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ABSTRACT 

The production of extracellular carbohydrate has been 

studied in the diatom, Cylindrotheca fusiformis Reimann & Lewin 

var. fusiformis, in bacteria-free culture. ·The concentration 

of extracellular carbohydrates was found to increase as the light 

intensity was decreased. An increase was also observed in 

connection with nitrogen-deficient cultures. Experiments 

indicated that extracellular carbohydrate production did not 

parallel the grov1th of the diatom. Higher 1 ~vel s of carbohydrate 

production were found during the early stages of growth and during 

the post-exponential phases. Carbohydrate production drop to a 

low level during the exponential phase of growth. The carbohydrates 

identified by thin layer chromatography were found to be the low 

molecular weight compounds: glucose,_ galactose, arabinose, xylose 

and galacturonic aci_d. It is suggested that the production of 

most of the extracellular carbohydrate may possibly be due to 

diffusion and to passive release from dead cells. 
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INTRODUCTION 

That natural waters may contain appreciable, though variable, 

quantities of dissolved organic materials has been known for a number 

of years. These substances have been ~tudied by, among others, 

Vallentyne and Bidwell (1956), Vallentyne and ~lhittaker (1956), Duursma 

(1960), William~ (1961), Menzel (1964), and Ryther and Menzel (1965). 

Jeffrey and Hood (1958) postulated that dissolved organic 

matter in natural waters originated from four main sources: 1) elaboration 

by living organisms, as extracellular metabolites and as excretory products, 

2) decomposition of plants and animals, 3) leaching from soil, and 

4) exchange or decomposition processes in sediments. 

Algae, as important inhabitants of aquatic environments, excrete 

various kinds of metabolites into natural waters and into experimental 

culture media. Chemically, these substances have been identified as 

organic acids (Allen, 1956; Tolbert and Zill, 1956; Fogg and Watt, 1965), 

organic bases (Wangersky and Guillard, 1960), carbohydrates (Le11in, 1956; 

Jones, 1962; Moore and Tischer, 1964; Marker, 1965), nitrogenous compounds 

(Fogg and Boalch, 1958; Stewart, 1963; Hellebust, 1965), enzymes (Miller, 

1959), volatile compounds (Armstrong and Boach, 1960), and vitamins 

(Nakamura and Gowans, 1964). Such substances, when liberated into the 

natural environment, are of importance, ecologically. They may serve as 

energy sources for bacteria, algae, zooplankton and for symbiotic 

relationships. Extracellular products of algae may also exert growth­

promoting or inhibiting effects on other organisms. The ecological 

~ _, 
"· ' 
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effects of extracellular metabolites in natural waters have been 

reviewed by Lucas (1947, 1949, 1961), Saunders (1957), and Fogg (1962, 

1966). 

The present \<Jork continues from a study of diatom-bacteria 

interactions, by Moskovits (1961), in which he showed that the diatom, 

Nitzschia closterium (Ehr.) Wm. Smith appeared to be able to provide 

organic materials for bacterial growth. Since carbohydrates constitute 

an energy source readily utilizable by bacteria for growth, and since 

there is evidence for the production of extracellular carbohydrates 

by algae, it was considered of interest to investigate the nature and 

the quantities of extracellular carbohydrates produced by the marine 

diatom, Cylindrotheca fusiformis Reimann & Lewin var. fusiformis (formerly 

Nitzschia closterium (Ehr.) Wm. Smith), during the different phases of 

its growth and under different environmental conditions. Extracellular 

carbohydrates, here, refer to carbohydrates which can pass through a 

Morton bacterial filter (Morton, 1944) and which also give color 

reactions with anthrone reagerit. 

·.~ 

.•?' 
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MATERIALS AND ~1ETHODS 

The Experimental Diatom 

1. The Organism and Its Source 

The experimental organism used was the diatom, Cylindrotheca 

fusiformis Reimann & Lewin var. fusiformis1, (clone MNC),.obtained 

from Dr. R. R. L. Guillard of th~ Woods Hole Oceanographic Institution, 

Woods Hole, Massachusetts2. The taxonomic status of this diatom was 

discussed by Reimann and Lel'lin {1964). 

2. Culture Medium 

Natural sea water has a complex and variable composition as 

regards organic and some inorganic compounds. This prevents obtaining 

consistent and reproducible results in experimental work. Another 

source of difficulty lies in the fact that additions of enrichment 

compounds to sea water, together with treatments such as autoclaving, 

bring about precipitate formation which also alters composition. Because 

of the need for a sea water whose composition had to be known and constant 

from time to time, and from which it \'tas necessary to exclude all organic 

compounds except those deliberately added, it was decided to use 

synthetic sea \'later for all experimental work. 

The synthetic sea water used was that employed by Moskovits 

. (1961) in his experiments with Nitzschi a closterium (Ehr.) Wm. Smith. 

1originally designated as Nitzschia closteri um (Ehr . ) Wm. Smith . 
20riginally isolated from the Sandy Hook, New Jersey, marine li t toral 

by Dr. 11. Maddux. 

.. :' 
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It was prepared in four separate parts: synthetic sea water base; 

buffer; inorganic enrichment; trace elements and chelator. All 

compounds used were analytical grade reagents, weighed on an 

analytical balance. Solutions were prepared with distilled water, 

completely dissolving one reagent before adding the next. In use the 

four components were added together, and the pH adjusted. The final 

solution is here referred to as i'complete synthetic sea water 11
• 

a. Synthetic sea water base 

The synthetic sea water base consisted of the major (conservative) 

elements as found in natural sea water. It was prepared according to 

the formula of Lyman and Fleming (1940), and was modified by Moskovits 

(1961) by omitting H3so3, SrC1 2 and NaF. The composition of the 

synthetic sea water base is shown in Table I. The synthetic sea water 

base was prepared in 20-liter batches in a 25 liter polyethylene 

carboy. The solution thus prepared was a water-clear solution without 

any precipitate, whatsoever. 

b. Buffer 

The buffer used was tris(hydroxymethyl)aminomethane, 

NH2-C(CH20H)3, also referred to as TRIS. It buffers well beb1een pH 

7.5 . a·~d 8.5. Provasoli, Mclaughlin, and Droop (1957) used TRIS 

routinely for culture work with marine algae. They found that it \'Jas 

not toxic for any of the organisms used (diatoms, dinoflagellates, 

blue-green algae, green algae). In present experiments, TRIS was 

used at a concentration of 0.1% (w/v). 

. . ; 

. . . .. ~ 
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TABLE I 

Composition of synthetic sea water base 

Salts Amount* 

NaCl 23.476 g 

MgC1 2.6H20 10.629 g 

Na2so4(anhydrous) 3.917 g 

CaCl2.6H20 2.175 g 

KCl 0.664 g 

NaHC03 0.192 g 

KBr 0.096 g 

*Amounts are for 1 liter of distilled water. 

c. Inorganic enrichment (nitrate, phosphate and silicate) 

Nitrate was added as Ketchum and Redfield's (1938) solution A 

(KN03, 20.2 g; distilled water, 100 ml). Phosphate was added as 

Ketchum and Redfield's (1938) solution B (Na2HP04.12H20, 4 g; distilled 

water, 100 ml). This \'las modified from the original fomrula ~1hich 

contained calcium, ferric and magnesium ions, already present in the 

sea water base and trace element solutions. Silicate \•Jas added as a 

stock solution of sodium silicate (Na2Si03.9H20, 4.66 g; distilled 

water, 100 ml). 
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d. Chelator and trace elements 

Droop (1961) pointed out that the primary purpose of a 

chelator in sea water culture media was to prevent the precipitation 

of divalent and trivalent ions, and particularly, of the ferric ion 

which would tend to form an insoluble ferric hydroxide. The chelator 

used here was the disodium salt of ethylenediamine tetraacetic acid 

(Na2EDTA). This 11as incorporated into a trace e 1 ement so 1 uti on, the 

Pl metal mix of Provasoli, Mclaughlin and Droop (1957) at a 

concentration of 0.1% ('11/V). The composition of the Pl metal mix is 

given in Table II. In preparing this solution, the copper and cobalt 

sulphates were made up as separate stock solutions and requisite 

amounts of each were added to make the finished solution. In appearance, 

this solution was water-clear with a faint yellow color. 

Salts 

Na2EDTA 

H3B03 

MnS04.H20 

FeC1 3.6H20 

ZnS04.?H20 

CuS04.SH20 

CoS04.?H20 

TABLE II 

Composition of Pl Metal Mix 

*Amounts are for 1 liter of distilled water . 

Amount* 

1.0 g 

1.14 g 

0.124 ~ 

0.049 g 

0.0222 g 

0.00016 g 

0.00048 g 

··.~ 
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e. Complete synthetic sea v1ater 

The complete synthetic sea vJater was prepared by mixing the 

above-described solutions and adjusting the pH in the follo\'ting 

sequence: 

1. Synthetic sea \'later base 

2. TRIS 

3. Sodium silicate stock solution 

4. Ketchum and Redfield 1 s solution A 

5. Medium adjusted to pH 7 with 1 N HCl 

6. Ketchum and Redfield•s solution B 

7. Pl metal mix 

1 1 iter 

1 g 

1 ml 

2 ml 

1 ml 

30 ml 

8. r·1edium adjusted to a final pH of 7.8 vtith 1 N KOH 

All pH adjustments were made vtith a Radiometer pH meter 22. The complete 

synthetic sea vtater1 was a clear, colorless solution, vthich remained 

clear on autoclaving. 

f. Grov1th factors 

In the early aspects of the \vork, the writer obtained good 

. growth of the experimental diatom, as a bacterized culture, in complete 

synthetic sea water. However, the bacteria-free culture grew very 

poorly in the same medium. Lewin and Lewin (1960) shovted that some 

species of Nitzschia required either thiamin or cobalamin (vitamin B12) 

for good grovtth. · Provasoli (1963) indicated that there were strain 

lThe sa 1 i ni ty, as determined by titration \'lith silver nitrate , ranged · 
from 31.2 to 33.30 Oj00 , depending on the batch prepared (Moskovits, 1961). 

;; 
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differences for vitamin requirements for a number of species of diatoms 

including Nittschia closterium in which some strains required s12 and 

thiamin, whereas others required thiamin only. Accordingly, it was 

decided to add these grovith factors to the culture medium in the present 

work. The concentrations used vJere: thiamin hydrochloride,1 0.2 mg per 

liter; B12
2, 1.0 pg per liter (Guillard, 1963). 

Although there were no specific indications in the literature 

of requirements for biotin by marine diatoms, and particularly by species 

of Nitzschia (Provasoli, 1963; Droop, 1962; Provasoli, 1958), this gro~Jth 

factor, togethet v1i th thiamin and 812, appear to constitute the growth 

factors of greutest importance to algae (Provasoli, 1963). Biotin3 \~as 

therefore also added at a concentration of 1.0 pg per liter (Guillard, 

1963). 

The vitamins \'iere prepared for use as a single stock solution. 

