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Abstract 

The explosion in the size of communication networks as well as the need for 

integration of voice, video and data have pioneered a need for fast packet switching. The 

economical implementation of fast packet switching has become a reality with the recent 

advances in VLSI technology. This has introduced opportunities for new applications like 

video conferencing, that demand severe performance requirements in terms of allocated 

bandwidth, delay, delay jitter, and loss rate. Packet scheduling is an effort to reduce 

delay, delay-jitter and losses thereby providing Quality of Service to such delay- and 10ss

sensitive applications. 

The upshot of this research will influence the resolution of a most appropriate 

method of providing guaranteed but paid service to users of real-time applications like 

video conferencing, unlike the Internet, which is designed to provide best-effort service. 

Various packet-scheduling algorithms have been studied. Among the several existing 

packet-scheduling algorithms, Weighted Fair Queueing (WPQ) and Worst-case Pair 

Weighted Fair Queueing Plus (WF2Q+) are selected in this thesis for comparison based 

on their delay properties. The performance is investigated for both fixed-sized packets 

and variable-sized packets. It has been found that WP2Q+ is fair and introduces lower 

delay than WFQ. Due to the lower hardware as well as time complexity, WF2Q+ can be 

considered as a prospective algorithm for use in high-speed packet-switched networks. 

The performance is studied on a network with and without the presence of cross-traffic 

for various traffic loads. Simulation results and hardware realization are discussed. A 



brief canvassing on where these results lead us follows the conclusion. A proposal for 

future improvements is also presented. 

ii 



Acknowledgements 

I express my sincere thanks to my supervisor Dr. R. Venkatesan for his 

continuous encouragement, full-fledged guidance, intellectual assistance, useful 

suggestions and financial support during the course of my research. I thank Dr. R. 

Venkatesan, Dr. T. Norvell, Dr. P . Gillard and Dr. H. Heys for the wonderful teaching 

offered by them when I was doing my course work, which in tum significantly helped in 

my research. 

I thank Dr. C. Jablonski, Dean of Graduate Studies, for the financial support 

endowed on me during my stay in Memorial. I also thank the Associate Dean of Graduate 

Studies, and I would like to acknowledge Ms. M. Crocker, Office of the Associate Dean, 

for doing a yeoman's service in guiding all my concerns from commencement to 

completion of my work at Memorial University. 

I thank the members of CCAE for the computing services provided by them 

during my study. I also thank Mr. N. White, System Administrator, Department of 

Computer Science, for his help with gaining access to Synopsys tools provided by CMC. 

I thank my friends at CERL for their encouragement and support throughout my . 

programme. Especially, I thank Prof. C. Li for spending his suggestions and criticisms 

and also for the invaluable discussions. I also thank R. Shahidi, the Lab Manager of 

CERL, for his uninterrupted help in making a comfortable environment to work and also 

solving frequent computing concerns. 

1ll 



Table of Contents 

Acknowledgements ................................................................... '!! •••••••••••••••••••••••••••••••••••••• iii 

Table of Contents 1ilo ... II ••• flfHI •••••••• o ••• e •• OIlo ••••••• * ••• "' ••• I'lIS •• .,O ••••••• • IIoO •• III •••••••••• G •• o •••••••••••••• aO.Iilo.lul ••••••••••• • Iilo iv 

List of Figures ...... e ••••••••••• "'o •• e •• •••••• G ............. o ••• « •••••• " •••• a. •••• o •••••• " ••• e •••• G ..... e ••••••• o •••••• e •••• I11 •••••• viii 

1. Introduction .............. 0 ........................... . .............. . ......... ..................................... 0 ••••••••••• 1 

1.1 Historical Background ..... ............................. .. .. ..... .. ........... ... ... ....... ..... ... .... ... .. ... ...... 1 

1.2 Integrated Services Networks .... ...... ........... .. ... ... ... .. ...... ... ................. ...... .................. 2 

1.3 Quality of Service .. ... ... ..... ....... .. ..... ...... .... .. ... ...... ..... ... ... ..... .. .................................... 3 

1.4 Scheduling ............ .. ........ ... .. .... ..... ....... .. .. ......... .. ...... ................ .... .... .......................... 4 

1.5 Properties of Scheduling Disciplines ......... ..... ........ ... ................ ............ .................... 5 

1.6 Motivation for this Research ................ .. .. ... ......... .. ........................... .. .............. .. ....... 7 

1. 7 Organizat~on of the Thesis ... ................. ............... .. ................. ...... .. ... .............. .... ... ... 7 

Chapter 2 1I040.0eI'GllCI., ••• Qa .. e OO ... ~CI.o ..... eOO.,.!/l.00o."o...,oe.&~a.0., • • O •• IiIQOOillOO ••• GO&OOoo.tI",o .. "oOO<ileOOGlIIIIIClIDOOOSl"I501JaOO.OliJO.oOO •• O ••• VIIIIfO .. D 9 

2. Scheduling Disciplines ................................................................................................... 9 

2.1 Introduction ... ............. ............. '.' ........... ... " ................................................................ 9 

2.2 'Vork-conserving and Non-work-conserving Scheduling Disciplines ........ ............. 10 

2.3 Rate Controlled Service Disciplines .. ........ ............... ....... ...... .......... ... .. ............ ....... 12 

2.3.1 Regulators .......... ...... ...... .. .. ....................... .. ... .. .... ... ... .... .. .... ......... .................... 14 

2.3.1.1 Delay-jitter Controlled Regulators ..................... ................ ............. ........ ... 15 

2.3.1.2 Rate-jitter Controlled Regulators ....... .. ................. ... .................................. 16 

IV 



2.3.1.3 Trade-offs ....... ...... .... ...... .... ................ ..... .. ...................... ....... ..... ... .. .. ........ 17 

2.4 Discussion of Scheduling Disciplines .. ... ... .. ........... ... .... ..... ... ... ........... ........ .. .......... 18 

2.5 Conclud1ng Remarks .................. ... ... ....... .... .......... ..... ........ .... .. ................... ...... ...... . 23 

Chapter 3 Oct . 0 . It m •••••• •• ctllll~$iI'lIIlilI';;o .'IUI G 110. 00 III • ., 0 ......... \llIi'O ~ GoO." 001110.0 0 .... " 0" $ 0 •• OIS •• e., •• 1iI ."' ••••• 0" • ••• ,.. •• " " ••• 0a e OGGOO " ••• e \IIlUl m ••• """ 0 24 

3. WFQ and WF2Q Scheduling Disciplines .................................................................. 24 

3.1 Introduction ... ... ................ ................. ............ ......... ............................ .. ........... .. ....... 24 

3.2 Definition .. .... .. .... .. ........... .. ........ .. ....... .. ... .... ............ .......... .... .......... .. .. .... ....... ......... 25 

3.2.1 Weighted Fair Queueing (WFQ): ....... ...... .. .... .. ................................................ 26 

3.2.2 Worst-case Fair Weighted Fair Queueing (WF2Q): ............... .. ......................... 27 

3.3 Properties .......... .. .. .. ......... ...................... ... .. .. ...... ...... ... .. ...... ...... ................. .... ....... .. 29 

3.3.1 System Virtual Time Function ........................ ........ .... .... .... .. .. .................. ..... ... 30 

3.3.2 Packet Selection Policy ....................................... .. .. .... ....... ....... .. ... .. .. ..... .. .. ..... . 31 

3.3.3 Implementation Complexity .. .... ... .. ... ... ............. ..... ...................... ..... ...... ...... .. . 32 

3.3.4 Accuracy .. .......... ... ..... ...... ......... ... .. ................................................ .. ......... .. ...... 33 

3.3.5 End-to-end Delay and Buffer Space Requirements .. .. .. .. .. ... .. ......... ... .. .. ........... 36 

3.3.6 Traffic Characterization ............... ........... .. ..... ..... .... .... .. ...... ................ .............. 37 

3.4 Discussion of Properties ............ .. ..... .. ..... ... ... .. ... .. ..... .. .. ............. ........ ..................... 37 

3.5 Concluding Remarks ............... ... ... ............ ....... ..... ... ............... ... ... ...... ............. ........ 40 

Chapter 4 .. 0 00 ... e ... . ..... (JI!lll • • • III .... 0. 0 .. 000000 eeeG ...... OIlGo.ooe.oII0 ••• 08 0$0. 0 00 OG 111 .. 00 •••• eOGO •••• a lit .. oe OO OG IttI0\1100000 •• " 1')0.0 1110 •• 000 •••• 41 

4.1 Introduction .... .. ...... .. ............... ................. ..... ...... ... ..................... .... .......... .. ... .... ...... 41 

4.2 Network Model ......... ....... .... ... ...... ...... .. .... ...... ... ...... ...... .... .. .......... ... .... ... ....... .. .. .. .. . 41 

4.3 Traffic Model ............................. ... .... ........ .. .... ..... .. ...... .. .... ... .. ... .......... .... ................ 42 

v 



4.4 Packet Length Distribution .. ......... .... ..... .... .... .. .... ...... .. ........ .............. .. ......... .......... .46 

4.5 Implementation .... .... .... , .... ... ..... ........ ... ....... ........ ............... ...... ........ .... ............. .. .. ... 48 

4.5.1 Traffic Generator ............... ........... ..... ............. ..... ....... ... ... .... .... ...... ................ .. . 48 

4.5.2 Input Buffer .................... .............. ................. ........ .. ........ ................ ..... ...... ....... 50 

4.5.3 Transmission Link .......... ........... .......... ........ ... ... ................... ... .......... .. .... .... .. .. . 51 

4.5.4 Regulator .... .. ..... ... ...... ... .................. .. .. .............. ........ ........... ........ ..................... 52 

4.5.5 Scheduler ...... ..... ...... ........... .. ..... ..... .......... .. .. .... ..... ... .. .. ... .. ......................... .. ..... 53 

4.5.6 Data Handler .......................................... .. ........ ........ ......................................... 54 

4.5.7 Control Unit .... ... ....... ... .. ....... ......... .......... ........ .. ............... ... ..... ..... ............... .. .. 55 

4.6 Simulation Results ... ...... ... .......... .................... ... ........ .............. ...... .. ..... ................... 59 

4.7 Discussion ............ ..... ....... .... .. .... ....... .......... .... .. ............... .... ......... ...... ..... ..... .. ......... 81 

Chapter 5 . O ••••••• • & .. IIIV0 •• & ..... ~ ••• O ••• ,., ••• OO.O.!D.CI.GS.OG •••••••• ".,,<') •••• G •• o • ••• e ••••••• OODoeoo ••••••••••••• & •••••••• 111 • •• • •••• • •• 83 

5. Hardware Implementation ......................... " ...... " ......................................................... 83 

5.1 Introduction ......... .. ....................... .... ............... ... .... .... ... .. ..... ........ .......... .... ... ... ........ 83 

5.2 Hardware Implementation .... .. ........... ...... ... ... ......... ................ .. ...... ..... .............. ...... . 83 

5.2.1 Input Unit ....... ................ ........ ...... ... ....... ...... .......... .. .......... .... ... ...................... .. 85 

5.2.2 Memory Manager ...... .... ......... .... ..... .. .. ... .. .. .. .. ..... .. ..................... ...................... . 86 

5.2.3 Two-port Memory ....... .. .... ............. ....... ............................... ... .......................... 87 

5.2.4 Main Controller ............... ... .......... .. .. .. .......... ... .. ............ .... .. .... .... .... .................. 88 

5.2.5 Database Controller ... ......... .. ......... ............ ... .... ........... .. .. ...... ...... .. .. ........... .. ..... 88 

5.2.6 Regulator ... ......... .... ................................. ................. .. ..... ........ .... .. .................... 89 

5.2.7 Delay Unit .. ... ........ ..... ..... ...... .... ............... .... ... ............. ... ............. .. ..... ... ........... 90 

5.2.8 Bus Controller ...................... ............ .. .. .. .............. ....... .. ..... ... .......................... .. 92 

vi 



5.2.9 Scheduler ..................... .... ........ ...... .... ........ ... .. ....................... .............. .............. 92 

5.2.10 Server and Dispatch buffer ...... .... ............ .............. ... .... ..... .. ........... ... ... .... ...... 94 

5.3 Testing ......... ......... ..... ...... ......... .. ....... .......... ...... .......... .................................... ... ...... 96 

5.4 Discussion .... ..... ...... ........... ... .. ......... .... ... .. ... ......... .... .... ...... ....... .... .. ....... ... .......... .. 106 

60 Conclusions and Suggested Future Work& .. eo ....... ueU&&Cloo .. eoo.OGoUloo.OO .. llflouu .. au ••• o.uuuo 108 

6.1 Conclusions ............ ................... ................................... ..................... ... ... .... ......... .. 108 

6.2 Other Contributions: .... ........... ... ............ .............. .......... .. .. ............. .. ..... .. ... .......... . 109 

6.3 Suggested Future Work ............ .. ....................... ..... .............. .. ..... ... .... .. ... .... .......... . 110 

References ................................................................................................. ............. 11 •••••••• 114 

Appendix A ... 0 ••••••• " ••• ., •• "0&0 • ., •••• 0 ••• 0 ••• 0 .......... . ..... ", .............. 110 •• 0 •• 0 •• 41 •• 0 ....... 0 .... "., ••••••• " ••• /10 •••••••••••• 0 118 

Software Simulation Results ....... 0 ....... ...... 0\1 ................... . "0 ••••••• 11 ••• '" ••• '111 ... 0 •••• " • •• 111 ••• 11 .......... " ••• 118 

Appendix B ... " ................................................................................................. 15 ••• ••• ••••••••••• 126 

Software Simulation Results - Contd .....•....................................•...•...•...................... 126 

