band is 

observed to shift from 983 to 1010 cm-
l 

on coordination. 

The infrared spectrum of 1,4-diaminophthalazine shows no absorption 

-1 
between 1010 and 950 cm , but that of PAP shows a strong band at 

989 cm- l , assigned to the ring breathing mode absorption of the un-

coordinated pyridine rings. For bidentate complexes of PAP (i.e. 

coordination via one phthalazine nitrogen and one pyridine nitrogen), 

a shift in the ring breathing mode absorption is expected for only the 

coordinated ring, giving rise to two bands; if the ligand is tetra-

-1 
dentate, there should be no ligand absorption at 989 cm 

PAP is known to react in a tetradentate fashion with salts of 

copper and cobalt, forming binuclear compounds in which each metal 

atom is coordinated to one phthalazine and one pyridine nitrogen 

7 8 
atom ' • 

Binuclear complexes, PAPCU
2

X
3

(OH)-H
2

0 (X = Cl,Br) may be prepared 

by direct reaction of the ligand with an aqueous solution of the 

appropriate copper salt; an iodate complex, PAPCU
2

(I0
3

)3(OH)-3H
2

0 is 

prepared by adding a saturated aqueous solution of potassium iodate to 

7 aqueous PAPCu
2

C1
3

(OH)-H
2
0. A preliminary X-ray study of the chloride 

complex shows that each copper atom is five-coordinate in a square-

pyramidal environment with the metal atoms joined by bridging chlorine 
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9 
and hydroxy groups. (Fig. 3). The room temperature magnetic moments 

of these complexes, as well as the values of the exchange integral, J, 

are given in Table 1. 

TABLE 1 

MAGNETIC PARAMETERS OF SOME PAP-COPPER COMPLEXES 

COMPLEX lleff (B.M.) g -J 
-1 

(cm ) REF 

(295°K) 

PAPCu
2

C1
3

(OH)·H
2

O 1.60 2.28 100 7 

PAPCu
2
Br

3
(OH)·H

2
O 1.66 2.10 85 1 

PAPCU
2

(I0
3

)3(OH)·3H 2O 1.34 1.95 167 1 

The large values of J indicate an antiferromagnetic interaction between 

the copper atoms coordinated to the same ligand. In the case of the 

halide complexes, it is assumed that magnetic exchange takes place via 

the bridging groups. 
. 10 

Haddad and Hendrickson have reported a linear 

relationship between J and the Cu-(OH)-Cu bridge angle in certain 

dihydroxy bridged amine chelate compounds they have studied ; the 

bridge angle for these complexes varied from 95.6 0 for [Cu(bipyridine)-

(OH)]2 (N0
3

)2 to 104.8 0 for [Cu(TMEN) (OH)]2Br2 (TMEN = N,N,N',N'-

tetramethylethylenediamine). The mono-hydroxy bridged copper amine 

chelates such as [CU
2

(TREN)2(OH)]X
3 

(TREN = 2,2',2"-triaminotriethyl-

amine; X Cl0
4

,PF
6

) have -larger values of J, a consequence of the larger 

CU-(OH)-Cu bridge angle in these systems. The larger value of J for 

the PAP-copper iodate complex when compared to those of the simple 
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H"" H 

~ 
N---< >----N 

Fig.3 

THE STRUCTURE OF [ PAPCu
2

C1
3
(OH)].(H

2
0) AS INDICATED 

BY X-RAY CRYSTALLuGRAPHy 9 . THE WATER MOLECULE IS IN 

THE CRYSTAL LATTICE UNCOORDINATED TO THE COPPER ATOMS . 
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halide complexes may indicate a larger OH bridge angle, or if direct 

metal-metal exchange is involved, it may be a case of a shorter 

distance between the copper atoms, as has been postulated by 

7 
Thompson et al. 

Two series of complexes were prepared by reaction of PAP with 

copper carboxylates: 

of the complex formed is apparently dependent on the pK of the 
a 

corresponding carboxylic acid; if the pK is less than 3.8, a 
a 

tetracarboxylate forms; 

tricarboxylate forms. 

if the pK is greater than this value, a 
a 

It is assumed the ligand is anionic in the 

tricarboxylate forms and neutral in the tetracarboxylate complexes, 

suggesting the pK of the complexed ligand is around 3.8. 
a 

Neither 

the halide nor the carboxylate complexes show an infrared absorption 

-1 
between 950 and 1010 cm , but an extra band is observed between 1010 

and 1022 cm- l , indicating that both pyridine nitrogen atoms are 

coordinated. 

Cobalt(II} halides in various solvents react with PAP in a 2:1 

8 molar ratio to form compounds which analyse as PAPC0
2

X
3 

(X = Cl,Br,I). 

solvated forms are obtained from methanol and water, but convert to the 

unsolvated forms when vacuum dried. It is interesting to note that tl~e 

chloride complex is thermochroic in methanol. At room temperature the 

solution is red, but when heated turns green. The green form is less 

soluble than the red form, green crystals being obtained when the 

solution is heated and the volume reduced. Electronic spectroscopic 

studies indicate the green form, PAPc0
2

C1
3

, contains pseudo-tetrahedral 

cobalt. The red form has not been clearly characterised, but probably 
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contains octahedral cobalt{II). Recent evidence in our laboratory 

has shown that aqueous solutions of the binuclear cobalt complexes 

are oxygen sensitive, and diamagnetic binuclear cobalt{III) derivatives 

. d 11 can be obtalne . 

Preliminary studies on some nickel{II) complexes of PAP prepared 

2 
in non-aqueous solvents have been carried out by Thompson These 

complexes, the solvent in which they were prepared, the A values of 
max 

the solid state electronic spectra, as well as the room temperature 

magnetic moments are summarised in Table 2. 

TABLE 2 

MAGNETIC MOMENTS AND A VALUES FOR SOME PAP-NICKEL COMPLEXES 
MAX 

COMPOUND 

PAPNiBr
2

-2H
2

0 

PAPNiI -2H 0 
2 2 

PAPNi (NCS) -4H 0 
222 

PREPARED IN NON-AQUEOUS SOLVENTS 

SOLVENT l1eff (B.M.) 

ACETIC ACID 3.08 

ACETIC ACID 3.10 

METHANOL 3.11 

METHANOL 2.96 

SOURCE: Reference 2, Table 17. 

10,000, 16,000 

[30,000] 

10,900, 17,000 

[30,000] 

7,700, 12,200 

[25,000] 

9,800, 16,700 

[30,000] 

[] DENOTES APPROXIMATE POSITIONS OF HIGHEST ENERGY LIGAND-FIELD 

BANDS 
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The presence of two pyridine ring breathing mode absorptions in the 

infrared spectra of the bromide and iodide complexes indicates that 

these compounds are probably mononuclear. The electronic spectra are 

characteristic of octahedral nickel(II); the absence of noticeable 

splitting of VI (see section on Electronic Spectra) indicates there is 

no strong tetragonal distortion of the coordination environment around 

the nickel atoms in the solid state. 

Ligands with a functional similarity to PAP (nitrogen atoms 

spaced similarly to the coordinating nitrogens of PAP) have been known 

12-14 
since at least 1947, when Stratton and Busch described iron(II) 

and nickel(II) complexes of 2-pyridinealdazine (PAA) e.g. [M(PAF~)2]X2 

(M = Fe,Ni; In these systems PAA is tridentate, 

coordinated through the two pyridine and one of the azine nitrogens. 

If these reaction solutions are cooled rapidly from room temperature, 

compounds of empirical formula [M
2

(PAA)3]X
4 

form. These latter 

complexes are not stable in aqueous solution, and slowly dissociate 

. . 2+ 2+ 
to form [M(PAA)3 1 and M 0 

Aqueous conductance measurements, magnetic susceptibilities and 

electronic spectra are consistent with a complex cation [M
2

(PAA)3 14+ 

containing two octahedrally coordinated metal atoms held adjacent to 

each other by three tetradentate ligands (Figa 4). Molecular models 

indicate that such a structure is sterically feasible provided that 

each ligand is twisted approximately 60 0 about its N-N bond. 

Ball and Blake have prepared a number of binuclear nickel(II)lS 

and cobalt(II)16 complexes of 3,6-di-(2'-pyridyl)pyridazine (DPPN), 
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4+ 

M 

M 

( a ) 

( b ) 

FIG.4 

a). STRUCTURE OF [M
2

(PAA) 3 J4+ 

b). 0 C T A H E D RA L CON FIG U RAT ION 0 F THE MET A L A TOM S 

I N [ M 2 ( P AA) 3 J 4+ • S HAD E D LIN E S REP RES E N T 

LIGAND MOLECULES. METAL ATOMS ARE IN CENTRES 

OF OCTAHEDRA (NOT SHOWN). 
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3,6-di-(6-methylpyrid-2-yl)pyridazine (Me
2
DPPN), 3,5-di-(2'-pyridyl) 

pyrazole (DPPLH), and 1,4-dihydrazinophthalazine (DHPH) (Fig. 5). 

The grey-green nickel complexes of DPPN, Ni(DPPN) (N0 3 )2-2H20 

and Ni(DPPN) (Cl0
4

)2-2H
2

0 have four bands in their electronic spectra 

-1 
at about 10,000, 12,000, 17,000, and 18,000 cm , and also strong 

-1 
absorption above 22,000 cm • These four bands are interpreted as 

representing the electronic transitions of tetragonally distorted 

octahedral nickel(II) . The electronic spectra of the green complexes 

Ni 2 (DPPN) (S04)2-SH20 and Ni2 (Me 2DPPN) (N03)4-2H20 show only two 

-1 absorptions below 22,000 cm , one around 10,000 and the other around 

-1 
16,700 cm . These transitions are more typical of regular octahedrat 

nickel(II). The greater splitting of the octahedral energy levels 

in the complexes with a 1:1 metal:ligand ratio compared to those with 

a 2:1 ratio is attributed to the ligand atoms in the case of the former 

being arranged as "trans"-N ° . 
4 2' 

the latter are probably "cis"-N20 4 • 

Probable structures for these binuclear dimeric (" trans" -N ° ) and 
4 2 

biriuclear monomeric ("cis"-N
2

0
4

) complexes are shown in Fig. 6. A 

structure such as that proposed in Fig. 6a might suggest sterie strai~ 

because of the proximity of the hydrogen atoms at the "6" positions of 

the pyridine rings; however, molecular models indicate that this 

interference can be relieved by slight distortion. A much more severe 

strain would be experienced by 1:1 complexes of Me
2

DPPN, and this lig~nd 

only produces 1:2 and 2:1 (metal: ligand) complexes_ 

The infrared spectra of the nitrate complexes suggest the anions 

are coordinated. In the 1:1 complexes, e.g. Ni(DPPN) (N03)2-H20, the 

nitrate groups act in a unidentate manner. The anion absorptions 
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N-N 

DPPN ( R = H ) 
Me2DPPN ( R = Me ) 

N-N 
I 
H 

DPPLH 

N-N 

DHPH 

FIG. 5 
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suggest the presence of ~oth uni- and bidentate nitrate groups. 

all have similar electrornic spectra, consisting of three bands at 

-1 approximately 9,400, 13,5>00, and 18,800 cm (no absorptions above 

-1 
18,800 cm are reported) • The central band is split into two com-

-1 
ponents, about 700 cm a~art, which are poorly resolved, even at low 

temperature. The spectrUlIIl is interpreted in terms of the octahedral 

3 3 -1 
T2g and Tlg levels beirng split by 4,000 - 5,000 cm in a tetragonal 

field such that two of true resulting four levels almost coincide. 

