CENTRE FOR NEWFOUNDILAND STUDIES
e e e LU B R

TOTAL OF 10 PAGES ONLY

MAY BE XEROXED

(Without Author's Permission)

Delay, Fairness and Complexity of Selected
Scheduling Disciplines in Broadband Packet-

Switched Networks

© Padmini Vellore

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science
Memorial University
May 2003

St. Johns Newfoundland and Labrador

Canada

Abstract

The explosion in the size of communication networks as well as the need for
integration of voice, video and data have pioneered a need for fast packet switching. The
economical implementation of fast packet switching has become a reality with the recent
advances in VLSI technology. This has introduced opportunities for new applications like
video conferencing, that demand severe performance requirements in terms of allocated
bandwidth, delay, delay jitter, and loss rate. Packet scheduling is an effort to reduce
delay, delay-jitter and losses thereby providing Quality of Service to such delay- and loss-
sensitive applications.

The upshot of this research will influence the resolution of a most appropriate
method of providing guaranteed but paid service to users of real-time applications like
video conferencing, unlike the Internet, which is designed to provide best-effort service.
Various packet-scheduling algorithms have been studied. Among the several existing
packet-scheduling algorithms, Weighted Fair Queueing (WFQ) and Worst-case Fair
Weighted Fair Queueing Plus (WF2Q+) are selected in this thesis for comparison based
on their delay properties. The performance is investigated for both fixed-sized packets
and variable-sized packets. It has been found that WF’Q+ is fair and introduces lower
delay than WFQ. Due to the lower hardware as well as time complexity, WF?Q+ can be
considered as a prospective algorithm for use in high-speed packet-switched networks.
The performance is studied on a network with and without the presence of cross-traffic

for various traffic loads. Simulation results and hardware realization are discussed. A

brief canvassing on where these results lead us follows the conclusion. A proposal for

future improvements is also presented.

ii

Acknowledgements

I express my sincere thanks to my supervisor Dr. R. Venkatesan for his
continuous encouragement, full-fledged guidance, intellectual assistance, useful
suggestions and financial support during the course of my research. I thank Dr. R.
Venkatesan, Dr. T. Norvell, Dr. P. Gillard and Dr. H. Heys for the wonderful teaching
offered by them when I was doing my course work, which in turn significantly helped in
my research.

I thank Dr. C. Jablonski, Dean of Graduate Studies, for the financial support
endowed on me during my stay in Memorial. I also thank the Associate Dean of Graduate
Studies, and I would like to acknowledge Ms. M. Crocker, Office of the Associate Dean,
for doing a yeoman’s service in guiding all my concerns from commencement to
completion of my work at Memorial University.

I thank the members of CCAE for the computing services provided by them
during my study. I also thank Mr. N. White, System Administrator, Department of
Computer Science, for his help with gaining access to Synopsys tools provided by CMC.

I thank my friends at CERL for their encouragement and support throughout my
programme. Especially, I thank Prof. C. Li for spending his suggestions and criticisms
and also for the invaluable discussions. I also thank R. Shahidi, the Lab Manager of
CERL, for his uninterrupted help in making a comfortable environment to work and also

solving frequent computing concems.

1ii

Table of Contents

Abstract i
Acknowledgements iii
Table of Contents iv
List of Figures viii
Chapter 1 1
1. Introduction 1
LT T3NS O T 0RO TOTMIEN etk 508 55545 383 S S35 S 0 1
1.2 Tnteptated SerVIDES IBTNOTE sumenmneeis ssusinunes o sa s m s A 2
1.3 CORRRTIETH B BT 5005550250505 A505 A5535545 85505 SRS 5 5 G 3
B S RBINE E IRIER, . oo 85 R 55 53 AR R S R R B
1.5 Praperies of et g T 0 U DS o mssss govsssioims asinaimotisaimrainsinssiissmmsssins 5
1.6 MG VEUION BOX THAS TR O BT 5550ma0m505mc080357580855 0005805 580 A AR S KB A RSB 0
1.7 Organization of the ThesiSccewveuereeieencininieineeisttere et 7
Chapter 2 9
2. Scheduling Disciplines 9
2.1 INErOGUCTION ... iiitis et tse e st e e s b s s e s s sa e e bbb s s e s bae s e e et e s sessesaeennas 9
2.2 Work-conserving and Non-work-conserving Scheduling Disciplines.........c.cccceuenne 10
2.3 Rate Cornitrolled Scrviee DISCIPHIES .o mmunmsmminommsn o somis s pasmnsssissisiixsesssss 12
2 R IR encesns s s s S S R S R B e A 14
2.3.1.1 Delay-jitter Controlled Regulators........ccoeveericrmiciennessnnnnienicesnsnesscnisenns 15
2.3.1.2 Rate-jitter Controlled ReGUIAtOrSccoerrerineeeientrerecieseeeenieeessesesnesesses 16

v

0 G 2T 1 .) - OO SO SO, 7

24 Discussian of Seheduling IRSCIRIINER ...cxmussmummenons somassssmmusnmsssssionss s semisssramss 18
2.5 Consladhng REMIATKS .ccmcsuvmimmmsmasss s asonsmismnssssmmsmsistssms smisosemist s s 23
Chapter 3 24
3. WFQ and WF?Q Scheduling Disciplines 24
el TR I . st . s i s R 3 YRS AN B 24
B2, T) I RERION oo monsssoonswoassmsmamsss e 3 A A K R AR NN S RSB 25
3.2.1 Weiphted Fair ONEHETRE WD <o sassns sssnss s s iass s s anssinsssians5is obassasss 26
3.2.2 Worst-case Fair Weighted Fair Queueing (WFzQ): .. 27

DD PRATTREIIB i mimnssress sxcommsmsss. o e e A SR 8 SRS Al AR AR S R AR S AR RARToR 29
3.5.1 Systemh Vitiial, Tome FUICTIEIN «....aim.smsmmiscssm s s s s assiinnnssihiindi siasdiads 30
3.3.2 Packel SeleotOnN. POlIOy oo vemreinsanmmemsastss st ennssmsn et st e pme st 31
3.3.3 Implementation COmMPIEXILY .cc.ccvrerirriereeririsiesrisiicrrintissreseessessesssessessessnsnens 52
Sl INPETIERERP = uxmo0uis0mmes s imestsss om0 A N 8 R SR T YRS KNP o RS A 33
3.3.5 End-to-end Delay and Buffer Space Requirements.........ccceceivivncncncnseesivnenne 36
3.3.6 Tiathié Chatneteriralion .o ssrsemrsmssasersmsrnom s sy 37

B M B S o B 80 S ——— 37
3.5 Concluding REMATKS.......ccviuveneeriiiireesiessiescsesistaesessesssesssssessssessensssssessessaerassssssnnes 40
Chapter 4 41
4. Software Implementation 41
1. TR E MR GO 0 msensmsss ot st MO NGRS 41
4.2 NetWork MOdE]cocoiiiiiiiiiinit ettt a s 41
8 Trale MOICT oo v e e R R T RS 42

44 Packer TENtE: TN ISIRTHIION «cunwomn s nnasinmnioon it s G5 865 85885 853 A S 5SS AR G 46

%3 InvilemeniaBin wpamnmmusaromms sammsamn s e 48
4,5.1 TraffiC GeNETALOL.everereerreriennecerereesseceaesrasaee e essessr e s tsenessasennesstasseenaenrssasansas 48
452 Tripin BliEr commemmomsassomssmmmm o s s s arssyomses 50
4.5 VTR STIESBIOTE LRI 505w O A AR G RSN ARRARR RN i
R T S UGS S— 52
4.5.5 SChEAUILT........ccicriieieiiniiinsercscsissensesssnisensssssssasssssnesersosssosansssssssrassssssessarsans 53
2310 Bk BIAIGRRT o ivmtssmin s s Vs W S P N I R VX QS VE 54
5.7 Contindl, LiniE o ammomm s msme o i ms s SSam s KR R AT G 59

4.6 Simulation RESUILSoouiiiiie et e 59

AT U SEENTRBINDNE st M N 5 T R A S A SO S S M S 81

Chapter 5 83
5. Hardware Implementation 83

L RS U U —— 83

5.2 Hardware Implementation..........ceccceeriinieieseciueneeireaesseessssansese s sesassnesosessonssssuenes 83
2.1 Bl B s asseon o it i S R R iR 85
D2 TN TTNE TN TV oryons o ssmes s 0 AR R A N A3 RO AR OB AT 86
523 T O], DN NN sk s oo R N A AT BB K S RSO 87
L IR T ORI . i miosiim5 05550 AR5 R85 5 AR 88
D2 D B AR IE TIOR3 S 88
3218 RETUIAOToovunsnnnssmmunsmsnsepusssiioimmunasinsnmsanmsbusdinmansssnsbontssanasbuysssassmassnanssanssian 89
5.2.7 Delay UNit....cccecirienririenieesiertsiesseerisnesstessssasssesesssesseesnasessessasssensesssssessesassseneens 90
<20 TR, N T TROIIIMIETS v v vt oS855 A S R85 A S B AR MRS ROA NSRS 92

vi

o B, THSTol 1171 1 (=) U SOOI 92

52210 Setver and DISPAteh BETEE ... cmssmnnsssmomsmsssimmsas s o s 94

TN U 1 U P SO U S ———— 96
5.4 DISCUSSION ..cuierririssiiesiecstessresteeestesatessesrsa st s s rse s st asss e s ss s sa e s s b e b e saseesbansseasanseres 106

6. Conclusions and Suggested Future Work 108
oI5 T 1 ST ———— 108
6.2 ORI COTIETTIRIRTONINE 0050005500055 50853055 1 A5 RA SHA KA R S S B 5 SRS 109
6.3 SngEesied FHmEE WOLK... ... coccinumnissamictiniuiaisi s mamiiatinisiesinsisimaminmmsnsn 110
References 114
Appendix A 118
Software Simulation Results 118
Appendix B 126
Software Simulation Results — Contd. 126
Appendix C 134
Software Simulation Results — Contd. 134
Appendix D 142
Software Simulation Results — Contd. 142
Appendix E 150
Hardware Simulation Results 150

vii

List of Figures

Fiome 1) Block eostaih G GatiiEll wu s noommaes o syrsy s snssons e semmmpsionars s -
Figure 2.1 Traffic pattern distortions due to load fluctuationscocvvvenininnnen. 11
Figure 2.2 Rate-Cofitiolled Setvice DIBSTIIHEvvismmmannsne rsi o smsinasavs svvmomanss cniass 13
Figure 3.18 Packet 25Val PRESI < -« « ; cospusncsssummunin s ox » b sapusmmpsns ssa 5 smamss s 131 1 msmagan 25
Flotie 3,10 GFB. SEFMEEOTTET ..o « « cibsFind s 660000858 55 57 5 AAB DA SRS BRI 174 55855 26
Figme Sl WEL: SoPBEI0MIEE o immustsrs s @auswsoms § § g o mopgavens g as 27
Figure 3.1d WFQQ EEEIEE IR aonsss 1 3 Somnn e soMESRON 15 115 SREIERRY R3S L AENEE § § 1§ FRERSE 28
Figure 4.1 Network modelo.ooiiiiiiiiiiiiiiiiii e 42

Figure 4.2 Inter-arrival time probability density function for PS 21-40 with
WEAEE BT s 1 & 5w s x smmmonssyn e o ymaomanns o SOSBNEOR £ 5 VB S RN 0 ST S R MRS 44

Figure 4.3 Inter-arrival time probability density function for PS 1-20 with

OO NI RUEU P 45
Figure 4.4a2 Cumulative distribution of packet sizes S ——— 46
Fipmme 4.4 Packel lenpth GIRiriBuliBm o o sxemmssssnsmommins 14 s 4 v ssomonssssssssampmms s 1 g 47
Figure 4.5 Block diagram of the scheduling simulator (software implementation) 49
Figute 4.6 Flowchart of conftrol Bnit cossssssvommmensons s s s sussmamaxave sem TS €18 508 57-58

Figure 4.7a End-to-end delay of WFQ scheduler for fixed-sized packets without cross-
traffic with least best-effort traffic and an output link rate of 50 bytes/ms 62
Figure 4.7b End-to-end delay of WF’Q+ scheduler for fixed-sized packets without cross-

traffic with least best-effort traffic and an output link rate of 50 bytes/ms 62

viii

Figure 4.82 End-to-end delay of WFQ scheduler for fixed-sized packets without cross-
traffic with least best-effort traffic and an output link rate of 100 bytes/ms 63
Figure 4.8b End-to-end delay of WEF°Q+ scheduler for fixed-sized packets without cross-
traffic with least best-effort traffic and an output link rate of 100 bytes/ms63
Figure 4.9a End-to-end delay of WFQ scheduler for fixed-sized packets without cross-
traffic with least best-effort traffic and an output link rate of 150 bytes/ms 63
Figure 4.9b End-to-end delay of WF°Q+ scheduler for fixed-sized packets without cross-
traffic with least best-effort traffic and an output link rate of 150 bytes/ms63
Figure 4.10a End-to-end delay of WFQ scheduler for fixed-sized packets without cross-
traffic with maximum best-effort traffic and an output link rate of 50 bytes/ms64
Figure 4.10b End-to-end delay of WF’Q+ scheduler for fixed-sized packets without
cross-traffic with maximum best-effort traffic and an output link rate of
SO BFEEIIES . 5 : s sommmscesnesanems i § 555 SRRRERAS S RRRRSEATRELS 5 §& 5 SHITRGA AR SRAIPAE5 5 515 RERRA RS 64
Figure 4.11a End-to-end delay of WFQ scheduler for fixed-sized packets without cross-
traffic with maximum best-effort traffic and an output link rate of
I il o o mmaapassnssnammmin i s s RrERRPR SRR 13§ €) ISR ERERRDY § 528 2 WA s 65
Figure 4.11b End-to-end delay of WE’Q+ scheduler for fixed-sized packets without
cross-traffic with maximum best-effort traffic and an output link rate of
TN TN NN st . o OIS o s o TG BB 65
Figure 4.12a End-to-end delay of WFQ scheduler for fixed-sized packets without cross-
traffic with maximum best-effort traffic and an output link rate of

150 DY IS/ TN st ieee et e e et et e e e e et et n e a e e aan e eneann 65

ix

Figure 4.12b End-to-end delay of WF*Q+ scheduler for fixed-sized packets without
cross-traffic with maximum best-effort traffic and an output link rate of
1S ENREEIIIR,. om0 smmmis 1 535 SOREEREE R 35555666 SRREERGSS 5 RERSEE 45 S HEEREAR S 65
Figure 4.13a End-to-end delay of WFQ scheduler for fixed-sized packets with cross-
traffic with least best-effort traffic and an output link rate of 50 bytes/ms 67
Figure 4.13b End-to-end delay of WF?Q+ scheduler for fixed-sized packets with cross-
traffic with least best-effort traffic and an output link rate of 50 bytes/ms 67
Figure 4.14a End-to-end delay of WFQ scheduler for fixed-sized packets with cross-
traffic with least best-effort traffic and an output link rate of 100 bytes/ms68
Figure 4.14b End-to-end delay of WEF?Q+ scheduler for fixed-sized packets with cross-
traffic with least best-effort traffic and an output link rate of 100 bytes/ms68
Figure 4.15a End-to-end delay of WFQ scheduler for fixed-sized packets with cross-
traffic with least best-effort traffic and an output link rate of 150 bytes/ms68
Figure 4.15b End-to-end delay of WF’Q+ scheduler for fixed-sized packets with cross-
traffic with least best-effort traffic and an output link rate of 150 bytes/ms68
Figure 4.16a End-to-end delay of WFQ scheduler for fixed-sized packets with cross-

traffic with maximum best-effort traffic and an output link rate of

Figure 4.16b End-to-end delay of WFQ+ scheduler for fixed-sized packets with cross-

traffic with maximum best-effort traffic and an output link rate of

Figure 4.17a End-to-end delay of WFQ scheduler for fixed-sized packets with cross-
traffic with maximum best-effort traffic and an output link rate of
100 BYIES/INS v e BaivCsensson iy 70
Figure 4.17b End-to-end delay of WF*Q+ scheduler for fixed-sized packets with cross-
traffic with maximum best-effort traffic and an output link rate of
LMY BEHEERIERS. sscomssinsonmnssmusrsss 13 o6 whuman i SHEsESEar 0344 § § PP EBNEIRS A 353 5 rere 70
Figure 4.18a End-to-end delay of WFQ scheduler for fixed-sized packets with cross-
traffic with maximum best-effort traffic and an output link rate of
RO TATEERINT « 55 5 scammsition s #omaseo ¥ i S s DRI ¥ Y NIRRRICRAR 444 SIS § 5 S R 70
Figure 4.18a End-to-end delay of WF’Q+ scheduler for fixed-sized packets with cross-
traffic with maximum best-effort traffic and an output link rate of
LD PRI ; oo s 2. 0 0 A S PR £ MR s S SR o T R R A PR s i 70
Figure 4.19a End-to-end delay of WFQ scheduler for variable-sized packets without
cross-traffic with least best-effort traffic and an output link rate of 44 bytes/ms ...71
Figure 4.19b End-to-end delay of WF’Q+ scheduler for variable-sized packets without
cross-traffic with least best-effort traffic and an output link rate of 44 bytes/ms ...71
Figure 4.20a End-to-end delay of WFQ scheduler for variable-sized packets without
cross-traffic with least best-effort traffic and an output link rate of 320 bytes/ms ..72
Figure 4.20b End-to-end delay of WF?Q+ scheduler for variable-sized packets without
cross-traffic with least best-effort traffic and an output link rate of 320 bytes/ms ..72
Figure 4.21a End-to-end delay of WFQ scheduler for variable-sized packets without
cross-traffic with least best-effort traffic and an output link rate of

R BRIESIS womme s s onmmine : 54 SUBERRS LSS A € § ARG SRR £ 144 5 B J12

xi

Figure 4.21b End-to-end delay of WFQ+ scheduler for variable-sized packets without

cross-traffic with least best-effort traffic and an output link rate of

N DOEERIINRIN ;o o0 pummmmns v mmsmncs § 5 EaEARAR A b EKERR SFFEEHAO RS AR S ERRER S 5§ PG 12
Figure 4.22a End-to-end delay of WFQ scheduler for variable-sized packets without

cross-traffic with maximum best-effort traffic and an ocutput link rate of

B DIERIRIE easincnnsrsBoin o5 EanRins os 1RREERARZS 255 B SRR AT S S0 45 5 FERRERSAT ERS 74
Figure 4.22b End-to-end delay of WF’Q+ scheduler for variable-sized packets without

cross-traffic with maximum best-effort traffic and an output link rate of

QY] TR o mncvsrin o 75 S O R oSk A & 55 § 5 3 NS DR B AR TRAS RA 5AK 74
Figure 4.23a End-to-end delay of WFQ scheduler for variable-sized packets without

cross-traffic with maximum best-effort traffic and an output link rate of

IV IPPUTRITTRR . cnomicostsesiimssine & 5o oo 55 A0 558 5 Ay 95 & SRR 5
Figure 4.23b End-to-end delay of WEF?Q+ scheduler for variable-sized packets without

cross-traffic with maximum best-effort traffic and an output link rate of

T2 BYIERIITE . uanwoms smsnmsammnns ¥ 5 55 KRRRARSTASEAMERANKSLS £ & § LS BESORRSASFRHEA LS b 5N SRS AR 75
Figure 4.24a End-to-end delay of WFQ scheduler for variable-sized packets without

cross-traffic with maximum best-effort traffic and an output link rate of

1SN BRI commmmminsnssssmiiade 565 SORRLSHS 5 EA SRR P8 55 5 AR SRR A SN 57,55 ST s
Figure 4.24b End-to-end delay of WF?Q+ scheduler for variable-sized packets without

cross-traffic with maximum best-effort traffic and an output link rate of

1500 DYLES/MIS L. vitiniieee ettt e e et e e e e e i
Figure 4.25a End-to-end delay of WFQ scheduler for variable-sized packets with cross-

traffic with least best-effort traffic and an output link rate of 44 bytes/ms 76

X1

Figure 4.25b End-to-end delay of WF’Q+ scheduler for variable-sized packets with
cross-traffic with least best-effort traffic and an output link rate of 44 bytes/ms76
Figure 4.26a End-to-end delay of WFQ scheduler for variable-sized packets with cross-
traffic with least best-effort traffic and an output link rate of 320 bytes/ms77
Figure 4.26b End-to-end delay of WEF’Q+ scheduler for variable-sized packets with
cross-traffic with least best-effort traffic and an output link rate of 320 bytes/ms ..77
Figure 4.27a End-to-end delay of WFQ scheduler for variable-sized packets with cross-
traffic with least best-effort traffic and an output link rate of 1500 bytes/ms 7
Figure 4.27b End-to-end delay of WF°Q+ scheduler for variable-sized packets with
cross-traffic with least best-effort traffic and an output link rate of
ISR ¢ rovemonsesmmommmes & 5 EEopEII AR V8 5 TSRS RRRENE 1 § S FAEE 77
Figure 4.28a End-to-end delay of WFQ scheduler for variable-sized packets with cross-
traffic with maximum best-effort traffic and an output link rate of
PR UITCHNINED: cmorss 1 1 1y s AN £3% SO S ENDRIS £33 NS IR R4 45 S T 78
Figure 4.28b End-to-end delay of WF°Q+ scheduler for variable-sized packets with
cross-traffic with maximum best-effort traffic and an output link rate of
L TTRTREE. wosunotsmun v msesmmues Winncos a6 5008 0 X R ORI RS 145 SR SRS 2 58 78
Figure 4.29a End-to-end delay of WFQ scheduler for variable-sized packets with cross-
traffic with maximum best-effort traffic and an output link rate of
S0 TACRUNTE » consiors s o s SR o0 S NS B S AT 45 0 R 3 O S S 80 78
Figure 4.29b End-to-end delay of VVFZQ+ scheduler for variable-sized packets with
cross-traffic with maximum best-effort traffic and an output link rate of

BN : : ; ot o s 5 7 S5 e 400 5B S G RS 78

Xiii

Figure 4.30a End-to-end delay of WFQ scheduler for variable-sized packets with cross-
traffic with maximum best-effort traffic and an output link rate of
1500 DYIES/INS 1.ttt ee et et eie e et e aan e 79
Figure 4.30b End-to-end delay of WF’Q+ scheduler for variable-sized packets with

cross-traffic with maximum best-effort traffic and an output link rate of

LU BRtEElm oones s sonmmm sonounmenas « 195 SUaRERERE 8 o5 OEERRRERR 45 S SRREERE 333 S EOPRREAS S 79
Figime 5.1 Blockdidgeain Sora SIHEE GBE .. v rrrmmmaresrrs s svmswsmey et oy 84
Figure 5.2 Stafe diapram of meyiory SINEEY «o e ssssummesmese ss 1 se sammmvnne s susmmmmues s e 86
Figiure 5.3 Stafe diapram of tThe SChedblersxsswswmoness s s o somsomuns smasamassssss 551 ssnmain 93
Figure 5.4 Block diagram of multiple node implementationcocuviviieiineinnns. g5

Figure 5.5 Timing diagram of the hardware implementation of WFQ scheduling

CIREEHIE s ¢ 5 + 5 s ommumaznnch o 455 S PERPESE5 509 ARG § § 2 8 P ABURARGEGEH SRR 5 § § 5 5 GRS GRR 97
Bigne S0 FiERERE HEATIAL v o5 smmmmmssismos o vens o onsssRRRs HARR SRR 555 Soos 99
Figure 5.7 Reading connection details from upper layercooviiiiiininini 100
Figure 5.8 Regulator reads connection’s details from db_controller 101
Figure 5.9 Scheduler reads connection’s details from db_controller 102
Biguie 5.10 Packet dispatched Fom SEIVEE cvmpupssmevamsmsss 1+ s ogpmppsnge gt {55 iy 103

Figure 5.11a End-to-end delay of WFQ scheduler for fixed-sized packets without cross-
traffic with least best-effort traffic and an output link rate of 50 bytes/ms......... 106

Figure 5.11b End-to-end delay of WEQ+ scheduler for fixed-sized packets without
cross-traffic with least best-effort traffic and an output link rate of 50 bytes/ms...106

Figure 6.1 Hierarchical calendar queue for intra-group scheduling 112

Xiv

Chapter 1

1. Introduction

1.1 Historical Background

In the late nineteenth century, telegraphy was the only means of long distance
communication. The next progress started with introduction of the telephone network to
carry voice. In 1890s, switches were introduced and the telephone service spread to a
large extent. Initially, the telephones presented point-to-point communication, but with
the introduction of digital telephony, other useful services such as teleconferencing were
introduced. The idea of Internet (also called, Intemmet Protocol or IP) was introduced
around 1960s for sharing the computing resources of researchers and for U.S military to
have a robust communication against nuclear attacks [1]. Eventually, this emerged to be
cheaper than the telephone network. Soon, a need to carry not only voice and data traffic,
but also bursty video traffic arose. The telephone companies built an integrated voice/data
network and called it Integrated Services Digital Network (ISDN). ISDN has a bandwidth
of 128 Kbps which was not sufficient to carry video to customers in the United States and
so, the concept of Broadband-ISDN or B-ISDN was introduced in mid-1980s which
featured higher bandwidth. During the late 1980s the Asynchronous Transfer Mode
(ATM) network was started and voice data could be carried along with other data in the
network. Communicating through such integrated networks (ISDN or ATM) has captured

the attention of several million people worldwide.

1.2 Integrated Services Networks

Integrated services network is the integration of video applications like video
conferencing and online movies, voice applications like phone conversation and voice
chat over the Internet, as well as, data applications like e-mail, fax and high-speed data
transfer. Since it supports several applications through the same single network, the size
of such an integrated network has grown at a rapid rate recently. This has created a need
for fast switching through the nodes of the network and an assurance in bandwidth
allocated to the users of the network. In general, the network consists of several nodes
that switch packets from incoming links to one or more outgoing links. In general, each
node in a network is a switch, which routes packets from an incoming link to one of
several outgoing links. Each switch consists of an input port controller, the switch fabric
and the output port controller (Figure. 1.1). Each switch also routes packets of different
traffic classes according to the service requested by the user. This switching of traffic
from various classes has to be done diligently and therefore various switching techniques
have emerged. Due to the recent advances in Very Large Scale Integration (VLSI)
technology, fast packet switching could be implemented economically.

Asynchronous Transfer Mode (ATM) switch is a good candidate for VLSI
implementation due to its high bandwidth requirement [2]. ATM is based on small fixed-
sized packet (cell) switching, and hence fast, while Internet Protocol (IP) is based on
variable-sized packet switching. Another important difference between ATM and IP is
that, ATM switching guarantees service while IP switching makes best efforts to enable

packets reach their intended destination; hence the simplicity of the IP switching network.

Fast packet switching used in high-speed integrated services networks combines the
above two switching technologies (ATM and IP), by providing guaranteed service to

various traffic sources and sending packets of variable sizes, while also being simple and

fast.
Input Port Controllers Output Port Controllers
S Input Buffer : \ Regulator, >
Scheduler
o Switch Fabric S
o o
_ |, Toput Buffer I | Regulator, >
Scheduler

Figure 1.1: Block diagram of a switch

It is also necessary to make sure that the required throughput is achieved through
the link. Thus the sources should be assured the desired quality of service they receive.

Thus quality of service becomes an important issue.

1.3 Quality of Service

Due to the varied requirements of the users of video, voice and data, the integrated
services network should be able to assure the service required by each class. That is, fast
packet switching should not only be fast, but also provide quality of service (QoS) or

guarantee the performance required by the various traffic classes. IP was initially a best-

effort service, that is, it simply routed the packets, but did not guarantee service to users
requesting service guarantees. Recently, through the introduction of certain advanced
protocols, the Internet has been used to provide QoS to users to a limited extent. Quality
of service basically means, measuring certain characteristics (delay, delay jitter, packet
loss, fairness, complexity, etc), improving them in order to meet the guarantees
committed in advance. Packet switches in high-speed networks service packets belonging
to two main kinds of applications, namely, best-effort and guaranteed-service applications
[3]. Therefore, the switches in the nodes of these networks should be capable of serving
packets based on their QoS requirements.

Some of the common QoS requirements are bounded end-to-end delay, fairness,
simplicity, scalability, low loss rate and delay jitter. These are discussed in Section 1.5 of
this Chapter. An arbiter or scheduler is required at the output port of the switch to order
the transmission of packets to the output link based on their QoS guarantees. Selecting a
packet scheduling discipline which operates at the output port of the switch is one of the

key design criteria for providing QoS.

1.4 Scheduling

Within each switch, in the output port, there are queues - one for each service
class or one for each user that will hold the packets that need to be sent through each link.
A scheduler is required to select a packet buffered in one of these queues to be served
next. Traditionally, the scheduling discipline used by the scheduler provided fair resource

allocation by resolving contention among the network users. This policy was useful for

best-effort service. The integrated-service packet-switched networks simultaneously
support multiple types of services over a single physical infrastructure {4]. Therefore, the
scheduling disciplines in these networks play a critical role in controlling the interactions
between different users. Thus, the scheduling discipline is different for different
technologies like ATM and Internet.