Appendix C .......... 0" ••• 0 .......... . ........ .,0.8 ............... 0$ •••••• •• " ......... IIIo •• I!Io ••••••••• oo ........ . . ....... eoo."""" •••••• 134 

Software Simulation Results - Contd . .......... 0 ....... $ •••• ~s •• e ••••••• o •••• o ••• e ••••••• GI ••• o .......... e ••••••••• 134 

A P pen dix D.o. DO" 00 ••• ;;' •• e!ill 0 •• "' ••• 0 •••••••• Go •••• • a. 000:011> ••••• 11) 0 0 Gee" "l1lil1li 00 •• G 0 e"oCl .GGGG • .,., ;.ooa ., .. 0 G 00"0 III IS. ~o ••• " eo .. 0.0.,11\ "1:\1.0 "0 0 t,lo G 142 

Software Simulation Results - Contd .....•................•.•..•.•..•........•....•.....•.................... 142 

Appendix E .• o .••.• oaoo •.• "oIJOOGG.eoo •• CIlGo., ..... \'ICI., • •• • •••• • II) OCl • .,OIIG •• "0 ••• 8 ••• 0 ••• 1'10 ••• 1100.&011)11)111 .... .,0 •• 08 •••••• 11 ••• 11\'1 •• 110 ••••• "0 '' •• 150 

Hardware Simulation Results ....... e ••• o •••• o •• ot> •••• 0 •• 000 • .,"'II) •••••••••• O •• G •••• ili ••• .,0 ••• 61 •• " ••• 0 • ••• 111 ••• 0 ••• .,.0.". 150 

vii 



List of Figures 

Figure 1.1 Block diagram of a switch .. . .. . ... .. . .. . . .. ... . .... ... . ........ . .. .. ........... . .. ... 3 

Figure 2.1 Traffic pattern distortions due to load fluctuations ... .. ... . ... .. . . . . . .... ........ 11 

Figure 2.2 Rate-Controlled Service Discipline ........... .. ................. . . . . .. .. .......... . 13 

Figure 3.1a Packet arrival pattern . . ... . ..... . ..... .... . . ... ... .... .. .. . . ...... . . . . ..... .. ....... 25 

Figure 3.1b GPS service order ... .. ............. . . . ............. .. ... . ... ............. .. ... . ..... 26 

Figure 3.1 c WFQ service order .. . . .... .. ...... . ................... . .. ...... . ... . . : .... .. . . ..... .. 27 

Figure 3.1d WF2Q service order .. . ... . ...... . ....... ... .. .. ............................. ........ 28 

Figure 4.1 Network model .... ...... ..................... ... .............. ........ .... ... ........ .42 

Figure 4.2 Inter-arrival time probability density function for PS 21-40 with 

weight 37 .. . .. ..... .. .... . . .... .. ............ ... .. ...... .. .......... . .. .. .......... .... .. .... .. 44 

Figure 4.3 Inter-arrival time probability density function for PS 1-20 with 

weight 5 ...... ... ... .... ... .. .. ... ..................... ... .. . .... ... ... .... .. ......... . ..... .... 45 

Figure 4.4a Cumulative distribution of packet sizes .... .. . ..... ..... .... ....... . . ... ........ .46 

Figure 4.4b Packet length distribution .. . .... . ... . . .. . ... .. . . . . ... .... ............. .. .......... .47 

Figure 4.5 Block diagram of the scheduling simulator (software implementation) .. . . .. .49 

Figure 4.6 Flowchart of control unit .. .... .............. .... . .. ...... .... .. ... ......... .... .. 57-58 

Figure 4.7a End-to-end delay ofWFQ scheduler for fixed-sized packets without cross-

traffic with least best-effort traffic and an output link rate of 50 bytes/ms ..... . ..... 62 

Figure 4.7b End-to-end delay of WF2Q+ scheduler for fixed-sized packets without cross-

traffic with least best-effort traffic and an output link rate of 50 bytes/ms . . .. ....... 62 

viii 



Figure 4.8a End-to-end delay of WFQ scheduler for fixed-sized packets without cross-

traffic with least best-effort traffic and an output link rate of 100 bytes/ms .. .. . .. .. 63 

Figure 4.8b End-to-end delay of WF2Q+ scheduler for fixed-sized packets without cross-

traffic with least best-effort traffic and an output link rate of 100 bytes/ms ... .. .. .. 63 

Figure 4.9a End-to-end delay of WFQ scheduler for fixed-sized packets without cross-

traffic with least best-effort traffic and an output link rate of 150 bytes/ms .. . ...... 63 

Figure 4.9b End-to-end delay of WP2Q+ scheduler for fixed-sized packets without cross-

traffic with least best-effort traffic and an output link rate of 150 bytes/ms ......... 63 

Figure 4. lOa End-to-end delay of VVFQ scheduler for fixed-sized packets without cross

traffic with maximum best-effort traffic and an output link rate of 50 bytes/ms .. .. 64 

Figure 4.10b End-to-end delay of WF2Q+ scheduler for fixed-sized packets without 

cross-traffic with maximum best-effort traffic and an output link rate of 

50 bytes/ms ............. . ..... ... .... .. ... . ...... . ....... .. .. ........ . . . ... . . . ...... . .. . ....... 64 

Figure 4.11a End-to-end delay of WFQ scheduler for fixed-sized packets without cross

traffic with maximum best-effort traffic and an output link rate of 

100 bytes/ms . ......... . ... .... . . .... . .... . ...... . . . .... .. ........ . ... . . .. .. ... .... .. . ......... 65 

Figure 4.11 b End-to-end delay of WF2Q+ scheduler for fixed-sized packets without 

cross-traffic with maximum best-effort traffic and an output link rate of 

100 bytes/ms ....... . .......... . .. . .. . .. . .............. .. .. . .. .. .... .. ...... . . . . ... . . ....... . .. 65 

Figure 4.12a End-to-end delay of WFQ scheduler for fixed-sized packets without cross

traffic with maximum best-effort traffic and an output link rate of 

150 bytes/ms . .......... .. ... .. . . . .. .... . .. . . . .. ... . . .. . ....... . .. .. ........ .. ...... . ..... .... . 65 

IX 



Figure 4.12b End-to-end delay of \\i-p2Q+ scheduler for fixed-sized packets without 

cross-traffic with maximum best-effart traffic and an autput link rate of 

150 bytes/ms . . ........... . . . . ... . . . .. .. . .. ...... . .. .... . . ...... . ... .. .... .. ........ . . .. . ..... . 65 

Figure 4.13a End-ta-end delay of WFQ scheduler for fixed-sized packets with cross-

traffic with least best-effort traffic and an output link rate of 50 bytes/ms . .. .. .. .. . 67 

Figure 4.13b End-to-end delay of WF2Q+ scheduler for fixed-sized packets with crass-

traffic with least best-effort traffic and an output link rate of 50 bytes/ms ....... . .. 67 

Figure 4.14a End-to-end delay of WFQ scheduler for fixed-sized packets with cross-

traffic with least best-effort traffic and an output link rate of 100 bytes/ms ......... 68 

Figure 4.14b End-to-end delay ofWF2Q+ scheduler far fixed-sized packets with cross-

traffic with least best-effort traffic and an output link rate of 100 bytes/ms .. . ...... 68 

Figure 4.15a End-to-end delay of WFQ scheduler far fixed-sized packets with crass-

traffic with least best-effort traffic and an output link rate of 150 bytes/ms .. . . .. ... 68 

Figure 4.15b End-to-end delay of WF2Q+ scheduler far fixed-sized packets with crass-

traffic with least best-effort traffic and an output link rate of 150 bytes/ms .. . .. . ... 68 

Figure 4.16a End-to-end delay ofWFQ scheduler for fixed-sized packets with crass

traffic with maximum best-effort traffic and an autput link rate of 

50 bytes/ms .. . ...... .. . .. . .. ... . .. . .. ........ . .. . ...... . ... . . . .... . .... . . .. .... .. ... . . ... ...... 69 

Figure 4.16b End-to-end delay of WF2Q+ scheduler far fixed-sized packets with cross

traffic with maximum best-effort traffic and an output link rate of 

50 bytes/ms . ... .. . . . ............. . . . ... .. . .. . . . ........ ... ..... . ... .. ..... . . . ..... . .... . .. . .... 69 

x 



Figure 4.17a End-to-end delay of WFQ scheduler for fixed-sized packets with cross

traffic with maximum best-effmi traffic and an output link rate of 

100 bytes/ms ........ ... ... . .. . . . .. . ................. . . .. ... ............. . ....... . . .... . .... ... . 70 

Figure 4.17b End-to-end delay of WF2Q+ scheduler for fixed-sized packets with cross

traffic with maximum best-effort traffic and an output link rate of 

100 bytes/ms .. ... ........ . . . . .. .. .. . . . . .......... ... .... . ........... . . ... .. . . . .. . ....... ... . ... 70 

Figure 4.18a End-to-end delay of WFQ scheduler for fixed-sized packets with cross

traffic with maximum best-effort traffic and an output link rate of 

150 bytes/ms ... .... ....... .... .. .... .. ... . .... .. .. ... . .. , .. ... . .. ... . . . .. . ...... . ... ... ....... . 70 

Figure 4.18a End-to-end delay of WF2Q+ scheduler for fixed-sized packets with cross

traffic with maximum best-effort traffic and an output link rate of 

150 bytes/ms .......... . ............. . ........ ... .... . ... . .. . .. . ....................... . . , ...... 70 

Figure 4.19a End-to-end delay of WFQ scheduler for variable-sized packets without 

cross-traffic with least best-effort traffic and an output link rate of 44 bytes/ms ... 71 

Figure 4.19b End-to-end delay of WF2Q+ scheduler for variable-sized packets without 

cross-traffic with least best-effort traffic and an output link rate of 44 bytes/ms ... 71 

Figure 4.20a End-to-end deJay of WFQ scheduler for variable-sized packets without 

cross-traffic with least best-effort traffic and an output link rate of 320 bytes/ms .. 72 

Figure 4.20b End-to-end delay of WF2Q+ scheduler for variable-sized packets without 

cross-traffic with least best-effort traffic and an output link rate of 320 bytes/ms .. 72 

Figure 4.21a End-to-end delay of WFQ scheduler for variable-sized packets without 

cross-traffic with least best-effort traffic and an output link rate of 

1500 bytes/ms ..... , ...... . ....... . . . .... . ................ . ................. . ........ . . , . ...... 72 

xi 



Figure 4.21 b End-to-end delay of WF2Q+ scheduler for variable-sized packets without 

cross-traffic with least best-effort traffic and an output link rate of 

1500 bytes/ms ....... . ....... .. .... . ..... . . . .. ........ .. ...... .... .... .. ... . .. .. .. . ... .. . .. .. .. 72 

Figure 4.22a End-to-end delay of WFQ scheduler for variable-sized packets without 

cross-traffic with maximum best-effort traffic and an output link rate of 

44 bytes/ms .. ....... ...... ........ .. . ..... . .... . .......... . ...... . ................ . ......... ... 74 

Figure 4.22b End-to-end delay of WF2Q+ scheduler for variable-sized packets without 

cross-traffic with maximum best-effort traffic and an output link rate of 

44 bytes/ms . . . .. . ... . ........... . ............. . .... ........ . . . .......... . ...... . ..... . .... .. ... 74 

Figure 4.23a End-to-end delay of WFQ scheduler for variable-sized packets without 

cross-traffic with maximum best-effort traffic and an output link rate of 

320 bytes/ms ........ .. .. ....... . ........ . ... . ....... . ........ .. .. . .... . ... . ... ... . .... ..... .... 75 

Figure 4.23b End-to-end delay of WF2Q+ scheduler for variable-sized packets without 

cross-traffic with maximum best-effort traffic and an output link rate of 

320 bytes/ms . ... .............. . ................. . . . . .......... .. . ... ... .. . .. . ........ . ......... 75 

Figure 4.24a End-to-end delay of \VFQ scheduler for variable-sized packets without 

cross-traffic with maximum best-effort traffic and an output link rate of 

1500 bytes/ms . . . .... . ..... , . ... ... .. . ........ . .. , .. . . . ...... . ........... . ..................... 75 

Figure 4.24b End-to-end delay of WF2Q+ scheduler for variable-sized packets without 

cross-traffic with maximum best-effort traffic and an output link rate of 

1500 bytes/ms . ...... . .............. . . ..... ... .... . . .... . ...... . .... . . . ...... . . .. .. ....... . .... 75 

Figure 4.25a End-to-end delay of WFQ scheduler for variable-sized packets with cross-

traffic with least best-effort traffic and an output link rate of 44 bytes/ms ........... 76 

xii 



Figure 4.2Sb End-to-end delay of \~lF2Q+ scheduler for variable-sized packets with 

cross-traffic with least best-effort traffic and an output link rate of 44 bytes/ms 0 ••• 76 

Figure 4.26a End-to-end delay of WFQ scheduler for variable-sized packets with cross-

traffic with least best-effort traffic and an output link rate of 320 bytes/ms .... . ... . 77 

Figure 4.26b End-to-end delay of WF2Q+ scheduler for variable-sized packets with 

cross-traffic with least best-effort traffic and an output link rate of 320 bytes/ms .. 77 

Figure 4.27a End-to-end delay ofWFQ scheduler for variable-sized packets with cross-

traffic with least best-effort traffic and an output link rate of 1500 bytes/ms . . . .. . .. 77 

Figure 4.27b End-to-end delay of WF2Q+ scheduler for variable-sized packets with 

cross-traffic with least best-effort traffic and an output link rate of 

1500 bytes/ms ....................................... . .... . .. . ... .. . .. ... . . .. . ....... . . ... . .... 77 