An X-ray structural dete~mination of the dimeric complex Ni(DHPH)C1
2

-3H
2

0 

reveals the cation to be centrosymmetric, with the nickel atoms in a 

tetragonally distorted o~tahedral environment17 (Fig. 7). 

The magnetic momentso, g, and J values of the DPPN, Me
2

DPPN and 

DHPH complexes are quotedH in Table 3. As may be seen from the table, 

all of these complexes a~e paramagnetic, having magnetic moments ranging 

from ca. 2.8 - 2.9 B.M. The J values indicate spin-spin interaction 

between the nickel atoms, . which is thought to occur through the azine 

nitrogen bridge of the Ii-gand. 

1 18.. kIt Two comp exes prepa~ed by Rosen contaln two nlC e a oms 

circumscribed by the macr70cyclic ligands 6,7,8,9,12,19,20,21,22, 

25-decahydro-8,8,10,21, 2lL, 23-hexamethyl-5, 26:13,18-bis (azo)-

dibenz[i,t] [1,2,6,7,12,1 3B ,17,18]-octaazacyclodocosine (TAPH) and 

4-[2-(4-hydrazino-l-phthaa lazinyl)-hydrazino]-4-methyl-2-pentanone-

«4-hydrazino-l-phthalazi-nyl)hydrazone) (DAPH) (see Figs. 8, 9). 
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a ) 

II 0 ~ 0 
N - N -N - N 
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( b ) 

FIG. 6 

R 

PROPOSED STRUCTURES OF II OCTAHEDRAL" 

T RAN S - N 402 ( a), AN D CIS - N2 0 4 (b) COM P LEX E S 

H2 OH2 H2 
H N 

.......... N/ ~ !i~N'N/H 

"N~I~N:;.-' 
I OH 2 I 
~N~IH~N~ 

Ni 

/N'-N~I ~N/N'H 
H H 2 OH 2 H 

2 

FIG. 7 

STRUCTURE OF THE CATION 

AS INDICATED BY X-RAY ANALYSIS, (Ni-N=2.07-2.10A ; 

Ni-O = 2.16A ; Ni-Ni = 3.79A ;L Ni-N-N = 125 0 
) 
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Fig. 8 

PROPOSED STRUCTURE FOR THE 
NICKEL(II) COMPLEX OF TAPH 

Fig. 9 

PROPOSED STRUCTURE FOR THE 
NICKEL(II) COMPLEX OF DAPH 
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The physical data for these systems indicate the nickel atoms are in 

octahedral or ps e udo-octahedral fields. These paramagnetic complexes 

exhibit magnetic moments which lie below the accepted range for six­

coordinate nickel{II).19 As with the case of the nickel{II) complexes 

15 of DHPH , it is assumed the lower magnetic moments are due to anti-

ferromagnetic cou pling through the ligand backbone. 

Sullivan and Palenik
20 

report a binuclear nickel{II) complex of 

the hexadentate ligand 1,4-dihydrazinophthalazine bis(2'-pyridine-

carboxaldimine) (DHPHTH) (Fig. 10). The electronic spectroscopic 

properties of the complex are not discussed, but the magnetic moment 

of 2.74 B.M. is similar to those of the closely related DHPH systems. 

The low magnetic moment of the DHPHTH complex is not speculated 

upon, as temperature dependent magnetic susceptibility data were 

unavailable. 

In the pres e nt study it was hoped to produce further examples 

of binuclear metal complexes in which the metal centres were close 

enough to exhibi t antiferromagntic exchange. Such systems are of 

potential importance in providing information relavent to studies 

of naturally occ~rring binuclear metalloprotein systems, e.g. hemo-

cyanin and hemer:ythrin . 



C(4) C(5) 

0(4) 

Fig. 10 

ORTEP drawing of ~-chloro-tetraaqua[l ,4-dihydrazinophthalazine bis(2'-pyridinecarboxaldimine)]dinickel(II)cation. 
The chloride anions and the two water molecules have not been included for clarity. 

i-' 
-..,J 
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TABLE 3 

~mGNETIC PARAMETERS OF SOME NICKEL COMPLEXES WITH DPPN, 

Me
2

DPPN AND DHPH 

COMPOUND
a 

(300 K) 
-1 

lleff g -J (cm ) 

Ni(DPPN) (N03)2-H20 2.91 2.21 23.5 

Ni(DPPN) (CI0
4

)2-2H
2

O 2.91 2.15 14.7 

Ni2 (DPPN) (S04)2-5H20 2.87 2.18 12.3 

Ni
2

(Me 2DPPN) (N0 3 )4- 2H 20 2.89 2.18 20.7 

Ni2 (Me 2DPPN) (N03)4-H20-CH30H 2.91 2.18 18.5 

Ni(DHPH)C1
2

-3H
2

O 2.82 2.15 22.3 

Ni (DHPH) Br 2 - 3t:I2
O 2.79 2.16 23.8 

Ni(DHPH)I
2

-3H
2

O 2.81 2.14 21.3 

Ni(DHPH)C1
2

-2H
2

O 2.80 2.14 23.5 

Ni(DHPH)Br
2

-2H
2

O 2.84 2.19 24.5 

Ni(DHPH)C1
2

-O.5H
2

O 2.87 2.19 23.6 

Ni(DHPH)Br
2

-H
2

O 2.89 2.21 23.6 

Ni(DHPH)I
2

-H
2

O 2.84 2.18 24.0 

SOURCE: Reference 15_ 

a 
All 1:1 (metal: ligand) complexes are binuclear. 
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ELECTRONIC AND MAGNETIC PROPERTIES OF NICKEL(II) 

The outer shell configuration of nickel(II) is 3d
8

, which gives 

h f · ,3 1 3 1 1 (' rise to t e ree lon spectroscoplC states F, D, P, G, S ln 

order of increasing energy). The way in which these terms are split, 

and hence the spectral and magnetic properties of the complex depend 

on the stereochemistry of the nickel ion. (see Fig. 11) 

Six-coordinate nickel(II) complexes are almost always high spin, 

and have regular or distorted octahedral symmetries. In an octahedral 

environment, the 3F term splits into three terms (3Tlg, 3T2g , 3~2g) 

(Fig . 12).21 As may be seen from Fig. 12, there are three spin-allowed 

transitions expected from the 3A ground state: 
2g 

3
T 

2g 
~ 

3
A 

2g VI 10 Dq 

3
Tlg

(F) ~ 
3 

A
2g 

V
2 

15Dq + (15/2)B-(1/2) [(15B-6Dq)2 + 
2 k 

64 (Dq) ] 2 

3Tlg (P) 3
A (1/2) [ (15B-6Dq) 2 

2 k 
~ V3 15Dq + (15/2)B + + 64 (Dq) ] 2 

2g 

These transitions are usually observed in the regions 7,000 - 13,000 

-1 -1 -1 
cm (VI)' 11,000 - 20,000 cm (V

2
), and 20,000 - 28,000 cm (V

3
). 

The term "B" in the equations for the transition energies is the 

Racah parameter, which arises from the difference in energy between 

free ion states of the same spin mUltiplicity. This difference in 

energy results from electron-electron repUlsion, and the value of B 

for a complex (B') is always smaller than B for the free ion, due to 

delocalisation of metal electrons over molecular orbitals that encompass 

the entire molecule, including the ligand(s). The ratio of B'/B = S of 
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a related series of complexes is a measure of the covalency of the 

metal-ligand bond, the smaller S, the more covalent the bond, and vice 

versa. The value of 10Dq depends on the ligand(s) and can vary over 

a wide range e.g. 10Dq for NiBr
2 

is 
-1 22 

6,800 cm , while that for 

. 2+ . -1 23 
[N1(phen)31 1S 12,700 cm . 

Spin forbidden transitions are sometimes observed in the electronic 

spectra of octahedral nickel(II) complexes . 
1 

The E 
g 

appears in 
-1 

the 11,000 - 15,000 cm region, and that 

+ 3A 
2g 

1 
of T

2g 

absorption 

+ 3A in 
2g 

-1 
the 17,000 - 22,000 cm region. The absorptions corresponding to the 

transitions 
3 T

2g 
+ 

3 
A

2g 
are usually symmetric, but 

3 
+ A

2g 
band often has a shoulder, or even appears as a 

doublet, especially when Dq/B approaches unity. It has been suggested 

that the doublet structure is due to a gain in the intensity of the 

. . 1 3 
trans1t1on E + A2 

g g 
through configurational interaction with the 

3 23,24 
Tlg(F) level , or possibly through spin-orbit coupling.

25 

Pseudo-octahedral six-coordinate complexes of the type NiL
4

X
2 

have spectra characteristic of octahedral nickel(II) . The V
2 

and V3 

bands are not usually affected by the lower symmetry, but a splitting 

-1 
of 2,000 - 2,500 cm is often observed in the VI band of . trans NiL

4
X

2 

complexes with D4h $ymmetry, assigned to the transitions 
3 

B
2g 

+ 3B 
19 

level) . and 3 3 
(tetragonal of the octahedral 

3 
E +- BIg components T

2g g 

A smaller splitting is observed for "cis-octahedral" complexes. The 

ef f ects of these distortions from octahedral symmetry on the energy 

l evels of the nickel(II) ion have been illustrated by Furlani
26

. 

Octahedral complexes of nickel(II) have a triplet ground 

state 3A2g and are usually paramagnetic. Although in theory there 
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3 T1g 

3p __ ------ 3Dq+(15/2)B+(1/2) [(15B_6Dq)2+64 (Dq)2]1/2 ---------

;P 

" 
"" ;P 

3 
, __ T_l-:;..9 __ 3Dq+ (15/2) B- (1/2) [( 15B-6Dq)2 +64 (Dq)2 ] 1/2 

;P 3 
,," T 2g 

-----'.:- - - - --------2Dq 
" , , 

" 3 
" A2g 

' .. ----- 12Dq 

Fi g. 12 

TRIPLET TERMS ARISING FROM NICKEL (II) IONS IN OCTAHEDRAL FIELDS 

3T 
_____ 1 ___ (15/2)B-3Dq+( 1/2) [( 15B+6Dq)2 +64{ Dq)2 . ]1/2 ---

3A 
",_.-.;;;;..2 ---12Dq 

" / 
/ 

// 3T2 
__ 3_F ___ ~~ _____ .-----2Dq 

......... ..... 
'..... 3T 

............ __ 1 ___ (15/2)B-3Dq-(l/2) [(15B+6Dq)2+64 (Dq)2]1/2 

Fi 9 13 

TRIPLET TERMS ARISING FROM NICKEL(II) IONS IN TETRAHEDRAL FIELDS 
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should be no orbital contribution to the magnetic moment, in actual 

fact there is because of spin-orbit coupling. Because of this orbital 

contribution, the magnetic moment is always greater than the spin-only 

value of 2.83 B.M., usually ranging from 2.9 to 3.3 B.M. The magnetic 

moment does not vary appreciably with temperature change or minor 

distortions from octahedral symmetry. There are some six-coordinate 

complexes of nickel(II) that are diamagnetic, perhaps the most studied 

b e ing bis(o-phenylenebisdimethylarsine)nickel(II) iodide. In this 

complex the iodine atoms are trans to each other, and the nickel 

iodine distance is greater than the sum of the atomic radii
27

, also, 

iodine and the arsine are far from each other in the spectrochemical 

series. These two effects combine to cause a strong tetragonal 

distortion, the net result being that the complex is essentially 

square-planar. 