In ATM networks, since the packets are transmitted as fixed-sized cells, the
scheduling algorithms are usually implemented in hardware. In variable-sized packet-
switched networks, since the packets are of larger size, they may be implemented in
hardware or software. Many papers in the literature, such as [3], [5], [6]. [7], [9], [10],
[14], [16], [19], [20], [21], [23], [24] and [26], proposing packet scheduling algorithms
study the performance problems on queuing systems. But they cannot be applied to
integrated services packet-switched networks because of the bursty nature of the
incoming traffic and also because the guarantee on performance bounds is on a per-
connection basis. Recently, investigation of networks involving real-time bursty sources
has resulted in scheduling disciplines that have the ability to provide bounds on end-to-
end delay for a traffic source which is bursty and whose burstiness is constrained. Above

all, the scheduling discipline should be simple enough to be implemented at high-speeds.

1.5 Properties of Scheduling Disciplines

The performance provided by a scheduling discipline is determined by the
characteristics required of an application (either best-effort or guaranteed-service). The

guaranteed-service applications require the server (scheduler or scheduling discipline) to

allocate a mean delay to each connection by choosing an appropriate service order. They

also require the server to allocate different bandwidths to connections based on the share

of the output link the connections require. Lastly, they require a guarantee on loss rate for

each connection by limiting the number of packets entering the connections. Though

neither the server nor the scheduling discipline needs to guarantee delay, loss or

bandwidth to the best-effort applications, these attributes should be fair enough so that the

best-effort connections receive some service. Thus the scheduling disciplines should

satisfy the following properties as a minimum requirement.

Low end-to-end delay — Real-time applications require low end-to-end delay. The
scheduling discipline should be able to guarantee a lower bound on the end-to-end
delay for certain applications possibly at the expense of increased delay to other
non-real-time, best-effort applications.

Fairness — The bandwidth available in the link should be shared among the
applications in a fair manner. Primarily, the scheduling disciplines are simply a
fair allocation of bandwidth among the users present.

Simplicity — The scheduling discipline should be implemented as simple as
possible, so that the time required to make a decision on the next packet to
transmit is considerably low and as close as possible to the arrival time of packets.
The scheduling discipline should also be implemented in hardware.

Scalability — The scheduling algorithm should be able to support as many

connections as possible. Typically, this number is in tens of thousands.

e Delay jitter — In simple terms, the delay jitter is the difference between the
maximum and minimum delay a connection experiences. This difference should

not be too high for feedback applications and applications carrying video.

1.6 Motivation for this Research

The integrated services network not only includes sources which have bursty
traffic, but also constant rate sources, Poisson sources and sources which produce heavy
traffic. Therefore, it is required to study various kinds of traffic the network encompasses.
The scheduling disciplines we have considered in this thesis have not been tested
exhaustively for various kinds of traffic, various traffic loads, or various packet-sizes. By
and large, most studies assume a single server or a simple network with known traffic and
fixed-sized cells that are easier to implement. In a real network, this is not the case. Thus
a need to verify the behaviour of the scheduling disciplines by exposing them to various
cases of traffic patterns and packet-sizes arose. In this work, the performance of some
chosen scheduling disciplines is investigated under Internet traffic with variable-sized

packets.

1.7 Organization of the Thesis

The rest of the thesis is divided into six chapters. Chapter 2 discusses the
classification of scheduling disciplines and the properties required of a scheduling

discipline. Chapter 3 introduces two chosen scheduling disciplines, discusses their

properties and the performance they guarantee. Chapter 4 details the traffic model used,
the packet length distribution obtained, the software implementation and the delay results
of the above two scheduling disciplines. Chapter 5 details the individual blocks involved
in the hardware implementation and Chapter 6 identifies the contributions of the thesis

and suggests areas of future work.

Chapter 2

2. Scheduling Disciplines

2.1 Introduction

The output port of a switch consists of output buffers which contain packets that
wait to be served on the output link. At each output port of a switch, a scheduler is present
to manage these output buffers and arbitrate the access to the output line. The scheduler
decides the order in which these requests are serviced onto the output link. The scheduler
consists of a scheduling discipline which allocates different service qualities to users of
various service requirements. The scheduling discipline does so by choosing a particular
service order and also by deciding which packet to drop when there is excess traffic.
Since scheduling is done at the output port of a switch, the scheduler is placed in the
network layer. There are two main application types which the scheduling discipline has
to consider while deciding the order in which to serve packets - guaranteed applications,
which require a bound on the performance and so require resources to be reserved, and
best-effort applications, which have elastic performance requirements and so do not need
any reserved resources [1]. In order to support guaranteed applications, the scheduling
discipline should be able to provide a bound on the per-connection delay, guaranteed
bandwidth and a specified loss rate. In order to support best-effort applications, the
scheduling discipline should be able to provide a fair allocation of resources to all the

best-effort connections.

2.2 Work-conserving and Non-work-conserving

Scheduling Disciplines

Apart from the classification of the applications requiring service, the service
disciplines themselves are classified either as work-conserving or non-work-conserving
disciplines. In a work-conserving scheduler, when a packet arrives, if the server is idle,
the packet is served. Some of the work-conserving disciplines studied in the past include
delay earliest-due-date [5], virtual clock [6], fair queueing [7] and its weighted version
[8], self-clocked fair queueing [9] and worst-case fair weighted fair queueing [10]. In the
non-work-conserving scheduler, the packet is held in the queue until it is eligible for
service. The server may remain idle if the packet is not eligible, that is, if the packet does
not conform to its agreed traffic profile [11]. In the non-work-conserving scheduling
discipline, each packet is assigned an eligibility time and queued in the buffers. At any
time, when the server is idle, the packet with the least finish time among the eligible
packets is serviced. If none of the packets in the queue is eligible, none will be served.

To attain a bound on the end-to-end delay and also to determine the buffer space
required, the traffic should be characterized inside the network. For a work-conserving
discipline, the traffic is distorted inside the network due to fluctuations in the load inside
the network, as depicted in Figure 2.1. Here, four packets are assumed to travel across a
network with some inter-packet gap between them. In the Figure 2.1, each packet is
represented by a vertical arrow. At the end of the first server, the first packet is delayed

slightly longer than the second packet due to instantaneous cross-traffic. Thus the spacing

10

between the first two packets is small. At the end of the second server, the first two
packets are further delayed and at the end of the third server, the first three packets are
delayed, while the fourth packet passes without any delay. Thus the traffic pattern is

distorted due to network load fluctuations and this makes the traffic burstier.

r 1t 1=

iBter-packet time Entrance to Network

M1 1

_ After Switch 1

N

After Switch 2

111

v After Switch 3

Figure 2.1: Traffic pattern distortions due to load fluctuations [12]

Thus it is hard to characterize the traffic pattern inside such a network. Moreover,
users could misbehave by sending at a rate higher than the bandwidth allocated to them.
This causes a higher instantaneous arrival rate at any switch. To avoid the distortion in the
traffic, non-work-conserving scheduling disciplines are used. They reduce the traffic
distortion at each switching node by fully or partially reconstructing the traffic. This
increases the average delay, but the end-to-end delay is bounded. For guaranteed service,
the bound on end-to-end delay is more important than the average delay. Though in non-
work-conserving disciplines, the server remains idle sometimes, it assists in making the

traffic more predictable in the nodes that follow. Thus the buffer space required in the

11

adjacent node can also be predicted. In this thesis, the buffer space available in each
queue is assumed to be infinite in order to study the end-to-end delay bound on the traffic
sources. One other disadvantage of non-work-conserving schedulers is that they waste
bandwidth. But this is compensated by efficiently sending best-effort traffic whenever the
server is idle. Some of the non-work-conserving scheduling disciplines include jitter
earliest-due-date (jitter-EDD) [13], stop-and-go [14], hierarchical round robin (HRR) [15]
and rate-controlled static priority (RCSP) [16]. Though current day switching uses only
work-conserving scheduling disciplines, there is a good scope for non-work-conserving

disciplines when more users join the network, or, when the link becomes heavily loaded.

2.3 Rate Controlled Service Disciplines

The scheduler, on its own, is capable of providing service guarantees on a per-
connection basis only if the traffic entering that particular node satisfies certain traffic
specifications. The traffic entering the network may conform to the constraints of the
source, but the network load oscillates thereby distorting the traffic at a node. Thus the
traffic entering a node may experience instantaneous burstiness. A class of non-work-
conserving service disciplines are the rate controlled service disciplines [16]. The rate
controlled servers tackle the problem of providing end-to-end delay bounds and managing
traffic distortions by encompassing a separate rate-controller and a scheduler. A rate
controller consists of a set of regulators, as shown in Figure 2.2, corresponding to each of
the connections propagating through the switch; each regulator takes care of shaping the

traffic of the corresponding connection into the desired traffic pattern. Some examples of

12

scheduling disciplines that can be used in the rate-controlled service disciplines are Stop-
and-Go server, Jitter-Earliest Due Date, Hierarchical Round Robin, or even the simplest
static priority queueing schedulers [3].

The rate-controller observes the traffic arrival rate for each connection, compares

it to the expected arrival rate, and forces the connection to obey the required traffic

One regulator for each of Real-time Queues - n
the h connections queues
Priority Level
i | Regulator 7 1
i Regulator 2 e
Input Traffid g g oot
(Real-time) E 5
¢ | Regulator i e e———
Input Traffic :
(Non Real-time) Non-Real-Time Queue
Rate Controller Scheduler

Figure 2.2: Rate-Controlled Service Discipline [16]

pattern by delaying packets from that connection if it sends packets at a rate higher than
the tolerable arrival rate. Thus the traffic is reconstructed at each node, so that it is
predictable at the node that follows. The scheduler multiplexes the packets based on their

service priorities and also provides a bound on the end-to-end delay.

13

2.3.1 Regulators

A rate controller or regulator is a mechanism which enforces that traffic from a
flow which is forwarded to a scheduler conforms to its original profile [17]. As
mentioned earlier, the rate controller consists of a set of regulators, one for each
connection, that shape the traffic entering the node. Several models are proposed in the
literature for modeling the traffic arrival. According to Hui Zhang [11], there are three
proposed models for traffic characterization:

= (gp) model: A traffic stream satisfies this model if during any interval of length
u, the number of bits in that interval is less than o+ ou. In the (g;0) model, oand
p are the maximum burst size and the long term bounding rate of the source,
respectively [18].

8 (Xpine Xaves I, Smax) model: A traffic stream satisfies this model if the interarrival
time between any two packets in the stream is more than X, the average packet
inter-arrival time during any interval of length I is more than X, and the
maximum packet size is less than Syq [S].

* (r, T) model: A traffic stream is said to satisfy this model if no more than T bits
are transmitted on any interval of length 7 [15].

The above characterizations are used to bind the traffic volume by placing a limit on the
number of packets that can be received during an interval of time. Therefore, it is not
possible to deduce the exact traffic pattern with these models. In this thesis, the regulators

fOllOW (men, Xave, I, Smax) mOde].

14

Instead of having one regulator for each connection, this thesis models the rate
controller with one regulator consisting of queues on a per-connection basis. Each
connection has a predefined traffic model. At the arrival in the regulator, each packet,
based on its corresponding connection’s constraint, is delayed on the regulator queue until
it is eligible and then sent to the scheduler. The regulator queue is modeled as a set of
queues called, calendar queues. The calendar queue implementation, discussed in Section
5.2.7, reduces the complexity involved in the regulator queue maintenance to less than the
number of connections in the network.

The key advantage in having a separate regulator and scheduler is that it allows
arbitrary combinations of rate-control policies and packet scheduling schemes. Also, the
regulator distributes the buffer space inside the network uniformly. Regulators control the
interactions between switches and eliminate jitter. There are two kinds of jitter, namely,
delay-jitter and rate-jitter. Delay-jitter is the maximum difference between the delays
experienced by any two packets on the same connection [16]. Rate-jitter is defined as the
maximum number of packets in the jitter averaging interval [16]. There are two classes of
regulators, rate-jitter (RJ) controlling regulators and delay-jitter (DJ) controlling

regulators.

2.3.1.1 Delay-jitter Controlled Regulators

These regulators control the delay-jitter by fully reconstructing the traffic pattern.
In such regulators, the eligibility time of a packet is defined with respect to the eligibility

time of the same packet in the previous switch. To find out the amount of time the packet

15

was ahead of schedule in the previous switch, each packet has to have this value stamped
in its header. This results in larger header size when a delay-jitter controller regulator is
used than when a rate-jitter controlled regulator is used, and so, it is too expensive. For
the delay-jitter controlling regulator [16]:

ET} = AT/,

ko k .
ET; =ET; +d,+7,;, j>0,
where, switch 0 is the source of the connection, dj.; is the delay bound, or the maximum

waiting time of packets on the same connection at the scheduler of switch j-1, 7., is the

propagation delay between switch j-I and switch j, ET;‘ is the eligibility time of the j®

packet in the ¥ switch and AT} is the arrival time of the j* packet in the ™ switch.

2.3.1.2 Rate-jitter Controlled Regulators
These regulators control the delay by partially reconstructing the traffic pattern.
The eligibility time of a packet at a switch is defined with respect to packets arriving
earlier at the same switch. Eligibility time for the k™ packet on a connection at a switch
ET* is defined with reference to the eligibility times of packets arriving earlier at the
switch on the same connection [16]:
ET' = AT';

ET* =max(ET*" + X, ET* /%=1 AT%) k> 1,

16

where, AT is the time the £® packet on the connection arrived at the switch, X, is the
minimum packet inter-arrival time, X, is the average packet inter-arrival time over an
interval of time I.

Since controlling delay-jitter completely reconstructs the traffic pattern at each
switch along the path, if the traffic arriving into the network obeys the specifications, it
will obey the specifications throughout the network. But the complexity of implementing
delay-jitter controlling regulators is higher because they need to know information about
the previous switch. Therefore, there is a trade-off between choosing delay-jitter & rate-
jitter controlling regulators. In this thesis, the regulator is a rate-jitter controlling regulator
and the traffic model used to characterize the arrival of packets is the (Xpin, Xaves I, Spax)
traffic model.

2.3.1.3 Trade-offs

The following are the trade-offs in implementing the regulator.
= Implementation complexity: In both the rate-jitter controlled and delay-jitter
controlled regulators, the eligibility time is calculated on a per-packet basis. Thus
the complexity is high. Moreover, for delay-jitter controlled regulators there is a
need to synchronize either at the link level or at the switch level. After
synchronization, the amount of time the packet was ahead of schedule is stamped
in the packet’s header.
s Services provided:
o Though for a rate-jitter controlled regulator, the average delay is low, the

delay-jitter is nearly three times higher than that of a delay-jitter controlled

17

regulator. As the number of nodes through which the connection traverses
increases, the delay-jitter becomes higher and so, it can be used in
applications where low average delay and bounded delay are needed.

o For clients with playback applications, the delay-jitter controlled
regulators are better suited because they provide a bound on the delay-

jitter and delay and not the average delay.

2.4 Discussion of Scheduling Disciplines

This section discusses some of the scheduling disciplines proposed in the
literature, their properties, advantages and disadvantages. Generalized Processor Sharing
(GPS) is an ideal scheduling discipline that provides a max-min fair allocation [7]. It was
introduced as a scheduling discipline for the best-effort connections with the property of
providing fair allocation of service to all the connections. But it cannot be implemented in
practice, because it assumes to serve from each connection an infinitesimally small
amount of data. Numerous scheduling disciplines have been proposed to emulate GPS as
closely as possible.

The simplest emulation of the GPS is the round-robin (RR) scheduling discipline
[11 which serves one packet from each of the non-empty connection queue in a round
robin fashion. The weighted version of the round-robin, namely the Weighted Round
Robin (WRR), serves packets from connections in proportion to their weights. However,
it does not work if the source is unable to predict its mean packet size. In such a case,

WRR cannot allocate bandwidth fairly. Moreover, it is fair only over a time scale longer

18

than a round time. A modified version of WRR, which is also easy to implement, is the
Deficit Round Robin (DRR) [19]. The DRR can handle variable-sized packets even
without knowing the value of the mean packet size. However, it is also unfair when the
time scale is smaller than one round time. Smoothed Round Robin (SRR) [20] can
emulate GPS well. When compared with RR schedulers, it reduces burstiness in the
output, has better short-term fairness and also possesses good delay properties. At the
same time, it also has an O(1) time complexity since it avoids time-stamp maintenance. It
can be implemented in high-speed networks to provide QoS. However, it fails to provide
strict local delay bound that is needed for guaranteed service applications. Therefore, it
cannot be used in applications that require strict end-to-end delay bound.

Weighted Fair Queueing (WFQ) is an approximation of GPS. It is also called as
the Packet-by-packet approximation of GPS (or, PGPS). Neither does WFQ require
knowledge of the mean packet size nor does it consider the packets to be infinitesimally
small data. The idea of WFQ is that it calculates the time (finish time) a packet would
complete service in the corresponding GPS system and then serve packets in increasing
order of these finish times. Since WFQ approximates GPS, it has the firewalling property
of protecting the connections from each other. In other words, a heavy load on one of the
connections will in no way affect the other connections. In addition, if any connection
misbehaves, then it loses packets from its own buffers. It is possible for a connection to
achieve end-to-end queucing delay independent of the number of nodes it is traversing
through [1]. Thus WFQ provides real-time performance guarantees for guaranteed-service
applications. Worst-case Fair Weighted Fair Queueing (WFZQ) is almost identical to GPS

differing by no more than one maximum size packet [10]. WFZQ disproves the previous

19

notion that WFQ is the closest approximation to GPS. WF’Q shares the bounded-delay
and fairness properties of GPS. In this system, when the server has to make a decision on
the next packet to transmit, it picks that packet which has the smallest finish time and
which has already started service in the corresponding GPS system. WF*Q+ [21] reduces
the computational complexity of WE2Q. More details about these scheduling disciplines
appear in the subsequent chapters.

Another service discipline, namely, Self Clocked Fair Queueing (SCFQ) [9]
speeds up the round number computation. In SCFQ, when a packet arrives at an empty
queue, instead of using the round number to compute its finish number, it uses the finish
number of the packet currently in service. Though the round number is easy to update, it
is unfair for short time scales. Thus it has larger worst-case latencies than WFQ, and
hence, greater unfairness in short time scales. Start-Time Fair Queueing (STFQ) [22] has
the computational benefits of SCFQ, but differs from SCFQ in the sense that it services
packets in increasing order of start numbers. Therefore, it does not have the large worst-
case delay as SCFQ nor the short-term unfairness.

Virtual clock, proposed by Zhang, [6] is for scheduling guaranteed-service
connections. It is similar to WFQ but emulates Time-Division Multiplexing (TDM). Each
packet has a virtual transmission time. This is the time at which the packet would be
transmitted if the server is implementing TDM. When it is used for best-effort
connections, the relative fairness bound is infinity. That is, when there are two
backlogged connections, one might receive infinitely more throughput than the other. In
the classic Earliest Due Date (EDD) scheduling [5], each packet is assigned a deadline,

and the scheduler serves packets in order of increasing deadlines. If the scheduler

20

commits more than its capability, then some packets miss their deadlines. Also, if packets
are assigned deadlines closer to their arrival times, they receive lower delay and vice
versa. Delay-Earliest Due Date (D-EDD) is an extension of EDD [1], in which case, each
source agrees on a service contract with the scheduler. The server sets a deadline for the
packet as the expected arrival time added to the delay bound. If the source disobeys then
each packet receives worst-case delay, which is lower than the delay bound guaranteed.
However, in this case, the packets should be placed in a priority queue as in WFQ. The
scheduler also has to store finish numbers as in WFQ. Thus, it is as complex as WFQ,
though it does not have to calculate the round number. Jitter-Earliest Due Date (J-EDD)
algorithm provides end-to-end bandwidth, delay and delay-jitter bounds by trying to
provide the same delay to all the connections for every hop, except the last one. After a
packet is served by a server, it is stamped with the difference between its deadline and
actual finishing time. A regulator at the entrance of the next switch holds the packet for
this period before it is sent to the scheduler to be served. However, a connection should
reserve highest bandwidth to obtain the worst-case delay bound. Earliest Deadline First
(EDF) is an optimal scheduler for bounded-delay services. But the implementation
requires sorting of packets which makes it complex for implementation in high speed
networks. It is a dynamic scheduling algorithm for real-time scheduling purposes.
Rotating Priority Queues (RPQ) scheduler [23] is a hybrid of EDF and Static
Priority (SP) scheduling. It has high efficiency (like EDF) and low complexity (like SP).
Here, the scheduler has a set of priontized FIFO queues and the scheduler, periodically
changes the priorities of the FIFO queues. The scheduler transmits a packet from the

highest non-empty priority FIFO queue. But it has a rotation anomaly that if a packet

21

resides in the highest priority queue at the time of queue rotation, it will be in the lowest
priority queue. RPQ+ scheduler [24] approximates EDF with rotating FIFO queues. The
idea is to have twice the number of FIFO queues as RPQ and add a newly arriving packet
to the queue between the FIFO queues of RPQ. These queues are called the intermediate
queues. Though this increases the cost, it is highly efficient.

The Stop-and-Go (SG) discipline [25] uses the framing strategy. Time is divided
into frames and in each frame time, only those packets that arrived in the previous frame
time are served. That is, it ensures that packets on the same frame at the source stay in the
same frame throughout the network. It provides a bound on buffer space requirement and
jitter. However, it is not possible to achieve low delay bound and fine granularity of
bandwidth simultaneously since it uses the framing strategy. The Hierarchical Round
Robin (HRR) is similar to stop-and-go since it also uses framing strategy [15]. It uses
multilevel framing strategy. The main difference between SG and HRR is that, in SG the
packets are maintained within the same frame throughout the network, whereas HRR has
the property that the number of packets within each frame will remain the same from the
entrance to the network to the end, but the packets need not be in the same frame inside
the network. HRR also has the problem of coupling between delay and bandwidth
allocation granularity. It is suitable only for fixed sized packets or cells. Therefore, it can
be used only in ATM networks. Another algorithm for the ATM networks is the Carry-
Over Round Robin (CORR) [26] which has low implementation complexity since it
divides the time line into allocation cycles whose maximum length is fixed, and is not a

function of number of connections. Its delay performance is comparable to that of PGPS

22

and SG. It also achieves near perfect fairness. The performance of CORR in terms of
delay jitter is much worse than that of SG.

The Rate Controlled Static Priority Queueing (RCSP) [16] is similar to the Rate
Controlled Service Disciplines (RCSD) in that, it has a separate rate controller and
scheduler. The scheduler used in this case is the static priority scheduler. The rate
controller can either be a rate-jitter regulator or a delay-jitter regulator as discussed in the
earlier sections of this chapter. This scheme provides bounded delay, bounded delay jitter,

decoupled delay and bandwidth allocation, and uniformly distributed buffer space.

2.5 Concluding Remarks

Among all the scheduling disciplines seen above, the WFQ is commonly used in
current day networks and the WFQQ+ is the most accurate approximation of GPS in terms
of faimess and delay guaranteed. Thus these two scheduling disciplines are chosen for

implementation in this thesis and their delay and fairness properties are compared.

23

Chapter 3

3. WFQ and WF*Q Scheduling Disciplines

3.1 Introduction

After briefly introducing most of the scheduling disciplines known in the literature
in Chapter 2, this chapter discusses in detail two, or, in some sense, three scheduling
disciplines. The first of these disciplines is the well-known Weighted Fair Queueing
(WFQ), which is understood to be the closest approximation of Generalized Processor
Sharing (GPS). Although recently, Worst-case Fair Weighted Fair Queueing (WFQ) is
demonstrated to be a better emulation of GPS, the popularity of WFQ still persists.
Another scheduling discipline, WFQ+, which is a slight improvement of WEFQ, is also
considered here. The two disciplines that are implemented and analyzed for their
performance in this thesis are WFQ and WF2Q+.

For the best-effort connections, an ideal work-conserving scheduling discipline
that can achieve a max-min fair allocation is the GPS. GPS assumes packets of each
connection to be in separate queues. At any instant of time, the server serves an
infinitesimally small amount of data from each backlogged queue simultaneously. It is
also possible for connections to have weights. In this case, the server serves an amount of
data, from each connection, which is proportional to its weight. In the case of real-time
connections, the GPS has to be leaky bucket constrained to make the discipline non-work-

conserving. In spite of the fact that GPS is ideal, it is unimplementable because it assumes

24

packets are infinitely divisible, which is not the case in practice. WFQ, and later on

WF?Q, were introduced as emulations of GPS.

3.2 Definition

Before going into the definition of WFQ and WEFQ, a clear understanding of the
scheduling discipline on which these two disciplines are based is required. In this regard,
the GPS discipline is exemplified. Assume that fixed-sized packets of size 1 byte (for

ease), from 11 different connections arrive at the server with the packet arrival pattern
shown in Figure 3.1a [10]. We shall use notation p/ to represent i packet arriving at j“’

connection. The packets from these connections (marked C1 to C11) are destined to the
same output link and therefore, share the link capacity, which is 1 byte/ms. The weights
that are guaranteed during connection set up are: connection 1 has a weight of 0.5 while
the remaining 10 connections have a weight of 0.05 each, summing up to a total weight of
1.0. Eleven back-to-back packets from connection 1 and, one packet from each of the

other 10 connections are queuned at time 0 (shown along the x-axis).

1 ODOOOCoCoO0n
2 R
cald pn P
Cs
C6
C7
C8
cod
c100]
cull
0 10 20

Figure 3.1a: Packet amrival pattern

25

The manner in which GPS schedules packets 1s shown in Figure 3.1b. The GPS discipline
takes two time units to serve each packet from connection 1 and 20 time units to serve
each packet from each of the other 10 connections in order to provide a fair share to all
the 11 connections based on their weights. However in practice, it is only possible to
serve a packet of size 1 byte, into a link whose capacity is 1 byte/ms, in one time unit (i.e.
1 ms). Therefore, GPS is not practically realizable. With this idea of GPS, the WFQ and

WE’Q are defined and illustrated with the same example below.

1 L.t f5 - f 9 0 4 § ¥ Q. 1.}
c2 |
C3 |
c4 |
L
{
L
=

Co

Figure 3.1b: GPS service order

3.2.1 Weighted Fair Queueing (WFQ):

In the WFQ discipline, when the server is ready to transmit the next packet at time
1, it selects, among all the packets queued at t, the first packet that would complete
service in the corresponding GPS system if no additional packets were to arrive after time
t [11]. For a better understanding of the working of WFQ algorithm, consider again the

packet arrival pattern shown in Figure 3.1a. At time 0, since, in the GPS system, the first

packet to finish service is packet p, (the first packet from all the other connections p;

26

with i = 2....11, finish service at time 20), and so, this packet is served first. Similarly, the

first 10 packets of connection 1 are served back to back before packets on other

connections can be served. This is illustrated in Figure 3.1c.

c1 [OOOOOoOg F

C2 f O

C3 i0 [] 11 /

C4 P] P

C5 O

Cé6 O

7 |

C8 O

C9 O

C10 |

C11 O
0 10 20

Figure 3.1¢c: WFQ service order
After serving all the 10 packets from connection 1, the 11™ packet from this connection
has a finish time which is higher than that of the first packet of the remaining 10
connections and so, this packet is not served next. Instead the first packets from each of
the remaining 10 connections are served next in order of increasing connection number.
Finally, the 11™ packet of connection 1, p!*, is transmitted. Thus, in order to determine
the next packet to serve, WFQ algorithm uses the GPS finish times of packets. On the
other hand, WF’Q uses the GPS finish as well as the start times of packets in order to

determine the next packet to transmit.

3.2.2 Worst-case Fair Weighted Fair Queueing (WF*Q):

In WE’Q, when the next packet is chosen for service at time T, rather than

selecting it from among all the packets at the server as in WFQ, the server only considers

27

the set of packets that have started (and possibly finished) receiving service in the
corresponding GPS system at time 7, and selects the packet among them that would
complete service first in the corresponding GPS system [11]. Referring to the same
example under consideration, the WF’Q serves the packets in the order shown in Figure

3.1d.

cit D OoOoooOOoOoogog

c2 | O

C3 O

C4 O

C5 O

Cé6 O

C7 O

C8 O

C9 O

C10 |

Cii O
0 10 20

Figure 3.1d: WE’Q service order

A time 0, the first packets in all the connections start service in the corresponding GPS
system. The second and subsequent packets, p; , for i = 2...11, from connection 1 have

not yet started service in the GPS system and therefore are not considered while selecting

the next packet to transmit. Among the packets that are considered for selection, the
packet that has the least finish time is the first packet of connection 1, pl1 , and therefore, is
served at time 0. At time 1, though the second packet of connection 1, pf, has the least

finish time among all the remaining packets, it is not considered for selection, since it

does not start service until time 2 in the GPS system. Therefore, the next packet with the
least finish time is the first packet of connection 2, p;, and so, it will be served at time 1.