Figure 4.28a End-to-end delay of WFQ scheduler for variable-sized packets with cross

traffic with maximum best-effort traffic and an output link rate of 

44 bytes/ms ....................... . . .. .. . .... . ... .. . .. ... . ... . .. . ........ . . . . ....... .. . .. . ..... 78 

Figure 4.28b End-to-end delay of WF2Q+ scheduler for variable-sized packets with 

cross-traffic with maximum best-effort traffic and an output link rate of 

44 bytes/ms .. .. ........ ... ...... . ............. . ............ .. .... ... .............. . ..... . ...... 78 

Figure 4.29a End-to-end delay of WFQ scheduler for variable-sized packets with cross

traffic with maximum best-effort traffic and an output link rate of 

320 bytes/ms .. . .. ....... . ................. . . . .. ..... . ...... ... . . . . ............................ . 78 

Figure 4.29b End-to-end delay of WF2Q+ scheduler for variable-sized packets with 

cross-traffic with maximum best-effort traffic and an output link rate of 

320 bytes/ms . . . .. ... .. .. .... ... ... .. . . . .. ... .. . . ... .... . ...... ... ............ . .. . .. ..... . ...... 78 

xiii 



Figure 4.30a End-to-end delay of WFQ scheduler for variable-sized packets with cross

traffic with maximum best-effort traffic and an output link rate of 

1500 bytes/ms . . ... .. .... ... ... . .. . .. .. ... ... .. . ..... . .. .. . ..... . . ....... ... .. ....... . ... .. . ... 79 

Figure 4.30b End-to-end delay of WF2Q+ scheduler for variable-sized packets with 

cross-traffic with maximum best-effort traffic and an output link rate of 

1500 bytes/ms . .. . .. . . ..... . .. .. ... ... ... ..... . .. . . .. . ... . .. ...... .. . ..... .. . . . ................ 79 

Figure 5.1 Block diagram for a single node ... .. . . .. . ... ... ... . ..... .. .... ... . . .. . .............. 84 

Figure 5.2 State diagram of memory manager ..... ... .. ....................................... 86 

Figure 5.3 State diagram of the scheduler ................ ... .. .... ... ......... .......... .. ...... 93 

Figure 5.4 Block diagram of multiple node implementation ... .. ........ .................... 95 

Figure 5.5 Timing diagram of the hardware implementation of WFQ scheduling 

discipline .. ... . ...... . . . ........ .. .... . .. . .... .. . .. .... ........ .. ....... ... . .. . ... .... . . . . .. . .. 97 

Figure 5.6 First packet arrival .. .... . .. . . .... .... .. .... ... .. . ........... . .. . ...................... 99 

Figure 5.7 Reading connection details from upper layer .. .. .. .............. . .. .. .... ....... 100 

Figure 5.8 Regulator reads connection's details from db_controller . . .. . ... . .. .. . . ..... .. 101 

Figure 5.9 Scheduler reads connection's details from db_controller .. .. .. ...... ...... .... 102 

Figure 5.10 Packet dispatched from server ...... .... ......................................... 103 

Figure 5.11a End-to-end delay of WFQ scheduler for fixed-sized packets without cross-

traffic with least best-effort traffic and an output link rate of 50 bytes/ms .... ..... 106 

Figure 5.l1b End-to-end delay ofWF2Q+ scheduler for fixed-sized packets without 

cross-traffic with least best-effort traffic and an output link rate of 50 bytes/ms ... 106 

Figure 6.1 Hierarchical calendar queue for intra-group scheduling . .. . ............... ... . 112 

xiv 



Chapter 1 

1. Introduction 

1.1 Historical Background 

In the late nineteenth century, telegraphy was the only means of long distance 

communication. The next progress started with introduction of the telephone network to 

carry voice. In 1890s, switches were introduced and the telephone service spread to a 

large extent. Initially, the telephones presented point-to-point communication, but with 

the introduction of digital telephony, other useful services such as teleconferencing were 

introduced. The idea of Internet (also called, Internet Protocol or IP) was introduced 

around 1960s for shaling the computing resources of researchers and for U.S military to 

have a robust communication against nuclear attacks [1]. Eventually, this emerged to be 

cheaper than the telephone network. Soon, a need to carry not only voice and data traffic, 

but also bursty video traffic arose. The telephone companies built an integrated voice/data 

network and called it Integrated Services Digital Network (ISDN). ISDN has a bandwidth 

of 128 Kbps which was not sufficient to carry video to customers in the United States and 

so, the concept of Broadband-ISDN or B-ISDN was introduced in mid-1980s which 

featured higher bandwidth. Duling the late 1980s the Asynchronous Transfer Mode 

(ATM) network was started and voice data could be earned along with other data in the 

network. Communicating through such integrated networks (ISDN or ATM) has captured 

the attention of several mil1ion people worldwide. 

1 



1.2 Integrated Services Networks 

Integrated services network is the integration of video applications like video 

conferencing and online movies, voice applications like phone conversation and voice 

chat over the Internet, as well as, data applications like e-mail, fax and high-speed data 

transfer. Since it supports several applications through the same single network, the size 

of such an integrated network has grown at a rapid rate recently. This has created a need 

for fast switching through the nodes of the network and an assurance in bandwidth 

allocated to the users of the network. In general, the network consists of several nodes 

that switch packets from incoming links to one or more outgoing links. In general, each 

node in a network is a switch, which routes packets from an incoming link to one of 

several outgoing links. Each switch consists of an input port controller, the switch fabric 

and the output port controller (Figure. 1.1). Each switch also routes packets of different 

traffic classes according to the service requested by the user. This switching of traffic 

from various classes has to be done diligently and therefore various switching techniques 

have emerged. Due to the recent advances in Very Large Scale Integration (VLSI) 

technology, fast packet switching could be implemented economically. 

Asynchronous Transfer Mode (ATM) switch is a good candidate for VLSI 

implementation due to its high bandwidth requirement [2]. ATM is based on small fixed

sized packet (cell) switching, and hence fast, while 1,ternet Protocol (IP) is based on 

variable-sized packet switching. Another important difference between ATM and IP is 

that, A TM switching guarantees service while IP switching makes best efforts to enable 

packets reach their intended destination; hence the simplicity of the IP switching network. 
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Fast packet switching used in high-speed integrated services networks combines the 

above two switching technologies (ATM and IP), by providing guaranteed service to 

various traffic sources and sending packets of variable sizes, while also being simple and 

fast. 

Input Port Controllers Output Port Controllers 

.. Input Buffer 
~ ~ 

Regulator, .. ... 
Scheduler 

.. 
0 Switch Fabric c 
0 0 
0 0 

.. Input Buffer --. ~ 
Regulator, .. 

" Scheduler 
.. 

Figure 1.1: Block diagram of a switch 

It is also necessary to make sure that the required throughput is achieved through 

the link. Thus the sources should be assured the desired quality of service they receive. 

Thus quality of service becomes an important issue. 

1.3 Quality of Service 

Due to the varied requirements of the users of video, voice and data, the integrated 

services network should be able to assure the service required by each class. That is, fast 

packet switching should not only be fast, but also provide quality of service (QoS) or 

guarantee the performance required by the various traffic classes. IP was initially a best-
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effort service, that is, it simply routed the packets, but did not guarantee service to users 

requesting service guarantees. Recently, through the introduction of certain advanced 

protocols, the Internet has been used to provide QoS to users to a limited extent. Quality 

of service basically means, measuring certain characteristics (delay, delay jitter, packet 

loss, fairness, complexity, etc), improving them in order to meet the guarantees 

committed in advance. Packet switches in high-speed networks service packets belonging 

to two main kinds of applications, namely, best-effort and guaranteed-service applications 

[3]. Therefore, the switches in the nodes of these networks should be capable of serving 

packets based on their QoS requirements. 

Some of the common · QoS requirements are bounded end-to-end delay, fairness, 

simplicity, scalability, low loss rate and delay jitter. These are discussed in Section 1.5 of 

this Chapter. An arbiter or scheduler is required at the output port of the switch to order 

the transmission of packets to the output link based on their QoS guarantees. Selecting a 

packet scheduling discipline which operates at the output port of the switch is one of the 

key design criteria for providing QoS. 

1.4 Scheduling 

Within each switch, in the output port, there are queues - one · for each service 

class or one for each user that will hold the packets that need to be sent through each link. 

A scheduler is required to select a packet buffered in one of these queues to be served 

next. Traditionally, the scheduling discipline used by the scheduler provided fair resource 

allocation by resolving contention among the network users. This policy was useful for 
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best-effort serVIce. The integrated-service packet-switched networks simultaneously 

support multiple types of services over a single physical infrastructure [4]. Therefore, the 

scheduling disciplines in these networks playa critical role in controlling the interactions 

between different users. Thus, the scheduling discipline is different for different 

technologies like ATM and Internet. 

In A TM networks, since the packets are transmitted as fixed-sized cells, the 

scheduling algorithms are usually implemented in hardware. In variable-sized packet

switched networks, since the packets are of larger size, they may be implemented in 

hardware or software. Many papers in the literature, such as [3], [5], [6], [7], [9], [10], 

[14], [16], [19], [20], [21], [23] , [24] and [26], proposing packet scheduling algorithms 

study the performance problems on queuing systems. But they cannot be applied to 

integrated services packet-switched networks because of the bursty nature of the 

incoming traffic and also because the guarantee on performance bounds is on a per

connection basis. Recently, investigation of networks involving real-time bursty sources 

has resulted in scheduling disciplines that have the ability to provide bounds on end-to

end delay for a traffic source which is bursty and whose burstiness is constrained. Above 

all, the scheduling discipline should be simple enough to be implemented at high-speeds. 

1.5 Properties of Scheduling Disciplines 

The performance provided by a scheduling discipline is determined by the 

characteristics required of an application (either best-effort or guaranteed-service). The 

guaranteed-service applications require the server (scheduler or scheduling discipline) to 

5 



allocate a mean delay to each connection by choosing an appropliate service order. They 

also require the server to allocate different bandwidths to connections based on the share 

of the output link the connections require. Lastly, they require a guarantee on loss rate for 

each connection by limiting the number of packets entering the connections. Though 

neither the server nor the scheduling discipline needs to guarantee delay, loss or 

bandwidth to the best-effort applications, these attlibutes should be fair enough so that the 

best-effort connections receive some service. Thus the scheduling disciplines should 

satisfy the following properties as a minimum requirement. 

• Low end-to-end delay - Real-time applications require low end-to-end delay. The 

scheduling discipline should be able to guarantee a lower bound on the end-to-end 

delay for certain applications possibly at the expense of increased delay to other 

non-real-time, best-effort applications. 

• Fairness - The bandwidth available in the link should be shared among the 

applications in a fair manner. Primarily, the scheduling disciplines are simply a 

fair allocation of bandwidth among the users present. 

• Simplicity - The scheduling discipline should be implemented as simple as 

possible, so that the time required to make a decision on the next packet to 

transmit is considerably low and as close as possible to the arrival time of packets. 

The scheduling discipline should also be implemented in hardware. 

• Scalability - The scheduling algorithm should be able to support as many 

connections as possible. Typically, this number is in tens of thousands. 
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4& Delay jitter - In simple terms, the delay jitter is the difference between the 

maximum and minimum delay a connection experiences. This difference should 

not be too high for feedback applications and applications carrying video. 

1.6 Motivation for this Research 

The integrated services network not only includes sources which have bursty 

traffic, but also constant rate sources, Poisson sources and sources which produce heavy 

traffic. Therefore, it is required to study various kinds of traffic the network encompasses. 

The scheduling disciplines we have considered in this thesis have not been tested 

exhaustively for various kinds of traffic, various traffic loads, or various packet-sizes. By 

and large, most studies assume a single server or a simple network with known traffic and 

fixed-sized cells that are easier to implement. In a real network, this is not the case. Thus 

a need to verify the behaviour of the scheduling disciplines by exposing them to various 

cases of traffic patterns and packet-sizes arose. In this work, the performance of some 

chosen scheduling disciplines is investigated under Internet traffic with variable-sized 

packets. 

1.7 Organization of the Thesis 

The rest of the thesis is divided into six chapters. Chapter 2 discusses the 

classification of scheduling disciplines and the properties required of a scheduling 

discipline. Chapter 3 introduces two chosen scheduling disciplines, discusses their 
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properties and the performance they guarantee. Chapter 4 details the traffic model used, 

the packet length distribution obtained, the software implementation and the delay results 

of the above two scheduling disciplines. Chapter 5 details the individual blocks involved 

in the hardware implementation and Chapter 6 identifies the contributions of the thesis 

and suggests areas of future work. 
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Chapter 2 

2. Scheduling Disciplines 

2.1 Introduction 

The output port of a switch consists of output buffers which contain packets that 

wait to be served on the output link. At each output port of a switch, a scheduler is present 

to manage these output buffers and arbitrate the access to the output line. The scheduler 

decides the order in which these requests are serviced onto the output link. The scheduler 

consists of a scheduling discipline which allocates different service qualities to users of 

various service requirements. The scheduling discipline does so by choosing a particular 

service order and also by deciding which packet to drop when there is excess traffic. 