Biotin was dissolved in glass distilled water and diluted to the proper 

concentration. It was autoclaved (15 minutes at 121°C) in a brown bottle 

which was then s~aled with a sterile, puncturable rubber stopper . . The 

required amounts of s12 and thiamin hydrochloride (obtained as sterile 

solutions) were then added to the biotin solution by the use of sterile 

syringes. The concentrations of vitamins in the stock so.lution were then: 

thiamin hydrochloride, 80 mg per liter; B12, 0.4 mg per liter; biotin, 0.4 

1Parke, Davis and Company, Detroit, t~ichigan. 

2British Drug Houses (Canada) Ltd., Montreal, P.Q. 

3Nutritional Biochemicals Corporation, Clevel and, Ohio. 

··.?,t 
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mg pel' liter. The stock solution was stored in the frozen state 

until used. In use, 1 ml of the stock solution was added to 400 ml 

of the sterile, complete synthetic sea water to give the desired, 

final concentration of growth factors. The experimental diatoms grew 

luxuriantly in the vitamin-enriched medium. 

3. Temperature Control, Illumination and Agitation of Cultures 

The culture experiments were carried out in an apparatus in 

which conditions of constant temperature, illumination and agitation 

were maintained (Fig. 1). 

Constant temperature was achieved with the use of a water bath 

in ~1hich cooling ~1as provided by a refrigeration system, thermostatically 

controlled. The water bath was a rectangular tank, 48~ in. long, 21 1/8 

in. high and · 14 in. wide, constructed of welded ~ in. angle iron. The 

framework was fitted on sides and bottom with a single thickness of ~ in. 

plate glass bonded with a non-hardening silicon rubber cement. It wa~ 

soon found necessary to modify this by adding another sheet of glass all 

around with airspace in between to eliminate the condensation of water 

vapor from the atmosphere on the glass surfaces. Since the illumination . .. 
system was located underneath the tank, it would have been possible for 

condensate from the bottom of the tank to drip down onto the electrical 

contacts, causing a short circuit. Condensation on the sides of the 

tank tended to interfere with the observation of tank contents. 

··::'•·. 
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FIGURE 1 

The experimental culture apparatus: 

A. View showing constant temperature tank with coolant 

coils and with culture flasks in place. Control 

equipment and shaker are hidden behind far end of 

tank. Fluorescent tubes are immediately bel01~ the 

tank. Coolant tank, circulating pump and part of 

compressor may be seen on the floor. The black 

cloth on the frame above the tank was draped over 

sides of tank during experiments to block out 

daylight and room light. 

B. View of the manner of attachment of the culture 

flasks to the control shaker rod. 

C. View of wrist-action shaker. The shaker rests on 

the upper part of the control panel. 
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FIGURE 1. 
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a. Temperature control 

Temperature control of the ~Jater bath was effected by a 

refrigeration system consisting of a twin cylinder, 580 rpm Tecumseh 

conventional condensing.unit1 (model 1400), driven by a% hp, 110 V 

a-c motor. Copper coils from the refrigerating system were immersed 

in a reservoir containing a 1:1 mixture of ethylene glycol and water 

as the coolant2. The coolant reservoir consisted of one cylindrical 

metal can (containing the coolant) within another, the two cans being 

separated from one another by an insulating thickness of styrofoam. 

The coolant was maintained at 0°C through the use of an electronic 

thermostat. 

An electric motor-driven pump circulated the coolant from the 

reservoir through ~in. copper tubing bent to conform to the shape of 

the water bath and placed ·inside the latter. The water in the bath 

was maintained at a constant temperature by means of a separate 

electronic thermostat which actuated the circulating pump when the 

water temperature rose above or fell belo~t the set temperature. The 

temperature of the bath was set at 15°C and \~as maintained within 

a range of ±0.2°C. 

b. Illumination 

Illumination was provided by a bank of eleven 30 W, cool-white, 

fluorescent tubes, placed beneath the bottom of the water bath. Except 

1Tecumseh Products Company, Tecumseh, Michigan. 

2This mixture has a freezing point of -36°C (Merck Index, 1960, 
7th edition, Merck and Company, Rahway, New Jersey). 



-13-

at either end of the bath where there was a slight drop off in 

intensity and in which locations no experimental flasks were placed, 

the illumination in all parts of the bath was very uniform. A Luxtrol 

light control 1 ~ (type WBD800) \~as used to vary light intensities for 

the various experintents. Although fluorescent light tubes give off 

much less heat than incandescent lamps of equivalent wattage, should 
' 

the culture appat·atus cooling system fail, the water of the bath could 

be sufficiently warmed to damage or kill the experimental diatoms. To 

eliminate the possibility of this .event, an electronic thermostat was 

incorporated into the light circuit to shut off the illumination should 

the water bath temperature rise 0.75°C higher than the set temperature. 

The illumination system was adjusted for the different light 

intensities u~ed in the experiments, \~ith a Brockway exposure meter2, 

which read directly in foot candles. Light intensity measurements were 

made by placing the exposure meter with its photocell face do~tm in a 2-

liter beaker, and pushing the beaker down into the water bath to the 

level at which the bottoms. of the experimental flasks would be located 

when these were placed into the bath. The maximum light intensitY 

produced by the f~ uorescent tubes \~as found to be 760 ft-c. 

A continuously operating aquarium filter was add'ed to the water 

bath to maintain the clarity of the water. 

1superior Electric Company, Bristol, Connecticut. 
2sekonic Electric Company, Tokyo, Japan. 

·' 
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c. Agitation 

The shaking de~ice, a Burrell 1 wrist-action shaker (model FF), 

was set up on a table immediately adjacent to one. end of the water bath. 

An aluminum rod 3/4 in. in diameter and 4~ ft long was placed across 

the top of the water bath. One end of this rod was secured in the . 

shaker sleeve. The remainder of the rod was supported by, and pivoted 

on, full pillow blocks at the mid-poini and at the far end of the tank. 

Six pairs of screw finger-grip cla1nps were attached to the rod along its 

length at 6 in. intervals, enabling the rod to hold 12 1-liter Erlenmeyer 

flasks. The flask bottoms were immersed in the water of the bath to a 

depth of not less than 2 in. so that the 400 ml volume of culture medium 

in each flask was adequately covered. 

The shaking action had to be such as to keep the cultures in 

gentle motion without splashing up onto the cotton plugs stoppering the 

flasks, thereby contributing to contamination of the cultures. Early in 

the experimental work, it was found that the shaking often became erratic 

and violent even at low oscillation speeds. To remedy this, a speed 

reduction pulley system was added to the shaker. An adjustable counter­

balance was also added to compensate for fewer than the full complement 

of flasks. 

4. Preparation of Bacteria-free Cultures 

In order to study the production of extracellular carbohydrates 

by Cylindrotheca fusiformis Reimann and Lewin var. fusiformis, it was 

1Burrell Corporation, Pittsburgh, Pennsylvania. 

.·.;. ·', 
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necessary to prepare and use axenic cultures of the organism. Spencer 

(1952) pointed out that bacteria associated with diatoms were usually 

very tenaciously attached. This situation made the freeing of algal 

cells from bacteria by the process of single cell washing, as described 

by Pringsheim (1949), quite impractical .. 

Spencer (1952) isolated bacteria-free cultures of Nitzschia 

closterium var. rninutissima by the use of penicillin and streptomycin. 

He found that this organism was not inhibited by treatment with 500 units 

per ml of penicillin, but was inhibited by 500 units per ml of 

streptomycin. Fater, Palmer and Maloney (1953) investigated the 

antialgal properties of a number of antibiotics for blue-green algae, 

green algae and diatoms. They found that both penicillin and 

chloromycetin inhibited the growth of blue-green algae, produced less 

inhibition of the growth of green algae, and did not inhibit diatom 

growth at all. Streptomycin inhibited the growth of all the organisms 

tested. 

Although ZeBell {1946) estimated that approximately 95% of 

· bacteria occurring in the sea were Gram-negative, it was believed in the 

present work, that there were opportunities for the air-borne, Gram­

positive bacteria to contaminate the crude diatom cultures. Provasoli, 

Pintner and Packer (1951) used a combination of antibiotics (penicillin 

and chloromycetin) together with agar surface plating to isolate 

bacteria-free cultures of marine diatoms. Their method resulted in the 

elimination of both Gram-positive and Gram-negative bacteria which 
,0 

contaminated the cultures. Accordingly, it was decided to adopt the use 

· .. " . 

I •· 
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of Provasoli, Pintner and Packer's (1951) procedure. The concentrations 

of antibiotics used per ml of medium were: penicil]in, 1,000 units; 

chloromycetin, 35 ~g. 

a. Preparation of antibiotic agar plates 

Penicillin and chloromycetin were prepared as stock solutions. 

Penicillin stock solution was made by dissolving 1,000,000 units of 

penicillin G Sodium1 in 32.25 ml of sterile, Pratt's (1947) phosphate 

stabilizer solution (NaH2P04·H2o, 0.298 g; Na2HP04 (anhydrous), 0.205 g; 

NaCl, 0.818 g; glass distilled water, 1 liter). This gave a concentration 

of 31,000 units of penicillin per ml. In use, 1 ml of the penicillin 

stock solution was mixed with 30 ml of agar medium. The phosphate 

stabilizer solution was used to retard the destruction of the dissolved 

penicillin. It was kept .in the frozen state when not in use. 

The stock solution of chloromycetin \'las prepared by adding 

30 ml of acetone to 1 gram of chloromycetin2. · Complete solution was 

not effected. One ml of the solution was then transferred by sterile· 

syringe to a carefully weighed, sterile serum bottle, which was stoppered 

with a sterile, puncturable, rubber stopper. The serum bottle was then 

additionally punctured with a cotton-plugged, sterile hypodermic 

needle, and placed in a vacuum desiccator to enable the .acetone to 

1Glaxo-Allenburys (Canada) Ltd. The steri-vial contained 1,000,000 units. 

2obtained as Chloromycetin (intfamuscular) from Parke, Davis and Company 
Ltd. ·srockville, Ontario. The steri-vial contained 1 gram of the compound 
and ~as large enough to permit the addition of the indicated volume of 
acetone. 
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evaporate. Following complete evaporation of the acetone, the bottle 

was car.efully weighed again in order to determine the amount of 

chloromycetin in the bottle. Then, the required volume of acetone 

was added to give a concentration of 0.00105 g per ml. In use, 1 ml. 

of this working solution was mixed with 30 ml of agar mediu~ to give 

a final concentration of 35 v9 of chloromycetin per ml of agar medium. 

When agar medium at 45°C was mixed with the acetone solution in the 

petri dish, the acetone volatilized. No inhibition of diatom growth 

by acetone was therefore ever observed. Both stock and working solutions 

were stored at 0°C. 

For surface plating of the diatoms the following medium was 

used: Bacto-peptone (Difco), 5 g; Oxoid agar no. 3, 15 g; complete 

synthetic sea \vater, 1 liter. This medium was tubed in 15 ml quantities 

for use. Peptone was used in order to reveal the presence of any 

bacteria or fungi associated with the diatoms during their purification. 