At time 3, the second packet of the first connection would have started service and is

28

therefore considered for selection. Since it has the least finish time among all the packets
considered for service, it is served next and so on. Thus there is a significant difference in
the service provided by a WFQ system compared to WEFQ system as the WEFQ system
selects the next packet to transmit based on the GPS finish as well as start times. The first

packet from connection 2 p, is served much earlier in the WF’Q scheme than in the

WFQ scheme. Similar explanation holds for packets of other connections too. Thus,
WEF°Q scheme is fairer WFQ scheme, not only with regard to real-time source but also

with regard to packets from all other connections.

3.3 Properties

There are several properties of WFQ and WE>Q that need to be discussed to geta
better understanding of the algorithms and also to conclude on a better algorithm so that
they can be applied to real-time traffic in high-speed packet switching. Firstly, the reason
all these disciplines try to approximate GPS is because GPS has two important properties
{27]: (1) it can guarantee bounded end-to-end delay to connections and (2) it allocates
bandwidth available to all the connections in a fair manner despite the consideration of
whether they are rate-controlled or not. The following properties will be discussed in
detail for the above two scheduling disciplines:

= System virtual time function
= Packet selection policy
= Implementation complexity

= Accuracy

29

= End-to-end delay and buffer space requirements

e Traffic characterization.

3.3.1 System Virtual Time Function

The fair queueing algorithms considered here, have to maintain a system virtual
time V{-), a virtual start time S;{-) and a virtual finish time Fj(-) for each connection i. The
virtual start and finish times are updated every time a packet arrives or leaves the server.
Every time an unbacklogged connection becomes backlogged or vice versa, the system
virtual time is updated. The complexity and accuracy of any scheduling algorithm is
based on that of its virtual time function. If the service provided by any scheduling
algorithm matches that of GPS, then its virtual time function is said to be accurate.

The virtual time function of WFQ is defined based on the GPS virtual time
function. For the WFQ system, let #; be the time at which the j“’ event occurs {8]. An event
is defined as an arrival or a departure of a packet. The time of the first arrival of a busy
period is denoted as t; = 0. Now, for each j = 2,3,..., the set of connections that are busy
in the interval (¢;.;, ;) is fixed, and is denoted as B;. During the time at which the server is
idle, the virtual time V(z) is zero. Consider a busy period that starts at time zero. Then V(1)
is given as below,

V(©0)=0;

V@, +)=V (@,)+ s TEE, ~§

T
j J=52
ZfeB- @",

J

j=23...

30

where, 7is the time of the event just prior to # and ¢, is a positive real number used to

characterize connection i. The virtual start and finish times for the k™ packet of {®

connection arriving at time t:‘ with a length of L! is given by,

gk {max(V(rf), F,-""l) connection 7 becomes active

F* p! finishes service

From the above equations, three properties of virtual time interpretation of WFQ
can be observed: (1) the virtual finish time can be calculated with the packet’s arrival
time, (2) packets are served in the order of finishing times and (3) the virtual time needs
to be updated only when there are events in the GPS system. These are some of the
advantages of the system virtual time function of GPS, and therefore of WFQ. The virtual
time function of WF°Q is also defined with respect to that of GPS and has the same set of

properties.

3.3.2 Packet Selection Policy

There are two commonly used packet selection policies, namely, Smallest virtual
Finish time First or SFF policy and Smallest Eligible virtual Finish time First or SEFF
policy [4]. In the WFQ system, when the server is ready to select the next packet to
transmit, it selects from among all the packets available in the system, the one with the
smallest virtual finish time and it thus belongs to the SFF policy. In the WF’Q system,

when the server is ready to select the next packet to transmit, it selects from among all the

31

packets eligible (and not just available) in the system, the one with the smallest virtual
finish time. A packet is said to be eligible if it has already started service in the
corresponding GPS system, that is, a packet has arrived in the corresponding GPS system,
since a packet starts service as soon as it arrives in the GPS system. Thus it can be
concluded that WF*Q employs the SEFF policy.

Although scheduling algorithms that use the SFF policy assure delay bounds
matching that of GPS, they still produce large service discrepancies from GPS. This is

explained in detail in Section 3.3.4.

3.3.3 Implementation Complexity

There are three important costs involved in scheduling [4]: (1) the cost of
computing the system virtual time function, (2) the cost of handling a queue for ordering
the packets to be scheduled and (3) the cost of maintaining the queue to regulate the
packets. The packets that need to be queued in the regulator have to be sorted based on
their eligibility times and then placed in the queue. This has a complexity of O(N),
where N is the number of connections. However, using calendar queues or some other
mechanism to reduce the complexity of sorting can reduce this complexity [4]. Thus the
complexity can be brought down to O(logN). Similarly, the packets waiting to be sent
through the output link need to be gueuved in the output buffers. These packets are queued
on a per-connection basis in the order of increasing virtual finish times. In this case, only
the head of each queue (there is one queue per connection) need to be considered to pick

the next packet for transmission and so the complexity is again O(N). This can also be

32

reduced to O(logN) in the manner described previously. Thus it is possible to maintain

at least several hundreds of connections at high speed. The only cost that cannot be
reduced is the cost of computing the system virtual time function because both the
algorithms, WFQ and WF’Q, follow GPS to calculate the system virtual time function
and according to the GPS system, the server is capable of serving data from all the
connections simultaneously if all of them are backlogged at any instant of time. This
implies that the server should be able to update the system virtual time N times in the
worst case, if N connections have an event (connections become backlogged or

unbacklogged) at the same time.

3.3.4 Accuracy

Parekh showed that the delay bound provided by WFQ is within one packet
transmission time of that provided by GPS [8]. According to Parekh, who introduced
WEQ, the relationship between GPS and WFQ are as listed below [10]:

* in terms of delay, a packet will finish service in a WFQ system later than in the
corresponding GPS system no more than the transmission time of one maximum
sized packet;

= in terms of the total number of bits served for each connection, a WFQ system
does not fall behind a corresponding GPS system by more than one maximum
sized packet.

This leads to the interpretation that WFQ discipline and the GPS discipline

provide almost indistinguishable service except for a difference of one packet. The

33

Internet Engineering Task Force, a standards development body for Internet, recently
proposed WFQ as a reference server for Internet supporting guaranteed service class,
based on the above result. According to Bennett and Zhang, the above interpretation is
erroneous [10]. According to them, there is a large inconsistency between the services
provided by WFQ and GPS and this inconsistency affects the faimess of WEFQ, thereby
making it inaccurate. Consider the Figure 3.1c, showing the service order of WFQ service
discipline. In this figure, a burst of 10 packets is served from connection 1, then the
connection is idle for some time and then repeats itself. This kind of oscillation caused by
burstiness in the packets entering the link affects the delay bound guaranteed for real-time
traffic and causes unfairness in the service provided to best-effort connections. The
reason for such an inaccuracy in WFQ is due to the fact that the service provided by WFQ
to a connection (connection 1 in this case) is much more than that provided by GPS. In
the example considered in Figures 3.1, within the first 10 time units, WFQ serves 10
packets from connection 1 while GPS serves only 5 packets. Thus WFQ is well ahead of
GPS in the amount of service provided during any interval of time. This causes WFQ to
be inaccurate and the inaccuracy may be as high as N/2 packets, where N is the number of
connections in the switch. This is not the case with WF-Q, which serves 5 packets from
connection 1 within the first 10 time units, which is the same as that by GPS. Thus WF’Q
serves within one packet transmission time of that of GPS in this example.

Worst-case Fair Index (WFI):

In order to have a tight delay bound, Worst-case Fair Index (WFI) is used to

characterize the scheduling disciplines. A service discipline s is called worst-case fair for

34

connection I if for any time 1, the delay of a packet arriving at 1 is bounded above by [10]

0i.5(7)

Fi

+CIS

That is,

Qx :(a)

ti

dl, <af +=—=+Cis

where, d, is the delay of the K™ packet in the i connection at server s, a; is the arrival

time of the kK™ packet in the i"™ connection, 7; is the throughput guarantee to connection i,
Qi s(af) denotes the queue size of connection i at time a¥, and, Cis is a constant

independent of the queue size of other connections. Ci.s is called the worst-case fair
index for connection i at server s. Since C:s is measured in absolute time, it is not
suitable for comparing Cis’s of connections with different r’s. To perform such a
comparison, the normalized worst-case fair index for a connection i at server s is given as,

r!-Ci, 5
is ?

r

where, r is the link speed or output link rate.. The normalized worst-case fair index of
server s is given by,
e, =™ {e..}
For GPS, cgps = 0 and hence worst-case fair. The WFI of WFQ is a function of the

number of connections and is given by,

~

. N-1L

o L 2 r

where, N is the number of connections at server s and Ly, is the maximum packet size.

35

However, WF*Q is worst-case fair and its WFI is given by

Lijmax L, max n L max
Fi r ¥

Ciwrg=

?

where L; nax is the maximum packet size of connection .
The normalized WFI is given by,

L max
¥

2
CWF g=

This algorithm has a WFI smaller than most of the known algorithms. It is because of this

reason that WE*Q got its name.

3.3.5 End-to-end Delay and Buffer Space Requirements

For WFQ and WF’Q, the traffic specifications carried by the source at the
entrance to the network is sufficient to provide end-to-end delay bound. In order to
achieve a bound on end-to-end delay the rate of packet arrival must be guaranteed and
this cannot be significantly less than the connection’s average rate. Also, in order to
prevent packet loss, a large buffer space needs to be allocated to the connection during
call set-up. Therefore the crux of the problem is that there is a coupling between the
bandwidth and end-to-end delay provided to each connection. A high bandwidth should
be allocated for low end-to-end delay bound, but this, results in waste of resources if the
low delay connection also has low throughput. This problem is avoided by separating the
rate-control mechanism from the scheduling mechanism. In this thesis separate regulator
and scheduler are used to overcome this problem. Inclusion of a regulator results in lower

buffer space requirements at each node. This thesis analyzes only the delay bound of the

36

real-time connections and therefore no limit is placed on the buffer available for each
connection at each node. In future the same simulator can be used to study the loss rate by

limiting the buffer.

3.3.6 Traffic Characterization

In order to provide end-to-end delay bound, the local delay bound should first be
obtained for each switch and then these delays can be summed to obtain the end-to-end
delay bound. For this, the traffic should be characterized on a per-connection basis at
every switch in the network. Although this is possible, a problem arises when there is
traffic distortion inside the network. This would destroy the traffic characterization and
so, this thesis uses a rate-controller in front of the scheduler (WFQ or WF’Q) at every
switch in the network to re-characterize the traffic entering the node, thereby overcoming

the distortion caused by the network.

3.4 Discussion of Properties

From the discussion in Section 3.3 on the properties of WFQ and WF’Q
disciplines, there are several advantages and disadvantages of the two disciplines. Firstly,
both WEQ and WF*Q have system virtual time function which is based on that of GPS.
But the complexity involved in updating the virtual time function is O(N) in the worst
case, where N is the number of connections, as it has to keep track of the number of active

sessions in the corresponding GPS system. This makes both WFQ and WFQ unfit for

37

implementation in high-speed packet switched networks when the number of connections
is large. Moreover, WFQ is worst-case unfair and therefore, it is inaccurate. WPzQ on the
other hand, is worst-case fair and hence, accurate. Thus there is a need for another
scheduling discipline that would be accurate and at the same time has a lower complexity
so that it is feasible to operate at high speeds. Such an algorithm is the WFQ+,
introduced by Bennett and Zhang [21], that has a more accurate virtual time function
which provides low complexity, small WFI and low end-to-end delay bound.

WF2Q+ uses a new system virtual time function VWF2Q+(‘) is given by [21]:

(t+7)= max(DO +W(,t+17), gllé'(lg(Sj’fm)J

VWF2Q+ VWF 0+

where, W(t, t+17) - total amount of service provided by the server during the period [, 7+7]
B(f) - set of sessions backlogged in the WFQ system at time 7
hi(t) — sequence number of the packet at the head of the session i’s queue

S _ virtual start time of packet.

{

The virtual time function is a function of the amount of service and it increases
with time with a minimum slope of 1. That is, it provides delay bounds to rate-controlled
sources that are within one packet transmission time of that provided by GPS. Also, the
virtual time function is such that it is at least as large as the minimum virtual start time.
That is, if an unbacklogged connection becomes backlogged, it has a virtual start time that
is at least as large as one of the already present backlogged connections, thus realizing
low WFL Also, even though the packets are being held until they are eligible (until they

have started service in the corresponding GPS system) to be selected, this algorithm is

38

work-conserving as it ensures that there is at least one packet which has a virtual start
time that is no greater than the current system virtual time. Thus this algorithm (WFQ+)
maintains the same SEFF policy as that of WFQ.

Another advantage to be appreciated in WEF'Q+ is that, there is no need to
maintain the virtual start and finish times on a per packet basis. Instead, it is sufficient to
have just one pair of virtual start and finish times (S; and F; respectively) for each
connection. When a packet is about to be served, the start and finish times are updated

according to the following equation [21]

i

F if Q,(a/-)#0
& {ma:x(F,- V(ah) if Q,(af-)=0

i
F=S,+=,
o

where, Q,(af-) is the queue size of session i just before time af, V(a}) is the system
virtual time at af, L' is the length of the k™ packet on connection i and 7; is the
guaranteed rate for connection i.

The two jobs of computing the system virtual time function, which has been
reduced by the use of new system virtual time function which does not depend on the
GPS system, and maintaining 2 queue for storing the sorted virtual finish times, which
can be done in O(log N) using the calendar queue implementation discussed in Section

5.2.7, can be done in O(log N) complexity.

39

3.5 Concluding Remarks

The only difference between WPZQ and WFQQ+ is that WFzQ uses a system
virtnal time function that emulates the GPS system, but WF°Q+ uses a system virtual
function that is calculated from the packet system itself. WF’Q is an accurate
approximation of GPS and WF’Q+ has all the properties of WFQ along with the

advantage of achieving all the properties and a lower complexity.

40

Chapter 4

4. Software Implementation

4.1 Introduction

In the previous chapter, the scheduling disciplines that are analyzed in this thesis
were discussed. This chapter discusses the software implementation details and the results
obtained for the WFQ and WF*Q+ disciplines. The network has been modeled so that the
source under observation travels through three nodes with cross-traffic from every node.
The traffic flow pattern in real networks is imitated as closely as possible. For variable-
sized packets, the arrival pattern is based on the Internet traffic observed over a period of
time. Thus the traffic arrival pattern reproduces the actual flow of traffic seen in the
network of current day. The basic flow of the software implementation is shown and
details about the working of each block are also presented. The software simulator is
written in C++ and the code is made as modular as possible. The delays obtained by real-

time data under various traffic loads and under the presence and absence of cross-traffic

are presented.

4.2 Network Model

The network is modeled to replicate a portion of the entire network in a smaller

version and with reference to the network model used by Bennett and Zhang in their

41

paper [21]. The network model chosen is shown in Figure 4.1. There are three nodes,
named N1 to N3, in the network. The source under observation is the real-fime
connection, named RT, which has its source at node 1 (N1) and its destination at node 3
(N3). The best-effort traffic, named BE, also has its source at N1 and destination at N3.
There is cross-traffic at nodes 2 and 3. The cross-traffic entering these nodes is composed
of Poisson sources (PS1 to PS40) and/or constant sources (CS1 to CS10) and they interact
with the packets entering the node from N1 containing real-time and best-effort traffic.
This interaction may cause distortion in the traffic entering a node and thereby increase
the delay in a particular node. This kind of cross-traffic is chosen intentionally to analyze
the performance the two scheduling disciplines can guarantee to the real-time source in a

networking environment when they experience disturbances as in a real network.

RT

PS21

PS40

BE

Figure 4.1: Network model

4.3 Traffic Model

This section details the traffic arrival pattern for each of the sources mentioned in

the previous section. The weights are assigned to sources based on the bandwidth

42

guaranteed to each source. This detail is obtained from the paper by Bennett and Zhang
[21], so as to verify the results obtained. Thus as an example, if the total link rate
available is 45 Mbps, 30 Mbps is assigned to various connections. The remaining 15
Mbps is not assigned to any connection but is used when the traffic arrival rate in any
connection exceeds its guaranteed rate. The real-time source is assigned 9 Mbps, each of
the Poisson sources entering N2 (PS1-20) is assigned 500 Kbps, each of the Poisson
sources entering N3 (PS21-40) is assigned 333 Kbps, each constant source entering N2 is
assigned 333 Kbps and the best-effort source is assigned 1 Mbps making a total of 30
Mbps. The real-time source is a deterministic ON-OFF bursty source with an ON period
of 5 packets/burst. The source consists of an ON period (active period) followed by an
OFF period (idle period). In our case, the real-time source contributes to 20% of the total
traffic entering the network at nodes 1, 2 and 3. The source has a weight of 1000 and acts
as connection 1. There are a total of 52 connections in the network with source node for
each of these connections being one of the three existing nodes and destination node
being N3 for all the 52 connections. The length of ON and OFF period of the bursty

traffic source is calculated by [28],

L:H[Lna-_m-l] ,
In(1- p)

where, p = 1/average burst period (active or idle) length, 0 £ R <1 is a random number

generated, and O0< p<1 is the inverse of the average ON or OFF period length in

packets.
Connections 2 to 21 are Poisson sources (PS 21-40) each with a weight of 37 and an

inter-arrival time whose probability density function (pdf) is depicted in Figure 4.2.

43

100+

Probahilitv (%)

70 80

Packet inter-arrival time (ms)

Figure 4.2: Inter-arrival time probability density

function for PS 21-40 with weight 37
Thus, from Figure 4.2, the average inter-packet arrival time for PS 21-40 is 90 cycles,
which means, packets entering N2 from these sources are spaced 90 cycles apart on
average. A cycle duration of 1 ms is assumed in this thesis. Thus if the link rate is /
bytes/ms, it means that the link can carry ! bytes in 1 ms or, in our case, in 1 cycle.
Connections 22 to 41 are also Poisson sources (PS 1- 20) each with a weight of 55 and an
average inter-arrival time of 60 cycles, whose pdf is shown in Figure 4.3. For the above
two Poisson sources, the stress is mainly on the average packet inter-arrival time and so,
the inter-arrival times are distributed close to the average inter-packet arrival times.
Connections 42 to 51 are constant sources, each having an inter-arrival time of 135 cycles
with a hundred percent probability and with a weight of 37. The last connection (52) is
the best effort source having a weight of 111. The best-effort source is expected to be

backlogged continuously.

Simulations are run for various offered loads based on various arrivals of best-
effort connection and, with and without the presence of cross-traffic from constant

sources. The simulation details and results are discussed in Section 4.7 of this chapter.

100+
90-
80-
704
60-
50-
40+
30-
20-
10|
qin

40 50 60 70 80

Packet inter-arrival time (ms)

Probability (%)

Figure 4.3: Inter-arrival time probability density
function for PS 1-20 with weight 55

All the constant-rate connections have relatively random arrival times. The following
parameters are chosen to characterize offered load: X, Xave, I. The minimum packet
inter-arrival time 18 Xnin, Xave 1S the average packet inter-arrival time over an interval of
duration I. The incoming connections are made to obey these restrictions on the input
traffic by the use of the regulator (refer to Section 4.5.4). The switch is assumed to be
non-blocking, that is, when packets arrive at the input link, they can be routed directly to
appropriate output links without switching conflicts. Queueing occurs only at the output

port of the switch.

45

4.4 Packet Length Distribution

Bennett and Zhang, in their simulations, assume packets to be of fixed size for
ease of implementation [21]. In this thesis, both fixed and variable-sized packets are
considered so that the switch can be used for high-speed packet switched networks and
not just ATM networks. The packet length distribution used is obtained from the Internet
traffic observed over approximately 84 million packets by Traffic CAIDA (Co-operative
Association for Internet Data Analysis) organization for the years 1997-2000 at NASA
Ames Internet Exchange (AIX). The results obtained were consistent and can be
expressed in the Figure 4.4a [29]. Figure 4.4a shows a plot of the packet size and their

arrival as a cumulative distribution.

Cumulative Distribution of Packet Sizes
FIX West, 3/12/38 1532UT, 435 sec. ATM OC-3 Gigaswiich

40

100 e
= —~— Packets
80 F _ d —— Bytes
70 2
- |
= L
80 | E
8 oF /S]
n_ -
50 :{(
£ 3
@
=
=
=
O

30

20 §

i0

4
b

0 PRI T O T (T (R T 0 (BT 0 0 S T 0 TG U O RV N0 U4 O T 0 Y O T
g 500 1000 1500 2000 2500 3000 3500 4000 4500
Packet Size {bytes)

Figure 4.4a: Cumulative distribution of packet sizes [29]

46

From the plot, it can be seen that 50% of the packets have lengths ranging between 40 and
44 bytes and close to 75% of the packets have length less than 552 bytes. Also, less than
0.005% of the packets have lengths greater than 1500 bytes, and thus ignored. The
maximum packet size can thus be assumed to be 1500 bytes. Packets of length 40 bytes
correspond to TCP (Transmission Control Protocol) since the minimum packet size for
TCP is 40 bytes. The plot has been interpreted by Traffic CAIDA organization as follows:
10% of the packets are of length 1500 bytes (which is also the maximum packet size), 5%
of the packets vary between the lengths 550 bytes and 1500 bytes, 10% of the packets are
of length 552 bytes, 15% of the packets range between the lengths 44 bytes and 500
bytes, and, 60% of the packets have lengths ranging between 40 and 44 bytes. The 40-44

byte packets are usually acknowledgement packets, and, they occur frequently.

Probability (%)

44 250 552 1000 1500

Packet size (bytes)
Figure 4.4b: Packet length distribution

The plot shows the result obtained for the year 1998. The results obtained for the years

1997, 1999 and 2000 are quite similar to the results obtained for the year 1998 and so, the

47

simulation conducted in this thesis assumes the packet sizes to follow the same
distribution. This distribution is shown in Figure 4.4b, which shows the cumulative
distribution converted into a pdf based on the stated approximations. The variable-sized

packets arriving through each connection entering a node follow this distribution.

4.5 Implementation

The software simulator framework is obtained from Mehrotra’s work [30] and
modified and augmented based on the needs of the specific implementation and analysis
details required, while preserving the modularity of the simulator. The block diagram of
the software simulator is shown in Figure 4.5. The various blocks involved in the
software implementation are traffic generators, input buffer, input and output links, rate

controller (regulator) and scheduler. Each of these blocks is discussed below.

4.5.1 Traffic Generator

The traffic generators read the pdf information for each connection from the
corresponding data file. There are two pdf files, one containing the probability
information about the length (as discussed in Section 4.4 of this chapter), named
length_pdf.dat, and the other containing probability information about the inter-arrival
time between packets (as discussed in Section 4.3 of this chapter), named iat_pdf.dat. The
traffic generator for each connection reads the connection’s details from an initialization

file called sessionN.ini where N is connection number.

48

Traffic

generators
TGEN1 Scheduler
Regulator
TGEN2 i?}l;?; Input Output
\ link link
IP g g
o
o]

e o

. o
TGENS2

Figure 4.5: Block diagram of the scheduling simulator (software implementation)

In this file, the details such as the name of the file where the packet length details
are found (length_pdf.dar), the name of the file where the packet inter-arrival time details
are found (iat_pdf.dat), the source and destination nodes for the connection and most
importantly, the connection’s restrictions such as values of Xy, Xayve and I that are
allowed can be obtained. Based on the details read from the pdf files, the packets are
generated randomly following the constraints of the pdf files.

The traffic generator is implemented as a Finite State Machine (FSM). It remains
in one of the two states, gemerafe_packet or wait_for_next_packet. During the
generate_packet state, the traffic generator generates a packet and then finds the next
packet arrival time randomly based on the pdf obtained from the files. When the packet is
generated, a pointer is assigned to it and this packet pointer is sent to the next block
instead of the packet itself. During the wait_for_packet state, a counter counts down

during each cycle, until the time for the next packet arrives.

49

4.5.2 Input Buffer

The input buffer is used to temporarily store the packet pointers. There is only one
input buffer for each node, which stores packet pointers from all the connections. When a
packet is generated by the traffic generator, the control unit (to be discussed in a later
subsection) obtains the packet’s pointer and stores it in the input buffer. The packet
passes through the input buffer without any queueing only when the input link has
sufficient capacity to remove the packet immediately from the input buffer. The switch is
assumed to be ideal and non-blocking. Also, an output-queued switch is assumed. The
input buffer is used in this case only to temporarily store the packets generated, until they
can be sent into the input link. Similarly, packets leaving the output link of one node enter
the input buffer of the next node in the network and remain there, until the input link of
the next node is ready to send the packets through it.

The control unit takes the packet pointer from the traffic generator once it is
generated and sends it to the input buffer for storage. The input buffer accepts the packet
pointer sent by the control unit and stores it in the buffer using the function
store_packet_pointer() and retrieves the packet pointer back to the control unit through
the function get_packet_pointer() if the input link is available to carry the packet forward
into the next block. If the input link is not available, the packet remains in the input
buffer. This thesis assumes the switch to be non-blocking and so, the input link is always
available to carry packets to the regulator. We have used an input buffer, though it is not

required, for the purpose of processing the packet arrival details obtained from the file

50

(pif.dat), which contains the packet arrival pattern captured from the previous simulation,

in order to compare the two schemes.

4.5.3 Transmission Link

There are two instances of the transmission link. One is the input link and the
other is the output link. The input link transports the packets from the traffic generators to
the regulator, or, to the scheduler in the case of a work-conserving scheduler. The output
link removes the packets from the scheduler and sends them to the input buffer of the next
node or, in case of the last node, destroys the packet. The transportation of the packet
from one block to another through the transmission link is based on the link capacity of
the transmission link. In case the transmission link is not able to carry one full packet in
one cycle because the link capacity available per cycle is less than the packet length, then
the packet will be sent in more than one cycle. The main difference between the input link
and the output link is that the input link has a capacity that is four times that of the output
link. Actually, this means that there are four links entering each node bringing packets
from various connections. In this simulator, instead of having four links, the input link is
designed to have four times the capacity of the output link.

The transmission link can be in one of the three states, namely, idle, busy and
done. When the link is in state idle, it is ready to receive packets from the input buffer (if
it is the input link) or from the scheduler (if it is the output link). When the link is in state
busy, it implies that the link is busy sending packets previously received. When the link

goes to state done, it means, the link has finished sending the packet/packets and will go

¥

to idle state next. As before, the transmission link also has two more functions, namely
the store_packet_pointer() and the ger_packet_pointer(). The function of these two

functions is the same as discussed previously.

4.5.4 Regulator

The regulator implemented is the rate-jitter controlling regulator, which
reconstructs the distorted traffic pattern partially as discussed in Chapter 2. Firstly, the
regulator stores the packet pointer in its queue using the store_packet_pointer() function.
If sufficient space is available in the packet buffer, then the packet pointer is stored in it.
Otherwise, the packet is dropped. In this simulator, for the purpose of delay analysis, the
buffer is assumed to be of infinite size, and so, no packet is ever dropped due to buffer
overflow. The regulator uses the (Xmin, Xave, I) traffic model which is described in Section
2.3.1, which illustrates that the inter-arrival time between successive packets in a
connection should be less than Xy and the average inter-arrival time of packets during
an interval of length I should be no greater than X;,.. The regulator obtains the value of
Xmin» Xave and I for a particular packet pointer’s connection by reading the sessionN.ini
file, where N is the connection number. With these details, the regulator calculates the
eligibility time for a packet by calling the function compute_eligibility_time(). The
manner in which the eligibility time is calculated is discussed in Chapter 2 where the
formula for calculating the eligibility time is given. Once this eligibility time is
calculated, another function called packet_pointer_available(), called by the control unit,

checks to see if the packet pointer is eligible by comparing the eligibility time with the

52

current system time and if it is eligible, then it is available to be sent to the scheduler. So,
the next function ger_packet_pointer() removes all the packet pointers that are available
one behind the other from the regulator queue and passes them to the control unit. The
control unit then passes these packet pointers to the scheduler to be served to the output

link.

4.5.5 Scheduler

There is one instance (either WFQ or WF2Q+) of the scheduler and the control
unit chooses one of the two scheduling disciplines, namely, WFQ and WF°Q+ while
running the simulation and initiates only that instance. The constructor of the scheduler
reads the scheduler buffer size, the connection’s weight, and, source and destination
nodes for each connection. The function store_packet_pointer() stores the packet pointer
in the connection’s queue. There is one queue per connection. There is a function called
compute_finish_number(), which calculates the finish number for each packet based on
the scheduling algorithm. Once the control unit calls the ge?_packet_pointer(), the packet
with the least finish number is selected to be served in both the cases of WFQ and
WF?Q+ algorithms. The only difference between the two algorithms in terms of
implementation is that for the WE”Q+, while storing the packet pointer there is no need to
find the number of active connections to update the finish number and so, there is no need
to go through all the connections once as in the case of WFQ algorithm.