Since scheduling is done at the output port of a switch, the scheduler is placed in the 

network layer. There are two main application types which the scheduling discipline has 

to consider while deciding the order in which to serve packets - guaranteed applications, 

which require a bound on the performance and so require resources to be reserved, and 

best-effort applications, which have elastic performance requirements and so do not need 

any reserved resources [1]. In order to support guaranteed applications, the scheduling 

discipline should be able to provide a bound on the per-connection delay, guaranteed 

bandwidth and a specified loss rate. In order to support best-effort applications, the 

scheduling discipline should be able to provide a fair allocation of resources to all the 

best-effort connections. 
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2.2 Work-conserving and Non-work-conserving 

Scheduling Disciplines 

Apart from the classification of the applications requiring service, the service 

disciplines themselves are classified either as work-conserving or non-work-conserving 

disciplines. In a work-conserving scheduler, when a packet arrives, if the server is idle, 

the packet is served. Some of the work-conserving disciplines studied in the past include 

delay earliest-due-date [5], virtual clock [6], fair queueing [7] and its weighted version 

[8], self-clocked fair queueing [9] and worst-case fair weighted fair queueing [10]. In the 

non-work-conserving scheduler, the packet is held in the queue until it is eligible for 

service. The server may remain idle if the packet is not eligible, that is, if the packet does 

not conform to its agreed traffic profile [11]. In the non-work-conserving scheduling 

discipline, each packet is assigned an eligibility time and queued in the buffers. At any 

time, when the server is idle, the packet with the least finish time among the eligible 

packets is serviced. If none of the packets in the queue is eligible, none will be served. 

To attain a bound on the end-to-end delay and also to determine the buffer space 

required, the traffic should be characterized inside the network. For a work-conserving 

discipline, the traffic is distorted inside the network due to fluctuations in the load inside 

the network, as depicted in Figure 2.1. Here, four packets are assumed to travel across a 

network with some inter-packet gap between them. In the Figure 2.1, each packet is 

represented by a vertical arrow. At the end of the first server, the first packet is delayed 

slightly longer than the second packet due to instantaneous cross-traffic. Thus the spacing 
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between the first two packets is small. At the end of the second server, the first two 

packets are further delayed and at the end of the third server, the first three packets are 

delayed, while the fourth packet passes without any delay. Thus the traffic pattern is 

distorted due to network load fluctuations and this makes the traffic burstier. 

t t t t -#me 

)nter-pact?e't time Entrance to Network 

tt t t 
After Switch 1 

ttt t 
After Switch 2 

tttt 
After Switch 3 

Figure 2.1: Traffic pattern distortions due to load fluctuations [12] 

Thus it is hard to characterize the traffic pattern inside such a network. Moreover, 

users could misbehave by sending at a rate higher than the bandwidth allocated to them. 

This causes a higher instantaneous arrival rate at any switch. To avoid the distortion in the 

traffic, non-work-conserving scheduling disciplines are used. They reduce the traffic 

distortion at each switching node by fully or partially reconstructing the traffic. This 

increases the average delay, but the end-to-end delay is bounded. For guaranteed service, 

the bound on end-to-end delay is more important than the average delay. Though in non-

work-conserving disciplines, the server remains idle sometimes, it assists in making the 

traffic more predictable in the nodes that follow . Thus the buffer space required in the 
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adjacent node can also be predicted. In this thesis, the buffer space available in each 

queue is assumed to be infinite in order to study the end-to-end delay bound on the traffic 

sources. One other disadvantage of non-worle-conserving schedulers is that they waste 

bandwidth. But this is compensated by efficiently sending best-effort traffic whenever the 

server is idle. Some of the non-work-conserving scheduling disciplines include jitter 

earliest-due-date (jitter-EDD) [13], stop-and-go [14], hierarchical round robin (HRR) [15] 

and rate-controlled static priority (RCSP) [16]. Though current day switching uses only 

work-conserving scheduling disciplines, there is a good scope for non-work-conserving 

disciplines when more users join the network, or, when the link becomes heavily loaded. 

2.3 Rate Controlled Service Disciplines 

The scheduler, on its own, is capable of providing service guarantees on a per

connection basis only if the traffic entering that particular node satisfies certain traffic 

specifications. The traffic entering the network may conform to the constraints of the 

source, but the network load oscillates thereby distorting the traffic at a node. Thus the 

traffic entering a node may experience instantaneous burstiness. A class of non-work

conserving service disciplines are the rate controlled service disciplines [16]. The rate 

controlled servers tackle the problem of providing end-to-end delay bounds and managing 

traffic distortions by encompassing a separate rate-controller and a scheduler. A rate 

controller consists of a set of regulators, as shown in Figure 2.2, corresponding to each of 

the connections propagating through the switch; each regulator takes care of shaping the 

traffic of the corresponding connection into the desired traffic pattern. Some examples of 
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scheduling disciplines that can be used in the rate-controlled service disciplines are Stop-

and-Go server, Jitter-Earliest Due Date, Hierarchical Round Robin, or even the simplest 

static priority queueing schedulers [3]. 

The rate-controller observes the traffic arrival rate for each connection, compares 

it to the expected arrival rate, and forces the connection to obey the required traffic 
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the h connections 
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I I 1- ________________ _ _ 1 
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Rate Controller 

> 1111 0 > 

Non-Real-Time Queue 
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Figure 2.2: Rate-Controlled Service Discipline [16] 

pattern by delaying packets from that connection if it sends packets at a rate higher than 

the tolerable arrival rate. Thus the traffic is reconstructed at each node, so that it is 

predictable at the node that follows . The scheduler multiplexes the packets based on their 

service priorities and also provides a bound on the end-to-end delay. 
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2.3.1 Regulators 

A rate controner or regulator is a mechanism which enforces that traffic from a 

flow which is forwarded to a scheduler conforms to its original profile [17]. As 

mentioned earlier, the rate controller consists of a set of regulators, one for each 

connection, that shape the traffic entering the node. Several models are proposed in the 

literature for modeling the traffic arrival. According to Hui Zhang [11], there are three 

proposed models for traffic characterization: 

III (Cf,p) model: A traffic stream satisfies this model if during any interval of length 

u, the number of bits in that interval is less than a+ pu. In the (Cf,p) model, aand 

p are the maximum burst size and the long term bounding rate of the source, 

respectively [18]. 

III (Xmin, X ave, 1, SmaJ model: A traffic stream satisfies this model if the interarrival 

time between any two packets in the stream is more than Xmin, the average packet 

inter-arrival time during any interval of length 1 is more than Xave , and the 

maximum packet size is less than Smax [5]. 

III (r, T) model: A traffic stream is said to satisfy this model if no more than r·T bits 

are transmitted on any interval of length T [15]. 

The above characterizations are used to bind the traffic volume by placing a limit on the 

number of packets that can be received during an interval of time. Therefore, it is not 

possible to deduce the exact traffic pattern with these models. In this thesis, the regulators 

follow (Xmin, Xave, I, Smax) model. 

14 



Instead of having one regulator for each connection, this thesis models the rate 

controller with one regulator consisting of queues on a per-connection basis. Each 

connection has a predefined traffic model. At the arrival in the regulator, each packet, 

based on its corresponding connection's constraint, is delayed on the regulator queue until 

it is eligible and then sent to the scheduler. The regulator queue is modeled as a set of 

queues called, calendar queues. The calendar queue implementation, discussed in Section 

5.2.7, reduces the complexity involved in the regulator queue maintenance to less than the 

number of connections in the network. 

The key advantage in having a separate regulator and scheduler is that it allows 

arbitrary combinations of rate-control policies and packet scheduling schemes. Also, the 

regulator distributes the buffer space inside the network uniformly. Regulators control the 

interactions between switches and eliminate jitter. There are two kinds of jitter, namely, 

delay-jitter and rate-jitter. Delay-jitter is the maximum difference between the delays 

experienced by any two packets on the same connection [16]. Rate-jitter is defined as the 

maximum number of packets in the jitter averaging interval [16]. There are two classes of 

regulators, rate-jitter (RJ) controlling regulators and delay-j itter (OJ) controlling 

regulators. 

2.3.1.1 Delay-jitter Controlled Regulators 

These regulators control the delay-jitter by fully reconstructing the traffic pattern. 

In such regulators, the eligibility time of a packet is defined with respect to the eligibility 

time of the same packet in the previous switch. To find out the amount of time the packet 
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was ahead of schedule in the previous switch, each packet has to have this value stamped 

in its header. This results in larger header size when a delay-jitter controller regulator is 

used than when a rate-jitter controlled regulator is used, and so, it is too expensive. For 

the delay-jitter controlling regulator [16]: 

ET k - ETk I d . 0 
j - j-l T j-I + 1l j_l . j' ] > , 

where, switch 0 is the source of the connection, dj -1 is the delay bound, or the maximum 

waiting time of packets on the same connection at the scheduler of switch j -l, 1l:j-1J is the 

propagation delay between switch j-l and switch j, ETf is the eligibility time of the jth 

packet in the kth switch and ATf is the arrival time of the /h packet in the kth switch. 

2.3.1.2 Rate-jitter Controlled Regulators 

These regulators control the delay by partially reconstructing the traffic pattern. 

The eligibility time of a packet at a switch is defined with respect to packets arriving 

earlier at the same switch. Eligibility time for the kth packet on a connection at a switch 

Er is defined with reference to the eligibility times of packets arriving earlier at the 

switch on the same connection [16]: 

16 



where, AT' is the time the kth packet on the connection arrived at the switch, Xmin is the 

minimum packet inter-arrival time, Xave is the average packet inter-ani val time over an 

interval of time 1. 

Since controlling delay-jitter completely reconstructs the traffic pattern at each 

switch along the path, if the traffic arriving into the network obeys the specifications, it 

will obey the specifications throughout the network. But the complexity of implementing 

delay-jitter controlling regulators is higher because they need to know information about 

the previous switch. Therefore, there is a trade-off between choosing delay-jitter & rate

jitter controlling regulators. In this thesis, the regulator is a rate-jitter controlling regulator 

and the traffic model used to characterize the arrival of packets is the (Xmin, Xave, I, SmQY;) 

traffic model. 

2.3.1.3 Trade-offs 

The following are the trade-offs in implementing the regulator. 

!Ill Implementation complexity: In both the rate-jitter controlled and delay-jitter 

controned regulators, the eligibility time is calculated on a per-packet basis. Thus 

the complexity is high. Moreover, for delay-jitter controlled regulators there is a 

need to synchronize either at the link level or at the switch level. After 

synchronization, the amount of time the packet was ahead of schedule is stamped 

in the packet's header. 

!Ill Services provided: 

o Though for a rate-jitter controlled regulator, the average delay is low, the 

delay-jitter is nearly three times higher than that of a delay-jitter controlled 
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regulator. As the number of nodes through which the connection traverses 

increases, the delay-jitter becomes higher and so, it can be used in 

applications where low average delay and bounded delay are needed. 

o For clients with playback applications, the delay-jitter controlled 

regulators are better suited because they provide a bound on the delay

jitter and delay and not the average delay. 

2.4 Discussion of Scheduling Disciplines 

This section discusses some of the scheduling disciplines proposed in the 

literature, their properties, advantages and disadvantages. Generalized Processor Sharing 

(GPS) is an ideal scheduling discipline that provides a max-min fair allocation [7] . It was 

introduced as a scheduling discipline for the best-effort connections with the property of 

providing fair allocation of service to an the connections. But it cannot be implemented in 

practice, because it assumes to serve from each connection an infinitesimally small 

amount of data. Numerous scheduling disciplines have been proposed to emulate GPS as 

closely as possible. 

The simplest emulation of the GPS is the round-robin (RR) scheduling discipline 

[1] which serves one packet from each of the non-empty connection queue in a round 

robin fashion. The weighted version of the round-robin, namely the Weighted Round 

Robin (WRR), serves packets from connections in proportion to their weights. However, 

it does not work if the source is unable to predict its mean packet size. In such a case, 

WRR cannot allocate bandwidth fairly. Moreover, it is fair only over a time scale longer 
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than a round time. A modified version of WRR, which is also easy to implement, is the 

Deficit Round Robin (DRR) [19]. The DRR can handle variable-sized packets even 

without knowing the value of the mean packet size. However, it is also unfair when the 

time scale is smaller than one round time. Smoothed Round Robin (SRR) [20] can 

emulate GPS well. When compared with RR schedulers, it reduces burstiness in the 

output, has better short-term fairness and also possesses good delay properties. At the 

same time, it also has an 0(1) time complexity since it avoids time-stamp maintenance. It 

can be implemented in high-speed networks to provide QoS . However, it fails to provide 

strict local delay bound that is needed for guaranteed service applications. Therefore, it 

cannot be used in applications that require strict end-to-end delay bound. 

Weighted Fair Queueing (WFQ) is an approximation of GPS. It is also called as 

the Packet-by-packet approximation of GPS (or, PGPS). Neither does WFQ require 

knowledge of the mean packet size nor does it consider the packets to be infinitesimally 

small data. The idea of WFQ is that it calculates the time (finish time) a packet would 

complete service in the corresponding GPS system and then serve packets in increasing 

order of these finish times. Since WFQ approximates GPS, it has the firewalling property 

of protecting the connections from each other. In other words, a heavy load on one of the 

connections will in no way affect the other connections. In addition, if any connection 

misbehaves, then it loses packets from its own buffers. It is possible for a connection to 

achieve end-to-end queueing delay independent of the number of nodes it is traversing 

through [1]. Thus WFQ provides real-time performance guarantees for guaranteed-service 

applications. Worst-case Fair Weighted Fair Queueing (WF2Q) is almost identical to GPS 

differing by no more than one maximum size packet [10]. WF2Q disproves the previous 
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notion that WFQ is the closest approximation to GPS . WF2Q shares the bounded-delay 

and fairness properties of GPS. In this system, when the server has to make a decision on 

the next packet to transmit, it picks that packet which has the smallest finish time and 

which has already started service in the corresponding GPS system. WF2Q+ [21] reduces 

the computational complexity of WF2Q. More details about these scheduling disciplines 

appear in the subsequent chapters. 