The outer shell electronic configuration of tetrahedral nickel(II) 

" 4 4 d h f " 1 " " h"" 13 lS e t2 ' an as a ree lon sp lttlng as sown ln Flg. • As with 

octahedral complexes, there are three spin-allowed transitions expected 

in the electronic spectra of tetrahedral nickel(II) complexes, except 

3 
i n this case they arise from a Tl ground state. Since the crystal 

field splitti ng is only 4/9 that of an octhedral field, the electronic 

transitions shift toward the infrared when compared with those of an 

octahedral complex. The absence of a centre of symmetry in the tetra-

hedral field causes the absorptions to be more intense than those of 

an octahedral field. h h " h " " 3 () T e 19 est energy transltlon, Tl P is 

-1 
usually observed as a very broad envelope near 15,000 cm , with 

shoulders due to spin-forbidden bands. 28 The 3A2 + 3Tl absorption 
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-1 
appears around 7,000 cm 3 

The low energy T2 
3 

+ Tl transition is 

frequently not observed, as it lies in the range of conventional 

infrared, and can be masked by vibrational transitions. The orbital 

3 
degeneracy of the Tl ground state of the tetrahedral complexes 

causes the magnetic moment to be higher than the spin-only value 

through orbital contribution; experimental values range from 3.2 to 

4.1 B.M. and are temperature dependent. 

The square-planar configuration for nickel(II) complexes is 

energetically less favourable than the tetrahedral in terms of spin-

pairing energy and minimisation of electrostatic repulsion. The major 

stabilisation factor for such complexes is strong nickel-ligand 

covalent bonding (both 0 and n). Square planar complexes of nickel(II) 

may have either of two ground states: 
4 

e 
g 

2 b 2 ( . . 1 a lg 2g spln slng et state 

state 

or e 4 a 2 b 1 
g Ig 2g 

b
lg

l 
(spin triplet 

3 
state A

2g 
and an excited 

lA
29

).28 The low spin state is favoured if the separation between 

-1 
the d 2 2 and d orbitals is greater than 10,000 cm . 

x -y xy 

The spectra of square planar complexes of nickel(II) usually have 

-1 -1 
a strong band (E = 50 - 500 ~ cm mole ) in the region 15,000 to 

-1 1 1 
23,000 cm (A

2g 
+ A

lg
) and a second absorption between 23,000 

~l 1 1 
and 27,000 cm (BIg + A

19
). A weaker band, believed to be due to 

a spin-forbidden transition is sometimes found in the area 11,000 

- 13,000 cm 
-1 

The most notable difference between the spectrum of 

a square planar complex and that of an octahedral one is the absence 

-1 
of any absorption below 10,000 cm in the case of the former. The 

lack of such a band indicates the energy separation between the d 2 2 
x -y 
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-1 
and d orbitals is greater than 10,000 em , and the complex will 

xy 

be in a low spin state, and hence diamagnetic. 

NICKEL (II) COMPLEXES OF PAP 

Aqueous solutions of nickel(II) salts react readily with PAP to 

form a series of complexes of general formulae PAP2Ni2x4-nH20 (X = 

n = 0-2). The solubilities of these complexes in water are quite 

variable, the chloride complex being the most soluble and the- perchlorate 

the least. The complexes are also soluble in methanol and ethanol to 

varying degrees, but are insoluble in other common organic solvents, 

except pyridine. A sample of the bromide complex "recrystallised" 

from pyridine formed a pale blue powder. The infrared spectrum of 

this compound indicates it is a pyridine complex, presumably the blue 

complex, Ni(pyridine)4Br2. The infrared absorptions associated with 

the ligand in these nickel complexes are similar to those of 

PAPCu
2

C1
3

(OH)-H
2
0, indicating structural similarity of the ligand 

environments between the nickel complexes and that of the copper 

chloride complex. (see Fig. 3) The infrared spectra of all the 

-1 
nickel PAP complexes show shifts of 20-30 em to higher energy in 

the pyridine ring breathing mode absorption (Table 4); by analogy with 

the copper hydroxy chloride complex it is assumed the ligand in these 

complexes is also tetradentate, coordinating via the phthalazine and 

pyridine nitrogens. Electronic spectra indicate the ligand moieties 

of all the nickel complexes to be neutral. (see section on Electronic 

Spectra) . 
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INFRARED SPECTRAL DATA 

NICKEL HALIDE COMPLEXES 

The infrared spectra of the PAP-nickel chloride and bromide 

complexes are almost superimposable, while that of the iodide is very 

similar. As the metal:ligand ratio is 1:1 (see experimental section), 

the presence of tetradentate PAP in the nickel complexes indicates 

that the molecular formula is twice the empirical formula suggested 

by elemental analyses , and should be written PAP
2

Ni
2
x

4
-nH

2
0. 

The high energy portions of the infrared spectra of the chloride 

and bromide complexes show a broad absorption in the range 3600-

-1 
3100 cm . Although it is difficult to make specific assignments 

-1 
in this area a shoulder around 3500 cm is associated with water, 

-1 
while absorptions in the range 3260-3430 cm are assigned to N-H 

-1 
stretch, and an absorption between 3160 and 3180 cm is assigned 

to aromatic C-H stretch (Table 4). The nickel iodide complex shows 

no absorptions due to water, and elemental analyses are consistent 

with an anhydrous complex (see section on experimental procedure). 

The spectrum of the iodide complex shows "shoulder" absorptions 

similar to those of the chloride and bromide complexes, which may 

be assigned to N-H and C-H stretching vibrations. 

The low energy regions of the infrared spectra of the halide 

complexes prepared do not contain evidence of nickel-halogen vibrations. 

The iodide complex did not show Ni-I stretching absorptions above 200 cm-
l

. 

NICKEL NITRATE COMPLEXES 

Two complexes were isolated from the PAP-nickel nitrate reaction 

solution: purple needle-like crystals and green rhombic crystals. 

II 
I 
I 
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The electronic and infrared spectra confirm that these are distinct 

complexes and not just different hydrated forms. Elemental analyses 

respectively. 

The high energy regions of the infrared spectra of both nitrate 

complexes show various N-H and C-H "shoulder absorptions" between 3300 

-1 
and 3000 cm . Again, it is difficult to make specific assignments, 

but by comparison with the spectrum of the ligand, some tentative 

assignments were made (Table 4). No absorptions were observed around 

-1 
3500 cm in the spectra of the vacuum dried complexes, indicating the 

absence of coordinated water or water of crystallization. 

The infrared spectra of compounds with ionic nitrate groups 

VI (AI' ,D
3h

) band is usually inactive in the infrared, but it is 

. 11 d b fl' . 29 sometlmes a owe ecause 0 crysta lnteractlons. For mono- and 

bidentate nitrate groups (i.e. "nitrato" groups) the symmetry is 

reduced to C
2V 

and all bands become infrared active. The reduction 

in symmetry causes shifts in band positions and lifts the degeneracy 

of the V3 and V
4 

bands. The two non-degenerate bands arising from each 

of the V3 and V
4 

(D
3h

) absorptions show greater separation for bidentate 

than monodentate nitrate. The VI + V
4 

(D
3h

) combination band, occuring 

-1 
in the 1700-1800 cm region, is frequently of use in providing 

structural information. A sharp band arises from ionic nitrate but 

splitting is observed for coordinated nitrate. The separation of 

these two frequencies depends on the strength of the interaction 
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between the metal and the nitrate group, bidentate giving a wider 

-1) . ( -1) 30,31 separation (20-56 cm than un identate nltrate 5-26 cm . 

Identification of the nitrate absorptions in the PAP-nickel 

complexes was made by comparing the spectra of the nitrate complexes 

with those of the other PAP-nickel complexes. However, the complexity 

of the infrared spectrum of PAP itself makes identification of all 

nitrate bands difficult and it is possible that some nitrate absorptions 

are masked by ligand (PAP) absorptions. 

Some fundamental nitrate bands for the two complexes are observed 

(Table 5) and indicate the presence of ionic and unidentate nitrate 

groups in the case of the trinitrate, and ionic, unidentate and bidentate 

groups for the tetranitrate. Other fundamental absorptions are probably 

masked by ligand vibrations. Only a weak single combination band at 

-1 
1760 cm was observed for the tetranitrate complex, confirming ionic 

nitrate. In the case of the trinitrate complex combination bands 

associated with both ionic and monodentate nitrate were observed. 

A weak absorption occuring at 3450 cm- l in the trinitrate complex 

is assigned to O-H stretch of bridging hydroxide. A band occuring 

between 3300 and 3400 em-I in the spectrum of K4[(ox}2co(OH)2co(ox)2] 

has been assigned by Nakamoto to a stretching vibration of bridging 

hydroxide
32

, whereas Scargill reports this band to occur between 3200 

d 5 -1 . . d 1 f th . 33 an 3 00 cm In varlOUS hy roxy comp exes 0 ru enlum. 

Assuming that each nickel ion is six-coordinate in these systems 

(see section on electronic spectra) and that PAP is acting in a tetra-

dentate manner, the role of the nitrate groups can be proposed. As 
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the trinitrate seems to have a bridging hydroxide, the one remaining 

coordination site on each nickel atom could be occupied by monodentate 

nitrate groups. The tetranitrate appears to be more complex in that 

it appears to have ionic, unidentate and bidentate nitrate groups. 

Molecular models indicate that the nickel atoms in these compounds may 

be bridged by either hydroxy or bidentate nitrate groups to form a 

"cis-" or "trans-" dimeric binuclear structure. 

NICKEL PERCHLORATE COMPLEX 

The spectrum of the PAP-nickel perchlorate complex is blank 

-1 -1 
between 970 and 1000 cm but has a band at 1015 em which has 

been assigned to a shifted pyridine ring breathing mode absorption, 

The high energy region of the spectrum shows a broad absorption 

-1 -1 
~etween 3700 and 3400 cm , and peaks at 3360 and 3100 cm The 

broad, high energy absorption suggests the presence of water, and 

elemental analyses are consistent with three water molecules per 

molecule of complex, or alternatively two water molecules and a 

hydroxide group. 
-1 

The band at 3360 cm has been assigned to N-H 

stretch. 

Tetrahedral (ionic) perchlorate has two infrared active modes: 

V3 (T
2

,T
d

), a strong absorption around 1100 cm-
l 

(occasionally 

sPlit)34, and V
4 

(T
2

,T
d
), a sharp absorption around 630 

-1 35 
cm 

The VI (Al,T
d

) band is theoretically only Raman active, but usually 

-1 35 
shows up as a weak absorption at 930 cm this band becomes 

weakly allowed if the symmetry of the crystal field about the ion 

is lower than that of the ion itself. For monodentate perchlorate, 

the symmetry of the ion is reduced to C
3V

. The triply degenerate 
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V3 (T
2

,Td ) splits into VI (A
l

,C
3V

) and V
4 

(E,C3V)i so two strong 

-1 
absorptions between 1000 and 1200 em are expected, as well as a 

-1 
moderately strong band between 940 and 890 cm , the "forbidden" 

perchlorate has a symmetry of C
2V

' causing further splitting and 

-1 
producing three intense absorptions between 1000 and 1200 cm 

these bands in the various symmetries are shown in Table 6. 