The antibiotic agar plates were prepared by adding the 

penicillin and chloromycetin solutions to each petri dish. Thirty ml 

of agar medium were then poured in. The antibiotics 'and the medium 

were then mixed thoroughly by gently rotating the plate. The antibiotic 

agar plates were incubated at room temperature (25°C) for 24 hr as a 

check on any microbial, and particularly fungal, contamination prior to 

use. 

b. Isolation of bacteria-free diatoms 

The bacterized diatom culture was harvested · by repeated 



-18-

centrifugation and washing with sterile complete synthetic sea water. 

From the very dense suspension obtained, cells were transferred to 

an· antibiotic agar plate and streaked as even as possible on one half 

of the plate. The plate was then incubated at 15°C, with illumination, 

for one week. Good growth was obtained. 

To be certain that the diatoms were free from bacteria and 

fungi, a second transfer was made to a fresh antibiotic agar plate. 

This was done by scraping diatoms from the advancing edge of growth 

with a loop moistened with sterile synthetic sea water and streaking 

these on the second plate. After. 10 to 15 days incubation of the 

second plate, the cells were again scraped off and inoculated into 

400 ml of sterile, complete synthetic sea water with vitamins added. 

The culture was then incubated in the culture bath at 15°C with 

illumination. 

c. Sterility testing 

In order to be certain that the antibiotic-treated diatom 

cultures were, in actuality, free from bacteria and fungi, and remained 

so during the experiments, it was necessary to carry out sterility 

tests. Because the diatoms would be. grown with constant shaking and 

also, because , they would continuously contribute oxygen to the medium 

during photosynthesis, the resultant culture environments would be 

highly aerobic and would therefore tend to support aerobic rather 

than anaerobic contaminants. Accordingly, sterility tests for aerobic 

contaminants, only, were carried out. 
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The testing procedure was that given in the United States 

Pharmacopoeia (15th !evision, 1955). The test medium was ~repared 

by dissolving 2 grams of·Bacto-yeast extract (Difco) and 6 grams of 

Bacto-peptone (Difco) in 1 liter of complete synthetic sea water and 

heating for 5 min at 121°C. On cooling, the medium was filtered 

through two thicknesses of Whatman no. 2 filter paper. The filtrate 

was dispensed in 50 ml portions in 125 ml Erlenmeyer flasks. These 

were cotton-plugged and autoclaved for 15 min at 121°C. The finished 

medium was a completely clear, yellowish-brown solution in which even 

the slightest turbidity produced by the growth of contaminants could 

be readily detected. 

In use, 50 ml of the test medium was inoculated with 10 ml 

of the diatom_ culture being tested and incubated at room temperature 

for two weeks. Examinations for turbidity and surface fungal growth 

were made every third day. Antibiotic-treated cultures produced no 

turbidity or surface fungal growth while untreated cultures showed 

strong turbidities in 24 hr. Surface fungal growths were never 

observed. 

Experimental Conditions 

Moskovits (1961) pointed out that the eurythermality of the 

diatom Nitzschia closterium (Ehr.) Wm. Smith ranged from -1.7°C in the 

Bellingshausen Sea in the Antarctic to a maximum of 37.5°C in one of the 

Barataria Bay, Louisiana, salt marshes. It \'las difficult to decide on 
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an experimental temperature for an organism having such a wide 

temperature range. At high temperatures, while the organism would 

grow more rapidly, it would also exhaust available nutrients more 

rapidly. Growth factor requirements would also increase (Provasoli, 

1958). At low temperatures, while nutrients and growth factors would 

not be exhausted as rapidly, the organism would g1·ow more slowly and 

the experimental period would be prolonged . No literature was found 

to indicate that temperature affects the extracellular production of 

carbohydrates by algae. Since the culture apparatus was more readily 

maintained at 15°C than at higher or lower temperatures, i t was 

decided to use that temperature for all the experiments . 

Each of the first three experiments was carried out at a 

different light intensity. High (760ft-c), intermediate (400ft-c) 

and low (50 ft-c) light intensJties were used. The nitrogen and 

phosphor4s contents ~f the ·synthetic sea water were unaltered. The 

fourth ex~iment was carried out at the intermediate light intensity. 

In addition·, the condition of nitrogen deficiency was created by 

reducing the nitrogen content of the medium from 5.6 pg per ml (normal 

medium) to 0.7 pg per ml. 

Each experiment was terminated when the stationary phase of 

growth was reached. 

General Experimental Procedure 

1. Inoculation of Medium 

Cultures used as inocul a for the carbohydrate production 
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experiments were prepared by growing the bacteria-free diatom in 400 . . . 

ml of complete synthetic sea water, with vitamins added, contained in 

cotton-plugged 1-liter Erlenmeyer flasks. These cultures were adapted 

to the temperature ( 15°C \~as emp 1 oyed throughout the experiments) and 

to the particular experimental light intensity for at least two weeks 

before the experiment, with at least two transfers to fresh medium 

being made during this period. The importance of pre-experimental 

adaptation has been stressed by Spencer. (1954). 

Cells \\~ere removed from the adapted cultures during the 

exponenti a 1 phase of grol'lth, and were processed as fo 11 ows. Twenty ml 

aliquots of. the culture were transferred to 35 ml sterile, screw-

capped tubes, and centrifuged in an International high-speed,refrigerated 

(5°C) centrifuge at 2,500 x g for 5 min. The supernatant was decanted, 

the cells were washed with sterile, synthetic sea \'later and 

recentrifuged. The very dense cell suspension obtained was diluted 

to the required concentration after making cell counts on it. The 

required volume of diluted cell suspension was then inoculated into 

400 ml of sterile complete synthetic sea water with vitamins added. 

The starting cell concentrations for all experiments were maintained 

within the range of 2 to 5 x 104 cells per ml. 

For each experiment, ten flasks of media were inoculated and 

incubated in the culture bath. One of these was· used for cell counts 

in order to fo 11 ow the course of grol'tth during the experiment. The 

other flasks were harvested at intervals for carbohydrate analysis. 

Each experiment as carried out in duplicat~. 
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2. Cell Sampling and Counting 

Following the start of an experiment, cell sampling and 

counting were carried out at intervals of three to four days. Although 

there was continuous agitation of the culture during the experiment, 

clumps of cells were always present in the bottom of the flask. In 

order to reduce sampling errors, the culture was shaken vigoro"usly on 

a rotary shaker1 for 10 min before sampling. Two 1-ml portions of 

the culture were then taken from the flask using a 1-ml large orifice 

pipette. The two aliquots were· combined as one subsample in a 10-ml 

beaker. Four such subsamples were taken at each sampling period. 

When agitation on the rotary shaker failed to completely 

disperse clumps of cells, ultrasonic treatment was resorted to. A 

MSE disinteg~ator2 was used, operated for 5 min periods at 0.5 to 

0.75 amp {low range). Within this range of ultrasonication, completely ~ 

homogeneous cell suspensions were obtained and no destruction of cells 

occurred. 

Cell counts were made on the suspensions thus prepared, using 

a. Levy haemocytomet~r. with double Neubauer rulingS. Two counts were 

made on each subsample. A total of eight count's were therefore made 

at each sampling. 

1vankee variable speed rotator; c·lay-Adams, Inc., New York. 

2Measuring and Scientific Equipment Ltd., London, England . 

.- .. ·. 
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3. Sterility Testing 

Immediat~ly fol.lOI'Iing the inoculation of diatoms, at the 

beginning of an experiment, sterility tests were carried out on each 

flask of culture. Since all but one of these flasks were not opened 

again until the cultures were harvested, no further tests were carried 

out. However, sterility tests were run on the flask from which 

samples for cell counts were removed. This was done in order to be 

certain that the growth curve, as determined by the growth in this one 

flask, was a valid representation of the growth occurring in all the 

other flasks. 

4. Preparation of Cell-free Culture Medium 

At intervals, during the course of an experiment, depending 

on the growth rate of the diatoms, two flasks of culture were 

harvested. The cells were separated from the culture medium by 

centrifugation and by fil~ration. Centrifugation was carried out 

in an International high-speed refrigerated (5°C) centrifuge at 

2,500 x g for 5 min. The supernatants were collected and their 

volumes measured. The cells were then \'lashed with a small volume of 

complete synthetic sea water and recentrifuged. The' original and the 

cell-wash supernatants were then pooled and filtered through a Morton 

bacterial filter (Morton, 1944) to make certain that no cells remained 

in the culture medium. The filtrate was frozen in preparation for 

the isolation of carbohydrates. 

. ·, . ,. 
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Isolation and Analysis of Carbohydrate 

1. Isolation 

Few direct determinations and analyses of dissolved carbo­

hydrates in sea water have been carried out. Available analytical 
' 

methods are not sufficiently sensitive for the small quantities of 

carbohydrates present in sea water. In addition, other organic 

compounds and inorganic salts in the sea water interfere with the 

reactions upon which the analyses are based. Lewis and Rakestraw 

{1955) compared the anthrone and the N-ethylcarbazole colorimetric 

determinotions of total carbohydrate in sea water. They found that 

although there was no salt error with the N-ethylcarbazole method, 

the procedure was more laborious and exacting because of the light 

sensitivity and the rigid temperature requirements of the reagent. 

Zein-Eldin and May (1958) improved the N-ethylcarbazole method so as 

to make it more suitable for the determination of total carbohydrate 

in sea water. However, Mclaughlin, Zahl, Nowak, Marchisotto, and 

Prager {1960) found the N-ethylcarbazole reaction to be most unsatisfactory. 

This was because non-carbohydrate materials, both organic and inorganic, 

gave rise to a variety of false· color reactions. Antia and Lee (1963) 

tested the anthrone method with synthetic sea water whose composition . . 

was successively altered by add ing or omitting certain components in 

order to determine the effect and correct ion of the salt effect. However, 

due to the presence of unknown compounds in natural sea water, it was 

still impossible to make direct measurements of carbohydrates. To 

obviate this difficulty, preliminary treatment, i.e., isolation of 
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carbohydrates from the. sea water medium becomes necessary . 

Jeffrey and Hood (1958) evaluated various -methods for the 

isolation of organic compounds from sea water. Glucose, mannose, 

galactose and raffinose could be isolated with a recovery of 98 to 99% 
' 

using an activated charcoal column and eluting with 5 to 15% ethanol. 

Hood (1967) suggested that polysaccharides could also be isolated · 

using an activated charcoal column and eluting with 10 to 20% ethanol. 

It was therefore decided to adopt the use of these methods for the 

isolation of carbohydrates from the synthetic sea \'later culture media 

in which the diatoms were grown . . 

a. Preparation and use of activated charcoal columns 

The charcoal used was Norite RK01 (50-200 mesh). It was 

prepared for ·use by soaking in glacial acetic acid for 1 to 2 hr at 

room temperature. The acid was then decanted and the charcoal \'/as 

washed once with glass redistilled \'Jater. The charcoal was then packed 

in a glass column (2. 5 x 25 em) and \'lashed repEeatedly with glass --' 

redistilled water until the effluent was no longer acid as determined 

with Hydrion pH test paper. The column was then ready for use. 