Another service discipline, namely, Self Clocked Fair Queueing (SCFQ) [9] 

speeds up the round number computation. In SCFQ, when a packet arrives at an empty 

queue, instead of using the round number to compute its finish number, it uses the finish 

number of the packet currently in service. Though the round number is easy to update, it 

is unfair for short time scales. Thus it has larger worst-case latencies than WFQ, and 

hence, greater unfairness in short time scales. Start-Time Fair Queueing (STFQ) [22] has 

the computational benefits of SCFQ, but differs from SCFQ in the sense that it services 

packets in increasing order of start numbers. Therefore, it does not have the large worst

case delay as SCFQ nor the short-term unfairness. 

Virtual clock, proposed by Zhang, [6] is for scheduling guaranteed-service 

connections. It is similar to WFQ but emulates Time-Division Multiplexing (TDM). Each 

packet has a virtual transmission time. This is the time at which the packet would be 

transmitted if the server is implementing TDM. When it is used for best-effort 

connections, the relative fairness bound is infinity. That is, when there are two 

backlogged connections, one might receive infinitely more throughput than the other. In 

the classic Earliest Due Date (EDD) scheduling [5], each packet is assigned a deadline, 

and the scheduler serves packets in order of increasing deadlines. If the scheduler 
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commits more than its capability, then some packets miss their deadlines. Also, if packets 

are assigned deadlines closer to their arrival times, they receive lower delay and vice 

versa. Delay-Earliest Due Date (D-EDD) is an extension of EDD [1], in which case, each 

source agrees on a service contract with the scheduler. The server sets a deadline for the 

packet as the expected arrival time added to the delay bound. If the source disobeys then 

each packet receives worst-case delay, which is lower than the delay bound guaranteed. 

However, in this case, the packets should be placed in a priority queue as in WFQ. The 

scheduler also has to store finish numbers as in WFQ. Thus, it is as complex as WFQ, 

though it does not have to calculate the round number. Jitter-Earliest Due Date (J-EDD) 

algorithm provides end-to-end bandwidth, delay and delay-jitter bounds by trying to 

provide the same delay to all the connections for every hop, except the last one. After a 

packet is served by a server, it is stamped with the difference between its deadline and 

actual finishing time. A regulator at the entrance of the next switch holds the packet for 

this period before it is sent to the scheduler to be served. However, a connection should 

reserve highest bandwidth to obtain the worst-case delay bound. Earliest Deadline First 

(EDF) is an optimal scheduler for bounded-delay services. But the implementation 

requires sorting of packets which makes it complex for implementation in high speed 

networks. It is a dynamic scheduling algorithm for real-time scheduling purposes. 

Rotating Priority Queues (RPQ) scheduler [23] is a hybrid of EDF and Static 

Priority (SP) scheduling. It has high efficiency (like EDF) and low complexity (like SP). 

Here, the scheduler has a set of prioritized FIFO queues and the scheduler, periodically 

changes the priorities of the FIFO queues. The scheduler transmits a packet from the 

highest non-empty priority FIFO queue. But it has a rotation anomaly that if a packet 
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resides in the highest priority queue at the time of queue rotation, it will be in the lowest 

priority queue. RPQ+ scheduler [24] approximates EDF with rotating FIFO queues. The 

idea is to have twice the number of FIFO queues as RPQ and add a nevvly aniving packet 

to the queue between the FIFO queues of RPQ. These queues are called the intermediate 

queues. Though this increases the cost, it is highly efficient. 

The Stop-and-Go (SG) discipline [25] uses the framing strategy. Time is divided 

into frames and in each frame time, only those packets that arrived in the previous frame 

time are served. That is, it ensures that packets on the same frame at the source stay in the 

same frame throughout the network. It provides a bound on buffer space requirement and 

jitter. However, it is not possible to achieve low delay bound and fine granularity of 

bandwidth simultaneously since it uses the framing strategy. The Hierarchical Round 

Robin (HRR) is similar to stop-and-go since it also uses framing strategy [15]. It uses 

multilevel framing strategy. The main difference between SG and HRR is that, in SG the 

packets are maintained within the same frame throughout the network, whereas HRR has 

the property that the number of packets within each frame will remain the same from the 

entrance to the network to the end, but the packets need not be in the same frame inside 

the network. HRR also has the problem of coupling between delay and bandwidth 

allocation granularity. It is suitable only for fixed sized packets or cens. Therefore, it can 

be used only in ATM networks. Another algorithm for the ATM networks is the Ca..11)'

Over Round Robin (CORR) [26] which has low implementation complexity since it 

divides the time line into allocation cycles whose maximum length is fixed, and is not a 

function of number of connections. Its delay performance is comparable to that of PGPS 
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and SG. It also achieves near perfect fairness. The perfonnance of CORR in tenns of 

delay jitter is much worse than that of SG. 

The Rate Controlled Static Priority Queueing (RCSP) [16] is similar to the Rate 

Controlled Service Disciplines (RCSD) in that, it has a separate rate controller and 

scheduler. The scheduler used in this case is the static priority scheduler. The rate 

controller can either be a rate-jitter regulator or a delay-jitter regulator as discussed in the 

earlier sections of this chapter. This scheme provides bounded delay, bounded delay jitter, 

decoupled delay and bandwidth allocation, and unifonnly distributed buffer space. 

2.5 Concluding Remarks 

Among all the scheduling disciplines seen above, the WFQ is commonly used in 

current day networks and the WF2Q+ is the most accurate approximation of GPS in tenns 

of fairness and delay guaranteed. Thus these two scheduling disciplines are chosen for 

implementation in this thesis and their delay and fairness properties are compared. 
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Chapter 3 

3. WFQ and WF2Q Scheduling Disciplines 

3.1 Introduction 

After briefly introducing most of the scheduling disciplines known in the literature 

in Chapter 2, this chapter discusses in detail two, or, in some sense, three scheduling 

disciplines. The first of these disciplines is the well-known Weighted Fair Queueing 

(WFQ), which is understood to be the closest approximation of Generalized Processor 

Sharing (GPS). Although recently, Worst-case Fair Weighted Fair Queueing (WF2Q) is 

demonstrated to be a better emulation of GPS, the popularity of WFQ still persists. 

Another scheduling discipline, WF2Q+, which is a slight improvement of WF2Q, is also 

considered here. The two disciplines that are implemented and analyzed for their 

performance in this thesis are W1<Q and WF2Q+. 

For the best-effort connections, an ideal work-conserving scheduling discipline 

that can achieve a max-min fair allocation is the GPS. GPS assumes packets of each 

connection to be in separate queues. At any instant of time, the server serves an 

infinitesimally small amount of data from each backlogged queue simultaneously. It is 

also possible for connections to have weights. In this case, the server serves an amount of 

data, from each connection, which is proportional to its weight. In the case of real-time 

connections, the GPS has to be leaky bucket constrained to make the discipline non-work

conserving. In spite of the fact that GPS is ideal, it is unimp]ementable because it assumes 
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packets are infinitely divisible, which is not the case in practice. vVFQ, and later on 

WF2Q, were introduced as emulations of GPS. 

3.2 Definition 

Before going into the definition of WFQ and WF2Q, a clear understanding of the 

scheduling discipline on which these two disciplines are based is required. In this regard, 

the GPS discipline is exemplified. Assume that fixed-sized packets of size 1 byte (for 

ease), from 11 different connections arrive at the server with the packet arrival pattern 

shown in Figure 3.1a [10]. We shall use notation p/ to represent ith packet arriving at/h 

connection. The packets from these connections (marked Cl to ell) are destined to the 

same output link and therefore, share the link capacity, which is 1 byte/ms. The weights 

that are guaranteed during connection set up are: connection 1 has a weight of 0.5 while 

the remaining 10 connections have a weight of 0.05 each, summing up to a total weight of 

1.0. Eleven back-to-back packets from connection 1 and, one packet from each of the 

other 10 connections are queued at time 0 (shown along the x-axis). 

CIO'OOODDDODDD 
c2D 
C30 
c4D 
csO 
C60 
c7D 
C80 
C90 
cwO 
c11D 

o 10 

Figure 3.1a: Packet arrival pattern 
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The manner in which GPS schedules packets is shown in Figure 3.1b. The GPS discipline 

takes two time units to serve each packet from connection 1 and 20 time units to serve 

each packet from each of the other 10 connections in order to provide a fair share to all 

the 11 connections based on their weights. However in practice, it is only possible to 

serve a packet of size 1 byte, into a link whose capacity is 1 byte/ms, in one time unit (i.e. 

1 ms). Therefore, GPS is not practically realizable. With this idea of GPS, the WFQ and 

WF2Q are defined and illustrated with the same example below. 

CI 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
ClO 

CJDCJDDDCJCJCJDD 
I 

CII ~I __________________________ ~ 

o 10 20 

Figure 3.1h: GPS service order 

3.2.1 Weighted Fair Queueing (WFQ): 

In the WFQ discipline, when the server is ready to transmit the next packet at time 

't, it selects, among all the packets queued at t, the first packet that would complete 

service in the corresponding GPS system if no additional packets were to arrive after time 

t [11]. For a better understanding of the working of WFQ algorithm, consider again the 

packet arrival pattern shown in Figure 3.1a. At time 0, since, in the GPS system, the first 

packet to finish service is packet p; (the first packet from all the other connections Pil 
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with i = 2 .... 11, finish service at time 20), and so, this packet is served first. Similarly, the 

first 10 packets of connection 1 are served back to back before packets on other 

connections can be served. This is illustrated in Figure 3.1c. 

Cl DDDDDODDO 

~~ too 
C4 p;o 0 p;l 
C5 0 
C6 0 
C7 0 
C8 0 
C9 0 
ClO 0 
Cll 0 

o 10 20 

Figure 3.1c: WFQ service order 

After serving all the 10 packets from connection 1, the 11th packet from this connection 

has a finish time which is higher than that of the first packet of the remaining 10 

connections and so, this packet is not served next. Instead the first packets from each of 

the remaining 10 connections are served next in order of increasing connection number. 

Finally, the 11th packet of connection 1, ptl, is transmitted. Thus, in order to determine 

the next packet to serve, WFQ algorithm uses the GPS finish times of packets. On the 

other hand, Wp2Q uses the GPS finish as well as the start times of packets in order to 

determine the next packet to transmit. 

3.2.2 Worst-case Fair Weighted Fair Queueing (WF2Q): 

In WF2Q, when the next packet is chosen for service at time 't, rather than 

selecting it from among all the packets at the server as in WFQ, the server only considers 
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the set of packets that have started (and possibly finished) receiving service In the 

corresponding GPS system at time 't, and selects the packet among them that would 

complete service first in the corresponding GPS system [11]. Referring to the same 

example under consideration, the WF2Q serves the packets in the order shown in Figure 

3.1d. 

~lDD 0 
ODD 

0 0 0 0 0 0 r 
C5 0 
C6 0 
C7 0 
C8 0 
C9 0 

CI0 0 
Cll 0 

o 10 20 

Figure 3.1d: WF2Q service order 

A time 0, the first packets in all the connections start service in the corresponding GPS 

system. The second and subsequent packets, pi ' for i = 2 . .. 11, from connection 1 have 

not yet started service in the GPS system and therefore are not considered while selecting 

the next packet to transmit. Among the packets that are considered for selection, the 

packet that has the least finish time is the first packet of connection 1, P: , and therefore,is 

served at time O. At time 1, though the second packet of connection 1, p;, has the least 

finish time among all the remaining packets, it is not considered for selection, since it 

does not start service until time 2 in the GPS system. Therefore, the next packet with the 

least finish time is the first packet of connection 2, p;, and so, it will be served at time 1. 

At time 3, the second packet of the first connection would have started service and is 
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therefore considered for selection. Since it has the least finish time among all the packets 

considered for service, it is served next and so on. Thus there is a significant difference in 

the service provided by a WF2Q system compared to WFQ system as the WF2Q system 

selects the next packet to transmit based on the GPS finish as well as start times. The first 

packet from connection 2 p~ is served much earlier in the WF2Q scheme than in the 

WFQ scheme. Similar explanation holds for packets of other connections too. Thus, 

WF2Q scheme is fairer WFQ scheme, not only with regard to real-time source but also 

with regard to packets from all other connections. 

3.3 Properties 

There are several properties of WFQ and WF2Q that need to be discussed to get a 

better understanding of the algorithms and also to conclude on a better algorithm so that 

they can be applied to real-time traffic in high-speed packet switching. Firstly, the reason 

an these disciplines try to approximate GPS is because GPS has two important properties 

[27]: (1) it can guarantee bounded end-to-end delay to connections and (2) it allocates 

bandwidth available to all the connections in a fair manner despite the consideration of 

whether they are rate-controlled or not. The following properties will be discussed in 

detail for the above two scheduling disciplines: 

I!!l System virtual time function 

I!!l Packet selection policy 

I!!l Implementation complexity 

III Accuracy 
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III End-to-end delay and buffer space requirements 

III Traffic characterization. 

3.3.1 System Virtual Time Function 

The fair queueing algorithms considered here, have to maintain a system virtual 

time V( -J, a virtual start time Sl) and a virtual finish time Flo) for each connection i. The 

virtual start and finish times are updated every time a packet arrives or leaves the server. 

Every time an unbacklogged connection becomes backlogged or vice versa, the system 

virtual time is updated. The complexity and accuracy of any scheduling algorithm is 

based on that of its virtual time function. If the service provided by any scheduling 

algorithm matches that of GPS, then its virtual time function is said to be accurate. 