The anion absorptions of the perchlorate complex were assigned 

by comparing the spectra of the perchlorate, tetrafluoroborate and 

nitrate complexes. The absorptions assigned to the perchlorate group 

(Table 5) indicate ionic perchlorate. The electronic spectrum of the 

complex indicates the nickel atoms are in a distorted octahedral 

environment. Since the perchlorate groups are ionic (uncoordinated) 

the two remaining coordination sites of each nickel atom must be 

occupied by a hydroxide bridge and a water molecule. 

NICKEL TETRAFLUOROBORATE COMPLEX 

The infrared and electronic spectra of the tetrafluoroborate 

complex are very similar to those of the perchlorate complex, and 

it is assumed that these complexes are isostructural. 

It is impossible to determine the position of the pyridine ring 

breathing mode in this complex, as it is masked by a broad intense 

absorption of the tetrafluoroborate ion. However, as with the other 

complexes discussed, the ligand is assumed to function in a tetra-

dentate manner, coordinating to the two nickel atoms via both 
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phtha~azine and pyridine nitrogen atoms. The high energy portion of 

-1 
the spectrum shows an absorption around 3100 cm , which is assigned 

to aromatic C-H stretch. The spectrum also shows an intense, sharp 

-1 -1 
absorption at 3370 cm , which shifts to 2490 cm when the complex 

is prepared in D
2
0. This absorption has been assigned to exocyclic 

N-H stretch. 
-1 -1 

An intense doublet with peaks at 3460 em and 3505 cm 

may be assigned to V
l 

(symm. str.) and V
2 

(assym. str.) of coordinated 

water, or alternatively, one of the bands may be due to bridging 

hydroxide and the other to water. 

The tetrafluoroborateion, belonging to the same point group as 

tile perchlorate ion, has the same fundamental vibrations in terms of 

symmetry species. However, as naturally occuring boron consists of 

BIO and Bll in a ratio of 1:4, the spectrum of the tetrafluroborate 

ion is further complicated by isotopic splitting of the V3 (T
2

,T
d

) 

() . d 36 and V
4 

T
2

,T
d 

absorpt10n mo es. 

The only positive spectral evidence of the tetrafluoroborate ion 

in the PAP complex is a broad, intense absorption between 1150 cm-
l 

-1 -1 -1 -1 
and 900 cm , with shoulders at 1095 em , 1060 em and 1000 em 

(see Table 5). This band is assigned to V3 (T
2

,T
d

) of ionic tetra-

fluoroborate, split by symmetry and isotope effects . 

The far IR regions of the infrared spectra of the PAP-nickel 

complexes reveal no definite structural information. 



TABLE 4 

LIGAND AND W~TER VIBRATIONS OF THE PAP-NICKEL COMPLEXES 

COMPOUND 

[PAP2Ni2(H20)4]C14e3H20 

V
H 
° (em-I) 

2 

3500 (m.st.,v.br) 

v (-1 
N-H em ) 

3380 (m. st. ,br) 
3280 (m. st. ,br) 

3400 (m.st. ,v.br.) 
[PAP

2
Ni

2
(H

2
O)4]Br

4 3500 (m.st.,v.br.) 3280 ( t b) m.s .,v. r. 

3400 (m.st. ,v.br.) 
[PAP

2
Ni

2
1

4
] 3270 (m. st. , v .br. ) 

[PAP 2Ni 2 (OH) (N0
3

) 3] 3450 (wk,V
O

_
H

) 
3300 (m.st.) 
3200 (wk.) 

[PAP
2
Ni

2 
(N0

3
) 4] 

3270 (m. st. ,br.) 
3200 (m.st.,br.) 

[PAP 2Ni 2 (OH) (H
2
0) 2] (C10

4
) 3 3700-3400 (st.) 3360 (st.br.) 

[PAP 2Ni2 (OH) (H20) 2] (BF 4) 3 3505,3460 3370 (st., she ) 
(dbl. , st. ,br.) 

PAPCU
2

(OH)C1
3

eH
2

O 
3600 (m.st.,sh) 

3300 (st., she ) 
3560,3580 
(dbl. ,m. st.) 

v (-1 
C-H em ) 

3160 (wk, br.) 
3060 (wk, br.) 

3180 (m.st. ,v.br.) 
3060 (m.st. ,v.br.) 

3180 (m.st.,v.br.) 
3070 (m.st.,v.br.) 

3170 (wk.) 
3140 (wk.) 
3080 (wk. ,br. ) 

3140 (m. st. ,br. ) 
3070 (m.st.,br.) 

3100 (m.st.,br.) 

3100 (m.st.,br.) 

3200 (wk.,sh.) 
3060,3100 (wk.,br.) 

PYRIDINE RING (em-
l

) 
BREATHING MODE 

1018 

1012 

1010 

1008 

1012 

1015 

1015 

1020 

br., broad; db1., doublet; m.st., medium strong; st., strong; sh., sharp; wk., weak; v.br., very broad 

W 
N 



TABLE ,5 

ANION ABSORPTIONS OF PAP-NICKEL COMPLEXES 

NITRATE 

COMPOUND 
-1 

IONIC (cm ) 
-1 

UNIDENTATE (crn ) 
-1 

BIDENTATE (cm ) 
-1 

V1 + V4* (cm ) 

[PAP 2Ni 2 (OH) (N03) 3] 827 1315, 900 

[PAP 2Ni 2 (N0
3

)4] 828 1315, 1000 

PERCHLORATE AND TETRAFLUOROBORATE 

-1 
COMPOUND V

1
(A

1
,T

d
) (em ) 

-1 
V

3
(T

2
,T

d
) (em ) 

[PAP 2Ni
2

(OH) (H20)2] (Cl04)3 930 1025 - 1150 

[PAP2Ni 2 (OH) (H20)2] (BF4)3 900 - 1150 

* i. characteristic of ionic nitrate 

u. characteristic of unidentate nitrate 

1530 

1750(i), 1755(u), 1738(u) 

1760(i) 

-1 
V

4
(T

2
,T

d
) (cm ) 

620 

w 
w 



TABLE 61 

VIBRATIONS OF THE (C10
4

) GROUP IN DIFFERENT SYMMETRY ENVIRONMENTS
t 

SYMMETRY V
2 V6 Vl V

4 V3 Vs 

-0*-C10 
3 

C3V Al (1. ,R.) E(I.,R.) AI(I.,R.) E(1.,R.) Al (1. ,R.) E(1.,R.) 

C10 Str. Rocking C102 Sym. Str. *OCl Asym. Bend . C10
3 

Sym. Bend. C10
2 

Asym. Bend. 

C104 

-0* 
C10 

-0* 2 

Td 

C2V 

VI 

Al (R) 

Syrn. Str. 

V
2 

E (R) 

Sym. Bend. 

932 460 

\ 
V

2 
Al (1. ,R.) 

Cl 
0* 0* 
Syrn . Str. 

V
4 

Al (1. ,R. ) 

Cl 
0* 0* 

Syrn. Bend. 

V3 

T2 (1. , R.) 

Asyrn . Str. 

1110 

/I~ 
Vl V6 Va 

Al (1. ,R.) Bl (1. ,R.) B2 (1. ,R.) 

C10
2 

Sym. Str. 

Vs 
A
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ELECTRONIC SPECTRA 

The solid state electronic spectra of the PAP-nickel complexes 

are all very similar, there being a broad absorption in the range 

-1 
11,400 -12,000 cm , and a sharper absorption between 17,500 and 

-1 
18,500 cm These two bands are assigned respectively to the VI 

and V
2 

transitions of nickel(II) in an octahedral environment. The 

expected V3 absorption is masked by intense charge transfer bands of 

-1 
the ligand, which occur above 20,000 em • In some cases the V

2 
-1 

absorption shows a weak shoulder band around 15,000 em , which is 

assigned to the spin forbidden lEg + 3A transition. The assignments 
2g 

o~ the electronic transitions are shown in Table 7, along with the 

values of Dq and the Racah parameter, B. 

At room temperature the' solid state electronic spectrum of the 

chloride complex shows no obvious splitting of VI although a shoulder 

does appear at low temperature. The solid state and aqueous solution 

spectra are identical and also conductivity data (Table 10) indicate 

the presence of ionic halide . These data indicate coordinated water 

in the solid state. For the nickel atoms in this binuclear, dimeric 

complex to be octahedral, the coordination environment around the metal 

must be NiN
4

0
2

, where ° represents a coordinated water molecule. In the 

absence of any apparent splitting of VI' the ligand molecules must be in 

a "cis" octahedral arrangement around the nickel atoms (see Introduction). 

In this respect the PAP-nickel chloride complex is similar to the bi-

(see Introduction), which also show little splitting of VI' and have 

been assigned a cis Ni-N
2

0
4 

type structure. 
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The solid state electronic spectra of the rest of the PAP-nickel 

complexes are all similar to that of the chloride, indicating the 

coordination environment of the nickel atoms to be similar in all 

cases. For all of the complexes, except perhaps the iodide, four of 

the coordination sites around the nickel atom are occupied by ligand 

nitrogen atoms, while the remaining two are occupied by oxygen, either 

in the form of coordinated water, a hydroxy bridge, or coordinated 

nitrate groups. The differences in the groups occupying the fifth and 

sixth coordination sites apparently does not have a great influence on 

the electronic transitions of the nickel atom. The case of the iodide 

complex is anomalous, since a lower value of Dq would be expected, 

compared to the other complexes, if the iodine atoms were coordinated 

to the metal. That the value of Dq for the iodide complex is much the 

same as those of the other complexes may indicate the presence of 

coordinated water, although this is not confirmed by elemental analyses 

or infrared spectroscopy. 

Some preparations of the nickel chloride and bromide complexes 

yielded products which, when dried, had an empirical formula 

PAPNiX
2

-1.5H
2
0. The solid state electronic spectra of these complexes 

are similar to those of the corresponding tetraaquo species, and show 

the same solution spectra. Presumably these compounds contain a 

coo"rdinated halide in the solid state, but this has little effect on 

the electronic environment of the nickel atom. In solution the 

coordinated halide becomes labile, and is replaced by a water 

molecule. 
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The solution spectra of the chloride (see Fig. 14), perchlorate 

and tetrafluoroborate complexes are essentially the same as their solid 

state analogues indicating the presence of the same species in both 

states. Conductance data indicate the coordinated anions in the nitrate 

complexes to be labile (see section on Conductance Studies), so in 

solution the nickel atoms are coordinated to water molecules instead 

of nitrate groups. The similarity of the electronic spectra of the 

nitrate complexes in solution to those of the solid state is not 

surprising, as the solid state spectra of the nitrate complexes are 

similar to that of the chloride, in which the nickel atoms are 

coordinated to water molecules. In the solution spectra of the bromide 

and iodide complexes, the V
2 

band remains unchanged from the solid 

state spectrum, but V
l 

appears as a broad absorption with two components 

-1 -1 
around 10,300 cm and 11,500 cm The V

l 
absorption is changed by 

the addition of concentrated HC1(see Fig. 15). As the acid is slowly 

-1 
added, the shoulder at 10,300 cm decreases in relative intensity, 

-1 
while that at 11,500 cm increases; 

-1 
an isosbestic point at 10,500 cm 

indicates an equilibrium exists in solution between the two species 

represented by the two components of V
l

. 
-1 

The absorption at 11,500 cm 

indicates the presence of a tetraaquo PAP-nickel species in solution, 

as this is also the position of V
l 

of the chloride complex. The 

-1 
absorption at 10,300 cm does not represent V

l 
of a known nickel complex 

of PAP. During the preparation of the bromide complex, some PAP-

hydrobromide was obtained (see Experimental section), indicating that 

the complex is capable of reacting with water to produce HBr. An 
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A COMPARISON OF THE ELECTRONIC SPECTRUM OF [Ni(H20)6J2+{a~){a), WITH THAT 
~ . ' . 