Once the packet pointer has been stored in the scheduler queue, the

packet_pointer_available() checks to see if there is a packet pointer available in any of

53

the connection queues. If one is available, then the get_packet_pointer{) removes the
packet pointer from the queue. This is done by selecting the packet pointer with the
smallest finish number in the case of WFQ and the packet pointer with the smallest finish
time in the case of WF2Q+. Moreover, in the case of WFQ, the round number is updated

every time a packet arrives.

4.5.6 Data Handler

The data handler is a special unit that collects the packet information and then
processes this information to produce some useful results like generating the output which
indicates the number of packets arrived, the number lost, the minimum, maximum and
average delays of each connection, the total traffic load entering each node, etc. It also
collects information such as packet length, the connection to which each packet belongs,
the node it enters and exits etc. The constructor in the data handler collects the following
information from the initialization file, scheduler.ini:

= simulation_end_time — the number of cycles for which the simulation is to be run

= number_of sessions — the total number of connections in the network

= number_of _nodes — the total number of nodes in the network

= write_session_stat_file — flag to indicate the data handler to write the connection’s
details like total number of packets, packets lost, minimum delay, average delay
and the maximum delay for each connection in each node, into a file

» session_stat_file — the file into which the connection’s details are to be written

54

® per_packet_info ~ display the packet information such as, packet number,
connection number, node number, packet length arrival time, time in regulator
etc., when the packet is destroyed

® write_packet_info_file — write the packet information into a file rather than
printing it out

® packet_info_file - the file name into which the packet information is to be written

® fime_data — collect the time data

= write_time_data_file — write the time data to a file

» fime_data_file — the file name into which the time data has to be written
The data handler has a function called output_results(), which stores all the

collected information into various files. It is possible to collect the per packet information

and store it in a file. This file consists of the details of the packet event times such as

packet_created, packet_in_input_buffer, packet_leaves_input_buffer,
packet_on_input_link, packet_leaves_input_link, packet_in_regulator,
packet_leaves_regulator, packet_in_scheduler, packet_leaves_scheduler,

packet_on_output_link and packet_leaves_output_link. Some of this information such as
packet_created, packet_number, session_number and node_number are also used in the

hardware implementation.

4.5.7 Control Unit

The control unit runs the entire simulation by calling the functions of each of the

objects it creates. Some of the objects created by the control unit are traffic generator,

55

input buffer, input link, regulator, scheduler, output link, data handler, packet buffer and
simclock. It then initializes each of these objects with the values obtained from the
scheduler.ini file. The control unit opens the scheduler.ini file, and retrieves information
such as the simulation end time, random seed, input link rate, output link rate, number of
nodes, number of sessions, traffic type, total buffer capacity, scheduler type — WFQ or
WF°Q+, regulator capacity, input buffer capacity and other packet information details.
Depending on the scheduler type, the control unit calls one of the two scheduling
disciplines. The flow of control unit is illustrated in the flow chart shown in Figure 4.6.
Once the simulation starts, a check is made to find out whether the simulation can
be continued or not. In this check, if the simulation end time has already been reached and
there are no more packets available anywhere in the simulator (input buffer, input link,
output link, regulator and scheduler) then the simulation stops immediately. Otherwise,
the simulation continues and the traffic generator is run first, where the packets are
generated. Once a packet is generated, the packet pointer is captured and it is stored in the
input buffer. This continues until all the generated packets have been stored in the input
buffer. Now the input link is checked whether it is idle and ready to receive packets. If it
is, then the packet pointers are retrieved from the input buffer and stored in the link. The
number of packet pointers that can be stored in the link depends on the link capacity.
Now the input link is run wherein the packets are sent through the link. Once this is done
the packet pointers are obtained from the input link and stored in the regulator, if the
scheduling simulator is implementing a non-work-conserving scheduler or, in the

scheduler, otherwise.

56

Cstart simulation)
D
(®)
continue
simulation?

end simulation)

if packet availablé
in IB, IL, reg,

sched, OL of any
pode?

continue
simulation
TRUE

continue simulation
=FALSE

V
TGEN->run()

A

TGEN->GetPktPtr()
IB->StorePkitPtr()

IB->GetPktPtr()
IL->StorePktPtr()

Figure 4.6: Flowchart of Control Unit

57

IL->GetPktPtr() IL->GetPktPtr()
Reg->StorePktPtr() Sched->StorePktPtr()

Reg->GetPktPtr()
Sched->StorePktPtr()

Sched->run()

\

if OL link
available?

Sched->GetPktPtr()
OL->StorePktPir() [~

delete
PktPir

OL->GetPktPtr()
IB(nextnode)->StorePktPtr()

Figure 4.6: Flowchart of Control Unit (contd.)

38

Once the packet pointers are stored in the regulator, the eligibility time is calculated and
when the packet pointer is available in the regulator, it is stored in the scheduler. Once in
the scheduler, the finish number or finish time is calculated and the packets are sent out of
the scheduler based on the least finish number or least finish time. These packet pointers
are then obtained from the scheduler and sent to the output link, where they are again
dispatched based on the output link rate into the input buffer of the next node or if it is the
last node, it is destroyed and the packet details are collected by the data handler and
stored in file. Every time a packet is destroyed, its event timings are recorded in a file,
pif.dat, for future analysis. This file is used in the hardware implementation to obtain the

arrival times of packets, thus facilitating comparison of hardware and software results.

4.6 Simulation Results

In this section, the delay characteristics of the real-time connection under the
WEQ and WQ+ disciplines are studied. The simulation is run for several cases and
from the results obtained conclusions on the behaviour of the two disciplines can be
arrived at. Each simulation run lasts for 10,000 cycle. The traffic arrival pattern chosen
resembles that used in [21], but only fixed-sized packets case is considered in this paper.
This thesis considers both fixed and variable-sized packets. The simulation is first run for
the WFQ algorithm and then the traffic arrival pattern is captured. This arrival pattern is
then used for the WF’Q+ algorithm. These measures ensure fair comparison of
algorithms. The simulation is conducted with and without cross traffic from constant

source and with the Poisson sources exceeding their guaranteed rate (violating their traffic

59

constraint) by 50%. That is, the Poisson sources are sending at a rate of 1.5 times their

guaranteed rate. The real-time source is a deterministic bursty traffic. The various cases

considered are tabulated as shown in Table 4.1

constant source

source (average packet
inter-arrival time = 3
cycles)

Packet size Cross traffic Best-effort source Link rate
Least best-effort source
(average packet inter-
Without cross- | arrival time = 1000 cycles)
traffic from Maximum best-effort
constant source source (average packet Link rates at the
Fixed-sized mtcr—amvriﬂ D= output of nodes
packets of 50 s beg:";f‘;so)n ——— NL,N2andN3=
bytes . 50, 100, 150
(average packet inter- bytes/cycle
With cross- arrival time = 1000 cycles)
traffic from Maximum best-effort

Variable-sized
packets

Without cross-
traffic from
constant source

Least best-effort source
(average packet inter-
arrival time = 1000 cycles)

Maximum best-effort
source (average packet
inter-arrival time = 3
cycles)

With cross-
traffic from
constant source

Least best-effort source
(average packet inter-
arrival time = 1000 cycles)

Maximum best-effort
source (average packet
inter-arrival time = 3
cycles)

Link rates at the
output of nodes
N1,N2and N3 =
44,320, 1500
bytes/cycle

Table 4.1: Various cases considered for software
simulation and hardware implementation

The three link rates chosen for fixed-sized packets indicate the following: the link
rate of 50 bytes/cycle corresponds to sending only one packet per cycle through the
output link (since each packet is of size 50 bytes), the link rates of 100 bytes and 150
bytes correspond to sending two and three packets per cycle respectively through the
output link to test for lower Joad values. When the simulation was run for a link rate of
200 bytes/cycle, all the packets under the WFQ+ discipline experienced zero delay. Thus
link rates of 200 bytes/cycle and beyond are not considered here. The three link rates
chosen for variable-sized packets denote the following. The link rate of 44 bytes/cycle
implies that the link is capable of allowing only a 44-byte packet (smallest sized packet)
to be sent through the output link in one cycle. Any packet, which has a size larger than
44 bytes, will take more than one cycle (1 ms) to leave through the output link. The link
rate of 1500 bytes/cycle implies that the link is capable of allowing a packet of a 1500
byte packet (maximum packet size) in one cycle. The intermediate link rate of 320
bytes/cycle is obtained from the packet length pdf. According to this distribution, on
average 319 bytes of packets arrive in one cycle or 1 ms and therefore, the link rate is
rounded to 320 bytes/cycle.

Firstly, considering fixed-sized packets, taking each packet size to be 50 bytes, the
plot of end-to-end delay for real-time source for the case of least best-effort traffic and an
output link rate of 50 bytes/cycle, without any cross traffic from constant source is shown
in Figure 4.7a for the WFQ discipline. The plot of delay versus time for the WF*Q+
discipline is shown in Figure 4.7b. The best-effort traffic has an average inter-arrival time
of 1000 ms. In other words, 20% of the packets have an inter-arrival time of 600ms, 20%

of the packets have an inter-arrival time of 800 ms, 20% of the packets have an inter-

61

arrival time of 1000 ms, 20% of the packets have an inter-arrival time of 1200 ms and the
remaining 20% of the packet have an inter-arrival time of 1400 ms. The total load at the
entrance of N3 is 85.5%. The simulation results for these two cases showing the total
number of packets from each connection, the minimum, maximum and mean delay
experienced by the connections in each node and the standard deviation for the

connections in each node are given in Appendix A. Standard deviation is calculated to

I [|r :'I t‘ i

End-lo-end delay (ins)
End-to-end delay (ing)

i

l_-.a AR L R D P TR PR Al] AL i 3g 3 E Dt EhiE CiHs LREARE i O] R $EELI

o 1000 3000 mﬂn“:l::la)m FOOO 8000 8000 10000 o 1000 2000 3000 mms:?owm TO00 EDOD 20DD 0000
Figure 4.7a: End-to-end delay of WFQ Figure 4.7b: End-to-end delay of
scheduler for fixed-sized packets WF’Q+ scheduler for fixed-sized
without cross-traffic with least best- packets without cross-traffic with least
effort traffic and an output link rate of best-effort traffic and an output link
50 bytes/ms. rate of 50 bytes/ms.

measure how much the individual delay values deviate from the average delay. From the
above two plots, the worst-case delay experienced by the packets from the real-time
connection in both the cases of WFQ and WFzQ + are almost the same, 13 ms and 12 ms
respectively. The minimum delay is 0 ms for both the cases of WFQ and WF?Q+. The
average delay of the WF’Q+ discipline (ms) is less than that of the WFQ discipline (ms).
This accounts for the fact that WE’Q+ follows the GPS service order more closely than
the WEQ discipline. The standard deviations of the two disciplines do not show much

difference. Similarly, plots of end-to-end delay of WEQ and WF°Q+ when the output link

62

is 100 bytes/ms and 150 bytes/ms are shown in Figures 4.8a, 4.8b, 4.9a and 4.9b,

respectively.
5 5
45* 45
ar Lls
__‘!5:}‘ ggs.
E |
> 3k 3k
325. gzs q
£ 2 $ 2
E z

Figure 4.8a: End-to-end delay of WFQ Figure 4.8b: End-to-end delay of

scheduler for fixed-sized packets WE?Q+ scheduler for fixed-sized
without cross-traffic with least best- packets without cross-traffic with least
effort traffic and an output link rate of best-effort traffic and an output link
100 bytes/ms. rate of 100 bytes/ms.

3 T .,’ T g "l

T G R—

End-to--end delay (ms)
End-to-end delay (ms)

] ; i L ; § AURTRI Y 0 ! } ML B
[1000 2000 3000 4000 5000 £000 VOO0 2000 2000 10000 0 1000 2000 3000 4000 S000 G000 FOOD 8000 S0DD 10000
Tima (fms) Time (ms)

Figure 4.9a: End-to-end delay of WFQ Figure 4.9b: End-to-end delay of

scheduler for fixed-sized packets WF2Q+ scheduler for fixed-sized
without cross-traffic with least best- packets without cross-traffic with least
effort traffic and an output link rate of best-effort traffic and an output link
150 bytes/ms. rate of 150 bytes/ms.

When the link rate is 100 bytes/ms, there is a clear difference between the delays
experienced by packets under the WEQ scheme and that under the WF°Q+ scheme (see

plots on Figures 4.8a and 4.8b). In this case, the load at N3 is close to 43%. The

63

maximum delay experienced by a packet under the WFQ scheme is 5 ms while that under
the WF°Q+ scheme is only 2 bytes/ms. The average delay is also comparatively less in
the WF°Q+ scheme. The standard deviations of the two disciplines differ greatly in this
case. The WFQ scheme shows much higher standard deviation than the WF°Q+ scheme.
In other words, the delays of packets under the WFQ scheme oscillate between the
minimum and maximum value most of the times rather than remaining close to the
average delay. A similar explanation holds when the link rate is 150 bytes/ms. The load at
N3 in this case is around 28%. It is useful to compare the delay performance of the two
disciplines by subjecting them to various traffic loads so as to ensure that the results are
valid even when the network is heavily loaded. From this discussion, it can be said that
WEQ+ performs better than WFQ for all the three cases of output link rates and

therefore, traffic loads.

The next case is without constant source and with maximum best-effort traffic.

The best-effort traffic has an average inter-packet arrival time of 3 ms in this case.

g

5

u:m:- 7 JI
n‘m v // I =z
Sl ~ 3
o e |
" - i
. o J
: &
s Vil f
0 W00 2000 3000 4000 5000 6000 7000 800D S000 10000
Time (ms) Time {ms}
Figure 4.10a: End-to-end delay of Figure 4.10b: End-to-end delay of
WEQ scheduler for fixed-sized packets WEFQ+ scheduler for fixed-sized
without cross-traffic with maximum packets without cross-traffic with
best-effort traffic and an output link maximum best-effort traffic and an
rate of 50 bytes/ms. output link rate of 50 bytes/ms.

The results for this case can be seen from the Figures 4.10a, 4.10b, 4.11a, 4.11b, 4.12a
and 4.12b for output link rates of 50, 100 and 150 bytes/ms respectively. When the output
link rate is 50 bytes/ms, the load at N3 is above 118%. For such a high load, the real-time
packets under the WFQ discipline experience a very large delay. Heavy traffic load leads

to the scheduler queue build up leading to instability.

End-lo-end delay (ms)

1 i it
[i | At
0 1000 2000 3000 4000 5000 6000 7000 8000 5000 10000

Time {ms)
Figure 4.11a: End-to-end delay of
WEFQ scheduler for fixed-sized packets
without cross-traffic with maximum
best-effort traffic and an output link
rate of 100 bytes/ms.

End-to-end delay {ms)

7

% 000 2000 2000 4000 SO0 G000 OO0 GOOD 000 10000
Time {ma)

Figure 4.12a: End-to-end delay of
WEFQ scheduler for fixed-sized packets
without cross-traffic with maximum
best-effort traffic and an output link
rate of 150 bytes/ms.

End-to-ond delay (ms)

End-to-end delay (ma)

65

h i fii |
nli 7000 2000 3000 4000 5000 6000 7000 BOOD 9000 10000
Time (ms)

Figure 4.11b: End-to-end delay of
WF2Q+ scheduler for fixed-sized
packets without cross-traffic with

maximum best-effort traffic and an
output link rate of 100 bytes/ms.

|
"
¥
8
L |
[

aimmmmmmm'mmim
Time {ms}

Figure 4.12b: End-to-end delay of
WF°Q+ scheduler for fixed-sized
packets without cross-traffic with
maximum best-effort traffic and an
output link rate of 150 bytes/ms.

The reason for the load to exceed 100% at N3 is because of the cross-traffic from Poisson
source at N2 and N3 which exceed their guaranteed rate by 50%. Moreover, since four
input links are allowed to enter the switch, the load coming from each link would be so
high that the load at the output link exceeds 100%.

The Figure 4.10a is completely different from the plots that were seen until this
case. The difference in y-axis scale of the plot for the WFQ discipline (Figure 4.10a) and
WFQ+ discipline (Figure 4.10b) should be noted. The average delay experienced by
packets from the real-time connection at N3 is 947 ms for the WFQ discipline. This is
unsuitable for any real-time application. Usually the network is not so heavily loaded as
this leads to overflowing queues. Nevertheless, when compared with the average delay of
packets under the WFzQ-i- discipline (which is 2.45ms), the delay of WEQ discipline is
much higher. In the case of WF’Q+ discipline, though the overall arrival rate at N3 is
118%, the arrival rate N1 from the real-time source is less than 100% and the load from
the best-effort traffic at N1 does not affect the delay of packets from the real-time
connection. However, in the case of WFQ disbipline, the maximum load arriving from
best-effort traffic affects (increases) the delay of packets from real-time source at N1. At
N2, due to the traffic from Poisson sources, this delay further increases thus leading to
queue build up. When these two figures (Figures 4.10a and 4.10b) are compared with the
corresponding ones from the least best-effort case (Figures 4.7a and 4.7b), it can be seen
that the WF’Q+ discipline tries to retain the same delay for the packets of the real-time
connections even when there is cross-traffic from the best-effort connection at N1,

whereas the WFQ discipline is affected by the cross-traffic from best-effort connection at

66

N1. The results for output link rates of 100 bytes/ms and 150 bytes/ms are quite similar to
the previous case of least best-effort traffic.

The next case considered is the end-to-end delay of real-time source with the
presence of cross-traffic from constant source, with least best-effort traffic and various
output link rates of 50, 100 and 150 bytes/ms. The packets from constant source are
spaced 135 ms apart. The results are plotted in Figures 4.13a, 4.13b, 4.14a, 4.14b, 4.15a

and 4.15b. When the output link rate is 50 bytes/ms, the load at N3 is close to 93%.

i
12H

End-to-end delay (ms)
End-to-end delay (ms)
@

L3

i
h 4§ 1
FiL L
f:
H § i §

Time (ms)
Figure 4.13a: End-to-end delay of Figure 4.13b: End-to-end delay of
WEQ scheduler for fixed-sized packets WF°Q+ scheduler for fixed-sized
with cross-traffic with least best-effort packets with cross-traffic with least
traffic and an output link rate of 50 best-effort traffic and an output link
bytes/ms. rate of 50 bytes/ms.

Again, the average delay of the WF?Q+ discipline is less than that of the WFQ discipline
(refer to Figures 4.13a and 4.13b). The standard deviation is close to the average delay in
this case showing that the delays of most of the packets are distributed close to the
average delay. Also, the maximum delays are almost the same for both the cases. The
maximum, minimum, average delays and the standard deviation values are presented in

Appendix B. When the output link rate is 100 bytes/ms, the load at N3 is 46%. Here

67

again, the average delay, maximum delay and the standard deviation of packets from the

real-time connection are less for the WF°Q+ discipline than the WFQ discipline. When

the output link rate is 150 bytes/ms, the load at N3 is 30%. For the cases when the output

link rate is 100 bytes/ms and 150 bytes/ms, the delays experienced by packets in the WFQ

discipline vary between the maximum and the minimum values more often.

End-to-end delay {ms)

End-to-end delay (ms)
w
e

o

n
TSN N

-

]

6000

5000

[1000 2000 3000 4000
Time (ms)

Figure 4.14a: End-to-end delay of
WEFQ scheduler for fixed-sized
packets with cross-traffic with least
best-effort traffic and an output link
rate of 100 bytes/ms.

45+

&

w B IS

Lo
T

B

Figure 4.15a: End-to-end delay of
WEQ scheduler for fixed-sized
packets with cross-traffic with least
best-effort traffic and an output link
rate of 150 bytes/ms.

w

End-lo-and delay (ms)

. it
3000 4000 5000
Time {ms)

1000 2000

Figure 4.14b: End-to-end delay of
WEFQ+ scheduler for fixed-sized
packets with cross-traffic with least
best-effort traffic and an output link
rate of 100 bytes/ms.

iy e |

{
BOC0 TO00 E000 S000 10000

| & i

End-lo-gnd delay (ma)

-y

%7 4 {5
0 1000 2000 3000 4000 5000 G0O0 FOOO G000 SOOO

Time (ms}

Figure 4.15b: End-to-end delay of
WF2Q+ scheduler for fixed-sized

10000

packets with cross-traffic with least
best-effort traffic and an output link

rate of 150 bytes/ms.

68

That is, the oscillations are high which means the delay-jitter is high. The same for the
WQ+ discipline are concentrated close to the average delay. Thus, from the Figures
4.132, 4.13b, 4.14a, 4.14b, 4.15a and 4.15b, and also from the standard deviation values,
it can be observed that WF°Q+ discipline has a better delay performance in terms of the
average delay, maximum delay and the delay jitter.

The last traffic pattern considered in the fixed-sized packets case is the case of

maximum best-effort traffic with the presence of constant source. Here the load for a link

g

" R | ¥ T
| | U il L ; !J
= A FARRRARAN
A 0 L
=§ ,.// | % {il 3 1
£ g ' 3 il
; /"/’] §
5 1000 P "4 &
i - - 1 / Ii! {
G'L; . 3 x : . ‘ oL IR A LEF. e Ll | Joli ol SR AR
] 1000 2000 2000 mmsw;mjm JOO0 BOOD BOGD 1000] 1000 2000 3000 4000“330“}600\! 7000 8000 5000 10000
Figure 4.16a: End-to-end delay of Figure 4.16b: End-to-end delay of
WFQ scheduler for fixed-sized WE?Q+ scheduler for fixed-sized
packets with cross-traffic with packets with cross-traffic with
maximum best-effort traffic and an maximum best-effort traffic and an
output link rate of 50 bytes/ms. output link rate of 50 bytes/ms.

rate of 50 bytes/ms is higher than the previous case without cross-traffic and with
maximum best-effort traffic for the same link rate. In this case, the load at N3 is 125%.
As before, as the queue keeps building up the packets in the WFQ discipline experience
more delay. The delays of the first few packets cause the rest of the packets to be delayed
further and the queue builds up. As can be seen from Figures 4.16a and 4.16b, the

maximum delay for a real-time connection under the WFQ scheme is above 2600 ms,

69

which is unsuitable for high-speed networks, whereas that under the WF2Q+ scheme is

still close to that of the least best-effort traffic case (seen in Figure 4.13b).

£
]
%
2

-

B

Ll

e

End-to-end delay (ms)

L T Lii: i :E:I :
1000 2000 3000 4000 SDOC G000 7000 2000 S000 10000
Time {ms)

Figure 4.17a: End-to-end delay of
WEFQ scheduler for fixed-sized
packets with cross-traffic with
maximum best-effort traffic and an
output link rate of 100 bytes/ms.

Figure 4.18a: End-to-end delay of
WEFQ scheduler for fixed-sized
packets with cross-traffic with
maximum best-effort traffic and an
output link rate of 150 bytes/ms.

End-1o-end delay (ms)

End-to-and delay (ms)

Y

w
~ M W R

114 iGN i
3000 4000 5000 TFOOO B00D H0OC 10000
Time {ms)

Figure 4.17b: End-to-end delay of
WF*Q+ scheduler for fixed-sized
packets with cross-traffic with
maximum best-effort traffic and an
output link rate of 100 bytes/ms.

&

~

Time (ms)

Figure 4.18b: End-to-end delay of
WF2Q+ scheduler for fixed-sized
packets with cross-traffic with
maximum best-effort traffic and an
output link rate of 150 bytes/ms.

The results for the cases when the link rates are 100 bytes/ms and 150 bytes/ms are the

same as the previous cases with the packets under the WF°Q+ discipline having a lower

70

delay compared to those under the WFQ discipline (Refer to Figures 4.17a, 4.17b, 4.182,
4.18b).

Thus it can be perceived that WF°Q+ scheme remains unaffected by the presence
of cross-traffic either from best-effort source or from constant source. The results
obtained until now are consistent with those obtained by Bennett and Zhang in [21].

For certain applications that involve feedback-based algorithms that are used in
data communication networks, oscillations as seen under the WFQ scheme for fixed-sized
packets are undesirable. In this case, a data source has to balance between two
considerations: on the one hand, it wants to send data to the network as fast as possible;
on the other hand, it does not want to send data so fast that causes network congestion.
The oscillations in WFQ make it unsuitable for such applications. Also, it is inferred that
the scheduling algorithm should not send packets too fast that it causes network
congestion in the next node [10]. For these reasons, WF?‘Q+ discipline which has a

smaller delay-jitter is preferred over WFQ discipline for fixed-sized packets.

6 - - — =
i
! g
5i— ,// 5p o~
v
i r
.| o el ¥
B o~ & ~
= > R
: Pls 3 e
'EQL / =3 /
6 | g & #
3 s s -
- | :g »
&2r / w2 o
! i
1 / -
1' / 1k ’/
i i /
|- i -
iy
A . . : . . J./ : ; . : . ;
] a5 1 15 2 25 3 35 4 0 a5 1 15 2 25 3 a5 4
Time (ms} i Time (m5) -

Figure 4.19a: End-to-end delay of
WEFQ scheduler for variable-sized
packets without cross-traffic with
least best-effort traffic and an
output link rate of 44 bytes/ms.

Figure 4.19b: End-to-end delay of
WF2Q+ scheduler for variable-sized
packets without cross-traffic with
least best-effort traffic and an
output link rate of 44 bytes/ms.

71

The same algorithms are tested for variable-sized packets. The results obtained did not
match that obtained for fixed-sized packets. In their paper, Bennett and Zhang, did not
consider the case of variable-sized packets. Considering the case of variable-sized packets
with least best-effort traffic and without constant source, Figures 4.19a and 4.19b show

the delay distribution for both the disciplines when the link rate is 44 bytes/ms.

60; : : - - : - . . . 0

0!] %

o -

5

End-to-end delay {ms)
]
End-to-end delay (ms)
s

20 i E‘ 1|i i ‘ 00
° j .-; Ilﬁ'i‘i H{ oE; ‘___. L T i 1d i)
[1000 2000 00 m“u.'a?:ﬂm;m 7000 8000 BOOD 10000 [+] 10600 200 3000 qmonms?::m)m 7000 800D 5000 1000G
Figure 4.20a: End-to-end delay of Figure 4.20b: End-to-end delay of
WEFQ scheduler for variable-sized WF?Q+ scheduler for variable-sized
packets without cross-traffic with packets without cross-traffic with
least best-effort traffic and an least best-effort traffic and an
output link rate of 320 bytes/ms. output link rate of 320 bytes/ms.
3 i | 3:
| |‘ i]
25t i § i ! é - zra-

End-to-and delay (ms)

o
b

|

1000 200 3000 4000 5000 S000 FUO0 8000 9000 10000

Time {ms)
Figure 4.21a: End-to-end delay of Figure 4.21b: End-to-end delay of
WEFQ scheduler for variable-sized WF?Q+ scheduler for variable-sized
packets without cross-traffic with packets without cross-traffic with
least best-effort traffic and an least best-effort traffic and an
output link rate of 1500 bytes/ms. output link rate of 1500 bytes/ms.

72

In this case, the load at N3 is 638%, which is practically not possible. The scale along the
x-axis clearly shows that it takes around 40,000 ms to serve all the packets in the queue.
Moreover, the delay is as high as 14,000 ms for a real-time source (see y-axis scale).
Therefore, this case is ignored (not considered for comparison). Though the delay is high
for this case, the reason for considering this case (and similar such cases where the load is
extremely high and the queue is overflowing) is to compare this case (and similar such
cases) with the case of fixed-sized packets with cross-traffic and with maximum best-
effort traffic and an output link rate of 50 bytes/ms (Figures 4.16a and 4.16b) where the
queue does not overflow for WF?Q+ as it overflows in the case of WFQ eventhough the
load exceeds 100%, in both the cases.

The next case is a link rate of 320 bytes/ms and the same arrival pattern as before.
In this case, the load at N3 comes to around 82%. The plots of delays are shown in
Figures 4.20a and 4.20b. Contrary to the previous results obtained for the fixed-sized
packets, in this case, the average delay of the WFQ+ discipline is higher than that of the
WEQ discipline. This is because WF?Q+ tries to approximate GPS as closely as possible.
In other words, WFQ is far ahead of GPS in the number of bits served during any interval
of time. The maximum, minimum, average delays and the standard deviation values are
presented in Appendix C. It can also be seen that the delay-jitter is high for WF>Q+
discipline owing to the oscillations of the delay around the average delay. Although WFQ
has higher delay and delay-jitter for fixed-sized packets, the delay and delay-jitter are
lower for variable-sized packets. Though the delay and delay-jitter are higher for the
WF?Q+ discipline, the end-to-end delay is bound within the tolerable limits. When the

output link is further increased to 1500 bytes/ms, the load is around 18%. For such a light

73

load, the delays under both the disciplines are almost identical as can be seen in Figures

4.21a and 4.21b.