The virtual time function of WFQ is defined based on the GPS virtual time 

function . For the WFQ system, let tj be the time at which the /b event occurs [8]. An event 

is defined as an arrival or a departure of a packet. The time of the first arrival of a busy 

period is denoted as t1 = O. Now, for eachj = 2,3, ... , the set of connections that are busy 

in the interval (tj-i, tj) is fixed, and is denoted as Bj . During the time at which the server is 

idle, the virtual time V(t) is zero. Consider a busy period that starts at time zero. Then V(t) 

is given as below, 

V(O)=o; 
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'where, 7: is the time of the event just prior to t and fA is a positive real number used to 

characterize connection i. The virtual start and finish times for the k th packet of ith 

connection arriving at time tik with a length of L; is given by, 

Sk = {max(V(t;), Ftl) connection i becomes active 

I F/-1 p; finishes service 

F k = Sk L~ . . + 
r I <Pi 

From the above equations, three properties of virtual time interpretation of \VFQ 

can be observed: (1) the virtual finish time can be calculated with the packet's arrival 

time, (2) packets are served in the order of finishing times and (3) the virtual time needs 

to be updated only when there are events in the GPS system. These are some of the 

advantages of the system virtual time function of GPS, and therefore of WFQ. The virtual 

time function of WFQ is also defined with respect to that of GPS and has the same set of 

properties. 

3.3.2 Packet Selection Policy 

There are two commonly used packet selection policies, namely, Smallest virtual 

Finish time First or SFF policy and Smallest Eligible virtual Finish time First or SEFF 

policy [4]. In the WFQ system, when the server is ready to select the next packet to 

transmit, it selects from among all the packets available in the system, the one with the 

smallest virtual finish time and it thus belongs to the SFF policy. In the WF2Q system, 

when the server is ready to select the next packet to transmit, it selects from among all the 
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packets eligible (and not just available) in the system, the one with the smallest viltual 

finish time. A packet is said to be eligible if it has already started service in the 

corresponding GPS system, that is, a packet has arrived in the corresponding GPS system, 

since a packet starts service as soon as it arrives in the GPS system. Thus it can be 

concluded that WF2Q employs the SEFF policy. 

Although scheduling algorithms that use the SFF policy assure delay bounds 

matching that of GPS, they still produce large service discrepancies from GPS. This is 

explained in detail in Section 3.3.4. 

3.3.3 Implementation Complexity 

There are three important costs involved m scheduling [4]: (1) the cost of 

computing the system virtual time function, (2) the cost of handling a queue for ordering 

the packets to be scheduled and (3) the cost of maintaining the queue to regulate the 

packets. The packets that need to be queued in the regulator have to be sorted based on 

their eligibility times and then placed in the queue. This has a complexity of O(N) , 

where N is the number of connections. However, using calendar queues or some other 

mechanism to reduce the complexity of sorting can reduce this complexity [4]. Thus the 

complexity can be brought down to O(log N) . Similarly, the packets waiting to be sent 

through the output link need to be queued in the output buffers. These packets are queued 

on a per-connection basis in the order of increasing virtual finish times. In this case, only 

the head of each queue (there is one queue per connection) need to be considered to pick 

the next packet for transmission and so the complexity is again O(N). This can also be 
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reduced to G(log N) in the manner described previously. Tnus it is possible to maintain 

at least several hundreds of connections at high speed. The only cost that cannot be 

reduced is the cost of computing the system virtual time function because both the 

algorithms, WFQ and WF2Q, follow GPS to calculate the system virtual time function 

and according to the GPS system, the server is capable of serving data from all the 

connections simultaneously if all of them are backlogged at any instant of time. This 

implies that the server should be able to update the system virtual time N times in the 

worst case, if N connections have an event (connections become backlogged or 

unbacklogged) at the same time. 

3.3.4 Accuracy 

Parekh showed that the delay bound provided by WFQ is within one packet 

transmission time of that provided by GPS [8]. According to Parekh, who introduced 

WFQ, the relationship between GPS and WFQ are as listed below [10]: 

III in terms of delay, a packet will finish service in a WFQ system later than in the 

corresponding GPS system no more than the transmission time of one maximum 

sized packet; 

in terms of the total number of bits served for each connection, a WFQ system 

does not fall behind a corresponding GPS system by more than one maximum 

sized packet. 

This leads to the interpretation that WFQ discipline and the GPS discipline 

provide almost indistinguishable service except for a difference of one packet. The 
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Internet Engineering Task Force, a standards development body for Internet, recently 

proposed -wFQ as a reference server for Internet supporting guaranteed service class, 

based on the above result. According to Bennett and Zhang, the above interpretation is 

erroneous [10]. According to them, there is a large inconsistency between the services 

provided by WFQ and GPS and this inconsistency affects the fairness of WFQ, thereby 

making it inaccurate. Consider the Figure 3.1c, showing the service order ofWFQ service 

discipline. In this figure, a burst of 10 packets is served from connection 1, then the 

connection is idle for some time and then repeats itself. This kind of oscillation caused by 

burstiness in the packets entering the link affects the delay bound guaranteed for real-time 

traffic and causes unfairness in the service provided to best-effort connections. The 

reason for such an inaccuracy in WFQ is due to the fact that the service provided by WFQ 

to a connection (connection 1 in this case) is much more than that provided by GPS. In 

the example considered in Figures 3.1, within the first 10 time units, WFQ serves 10 

packets from connection 1 while GPS serves only 5 packets. Thus WFQ is well ahead of 

GPS in the amount of service provided during any interval of time. This causes WFQ to 

be inaccurate and the inaccuracy may be as high as NI2 packets, where N is the number of 

connections in the switch. This is not the case with WF2Q, which serves 5 packets from 

connection 1 within the first 10 time units, which is the same as that by GPS. Thus WF2Q 

serves within one packet transmission time of that of GPS in this example. 

Worst~case Fair Index (WFI): 

In order to have a tight delay bound, Worst-case Fair Index (WFI) is used to 

characterize the scheduling disciplines. A service discipline s is called worst-case fair for 
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connection i if for any time 't, the delay of a packet arriving at't is bounded above by [10] 

That is, 

Qi,S(r) +C,s. 
n 

d k k Qi,S(a;)..l,. C 
' < a· + . i ,s , 
l ,5 l ri 

where, d;'s is the delay of the kth packet in the ith connection at server s, a; is the arrival 

time of the kth packet in the jlh connection, ri is the throughput guarantee to connection i, 

Qi,S(a;) denotes the queue size of connection i at time at, and, C,s is a constant 

independent of the queue size of other connections. C, s is called the worst-case fair 

index for connection i at server s. Since C,s is measured in absolute time, it is not 

suitable for comparing C . s 's of connections with different r/ s. To perform such a 

comparison, the normalized worst-case fair index for a connection i at server s is given as, 

r;C,s 
Cis =--, , r 

where, r is the link speed or output link rate .. The normalized worst-case fair index of 

server s is given by, 

For GPS, CGPS = 0 and hence worst-case fair. The WFI of WFQ is a function of the 

number of connections and is given by, 

r. N - 1 Lmax 
CWFQ ~ c1 WFQ .-..!... = ----

, r 2 r 

where, N is the number of connections at server sand Lmm; is the maximum packet size. 

35 



However, WF2Q is worst-case fair and its "l,VFI is given by 

C 
2 L"max Li,rnax Lrrmx 

I,WF Q= -- - --+--
n r r 

where Li,max is the maximum packet size of connection i. 

The normalized WFI is given by, 

2 Lmax 
CWF Q = -- . 

r 

This algorithm has a WFI smaller than most of the known algorithms. It is because of this 

reason that WF2Q got its name. 

3.3.5 End-to-end Delay and Buffer Space Requirements 

For WFQ and WF2Q, the traffic specifications carried by the source at the 

entrance to the network is sufficient to provide end-to-end delay bound. In order to 

achieve a bound on end-to-end delay the rate of packet arrival must be guaranteed and 

this cannot be significantly less than the connection's average rate. Also, in order to 

prevent packet loss, a large buffer space needs to be allocated to the connection during 

call set-up. Therefore the crux of the problem is that there is a coupling between the 

bandwidth and end-to-end delay provided to each connection. A high bandwidth should 

be allocated for low end-to-end delay bound, but this, results in waste of resources if the 

low delay connection also has low throughput. This problem is avoided by separating the 

rate-control mechanism from the scheduling mechanism. In this thesis separate regulator 

and scheduler are used to overcome this problem. Inclusion of a regulator results in lower 

buffer space requirements at each node. This thesis analyzes only the delay bound of the 
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real-time connections and therefore no limit is placed on the buffer available for each 

connection at each node. In future the same simulator can be used to study the loss rate by 

limiting the buffer. 

3.3.6 Traffic Characterization 

In order to provide end-to-end delay bound, the local delay bound should first be 

obtained for each switch and then these delays can be summed to obtain the end-to-end 

delay bound. For this, the traffic should be characterized on a per-connection basis at 

every switch in the network. Although this is possible, a problem arises when there is 

traffic distortion inside the network. This would destroy the traffic characterization and 

so, this thesis uses a rate-controller in front of the scheduler (WFQ or WF2Q) at every 

switch in the network to re-characterize the traffic entering the node, thereby overcoming 

the distortion caused by the network. 

3.4 Discussion of Properties 

From the discussion in Section 3.3 on the properties of WFQ and WF2Q 

disciplines, there are several advantages and disadvantages of the two disciplines. Firstly, 

both WFQ and WF2Q have system virtual time function which is based on that of GPS. 

But the complexity involved in updating the virtual time function is O(N) in the worst 

case, where N is the number of connections, as it has to keep track of the number of active 

sessions in the corresponding GPS system. This makes both WFQ and Wp2Q unfit for 
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implementation in high-speed packet switched networks when the number of connections 

is large. :rv10reover, WFQ is worst-case unfair and therefore, it is inaccurate. \\lF2Q on the 

other hand, is worst-case fair and hence, accurate. Thus there is a need for another 

scheduling discipline that would be accurate and at the same time has a lower complexity 

so that it is feasible to operate at high speeds. Such an algorithm is the \VP2Q+, 

introduced by Bennett and Zhang [21], that has a more accurate virtual time function 

which provides low complexity, small WFI and low end-to-end delay bound. 

WF2Q+ uses a new system virtual time function Vw/ Q+( .) is given by [21]: 

VWF2Q+ (t + r) = max( VWF2Q+ (t) + W(t,t + r),fJ}f(~(Si,;(t))) 

where, Wet, t+T) - total amount of service provided by the server during the period [t, t+T] 

B(t) - set of sessions 'backlogged in the Wp2Q system at time t 

hj(t) - sequence number of the packet at the head of the session i's queue 

S,h;(t) _ virtual start time of packet. 

The virtual time function is a function of the amount of service and it increases 

with time with a minimum slope of 1. That is, it provides delay bounds to rate-controlled 

sources that are within one packet transmission time of that provided by GPS. Also, the 

virtual time function is such that it is at least as large as the minimum virtual start time. 

That is, if an unback10gged connection becomes backlogged, it has a virtual start time that 

is at least as large as one of the already present backlogged connections, thus realizing 

low WH. Also, even though the packets are being held until they are eligible (until they 

have started service in the corresponding GPS system) to be selected, this algorithm is 
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work-conserving as it ensures that there is at least one packet which has a virtual start 

time that is no greater than the current system virtual time. Thus this algorithm (WF2Q+) 

maintains the same SEFF policy as that of WF2Q. 

" Another advantage to be appreciated in WF~Q+ is that, there is no need to 

maintain the virtual start and finish times on a per packet basis. Instead, it is sufficient to 

have just one pair of vittual start and finish times (Si and Fi respectively) for each 

connection. When a packet is about to be served, the start and finish times are updated 

according to the following equation [21] 

where, Qi (a: - ) is the queue size of session i just before time ai
k

, V (at) is the system 

virtual time at a;, L; is the length of the kth packet on connection i and rj is the 

guaranteed rate for connection i. 

The two jobs of computing the system virtua1 time function, which has been 

reduced by the use of new system virtual time function which does not depend on the 

GPS system, and maintaining a queue for storing the sorted virtual finish times, which 

can be done in O(log N) using the calendar queue implementation discussed in Section 

5.2.7, can be done in O(logN) complexity. 
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3.5 Concluding Remarks 

The only difference between WF2Q and WF2Q+ is that WF2Q uses a system 

virtual time function that emulates the GPS system, but WP2Q+ uses a system virtual 

function that is calculated from the packet system itself. "rp2Q is an accurate 

approximation of GPS and \VF2Q+ has all the properties of WF2Q along with the 

advantage of achieving all the properties and a lower complexity. 
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Chapter 4 

4. Software Implementation 

4.1 Introduction 

In the previous chapter, the scheduling disciplines that are analyzed in this thesis 

were discussed. This chapter discusses the software implementation details and the results 

obtained for the WFQ and WF2Q+ disciplines. The network has been modeled so that the 

source under observation travels through three nodes with cross-traffic from every node. 

The traffic flow pattern in real networks is imitated as closely as possible. For variable

sized packets, the arrival pattern is based on the Internet traffic observed over a period of 

time. Thus the traffic arrival pattern reproduces the actual flow of traffic seen in the 

network of current day. The basic flow of the software implementation is shown and 

details about the working of each block are also presented. The software simulator is 

written in C++ and the code is made as modular as possible. The delays obtained by real

time data under various traffic loads and under the presence and absence of cross-traffic 

are presented. 

4.2 Network Model 

The network is modeled to replicate a portion of the entire network in a smaller 

version and with reference to the network model used by Bennett and Zhang in their 
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paper [21]. The network model chosen is shown in Figure 4.1. There are three nodes, 

named Nl to N3, in the network. The source under observation is the real-time 

connection, named RT, which has its source at node 1 (N1) and its destination at node 3 

(N3). The best-effort traffic, named BE, also has its source at N l and destination at N3 . 