The cell-free culture medium was passed through the activated · 

charcoal column. The column was then washed with glass redistilled 

water to remove the i no.rgani c ions. Washing efficiency was determined 

by testing the effluents with 1 M AgN03. When the silver nitrate tests 

1American Norite Co., Inc., Jacksonville, Florida. 
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were negative, the column was eluted ~uccessively with 100 ml each 

of 5%. 10%, 15% and 20% ethanol. The alcoholic effluents were pooled 

and kept frozen prior to lyophilization. 

b. lyophilization of isolated carbohydrates 

Although vacuum distillation could be used as a rapid method 

for concentrating the alcoholic effluents, it was considered that 

oligosaccharides and polysaccharides might be hydrolyzed in the 

concentrated sample. While this would not affect analysis for total 

carboh,ydrate, it would make it impossible to determine the original 

carbohydrates present by thin layer chromatography. For this reason, 

freeze-drying was resorted to1. The dried material was redissolved 

. in 15 ml of glass redistil:led water, and kept frozen until needed for 

analytical procedures. 

2. Analysis of Total Carbohydrates 

Although the carbohydrate isolation procedure eliminated the 

salt interference problem, the use of the N-ethylcarbazole method still 

posed problems because of the light sensitivity and the rigid 

temperature requirement of the reaction. It was therefore decided to 

adopt ·the use of the anthrone method for the determination of total 

carbohydrates in the e.xperimental cultu.re media. Scott ~nd Melvin 

(1953), Lewis and Rakestraw (1955), Antia and Lee (1963) used various 

modification of this method, particularly with respect to the concen­

trations of anthrone and sulphuric acid used, reaction times and 

1Bellco freeze-drying apparatus no. 4110. Bellco Glass Inc., 
Vineland, New Jersey. 
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temperatures. After testing each of these modifications, the writer 

found that Antia and Lee's (1963) method gave the most reproducible 

results and therefore adopted it for the determination of total 

carbohydrates . 

a. Preparation of glassware 

All glassware used in the determination of total carbohydrate 

was soaked overnight in concentrated H2S04, then successively rinsed 

in tapwater and glass redistilled water and finally oven-dried. Extreme 

care was . exercised during glassware preparation in order to avoid 

contamination from cellulosic materials such as tissue paper fibers, 

cotton wool fluff, which are often found in the air of the laboratory 

environment. 

b. P~eparation of glucose standard ~elutions 

A stock solution containing 500 mg of glucose per liter of glass 

redistilled water was prepared. A .few drops of saf~rated HgCl2 solution 

were added as preservative. In addition, the stock solution was kept 

frozen until used. For use, the stock solution was diluted to the 

required concentrations. The dilutions prepared were: 25, 12.5, 6.25, 

and 3.125 mg per liter. They were freshly prepared for each determination, 

not more than 12 hr before use. Until used, the dilutions were stored 

under refrigeration. 

c. Preparation of anthrone reagent 

Reagent grade anthrone was purified for use by recrystallization 

from hot benzene (Antia and Lee, 1963) . The purified reagent was 
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stored in a desiccator. Precautions were taken to avoid contamination 

of the anthrone by cellulosic materials during its purification and 

storage. The reagent \~as freshly prepared just before use as a 0.1% · 

(w/v) solution in concentrated H2so
4
. 

d. Analytical procedure 

All determinations were carried out in duplicate. Five ml 

aliquots of the standard glucose solutions, "blanks" or unknown 

samples to be analyzed for total carbohydrate, were measured into 

1.6 x 15 em Pyrex test tubes which were then covered with aluminum 

foil caps to exclude air-borne contamination. Batches of 16 tubes were 

prepared in this way, each consisting of at least three glucose 

standards, one blank and the remainder unknowns, all in duplicate. 

Because of the considerable processing time involved, more unknowns 

could not be handled at any one time. 

Before addition of anthrone reagent, each batch of tubes was 

cooled in an ice water bath for at least 30 min. To each tube, 

immersed in ice water and continuously shaken, 10 ml portions of 

anthrone reagent \'tere added s 1 owly, dropwi se, from a burette. The 

rate at which the reagent was added was carried out very carefully so 

as to dissipate rapidly the heat produced by the reaction o~ sulphuric 

acid and water. When reagent addition was completed, each tube was 

shaken on a tube agitator for at least 30 sec to insure complete 

mixing of its contents. The tube was then returned to the ice water 

bath in a rack provided. with handles so 'that an entire batch of tubes 

·', . ·.·. 
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could be immediately removed to another bath. The entire batch of 

tubes was cooled for an additional 2 min after the last tube had been 

added to the ice water bath. A batch of tubes was then successively 

transferred to a 20°C water bath for 5 min, then to a vigorously 

boiling water bath for a 6 min reaction period. The latter step was 

timed from the moment the bath temperature reached 98°C. At the end 

of the reaction period, the batch was plunged into the ice water bath 

for at least 3 min, after which it was replaced in the 20°C water 

bath for about 5 min. Then, with a minimum of delay, the tube contents 

:were transferred successively to a 1 em path absorption cell and the 

absorption read at 625 m~ on a Beckman DK-2 spectrophotometer . 
.. 

Distilled water was used as reference. Between successive measurements, 

the absorption cell was rinsed successively with distilled water, 

ethanol and ether. All sample readings were corrected with the blank 

reading. The results of samples from ~ulture media (unknowns) were 

given in terms of mg per liter of glucose equivalent derived from a 

curve based on standard glucose solutions (Appendix II). 

3. Thin-layer Chromatography (TLC) of Carbohydrates 

Chromatographic techniques . have become increasj.ngly important 

tools for the separation of a wide variety of compounds of biological 

interest. Although paper chroma.tography has been used for many years 

for the separation of carbohydrates, it has a number of inherent 

disadvantages, the most important being a long elution time, which, 

together with.temperature fluctuations during this period, produces 

erratic and irreproducible results; 

.. • . ... · 
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Russel (1963) pointed out that thin layer chromatography (TLC) 

was one of the most rapid and sensitive means for the separation and 

identification· of quite small amounts of compounds. Th~ first attempts 

to separate sugar mixtures using TLC were by Stahl and Kaltenbach (l~ol) 

and by Pastuska {1961). Not only did this te.chnique require 1 ittle time 

for elution, but also smaller amounts of s~gars (of the order of 0.05 ~g) 

could be detected than was possible by paper chromatography. In view 

of these advantages, it was decided to use TLC for the qualitative 

analysis of carbohydrates in the present experiments . 

Extensive studies of the use of TLC for carbohydrate analysis 

by various .workers have involved the use of many different adsorbents, 

impregnating compounds and solvent systems. The proper selection of 

adsorbent for the separation of a given. group of compounds is very 

important. The writer tested many adsorbents and adsorbent impr.egnating 

compounds including those employed in the methods of Stahl and Kaltenbach 

(1965), Waldi (1965a), Jacin and Mishkin (1965), Ovodov, Evtushenko, 

Vaskovsky, Ovodova and Solov•eva {1967), and Nemec, Kefu,·t and Jary (1967). 

The procedure using silica gel impregnated with 0.3 M disodium hydrogen 

phosphate or 0.3 M sodium dihydrogen phosphate as described by Ovodov, 

et ~· (1967}, gave the most satisfactory separation of .hexoses, pentoses, 

sugar acids and oligosaccharides. The non-impregnated Silica gel G 

method described by . Nemec, Kefurt and Jary (1967) was found useful for 

the ·separation· of alcoholic sugars. Accordi.ngly, these methods were 

followed for the qualitative analysis of ,car~ohydrates in this study. 

-~'' 
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a. Preparation of TLC plates 

TLC plates were prepared as described by Stahl (1965)·. 

Silica gel
1 

containing a fluorescent material and a calcium sulphate • · 

binder was used as the adsorbent. In practice, a DESAGA2 112 em long 

and 22 em wide plastic aligning tray was set on a firm table. Five 

20 x 20 em clean, grease-free, glass plates were placed flush with 

one another on the alighing tray: Plate coating was done as follows. 

Thirty grams of silica gel were weighed out and placed in a 125 ml 

Erlenmeyer flask to whdh was added 60 ml of either. glass distilled 

water, or 0.3 M sodium dihydrogen phosphate, or 0.3 M disodium hydrogen 

phosphate, depending on whether or not an impregnating compound was to 

be used. The flask was then stoppered, shaken vigorously for 15 to 

25 sec, and swirled gently to get rid of air bubbles. The adsorbent 

slurry \'las then poured into the DESAGA adjustable TLC spreader which had 

been set to give an adsorbent .layer 0.25 mm thick. The latter was moved 

from one end of the row of plates to the other at an even speed and 

· without applying undue pressure to the spreader to give smooth, uniformly 

spread plates. Five to 6 sec were usually required to spread the 

plates. The whole operation, from the mixing of the adsorbent to the 

completion of the spreading needed to be completed within 5 min to avoid 

the setting of the calcium sulfate binder. The coated plates were 

dried and stored at room temperature before use. 

1silicAR TLC-7GF; Mallinckrodt Chemical Works, St. Louis, Missouri. . . . . . 
2oESAGA, Heidelberg, Germany. (U.S·. ·representative: C. A. BririkiJ!ann, 
Westbury, Long Island,' New York). · 
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b. Carbohydrate standards 

Carbohydrate standard solutions were prepared by dissolving 

1 mg of the carbohydrate in 10 ml distilled water. The following 

compounds were used: glucose, galactose, fructose, mannose, rhamnose, 

fucose, arabinose, xylose, lyxose, ribose, sucrose, raffinose, 

galacturonic acid, mannuronic acid, sorbitol, mannitol, ribitol and 

erythritol. All the carbohydrates employed here were D-series except 

rhamnose and fucose. The so 1 ut·i ons were kept frozen when not in use .• 

c. Solvents 

The following solvents were freshly prepared before use: 

(A} n-Butanol-acetone-water (4:5:1 v/v) 

(B) n-Butanol-pyridine-water (8:4:3 v/v) 

(C) Ethyl acetate-acetic acid-water (6:3:2 v/v) 

(D) n-Butanol-ethanol-0.1 M phosphoric acid (1:10:5 v/v) 

(E) Methyl ethyl ketone-acetic acid-methanol (6:2:2 v/v) 

For the separation of hexoses and pentoses, solvents {A) and (B) were 

used for both the 0.3 M sodium dihydrogen phosphate and the 0.3 M 

disodium hydrogen phosphate impregnated plates, while solvent (c) · was 

used for sodium dihydrogen phosphate impregnated plates only. For the 

separation of oligosaccharides and uronic acids, solvent (D) was used 

for both kinds of phosphate impregnated plates. Solvent (E) was used 

with non-impregnated plates for the separation of alcoholic sugars. 

d. Detection reagents 

Three detection reagents were used for the visuali zation of 

the carbohydrates. These were freshly prepared before use. 

j 
,, 

·; 

: i 
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(A) Anisaldehyde-sulphuric acid reagent 

This reagent was used by Stahl and Kaltenbach 

(1961) to detect as little as 0.05 ~g of sugar. They found 

in addition, that it gave a variety of colors with different 

sugars. However, no color reactions were given by either 

uronic acids or alcoholic sugars. 