B?.?L,___, e e a s;lq‘f.__,___ R
?L _/-"’-.J- 7- ‘
s” //’ s»

| -

21 ~ } il 5T

2 ~ ki 7

&) / Iri o
2k i 2: /"/
v s
T | P
a;{_’ e L 1. L TS Bl n;L-..::.‘,_._l_....__...L..__.__.i_ e e e s
[i] 05 1 15 2 25 3 35 4 ['] 05 1 15 2 25 3 35 4

Time {ms) %10 Tine (s} w10

Figure 4.22a: End-to-end delay of Figure 4.22b: End-to-end delay of
WFQ scheduler for variable-sized WF2Q+ scheduler for variable-sized
packets without cross-traffic with packets without cross-traffic with
maximum best-effort traffic and an maximum best-effort traffic and an
output link rate of 44 bytes/ms. output link rate of 44 bytes/ms.

For the case of maximum best-effort traffic and without cross-traffic from
constant source the load at N3 is 864%. The plots are shown in Figures 4.22a and 4.22b.
This is again not fit for comparison. The queues build up and the delays of the newly
arriving packets increase because the previously armrived packets have not been
transmitted yet. The reason for such a high traffic load is mainly because four input links
are allowed to enter the switch. Therefore, it is possible that all four links have greater
than 100% load or in other words, have sources that exceed their agreed traffic profile. In
such a case, the traffic arrival load is beyond 400%. Moreover, the ouput link rate is so
less (44 bytes/ms) that if a packet size is larger than 44 bytes, the packet will be sent in
more than one cycle through the output link. This is the cause for such a high load of
864%. When the link rate is 320 bytes/ms, the load at N3 is 119%. The average delay of

packets under the WFQ discipline is lesser than that under the WF’Q+ discipline as can

74

be seen in Figures 4.23a and 4.23b. In this case, the delay of packets in the best-effort

connection is higher under the WFQ discipline than under the WF’Q+ scheme (Appendix

54 8

End-to-end delay (ms)
s 8 &8 8

e B B

Figure 4.23a: End-to-end delay of
WEFQ scheduler for variable-sized
packets without cross-traffic with
maximum best-effort traffic and an
output link rate of 320 bytes/ms.

End-to-end delay (ims)

AF H3l
2000

Figure 4.24a: End-to-end delay of
WEQ scheduler for variable-sized
packets without cross-traffic with
maximum best-effort traffic and an
output link rate of 1500 bytes/ms.

End-to-end dalay (ma)
5 ¢

3

3

4] :.f a i : i
ML U R
2000 3000 4000 5000 6000

Time {ms)

L | LI S R
7000 BOO0 800D 0G00

Figure 4.23b: End-to-end delay of
WFZQ-i- scheduler for variable-sized
packets without cross-traffic with
maximum best-effort traffic and an
output link rate of 320 bytes/ms.

w
o »

.

End-lo-and delay (ms)
o b e b

i
s

wi AR
8000 000 10000

Time {ma}

Figure 4.24b: End-to-end delay of
WF2Q+ scheduler for variable-sized
- packets without cross-traffic with
maximum best-effort traffic and an
output link rate of 1500 bytes/ms.

75

For a link rate of 1500 bytes/ms, the load at N3 is 25%. The delay under both the
cases of WFQ and WF?Q+ disciplines are almost identical for such a light load as can be
seen in Figures 4.24a and 4.24b.

For the case of variable-sized packets, with constant source, with minimum best-
effort traffic and a link rate of 44 bytes/ms, the load at N3 is 664%. The packets from
each constant source are spaced 135 ms apart as before. Again, for this heavy traffic load,
it is not possible to compare the two disciplines as the queues build up and the delay
gradually increases from one packet to the next. The delay plots are shown in Figures
4.25a and 4.25b. For the case, when the link rate is 320 bytes/ms, the load at N3 is 91%.
The maximum, minimum, average delays and the standard deviation values are presented
in Appendix D. In this case, as before real-time packets under the WF°Q+ experience

more delay than those under the WFQ discipline as can be observed from Figures 4.26a

and 4.26b.

8 X e

% i : 3 /

2 o 3 r

8 e 2 -

‘%m ,/"// 32 ,/
! - o | /'/.
/zusi& g et sl
<] 05 1 15 Tme e} 35 4 =‘o‘ [:] a5 1 15 %mg[mais 3 35 4 :‘1‘:‘5
Figure 4.25a: End-to-end delay of Figure 4.25b: End-to-end delay of
WFQ scheduler for variable-sized WEF’Q+ scheduler for variable-sized
packets with cross-traffic with least packets with cross-traffic with least
best-effort traffic and an output link best-effort traffic and an output link
rate of 44 bytes/ms. rate of 44 bytes/ms.

76

-

-]
S -
i

End-to-ond delay (ms)

Figure 4.26a: End-to-end delay of Figure 4.26b: End-to-end delay of
WFQ scheduler for variable-sized WFZQ-J- scheduler for variable-sized
packets with cross-traffic with least packets with cross-traffic with least
best-effort traffic and an output link best-effort traffic and an output link
rate of 320 bytes/ms. rate of 320 bytes/ms.

When the link rate is 1500 bytes/ms, the load at N3 is around 19%. As before, this
light load causes the delays under both the schemes to be identical for real-time source.

This is illustrated in Figures 4.27a and 4.27b.

6.8 o £ o

EM-ME: delay (ms)

~
= b

Figure 4.27a: End-to-end delay of Figure 4.27b: End-to-end delay of
WEFQ scheduler for variable-sized WF2Q+ scheduler for variable-sized
packets with cross-traffic with least packets with cross-traffic with least
best-effort traffic and an output link best-effort traffic and an output link
rate of 1500 bytes/ms. rate of 1500 bytes/ms.

77

For the case when there is cross-traffic from constant source and with maximum

best-effort traffic, the load at N3 is 927% when the link rate is 44 bytes/ms. This case is

ignored for the reasons discussed before. The delay plots are shown in Figures 4.28a and

4,28b. When the link rate is 320 bytes/ms, the load at N3 is around 127%. Again WFQ

shows lower delay than WF’Q+ discipline as is shown in Figures 4.292 and 4.29b.

10"

GE r ™ T ™ ~— i
! 1
i]
i |
i i
5¢ 1
! F
i -
g A

= | -

E o7

£ -~

i -

B ol

3 rd

E2r F
.I ./
1 /./
i .-"/
|
|-l NI, - . J- -
[1 2 3 4 5 5

Time {ms} ltln.

Figure 4.28a: End-to-end delay of
WFQ scheduler for variable-sized
packets with cross-traffic with
maximum best-effort traffic and an
output link rate of 44 bytes/ms.

70+

g 8
= AP . | N PR | PRSP | S—l

End—w—ungrlahv(m]
2 T T - SN

1000 2000 3000 4000 5000 SO0 TOO0 G000 G000 10000
Time (ms)

Figure 4.29a: End-to-end delay of
WFQ scheduler for variable-sized
packets with cross-traffic with
maximum best-effort traffic and an
output link rate of 320 bytes/ms.

4
x 10

&
F |
// f
o
5
rd 4
s
. rd
g #
= P
2 7
2 4 -
k13
¢
2
k-] ‘
a2 P
Vi
.
i /
rd
v
-
% 1 2 3 5 e
Time (ms} '

%10

Figure 4.28b: End-to-end delay of
WF?Q+ scheduler for variable-sized
packets with cross-traffic with
maximum best-effort traffic and an
output link rate of 44 bytes/ms.

e 6 8

End--to-and delay (ms)

-]

Figure 4.29b: End-to-end delay of
WF2Q+ scheduler for variable-sized
packets with cross-traffic with
maximum best-effort traffic and an
output link rate of 320 bytes/ms.

78

From these two figures, it can also be observed that the delay-jitter is lower for WFQ
discipline than the WF’Q+ discipline. Again for the case when the link rate is 1500
bytes/ms, the load at N3 is around 27%. The delay plots are shown in Figures 4.30a and

4.30b. For this case, the delays are almost identical for the reasons discussed previously.

b

End-to-and delay (ms)

i i
{ILiT

SHEIE 2o EERE S i
6000 TCO0 8000 S0D0 10000

5000

o IWE m:mn m

Time {ms)

Figure 4.30a: End-to-end delay of
WFQ scheduler for variable-sized
packets with cross-traffic with
maximum best-effort traffic and an
output link rate of 1500 bytes/ms.

Time (ms}

Figure 4.30b: End-to-end delay of
WF?Q+ scheduler for variable-sized
packets with cross-traffic with
maximum best-effort traffic and an
output link rate of 1500 bytes/ms.

From the above discussion on variable-sized packets, it can be observed that the
delays experienced by packets under the WFQ+ discipline are higher than those under
the WFQ discipline. The oscillations are high in the case of WF°Q+ discipline and
therefore jitter is high, contrary to the results obtained for the fixed-sized packets case.
Thus for the case of variable-sized packets, WFQ discipline could be a better choice for
high-speed networks. For high-speed networks, the main requirement is lower
complexity. High-speed networks can tolerate a slight increase in the average delay, but if
the complexity of the algorithm is too high, it is not feasible to use the algorithm at high

speeds. WEFQ+ has reduced algorithmic complexity. So, it will be a good choice to go for

79

WEFQ+ for high-speed networks even though it has a higher average delay and a higher
delay-jitter for variable-sized packets. Although, WF°Q+ is fairer than WFQ, the only
justification for higher average delay and delay-jitter of WF°Q+ is that it is maintaining
the fairness property at any cost. It is possible to make WFQ implementation simpler by
using the method used in WF’Q+ to calculate the virtual time function. WFQ would be
simpler but not fairer to all the connections because of its service order which is not fair
to all the connections.

The results obtained for variable-sized packets do not mean that WF*Q+ does not
have a tight delay bound for variable-sized packets. It has a tight delay bound, but the
delay bound is slightly higher than that of WFQ. That is, the average delay of WF?Q+ for
variable size packets is higher than WFQ, but the delay is bounded around the average
delay. Also, it is possible that the average delay of WF2Q+ is higher than WFQ, because
this algorithm closely approximates the GPS system. That is, WEF’Q+ is no earlier than,
nor, no later than GPS by one maximum packet size. In other terms, the lower delay
obtained for WFQ is because it is far ahead of GPS in the number of bits served during
any time interval. WFQ and GPS provide almost identical service except with a
difference of one packet, according to Parekh [8]. Parekh meant that WFQ cannot fall
behind GPS by more than one maximum size packet. However, WFQ can be far ahead of
GPS in terms of the number of bits served and this might be one of the reasons for the
higher delay in WF?Q+ compared to WFQ. For WF’Q+, when the plots for variable-sized
packets are observed, the worst-case packet delay is large compared to that of WFQ. This
is not the case for fixed-sized packets. The reason for this might be that WF’Q+ is trying

to be fair to all the other connections and so, in order that the other connections do not

80

have greater delay as in the case of WFQ, the packets from this connection are
experiencing more delay. Moreover, only those packets, which have already started
service in the corresponding GPS system, will be considered for scheduling and so, delay
(or, worst-case delay) of WF2Q+ is higher for variable-sized packets.

Applying the same arrival pattern shown in Figure 3.1a to the algorithms WFQ
and WF’Q+ under the case of variable-sized packets, assume the second packet arriving
in connection 1 is of size 1500 bytes. Then, according to the WFQ algorithm, it might
have a finish number which is greater than the finish number of the other connections. In
such a case, one packet from connection 2 will be sent on the output link. The time taken
to send this 1500 byte packet will affect the departure time of the first packet in the
second connection. This causes an increase in the delay of the first packet in the second
connection and thus makes the algorithm (WFQ) unfair in the service provided for all

other connections except the real-time connection.

4.7 Discussion

The decision on which scheduling discipline to use depends on the specific
application, whether it can tolerate the high algorithmic cost (in which case the choice
would be WFQ), whether it can tolerate the higher delay or whether it consists of only
fixed-sized packets (in which case the choice would be WF?Q+). This chapter described
the software implementation of a simulated system and discussed the results obtained in
detail. Though the algorithmic complexity for WF’Q+ is reduced, the cost of maintaining

the queues in the regulator and scheduler is still O(N) where N is the number of

81

connections. The next chapter describes the hardware implementation of the two
algorithms. In the hardware implementation, the cost of maintaining the regulator queues

is reduced by the use of calendar queue implementation.

82

Chapter 5

5. Hardware Implementation

5.1 Introduction

Chapter 4 discussed software implementation of the two scheduling disciplines
and the end-to-end delays for these two disciplines. This chapter discusses the details of
hardware implementation of the two scheduling algorithms. The same network model
assumed in the software implementation is also assumed here. Each block in the hardware
implementation is explained with flow diagrams, where necessary. The traffic arrival
pattern used in the hardware implementation is obtained from the software simulator and
the results (packet arrival and departure times) of the hardware implementation are
processed in software to obtain the desired end-to-end delay for comparison. A
behavioural level architecture is used for writing the VHDL codes. The hardware
implementation verifies the feasibility of realizing the scheduling algorithms using the

prevailing VLSI design tools.

5.2 Hardware Implementation

The blocks involved in the hardware implementation are shown in the block

diagram of Figure 5.1. The figure has been obtained from the framework of Mehrotra in

83

A

gl dafa; +—link_rate_clk——
e a ¥ .
- _address bus_ | |—destn_node——+ dispatch -—packet_ava"ablej
two port P +—buffer_empty—{ buffer f: BT T b
memaory v-——ﬂmsm-a——y’ server |—packei_available —» +-—-destn_node—-—»
e serving_packet————
module —memory_select — P— — packet_ready—
e——memory_RW—— - - g —.
B Cinit_server HORUL ot
o ¥ i
% 2 ---cuk-:l , = ————— Init echeduler——
é gl Bt co:‘t?c‘:;ler -data._ :::‘: \-curen
g § i nput datay SO - putmRIGE)
g E v T2 buffer1 | data_availables -
R . 5 g\ a'j -engqueue_data L ¢di Qaii ' \1
< init_memory_manager ;, 2!1 'g T x i
—elk = | s
memory latch_data—' § = g Q s = |
manager v P =i B : g |2
* E NIK | g (eumentyy 3
m 8 5 3 ledata_read-| ' ' © |%
x N o e cq 8
= § [GElLpH, Session)i m @mj \
2 = O bBuffor N | 4 svetsoi 8
o = 3 o S 3 -enqueue_data . N ©
‘g 5 gﬁi 8 . - "‘ B « dequeue_data | -EI
2 HENE S A-| stamp J _ — &
3' J8S e I [;@y‘_ on_Sounter v y3iH Ly
o Sgg T —clk*[
T 8nE B init_counter
3 o
£ 3 3 request_from_scheduler scheduler
L ; regulator request_fro ‘_regulatog ” N
. " bus 4% 97
C US| N SRR
db_controller [* —— controller
=) Js) .
i bus_ack é = 5 bus_Ack
‘[L_..__...._‘._ ———db controller read—| |-Ig 5
db_controller_write- ¥ f‘g g’;
: o wistate enabufqum‘“mdm-lg_ e decoder | || F——
to_upper_layer|, :
Jeply to u ' request_from_upper_layer 1 :
A e . 3 3L Y
& e 5 _Sessjon_bus - | -
~ < b = - L
‘\. T 0 —_data_bus U Y

Figure 5.1: Block diagram for a single node

84

his post-doctoral work [30] with some modifications. The framework was originally
designed for single node case and fixed-sized packets. With the introduction of multiple
node case (network), more signals had to be introduced. Moreover, since variable-sized
packets are also considered in our design, there was a need for more changes to be
introduced to the existing framework. The figure details every signal flowing between the
blocks. The main blocks involved in the hardware implementation are input unit, memory
manager, two-port memory module, database controller, main controller, regulator,
scheduler, bus controller, tristate buffer, server and the dispatch buffer. The regulator
consists of calendar queue blocks, namely, decoder, buffer, counter and multiplexer to
queue the packets until they are eligible. The implementation of each of these blocks is
described below. The regulator queues are implemented using the calendar queues to
reduce the implementation cost of maintaining the queues. Throughout the
implementation, behavioural level description is used. Function verification has been

done using simulator tools, and synthesis has not yet been carried out.

5.2.1 Input Unit

The input unit accepts the packet information and sends it to the memory manager
for storage in the two-port memory. The packet information arrives from the testbench
which reads the packet information file, pifdat, created by the software simulator’s data
handler. The packet arrival information from this file is sent to the input unit, which then
sends this information to the memory module. The packet information received by the

input unit includes node number, connection number, packet number, packet length and

85

arrival time. The input unit is implemented as an FSM with two states, wait_for_packet

and receive_packet.

5.2.2 Memory Manager

The memory manager is capable of accepting the packet information from the
input unit and storing it in the two-port memory for future retrievals. It generates a pointer
to the packet and stores the packet information in the two-port memory at this pointer. It
also latches the packet pointer and the connection’s details obtained from the input unit
into the regulator and cq_decoder (these blocks will be discussed in Sections 5.2.6 and
5.2.7). The memory manager uses the pointer as an address location in the memory to
store the packet information in memory. This detail is required by the server at the time of

dispatching the packet.

packet
available =0

location
available packet

available =1 puffer
full=0

location
not
available

wait
buffer

search
next
location

Figure 5.2: State diagram of memory manager

86

The memory unit is implemented as an FSM with seven states: init, wait_for_packet,
wait_for_memory_write, wait_buffer_full, memory_write, search_next_location and
wait_for_memory_read. The state diagram is shown in Figure 5.2. The memory manager
receives the initialize signal from the main controller. It then goes to state,
wait_for_packet and remains there until a packet becomes available. Once the packet is
available, the memory manager writes the packet details into the data bus and the packet
pointer into the address bus entering the memory module. The memory manager then
waits for the packet details to be written into the memory and then searches for the next
location in memory where the next packet can be written. Once the next location is found,
the memory manager reads that location and is ready to receive the next packet. Sufficient
time is allowed for the memory manager to search for the next location in memory. There

are at most 256 searches because the size of the two-port memory is 256 locations.

5.2.3 Two-port Memory

The memory is implemented as 256 X 4, that is, 1K bits and does not use any
delay to access the memory. So, the delay is assumed by the memory manager or the
server. That is, the memory manager and server wait for sufficient time (memory access
time) and then read from or write into the memory. This size of the memory is found to

be sufficient for testing the scheduling algorithms.

87

5.2.4 Main Controller

The main controller initializes mainly the memory manager, database controller,
regulator, scheduler, server and time stamp clock. It is built as a finite state machine with
5 states: start, init, wait_for_cell, stari_regulator and wait_for_cq_fifo. In the init state, it
initializes all the blocks and then waits for cell. When the memory manager gives the
command to latch data from the latch, it latches the data onto a bus and initiates the
regulator and waits for the regulator to finish reading the data. Once the regulator read is
done, the controller asks the cq_decoder to read the packet pointer and waits for an
acknowledgement from the cq_fifo. Once the acknowledgement is received, the main

controller goes back to state wait_for_cell until the next packet arrives.

5.2.5 Database Controller

The tristate buffer block receives the connection number and the corresponding
details of the connection like X, Xave, I, source node, destination node and the
connection’s weight required for the regulator and scheduler blocks. These details are
read through the tristate buffer and stored in the database controller (db_controller).
When the regulator or scheduler requires this information for any particular connection,
they request bus access to the bus controller and then read the connection’s details from

the db_controller.

88

5.2.6 Regulator

The regulator helps to smooth the traffic arrival pattern in the scheduler. The
regulator delays packets from those connections that send transmit at a rate higher than
that guaranteed to them. The regulator calculates the eligibility time for a packet and if
the packet is not immediately eligible, then it is delayed by the delay unit (to be discussed
in the next subsection) before sending it to the scheduler. The regulator block is omitted
in a work-conserving scheduler. In such a case, the packets directly enter the scheduler
from the memory manager. The regulator is implemented as an FSM with eight states:
start, init, wait_for_cell, requesi_session_data, wail_for_session_data, calc_eligible,
store_cell and wait_for_ack. The regulator is initialized by the main controller. When it
goes to state wait_for_cell, if a packet arrives, the regulator gets the connection number
from the packet and then checks to find out whether this particular connection’s details
are already available in the regulator’s cache. If it is available then the details are obtained
from the cache. Otherwise, the regulator tries to get hold of the bus by sending a request
to the bus controller. Once the bus controller acknowledges, the regulator obtains the
connection’s information such as Xnin, Xave, I from the db_controller and then calculates
the eligibility time of the packet in state calc_eligibile. In order to calculate the eligibility
time, the regulator needs to know the arrival time of the packet into the regulator. For
this, a time stamp clock is present, which gives the time at which the packet enters the
regulator. The time stamp clock is simply a counter which is enabled when the regulator

is initialized. With the help of the arrival time and the information about the connection,

89

the regulator calculates the eligibility time for the packet. Once the eligibility time is

calculated, the eligibility details are sent to the delay unit.

5.2.7 Delay Unit

The delay unit consists of four blocks and is used to delay a packet by the required
amount of time which is specified by the regulator. The delay unit is also not present in
the work-conserving scheduler. The delay unit is implemented as a calendar queue [10].
As an example, one needs to schedule an event on a calendar by writing down the event at
the appropriate page, with each page corresponding to one day. There may be any number
of events for a particular day. The time of each event is based on its priority. Scheduling
an event in the calendar corresponds to the engueue operation and reading the today’s
page in the calendar and removing the first event for today is the dequeue operation.
Implementing the same in hardware consists of a set of queues, one per page of the
calendar. In this implementation, there are eight queues (cq_{fifo) each corresponding to a
day of the year. That means there are eight days in a year. If there is a packet in one of the
queues but it is not currently eligible, because it does not match with the current year,
then its eligibility will correspond to the same day of next year or the year after the next.
In this implementation, each day corresponds to one cycle. The counter is incremented by
one, every cycle.

* Calendar queue decoder: This unit passes on the packet information to the
appropriate cq_fifo. It receives the day information from the regulator and uses

this information to select one of the eight cq_fifos and then if the cq_fifo is ready

90

to accept the packet information, the cq_decoder sends the packet information to
the cq_fifo and waits for an acknowledgement from the cq_fifo. Once the
acknowledgement is received, the cq_decoder passes on this acknowledgement
signal to the regulator and main controller.

Calendar queue fifo (buffer). This unit stores packet information in its queues.
There are eight instances of the cq_fifo in this implementation corresponding to
eight days in a year. It has two main operations: enqueue and dequeue. Thus it has
the following states in its FSM: init, wait_for_event, enqueue, dequeue. When in
state enqueue, the data is stored in the sorted queue. Each fifo queue has 4 buckets
one per year and the data is entered into the bucket corresponding to the current
year. The year value is obtained from the data which has two additional bits
indicating the year of arrival of the packet. The data that goes out of the cq_fifo
into the cq_mux does not have the two bit year information, as it is already used
up to select the particular bucket in the cq_fifo. When in state dequeue, only that
bucket which corresponds to the current year is checked and the data if there is
any in that bucket of the cq_fifo queue is removed.

Calendar queue multiplexer: The cq_mux selects one of the available cqg_fifos
based on the current vear and date received from the cq_counter. From this
cq_fifo, it dequeues the data available and sends this data to the scheduler block.

Calendar queue counter: The cq_counter counts one day at a time.

91

5.2.8 Bus Controller

The bus controller controls the access to the bus between the regulator and the
scheduler. When either the regulator or the scheduler wants to gain access to the bus, it
places the request to the bus controller. The bus controller, first checks to see if there is
no other request currently being served and if not, provides access of the bus to the
regulator or scheduler. If there is a request from regulator and scheduler, the bus
controller uses a decoder to select one of regulator and scheduler and provides bus
acknowledge to it. The bus controller also enables the tristate buffer and sends the

db_controller_read and db_controller_write control signals to the db_controller.

5.2.9 Scheduler

The scheduler is implemented as an FSM with 10 states: siart, init,
wait_for_event, enqueue, request_session_data, wait_for_session_data,
calc_finish_number, dequeue, wait_to_serve_packet and serve_packet. The state diagram
of the scheduler is shown in Figure 5.3.

The scheduler is initialized by the main controller. Once it is initialized, the
scheduler goes to the wait_for_event state. If a packet is available, it is indicated by the
cq_mux and the scheduler immediately enqueunes the data. The scheduler now caches
important data required in calculating the finish number. Then, the scheduler requests the
connection’s details from the db_controller by sending a request to access the bus. Once it
gains control of the bus, the connection’s details like the connection’s weight, the source

node, the destination node, etc., are obtained from the db_controller. With these details,

92

init_scheduler=0

init_scheduler=1

fifo data_available =0

acket_available =0

packet_
available =1

calc
finish

wait for
session
data

available = .
serving_

packet =0

engueue

wait to
serve
packet

request
session

data

serving_packet = 1
Figure 5.3: State diagram of the scheduler

the scheduler calculates the finish number of a packet and then selects a packet with the
least finish number to be dequeued. The scheduler now waits for the server to be ready to
receive a packet pointer. Once the server is ready, the scheduler sends the packet pointer
to the server. Both the schemes (WFQ and WF2Q+) follow the same procedure. The only
difference is in the calculation of the finish number. During the state, calc_finish_number,
the WF°Q+ scheduler updates only one pair of start and finish number for a particular

connection, while the WFQ scheduler maintains a pair of queues, one for start time and

93

the other for finish time for each connection. The new start time and finish time

calculated will be placed in the appropriate positions in the two queues.

5.2.10 Server and Dispatch buffer

The server section has two blocks namely the server and the dispatch buffer.

= Server: The server receives the packet pointer from the scheduler and retrieves the
corresponding packet from the two-port memory. The server is implemented as an
FSM with eight states: idle, init, wait_for_packet, wait_for_memory_read,
memory_read, wait_for_buffer, write_to_buffer and wait_for_memory_write. The
server is initialized by the main controller. When the server is in state
wait_for_packet, it sets the serving_packet signal low, to indicate the scheduler
that it is not serving any packet currently. Now, the scheduler sends a packet and
the server, sets the serving_packet signal high indicating the scheduler that it is
currently busy serving a packet and is not free to receive any new packet pointer.
The server then selects the memory module and sends the packet pointer in its
address bus. The server now waits for the memory to read the address and map the
corresponding data into the data bus., Once the data is available in the data bus, the
server reads the data and checks the dispatch buffer until it is ready to receive a
packet. When the dispatch buffer is empty, the server sends the packet to the
dispatch buffer and clears that particular location in the memory, so as to allow

other packets arriving in the memory to be written in that location. The dispatch

94

buffer clears the memory location by setting the valid_bir of that location to low
which implies that the location is empty.
= Dispatch buffer: The dispatch buffer is clocked by the link rate clock. It sends the
packets based on the output link rate. As soon as it receives data from the server, it
informs the server that it is not free anymore by setting the buffer_empty signal
low. It sends the packet into the link and if there is more space available in the
link then it raises the buffer_empty signal. Otherwise, it will raise the signal only
in the next link rate clock, when the packet has been served.
The above discussion of the hardware implementation is only for a single node. In
the case of multiple nodes the whole block diagram described in Figure 5.1, will be

repeated for each node. This is shown in Figure 5.4.

NWC NWC NWC
| scheduler [scheduler || scheduler
|| FIFO | FIFO
File 1 File 2 File 3
NWC scheduler testbench

Figure 5.4: Block diagram of multiple node implementation

95

Two nodes are connected with the help of a FIFO in between, which helps in buffering
new packets entering that particular node (from File 2 or File 3) and packets departing the
previous node. The FIFO sends the packets into the node (input unit of node) one a first
come first served (FCFS) basis. Files 1, 2 and 3 are the packet information files (pif.dat)
which contain information such as packet number, connection number, node number
arrival time and also the arrival time of the next packet. The packets are actually
generated in the software simulator and the details are stored in the above mentioned
files. Thus, the input unit of each node gets the information about the arrival time of the
next packet while reading the current packet. This information helps the input unit to read
from the file only when required, that is, only when a packet is available and not every

cycle.

5.3 Testing

A testbench is written to test the functionality of the hardware implementation.
Some of the important signals involved are traced in Figure 5.5. This first signal shown is
the system clock. A clock with a frequency of 100 MHz is used. A system clock having a
period of 12480 ns is derived from the base clock. This time is required to allow packets
from four different links to arrive into the switch at the same time. The first packet
arriving is read from the packet arrival information file. The details of the packet such as
node number, connection number, packet number and arrival time of the packet are all
stored in the file. This detail is stored into the signal, packet_infoN. The

packet_availableN signal goes high when the packet has been read from the file and is

96

L6

0 10000 20000 30000 40000 50000 60000 TO¢

iiiiraveabiaa e aiale e llllllJlllltiIiillllg'ilrJlx'l‘llll--rlllltlll

2 Hisyaté m_clk

.. Hiinit_controlier!