OF [PAP2Ni
2

{H
2
0)4]C1 4(aq)(b) (ARBITRARY ABSORBANCE UNITS). ·· 



- 39 -

5----------=--
4 
3 
2 

1 

800 
(12500) 

1000 
(10000 ) 

Fig.15 

1200 nm 
(8330) (cm-1 ) 

EFFECTS OF THE ADDITION OF conc.HCl ON v
1 

OF [PAP2 Ni 2 (H2 0)4] Br4 (aq) 

( 1 - NO HCl ; 2-+5 - INCREASING HCl ) 



- 40 -

equilibrium consistent with these data is given below: 

The species [PAPNi
2

(OH) (H
2
0)6]Br

3 
postulated in the hydrolysis 

-1 
equilibrium may be responsible for the VI absorption at 10,300 cm 

The V
2 

absorption for this complex appears to be coincident with that 

of the tetraaquo complex. 

Electronic spectra of solutions of the perchlorate and tetra-

fluoroborate complexes acidified with hydrochloric acid resemble that 

of the bromide complex in neutral solution, i.e. absorptions at 

-1 -1 -1 
10,300 cm , 11,500 cm and 18,000 cm The addition of acid causes 

a white precipitate to form in the solution of the tetrafluroborate; 

infrared evidence indicates this precipitate to be a hydrotetrafluoro-

borate of PAP. Presumably the same reaction is occuring in the solutions 

of both the perchlorate and tetrafluoroborate complexes of PAP, but the 

PAP-hydroperchlorate is more soluble than the tetrafluoroborate analogue. 

The similarity of the · electronic spectrum of the bromide complex to 

those of the perchlorate and tetrafluoroborate indicates the same 

species are in solution, one of which is the tetraaquo dirneric binuclear 

complex. Using the tetrafluoroborate as an example, the reaction of 

these two complexes may be as follows: 
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The charge transfer absorptions of the coordinated PAP of all the 

-1 -1 
nickel complexes discussed here occur between 28,500 em and 29,000 cm 

(Table 7). The charge transfer absorption for neutral PAP in a series 

-1 of copper complexes has been reported to occur between 27,400 cm 

-1 7 
and 29,600 cm ; this suggests that the ligand is neutral in the 

nickel complexes. 



TABLE 7 

ELECTRONIC SPECTRAL DATA FOR THE PAP-NICKEL COMPLEXES a 

3A + 3T lE 3T1g (F) Sb 
LIGAND 

COMPLEX Dq B CHARGE 2g 2g g 
TRANSFER 
(7f + 7f*) 

[PAP2Ni2 (H2O)4]C14 
11,500 18,200 

1150 858 0.82 
28,500 

[15] [17] [30400] 

11,430c 15400 17,540 
1143 714 0.70 

28,800 
[PAP2Ni2 (H2O)4]Br

4 [12] [5] [12] [35000] 

[PAP
2
Ni

2
I

4
] 11,100c 15200 17,540 

1110 822 0.82 
28,600 

[14] [7] [15] [30900 ] 
.t::> 

12,120c N 

[PAP2Ni2 (OH) (N03)3] 18,520 1212 739 0.71 
28,600 

[8] [8] [32200] 

[PAP2Ni2 (N0
3

)4] 
11,430

c 18:,000 
1143 828 0.80 

28,600 
[6] [5] [33200] 

[PAP2Ni2 (OH) (H20)2] (Cl04)3 
11,430

c 
17,860 

1143 788 0.76 
29,000 

[15] [12] [36000] 

[PAP 2Ni2 (OH) (H20) 2] (BF 4) 3 
11,600

c 
17,700 

1163 703 0.67 
28,600 

[12] [9] [36300] 

a Band positions quoted in em -1 [ ] denotes extinction coefficient. Calculated positions of V3 of 

these complexes occur between 27,500 and 29,200 cm -1 

b Free ion value of B (B') for Ni2+ = 1040 cm-1 

cThis value represents a weighted average of the peaks in the absorption envelope. 
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MAGNETIC MEASUREMENTS 

The magnetic susceptibility data for the compounds are given in 

Table 8. Diamagnetic corrections were made for the measured 

susceptibility of the ligand, and Pascal constants were used to 

correct for the magnetic effects of the anions and metal core electrons. 

A more detailed description of the treatment of the magnetic suscept-

ibility data measured as a function of temperature is given in 

Appendix A. 

TABLE 8 

MAGNETIC PARAMETERS FOR THE PAP-NICKEL COMPLEXES 

COMPOUND l-leff (295 K) 
-1 

-J (ern ) g 

3.3 2.16 3.16 

3.3 

3.2 

2.7 

2.9 

2.7 1.93 7.31 

2.4 

As may be seen from the above table, the values of l-leff for the 

three halide complexes and that of the tetranitrate are in the range 
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characteristic of octahedrally coordinated nickel (II) (2.8 - 3.5 B.M.), 

while those of the other complexes lie below the spin-only value and 

suggest the possibility of anti ferromagnetic exchange between the 

nickel atoms in these systems. 

The value of J for the chloride complex suggests a weak anti-

ferromagnetic interaction between the nickel atoms. In the case of 

15 
the nickel(II} complexes of DHPH, DPPN etc. , it has been proposed 

" f""d 15 that such an exchange takes place Vla the TI-system 0 the aZlne brl gee 

The room temperature magnetic moments of the PAP·-nickel bromide, iodide 

and tetranitrate complexes are higher than those of the binuclear DHPH 

and DPPN complexes, suggesting a weaker interaction between the metal 

atoms in the PAP complex, although this will have to be confirmed by 

further variable temperature susceptibility measurements. Although 

the room temperature magnetic moment of the nickel chloride complex 

-1 
of PAP is high, the J value of -3.16 cm suggests a weak anti ferro-

magnetic exchange; this indicates a somewhat weaker interaction than 

is apparent in the complex Ni(DHPH}C1
2

-2H
2
0. This difference can be 

rationalised in terms of a smaller degree of overlap between the metal 

orbitals and the TI-orbitals of the azine bridge in the PAP complex. 

The geometry of the nickel chloride complex of DHPH allows the nickel 

atoms to lie in the same plane as the phthalazine rings, but such 

coplanarity is not allowed with PAP. The interposition of the 

exocyclic nitrogen atoms between the phthalazine and pyridine rings 

g ives PAP more flexibility, with the formation of six-membered 
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metallated-rings. Molecular models indicate that the nickel octahedra 

are twisted about the nickel-phthalazine nitrogen bonds. This would 

probably result in reduced TI-overlap between the azine TI-orbitals and 

suitable metal orbitals and lead to a weaker exchange than that found 

in complexes of DHPH. 

The room temperature magnetic moments of the hydroxy-nitrate, 

perchlorate and tetrafluoroborate complexes are lower than those of 

the other complexes, suggesting greater spin-spin exchange between 

the metal atoms. This is confirmed in the case of the perchlorate 

-1 
complex, which has a J value of -7.31 em . Presumably the metal-

ligand bonding does not vary greatly among the dimeric binuclear 

PAP-nickel complexes, so it is unlikely that the spin-spin inter-

action between the metal atoms of the hydroxy-nitrate, perchlorate 

and tetrafluoroborate complexes takes place via the azine bridge 

alone. The increased spin-spin coupling between the metal atoms in 

the perchlorate complex may be due to partial exchange via the 

hydroxy bridge. 

The values of g and J quoted above are preliminary, determined 

from magnetic susceptibility studies over a narrow temperature range 

It is intended to repeat these studies over a 

wider range for a more accurate determination of these parameters. 
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CONDUCTANCE DATA 

The conductances of a series of aqueous solutions of each complex, 

-3 -5 
ranging from 10 to 10 molar, were determined at 25°C. For each 

concentration a corrected conductance, L
CORR

' was determined by 

subtracting the measured conductance of the water from that of the 

solution. The equivalent conductance, A , for each solution was 
e 

calculated from the formula 

where K is the cell constant and C is the equivalent concentration of 
e 

the electrolyte. For each complex, the limiting conductivity at 

infinite dilution, A , was calculated from a plot of A vs.;C-. The 
o e e 

slope, A, of the plot of A - A vs. ;c- is characteristic of the 
o e e 

electrolyte type; a comparison of the experimental values of A with 

those of "standard" electrolytes may be used to determine the 

electrolyte type of the complex. 

Values of A for standard electrolyte types in water are given in 

Table 9; the experimental values for the PAP-nickel complexes are 

given in Table 10. 

As may be seen from the data in Table 10, the values of A 

confirm the assumed ion types for the chloride, nitrato and perchlorate 

complexes. This indicates that the species are completely hydrated 

in solution, even though they may contain coordinated anions in the 

solid state, as has been suggested in some cases. 
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TABLE 9 

SLOPES OF (A - A ) VS. ~ FOR STANDARD ION TYPES IN WATER1 
o e e 

COMPOUND ION TYPE A 

KCl 1:1 92 

[Co (N0
2

) (NH
3

) 5]C1
2 

1:2 185 

K3 [Fe (CN) 6] 3:1 285 

K4 [Fe(CN)6] 4:1 526 

1 These data are taken from a) The International Critical Tables, 

VOL. VI, The McGraw Hill Book Co., Inc., New York, 1929; and 

b) Handbuch der Anorganische Chemie, Kobalt B, Vol. 58, Verlag 

Chemie, Berlin, Germany, 1930. 

TABLE 10 

SLOPES OF (A - A ) VS. ~ FOR PAP-NICKEL COMPLEXES IN 
o e e 

AQUEOUS SOLUTIONS 

COMPOUND ASSUMED ION TYPE A A 
o 

1:4 527 121 

1:4 1026 149 

1:4 1232 156 

1:3 234 107 

1:4 588 146 

1:3 325 135 

1:3 1402 223 



48 -

The values of A for the bromide, iodide and tetrafluroborate 

complexes are anomalous. There was evidence that some HEr was formed 

in the nickel bromide - PAP reaction mixture (see experimental 

procedure) . There is also evidence that in aqueous solution of the 

bromide complex an equilibrium exists which may produce HEr (see 

section on Electronic Spectra). If this is the case, it would account 

for the high slope (A) for the bromide complex. Presumably this 

could also be the case for the iodide complex . 

The large value of A in the case of the tetrafluoroborate compl~x 

is probably due to hydrolysis of the tetrafluoroborate anion, producing 

HF and the hydroxofluoroborate ion 

+ HF K 
-3 

2.3 x 10 
37 
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SUMMARY 

Elemental analyses of the nickel halide complexes of PAP indicate 

that the empirical formulae are PAPNiC1
2

-nH
2

0 (n = 1.5-3.5), 

PAPNiBr
2

-nH
2
o (n = 1.5,2) and PAPNiI

2
. The infrared spectra indicate 

that both pyridine rings of the ligand are coordinated. The infrared 

spectra are also similar to that of the binuclear compound 

PAPCu
2

C1
3

(OH) (H
2
0), which has been characterised by x-ray analysis. 

The simplest structure consistent with all these data is a binuclear 

dimer having a molecular formula twice that of the empirical formula 

(Fig. 16). Molecular models indicate that such a structure is feasible, 

as the pyridine rings can twist to accomodate any repulsion that might 

arise between hydrogen atoms on adjacent rings. The magnetic moments of 

the solid state halide compounds are of the order 3.0 - 3.3B.M., 

characteristic of octahedral and pseudo-octahedral nickel(II}. 