The reagent consisting of a mixture of anisaldehyde, 

5 ml; 95% ethanol, 90 ml; concentrated sulphuric acid, 5 ml; 

and glacial acetic acid, 1 ml, was sprayed evenly on the plate 

which ~tas then heated in an oven at 90°C to 100°C for 5 to 10 

min to develop the colors which appeared against a pink background. 

(B) Benzidine-sodium metaperiodate reagent1 

The reagent was prepared as two solutions. The first 

was a 0.1% aqueous solution of sodium metaperiodate. The 

second was prepared by dissolving 2.8 grams of benzidine in 

80 ml of 96% ethano 1. To this were then added 70 ml of \<later, 

30 ml of acetone and 1.5 ml of IN HCl. In use, the plate was 

sprayed with. the metaperiodate so~ution. Whi 1e the plate 

was still damp, it was then. sprayed wi~h the benzidine solution. · 

The· carbohydrates appeared as white spots against a purple 
0 , . 

.. background .. :-
. ··:' · . .... 

(C) Con·t:enfrated sulphuric acid reagent 

The plate was sprayed with concentrated sulphtiric acid 

and then heated to 100-120°C for 3 to 10 min. The carbohydrates 

1oescribed by Waldi (1965b) as spray reagent no. 18 . 

. . _. ;. 
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appeared as brown or black spots against a white 

background. 

The detection reagents were applied with sprayers which used 

either compressed air or Freon as propellants. 

e. Analytical procedure 

Ascending TLC was the analytical procedure of choice, carried 

out in the following steps: 

1. Sample application 

Five ml of the previously freeze-dried sample was again 

freeze-dried and dissolved in 3 drops of glass redistilled 

water in a small conical tube. Aliquots of the ~ample 

solutions and the standard sugar solutions were applied on a 

line parallel to and at least 2 em from one edge of the coated 

plate. Margins of at least 2 em were also maintained on each 

side. A plastic template which bridged the TLC plate served as 

a hand rest and as an indicator of the staring line. Samples 
. \../ 

and standarc:; were usually spott~d at the starting 1 ine at 

intervals of 15. mm usi.ng micropipettes. Spot size was kept as 

small as possible and was usually less than 3 mm. in diameter . 

. Each spot was derived from 15 ~1 of sample or ·l ~1 of a standard 

sugar solution. Glucose was spotted on every plate in order to 

determine the Rg-value. The coating of the plate was scored 5 mm 

from each side to eliminate edge effects (Brown and Benjamin, 1964). 

The plate was then ready for development. 
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2. Development 

Both rectangular and circular covered glass tanks were 

used as developing chambers. Solvent was added to the tank 

at least 15 min before the plates were added, with solvent­

soaked filter paper placed \'lithin the tank wall to saturate 

the atmosphere. The plates were developed at room temperature 

(23-25°C) for a distance of 13 to 15 em from the starting line 

to the solvent front . The plates were then removed from the 

tank, placed flat on a table to inhibit further development, and 

finally dried at room temperature. 

3. -Visualization 

When the plates were completely dry, they were first 

examined under UV light1 and then treated with detection reagents. 

4. Determination of Unknowns 

Because the co.lors developed on the chromatograms are 

very unstable \'lith time, the re.sults were recorded immediately 

upon visualization. Also, when a s~~ies of thin layer 

chromatograms is investigated, use of a reference substance 

rather than the use of the solvent front to obtain Rf-values
2
, 

has been recommended by Ganshirt (1965). 

Short wave UVS-11 Mineralite ultra-violet lamp; · Ultra-violet Products, 
Inc., San Gabriel, California. 

2R =Distance of center of spot from star~ing p9int 
~ Distance of solvent front from start1ng po1nt 

. . . 
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· Since glucose \~as used as the reference compound, in the 

present analytical \'tork, Rg-values were used instead of 

Rf-values, where: 

Rg = Distance of sample spot from starting point 
Distance of glucose spot from starting point 

The 11 unknown 11 spots from the experimenta1 culture media were 

identified by the correspondence of their Rg-values with 

those of known carbohydrates in at least two different solvent 

systems or two different salt-impregnated adsorbents. Color 

reactions with detection reagents were also used to identify 

the unkno~ms . 
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RESULTS 

Gro\'Jth Curves 

Repl ica.te gro~1th curves of the diatom for each of the four 

experimental ~onditions are shown in Fig. 2, 3, 4 and 5. Cell 

concentration data for the start, for the end of the exponential 

phase of growth and for the end of the experiment, for each experiment, 

are summarized in Table III. For each experiment, good agreement was 

obtained between the growth curves of the replicates. Differences 

were particularly evident when cell concentrations became high after 

the exponential phase of grO\'Ith and may have been due to cell sampling 

or cell counting errors, or both. 

In the experiments involving adequate nutrition under variations 

in light intensity (Experiments 1, 2, and 3), although all the three 

experiments reached ~somewhat similar cell concent~ation at the end 

of the experi~ents (245.875 to 259.375 x 104 cells per ml), better 

growth was found in the high and intermediate light intensity 

experiments (Experiments 1 and 2). It required, for both of these 

experiments, six days to reach the end of the· exponential phase of 

growth with cell concentrations ranging from 215.625 to 223.75 x 10
4 

cells per ml, and 13 to 15 days to reach the stationary ·phase of growth. 

In the low light intensity experiment (Experiment 3), it required 12 

days to reach the end of the exponential· phase of growth with cell 
4 

concentrations ranging from 178.75 to 188.5 x 10 cells per ml, and 

21 days to reach the stationary phase of growth. In the nitrogen 

· .. · . 

I .. 
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FIGURE 2 

Gro11th of and total carbohydrate production by the 

experimental diatom under high light intensity 

(760 ft-c) and in normal synthetic medium 

(Experiment 1). 
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FIGURE 3 

Growth of and total carbohydrate production by the 

experimental diatom under intermediate light intensity 

(400ft-c) and in normal synthetic medium {Experiment 2) . 
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• 

FIGURE 4 

Growth of and tota 1 carbohydrate production by the 

experimental diatom under low light intensity (50 ft-c) 

and ·in normal synthetic medium (Experiment 3). 

I 

/ -- ··~ ··--~-~~~~~~~~"''';<;z\@?~-
. . ... -· . ... ·.-·· ····· ..... -.. .. . ~-· . . 

·:.:-, :·· 

··---· 



i I 

ll I 

~ i 

-43- I i. 
I 

I I 

0.5 ! ~. 

! 
I 
~ 
~ 
" ~ 
R 

0 0 /. ·i /@,... ......... ( 

• 
G / ~ 

/ 
.,.. I 
r- ! 

(i) 
........ 

I 
Ol l E ! 

I V) 
r 
i 

1- t 
<;!" I 

z 
LLJ 

0 

...J I 
rl •; < ' 

X 

> l 
...... I 

0 

0~ 
0.35-

l 

.... 
• 

E 

LLJ ~ 

' / \ 
I 

~ 160 
IJJ ! 
V) · I 

...J / 0\ 0 

LLJ 

u 

u 
::J t 

0 ~ 
...J t t!) I 

I o - I 
' LLJ I 

I 
1- I < 
0::: 

I 
0 I 

0 0.2~ I 
0 

I I 
::0 

o-
0::: 

· < i 

u ' 

/o 
I ' 

...J I 
I 

I 
~ 
0 I 1-

I 
EXPERII~ENT 3 I 

I !J 
CELL NUMBERS 

h 0 

REPLICATE 1 " 0 

REPLICATE 2 o--o 
40 

/ /" TOTAL CARBOHYDRATE 
REPLICATE 1 0 o · 

20 
REPLICATE 2 o--o 

.f 
0 

3 6 9 12 15 18 21 

TIME IN DAYS 



I 

I 
i 

I 
·I 
I 
I 

i 
! 

' 

#!~I 
Pl .· I 

~---- ~ 

' · 

-44-

FIGURE 5 

Growth of and total carbohydrate production by 

the experimental diatom under intermediate 1 ight 

in_tensity (400 ft-c) and in nitrogen-deficient 

synthetic medium (Experiment 4). 
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TABLE III 

Summarized experimental data for cell and carbohydrate 
concentrations from all experiments 

Experiment Replicate End of Exponential 
Start Phase of Growth 

Cell concn* Carbohydrate Cell concn Carbohydrate 
concn** con en 

1 3.75 0.117 215.625 0.111 
1 (3 days) (6 days) 

2 4.875 0.117 221.625 0.113 
{3 days) (6 days) 

1 4 0.130 223.75 0.148 
2 (3 days) (6 days) 

2 5 0.125 222.875 0.135 
(3 days) (6 days) 

1 3.75 0.169 188.5 0.199 
3 (6 days) (12 days) 

2 4 0.173 178.750 0.169 
(6 days) (12 days) 

1 3.5 nd 63.75 0.365 
4 (6 days) 

2 4 0.300 69.375 0.339 
{3 da~s2 {6 da~s2 

*Cells x .104 cells per ml. 
**mg (as glucose equivalents) per liter of culture medium. 
ndc: not detennined because of contamination. 
nd: not determined. 

Cell concn 

245.875 
(13 days) 
259 

(15 days) 

258.375 
(13 days) 
259.375 

(14 days) 

259.375 
(21 days) 
257 

(21 days) . 

68.125 
(9 days) 
71.875 

(9 days) 

. · - - ----- --~---- -- -----·· -· ·-------- - :··-··· - --- --·----·-····-· 

End 

Carbohydrate 
con en 

0.207 

ndc 

0~250 

0.230 

0.234 

0.234 

0.436 

0.469 

. I 
~ 
0'1 
I 
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deficiency experiment (Experiment 4) which was carried out at the 

intermediate light intensity, growth was poo~ as compared to that 

obtained in the intermediate light intensity experiment with adequate 

nutrition (Experiment 2). Although both of the experiments required 

six days to reach the end of the exponential phase of growth, the 

nitrogen deficiency experiment only sh01~ed 63.75 to 69.375 x 104 cells 

per ml, while the intermediate light intensity experiment showed 

222.875 to 223. 7S x 104 cells per ml. At the tennination of the 

experiments (13 to 14 days for Experiment 2; 9 days for Experiment 4), 

the nitrogen deficiency experiment had a ce 11 concentration ranging from 

68.125 to 71.875 x 104 cells per ml as compared to 258.375 to 259.375 x 104 

cells per ml for .the intermediate light intensity experiment. 

Cell Condition, Color and Size 

In the high, intermediate and lm~ light intensity experiments, the 

majority of the cells were actively motile1 from the beginning of the 

experiment through the exponential phase of growth. A few non-motile 

cells (chromatophores intact}, but very few dead cells (chromatophores 

absent) were also observed during the same period. As the stationary 

phase of growth was approached, more non-motile cells and more dead 

cells were observed. In the nitrogen deficiency experiment, from start 

through exponential phase of growth, most of the cells were found to be 

non-motile. Some feebly -motile cells2 and a few dead cells were also 

1Cells showed continuous rapid movement over more or less extended distances. 

2Cells showed intermittent slovl movement over short distances only. 

i . 



;.48-

observed. Increasing numbers of dead cells were observed as the 

stationary phase of gro\~th \~as approached. 