There is cross-traffic at nodes 2 and 3. The cross-traffic entering these nodes is composed 

of Poisson sources (PS 1 to PS40) andlor constant sources (CS 1 to CS 10) and they interact 

with the packets entering the node from Nl containing real-time and best-effort traffic . 

This interaction may cause distortion in the traffic entering a node and thereby increase 

the delay in a particular node. This kind of cross-traffic is chosen intentionally to analyze 

the performance the two scheduling disciplines can guarantee to the real-time source in a 

networking environment when they experience disturbances as in a real network. 

Figure 4.1: Network model 

4.3 Traffic Model 

This section details the traffic arrival pattern for each of the sources mentioned in 

the previous section. The weights are assigned to sources based on the bandwidth 
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guaranteed to each source. This detail is obtained from the paper by Bennett and Zhang 

[21], so as to verify the results obtained. Thus as an example, if the total link rate 

available is 45 Mbps, 30 Mbps is assigned to various connections. The remaining 15 

Mbps is not assigned to any connection but is used when the traffic arrival rate in any 

connection exceeds its guaranteed rate. The real-time source is assigned 9 Mbps, each of 

the Poisson sources entering N2 (PSl-20) is assigned 500 Kbps, each of the Poisson 

sources entering N3 (PS21-40) is assigned 333 Kbps, each constant source entering N2 is 

assigned 333 Kbps and the best-effort source is assigned 1 Mbps making a total of 30 

Mbps. The real-time source 1s a deterministic ON-OFF bursty source with an ON period 

of 5 packets/burst. The source consists of an ON period (active period) followed by an 

OFF period (idle period). In our case, the real-time source contributes to 20% of the total 

traffic entering the network at nodes 1,2 and 3. The source has a weight of 1000 and acts 

as connection 1. There are a total of 52 connections in the network with source node for 

each of these connections being one of the three existing nodes and destination node 

being N3 for all the 52 connections. The length of ON and OFF period of the bursty 

traffic source is calculated by [28], 

where, p = lIaverage burst period (active or idle) length, 0:::; R:::; 1 is a random number 

generated, and 0 < p :::; 1 is the inverse of the average ON or OFF period length in 

packets. 

Connections 2 to 21 are Poisson sources (PS 21-40) each with a weight of 37 and an 

inter-arrival time whose probability density function (pdf) is depicted in Figure 4.2. 
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Figure 4.2: Inter-arrival time probability density 
function for PS 21-40 with weight 37 

Thus, from Figure 4.2, the average inter-packet arrival time for PS 21-40 is 90 cycles, 

which means, packets entering N2 from these sources are spaced 90 cycles apart on 

average. A cycle duration of 1 ms is assumed in this thesis. Thus if the link rate is I 

bytes/ms, it means that the link can carry 1 bytes in 1 ms or, in our case, in 1 cycle. 

Connections 22 to 41 are also Poisson sources (PS 1- 20) each with a weight of 55 and an 

average inter-arrival time of 60 cycles, whose pdf is shown in Figure 4.3. For the above 

two Poisson sources, the stress is mainly on the average packet inter-arrival time and so, 

the inter-arrival times are distributed close to the average inter-packet arrival times. 

Connections 42 to 51 are constant sources, each having an inter-arrival time of 135 cycles 

with a hundred percent probability and with a weight of 37. The last connection (52) is 

the best effort source having a weight of 111. The best-effort source is expected to be 

backlogged continuously. 
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Simulations are run for various offered loads based on various arrivals of best-

effort connection and, with and without the presence of cross-traffic from constant 

sources. The simulation details and results are discussed in Section 4.7 of this chapter. 
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Figure 4.3: Inter-arrival time probability density 
function for PS 1-20 with weight 55 

All the constant-rate connections have relatively random arrival times . The following 

parameters are chosen to characterize offered load: Xmin, Xave, I. The minimum packet 

inter-arrival time is Xmin, Xave is the average packet inter-arrival time over an interval of 

duration I. The incoming connections are made to obey these restrictions on the input 

traffic by the use of the regulator (refer to Section 4.5.4). The switch is assumed to be 

non-blocking, that is, when packets arrive at the input link, they can be routed directly to 

appropriate output links without switching conflicts. Queueing occurs only at the output 

port of the switch. 
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4.4 Packet Length Distribution 

Bennett and Zhang, in their simulations, assume packets to be of fixed size for 

ease of implementation [21]. In this thesis, both fixed and variable-sized packets are 

considered so that the switch can be used for high-speed packet switched networks and 

not just A TM networks. The packet length distribution used is obtained from the Internet 

traffic observed over approximately 84 million packets by Traffic CAIDA (Co-operative 

Association for Internet Data Analysis) organization for the years 1997-2000 at NASA 

Ames Internet Exchange (AIX). The results obtained were consistent and can be 

expressed in the Figure 4.4a [29]. Figure 4.4a shows a plot of the packet size and their 

arrival as a cumulative distribution. 
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Figure 4.4a: Cumulative distribution of packet sizes [29] 
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From the plot, it can be seen that 50% of the packets have lengths ranging between 40 and 

44 bytes and close to 75% of the packets have length less than 552 bytes. Also, less than 

0.005% of the packets have lengths greater than 1500 bytes, and thus ignored. The 

maximum packet size can thus be assumed to be 1500 bytes. Packets of length 40 bytes 

correspond to TCP (Transmission Control Protocol) since the minimum packet size for 

TCP is 40 bytes. The plot has been interpreted by Traffic CAIDA organization as foHows: 

10% of the packets are of length 1500 bytes (which is also the maximum packet size), 5% 

of the packets vary between the lengths 550 bytes and 1500 bytes, 10% of the packets are 

of length 552 bytes, 15% of the packets range between the lengths 44 bytes and 500 

bytes, and, 60% of the packets have lengths ranging between 40 and 44 bytes. The 40-44 

byte packets are usually acknowledgement packets, and, they occur frequently. 

44 250 552 1000 1500 

Packet size (bytes) 

Figure 4.4b: Packet length distribution 

The plot shows the result obtained for the year 1998. The results obtained for the years 

1997, 1999 and 2000 are quite similar to the results obtained for the year 1998 and so, the 
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simulation conducted in this thesis assumes the packet sizes to follow the same 

distribution. This distribution is shown in Figure 4.4b, which shows the cumulative 

distribution converted into a pdf based on the stated approximations. The variable-sized 

packets arriving through each connection entering a node follow this distribution. 

4.5 Implementation 

The software simulator framework is obtained from Mehrotra's work [30] and 

modified and augmented based on the needs of the specific implementation and analysis 

details required, while preserving the modularity of the simulator. The block diagram of 

the software simulator is shown in Figure 4.5. The various blocks involved in the 

software implementation are traffic generators, input buffer, input and output links, rate 

controller (regulator) and scheduler. Each of these blocks is discussed below. 

4.5.1 Traffic Generator 

The traffic generators read the pdf information for each connection from the 

corresponding data file. There are two pdf files, one containing the probability 

information about the length (as discussed in Section 4.4 of this chapter), named 

length-pdfdat, and the other containing probability information about the inter-arrival 

time between packets (as discussed in Section 4.3 of this chapter), named iat-fJdfdat. The 

traffic generator for each connection reads the connection's details from an initialization 

file called sessionN.ini where N is connection number. 
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Figure 4.5: Block diagram of the scheduling simulator (software implementation) 

In this file, the details such as the name of the file where the packet length details 

are found (length-pdfdat), the name of the file where the packet inter-arrival time details 

are found (iat-pdfdat), the source and destination nodes for the connection and most 

importantly, the connection's restrictions such as values of X min , Xave and I that are 

allowed can be obtained. Based on the details read from the pdf files, the packets are 

generated randomly following the constraints of the pdf files. 

The traffic generator is implemented as a Finite State Machine (FSM). It remains 

in one of the two states, generate-packet or waitJor _next-packet. During the 

generate-packet state, the traffic generator generates a packet and then finds the next 

packet anival time randomly based on the pdf obtained from the files. When the packet is 

generated, a pointer is assigned to it and this packet pointer is sent to the next block 

instead of the packet itself. During the waitJor -packet state, a counter counts down 

during each cycle, until the time for the next packet arrives. 
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4.5.2 Input Buffer 

The input buffer is used to temporarily store the packet pointers. There is only one 

input buffer for each node, which stores packet pointers from al1 the connections. When a 

packet is generated by the traffic generator, the control unit (to be discussed in a later 

subsection) obtains the packet's pointer and stores it in the input buffer. The packet 

passes through the input buffer without any queueing only when the input link has 

sufficient capacity to remove the packet immediately from the input buffer. The switch is 

assumed to be ideal and non-blocking. Also, an output-queued switch is assumed. The 

input buffer is used in this case only to temporarily store the packets generated, until they 

can be sent into the input link. Similarly, packets leaving the output link of one node enter 

the input buffer of the next node in the network and remain there, until the input link of 

the next node is ready to send the packets through it. 

The control unit takes the packet pointer from the traffic generator once it is 

generated and sends it to the input buffer for storage. The input buffer accepts the packet 

pointer sent by the control unit and stores it in the buffer using the function 

store-packetpointer( ) and retrieves the packet pointer back to the control unit through 

the function get-packet-pointer( ) if the input link is available to carry the packet forward 

into the next block. If the input link is not available, the packet remains in the input 

buffer. This thesis assumes the switch to be non-blocking and so, the input link is always 

available to carry packets to the regulator. We have used an input buffer, though it is not 

required, for the purpose of processing the packet arrival details obtained from the file 
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(pifdat), which contains the packet anival pattern captured from the previous simulation, 

in order to compare the two schemes. 

4.5.3 Transmission Link 

There are two instances of the transmission link. One is the input link and the 

other is the output link. The input link transports the packets from the traffic generators to 

the regulator, or, to the scheduler in the case of a work-conserving scheduler. The output 

link removes the packets from the scheduler and sends them to the input buffer of the next 

node or, in case of the last node, destroys the packet. The transportation of the packet 

from one block to another through the transmission link is based on the link capacity of 

the transmission link. In case the transmission link is not able to carry one full packet in 

one cycle because the link capacity available per cycle is less than the packet length, then 

the packet will be sent in more than one cycle. The main difference between the input link 

and the output link is that the input link has a capacity that is four times that of the output 

link. Actually, this means that there are four links entering each node bringing packets 

from various connections. In this simulator, instead of having four links, the input link is 

designed to have four times the capacity of the output link. 

The transmission link can be in one of the three states, namely, idle, busy and 

done. When the link is in state idle, it is ready to receive packets from the input buffer (if 

it is the input link) or from the scheduler (if it is the output link). When the link is in state 

busy, it implies that the link is busy sending packets previously received. When the link 

goes to state done, it means, the link has finished sending the packet/packets and will go 
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to idle state next. As before, the transmission link also has two more functions, namely 

the store-packet-pointer( ) and the get-packetyointer( ). The function of these two 

functions is the same as discussed previously. 

4.5.4 Regulator 

The regulator implemented is the rate-jitter controlling regulator, which 

reconstructs the distorted traffic pattern partially as discussed in Chapter 2. Firstly, the 

regulator stores the packet pointer in its queue using the store-packetyointer( ) function. 

If sufficient space is available in the packet buffer, then the packet pointer is stored in it. 

Otherwise, the packet is dropped. In this simulator, for the purpose of delay analysis, the 

buffer is assumed to be of infinite size, and so, no packet is ever dropped due to buffer 

overflow. The regulator uses the (Xmin, X ave, I) traffic model which is described in Section 

2.3.1, which illustrates that the inter-arrival time between successive packets in a 

connection should be less than Xmin and the average inter-arrival time of packets during 

an interval of length I should be no greater than Xave. The regulator obtains the value of 

Xmin, Xave and I for a particular packet pointer's connection by reading the sessionN.ini 

file, where N is the connection number. With these details, the regulator calculates the 

eligibility time for a packet by calling the function compute_eligibility_time( ). The 

manner in which the eiigibility time is calculated is discussed in Chapter 2 where the 

formula for calculating the eligibility time is given. Once this eligibility time is 

calculated, another function called packetyointer _available(), called by the control unit, 

checks to see if the packet pointer is eligible by comparing the eligibility time with the 
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current system time and if it is eligible, then it is available to be sent to the scheduler. So, 

the next function get.."packetyointer( ) removes all the packet pointers that are available 

one behind the other from the regulator queue and passes them to the control unit. The 

control unit then passes these packet pointers to the scheduler to be served to the output 

link. 

4.5 .5 Scheduler 

There is one instance (either WFQ or WF2Q+) of the scheduler and the control 

unit chooses one of the two scheduling disciplines, namely, WFQ and WF2Q+ while 

running the simulation and initiates only that instance. The constructor of the scheduler 

reads the scheduler buffer size, the connection's weight, and, source and destination 

nodes for each connection. The function storeyacketyointer( ) stores the packet pointer 

in the connection's queue. There is one queue per connection. There is a function called 

computeJinish_number( ), which calculates the finish number for each packet based on 

the scheduling algorithm. Once the control unit calls the getyacketyointer( ), the packet 

with the least finish number is selected to be served in both the cases of WFQ and 

WF2Q+ algorithms. The only difference between the two algorithms in terms of 

implementation is that for the WF2Q+, while storing the packet pointer there is no need to 

find the number of active connections to update the finish number and so, there is no need 

to go through all the connections once as in the case of WFQ algorithm. 

Once the packet pointer has been stored in the scheduler queue, the 

packet-pointer _available( ) checks to see if there is a packet pointer available in any of 
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the connection queues. If one is available, then the get-packe(yointer( ) removes the 

packet pointer from the queue. This is done by selecting the packet pointer with the 

smallest finish number in the case of WFQ and the packet pointer with the smallest finish 

time in the case of WP2Q+. Moreover, in the case of WFQ, the round number is updated 

every time a packet arrives. 