- Hiinit_controller2

... Hiinit_controller3
.Hipacket_availablel
..Hipacket_available2
..Hipacket_svsilables

| | ' |

B .Hipacket_info1(4g:0) | 1040014500010 | 1040024500011 | 1040034500012 | 1040041F 40013 | 1040050560014 [1040067D]
B .. Hipacket info2{49:0) JJUUUUUUULULY 2040014500010 | 2040024500011 | 2040034500012 | 2040041F40015 [20400505]
b . Hipacket. info3{49:0) UUUULUUUUUULY | sp40014500010 | 3040024500011 | S04GO34500012 [3040041FY]

...Hipacket_dispatchedi L l

...Hr_‘_packct_diapabheda I [

. Hipacket_dispeicheds I [| |
b .Hiouput Jink1(4:0) |UUUUUY| 1040014500010 | 1040024500011 | 1040034500012 | 1040041F40013 | 1040osusE0014 ||
B ...Hioutput_link2{48:0) UUUUUUUUULULU | 2040014500010 | 2040024500011 | 2040084500012 | 2040041 F4o0ts 1|
b .. Hioutput_Jinks{49:0) UUULULULUUUUU | soavo14500010 | 3040024500011 | s04vKEAs00012 ||

Jusers.cs.study/mnt /padmini /padmini_code_7 /NWC_SCHEDULER TESTRENCH . cheetah . 1306
15/5/2003 17:56:4 Page 1,1 of 1,1

Figure 5.5: Timing diagram for the hardware implementation of WFQ scheduling discipline

found to have arrived at the current time. In the example shown in Figure 5.5, a packet
arrives at nodel. The destination node for all the packets entering at nodes N1, N2 or N3
is node 3. Therefore, the destinaltion node for the packet under consideration is node3.
Once the packet information has been read, the details are sent through packet_infol and
the packet_availablel signal goes high. Once this signal goes high, the input unit reads
the corresponding packet information from the packet_infol and sends this information to
the memory manager which assigns an address to the packet and stores the packet in the
two port memory. The packet address and the connection details are alone sufficient for
the regulation scheduling. The packet details are recovered from the two port memory
only when the packet is ready to be served. In the Figure 5.5, the packet arrives at time 1
ns, and is ready to be dispatched at time 6240 ns. At this time, the dispatch buffer sets the
packet_dispatchedl signal high and sends the packet through the owipur_linkl. This
packet then enters node 2. The code has been written such that the packet details are read
by the node, during the first half of the system clock while the packet is dispatched
through the output link at the second half of the system clock. Therefore, the packet
which is dispatched from node 1 at time 6240 ns, will be available at node 2 at 12480 ns.
At this time, the packet_availableZ signal goes high with the corresponding packet’s
information available in packet_info2. Notice the packet information when the packet
enters node 1 is given in hexadecimal as “1040014500010”. This information changes to
“2040014500010” when the same packet dispatched form node 1 enters node 2. This is
because, the first two bits of the packer_info are allotted to node information and when
the packet is in node 1, the values of the first two bits are 1 ((01);) and when at node 2,

these values change to 2 ((10),). The packet is dispatched from node 2 at time 18720 ns.

98

66

T DEMIUok
..DE{/system_ck
. .DE{/packet_available
& ..DE{/packet_inlo{d91)
...DE 1 buffer_full_from_input_unitt
...DEflatch_data_from_mermory_manageri T
B ..DEflpacket_ptr_sossion_bus(640) 27777
.-DE1/regulator_road_jrom_main_controller hl Bl
.DE1request_irom_upper_layer
...DEVraquest_from_regulator
..DE/raquest_from_schedulor
e ..DEVbus_ack_from_ristate_decoder(1.0)
..DEVreply_to_upper_layer
..DE{/session{5:0)
..DE1/data(42:0)
..DE1/db_controer_read_from_bus_conlr...
...DE/db_controfler_wiite_from_bus_contr...| U |
DEV/request_sarved_from_db_controlier
PN | L
..DE1/cq_fifo_ack_fiom_cq_decoder S
...DE1/fifo_data_available_from_caq_mux
_.DEt/packet_ready_from_schaduler
I T Rk | ——————rY——
..OE 1 serving_packet_from_servor v
...DE V/packet_dispaiched - o)
s __v__y_qu_uu__u_puﬁ“ua:r__"_ —— -.‘ — ——— ___”___J

T

oo | o [oF [0 | 11 | 12 [w

¥

v

s/users.cs.study/mnt/padmini/padmini_code_7/NWC_SCHEDULER TESTBENCH.cheetah.883
22/5/2003 22:42:46 _ Page 1,1 of 1,1

Figure 5.6: First packet arrival

001

200 250

“oea T e

.DE1fsystem_clk
.. DE1/packet_available

P — e il T e = e - -
st P — s e e s — == =
...DE1/latch_data_from_mamery_manager1

w- ..DEV/packet_ptr_session_bus(84:0)
...DEV/regulator_read_from_main_controller
«.DEVrequost_from_upper_layer
.DEV/request_from_regulator
.. DEt/request_irom_scheduler

- . DE1/bus_ack_from_ristate_decoder(1:0) |

...DEVreply_lo_upper_layer —

...DE/session(5:0)

¥

== DE{/data(42.0)
...DE1/ub_controfler_read_{rom_bus_contr...

...DEV/db_controllor_write_from_bus_contr...
...DE1/raquest_served_from_db_cantrollar
...DE1/eq_decoder_read_from_main_contr...
DE1/eq_filo_ack_from_cq_dscoder
.. DE1fiifo_data_available_from_ca_mux
...DEV/packet_ready_from_schedulor
...DE1/bufler_smpty_from_dispatch_bufiar
...DE1/sarving_packet_from_sarvor
..DE1/packel_dispatched

g ... DE1/output_link{(49.0)

s/users.cs.study/mnt/padmini/padmini_code_7/NWC_SCHEDULER_TESTBENCH.cheetah.883
22/5/2003 22:14:35 Page 1,1 of 1,1

Figure 5.7: Reading connection details from upper layer

101

..DE1NU_clk
...DE1/system_clk
...DE1 fpackel_available
e ..DE1/packet_inlo(d49:0)
- DE1bulter_tull_trom_input_uniti

...DE1Natch_data_from_memory_manageri
e ..DE1/packet_ptr_session_bus{84.0)
R e b e R —
...DEireques!_from_upper_layer
...DEVrequest_from_regulsator
...DE1/reques!_from_schadular
o~ ,..DE1/bus_ack_from_liistale_docoder(1:0)

DEieph_to_uppor ey NI

b oo nin0) IERERERER]
...DE1/data(42:0) 7E71900101
~DE1idb_controfer_read from buscontr..| i . Sy S
..DE1/db_gontroller_write_from_bus_contr... 1_ T n n n ' ' { |

..DEV/request_served_from_db_controller
..DE1/cq_decoder_reed_from_main_oonir..|
...DEt/eq_fifo_ack_from_cq_decodor

...DEffilo_data_avaitable_from_ca_mux
..DE1/packet_ready_from_scheduuler

...DE/serving_packet_rom_server
b S R N e p—— uuuuuﬁwﬁuuuu L T A S S S TR

L

s/users.cs.study/mnt/padmini /padmini_code 7/NWC_SCHEDULER_TESTBENCH.cheetah.883
22/5/2003 2221577 Page 1,1 of 1,1

Figure 5.8: Regulator reads connection’s details from db_controller

201

550 600 650 700
| |

DEVIU_oK B0 A RSO EACT A M LA AL
..DE1/system_ck
...DE1/packel_available L)

B D tipackotlf4so) _ todoomsoooro T T
...DEA/putter_full_from_input_unitt o I B
..DE1flatch_data_from_memery_manageri .
i e o) - ; — ._.__ s __ T s
-.DE1frequest_from_upper_layer e r— -) I N _
...DEtrequest_from_regulator
...DE1frequest_from_scheduler

we ...DE1/bus_ack_from_lrislate_decodar(1:0)
...DEV/reply_to_uppor_layer

= . DE1/sossion(5:0)

B DEdata(42:0)

..DEA/db_controfler_read_from_bus_contr,..
e, e
.DEW/roques!_served_from_db_contraller |
.DE1/cq_decoder_read_from_main_contr...|
...DE1/on_filo_ack_from_cq_decoder
...DE/filo_data_availabla_from_cq_mux
...DE1/packst_ready_from_schaduler
...DEV/bulier_emply_from_dispatch_bulter
...DE1/serving_packel_from_server
..DEV/packet_dispatched

e ..DEVoulput_link{49.0)

s/users.cs.study/mnt/padmini/padmini_code_ 7/NWC_SCHEDULER TESTBENCH.cheetah.883
22/5/2003 22:15:54 Page 1,1 of 1,1

Figure 5.9: Scheduler reads connection’s details from db_controller

€01

6300 6350

T et S

'I'.'.DE":':-.“M R S B 0 S8 e
e ...DE1/packet_infol49.0)

-..DE1/bulier_full_trom_input_unit1

DEMalch_data_tom_inemory_managert

W i E— S— e —— S
. DE1hegulator_tead_irom_main_conlrolier -
...DE1request from_uppar_layer [e - = S
...DE1hequest_from_regulator
.. DE/equest_lrom_schedulor) o R e e - - = =
s ...DE1bus_ack_from_irisiate_decodor(10)

-.DEV/reply_to_upper_layer

== ...DEi/zession{5.0)

o= DEV/data{42:0) .
..DE1/dh_controlier_road_from_bus_contr... S
...DE1/db_controlior_write_from_bus_contr...
..DEV/raquest_served_from_db_controller
...DEV/cq_decoder_read_from_main_contr...
...DE1/eq_fifo_ack_from_cq_decoder
..DEtifo_data_available_from_cq_mux
..DEV/packet_ready_from_schedular
...DE1foufter_smply_from_dispaich_buffer
..DE1/sorving_packel_from_servar
..DE1/packet_dispatched

we ...DEVoutpul_link(48.0)

s/users.cs.study/mnt/padmini/padmini_code_7/NWC_SCHEDULER TESTBENCH.cheetah.883
22/5/2003 22:17:0 Page 1,1 of 1,1

Figure 5.10: Packet dispatched from server

This packet enters node 3 at time 24960 ns as shown in Figure 5.5 and is dispatched from
node 3 at time 31200 ns.

The arrival and departure of the first packet at node 1 is explained below in detail.
Figure 5.6 shows the timing diagram for the arrival of the first packet. From this figure,
packet_available signal goes high showing that a packet is available and ready to be read
by the memory manager. The corresponding packet information is present in packet_info
signal. The memory manager now sends the data to the memory and latches the packet
pointer information (larch_data_from_memory_manager). In the meanwhile, as soon as
the simulation starts, a request arrives from the upper layer to read all the connection’s
details and store them in the db_controller. This is indicated by the signal
request_from_upper_layer. Also, since the data has been latched by the memory
manager, a request for the bus to read the connection’s details arrives from the regulator.
This is shown by the signal request_from_regulator in Figure 5.6. Since the request from
upper layer arrives first and also because it has a higher priority than the request from
either the regulator or scheduler, the bus acknowledges the request from upper layer.
Therefore, reply_to_upper_layer signal goes high and the connection’s details are read
from session (connection number) and data (Xmin, Xave, I values) signals. The request from
upper layer goes high until all the connection’s details have been written into the
db_controller. Figure 5.7 shows the details of connection (13);6 to connection (25)¢ being
read. In Figure 5.8, all the connection’s details upto connection (34)i6, which is
connection 52, have been read. Now the regulator’s request is acknowledged by the bus.
This is shown by the signal, bus_ack_from_tristate_decoder, becomes 1 (acknowledging

regulator’s request). So, the regulator receives the details of the connection to which the

104

first packet belongs from the db_controller through the bus. Once this is received, the
regulator calculates the eligibility time of the packet. Since the packet under consideration
is the first packet in this connection (aiso the first packet in the simulation), it is
immediately eligible. Therefore, the cq_fifo acknowledges the cq_mux and so,
fifo_data_available signal from the cq_mux goes high as can be seen in Figure 5.9. The
packet pointer is then read by the scheduler. The scheduler now requests access to the
bus. Therefore, the request_from_scheduler signal goes high. The bus immediately
acknowledges the scheduler’s request and so bus_ack_from_tristate_decoder signal
becomes 2 (acknowledging scheduler’s request). Now the connection’s detail (packet
length) is sent from the db_controller through the bus_controller to the scheduler. This is
shown by db_controller_read_from_bus_controller signal going high and therefore
request_served_from_db_controller signal also goes high. Once the scheduler calculates
the next packet to serve (in this case, the first and only packet), the packer_ready signal
from the scheduler goes high as shown in Figure 5.10. This packet_ready signal goes high
only during the second half of the clock cycle, in order to accommodate the arrival of
other packets, if any, from other connections or input links, during the same time cycle.
All the packets arrive during the first half of the system clock and during the second half
the eligible packet(s) are served at link rate. Once the packet_ready signal goes high,
since the buffer is empty in the dispatch buffer (buffer_empty signal is high), the server
serves the packet (serving_packet_from_server signal goes high). Therefore, now, the
packet_dispaiched signal goes high. The next packet arrives at the beginning of the next

system clock (Appendix E).

105

The end-to-end delay plots obtained from the simulation of the hardware
testbench is the same as that obtained for software simulation. As an example, the end-to-
end delay plots for the case of fixed-sized packets without cross-traffic, with least best-
effort traffic and an output link rate of 50 bytes/ms for WFQ and WF’Q+ ae shown in
Figures 5.11a and 5.11b respectively. These two figures are exactly the same as Figures
4.7a and 4.7b, thereby showing that the results obtained for hardware are the same as that
for software. For all the other cases considered in software simulation, the results

obtained for hardware matched that obtained for software. The only difference is that the

" -

Sp

-1 S

End-lo-end delay (ms)
End-to-end delay {ms)

i b Rt B BRI =4 el -GIE LN i SENEVERA LRSSk gl I,
G 1000 2000 3000 4000 5000 5000 FOO0 8OO0 8000 10000

Time (ms}
Figure 5.11a: End-to-end delay of Figure 5.11b: End-to-end delay of
WEFQ scheduler for fixed-sized packets WFQ+ scheduler for fixed-sized
without cross-traffic with least best- packets without cross-traffic with least
effort traffic and an output link rate of best-effort traffic and an output link
50 bytes/ms. rate of 50 bytes/ms.

5.4 Discussion

This chapter described the hardware implementation in detail. The cost involved

in implementing the regulator queues has been reduced by the use of calendar queues in

106

hardware. But the cost involved in selecting the next packet to be served by the scheduler
could not be reduced. The code was written using the behavioral architecture and the
individual blocks were tested with a testbench for each block and then the blocks were
included into one big block constituting a single node (shown in Figure 5.1) and this code
was simulated. Finally, the multiple node case was implemented. The synthesis has to be

carried out.

107

Chapter 6

6. Conclusions and Suggested Future Work

6.1 Conclusions

The choice of a particular scheduling discipline for high-speed packet-switched
networks plays an important role in fast switching. This thesis compares the two
scheduling disciplines WFQ and WFZQ+ in terms of fairness, algorithmic complexity and
end-to-end delay bound they guarantee for both fixed- and variable-sized packets. It had
been reported that WFQ+ performs better than WFQ in terms of end-to-end delay in
every sense. This belief is based on the results of fixed-sized packets (such as in ATM
networks) only. Contrary to this belief, in this thesis, it is shown that for the case of
variable-sized packets, as found in high-speed networks, the delay bound provided by
WEFQ is lower than that provided by WE’Q+.

It was shown in Section 3.3.4 that WFZQ+ which is the same as W’FzQ with
reduced complexity involved in calculating the system virtual time function, has a WFI
that is not a function of the number of connections (N), while WFQ has a WFI that is a
function of WFL Therefore, in terms of the fairness property, WF*Q+ is a better choice.

The speed with which a scheduling discipline serves packets should match the
switching speed. Thus it is highly desirable to reduce the time complexity of the
scheduling algorithm chosen. Among the two scheduling disciplines considered in this

thesis, the three tasks of computing the system virtual time function, maintaining a set of

108

queues sorted by eligibility time in the regulator, and, maintaining the set of eligible
connections sorted by virtual finish times can be accomplished with O(log N) complexity
in WF*Q+ discipline and with O(N) complexity in WFQ discipline. Thus for high-speed
networks WF2Q+ discipline is a better choice in terms of the complexity involved in
selecting the next packet to transmit.

From the plots on end-to-end delay for real-time connections shown in Section
4.7, it clear that WF2Q+ has a lower end-to-end delay when the packet size is fixed.
However, when the packet size is variable, the end-to-end delay of WEQ is lower. This
leads to two observations. It can be said that WFQ is a better choice when the packet sizes
are variable. However, the low delay provided by WFQ for variable-sized packets is at
the cost of increased delay for packets of other connections (best-effort, Poisson sources
and constant sources). Thus it is unfair in the service provided to other connections. In the
case of WF°Q+, the slightly higher delay obtained by real-time connections of variable-
sized packets is because the algorithm is trying to be fair to all the connections. Thus
WEQ is a better choice than WF°Q+ for variable-sized packets only if the connections

other than the real-time connections do not have a strict service guarantee requirement.

6.2 Other Contributions:

= A model for the distribution of packet lengths for variable-sized packets: From the
data obtained from Traffic CAIDA Organization, various packet lengths and their

arrival patterns have been plotted as a probability density function.

109

» With the help of framework provided by Mehrotra for the system [30], an O(1)
priority queue implementation {calendar queue implementation) of the regulator

queues has been carried out.

6.3 Suggested Future Work

This section discusses some of the tasks that can be done in future in order to
improve the existing implementation and also to extend it for the needs of the future
communication networks.

= Synthesizing the hardware blocks: The hardware implementation currently
consists of behavioral level architecture. The code needs to be synthesized.

Currently, work is on progress in synthesizing the blocks involved in the hardware

implementation, one by one. The result of this synthesis would help in deciding

whether an ASIC is required or an FPGA is sufficient for building the scheduling
disciplines in hardware for use in high-speed networks.

® Reducing the space complexity: It is possible to reduce the implementation
complexity to be less than O(log/N). The implementation complexity can be

reduced such that it is no more a function of number of connections, rather a

function of number of discrete rates [4]. In the case of ATM networks (fixed-sized

cells), the server supports fixed number of rates and groups the connections with
the same rate together. Thus the number of queues is reduced from being equal to
the number of connections to the number of service rates. Now, the only

requirement is to schedule among the connections at the head of each group. The

110

complexity grows with number of rates for virtual time completion and priority
management.

In the case of ATM networks, all the connections that share a common rate
are in one group. From each group, the connection with the smallest virtual
starting time is placed in the scheduler, The advantage of such a policy is that if
connections in a group are eligible, the connection within the group in the
scheduler may also be eligible since it has the smallest virtual start time in the
group. Since it also has the smallest virtual finish time in the group, the packet
with the smallest eligible finish time in the scheduler is the one with the smallest
eligible finish time among all packets within the group. Each rate group has a
linked list of time stamps belonging to cells at the head of the queue for each
connection in the group. The entries in the linked list are stored in order of
increasing time stamp.

In the case of packet networks, it is possible to perform regulation (based
on virtual start times) and scheduling (based on virtual finish times) in an
integrated manner. This reduces the worst-case complexity of the overall system.
Instead of using two 1-D priority queues, it is possible to use 2-D sorting
structure. Here, the grouping is done such that connections having the same
difference between their finish and start times are grouped together. This
difference between the finish time and start time of a connection is called the
service interval. Within each group, a timestamp is present to sort among
connections within the group. However, in this case, a connection may not always

be bound to the same group since its service interval depends on the rate and

111

length of the first packet in the connection’s queue. The connection’s queue will
change its group based on the new packet that is at the head of the queue. This is
because the service interval may change with change in packet length. When a
connection changes its group, it can be inserted at an arbitrary position in the
priority queue of new group. Therefore, it is not possible to maintain a sorted
relationship within each group with FIFO queue. Now the virtual finish times of
flows with similar service intervals should be sorted. The virtual finish times of
connections in each group span a range of Ly./Lmin times the service interval,
where, Lng, 18 the maximum packet size and L, 1s the minimum packet size for
variable-sized packets. Therefore if an increase in the delay bound by a fraction of
one service interval can be tolerated, then the complexity of sorting can be
reduced by measuring the virtual finish times in units of fractions of the group’s

service interval. Thus a two-level hierarchical calendar queue (trie) is obtained.

s s e

il EENEENEN BN EEEEEE EEENEREEEEEEREETYEEER

v v
I 5
) g

+
T
2

Figure 6.1: Hierarchical calendar queue for intra-group scheduling{4]

112

This is shown in Figure 6.1. The worst-case complexity is: an enqueue operation
requires one insertion into a linked list along the leaves of the trie and one
replacement of the value within the group data structure. A dequeue operation
needs one scheduler selection among the elements within the group data structure,
one removal of a connection from the head of the linked list and the cost of an

enqueue. Thus the complexity is not a function of number of connections.

113

References

[1] S.Keshav, “An Engineering Approach to Computer Networking — ATM Netowks,
the Internet, and the Telephone Network,” Addison-Wesley, 1997.

[2] P.Newman, G. Minshall and T. L. Lyon, “IP Switching ~ ATM Under IP,”
IEEE/ACM Transactions on Networking, Vol.6, No.2, April 1998.

[3] H. Zhang and D. Ferrari, “Rate-controlled service disciplines,” Journal on High
Speed Nerworks, Vol. 3, No. 4, pp. 389-412, 1994.

[4] D.C. Stephens, J. C. R. Bennett and H. Zhang, “Implementing Scheduling
Disciplines in High-Speed Networks,” IEEE Journal on Selected Areas in
Communications, Vol.17, No.6, June 1999,

[5] D. Ferrari and D. Verma, “A scheme for real-time channel establishment in wide-
area networks,” IEEE Journal on Selected Areas in Communications, Vol.8, pp. 368-379,
April 1990.

[6] L.Zhang, “Virtual clock: A new traffic control algorithm for packet switching
networks,” in Proceedings of ACM SIGCOMM ’90, Philadelphia, PA, pp. 19-29,
September 1990.

[71 A.Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing
algorithm,” in Proceedings of ACM SIGCOMM °89, pp. 3-12.

[8] A. Parekh and R. Gallager, “A generalized processor sharing approach to flow
control — The single node case,” in Proceedings of INFOCOM 92, 1992.

[91 S. Golestani, “A self-clocked fair queueing scheme for broadband applications,” in

IEEE Infocom’94, pp. 5c.1.1-5c.1.11, 1994.

114

[10] J.C.R. Bennett and H. Zhang, “WFQ: Worst-case fair weighted fair queueing,”
Proceedings of IEEE INFOCOM °96, July 1996.

[11] H. Zhang, “Service disciplines for guaranteed performance service in packet-
switching networks,” in Proceedings of the IEEE, Vol. 83, No. 10, October 1995.

[12] H. Zhang, “Providing end-to-end performance guarantees using non-work-
conserving disciplines,” Computer communications, Vol. 18, No. 10, Oct 1995.

[13] D. Verma, H. Zhang, and D. Ferrari, “Guaranteeing delay jitter bounds in packet
switching networks,” in Proceedings of Tricomm ’91, Chapel Hill, NC, pp 35-46, April
1991.

[14] S. Golestani, “A stop-and-go queueing framework for congestion management,” in
Proceedings of ACM SIGCOMM ’90, Philadelphia, PA, pp. 8-18, September 1990.

[15] C.Kalmanek, H. Kanakia, and S. Keshav, “Rate controlled servers for very high-
speed networks,” in IEEE Global Telecommunications Conference, San Diego, CA, pp.
300.3.1-300.3.9, December 1990.

[16] H. Zhang and D. Ferrari, “Rate-controlled static priority queueing,” in Proc. IEEE
INFOCOM ’93, San Francisco, CA, pp. 227-236, April 1993.

[17] J. Liebeherr and E. Yilmaz, “Work conserving vs non-workconserving Packet
Scheduling: An Issue Revisited,” Proceedings of IEEE/IFIP IWQoS ’99, May 1999.
[18] Cruz. R, “A calculus for network delay, Part I: Network elements in isolation,”
IEEE Trans on Info. Theory, Vol. 37, No.1, (1991), pp.114-121, 1991.

[19] M. Shreedhar and G. Varghese, “Efficient Fair Queuing using Deficit Round

Robin,” Proceedings SIGCOMM 95, Boston, August 1995.

113

[20] G. Chuanxiong, “SRR: An O(1) Time complexity packet scheduler for flows in
multi-service packet networks,” in Proceedings of SIGCOMM’01, San Diego, California,
USA, August 2001.

[21] J.C. R. Bennett and H. Zhang, “Hierarchical Packet Fair Queueing Algorithms,” in
Proceedings of ACM SIGCOMM ’96, Palo Alto, CA, pp. 143-156, 1996.

[22] P. Goyal, H. M. Vin and H. Cheng, “Start-time fair queueing: A scheduling
algorithm for integrated services packet switching networks,” in IEEE/ACM Transactions
on Networking, Vol. 5, No. 5, October 1997.

[23] J. Liebeherr and D. E. Wrege, “A versatile packet multiplexer for quality-of-service
networks,” in Proceedings of 4™ International Symposium on High-Performance
Distributed Computing (HPDC-4), pp 148-155, August 1995.

[24] J. Liebeherr and D. E. Wrege, “A near-optimal packet scheduler for QoS
networks,” in Proceedings IEEE Infocom '97 Conference, April 1997.

[25] S. Golestani, “Congestion-free transmission of real-time traffic in packet
networks,” in Proceedings of IEEE INFOCOM 90, San Francisco, CA, June 1990, pp.
527-542, IEEE Computer and Communication Societies.

[26] D. Saha, S. Mukherjee and S. K. Tripathi, “Carry-Over Round Robin: A Simple
Cell Scheduling Mechanism for ATM networks,” IEEE/ACM Transactions on
Networking, Vol. 6, No. 6, Dec 1998.

[27] 7. C.R.Bennett and H. Zhang, “ High speed, scalable, and accurate implementation
of packet fair queueing algorithms in ATM networks,” in Proceedings of IEEE ICNP "97,

Atlanta, GA, pp. 7-14, 1997.

116

[28] R. Venkatesan, Y. El-Sayed, R. Thuppal and H. Sivakumar, “Performance analysis
of pipelined multistage interconnection networks,” Informatica: An International Journal
of Computing and Informatics, Vol. 23, No. 3, September 1999, pp. 347-357.

[29] http://.traffic.caida.org/

[30] P. Mehrotra, “A Framework for studying work-conserving and non-work-
conserving scheduling disciplines,” Centre for Digital Hardware Applications Research

Technical Report Series, MUNCEnTRe — 2000 — 001, June 2000.