' -

The chromatophores (two) of the cells from the high, intermediate 

an·d low light intensity experiments and from the nitrogen deficiency 

experiment were greenish-yellow, golden yellow, yellowish-brown and 

pale greenish-yellow in color, respectively. In gross appearance, 

the experimental cultures showed a yellow, a brownish-yellow, a deep 

brown and a pale yellow color, respectively. 

Measurements of specimens of the diatom in the living state and 

taken at random, from both 1 the_ intermediate 1 i ght intensity experiment 

(10 specimens} and the nitrogen deficiency experiment {8 specimens), 

gave an over-all cell length ranging from 25 to 35 p. The width, 

measured at the widest part of spindle-shaped body, had a range of 

3 to 5 p. Measurements of specimens of the diatom from the low light 

intensity experiment {20 specimens) gave a range of 25 to 58 P in 

length and 3 to 7 p in width. 

Total Carbohydrate Production 

Replicate curves for total quantities of carbohydrate (as glucose 

equivalents) produced by the diatom under each of the experimental 

conditions are shown in Fig. 2, 3; 4 and 5. These data for the start, 

for the end of the exponential phase of growth and for the end of the 

experiment, for each experiment, are summarized in Table III. For 

1The cells of the high light intensity experiment were not measured. 
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each experiment, the carbohydrate production curves of the replicates 

matched each other very well except in the nitrogen deficiency 

experiment. For the latter experiment, carbohydrate production at . 

three days incubation was not determined in the first replication. 

Each of the experiments showed a somewhat similar pattern of 

carbohydrate production in that there was little or no increase in 

carbohydrate production during the exponential phase of growth. A 

definite increase was found as the stationary phase of gro~1th was 

approached. In the low light intensity experiment, additionally, a 

decrease in carbohydrate production was . found as the stationary phase 

of grmvth was approached. 

In the light intensity variation experiments, slightly higher 

carbohydrate production was found in the low light intensity experiment 

than in the intermediate or high light intensity experiments at 

comparable phases of growth. Progressively less carbohydrate was 

produced in the latter two experiments, in the order indicated. In 

addition, the low light intensity experiment, showed a decrease in 

carbohydrate production, at the end of the experiment, to a concentration 

of 0.234 mg per liter, which was very much the same concentration 

obtained (0.230 to 0.250 mg per liter) at the end of the intermediate 

ligh~- intensity experiment. Although diatom growth was considerably . 

poorer in the nitrogen deficiency experiment than in the high, inter­

mediate and low light intensity experiments, it showed the highest 

carbohydrate production of all the experiments. 
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Qualitative Analysis of Carbohydrates 

The chromatographic results which represent the best separations 

obtained are shown in Table IV. The rest of the chromatographic data 

are shm~n in Appendix I. All the samples obtained from the experimental 

cultures shm~ed the same pattern of separation in any of the systems 

(impregnating compounds and solvents) employed. No qualitative 

differences in carbohydrate content were found either in the samples 

collected at different stages of growth in any one experiment or under 

the different experimental conditions established.· The identified 

carbohydrates VJere glucose, galactose, xylose, arabinose and galacturonic 

acid. 

From all the experimental samples collected, three unidentified 

(U) compounds were also found. These had Rg-values of 0 (U1), 0.1 (U2), 

and 1.64 (U3) in disodium hydrogen phosphate-impregnated and solvent 

(D)-developed plates. U1 showed a deep b1ue color with anisaldehyde­

sulphuric acid reagent, while u2 and u3 failed to give any _color 

reaction with the same reagent. The u2 spot was larger tn size than 

the spots ofo any of the other compounds encountered, \'Jhether identified 

or not: This niay mean that it was present in a larg.er quantity than were 

any of the other compounds. Using ultraviolet visualization, the best 
0. • • 

separation obtained with sodium dihydrogen phosphate-impregnated and 

solvent (D)-developed plates showed five spots having Rg-values of 0, 

0.45, 0.60, 0.85 and 1.32. These absorbed ultraviolet and therefore . 

showed no fluorescence. such .compounds remained unidentified because 

none· of the carbohydrate standards used show~d any ultraviolet absorption. 
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TABLE IV 

Representative TLC data* obtained with carbohydrate standards and unknowns 

Standards Unknowns Identified Unknowns Unidentified 

Compounds Rg-value Compound Rg-value Compound Rg-value 

Galacturonic acid 
Raffinose 
Mannuronic acid 
Galactose 
Glucose 
Arabinose 
Sucrose 
Ribose 
Xylose 
Fructose 
Lyxose 
Man nose 
Rhamnose 

0.21 
0.38 
0.62 
0.85 
1.00 
1.00 
1.05 
1.13 
1.32 
1.50 
1.87 
1.90 
2.65 

Galacturonic acid 0.25 

Galactose 0.85 

Xylose 1.30 

Glucose, arabinose 
sucrose** 1.00 

s represen st separa ons ng sys 
Solvent: n-butanol-ethanol-0.1 M phosphoric acid (1:10:5 v/v) 
Impregnating compound: 0.3 M disodium hydrogen phosphate 
Detection reagents: 1) anisaldehyde-sulphuric acid reagent 

2) benzidine-sodium metaperiodate reagent 

0 
0.10 

.64 

Colors with 
anisaldehyde­
H2so4 reagent 

Dark blue 

Dark green 
Light blue 
Yellowish­
Dark blue 
Dark blue 
Grey 
Dark blue 
Brown 
Brm-m 
Light green 

Blue 
Dark blue 

**This unknown, since it has an Rg-value identical with, or similar to, the Rg-values for glucose, arabinose and 
sucrose, may actually present any one or a combination of these compounds. These compounds were separated and 
identified with the other systems (Appendix I) employed, although not separable or identifiable with the present 
system. 
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DISCUSSION 

The results from the high, intermediate and low light 

intensity experiments and from the nitrogen deficiency experiments 

shO\'ied, in general, somewhat similar patterns of carbohydrate production . 

Assuming that carbohydrate production is expressed as quantities 

produced per cell, a higher level of carbohydrate production was found 

in the early stages than in any of the other phases of growth, for 

each of the experiments. 

Nalewajko, Chowdhuri and Fogg (1963, cited in Watt, 1966), 

using the green alga, Chlorella pyrenoidosa; found that the percentage 

extracellular release1 in the culture medium increased with dilution 

of the population density. Fogg, Nalewajko and Watt (1965), examining 

water from a ·lake containi~g Oscillatoria agardhu, Fragilaria crotonensis 

and Tabellaria flocculosa var. asterionelloides as predominant species, 

found that when the water samples were diluted with membrane-filtered 

water from the same source, the percentage extracellular release 

increased upon dilution of the suspension. They suggested that there 

was a tendency to equilibrium between the extra- and intracellular 

concentrations of the metabolites concerned. A similar result \'las 

obtained by Watt (1966) upon the dilution of a natural phytoplankton 

population. Here, too, the percentage extracellular released showed a 

1samples were incubated with inorganic-c14, then.membrane-filtered. 
The organic matter in the fiUra~es \'/ere determ1ned and expressed 
as percentage of the total C f1xed (Watt, 1966). · 
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marked increase when the dilution was in excess of 90%. 

Fogg (1966) postulated two ·types of possible kinetic relation­

ships in the release of extracellular products of algae. Type I 

involved liberation of low molecular weight metabolic intermediates, 

such as glycollate, into the surrounding medium. Type II was concerned 

with the liberation of high molecular weight compounds, such as 

polysaccharides or polypeptides. Fogg (1966) suggested that, in the 

Type I situation, the extra- and intracellular concentration gradients 

of an intermediate must be maintained in an equilibrium during the 

active growth of the cells. In order to maintain such an equilibrium 

the quantity of the intermediate liberated would be a function of the 

volume of a well-stirred culture. It also follows that at very low 

algal popul~tion densities, the quantities of extracellular products 

liberated per cell per given volume of culture medium must be greater 

than those liberated in cultures of higher population density. 

In the writer's experiments, usually 10 ml of washed diatom 

inocula were transferred to 400 ml of fresh media to obtain the required 

starting cell populations. Therefore, the resultant dilutions were 

greater than 95% for each of the experiments. If the extracellular 

production of carbohydrates by the experimental diatom is in accord 

with the hypothesis of ·equilibrium, then increased carbohydrate 

production in the early stages of the experiments may have been the 
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result of dilution. Furthermore, the carbohydrates identified by 

TLC were low molecular weight compounds, presumably able to pass 

through the cytoplasmic membranes of the cells. 1 

Another possible explanation for the relatively high con­

centration of carbohydrate found in the early stages of the nitrogen 

deficiency experiments, where more dead ce11s were observed than in 

.the other experiments, may be the release of carbohydrates from the 

dead cells. Marker (1965), also observed a relatively high level of 

extracellular production of carbohydrates during the 11 lag 11 phase of 

growth of flagellates Isochrysis galbana and Prymnesium parvum. He 

suggested that the breaking up of the inoculum cells and the subsequent 

release of considerable quantities of organic matter into the culture 

medium might be the reason for high carbohydrate production at that 

phase of growth. 

In each of .the experiments, extracellular carbohydrate 

production did not increase with rapid cell multiplication during the 

exponential phase of growth, but increased only with the onset of the 

stationary phase. Assuming that the equilibrium bet1~een the extra­

and intracellular carbohydrates of the diatom is reached before the 

exponential phase of grO\o.Jth, then according to Fogg's (1966) Type I 

hypothesis, there will be no further increase in carbohydrate 

1stadelmann (1962), reviewing the permeability of algae, c~n~luded 
that some diatoms had surprisingly high rates for permeab1l1ty to 
sugars, such as glucose and sucrose. 
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concentration in the culture medium during the active growth of the 

cells. However, this · ~ypothesis only applies to the low molecular 

weight compounds. According to Fogg's (1966) Type II hypothesis, if 

the extracellular products were high molecular weight compounds, then 

the amounts 1 iberated 1'/0uld be proportional to cell growth. The 

results of other workers (Fogg, 1952; Allen, 1956; Jones, 1962),·support 

this hypothesis. On the other hand, Muscatine (1965), using the 

isolated symbiotic algae from the hydra, Chlorohydra viridissima, showed 

that the quantities of the extracellular products increased with time, 

although these products were not high molecular weight compounds, but 

rather low molecular weight compounds, primarily as maltose, with small 

amounts of glucose, glycolic acid, an unidentified oligosaccharide of 

glucose, and alanine. 

The diatom used in· the present study was thought to have 

mucilaginous capsular material (J. C. Lewin, 1958). Whether or not 

this capsular material was carbohydrate in nature and was released into 

the surrounding medium \'las not demonstrated in the present work. Some 

diatoms, such as the fresh water Navicula pelliculosa (J. C. Lewin, 

1955) and the marine littoral diatom, Amphipleura rutilan·s (Trentepohl) 

Cleve (R. A. Lewin, 1958), secrete extracellular mucilaginous capsules, 

which do not dissolve in the surrounding medium. 