Temperature dependent magnetic susceptibility studies of the chloride 

complex indicate there is a weak anti ferromagnetic exchange taking 

pla~e beb~een the nickel atoms. The electronic spectra are consistent 

with "octahedral" complexes. Presumably, the chloride and bromide 

complexes contain coordinated water in the crystalline state; there 

is no infrared spectral evidence for Ni-X (X = Cl,Br) stretching. 

(The solid iodide compound must contain coordinated iodine if the 

nickel atoms are to be in octahedral environments, although the 

electronic spectrum is not entirely consistent with this.) The 

conductance data for the chloride complex shows it is a 1:4 electrolyte 

in aqueous solution, which is consistent with the proposed structure. 
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The conductance data .for the bromide and iodide complexes are not as 

readily interpreted as those of the chloride, the slopes of plots of 

(A - A ) vs. ~ being much higher than expected; 
o e e 

this may be due 

to the presence of small amounts of acid. Despite the anomalous 

conductance data, the similarity of the infrared and electronic spectra 

of the three complexes indicate that the bromide and iodide complexes 

resemble the chloride. 

The empirical formulae of the tetrafluoroborate and perchlorate 

complexes are indicated by elemental analyses to be PAP
2
Ni

2
Y3-3H

2
0. 

The infrared spectra of these two complexes are quite similar, apart 

from anion absorptions, so it is assumed these compounds are 

isostructural. Infrared evidence indicates the perchlorate ion is 

not coordinated, and since the tetrafluroborate ion does not co-

ordinate, these complexes must contain coordinated water. The 

electronic spectra of these two complexes indicate the nickel atoms 

are in octahedral environments. This condition may be satisfied if 

one of the coordinated "waters" represents a bridging hydroxide, which 

would also balance the electric charges. The magnetic susceptibilities 

of the perchlorate and tetrafluoroborate complexes are 2.7 and 2.4 B.M. 

respectively, low enough to indicate some form of magnetic interaction 

-1 
between the nickel atoms, as is confirmed by a J value of -7.31 cm for 

the perchlorate complex. Although the role of the hydroxide bridge in 

such magnetic interactions is not clear, it may bring the nickel atoms 

close enough for some direct interaction, or may itself provide a 
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pathway for indirect interaction. Interaction may also take place 

via the nitrogen atoms of the azine bridge (see Fig. 17). 

The conductivity study of the perchlorate complex indicates it is 

a 1:3 electrolyte, which is consistent with the proposed formula. The 

unexpectedly high conductivity of the tetrafluroborate complex is 

attributed to hydrolysis of the tetrafluoroborate anion. 

The two nitrate complexes PAP 2Ni
2

(N0
3

)4 and PAP
2
Ni

2
(OH) (N0

3
)3 

have been shown to be 1:4 and 1:3 electrolytes respectively, 

indicating the nitrate groups to be labile. Altnough the infrared 

evidence is inconclusive, the nickel atoms must have nitrate groups 

coordinated to them to complete the octahedral environments indicated 

by the solid state electronic spectra. The low magnetic moment of the 

trinitrate may be due to spin-spin exchange between the nickel atoms. 

The two metal atoms may be held close enough for metal-metal inter­

action via a bridging nitrate group, or such interaction may take 

place through the hydroxy bridge and/or the ligand azine bridge. 

Aside: In an attempt to produce a hydroxy bridged species from 

the chloride complex, potassium hydroxide solution was added to an 

aqueous solution of [PAP
2
Ni 2 (H

2
0)4]C1

4
. The addition of a small amount 

of base caused a yellow precipitate to form. The electronic spectrum of 

the remaining solution was essentially the same as that of the dissolved 

chloro complex, indicating no great change in the nickel chromophore. 

Further studies indicate that the yellow precipitate formed by the 

addition of base is soluble in chloroform. It is known that 

PAPCu
2

C1
3

{OH) (H
2
0) reacts with base to produce a neutral species 
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PAP
2

Cu which is soluble in chloroform2 . By analogy, it is assumed 

that a similar species is produced with the nickel system. Further 

studies on systems of this type are underway but will not be reported 

here. 
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Fig. 16 

A PROPOSED STRUCTURE FOR THE CATION IN THE 

COMPLEX [ PAP Ni (H 0) ] C1 . 
2 2 2 4 4 
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H H 

Fig. 17 

A PROPOSED STRUCTURE FOR THE CATION IN THE 

COMPLEX [PAP2Ni 2(OH)(H20)2] (C104 )3-
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ZINC (II) COMPLEXES OF PAP 

The study of the chelating properties of PAP was extended to the 

preparation of several zinc complexes. These complexes were prepared 

in ethanol by adding a hot solution of the ligand to a solution of 

the zinc salt; the products were obtained as cream or yellow 

precipitates. The complexes are insoluble in water and common organic 

solvents, although they show some solubility in dimethylsulphoxide 

(DMSO). The compounds are decomplexed in pyridine; the chloride 

complex when dissolved in pyridine, yields a white crystalline solid, 

which infrared evidence indicates to be (pyridine)2 znC1
2

. 

INFRARED SPECTRAL DATA 

Assignments of ligand absorptions in these complexes are shown in 

Table 11. The bromide and iodide complexes show two pyridine ring 

-1 -1 
breathing mode absorptions, occuring near 1015 em and 990 em 

These two absorptions imply the presence of coordinated and uncoordinated 

pyridine rings in the ligand. These data, combined with the results 

of elemental analyses indicate the complexes to be mononuclear, 

presumably containing bidentate PAP. The single ring breathing mode 

absorption of the chloride complex, found at 1010 em-I, indicates the 

ligand is coordinating via both pyridine rings; for this to be 

consistent with the results of the elemental analyses, the chloride 

complex must be binuclear and dimeric . That the complex of the 

chloride is binuclear, whereas those of the bromide and iodide are 

mononuclear is probably related to the relative sizes of the co-
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ordinated halides. All three complexes show a strong, sharp band at 

-1 
3360 cm , assigned to exocyclic N-H stretch. Absorptions occuring 

-1 
in the region 3300-3000 cm are assigned to N-H stretching (see 

Table 11). The low energy region of the infrared spectrum of the 

-1 -1 
chloride complex contains unique absorptions at 305 em and 330 cm . 

These bands are assigned to Zn-Cl stretching vibrations by analogy with 

-1 
(pyridine)2 znC1

2
, which shows Zn-Cl absorptions at 296 cm and 

329 cm-
l

•
38 

The presence of two bands attributable to Zn-Cl stretching 

implies a "cis" arrangement of donor atoms around the zinc centre, and 

since the complex is binuclear and dimeric, a "cis·"-octahedral structure 

with no bridging group other than phthalazine is proposed. An absorption 

occuring at 238 cm-
l 

in the spectrum of the bromide complex has been 

assigned to Zn-Br stretching, as this occurs in the same area as the 

-1 
Zn-Br stretching vibrations of (phthalazine)2 znBr

2 
(i.e., 232 cm 

-1 38 
and 246 cm). The single metal-halide absorption gives little 

structural information, but if the complex is monomeric, steric 

requirements would probably favour a tetrahedral field around the 

zinc atom. If the zinc is coordinated in a tetrahedral manner, the 

second Zn-Br stretching vibration may be hidden by ligand absorptions, 

or the two bands expected may remain unresolved in the same band 

envelope. 

The spectrum of the thiocyanate complex shows a single pyridine 

-1 
ring breathing mode absorption around 1010 cm (Table 11), indicating 

the coordination of both ligand pyridine rings. An intense single 

-1 
absorption occuring at 2060 cm has been assigned to CN stretching 



COMPOUND 

[PAP
2

Zn
2

C1
4

] 

[PAPZnBr
2

]oH
2

O 

[PAPZnI
2

]oH
2

O 

[PAP 2Zn2 (SCN) 4] 

°H ° 2 

TABLE 11 

INFRARED SPECTRAL DATA FOR ZINC COMPLEXES OF PAP 

V (em -1) 
H

2
0 

3440 (wk.) 

3440 (wk.) 

v (-1 
N-H em ) 

3360 (st.,sh.) 
3220 (wk.) 

3360 (st., sh.) 
3250 (wk.) 
3220 (wk.) 

3360 (st.,sh.) 
3220 (wk.) 

v (-1 
C-H em ) 

3140 (wk.) 
3080 (wk.) 
3060 (wk.) 

3180 (wk.) 
3140 (wk.) 
3120 (wk.) 
3060 (wk.) 
3040 (wk.) 

3180 (wk.) 
3140 (wk.) 
3060 (wk.) 
3040 (wk.) 

3300 (m.st.,br.) 3160 (wk.) 
3220 (wk.) 3130 (wk.) 

3080 (wk.) 

-1 
PYRIDINE RING (em ) 
BREATHING MODE 

1010 (m.st.,sh.) 

1018 (m.st.,sh.) 
990 (st. ,sh.) 

1015 (m.st.,sh.) 
990 (st. ,sh.) 

1010 (m. st.) 

m.st., medium strong; st., strong; sh., sharp; wk., weak 

v (-1 
Zn-X em ) 

330 (m. st. ) 
305 (m. st. ) 

238 (wk.) 
\J1 
-..J 
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in a thiocyanate group terminally bonded by the nitrogen atom. Other 

infrared absorptions expected to arise from the thiocyanate group are 

masked by ligand absorptions. The elemental analyses of the complex 

indicates the metal to ligand ratio is 1:1, which, to be consistent 

with the infrared spectrum, means that the complex is binuclear and 

dimeric, and probably has a "trans"-octahedral structure. 

NUCLEAR MAGNETIC RESONANCE SPECTRAL DATA 

To further characterize the compounds NMR spectra of PAP, the 

zinc-chloride, -bromide, and -thiocyanate complexes were determined 

in deuterated DMSO. The resonance peaks associated with the ligand 

were assigned by comparing the spectrum of PAP (Fig. 18) with the 

spectra of phthalazine and 2-aminopyridine, and also by carrying 

out spin decoupling experiments. The assigned chemical shifts of 

the protons in PAP are shown in Table 12, which also includes the 

chemical shifts of the relevent protons of phthalazine and 

2-aminopyridine. Spin decoupling studies of PAP show that there is 

coupling between the protons resonating at 7.31, 8.09 and 8.66 ppm; 

these are therefore assigned to the pyridine hydrogens. Likewise, 

evidence of coupling between the protons giving rise to the multiplets 

occuring at 8.28 and 8.84 ppm indicates these protons belong to the 

phthalazine moiety of the ligand. If the phthalazine hydrogens 

belong to an AA'BB' system, then their resonance peaks would be 

mirror images of each other, which is not the case here. The asymmetry 

of these two sets of peaks may arise from a rapid exchange in solution 

between the three tautomeric forms of PAP, or it may indicate that a 
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large proportion of the PAP in solution exists in the form having one 

hydrogen on an exocyclic amino group and one on a phthalazine nitrogen 

(see Fig. 2), thereby reducing the symmetry of the system. 