117

Appendix A
Software Simulation Results

Fixed-sized packets
Without constant source
Least best-effort traffic pdf
600 20

800 20

1000 20

1200 20

1400 20

Output link rate = 50 bytes/ms

WFQ scheduler

Total traffic load at node 1 =30.07 %
Total traffic load at node 2 = 52.26 %
Total traffic load at node 3 = 85.5 %
Node Parameters

Node Session Entered Total Lost MinDelay AvgDelay MaxDelay

1 2993 2999

B e e T T S S A NP A N W A S S S S N S N N g
OO0 00 OO0 O0O0OO0O0ODOO0DOOOOOO
s i an Iy o T e T Y e e I o T Y i N s A n Y A o Y e Y e Y e Y Y e Y o s I O 0
QOO O QOO OO CCOO000OOO0O0O0OO0O0O0O0OO0OQO
QOO COO OO0 O00O0Q

PO MNP MM N 2 =t ed oad omb oed b wd b
BBV AOCODADNPDOAOORIDOTRWON =

118

OO0 OOODOO0DOO0CO0OCOOODO0DOODOO0OOCO

oo

COO0QODO0DOQCOO0OO0OO0O0O0OO0O0O0OO0O

SD

OO0 O0DDO0O0 0O 0000000000000 O0O0O0OOO0O

Node Session

NMNONMNOMNNNMNDNNMNMMNMMNDRANMNDNDDNDNDMNN NN b e b ocd cd oeh ocd owd oo od wd b wd owd b owd wd od b b ed od cd wh ek ol ol

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Entered
0

OO 0000000000000 OCODDOODOO O

2989
111
109
111
109
114
112
111
114
113
109
110
111
110
110
111
i
110
th R
110
112

Total

O OO0 0000000000000

2099
111
109
111
109
114
112
111
114
113
109
110
111
110
110
111
111
110
111
110
112

Lost MinDelay AvgDelay MaxDelay

CO00O0O000D 0000000000000 00000000000 OD0DDOO0DODOC OO0

119

OO0 O OO0 0O0OO0D0O0OO0OO0O0O0O0DO0O0DO0O-"000000CO00D00OO0DO0O0OO0O0OO0OODDO0OO0DOLOOCO0

0

= OO0 0000000000000 O0O0O00DO0DOOOO0O

0.0663555
0.198198
0.422018
0.468468
0.743119
0.763158
0.901786

1.02703
1.16667
1.18584
1.66972
1.62081
1.90981
1.64545
1.63636
1.96396
2.22523
2.28182
2.33333
2.33636
2.30357

AOEWAOWWMNMNMNVMNL2 000000000000 D0DO0OO0O0O0DO0ODO0OD0DDOO0ODOOOOOO0O

—
= a5

() R

SD

COoO000 0000000000000 0 00000000

0.192596
0.422543
0.627953
0.685165
0.906802
0.924616
0.919849
1.01318
0.949305
1.07362
1.05755
1.14736
1.34967
1.20525
1.14029
1.17383
1.32261
1.35866
1.31195
1.44724
1.18509

Node Session

2

W WHMWWWWWWWWwWwAOWwWwWwWNMPPMNPPNPPPNONPNODNNPONNNDNONNNDNONDNONDNONMNDNDRNDNDNDNDNDMPDND

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Entered

WO OO0 O0OO0O0 OO0 0O0OO0OO0OODOO0OO0O0O0DO0OO0ODOODOOCO

2999
11
109
111
109
114
112
111
114
113
108
110
111
110
110
i1
11

Total

OO0 00000000000 0000000000000 000000

2999
i1
109
111
109
114
112
111
114
113
109
110
111
110
110
111
111

Lost MinDelay AvgDelay MaxDelay

e oo T o e [e Y v Y 0 A o o Y o oo e e Y o Y e I 0 o I o 0 B 0 B 0 T 0 Y o B = B e [o o B o Y o B Y Y o Y Y e i B Y e s Y e s i o Y e B o Y o i o N 0 |

120

OO0+ 00Q000Q0O0-+00000000QQ0O0CO0QO0O0LO0000O0OCO0O0OO0O0OLOOOCOCCCOODDOO0

0

OO0 O0O000O000D0DO0OO0OO0OO0OO0OO0O0OO0ODOO0DOCOOCOO0O

0.875
1.87863
4.07207
3.91743
4.27027
4.33028
4.47388
3.67857
4.00901
4.16667
A
4.45872
4.40909
4.01802
4.3
3.91818
411712
3.99099

oo

SD

OO0 OO0 0000000000000 Q OO0

0.353553
2.04402
1.72691

1.6763
1.92979
1.85772
2.02798
1.68325
1.80249
2.07635
1.88982
2.33826
2.26451
1.88104
2.22393
1.65198
2.18184
2.17402

Node Session

3

L) GO O W WO WO WO WOoOWoeowHowoaoorowaowooowwawwowww

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Entered
110
111
110
112
164
166
164
165
166
162
166
170
170
167
169
165
165
171
166
169
171
164
164
160

(s lleleNeBollolsRelNe

Total
110
111
110
112
164
166
164
165
166
162
166
170
170
167
169
165
165
171
166
169
171
164
164
160

OO0 O0OO0OO0O0 00

Lost MinDelay AvgDelay MaxDelay

OO0 0000000000000 000D00D0O00CO0O0DO00O00DO00O0O0O0O000O00O0

121

NOODOOO0ODOODDOCOO0OODOOO0DOODDOODO0DODOODOODODODODODOO O —

4.27273
4.02703
4.15455
4.09821
0.689024
0.963855
1.03659
1.24848
1.42771
1.6358
1.57229
1.85294
2.15882
2.29341
2.39645
2.33939
2.64848
2.74269
2.88554
3.2071
3.2807
3.82317
3.73171
3.99375

OO0 O0OO0OOCOO0O

82
-
N
o

9
9

o ©

VOCOODOO0OO0OO0ZLIoVOOHLIORNGPOWOENDND

SD
1.73638
2.01188
1.89043
2.16004
1.23134
1.54877
1.41374
1.52382
1.51884
1.37876
1.48278
1.61361
1.64848
1.62386
1.562515
1.62762
1.61952
1.61846

1.6457
1.59627
1.60417
1.59519
1.80842
1.66547

OO0 O0OO0OO0 OO

2.6952

WF2Q+ scheduler

Total traffic load at node 1 =30.07 %

Total traffic load at node 2

52.26 %
85.5 %

Total traffic load at node 3
Node Parameters

DGOOOOOOUOOOOOOOOOOUOGOO

S

OO0 0000000000000 O00Q0CO0O0OO

OO0 00 QOO0 O0O0O000DO0OO0O

OO0 OO0 DO OO0 0O0OO0ODO0OO0ODO0OO0OO0DOOO0OO

OO0 OO0 OO0 OO0DO0OO0OO0DOODOODO0DOODOOO

Lost MinDelay AvgDelay MaxDelay

D
%0000000000000000000000
o

Total

Lo

RPN N YN RN R-R-A-F-F-R-F-R-- NN T
&N

Entered

~aNoOtTwon~onl

P i =l i i i e = S e e . i ol = =l =

Nede Session

o

CO0000O0CO000D0O0000QOO

COCO0O0O0OQO0O0O000CO0O00O0DQLOO0O0

OO0 O0O0OO0 QOO0 O0O0O00OO0

CO0O0OO0O0O0OO0OOLOC OO0 O0OO0O0

o

o

24

OO OO0 OO OODOODODOODOOOOO0

OO0 0000000000000 O

OO0 0000000000000

25
26
30
33
34
35
38
39

27
28
29
31
32
36
37
40
41
42

T g g e e e g e e e e g e e g e g e

122

Node Session

MARNMRNMNNDMPOMPPDPDNOOPDNONNDNDMNDNONMNDMPDMNDPDNRDPDNONDNONDNDNDNDPDNODNDMNDND NN NN NN - =, b b b b b b

43

44

45
46
47
48
49
50
51
52

SWON®U RGN =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3
32
33
34
35
36
37
38

Entered

WOODO0OO0COO0ODO0OO0O0

2999
111
109
111
109
114
112
111
114
113
109
110
11
110
110
111
111
110
111
110
112

CO00O0CO0O0D0O0D00DO0DO0OO0O0O0OO0

Totai

OO0 O0OCOOOCOO

2999
111
109
114
108
114
112
111
114
113
109
110
1173
110
110
111
111
110
111
110
112

OO0 000O0OO0OOCO0OO0O0O0OO0OO0O0O0O

Lost MinDelay AvgDelay MaxDelay

CO00CO0O0O00O00O0OO0O0DO0O000DO0O00000O00CO0LO0O0O0LDOLOO0O0O0ODDOOOCOOO

123

COO0CO0OQOO0O0OO0O0COOO0OO0OCO0O00000000O0OOO0OCODOCO0OO 00000000

-~ 000000 COO0O

0.267422
0.009009
0.192661
0.27027
0.449541
0.54386
0.660714
0.765766
0.842105
0.893805
1.41284
1.48182
1.62162
1.43636
1.34545
1.79279
1.81081
1.96364
2.01802
2.02727
1.95536

OO0 O0OO00DO0OO0CO00O0OO0OOOO0

0

QOO0 O000COO0O0OOOOOLOOOMOOODUUOONOOOREALEPROOWRA=2WLO00000000

SD

OO 0O O0OOO0 OO

0.591677
0.094916
0.535362
0.555075
0.787474
0.923061
0.982308
1.08674
0.955459
1.09677
1.20981
1.33225
1.19499
1.30118
1.22123
1.31625
1.20084
1.32147
1.28036
1.40323
1.35588
0

OO0 000000000000 O0OO0

Node

WWWWwWwWwWwWWwWwWwWwwWwwWwWwWwLWWwWwWwWwWwWwWwWwWwWwWwWWWWWMNPMNMNNONMNDNDNDNDNND N NN

Session
39
40
41
42
43
44
45
46
47
48
49
50
51
52

REB8xJsaranicooNonswn=

WL WWWMNhMNDMNDMNN NN
PONLOOO~NOO0O AW

Entered

OO0 OO0OO

2999
111
109
111
109
114
112
111
114
113
109
110
111
110
110
111
111
110
111
110
112
164
166
164
165
166
162
166
170
170
167
169
165
165

Total

DO OO OO OO0 OOOOO0O

2999
111
109
111
109
114
112
111
114
113
109
110
111
110
110
11
111
110
111
110
112
164
166
164
165
166
162
166
170
170
167
169
165
165

Lost MinDelay AvgDelay MaxDelay

[I o T T o N T om0 o Y e A s T v R T T i Y e R e Y e Y - s B o T o I e B o 2 o T T o o DO o T e S o - Y - I e e - Y e D 0 I . I e Y o e I e B o T o B o 0 B o I T]

124

OO0 OO OO0 O0O0000CO0O0OO0O--20DO00000 - 0000000000000 OODOO0O0OO

OO0 000000 0OO0D

0.125
1.64388
3.78378
3.83486
4.04504
4.12844

4.2807
3.85714
3.71171

4.4386

3.9646
4.34862
4.69091
4.04504
4.45455
3.87273
4.18018

4.3964
4.82727
4.57658
477273
4.36607

0.628049

0.626506

0.880244
1.03636

1.88072
1.51235
2.01205
2.24706
2.57059
2.46108
2.66272
2.69697
3.12727

[Y S G W — (O T e G W W W — — W— W . - e Y
POOPROONOODODDUOO RO, WOOD"OOO0OOOOODOOOOOO

11
12
10

16
10
17
17
17
21
17
18
20

SD

[I e i cov I e e B e o im0 Y e Qi (a0 Y a0

0.353553
2.34203
1.85321
1.84209
2.03445
2.01664
2.22821
2.27317
2.08436
2.85084
2.21287
2.77024
3.09664
2.33097
2.80533
1.92499
2.80584

3.1379
2.67338
3.16009
3.09786
2.70776
1.70584
1.50322
1.63179
1.55348
2.52752

1.4881
2.72475
3:.15771
3.03703
2.64911
2.32274

2.8567
2.97544

Node Session

W W WWwo oo ool W www

35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52

Entered
171
166
169
171
164
164
160

OO0 O0OQ00OO0OO

Total
171
166
169
171
164
164
160

OO0 0QOOO0O0O

Lost MinDelay AvgDelay WMaxDelay

OO0 0O O0O0O0O00DOOOLODOOO

125

OO0 00O0 QOO0 O0O0OLOODDOOO

3.05263
2.92771
3.59172
3.73684
3.93902
4.03659
3.78125

QODODOODODO

2
o

20

21

23
16
14

SD
2.51731
2.54103
3.05078
2.74172
2.11162
2.85221
2.26354

OO0 OOOO

0.133631

Appendix B

Software Simulation Results — Contd.

Fixed-sized packets

Constant source traffic pdf

135 100

Least best-effort traffic pdf

600 20

800 20

1000 20

1200 20

1400 20

Output link rate = 50 bytes/ms

WFQ scheduler

Total traffic load at node 1 =30.09 %
Total traffic load at node 2 =59.61 %
Total traffic load at node 3 = 92.94 %
Node Parameters

Node Session Entered Total Lost MinDelay AvgDelay MaxDelay

1 1 2999 2999

;s ol il kel ol b vl by e el ey el el Wl ke R s e
-
(S =Y
OO0 00000000000 LOODDODODODOOO
OO0 000000000000 OODODOODO0OO0OO0CO0O OO

(=i o I = I o Y oo Y e Y o T o o Y o T o T Q0 e RO e Y i T o o e Y o Y e Y e I e I o B e I 0 O o]

126

0

D000 000000000 ODDOO0OODDOOO0O

(s I Y s e T T v o I oo J e T e Y o A e B e 0 Y o I e B Y o Y 0 B Y o B o [s Y

OO0 0QCOOOO0OO0O0O00O0QLCOO0OO0OO0DDOCOO0O0OOQOQQO0OO0

SD

Lo I v I o T o Y oo T o o O woe I o I e Y o J o I Y o J o O v Y o Y o I [v v i o i i ow o Qo oo }

Node Session Entered Total

NN RONMNDNNMNDNOMMNMMNDMNDMND NN NDDNDNDDNDN = et b el b b ced oh oed b b vl b o ed e b b e b d ok b o b

27
28
29
30
31
32
33
34
35
36
37
38
38
40
41
42
43
44
45
48
47
48
49
50
51
52

I I I - L e L L

OO0 0 QOO OO0 00DOO0O0ODDO0OO0CO0ODOOO0O

10
2999
112
109
113
113
110
112
108
11
111
108
111
112
110
111
110
109
109
109
113
111

COO0OC0C OO0 O0D0O0O 0000000000000 O

10
2999
112
109
113
113
110
112
108
111
111
108
111
112
110
111
110
109
109
108
113
111

Lost MinDelay AvgDelay MaxDelay

OO0 O0OO0O00DO000D00OO0O0DO0ODO0DO0O0DOCO0O0O0O0D0O0D0O00O0O0DO0OOC OO0 0DDO0CO00DOOOO0O0

127

0000000000000 DOO0OO0OO0 0000000000000 0O00O00COO0OO0O0

= OO OO0 0000000000000 DOOOO0O OO0

0.1994
1.07143
0.825688
0.858407
1.23894
1.74545
1.76786
2.30556
1.83784
2.04505
2.40741
2.26126
2.60714
2.45455
2.75676
2.90909
3
3.25688
3.6055
3.53982
3.63063

0
4]
0
0
0
0
0
0
4]
0
0
0
0
0
0
0
0
0
0
4]
0
0
0
0
0
1
4

13
11
12
12
i2
12
13
12
14
14
14
14
13
13
14
21
21
22
15
21

SD

OO0V ODOCOO0DO0DO00DO0O0DOOO0O0O0O OO0

0.530483
3.03349
1.81478
1.84133
1.92388
2.90345
2.80277
3.35851
2.25445
2.81855
2.70353
2.54414
3.01551
2.98495
2.82534

3.1732
3.51847
3.21159
3.70335
3.22566
3.28951

Node Session Entered Total

WWWLWWLWWWWwWWwWwWLwWwWwWwWWLWNhMohMRPRPDMPDRPDPOMRRDRPODNNDMNDMPDMROMNRNPODNYMMMROYNPDMMMOMPOROMNRMD MDD MDD MNDR

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

EOODOOOOOOOODDOOODOOO

10
2999
112
109
113
113
110
112
108
111
111
108
111
112
110
111
110

Nooooocooccooooooooocoooo

10
2999
112
108
113
113
110
112
108
111
111
108
111
112
110
i
110

Lost MinDelay AvgDelay MaxDelay

OO0 0000000000000 O00D0000DO0O0D00D0O00O0O0D000O0DO0DOLODOOOOOOOOOO

128

ek e O =S NVOO = OO0 000N REWON 0000000000000 0CODOO0CO0COO0O

OO0 000000000000 ODOOCOO

1.28378
2.5
4.12162
6.78378
8.27027
9.43243
10.4324
11.4324
12.5135
13.7568
12
3.88663
5.66964
5.77064
5.87611
5.8115
5.90809
5.87321
6.25
5.94595
6.21622
6.12037
6.15315
5.78571
6.42001
5.72072
5.88182

OO0 DO OO OO0

S (O ST (T (T S |
OO~k wWMN

20
3
16
13
13
14
14
16
14
14
16
14
14
16
16
16
16
16

SD

CO0O0OO0O0DO0OO0ODOO0CDOO0OO0O0O0O000O0O

1.87745
2.08878
2.80467
2.99277
3.41383
3.29883
3.32415
3.35883
3.80446
3.7641
0.918937
3.25629
2.74054
2.98996
3.03929
2.96008
3.0318
2.85073
3.04215
3.24976
2.88391
3.25852
3.21186
3.32418
3.39088
3.01324
3.11922

Node Session Eniered Total

G L) W W G G LWL 0owWHoWOoowoo oo wowowo Wwo W wowwww

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52

108
109
109
113
111
172
171
164
162
167
168
164
166
170
170
166
167
169
160
166
166
161
170
171
163
74
74
74
74
74
74
74
74
74
74
10

109
109
109
113
111
172
171
164
162
167
168
164
166
170
170
166
167
169
160
166
166
161
170
171
163
74
74
74
74
74
74
74
74
74
74
10

Lost MinDelay AvgDelay WMaxDelay

OO0 0000000000000 0O0DO0OO0CO0O0D000DO0OODODOLDOOO OO

129

1

NN = = a0 OO0 0000000000000 0CO00D0O0DO00D0O00O00 = O = =

6.09174
6.36697
6.30275
5.81416
8.21622
2.27326
2.5614
2.81707
3.24691
3.0479
3.30857
3.5122
3.80723
3.53529
3.77059
3.6747
4.29341
4.53846
4.48125
4.66867
5
5.1118
5.17647
5.50292
5.23926
3.64865
3.66216
3.90541
4.7973
5.02703
5.74324
5.85135
6.14865
6.48649
7.63514
6.9

14
16
14
14
13
13
13
11
12
12
13
14
13
11
12
13
13
14
14
15
15
15
15
13
13
8
9
9
10
10
10
10
10
11
14
14

SD
3.11887
3.36135
311779

3.1257
3.02366
2.87168
2.91457
2.82029
2.88509
2.80019
2.95629
2.94848
2.94089
2.91555
2.91129
2.63684
2.79282

2.9794
2.92352
2.74021
3.05703
2.97832
2.85177
3.01085
2.69752

2.1004
2.15989
2.34181
2.33484
2.34098
1.99838
1.97265
2.05158
2.20959
2.50818
3.61632

30.09 %
59.61 %
92.94 %

Total traffic load at node 3

Total traffic load at node 2
Node Parameters

Total traffic load at node 1

WF>Q+ scheduler

DQoocoooocooo

S

OOoO0CO0O00O0O0O

OO0 O0O0O0O0O0

OO0 00O0

0

OO0 0O0OCOOo

Lost MWinDelay AvgDelay WMaxDelay

o
.m%ODUOUOO
- &
8o
8Qocoocococoo
[=a sl
L
c
9
m12345678
wn
[}
nmila}.;!.cl‘l.dl.alal.
-

oo oOoOoOooo

OO0 000 OO0

o0 000

o0 o0o0oo

10
11
12
13
14
15
16
17
18
19
20
21
22
23

[I v B o i o Y o Y e JY 0

oo oCcC OO0 O0OO0

OO0 000

OO0 00O00QO0

24
25
26
27
28
29
30

31
32
33
34
35

(o= R o= I = B =&

OO OO

130

40
41

Node Session Entered Total

1

(LS T AT AT A T oS I A T A T AT A T A T L T L T VS T D o T o T A T LG T S T A T A T ST % B T\ T A T A I A o OO A I LG T\ T & AV T A T N R R R i e

42
43
44
45
46
47
48
49
50
51
52

SOONOODA LN -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

o000 0OOOO

2999
112
109
113
113
110
112
108
111
111
108
111
112
110
111
110
108
109
109
113
111

COO0OO0O 0000000 OoOO0COO0O

OO0 O0O OO0 OO0

10
2999
112
109
113
113
110
112
108
111
111
108
111
112
110
111
110
108
109
109
113
111

OO 000000000 OCOO

Lost MinDelay AvgDelay WMaxDelay

CO0COOO0O00O0O0O0OOOLOCOO0OO0O0OOOoO000LOOOOO000OO0COOLOO0OOOOO0O0

131

[l o B o [oo i o [e I = B & B B o = [o I o = B & [= i & B o T o oo B @ B & e B0 [o I o B o B o T o B o B o Y o I o o B o I = I = I o T o Y e v T o T o T A e

000000 OoOO000

0.733911
0.776786
0.558833
0.584071
0.911504
1.26364
1.47321
1.84259
1.54054
1.73874
1.81667
1.96396
2.11807
1.98182
2.31532
2.45455
2.7156
2.66055
3.00017
3.00885
3.04505

OO0 O0O0ODDOOQO0

DOO0DO0O0O00O00D000O00 AP PIOAEANND A DA PD O AN aD L0200 00000C00O0O

SD

OO0 QOO QOO0

1.50556
2.52004
1.39729
1.61315
1.71941
2.14038
2.6027
2.84872
2.2715
2.71344
2.45758
2.30541
2.48452
2.40589
2.36624
2.5251
3.25957
2.35241
2.86141
2.66135
2.53576

L I - B o Y s Y o B o TR o S v s e I o I s 0 v o |

Node Session Entered Total

2

G G0 €3 €0 G0 0 GO LW W WWWWwoWwwawowowwwWwwWbWLWwWwLwwWwWwWwwwmhmmPmPRPRMNMMMMPODMODMRNDMMPDMDND N

37
38
39
40
41
42
43
44
45
48
47
48
49
50
51
52

SRRRBRNNZaIsaranidcaNoase

n
o

W W
- QO ©

0
0

0
0
0

-}

4
74
74
74
T4
74
74
74
74
74
10

2999

112
109
113
113
110
112
108
111
111
108
111
112
110
111
110
109
108
109
113
111
172
171
164
162
167
168
164
166
170
170

0
0
0
0
0
74
74
74
74
74
74
74
74
74
74
10
2999
112
109
113
118
110
112
108
111
111
108
111
112
110
111
110
108
109
109
1138
111
172
171
164
162
167
168
164
166
170
170

Lost MinDelay AvgDelay MaxDelay

OO0 O00000000CO0D00OLO0O0O0ODO0O0O0LOOLODDOOODDOLOODO0O0ODO0ODOODOOODOOD

132

COO0DO0OO0ODOO0O0OO00 0O = = w b ed e O = = 2 OO0~ 2020200 OCO~NOMDNHEWLNLO0DO00000

0
0
4]
0
0
1.14865
2.37838
3.75676
4.89189
6.2973
7.75676
9.21622
10.6892
11.8784
13.2973
0.2
2.8923
5.83929
6.14679
6.11504
6.68142
6.85455
6.64286
7.48296
7.10811
7.40541
7.14815
7.37838
6.84821
7.15455
7.14414
6.41818
7.01835
7.733%4
7.50459
7.37168
7.36036
2.44186
1.89474
2.15244
2.48148
3.36527
3.29762
3.14024
3.3012
3.54118
3.84118

©O~NOoOOO OO

1

15
16
17
18
19
20

14
24
21
28
20
24
23
24
24
24
22
26
24
23
24
22
24
25
23
24
22
21
21
20
25
28

23
28

28

SD
0
0
0
0
0
1.38759
1.49081
1.3698
1.52506
2.16396
2.30038
2.56367
2.89713
3.46199
3.62297
0.421637
3.07643
4.30546
4.53681
477799
4.87819
5.04315
4.77903
6.09663
5.74847
5.23361
5.26004
57114
5.83619
5.59591
5.44359
4.89534
5.45121
5.52108
5.40515
5.65299
5.28235
5.16308
4.12746
4.01774
4.32704
5.36876
4.80464
4.56555
4.97518
5.08004
5.08982

Node Session Entered Total

W WWwWowwowoowowoWwwwwwwwwowaow

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

166
167
169
160
166
166
161
170
171
163
74
74
74
74
74
74
74
74
74
74
10

166
167
169
160
166
166
161
170
171
163
74
74
74
74
74
74
74
74
74
74
10

Lost MinDelay AvgDelay MaxDelay

CO0OO000000000Q0C0O00000OCQOO

133

ON = = 2 2 000000000000 O0O0O0

3.31325
4.97006
4.26035
4.125
4.1988
4.21687
4.41615
5.56471
5
4.93252
4.09459
4.74324
5.22973
6.2973
7.21622
8.14865
8.63513
9.7027
10.8649
12.3378
0.2

27
26
28
a3
23
26
28
31
20
24
14
17
16
17
17
19
19
21
21
22
1

SD
4.28155
5.85709
474241
5.05442
4.50396
4.59385
4.58047
5.54948
4.49182
4.62732
3.30441

3.8537
4.00187
427714
3.90189
4.34544
4.42815
4.99956
5.03799
5.09658

0.333333

Appendix C
Software Simulation Results — Contd.

Variable-sized packets
44 60
250 15
552 10
1500 10
1000 5
Without constant source
Least best-effort traffic pdf
600 20
800 20
1000 20
1200 20
1400 20
Output link rate = 320 bytes/ms
WFQ scheduler
Total traffic load at node 1 = 30.2627 %
Total traffic load at node 2 = 52.9301 %
Total traffic load at node 3 = 87.8166 %
Node Parameters
Node Session Entered Total Lost MinDelay AvgDelay MaxDelay SD

1 1 2999 2999 0 0 1.6939 18 1.90682
1 2 0 0 0 0 0 0 0
1 3 0 0 0 0 0 0 0
1 4 0 0 0 0 0 0 0
1 5 0 0 0 0 0 0 0
1 6 0 0 0 0 0 0 0
1 7 0 0 0 0 0 0 0
1 8 0 0 0 0 0 0 0
1 9 0 0 0 0 0 0 0
1 10 0 0 0 0 0 0 0
1 11 0 0 0 0 0 0 0
1 12 0 0 0 0 0 0 0
1 13 0 0 0 0 e 0 0
1 14 0 0 0 0 0 0 0
1 15 0 0 0 0 0 0 0
1 16 0 0 0 0 0 0 0
1 17 0 0 0 0 0 0 0
1 18 0 0 0 0 0 0 0
1 19 0 0 0 0 0 0 0
1 20 0 0 0 0 0 0 0
1 21 0 0 0 0 0 0 0

134

n
(=)

Nodel Session Entered Total Lost MinDelay AvgDelay WMaxDelay

1 22 0 0 0 0 0 0 0

1 23 0 0 0 0 0 0 0

1 24 0 0 0 0 0 0 0

1 25 0 0 0 0 0 0 0

1 26 0 0 0 0 0 0 0

1 27 0 0 0 0 0 0 0

1 28 0 0 0 0 0 0 0

1 29 0 0 0 0 0 0 0

1 30 0 0 0 0 0 0 0

1 31 0 0 0 0 0 0 0

1 32 0 0 0 0 0 0 0

1 33 0 0 0 0 0 0 0

1 34 0 0 0 0 0 0 0

1 35 0 0 0 0 0 0 0

1 36 0 0 0 0 0 0 0

1 37 0 0 0 0 0 0 0

1 38 0 0 0 0 0 0 0

1 39 0 0 ¢ 0 0 0 0

1 40 0 0 0 0 0 0 0

1 41 0 0 0 0 0 0 0

1 42 0 0 0 0 0 0 0

1 43 0 0 0 0 0 0 0

i L4 0 G 0 0 0 0 0

1 45 0 0 0 0 0 0 0

1 46 0 0 0 0 0 0 0

1 47 0 0 0 0 0 0 0

1 48 0 0 0 0 0 0 0

1 49 0 0 0 0 0 0 0

1 50 0 0 0 0 0 0 0

1 51 0 0 0 0 0 0 0

1 52 10 10 0 0 5.2 44 9.18322
2 1 2999 2999 0 0 2.14538 10 2.09739
2 2 107 107 0 0 2.07477 17 2.89577
2 3 112 112 0 0 2.98214 23 3.90481
2 4 114 114 0 0 2.53508 12 3.133
2 5 108 108 0 0 2.03704 17 2.45746
2 6 111 thD 0 0 2.04505 17 2.82488
2 7 113 113 0 0 2.11504 18 2.62104
2 8 111 111 0 0 2.40541 9 2.51583
2 9 110 110 0 0 2.29091 24 3.28692
2 10 112 112 0 0 2.8125 14 3.34701
2 11 109 109 0 0 2.98165 15 3.5065
2 12 110 110 0 0 3.36364 11 3.78843
2 13 11 111 0 0 2.16216 18 2.68804
2 14 114 114 0 0 2.34211 18 2.94615
2 15 110 110 ¥ 0 2.36364 20 2.70097
2 16 107 107 0 0 2.81308 25 3.68932

135

Node Session Entered Total

WWoWWOoOWwWwWwWwWWMNMNMNMNMNODMODONNONNMNDNONNMNDNMNDNDMODNNNDNDNDND NN NN N MNDNDMNDND

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

OO0 NOOSGN -

¥12
111
113
109
110

(=T e B o [o= ¥ o Y oo I o Y e Y o Y e I v 0 o B o Y I o Y o o e T e Y o T o I e Qo Y o T e 0 e Y s o Y Y o i 0

10
2999
107
112
114
108
111
113
£
110
112
109

112
111
113
108
110

CO0 OO0 O00O0000OQO0OO0O0DO0OQ0O0OO0O0OOO0OO0OO0O0CO0CO0

10
2999
107
112
114
108
111
113
111
110
112
109

Lost MinDelay AvgDelay MaxDelay

[an I oo I n o T T oo Y oo R e Y v e T e e Y o A o Y o Y o Y o B o I o o Y s Y o o B Y oo Y o B o Y o s I Y e i e I o B o B o I o I B oo B e B B e T 0 T 0]

136

COQCQOOCOO00O0O0OO0O0CO000O0O0CO00D000O00OCCO0O0O00O0O0O0DO0OO0OO0O0CODOCOQOO

2.45536
2.44144
2.50442
2.14679
2.23636

OO0 QOQO0OO0OO0CO00 QOO0 OO0 O0O00D0DO0O0OOOOO

8.9
3.33144
7.20561
8.94643
7.01754
9.87037

8.4955
8.58407
9.56757
7.45455
8.55357

7.6055

42
20
19

105

103
83
31
128
92
82
99
47
66
45

SD
4.6749
3.03834
3.07248
2.50326
2.337

OO0 O0OCO0O0COOOOO OO0 O0O00O0O

18.80432
2.45307
22.5675
13.09741
14.84314
24,0418
20.535
20.1207
21.3877
11.24267
15.04435
16.09005