Guillard and Wangersky (1958) found that extracellular 

carbohydrate production did not parallel the increase in cell numbers 
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during the exponential phase of growth in any of the marine and 

brackish ~later flagellate cultures used. 1 As the cultures entered the 

stationary phase of growth, the extracellular carbohydrate production 

began to increase. These authors refer in their discussion to the 

experiments of J. C. Lewin (1955) demonstrating that the diatom, 

Navicula pelliculosa, accumulated extracellular carbohydrates in the 

1 ight under conditions of nitrogen, phosphorus or silicon deficiency. 

Marker (1965} similarly observed that high concentrations of extra­

cellular carbohydt·ates were found only during the stationary phase of 

growth of his flagellate cultures. He suggested that most of the 

extracellular carbohydrate found resulted from cell autolysis. 

If mineral deficiencies and cell autolysis are the only factors 

responsible for the accumulation and therefore for the high concentration 

of carbohydrates observed, then extracellular carbohydrate production 

will be high during the stationary phase of growth where the nutrients 

are almost exhausted and cells begin to die. On the other hand, during ' . 

the exponential phase of growth, with adequate nutrients, extracellular 

carbohydrate production will not increas·e greatly during this period, 

although as Guillard and Hangersky (1958) pointed out, some cells die 

even under th~ most favorable circumstances, liberating minute quantities 

of organic material into the medium. 

1These belonged to the genera:Isochrysis, Monochrysis, Prymnesium, 
Dunaliella, Pyraminomonas, Rhodomonas, Chlamydomonas. 
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The pattern of carbohydrate production observed in the 

pres~nt ~10rk and in the stu~ies of Guillard and \~angersky (1958) and 

Marker (1965) is apparently not a universal one. Jones (1962), using 

the red alga, Porphyridium cruentum, found that the extracellular 

production of soluble polysaccharide was concomitant with cell growth. 

Muscatine (1965) found that the excretion of extracellular material, 

mostly maltose, by .the symbiotic algae increased with time. A similar 

pattern was reported by Fogg {1952) in the 1 iberation of carbohydrate 

material by the blue-green alga, Anabaena cylindrica. 

In the experiments involving light intensity variation with 

adequate nutrition, slight increases in carbohydrate productio1i were 

found as the light intensity was decreased. Similar results were 

found in the flagellate culture experiments of Marker (1965), v1here a 

decrease in light intensity reduced the level of .intracellular 

carbohydrate and increased the concentration of extracellular 

carbohydrate. Watt (1966) found that in a natural phytoplankton 

population, the percentage extracellular release increased as the light 

intensity decreased. The highest values were obtained in complete 

darkness. The lowest values were found within the range of optimum 

light intensities. However, at saturation light intensi~ies, a high 

percentage extracellular release was obtained. In ·the present 

experiments, both the high and intermediate light intensities
1 

resulted 

1According to Ryther (1956), diatoms required 1000 to 2000 f~-c for light 
saturation. Humphrey and Subba Rao (1967) found that. the d~atom, i 
Cylindrotheca closterium (Ehr.) Reimann & Lewin, r~qulred l~~ht saturnu~~ 
of 1000 ft-c or more. Maddux and Jones (1964), us1ng a con lnuous cu 

j . 
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in grm~th rates which appeared to be identical and which were 

greater than that found at the low light intensity. Because intra­

cellular carbohydrate v1as not measured in order to obtain intra­

cellular-e~tracellular carbohydrate ratios, it \'las not possible to 

determine, on the basis of extracellular carbohydrate production, the 

optimum light intensity. 

The increased carbohydrate production obse1·ved in the lovJ 

light intensity experiments agrees with the results of Marker (1965), 

except for the additional decrease of carbohydrate production observed 

in the stationary phase of growth. H01o.~ever, a similar decrease was 

observed by Guillard and Wangersky (1958) in their experiments with 

Isochrysis galbana. No explanation was given for this phenomenon. 

It is known that some species of algae are able to grow heterotrophically. 

Bristol-Roach (1928) measured the growth rates of a species of 

Scenedesmus in the 1 ight in a mineral medium, in the dark vlith added 

glucose, and in the light with added glucose. She found that under low 

1 ight intensity, best grm~th occurred in the 1 ight with added glucose 

cultures, somewhat less growth occurred in the l_ight in the purely 

mineral medium, while the least growth occurred in the dark with added 

glucose. This appeared to indicate that under low light intensity, the 

method to grow the diatom, Nitzschia 'cl~sterium (E~r.) ~m. ~mith ~now 
Cylindrotheca fusiformis, Reimann & Levnn var. fus1form1s) ~n a llght­
and-dark cycle, found that the maximum growth rate was obta1ned b,y 
increasing light intensity from 1883 to 3229 lux (175 to 300 f t-c). 
The experimental conditions and methods these workers used were so 
different from the present work that the writer was not able to use 

their information. 
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growth obtained was a function of both heterotrophic and autotropt.ic 

modes of nutrition. The decrease in carbohydrate production observed 

in the writer's low light intensity experiments is difficult to explain 

unless the possibility exists that there is an uptake of carbohydrate 

by the cells in order to maintain grO\~th under no-so-favorable 

conditions. 

In the nitrogen deficiency experiments, carbohydrate production 

was higher than in any of the other experiments .. Microscopic examination 

showed that most of the cells were not in a healthy condition. In fact, 

more dead cells were observed here than in any of the other experiments. 

Thus, the higher carbohydrate production observed may have been due to 

the death and autolysis of the cells. Marker (1965) obtained a similar 

result from nitrogen-deficient flagellate cultures. 

In addition to the possibility that higher carbohydrate 

production is due to cell autolysis, it may be also attributable to an 

alteration in metabolic pathways. J. C. Lewin .(1955) reported that the 

diatom, Navicula pe11iculosa produced a gelatinous capsule around the 

cell in culture media deficient ·in certain necessary elements. These 

capsules were found to be composed solely of glucuronic acid. As a 

resul_t of nitrogen deficiency the chief photosynthetic products of 

cells may change from protein to carbohydrate and then to lipid (Bongers, 

1956; Van Oorschot, 1955; both cited in Syrett, 1962). Considerable fat 

accumulation occ~rred from four to six days after the onset of nitrogen 

deficiency in Chlorella pyrenoidosa (Fogg a~d Collyer, 1953). In other 
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species of Chlorella, such as Chlorella vulgaris and Chlorella strain 
11A11

, fat accumulation did not begin until much later, and carbohydrate 

was a major photosynthetic product in cells deprived of nitrogen (Van 

Oorschot, 1955). In the latter case, large amounts of low molecular 
. 

weight carbohydrates, if accumulated in the cells, could diffuse into 

the medium according to Fogg's (1966) Type I hypothesis. 

Carbohydrate production in the present series of experiments 

was quite low as compared with the results obtained by other \'/Orkers. 

The identified carbohydrates: galactose, glucose, arabinose, xylose 

and galacturonic acid, were simple, 10\>J molecular weight compounds. 

Fogg (1952) found as much as 7 mg of carbohydrate material per 

liter of filtrate from Anabaena cylindrica cultures. This material was 

later identified by Bishop, Adams and Hughes (1954) as a homogeneous, 

complex polysaccharide consisting of glucose, xylose, glucuronic acid, 

galactose, rhamnose and ribose. 

R. A. Lewin (1956), using 18 species of green algae
1
, found 

that the amounts of extracellular polysaccharide produced ranged f:om 

3 to 113 mg per liter. In all the species but one, the polysaccharides 

consisted primarily of galactose and arabinose. In this. exceptional 

species, Chlamydomonas ulvaSnsis, glucose and xylose predominated. 

Minor compon~nts of the polysaccharides were fucose, rhamnose, mannose, 

1These belonged to the genera: Chlamydomonas, Chlorosarcina and 
Gloeocysti's. 
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uronic acids, and several unidentified compounds. 

The highest values for extracellular carbohydrates obtained 

by Guillard and Wangersky (1958) for a number of species of algae, 

including flagellates, dinoflagellates!, diatoms2, greens3 and a blue­

green4, ranged from 1.5 mg per liter for the diatom, Cyclotella sp., 

to 123 mg per liter for the flagellate, Prymnesium parvum. 

Marker (1965), using the flagellates, Prymnesium parvum and 

Isochrysis galbana confirmed Guillard and Wangersky's (1958) results, 

and found even higher concentrations of carbohydrate (over 200 mg per 

liter) in salinity-effect experiments with Isochrysis galbana during 

a 30-day incubation period. He also found that the polysaccharides 

released from the flagellates consisted mainly of glucose, galactose 

and arabinose, with small quantities of xylose and ribose. 

Moore and Tischer (1964), using eight species of green and 

blue-green algae5,found that the amounts of extracellular polysaccharides· 

lThese belonger to the genera: Amphidinium, Gymnodinium. 

2These belonged to the genera: Cyclotella, Nitzschia, Melosira, Actinocyclus. 

3These belonged to the genera: Chlorella, Chlorococcum . . 

4This belonged to the genus Synechococcus. 

5These belonged to the genera: Chlamydomonas, Chlorella, Palmella, 
Oocystis, Nostoc and Anabaena. 
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produced ranged from 174 to 557 mg per liter. The polysaccharides 

of each of the species, except Anabaena flos-aguae appeared to be 

composed of four monosaccharides: a hexose, a pentose, a methylpentose 

and a uronic acid. Anabaena flos-aquae lacked the methylpentose component. 

Hy~rolysates of the polysaccharides contained glucose, galactose, 

arabinose, xylose, ribose, fucose, rhamnose, and glucuronic acid. 

Muscatine (1965) found that as much as 85.5% of total c14 

fixed by the symbiotic algae from Chlorohydra viridissima was released 

into the medium mainly in the form of maltose, but with small amounts 

of glucose, glycolic acid, an unidentified ol_igosaccharide of. glucose, 

and alanine. 

Hellebust (1965), investigating organic compounds excreted by 

a number of species of phytoplanktonl, detected mannitol, arabinose and 

. glucose on chromatograms from the neutral fraction of electrodialyzed 

culture medium of some of the species. 

It can thus be seen that the quantities of extracellular 

carbohydrate produced by algae vary considerably. These variations may 

well be due to the species of a.lgae used, the culture conditions employed, 

the analytical methods employed, and the manner in which the results are 

expressed. These factors will differ from worker to worker. 

1These belonged to the following_ groups: Chrysophyta (including 
Chrysophyceae and . Baci llari ophyceae), Pyrrophyta, Chlorophyta and 
Cyanophyta. 

.\ 
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In the literature, high values for extracellular carbohydrate 

production wer_e usually obtained when dissolved polysaccharides were 

liberated. Low values, however, were obtained in the writer 1s experiments. 

Although in the writer 1S experiments, dissolved polysaccharides were not 

isolated, as by co-precipitation, the possibility still existed that 

such materials may have been present. If this was the case, then the 

polysaccharides were present in soluble form in only very small amounts, 

thus giving low values for total carbohydrate production. Continuing 

this line of reasoning, then spots U1 and u2 on the chromatograms may 

mve been the polysaccharides because of their low Rg-values. There is 

also the possibility that since dissolved polysaccharides from the 

experimental diatoms were not at all isolated by the procedures employed, 

only small quantities of simple, low molecular weight carbohydrates were 

isolated. 