The addition of trifluoroacetic acid (TFA) to the solution of PAP 

in DMSO-d
6 

enhanced the resolution of the spectrum, as well as causing 

shifts in the resonant frequencies of some of the protons (see 

Table 12, and Fig. 19). The acid presumably protonates all available 

nitrogen atoms and prevents changes in the tautomeric form of the 

dissolved ligand. That the presence of acid does have such an affect 

is an indication that the ligand is not necessarily in a single 

tautomeric form in the DMSO solution. There is an overlap of the 

absorptions of the H3 ,3' H4 ,4' and H6 ,6' protons, resulting in a 

complex multiplet centered around 8 ppm. The addition of the TFA 

also causes the H2 ,2' protons to appear as a triplet of doublets, 

as is the case with the spectra of the zinc bromide and thiocyanate 

complexes of PAP. The implications of this similarity in the pattern 

of the H2 ,2' proton resonances in the acidified PAP and the bromide 

and thiocyanate complexes on the comformation of the ligand bears 

further study. 

Except for minor changes in the chemical shifts, the NMR spectra 

of the zinc complexes are very similar to that of the uncoordinated 

ligand (see Figs. 18, 20, 21). The spectra of the complexes indicate 

that both pyridine rings of the ligand are equivalent, which is at 

first unexpected in the case of the bromide complex, since infrared 

evidence indicates it to be mononuclear. Electronic spectra confirm 
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that a change takes place when the complexes are dissolved in DMSO. 

The free ligand, when dissolved in methanol or DMSO has a charge 

f . . 7 4 -1 trans er absorptlon occurlng near 2 , 00 cm • For the zinc complexes 

-1 
dissolved in methanol this absorption occurs around 28,800 cm , but 

-1 
when they are dissolved in DMSO, this band occurs at ca. 27,500 cm 

Although the electronic spectra clearly indicate a change does occur 

when the complexes are dissolved in DMSO, this change may not 

necessarily involve complete decomplexation of the compound, as the 

proton chemical shifts of the complexes in DMSO differ from those of 

the free ligand. It is possible that in DMSO solution all the zinc 

complexes are binuclear, but with coordination taking place only 

via the phthalazine nitrogens. This would leave the pyridine rings 

free, and magnetically equivalent, and would also maintain a C
2 

axis 

through the ligand, explaining why the phthalazine proton absorptions 

are more symmetric in the NMR spectra of the complexes than they are 

in the free ligand. A sample of the chloride complex recrystallized 

from DMSO formed yellow crystals, which, after vacuum dying, showed 

infrared absorptions due to the ligand and DMSO. Absorptions between 

-1 
900-1100 cm due to both PAP and DMSO make it very difficult to 

determine from infrared evidence the manner of coordination between 

the zinc and the PAP, however it is assumed that DMSO itself is 

coordinated to the metal atom. Due to the fact that there was only 

a very small amount of this compound, a complete characterization 

was not achieved. 
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HS HS' 

H\ /H 

N 

H , 
3 

H2 Hl HI 
, H ' 2 

TABLE 12 

CHEMICAL SHIFTS OF THE PROTONS OF PAP AND SOME ZINC COMPLEXES. 

(CHEMICAL SHIFTS IN PPM) 

(TEMPERATURES OF SOLUTIONS 334-347 K) 

Hl,l' H2 ,2' H3 ,3' H4 ,4' HS,S' H6 ,6' 

PAP 8.66
C 

7.31
d 

8.06
e 

8.06
e 8.84

d 
8.28

d 

PAP + TFA 8.39
c 

7.31
f 

ca.8
e ca.8e 8.82

g 
8.13

d 

PAP
2

Zn
2

C1
4 

8.6S
c 

7.40
d 8.lge 8.1ge 

8.97
d 

8.37
d 

PAPZnBr 2· 2H2O 8.3S
c 

7.16
f 

7.88
e 

7.88
e 

8.74
d 

8.13
d 

PAP2zn2(~CN)4·2H20 8~S7c 7.29
f 

a.02
c 

8.08
c 

8.90
d 

8.29
d 

2- AMINOPYRIDINE
a 

8.11 6.60 7 . 44 7.70 
(IN DMSO) 

PHTHALAZINEb 8.13 8.01 
(IN ACETONE) 

a) Source: W. Brugeli Z. Electrochem., 66, lS9 (1962) 

b) Source: P.J. Black, M.L. Heffernan; Aust. J. Chern. 18, 707 (196S) 

c) Doublet (with evidence of some long range coupling) 

· d) Multiplet 

e) The overlap of this absorption with an adjacent absorption does not 
allow a definite assignment 

f) Triplet of doublets 

g) Determined from J
S

,6 and position of first line in absorption 
group. 
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10 9 8 7 6 ppm 

Fig.18 

NMR SPECTRUM OF PAP IN DMSO. 
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8.0 
Fi g. 19 

7.0 

NMR SPECTRUM OF PAP IN DMSO WITH TRIFLUOROACETIC ACID ADDED. 

6.0 ppm 
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. I 
I 

10 9 8 7 6 ppm 
Fig. 20 

NMR SPECTRUM OF PAP-ZINC CHLORIDE COMPLEX IN DMSO. 
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EXPERIMENTAL 

The C,H,N analyses were carried out by Atlantic Microlab, Inc., 

Atlanta, Georgia. The metal analyses for the nickel complexes were 

done by first digesting the sample in ternary solution (10 parts conc. 

HN03:1 part conc. H
2

S0
4

:4 parts 70% HCI0
4

) diluting to volume and then 

determining the nickel concentration by atomic absorbance. The zinc 

complexes were analysed by digesting the compound in concentrated 

nitric acid, diluting to volume and measuring the zinc content by 

atomic absorbance. 

Infrared Spectroscopy 

All infrared spectra were determined on a Perkin-Elmer model 

283 spectrophotometer as solid mulls. Potasium bromide plates were 

-1 
used in the region 4000 - 600 cm and cesium iodide plates in the 

-1 
region 600 - 200 cm . The mulling agents used were Nujol in the 

-1 -1 -1 
regions 4000 - 3200 cm , 2700 - 1500 cm , 1300 - 200 cm , and 

-1 
hexachlorobutadiene in the regions 4000 - 2700 cm and 1500 

1300 
-1 

cm The pyridine ring breathing mode absorptions were 

checked against calibrated absorptions of polystyrene. 

Electronic Spectroscopy 

Electronic spectra of both solids and solutions were obtained 

using a Cary 17 spectrophotometer. The solid spectra were run as 

moderately strong mulls in nujol, which were spread onto filter paper 

and held between glass microscope slides. A blank of nujol was prepared 

in the same manner. The solid state spectra were determined from 
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1800 nm - 400 nm (5550 
-1 

cm 
-1 

20,000 cm ). solution spectra were 

determined from 1200 nm - 200 nm 
-1 -1 

(8300 cm - 40, 000 cm ). Scanning 

below 8300 em-I was not possible because of water absorptions. 

Magnetic Susceptibility Studies 

The room temperature magnetic susceptibilities were determined 

by the Faraday method using a Cahn Model 7600 electrobalance. The 

calibrant used was mercury tetrathiocyanatocobaltate(II). The molar 

susceptibilities were corrected for the measured diamagnetism of the 

ligand while Pascal's constants were used to correct for the diamagnetic 

contributions of water (if any), anions, and the metal core electrons. 

The magnetic moments were calculated using the formula: 

~eff = 2.828 (0.5 X~ORR T)~ 

CORR 
where 0.5 X

M 
is used since there are two moles of nickel atoms 

per mole of complex. 

The temperature dependent magnetic susceptibilities were determined 

with a Gouy magnetic balance fitted with a cyrostat. The magnetic 

balance consists of a Varian 4-inch electromagnet, Model V 4084, with 

two inch tapered pole caps, used in conjunction with a Spoerhaese 

Model 10 M microbalance with a sensitivity of ± 0.01 mg. A Varian 

model U 2300 A power supply and Model 2301 A current regulator are 

used to control the current . The cyrostat used for the temperature 

control is shown in Figure 21 (see also Appendix A). This apparatus 

has been described in the literature by Clark and O'Brien39 • Mercury 

tetrathiocyanatocolbaltate(II) was used as the calibrant. 
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L---::;!.;~A1·IM~==~' J G 
K-- C 

In I a r--iit--- E 
It----F 

11I!"If+--++----H 

l'H---+t---- 0 

FIG. 1. Cryostat for the magnetic balance. A, nitrogen gas inlet and o'!tlet; B, .balance; C, hca.ter alld 
platinum resistance thermometer wound on brass former; D, draught shield; E, IIlner Dewar; I', outer 
Dewar; G, liquid nitrogen inlet; H, sample tube; 1, icing shield; K, thermistor; L, to the pUIllP for evacua­
tion of the inner Dewar; i\l, magnet pole ca ps; N, connection to the heater and resista nee t hCrIl10111eter; 
0, support for heater former. 

Conductivity Measurements 

FIGURE 22 

(see Ref. 39) 

concentration dependent conductivity studies were carried out 

in aqueous solution using a general Radio Company bridge with impedance 

comparator and a constant temperature bath adjusted to 25°C. The 

conductivity of each complex was studied over a concentration range 

-3 -5 
of 10 M to 10 M. The slopes and intercepts of the plots were 

determined using linear regression analysis. 
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PREPARATIVE PROCEDURES 

PREPARATION OF THE LIGAND 1,4-DI(2'-PYRIDYL)AMINOPHTHALAZINE (PAP) 

A mixture of o-phthalonitrile (16 g, 125 mmoles) and 2-amino­

pyridine (23.7 g, 252 mmoles) was prepared by grinding the two together 

in a mortar. This mixture was put in a 250 ml beaker and fused at 250° 

for approximately eight hours. As the reaction progressed, any sublimed 

material which formed on the sides of the beaker or the watch-glass 

cover was scraped back into the reaction solution. The cooled crude 

product was crushed and purified by crystallisation from ethanol. The 

purified PII (refer to Introduction) was dissolved - in boiling ethanol 

and hydrazine hydrate (8 mI. of 85% solution, 136 mmoles) was added 

to the hot solution. The PAP so formed from the ring expansion reaction 

was allowed to crystallise out overnight as large yellow crystals. 

YIELD: 27 g (70%); m.p. 211-13° (lit. 210°) 

PREPARATION OF THE PAP-METAL COMPLEXES 

[PAP2Ni2(H20)4]C14·nH2o 

PAP (1.50 g, 4.77 mmoles) was added to a solution of NiC1
2

·6H
2

0 

(1.13 g, 4.75 mmoles) in 50 ml distilled water, and the mixture heated 

gently while being stirred. The PAP eventually reacted with the 

nickel salt to produce a clear solution which was purple by reflected 

light but dark blue by transmitted light. The solution was filtered 

and the volume reduced. The product came out as either dark purple 

crystals or a green powder. These appear to be different hydrated 

forms, because both have the same infrared spectrum, and the green 

powder redissolved to form a purple solution. The product was 
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recrystallised from water, and dried for three hours at 80° and 0.05 rom Hg. 

It was found that different hydrated forms were obtained if the temperature 

or length of drying time was varied. 

YIELD: 1.76 g (77%) 

ANALYSES 

[PAP2Ni2(H20)4]C14-3H20 " FOUND C 42.67% H 3.34% N 16.60% Ni 12.30% 

REQ. C 42.64% H 4.17% N 16.58% Ni 11.58% 

[PAP2Ni2(H20)2C12]C12 FOUND C 46.54% H 3.53% N 18.11% Ni 12.75% 

REQ. C 46.80% H 3.49% N 18.19% Ni 12.71% 

[PAP
2

Ni 2 (H20)4]Br4 

The same procedure was followed as that described for the 

preparation of [PAP2Ni2(H20)4]C14-nH2o, using 1.50 g PAP (4.77 mmoles) 

and 1.30 g NiBr
2

-3H
2

0 (4.77 mmoles). The solution of the complex 

was dark blue in colour, and as with the chloride complex, the bromide 

also formed blue crystals or a green powder, the two representing 

different hyd"rated forms. It was found that along with the purple 

crystals and green powder, aggregates of needle-like white crystals 

formed, especially if the solution was allowed to sit for a long 

time. The infrared spectrum of this compound resembled that of PAP. 