Node Session Entered Total

WO WWwWowowowaeo owowowowowoowaowowaowowaoowoowaowaowowowowowaowowaoowowaoowaowwowowaow

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52

110
111
114
110
107
112
111
113
109
110
169
166
162
162
164
167
170
172
160
172
166
164
166
171
167
163
163
165
170
165

(o= I e B s I o Y o= B oo I e Y o i o I o

k
o

110
g1
114
110
107
112
11
113
109
110
169
166
162
162
164
167
170
172
160
172
166
164
166
171
167
163
163
165
170
165

o000 oco0OoOO0O@

Lost MinDelay AvgDelay MaxDelay

OO0 OO0 O00OO00O0O0DO0O0DO0OCO00DO0OO0000O00O0O0DO00ODO0DOO00OOOCOOO0O

137

OO0 OO CCO0OO0O0OO0OO0OO00000D000DO0O0DO0O0DO0O0CO0O0OO0O00O0OO0D0O0O0O0O00O0O00O0OO0

10.30909
9.89189
7.30702
10.3
13.68224
12.38393
9.81982
9.45133
10.80734
11.23636
8.46154
8.89157
8.41358
8.46296
9.17683
8.15569
9
10.08721
10.19375
9.37209
10.9759
9.60976
12.53614
11.80117

- 10.34132

9.92025
13.49693
12.41212
13.74706
16.29091

QOO0 O0OO0O0OOCO

o
o

85
55
82
98
106
113
74
89
84
87
39
51
25
24
74
34
27
61
40
51
50
27
41
58
32
106
54

9

o]
BN

OO0 O0O0O0OOOOOO0OO0

b

7

SD
29.69664
17.77367

13.1062
22.7672
29.9756
26.3317
19.82557
19.95564
22,3993
21.8242
24173383
2491186
23.63157
23.5397
37.49651
23.96197
24.42157
25.62825
2498456
24.63648
26.18712
23.65585
25.68524
26.74036
25.53984
22.2443
26.97948
26.5502
21.9519
20.3812
0

(o I o B o B o Y e i o T e [s Y

19.57762

WF?Q+ scheduler

30.2627 %

Total traffic load at node 1

52.9301 %

Total traffic load at node 2

87.8166 %

Total traffic load at node 3

Node Parameters

SD
1.90693

Lost MinDelay AvgDelay WMaxDelay

Node Session Entered Total

1.69423 18

0

2999 o

2999

1

COO0O00o

[= =il

OO0 O

o000

o0 000

00000

o0 CoCo

M < w0 W M~

- = = g -

10

11

OO0 000 000

12

OO0 O0O0O0Oo

[= = e e e

(==l e le

13
14
15
16
17

— = g = oy

18
19
20

21

23

OO0 0QOOO

OO0 0O0OOQOQOQOO

OO0 O0Q

OO0 0O0OOQO0OO0

COO0OO0OO0OOO0O

OO0 000000

COOOOQOOOOQOO

24
25
26
27
28
29
30
31

32

34
35

36

(===l -]

OO0 0o

Lo e I o Ji e

oo oo

41

138

Node Session Entered Total

PNMPONNMNDMNONNMNOODNDPONMNDNOMNDMNONODNDNONMNONDMND NN NONDNDNDNDNDNDNDNDDNDRDN - e e el el el e b e b

42
43
44
45
46
47
48
49
50
51

WWMNMNMNMNMNMMNMMNMNMNRN = = =% 3 4 b od b b
288NN NS loormm a0 NOOd N =

G G W W W
[=>d LI SIS

o I e oo B o [e oo s Y o Y 0 Y

10
2999
107
112
114
108
111
113
111
110
112
108
110
111
114
110
107
112
111
113
109
110

DO O0OO0DO0O0CDO0DOO0COOOOO0O

OCO0OO0O0DO0OO0DOOO0OO0

10
2999
107
112
114
108
111
113
111
110
112
109
110
g
114
110
107
112
111
113
108
110

OO0 OO0 O0DO0OO0O0ODOOO0OO0O

Lost MinDelay AvgDelay MaxDelay

0

COO0O0Q0O0OCOODO0OOCO0O0O0DO000D00D000O0D0D0O0OO0D0DO0O0000 OO0 O000O0QCO0OOOO0OO0O

139

OO0 OO0 0000000000000 O0O0DC OO0 0D0OO0DO0OO0DO0ODO0OO0O0DOO0OO0DO0O0O00O OO0

OO0 O0ODO0000 OO0

1.2
2.70257
1.71963
1.73214
1.36842
1.91667
1.91892
1.88496
1.54054
1.94545
1.78571

2.0367

1.33636
1.86486
2.16667
2.43636
2.34579
2.07143
2.450846
2.27434
1.93578
2.38182

OO 0O 0O OO0 O0ODO0OO00O0O0CO0O

BPOOOCOOOOOOO

CO0DOD0OCODO0DODOOOODOG

SD

OO O0O00DO0DOO OO

1.18322
3.01453
2.16613
2.22424
1.81054
2.56033
2.51282
2.18772
2.12207
2.04258
2.78902
2.23571
1.44088
21377
2.2808
2.99351
2.56944
2.51175
3.00994
2.73158
2.15653
2.63451

OO0 0000000000000

Node Session Entered Total

GO €O GO 0O 0 D GO GO (O 0L GG GO WWooWwWwwwwwWwWwwWwWwWwwWwWwMNNNPPNDNODMDDNDNDNDRDNDRDLDNDNDNDRND

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

RRScxlisoardnvnioco@e@Nousen =

GO WMNDMNNMNNDNDND
- 0OWO~NOO&EW

OO0 QOO0OO00DDODO0ODODOOO0O

10
2999
107
112
114
108
111
113
111
110
112
109
110
111
114
110
107
112
111
113
109
110
169
166
162
162
164
167
170
172
160
172

COQO0OQOO0OQ0CO0O0O0OO0OO0O0O0O0

10
2999
107
112
114
108
111
113
111
110
112
108
110
111
114
110
107
112
111
113
1089
110
169
166
162
162
164
167
170
172
160
172

Lost MinDelay AvgDelay MaxDelay

(o I o I o Y o B o B s A o R o Y Y o i Y o Y o I e o I i o I = B I oo B oo o I @ o i = I o B e [o [= o B 0 [[& [B = B 0 B o I o Y e I o Y o 0 Y o I e

140

[B o I oo I e T I e B A @ e I o Y s i o e Y o Y - T o e O o e Y o Y o0 B oo [o i o oo i o B o I s B o e o B e B an o Y o Y o B o B s Ym0 o Y o Y o o i o 0 o I

;cocooooooooocco

8.55218
6.38318
4.72321
6.91228
477778
7.25225
8.11504
41982
6.11818
5.08036
B.72477
4
6.78378
7.01754
9.5
9.72897
6.32143
6.62162
8.37168
8.00217
6.83636
7.10059
5.51807
4.87654
7.25926
6.41463
5.2994
7.80588
8.45349
9.7125
6.15116

P OO OCO0ODO0OO0CO0OOCOO0ODOO0OOC OO

134

115
100
119
66
162
85
62
126
85
70
110
76
80
128
99
91
72

sD

OO0 O0OO0OO0OOQOOO0Q

1.50823
8.43839
10.3064
6.53506
13.0769
9.09589
13.6515
17.9473
7.31098
10.3279
8.42006
8.99016
4.78817
16.3252
10.7688
16.826
17.453
13.7943
11.4764
19.4588
13.9124
12.2137
15.0329
10.7055
8.32431
15.473
13.0345
11.1074
16.9018
14.2672
18.1906
11.4848

Node Session Entered Total

WWw o wWowowWwo W wWWwawwwwowaooww

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

166
164
166
171
167
163
163
165
170
165

R -R-N-N-Nol- NN}

166
164
166
171
167
163
163
165
170
165

S0000D0DO0OO0DOOO

Lost MinDelay AvgDelay MaxDelay

OO 00000000000 0COoO0DODO0OO O

141

OO0 000 C0C OO0 000000000 0DODOOO

5.90398
5.96341
6.56627
7.77778
7.04192
6.37423
5.25767
7.93939
5.92353
8.92121

OCOO0O0CODODODOOO

-
©

78
100
76
116
83
114
86
123
76
119
0

0
0
0
0
0
0
0
0
0
6

SD
11.0655
12.0498
10.7271
14.3513
12.1068
12.6772
9.66897
15.8981
10.4426
16.3221

OO0 00 OCOO0O00OO0O

1.71594

Appendix D

Software Simulation Results — Contd.

Variable-sized packets

44
250
552
1500
1000

Constant source traffic pdf

135

Least best-effort traffic pdf

600
800
1000
1200
1400

60
15
10
10
5

100

20
20
20
20
20

Output link rate = 320 bytes/ms

WFQ scheduler

Total traffic load at node 1 = 28.8986 %
Total traffic load at node 2 = 58.5099 %
Total traffic load at node 3 = 91.3006 %

Node Parameters
Node Session Eniered Total

1

B T T U N Nt A S N Ny S S S N S (S e Y

DOV AN -

11
12
13
14
15
16
17
18
19
20

2999

DO QOO CODO0OO0OCO0OO0O0O0OOO0OOO

2999

COO0O0OO0O0OO0OO0CO0OO0O0O0ODoODODOoOODOO

Lost

OO0 QO QOO0 OO0 OO0O0OOOO0

MinDelay AvgDelay MaxDelay

142

COCOO0OO0O0DO0O0O0CODOOO00OOOO0O

1.52518

QOO0 OO0O

13

QOO0 QOO OO0 O0OOOO0O

SD
1.74551

DO OO OO0 O

Node Session Entered Total

I T T T T T S T T A T T T T N T R O O T T R T T e e A e A . T

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

O~ PsWN -

w

1
12
13
14
15

D000 0000000000000 OCOOCO0O

10
2999
111
108
i
11
109
109
108
M
110
110
110
109
110
110

"6C'.'tODDCDCDOOOODDOODDOOOOOODDOODDDOO

2999
111
108
11
111
108
109
108
111
110
110
110
109
110
110

Lost

OO0 QOQQCO0OCO0O0O0O0O00O0O00DOLOO0C0CCO0000CQ0OO0O0OCO000O00O0DDODOOLOODOOOO

MinDelay AvgDeiay MaxDelay

143

OO0 0000000000000 0000000000000 O00O0O0000000 OO

;oooocooaocoooccocoooooooccoooco

2.18
11.87387
12.25926
11.83784
12.07207
12.81651
12.21101
11.74074
12.28829
12.05455
12.54545
12.46364
12.24771
12.37273
12.37273

IR PR S N R E-N - NN - N -N-N-N-N-N-F-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N- NN NN

SD

OO0 O0O00000DO0O0ODO0OODOOO0OOO0OO0O0O0O0OO0

1.2693
2.05701
12.7173
13.5205
12.3508
17.8208

13.043

13.545
12.2531
12.8555
12.8334
18.1062
13.7142

12.655
12.7327
13.5038

Node Session Entered Total

2

WWUWLWLwLwWWWWWMMRNDPPDRDPDNDPDPDRONNDDPDDYROMRDRPDPDRONNMNDYRONNYNPYNNMRPOYTNYNYMRNNMNNDMDMNDMNDMND MDD MDD MND

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

S OW OO SN -

113
108
110
110
109
110

OO0 00000000000 OOOO

74
74
74
74
74
74
74
74
74
74
10
2999
111
108
111
111
109
109
108
111
116

113
108
110
110
109
110

CO00000C0CO0O0DDO00O0ODO0O0OO0DO0OO

74
74
74
74
74
74
74
74
74
74
10

2999

111
108
111
111
109
109
108
111
110

Lost MinDelay AvgDelay WMaxDelay

(== B B =l o Bl wr I = o e i = i o i B o i o I o B B I v I o I o I & @ B o B o B & [oo Y 0 [o Y oo R v Y v QO e J e JO o Y e 0 e DY v Y o Y 0 s 2O o K o QN e JO o . e D o

144

OO0 0CO0OO000 000 MNMMN= - 4 L0000 000000000000 0CO0O00D0O0DO0DODOO0O0O0O0D0OO0OCO

12.86726
12.10185
12.47273
12.72727
12.77982
13.25455

OO0 0000000000000 OOO0O

13.05405
12.47297
13.32432
14.12162
15.71622
16.28378
16.40541
16.02703
26.94595
26.93243
52.7
3.24141
29.4955
26.23148
27.38739
35.0991
34.6147
29
255
26.91892
27.78182

38
19
20
29
15
34

OO0 0000000000000 OOO0O0O0O0O

SD
14.8735
12.1823
22.8339
13.2511
12.8755
14.4644

OO0 OO0 O0OO0O0O0QCO0OO0O0OO0OOO0

0
14.5186
13.3666
14.3437
14.8855
16.6245
17.3912
16.6545
20.2915
27.4535
26.5143
41.4089

2.3661
65.6994
32.8097
55.1591

68.352
53.4093

40.052
40.8778
33.1615
38.3022

Node Session Eniered Total

) €O W LWL W WO WO 00 WWWWo W o oowo Wowo oo Wb W Wwowow oo wo wWw

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
3s
39
40
41

42
43
44
45
46
47
48
49
50
51

52

110
110
109
110
110
113
108
110
110
109
110
168
164
167
167
164
163
161
168
168
170
168
168
170
166
169
165
166
169
168
169
74

74

74

74

74

74

74

74

74

74

10

110
110
109
110
110
113
108
110
110
109
110
168
164
167
167
164
163
161
168
168
170
168
168
170
166
169
165
166
169
168
169
74

74

74

74

74

74

74

74

74

74

10

Lost MinDelay AvgDelay MaxDelay

[« I o e oo e I B oo B = B I o B o B [= B B e 1 o I o B o B o e B oo B n B o Y o e o s Y o T o o Y o Y o Y o T s Y s K e Y e I I o [o Y s Y e

145

OO0 0 OO0 0O0000O00O000DO0O0O0O00D0DO00O000O0OO00O0O0OOOO0O0OOO0OO0

27.14545
31.0364
29.61468
32.4364
29.30909
33.7522
27.60185
26.68182
27.47273
24,73394
30.8636
23.57143
23.59756
2410778
23.69461
23.45732
24.57669
23.43478
24.85119
25.04167
23.62941
241131
24.58333
24.81176
24.70482
23.72189
24.05455
24.57831
241716
23.49405
23.99408
28.52703
27.16216
27.18919
30.0676
31.2432
30.027
40
26.2973
32.1216
28.06757
22.4

274
242
310
273
286
333
202
233
155
93
197
103
108
91
82
88
20
67
99
83
93
86
97
83
94
91
80
108
108
92
102
199
164
177
201
232
215
364
121
229
127
270

SD
48.7028
54.2969
65.9303
50.2664
64.5187
77.4625
58.7323
86.2476
73.5133
55.9309

65.166
54.4566
45.2281
37.0367

35.056
34.8058
36.3482
33.2837
46.6542
37.4172
34.0552
34.9745
37.0293
45.1272
55.8625
43.9197
44,5252
46.2025
44.4608
43.9568
55.7228
61.6248
44,2873
46.6672
83.3164
76.0804
53.4727
73.3005
42,5952
57.5658
54.6478
91.8973

SD
1.74551
0
0

13

1.52518

Lost MinDelay AvgDelay MaxDelay
0

0

91.3006 %
2999

2999

1

Total traffic load at node 2 = 58.5099 %
Node Session Entered Total

Total traffic load at node 3

Total traffic load at node 1 = 28.8986 %
Node Parameters

WF?Q+ scheduler

OO0 0000000000000 OQO0CO0O0000O0O00O0O0O0

OO0 O00000000D00O00CO0D0O0OO0O0O0O00O0D0DODDOOO0O0OO

OO OO0 0000000000000 00DO0000O0OOCO0O

OO0 0000000000000 O0OO0C OO0 O0OO0DO0OO0DO0O0OCO

OO0 O0OO0000QO0O0000000CQCOOO0O0QQQOO0O00DO0DO0000O0O0O0OOO0O

OO0 0O0000000D00CO00O0O0O0O0LQOOO00QQOO0O0O0O0O0OOO0

OO0 o000 O0O0OC0

0
0
0
0
0
0
0
0

OO0 0000000000000 OO

O~ QNN OSSO O v <t WO~ NnQ o) w0 O M~ 0
oron 2 TN2TELRER2a 0l LRNAREsNSIBEERRT
T g R Y T N Y Y YT Y Y T Y YT T T Y T T T T T T T YT T YT T T T Y. T Y oY Y

146

Node Session Entered Total

NMNMMNMMNMNMPDNNMNNNDNNNNDMNODMODNDNNMMNMNDONDNOMNDM NN NN MNOMNDNNDMNOD NN NN NN N = b oeb oed wd el b b b b

42
43
44
45
46
47
48
49
50
51
52

P aAD©®@ENOO A WN -

P =4 =2 & =
O W~ o;wW,m

~n
—

nnN
w N

) NN MNMNMNND
N = O WOo O b

EERE

COQOOO0OOOO0O0O0O

10
2999
i1
108
111
111
109
109
108
111
110
110
110
109
110
110
113
108
110
110
109
110

OO0 0O QOO0 O0OO0DO0OO0O0OOO0

DO 0O O0OODOO0O0O

10
2999
111
108
111
111
109
109
108
111
110
110
110
109
110
110
113
108
110
110
109
110

CO0 000000000000

Lost MinDelay AvgDelay MaxDelay

OO0 OO0 0O0OQOO0OOO00O0DO0O0O00O00OOOCO0O0O0000000QCO0O00O0OCQCOOO00O0O0O0O0

147

OO0 000 0000000000000 00000000000 OO0 OO0O0O0

zocoooaococ

3.20473
1.74775
2.64815
1.88288
1.90991
2.50459
2.04587
2.17593
2.14414
2.35485
2.03636
2.87273
2.12844
2.52727
2.64545
2.58407
2.08333
2.33636
3.25455
2.56881
2.890091
0

OO OO0 O0ODO0O0DDOO0OO0OO0

WOOOODOCOOOOOoO

COO0 QOO QOO0 000000

SD

OO0 O0OO0OO0O0O0O0O0O0

1.18322
3.70701
217014
3.79708
2.35145
3.28728
2.90967
3.23038
4.21819
2.71788
3.58149
2.50551
5.08596
2.10316
2.66347
5.15111
3.84379
2.09899
2.40892
4.08177
2.48997
3.23853

OO0 00000000 O

Node Session Eniered Total

GO G0 O G GO G (O GG WOoOoOoweowaowwaowowaowaowaowaeowowawowaowawwmNmhNMNONMDNNDNDNDRNDNDMDNMNDDRND

37
38
39
40
41
42
43
44
45
46
47
48
49
50

— g m
SN gdNd -+ B9

o T TR N GPIE. S TN Ty g
WO~ WN -

NN N
W N =

NN NN
~N oo

N
[2:]

W wWwnN
- O W

0
0
0
0
0
74
74
74
74
74
74
74
74
74
74
10
2999
111
108
111
111
109
109
108
111
110
110
110
109
110
110
113
108
110
110
109
110
168
164
167
167
164
163
161
168
168
170

NN NN
ol - R - N -E -

74
74
74
74
74
74
10

2999

111
108
111
111
109
109
108
111
110
110
110
109
110
110
113
108
110
110
109
110
168
164
167
167
164
163
161
168
168
170

Lost MinDelay AvgDelay MaxDelay

OO0 0O 0000000000000 O0D000DO0OD0DO0DO0O0OCO0DODO0OO0ODODOO0DODO0DOO0OODOOO

148

OO0 0000000000000 0DO0DO0O0O0OO0DO0O0DO0OONN=- =200 0000OQQO0OO0O

0

0

0

0

0
2.72973
2.44595

3
4.02703
5.58108
6.12162
5.86486
5.41882
6.39189
6.60811

29

9.62287
15.15632
10.0093
10.3514
8.7027
12.6239
14,2844
7.41667
10.1622
14.6273
8.39091
10.2091
10.4128
17.4455
14.0455
14.6372
6.85185
7.55455
10.7636
6.266086
15.4636
12.1786
7.45732
8.35329
11.7126
8.07927
18.4172
14.1988
12.2202
15.8631
10.5706

0
0
0
0
0
28
24
22
24
29
32
26
36
33
33
6
54
240
167
194
152
177
161
85
122
225
164
103
184
250
162
157
94
79
128
99
190
162
151
104
135
110
235
253
124
229
139

SD
0
0
0
0
0
4.11861
3.11857
3.28342
4.15107
578117
5.95188
5.14082
5.40854
5.90761
6.3344
2.01384
8.91575
38.8567
21.7944
24.8564
20.5335
24.7063
27.7493
15.2082
19.6204
35.6284
20.536
18.5074
24,2798
42.0692
29.3769
33.21
13.0361
14.0661
19.2144
12.6257
33.8084
27.8515
17.1937
16.127
24.2615
17.0404
43.6005
34.3033
23.0952
33.0788
20.9214

Node Session Entered Total

W W WWOoOoWOWwoeooooowowowww W ww

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

168
168
170
166
169
165
166
169
168
169
74
74
74
74
74
74
74
74
74
74
10

168
168
170
166
169
165
166
169
168
169
74
74
74
74
74
74
74
74
74
74
10

Lost MinDelay AvgDelay MaxDelay

COO0O0OO0O0OO00DO0O0O0O00O0ODLOOODODODO

149

COO0O0O0OO0O 0O ODOOODDOO

12.744
10.4405
9.80588
15.8614
9.28994
10.9939
11.4639
10.2722

9.0119
9.74556
7.86486
7.86486
5.71622
6.66216
8.66216
8.91892
8.18819
5.67568
11.3378
8.77027

25

154
136
124
170
140
159
141
114
128
106
118
118
68

68

154
73

104
48

155
115

8

SD
26.7467
22.3689

18.634
31.5794
19.7114
27.5445
21.7097
18.8775
19.1944
18.0556

17.466

16.898
9.64026
10.0481
20.2655
14.5713
16.6352

8.7381
24,7769

18.611
1.90029

0St

12500 12550 12600 1
L i i L] L 1 | [l] | 1 i L [l 1 4 1 i,] 1 i, H i | | [l | . I, I J] i]
~ERVL ok L 0 A GRS O R A RO

.DEifsystom ok | [T e eemm—

B DRl oG] [1os0tis00nto] e fOORROOY]
DE1/utler_full_from,_input_unit1 [i
..DEVlatch_data_from_memory_managaci i]

..DE(/packet_ptr_sossion_bus(640) TIIL222227222772 P800t zesno] ' Prerecerererers 2
i v R S s
..DEVfracest_from_upper_layer
...DE1/request_from_requlator
..DE1frequest_from_schedulér

& ..DE1/Mus_ack_from_iristate_decoder(1:0) i

e .DE1/pession{5:0)

B, DE1/datal42.0)
..DE1/db_controbier_soad_from_bus_contr...
-.DE1/db_controller,_write_from_bus_conlr... [
..DEffrequest_served_trom_db_conlioller
...DE1/eq_deceder_read_from_main_conlr...

-«DEt/eq_lito_ack_trom_cq_decoder
.. DEo_data_gvallable_from_eq_mux
- DEVpacket_ready_from_schedulor
...DE/bulter_emply_from_dispatch_butier ———
...DEV/serving_packet_fr
.DEV/packet_dispatched

e~ _.DEVoutput_link{49:0)

s/users.cs.study/mnt/padmini/padmini_code_7/NWC_SCHEDULER_TESTBENCH.cheetah. 883
22/5/2003 22:19:4 Page 1,1 of 1,1

Second packet arrival

J xipuaddy

$)[NS9Y UOTIR[NWIS 9IeMPIRH

IST

18700 18750 18800 18850

(| (OO (N (Y O, | | ,
--DEIU._olk T T T
...DE{/system_clk ;
...DEV/packet_available eSS S seRaeeee————e— e —
N — e T
...DE1/ouller_full_from_inpul_uniti
...DEtNatch_data_from_memory_mannager
-.DEtiregulaior_read_from_main_controlier
.DE1lrequost_from_upper_layer r o o
..DE1/request_from_regulator R . - i I T
..DEt/request_from_schedular
..DEt/bus_ack_from_lristate_dacodar(1:0) T z = |
DEVraply_lo_upper_layer
= ..DEt/session(50) at o J
o oestanzo i_;_ : __M_‘MW o _ M:‘ --_]
...DE1kib_controller_read _from_bus_conts...
,..na1m_oonmuor_mne_tm“m_mm_-“ T o e

..DE1frequest_served_from_dh_controller
...DE1/eq_decoder_resd_from_main_contr..
...DEVeq_fifo_ack_from_cq_decodar
...DE1/fifo_data_availabla_from_cq_mux
...DE1/packel_ready from_scheduler
...DE /bufter_amply_frorm_dispatch_buffer
..DE1/serving_packet_from_server
-DEVpackel_dispatchad

= DEVoulpul_link(49:0)

1040014500010

e]

s/users.cs.study/mnt /padmini /padmini_code_7/NWC_SCHEDULER_TESTRBENCH. cheetah.§83

22/5/2003

22:20:9

Page 1,1 of 1,1

Second packet dispatched

¢St

..DEtsystem_clk
..DE1/packet_available

e ...DEVpackel_info{d9.0)
. DE1/bufter_full_from_input_unitt

..DElatch_dala_{rom_memory_manageri

- ...DEi/packet_ptr_session_bus(64.0)

..DE1regulator_read_from_main_gcontroller F

..DEtiraquest_from_upper_layer
..DEVrequest_from_regulalor
-..DE1fraquest_rom_scheduler

B~ ...DE1bus_ack_from_tristate_decodar(i:0)
...DE freply_to_upper_layer

= ...DE1/sossion(50)

= DEV/data(d2:0)
...DE1/db_controlier_read_from_bus_contr...
.. DE1/db_controller_write_from_bus_contr...
...DE1/request_served_rom_db_controfier

...DE1/eq_decoder_read_from_main_contr... -

-.DEt/eq fifo_ack_from_cq_decodar
-..DE1ffifo_data_available_from_cq_musx
..DE1/packet_ready_from_schedular
..DE1/butier_emply_from_dispatch_bufiar
..DE1/serving_packet_from_server
..DEV/packet_dispatched

= ...DEV/outpul_link(48.0)

1040024500011

22:21:5

s/users,cs.study/mnt/padnini/padmini_code 7/NWC_SCHEDULER_TESTBENCH.cheetah.883
22/5/2003

Page 1,1 of 1,1

Third packet arrival

A A s
ei‘iiil.“l %!lwl' Lﬂﬁ’lﬁ;\ig Sl i \ﬁl '.'ﬁ 1!}%’“131Lflkr%“fl{l“ilﬁ'i‘b‘m‘1}E\yflliii:fgl :\ii’}fﬂ[lg;ill"éll,:',l'i]‘ﬁii‘s IE',}FrBl‘},ﬁ} ﬁf‘l :
T 0 L ‘%,’?El§;=zahﬂm_':-lﬁz.L{ i

A1 T

()

I!l'-;'ll!?ii
‘-. ;'.ii'n !‘1I sl .f”'=‘l ! ,g:i vr"

e
‘!l{t! !;"—‘iljfti%‘, }“eﬁ,h”
fitnnnaRe

|

ety

e

Ltk] 1 :T'
) ‘. | ;‘}_
SRR
i ftls it >
| I
o :. § ‘1 1 Ay l“li VL
TN 1‘ .‘|'; i
L}

sy MR
| I‘ll.![li‘zmﬁi l'l‘ i [i
V14 LA 'h*;.-{;": i A B LAY
sl bR TSR
:b 'f‘}‘lilfh.r il ';is‘i;' tl i }‘{f,i
!hhh‘!t‘x l R t FI :'E gtl') I R
I
i

I ;'i r“[il

1‘?-1535*511%:- j
i
Eg't il

i
RtienR B e
il :5“ RO
IR
'” i 1'5 i t -1|1 -Ii'.
rEi1tis]
i
i
l bt

(O

i 1 ('} i

| i
i

ey

I3
r-'n- bt
BTt

e —
S

o =

———

1
l}

—— —
—— e
vy

¥ s
e

————r
et b,

e

-

—
s
= o e

i

f]{{ tit

— et
Ry e s T e ey

= i E I
Tr e
e il e e
i e
e ey
=

il
.;i;‘
it
i
A

1}

P e el e S i

. - = s =

= 0 = = - =T —= == S =

= s, e - & o T e LS
-- = i e i i . =
= : ~ - o = -

= 2 = - mer T ——
2 = =z = - = Tt = o ey
- e e s = : :

— o ~
— ! .- - g - .-
e Ay = = - =
ST =3
e = o
e
e

' l .. |
e
i !-il‘i i "Pj
IR i

it l.h il

i

1
| | i ‘in , ;!11 1

1 'f ! :
¥ il 1 H ¢ } '
§ ¥ ‘: CH<Y s LR 1 H
: T H bl
')i%ill ‘ I g} 13y
4! 1y fi
i ’{ { . N1 il‘i!l] 3]

1l
)
1
3
14
¥
'

i
!_ﬁ
i
i

il
! I