It is of interest to consider the possible origin of the 

extracellular carbohydrates reported by other workers. Bishop, Adams 

and Hughes (1954), investigating an extracellular polysaccharide from 

the blue-green alga, Anabaen4 cylindrica, found that this material had 

the same chemical composition as· the cellular material . Jones (1962), 

using the red alga, Porphyridium cruentum, found that this organism 

extreted an _acidic polysaccharide-protein complex which appeared to be 

similar to the cell material. Marker (1965) found that the extracellular 

carbohydrates from flage 11 ate cultures a_ppeared to have the same 

composition as the intracellular carbohydrates. 

~ i 
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Parson, Stephens and Strickland (1961), examining the 

members of a number of groups of marine phytoplankton1, found that . 

these had very similar intracellular compositions when gr01vn under 

similar physical and chemical conditions; regardless of the .size of 

the organisms, or the groups to which they belonged. The intracellular 

carbohydrates of all the diatoms2 examined inc.luded glucose, galactose, 

mannose, ribose, xylose, rhamnose, fucose and hexouronic acids. 

According to Fogg's (1966) Type I hypothesis, these low m~lecular 

weight carbohydrates should diffuse into the surrounding medium. "The 

possible significance of this is that some of these compounds may then, 

through the mediation of extracellular enzymes, undergo polymerization 

to become extracellular polysaccharides. Although e~tracellular algal 

enzymes have been identified (Miller, ·1959), no data has been found 

on any such enzyme involved in the formation of extracellular 

polysaccharides. 

Finally; it is worth discussing briefly, some of the data 

available on the occurrence of carbohydrates or carbohydrate-like 

materials3 in natural waters. Vallentyne and Bidwell (1956) found that 

the total free sugars in a lake mud ranged from 24 to 72.5 mg per .kg 

dry weight of ethanol-insoluble sediment. These were glucose, galactose, 

1These belonged to the following. ~roup~: Chlorophyta, Chrysophyta 
(including ·chrysophyceae and Bac1llar1ophyceae), Pyrrophyta and Cyanophyta . 

2These .belonged to the genera: Chaetoteros; ·skeletonema, Coscinodiscus, 
Phaeodactylum. 

3rhose substances giving reactions with the reagen~s~ ~uch as an~h~o~~ tes 
or N-ethyl carbazole, commonly used in the ~eterm1natlon . .o_f· ca~ 0 Yd a 
both in natural water and in cultures (Coll1er, 1953; Ze1n-Eld1n an 
May, 1958). 
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arabinose, xylose, and. ribose. Vallentyne and l~hittake1• (1956) 

found only trace amounts o'f sucrose and glucose in filtered lake water. 

Wangersky (1952) found a ::;ubstance giving some indications of being a 

rhamnoside in concentrations up to 100 mg per liter in the Gulf of 

Mexico. Lewis and Rakestraw (1955), examining water samples from The 

Scripps Institute of Oceanography pier and from the kelp beds off La 

Jolla, California, found carbohydrates in concentrations ranging from 

0.16 to 0.45 mg per liter. Water samples. from coastal lagoons of the 

San Diego area gave concentrations of from 0.3 mg per liter (Encinas) 

to 7.9 mg per liter (Del Mar). Collier (1958) reported that the 

carbohydrate concentrations over the continental shelf of the Gulf of 

Mexico ranged from 0.0 to 3 mg per liter. During a 11red tide
11 

period, 

concentrations varied from 0.0 to 19.4 mg per liter. Collier (1958) 

indicated that the highest concentrations of carbohydrates were found 

in the rivers, tidal streams, and marshes bordering the estuaries. 

Con~entrations generally decreased seaward. He also suggested that 

carbohydrates and other organic materials released by plankton blooms 

might serve as substrates for marine bacteria, which in turn could 

supply the plankton with growth factors such as B12· Wangersky {1959), 

analyzing the dissolved carbohydrates in Long Island Sound through an 

entire plankton cycle, found that there was no carbohydrate in the 

\'later during the spring diatom bloom, but found between 0.5 to 1.5 mg 

per liter toward the end of a July dinoflagellate bloom. Walsh {1965a), . . 
investigating dissolved carbohydrates in Cape Cod waters, showed that 

the highest values ranging from 1.16 to 3.17 mg per liter were found 
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in the highly producti~e estuaries. Other waters had values ranging 

from 0.4 to 1.0 mg per liter. He suggested that the phytoplankton 

played an important role in the regulation of carbohydrate concentrations 

in natural waters. Walsh (1965b), investigating the diurnal fluctuations 

of dissolved carbohydrate in Oyster Pond, Cape Cod, found that this was 

most marked at the two meter depth, where it \'/as highest at noon (3.54 

mg per liter), and lowest in th~ morning (1 .42 to 1.57 mg per liter) . 

He suggested that carbohydrate Nas produced by algae in t he day time, 

during photosynthesis, and used by them at night as a readily available 

source of energy for respiration. Walsh (1966) also found, in exami ning 

two Cape Cod ponds, that the greater carbohydrate concentrations were 

found in the pond having the higher productivity. Donnelly and Burkle\</ 

(1966), observing carbohydrate distribution during a 
11

red tide
11 

in 

Apalachee Bay, Florida, reported values of 0.1 to 5.3 mg per liter, 

depending on area and depth. Walsh and Douglass (1966}, investigating 

the relationship between the ~ertical distribution of dissolved 

carbohydrate and oxygen saturation in the Sargasso Sea off Bermuda, 

found that the highest value (0.75 mg per liter) was obtained at the 

75-meter depth \'Jhere the oxygen saturation was over 120%. They suggested 

that the overproduction of phytoplankton was a source of dissolved 

carbohydrate in the Sargasso Sea . 

Although the carbohydrate concentration of nat ural waters 

varies in time, and from .one body of water to another , it should be 

remembered that different analytical procedures used in determination 

e.. rp~tj $2 
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can give varying •'esults. Although the concentration of carbohydrates 

in the natural waters may be low, its rate of turn-over may be 

sufficiently high to be of considerable ecological importance (Fogg, 

1962). 
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APPENDIX I 
~::; 
(-~ . 

r~ 
:( 

TABLE V · ~ r~ 

TLC data obtained with carbohydrate standards and unknovms ~a 
using a number of systems 

":{ 
~~ 
r.~ I . 

. !:~ 
· ·~ 

Chromatographic Systems* ' l 

STANDARDS 
·;~ 
~ 

' !. 

1 2 . 3 4 5 6 7 
··~ 

.- l 
I 

·! 
:j 

Glucose 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
~ 
'l 

Rhamnose 7.73 2.86 3.24 3.70 5.00 3.12 0.92 
·1 
~: 

Xylose 3.45 2.10 2.16 2.12 2.93 1.81 1.25 ' . 
Ribose 3.00 1. 74 2.12 2.00 3.14 1.58 0.85 1 
Fructose 1.64 1.00 1.45 1.17 2.00 1.22 

,:J 
~ 

Fucose 3.18 2.08 1. 90 1.85 3.21 2.00 'l 

Arabinose 1.36 1.37 1.31 2.12 2.07 1.53 1.00 
:l 
i.l 

Galactose 0.64 0.80 0.65 0.75 1.29 0.88 0.84 1 
Lyxose 4.27 1.50 1.61 1.50 3.00 0.80 :j 

Mannose 1.64 1.37 1.30 1.44 1.86 1.27 1.30 :l 

Sucrose 0 0 0 0.19 ' 1.07 ' 
,J 

Raffinose 0 0 0 0 0.43 'l 

Galacturonic ·acid 0.27 1 
Mannuronic acid 0.80 l 

Ribitol 
0.78 1 
0.60 

!1 

Mannitol 
:! 

Erythritol 
6.79 ! 0.55 

Sorbitol 

Identified 
Compounds 

Galactose 0.59 0.63 0.60 1.27 

Glucose 1.00 1.05 1.00 

Xylose 3.57 2.10 2.16 1.81 

Arabinose 1.40 2.05 1. 52 

Galacturonic acid 
0.27 

Tentatively 
Identified 
Compounds 

Sucrose, 
0 0 0 0. 10 

Raffinose 
Arabinose, 

1.46 1.30 
Fructose 

Xylose, 2.94 
Lyxose 

IlliG J td ' er=r L a 
0 • • • " •'- •o0 o • A·- • "' .,,, '••• •· .·.-.:• • .-;... .............. u .... ~---· 



•. 

-76-

TABLE V (continued) 

Tentatively 
Identified 
Comeounds 1 2 3 4 5 6 7 

Galactose, 0.88 
Glucose 
Fructose 

Xylose, 
Arabinose 2.10 

Glucose, 
Sucrose 1.00 

Glucose, 
Galactose 1.00 

Unidentified 
Compounds 

** 0 0 
** 0.13 
** 3.50 

*System 1: Solvent: n-butanol-acetone-1~ater (4:5:1 v/v) 
Impregnating Compound: 0.3 M disodium hydrogel) phosphate 
Detection Reagent: anisaldehyde-sulphuric acid reagent 

System 2: Solvent: n-butanol-pyridine-water (8:4:3 v/v) 
Impregnating Compound: 0.3 t~ disodium hydrogen phosphate 
Detection Reagent: anisaldehyde-sulphuric add re.agent 

System 3: Solvent: n-butanol-acetone-water (4:5:1 v/v) 
Impregnating Compound: 0.3 M sodium dihydrogen phosphate 
Detection Reagent: anisaldehyde-sulphuric acid reagent 

System 4: Solvent: n-butanol-pyridine-~Jater (8:4:3 v/v) 
Impregnating Compound: 0.3 M sodium dihydrogen phosphate 
Detection Reagent: anisaldehyde-sulphuric acid reagent 

System 5: Solvent: n-butanol-ethanol-0.1 M phosphoric acid (1:10 :5 v/v) 
Impregnating Compound: 0.3 M sodium dihydrogen phosphate 
Detection Reagent: 1) anisaldehyde-sulphuric acid reagent 

2) benzidine-sodium metaperiodate reagent 
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TABLE V (continued) 

System 6: Solvent: ethyl acetate: acetic acid: water (6:3:2 v/v) 
Impreg~ating Compound: 0.3M sodium dihydrogen phosphate 
Detect1on reagent: anisaldehyde-sulphuric acid reagent 

System 7: Solvent: methyl ethyl ketone-acetic acid-methanol (6:2:2 v/v) 
Impregnating Compound: none 
Detection r.eagent: 1) anisaldehyde-sulphuric acid reagent 

2) concentrated sulphuric acid reagent 

**These unidentified compounds may possibly be U1, U2 and U3 . The 
first spot {Rg-value, 0) showed a dark blue color with anisaldehyde­
sulphuric acid reagei1t as found in U1. The second spot (Rg-value, 0.13) 
was larger in size than any other spots employed and therefore resembled 
the behavior of U2. The third spot (Rg-value, 3.50) had the highest 
value of the unidentified compounds for the particular solvent system 
employed and therefore resembled the behavior of U3. 
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FIGURE 6 

A. standard glucose curve for the determination 

of total carbohydrate by the anthrone procedure. 
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APPENDIX II 
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