Although the pyridine ring breathing mode absorption of this substance 

was weaker than that of PAP, it indicated that the pyridine rings are 

uncoordinated. These white crystals form a yellow solution which 

+ gives a cream coloured precipitate in the presence of Ag It is 

known that the ligand forms acid salts which are colourless but form 
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yellow solutions; presumably these white crystals are a hydrobromide 

salt of PAP. The PAP-nickel bromide complex was recrystallised 

from water and dried for three hours at 80° and 0.05 rom Hg. 

ANALYSES 

[PAP
2

Ni 2 (H20)4]Br
4 

[PAP 2Ni 2 I 4] 

YIELD: 1.89 g (69%) 

FOUND C 37.52% H 2.98% N 14.74% 

REQ . C 38 . 00% H 3.19% N 14.77% 

FOUND C 38.70% H 2.66% N 15.08% Ni 10.69% 

REQ. C 38.62% H 3.06% N 15.01% Ni 10.49% 

The preparative procedure for this compound is the same as that 

of the chloride complex. Since the purity of the nickel iodide was 

questionable an excess of NiI
2 

was reacted with the 1.50 g PAP. A 

grey-green amorphous precipitate formed as the reaction progressed, 

and the reaction mixture was boiled for one hour to ensure that all 

of the ligand had reacted. The mixture was filtered and the purple 

filtrate reduced in volume. The product came out of solution as dark 

green crystals. The product was recrystallised from water. After 

being dried under vacuum (at 80° and 0.05 rom Hg for 3 hrs) the product 

turned green-brown. 

YIELD: 0.53 g (18%) 

ANALYSES FOUND C 34.86% H 2.58% N 13.69% 

REQ. C 34.49% H 2.25% N 13.41% 
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[PAP 2Ni 2 (OH) (N0
3

)3] and [PAP
2

Ni
2

(N0
3

)4] 

The same procedure was followed as that described for the 

preparation of [PAP2Ni2(H20)4]C14-nH2o using 1.50 g PAP (4.77 mmoles) and 

1.43 g of Ni(N03)2-6H20 (4.92 mmoles). After completion of the 

reaction, the colour of the solution was dark green. The solution 

was reduced in volume and allowed to crystallise slowly at room 

temperature (ca. 22°). The first two crystal crops were long, needle­

like purple crystals, which were shown to be the hydroxy nitrate 

complex. Subsequent preparations of the nitrate complexes indicated 

the yield of the hydroxy nitrate complex improved if an excess of PAP 

was used, and the unreacted ligand filtered off before crystallisation. 

After drying the hydroxy nitrate crystals turned grey, but redissolved 

to form a purple solution. Attempts to recrystallise the hydroxy 

nitrate from water indicated the complex gradually changed in solution 

to a green compound. Further crystallisations from the mother liquor 

produced the tetranitrate complex as green crystals. The tetranitrate 

was recrystallised from water and vacuum dried (80°, 0.05 mm Hg for 

3 hrs). 

YIELD: [PAP
2
Ni

2
(OH) (N0

3
)3] 0.37 g 

ANALYSES [PAP
2

Ni
2

(OH) (N0
3

)3] FOUND C 45.69% H 3.44% N 22.24% 

REQ. C 45.56% H 3.08% N 22.14% 

YIELD: [PAP 2Ni 2 (NO 3) 4 ] 0.54 g 

ANALYSES FOUND C 43.46% H 2.81% N 22.53% Ni 11.80% 

REQ. C 43.49% H 2.84% N 22.54% Ni 11.81% 
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[PAP 2Ni 2 (OH) (H20)2] (CI04 )3 

The preparative procedure for this complex is the same as that 

described for [PAP2Ni2(H20)4]C14·nH20, using 1.50 g PAP (4.77 mmoles) 

and an excess of nickel perchlorate. As the complex is not very 

soluble, the reaction was carried out in 600 mI. water to ensure all 

of the complex formed would be in solution. The product was obtained 

as green crystals. The product was recrystallised from water and 

dried under vacuum (80°, 0.05 mm Hg for 3 hours). 

YIELD: 1.23 g (47%) 

ANALYSES 

[PAP 2Ni 2 (OH) (H20) 2] (CI04 ) 3 

[PAP2Ni 2 (OH) (H20)2] (BF4 ) 3 

FOUND C 39.80% H 2.71% N 15.50% Ni 10.91% 

REQ. C 39.40% H 3.03% N 15.31% Ni 10.70% 

The reaction procedure was the same as that for the preparation 

of the perchlorate complex, using 1.50 g PAP (4.77 mmo1es) and excess 

nickel tetraf1uoroborate. This compound also formed green crystals. 

The product was recrysta11ised from water and dried in vacuum for 

3 hours at 80° and 0.05 rom Hg. 

ANALYSES 

[PAP2Ni2 (OH) (H
2
0)2] (BF

4
) 3 

YIELD: 1.14 g (45%) 

FOUND C 40.44% H 3.13% N 15.72% Ni 10.40% 

REQ. C 40.77% H 3.23% N 15.85% Ni 11.07% 
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ZINC COMPLEXES 

The procedure for the preparation of the PAP-Zinc complexes was 

the same in all cases. A slight excess of the zinc salt (>1:1 

metal:ligand ratio) was dissolved in 20 ml methanol and the solution 

filtered. To this solution was added a solution of 0.5 g PAP dissolved 

in boiling methanol. Within a few minutes the complex came out of 

solution as a cream or yellow amorphous precipitate. The insolubility 

of these complexes in common laboratory solvents did not allow 

purification by recrystallisation. Yields were between 75%-80%. 

The results of the elemental analyses of the zinc complexes are 

shown in Table 13. 

TABLE 13 

ELEMENTAL ANALYSES OF PAP-Zn COMPLEXES 

FOUND REQUIRED 

COMPOUND %C %H %N %Zn %C %H %N %Zn 

[PAP 2zn2C14] 48.8 3.09 18.4 14.4 48.2 3.12 18.7 14.5 

[PAPZnBr
2

]·H
2

O 37.6 2.48 14.6 12.5 37.6 3.15 14.6 11.4 

[PAPZnI
2

] ·H
2

O 33.5 2.22 12.8 10.3 33.2 2 . 47 12.9 10.0 

[PAP
2

Zn2 (SCN)4]·H2O 47.0 2.94 20.7 46.7 3.11 21.8 
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Appendix A 

The temperature dependent magnetic susceptibility studies were 

determined by the Gouy method on equipment in the Chemistry Department 

at the University of British Columbia (refer to page 67.). The molar 

susceptibilities were corrected for temperature independent paramagnetism 

(TIP = 8NS
2
/(lO Dq) = 2.08/(10 Dq) c.g.s. units), and also for diamagnetic 

effects of ligand, etc. as mentioned in description of magnetic 

susceptibility studies. The susceptibility of a pair of atoms in a 

spin triplet, orbital singlet state is given by: 

-4x 
(e + 5 

-6x -4x 
e + 3e +5 

x J/kT 

The values of g and J were determined using a linear regression 

of the form y = m~ + b where Y is the experimental value of 
CORR 

XM 
, 

m = 2NS
2

g
2 

and ~ is a function of T, 

1 
-4x 

5 
i.e. ~ (e + ) 

kT -6x -4x 
e + 3e + 5 

An iterative procedure was used until a value of J was found that 

gave b = O. The corresponding slope m for this ~ was used to determine 

the value of g. The computer program used to determine g and J is given 

at the end of this appendix. 
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TABLE A-I 

MAGNETIC SUSCEPTIBILITES (CORRECTED FOR TIP AND DIAMAGNETISM) 

(e.g.s. units per formula weight) 

COMPLEX T 106 CORR XM 

[PAP2Ni2(H20)4)CI4·3H20 302.2 7809.95 

g 2.16 277.2 8546.91 

J 3.16 em 
-1 

256.0 9358.03 

235.8 10229.4 

214.0 11295.5 

191. 5 12611. 8 

[PAP 2Ni
2

(OH) (H20)2) (C10
4

)3 260.5 7132.2 

245.5 7529.4 

g 1.93 227.0 8126.4 

-7.31 
-1 

207.0 8783.8 J em 

187.0 9557.6 

167.0 10601 

145.5 11947 
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If (RS~) 1,1,3 -
AJ: (',VJCt\ 
A r /-1 C : ~. i11 
AJ : AJ .. A hie 
IF (AJ .LT. -1V~."'0) GO 10 " 
I = '1 
J : 1 + 1-
y(l) : AxCl) 
Ux(l) : AJ / (Ar(l) * 0 b9~~3) 
'I, (!1 I: (II X rI) .. ( DE x P ( .. li 0 *' ~ x ( I)) + 5. til)) / ( ~\ ,J * ( 0 E X P ( • 0 • '" * ~ 
X;~H):+xif;0" ([)EXP(-~,0 * l;X(I)))' - ·+ 5.~')) . ----------.-- ... -.-.--.- .-----.. - .-.---.-. 

1I'; - (! ,LT. N, GO TO 5 
I'll) : \ 
CAl. L hl t,. tOT t~ ( ): , V L N ~ (.l S (J t 1'1 [) , I l) , P , C , S , A , 8 , I f.: R -) 
C J' ~ L R I. l) fi P r~ ( (; , 11.1, A , 13, ) 
:~ ~ l = ~ rID + 3 ) 
tnPT :: (11 

1 p : c; riJ - .-- -.-.-
C A l.t. ~ L L) r: w (5, t , X , W , t-.I , T I; I loP i , A , B , V , P , 1 P ,It:. R ) 
sec') :: r.(JI1t?) 
SC(2) : C(TD+3) 
1 T :: i l!'! - - ---_. _.--.-... -.. --_. ---.- .-.--------.. ----------- --- - --------
C'\l. l. r?\._nCVA (V,l(),Ad~lSC,T,!T,lf.R) 
G :: US QHT(C(?) / 0.2b~141 
PEG : ~t~745 * OSQRTr V(21) * G / C(2) 
PP~G : UABS(1~~,0 *' pE~ / G) 
R :: ~.Vi 
SSI) = 11.(11 
1)0 10 1 = 1 N 
cye}) :: (C(?1 * ZO)) + C(l) 
SDIF(J) : On) - CVrI)) *'* 2 
S·'311 : SSD + SDJF(I) 
H: (SOlF(l) / (YC!) ** 2)) + R 
en NT 1 ~JlJ t:: 
~ : U :; I~ R T (R , 
WRITE (o,b] C(1],C(2'tAJ,GtP~EG,SSD,R 
FO~MAT ('0',?X,7(D1 4 • ,ax)) 
GO Tu (~ 
COl'lflNUI:. 
yJlHTE (b,20) 
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FORTRAN IV ~ LEVEL 

vHHl7 
(I'04ti 
0'149 

--_._ ... --.-------- -_.- ....... --

2V1 

2 1 ~, A T N [) ATE II 7 8? b 3 

FORMAT ('0',3RH THrS IS THE LAST J VALuE IN THE RANGE) 
STOP 
END 

-- .-_ .. ---- ._._-----_.- ----
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