4.5.6 Data Handler 

The data handler is a special unit that collects the packet information and then 

processes this information to produce some useful results like generating the output which 

indicates the number of packets arrived, the number lost, the minimum, maximum and 

average delays of each connection, the total traffic load entering each node, etc. It also 

collects information such as packet length, the connection to which each packet belongs, 

the node it enters and exits etc. The constructor in the data handler collects the following 

information from the initialization file, scheduler.ini: 

III simulation_end_time - the number of cycles for which the simulation is to be run 

I!l number _of_sessions - the total number of connections in the network 

IJI number _of_nodes - the total number of nodes in the network 

i!ii write_sessiol'l_statJile - flag to indicate the data handler to write the connection's 

details like total number of packets, packets lost, minimum delay, average delay 

and the maximum delay for each connection in each node, into a file 

i!ii session_statJile - the file into which the connection's details are to be written 
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Ii! per -packeCinfo - display the packet information such as, packet number, 

connection number, node number, packet length arrival time, time in regulator 

etc., when the packet is destroyed 

Ii! write-packeCinfoJile - write the packet information into a file rather than 

printing it out 

II packeCinfo Jile - the file name into which the packet information is to be written 

III time_data - collect the time data 

II write_time_dataJile - write the time data to a file 

[II time_dataJile - the file name into which the time data has to be written 

The data handler has a function called outpucresults( ), which stores all the 

collected information into various files. It is possible to collect the per packet information 

and store it in a file. This file consists of the details of the packet event times such as 

packeccreated, packecin_inpucbujfer, packecleaves_inpucbujfer, 

packeCon_inpuClink, packecleaves_inpuclink, packet_in_regulator, 

packeCleaves_regulator, packeCin_scheduler, packeCleaves_scheduler, 

packecon_outpuClink and packecleaves_outpuclink. Some of this information such as 

packeccreated, packecnumber, session_number and node_number are also used in the 

hardware implementation. 

4.5.7 Control Unit 

The control unit runs the entire simulation by calling the functions of each of the 

objects it creates. Some of the objects created by the control unit are traffic generator, 
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input buffer, input link, regulator, scheduler, output link, data handler, packet buffer and 

simclock. It then initializes each of these objects with the values obtained from the 

scheduler.ini file. The control unit opens the scheduler.ini file, and retrieves information 

such as the simulation end time, random seed, input link rate, output link rate, number of 

nodes, number of sessions, traffic type, total buffer capacity, scheduler type - WFQ or 

WF2Q+, regulator capacity, input buffer capacity and other packet infonnation details. 

Depending on the scheduler type, the control unit calls one of the two scheduling 

disciplines. The flow of control unit is illustrated in the flow chart shown in Figure 4.6. 

Once the simulation starts, a check is made to find out whether the simulation can 

be continued or not. In this check, if the simulation end time has already been reached and 

there are no more packets available anywhere in the simulator (input buffer, input link, 

output link, regulator and scheduler) then the simulation stops immediately. Otherwise, 

the simulation continues and the traffic generator is run first, where the packets are 

generated. Once a packet is generated, the packet pointer is captured and it is stored in the 

input buffer. This continues until all the generated packets have been stored in the input 

buffer. Now the input link is checked whether it is idle and ready to receive packets. If it 

is, then the packet pointers are retrieved from the input buffer and stored in the link. The 

number of packet pointers that can be stored in the link depends on the link capacity. 

Now the input link is run wherein the packets are sent through the link. Once this is done 

the packet pointers are obtained from the input link and stored in the regulator, if the 

scheduling simulator is implementing a non-worle-conserving scheduler or, in the 

scheduler, otherwise. 
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continue simulation 
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TGEN->GetPktPtr( ) 
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Figure 4.6: Flowchart of Control Unit 
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delete 
PktPtr 
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Reg->StorePktPtr( ) 
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IL->GetPktPtr( ) 
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Sched->GetPktPtr( ) 
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Figure 4.6: Flowchart of Control Unit (contd.) 
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Once the packet pointers are stored in the regulator, the eligibility time is calculated and 

when the packet pointer is available in the regulator, it is stored in the scheduler. Once in 

the scheduler, the finish number or finish time is calculated and the packets are sent out of 

the scheduler based on the least finish number or least finish time. These packet pointers 

are then obtained from the scheduler and sent to the output link, where they are again 

dispatched based on the output link rate into the input buffer of the next node or if it is the 

last node, it is destroyed and the packet details are collected by the data handler and 

stored in file. Every time a packet is destroyed, its event timings are recorded in a file, 

pifdat, for future analysis. This file is used in the hardware implementation to obtain the 

arrival times of packets, thus facilitating comparison of hardware and software results. 

4.6 Simulation Results 

In this section, the delay characteristics of the real-time connection under the 

WFQ and WF2Q+ disciplines are studied. The simulation is run for several cases and 

from the results obtained conclusions on the behaviour of the two disciplines can be 

arrived at. Each simulation run lasts for 10,000 cycle. The traffic arrival pattern chosen 

resembles that used in [21], but only fixed-sized packets case is considered in this paper. 

This thesis considers both fixed and variable-sized packets. The simulation is first run for 

the WFQ algorithm and then the traffic arrival pattern is captured. This arrival pattern is 

then used for the WF2Q+ algorithm. These measures ensure fair comparison of 

algorithms. The simulation is conducted with and without cross traffic from constant 

source and with the Poisson sources exceeding their guaranteed rate (violating their traffic 

59 



constraint) by 50%. That is, the Poisson sources are sending at a rate of 1.5 times their 

guaranteed rate. The real-time source is a deterministic bursty traffic. The various cases 

considered are tabulated as shown in Table 4.1 

Packet size Cross traffic Best-effort source 

Least best-effort source 

I 
(average packet inter-

Without cross- arrival time = 1000 cycles) 

I traffic from Maximum best-effort 
constant source source (average packet 

Fixed-sized 
inter-arrival time = 3 

cycles) 
packets of 50 

Least best -effort source 
bytes 

(average packet inter-
With cross- arrival time = 1000 cycles) 
traffic from Maximum best-effort 

constant source source (average packet 
inter-arrival time = 3 

cycles) 
Least best-effort source 
(average packet inter-

Without cross- arrival time = 1000 cycles) 
traffic from Maximum best-effort 

constant source source (average packet 
inter-arrival time = 3 

Variable-sized I cycles) 
packets I Least best-effort source 

(average packet inter-
With cross- arrival time = 1000 cycles) 
traffic from Maximum best-effort 

I constant source source (average packet 

I 
i inter-arrival time = 3 

I cycles) 

Table 4.1: Various cases considered for software 
simulation and hardware implementation 
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Link rate 

Link rates at the 
output of nodes 

Nl, N2 and N3 = 
50, 100, 150 
bytes/cycle 

Link rates at the 
output of nodes 

Nl, N2 and N3 = 
44,320,1500 

bytes/cycle 



The three link rates chosen for fixed-sized packets indicate the following: the link 

rate of 50 byteslcycle corresponds to sending only one packet per cycle through the 

output link (since each packet is of size 50 bytes), the link rates of 100 bytes and 150 

bytes correspond to sending two and three packets per cycle respectively through the 

output link to test for lower load values. When the simulation was run for a link rate of 

200 bytes/cycle, all the packets under the WF2Q+ discipline experienced zero delay. Thus 

link rates of 200 bytes/cycle and beyond are not considered here. The three link rates 

chosen for variable-sized packets denote the following. The link rate of 44 bytes/cycle 

implies that the link is capable of allowing only a 44-byte packet (smallest sized packet) 

to be sent through the output link in one cycle. Any packet, which has a size larger than 

44 bytes, will take more than one cycle (1 ms) to leave through the output link. The link 

rate of 1500 bytes/cycle implies that the link is capable of allowing a packet of a 1500 

byte packet (maximum packet size) in one cycle. The intermediate link rate of 320 

bytes/cycle is obtained from the packet length pdf. According to this distribution, on 

average 319 bytes of packets arrive in one cycle or 1 ms and therefore, the link rate is 

rounded to 320 bytes/cycle. 

Firstly, considering fixed-sized packets, taking each packet size to be 50 bytes, the 

plot of end-to-end delay for real-time source for the case of least best-effort traffic and an 

output link rate of 50 bytes/cycle, without any cross traffic from constant source is shown 

in Figure 4.7a for the WFQ discipline. The plot of delay versus time for the WF2Q+ 

discipline is shown in Figure 4.7b. The best-effort traffic has an average inter-arrival time 

of 1000 ms. In other words, 20% of the packets have an inter-arrival time of 600ms, 20% 

of the packets have an inter-arrival time of 800 ms, 20% of the packets have an inter-
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arrival time of 1000 ms, 20% of the packets have an inter-arrival time of 1200 ms and the 

remaining 20% of the packet have an inter-arrival time of 1400 ms. The total load at the 

entrance of N3 is 85.5%. The simulation results for these two cases showing the total 

number of packets from each connection, the minimum, maximum and mean delay 

experienced by the connections in each node and the standard deviation for the 

connections in each node are given in Appendix A. Standard deviation is calculated to 

Time (ms) 

Figure 4.7a: End-to-end delay of WFQ 
scheduler for fixed-sized packets 
without cross-traffic with least best
effort traffic and an output link rate of 
50 bytes/ms. 

Time (m:J) 

Figure 4.7b: End-to-end delay of 
WF2Q+ scheduler for fixed-sized 
packets without cross-traffic with least 
best-effort traffic and an output link 
rate of 50 bytes/ms. 

measure how much the individual delay values deviate from the average delay. From the 

above two plots, the worst-case delay experienced by the packets from the real-time 

connection in both the cases of WFQ and WF2Q + are almost the same, 13 ms and 12 ms 

respectively. The minimum delay is 0 ms for both the cases of WFQ and WF2Q+. The 

average delay of the WF2Q+ discipline (ms) is less than that of the WFQ discipline (ms). 

This accounts for the fact that WF2Q+ foHows the GPS service order more closely than 

the WFQ discipiine. The standard deviations of the two disciplines do not show much 

difference. Similarly, plots of end-to-end delay of WFQ and WF2Q+ when the output link 
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IS 100 bytes/ms and 150 bytes/ms are shown in Figures 4.8a, 4.8b, 4.9a and 4.9b, 

respectively. 

Figure 4.8a: End-to-end delay of WFQ 
scheduler for fixed-sized packets 
without cross-traffic with least best
effort traffic and an output link rate of 
100 bytes/ms. 
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Figure 4.9a: End-to-end delay of WFQ 
scheduler for fixed-sized packets 
without cross-traffic with least best
effort traffic and an output link rate of 
150 bytes/ms. 
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Figure 4.8b: End-to-end delay of 
WF2Q+ scheduler for fixed-sized 
packets without cross-traffic with least 
best-effort traffic and an output link 
rate of 100 bytes/ms. 
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Figure 4.9b: End-to-end delay of 
WF2Q+ scheduler for fixed-sized 
packets without cross-traffic with least 
best-effort traffic and an output link 
rate of 150 bytes/ms. 

When the link rate IS 100 bytes/ms, there is a clear difference between the delays 

experienced by packets under the WFQ scheme and that under the WF2Q+ scheme (see 

plots on Figures 4.8a and 4.8b). In this case, the load at N3 is close to 43%. The 
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maximum delay experienced by a packet under the WFQ scheme is 5 ms while that under 

the WF2Q+ scheme is only 2 bytes/ms. The average delay is also comparatively less in 

the WP2Q+ scheme. The standard deviations of the two disciplines differ greatly in this 

case. The WFQ scheme shows much higher standard deviation than the WF2Q+ scheme. 

In other words, the delays of packets under the WFQ scheme oscillate between the 

minimum and maximum value most of the times rather than remaining close to the 

average delay. A similar explanation holds when the link rate is 150 bytes/ms. The load at 

N3 in this case is around 28%. It is useful to compare the delay performance of the two 

disciplines by subjecting them to various traffic loads so as to ensure that the results are 

valid even when the network is heavily loaded. Prom this discussion, it can be said that 

WP2Q+ performs better than WFQ for all the three cases of output link rates and 

therefore, traffic loads. 

The next case is without constant source and with maximum best-effort traffic. 

The best-effort traffic has an average inter-packet arrival time of 3 ms in this case. 
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Figure 4.10a: End-to-end delay of 
WPQ scheduler for fixed-sized packets 
without cross-traffic with maximum 
best-effort traffic and an output link 
rate of 50 bytes/ms. 
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Figure 4.1Gb: End-to-end delay of 
WF2Q+ scheduler for fixed-sized 
packets without cross-traffic with 
maximum best-effort traffic and an 
output link rate of 50 bytes/ms. 



The results for this case can be seen from the Figures 4.10a, 4.lOb, 4.lla, 4.11b, 4.12a 

and 4.12b for output link rates of 50, 100 and 150 bytes/ms respectively. When the output 

link rate is 50 bytes/ms, the load at N3 is above 118%. For such a high load, the real-time 

packets under the WFQ discipline experience a very large delay. Heavy traffic load leads 

to the scheduler queue build up leading to instability. 

1000 2000 3000 4000 5000 6000 1000 8000 8000 10000 
Tiine.(ms) 

Figure 4.11a: End-to-end delay of 
WFQ scheduler for fixed-sized packets 
without cross-traffic with maximum 
best-effort traffic and an output link 
rate of 100 bytes/ms. 
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Figure 4.12a: End-to-end delay of 
WFQ scheduler for fixed-sized packets 
without cross-traffic with maximum 
best-effort traffic and an output link 
rate of 150 bytes/ms. 
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Figure 4.11b: End-to-end delay of 
WF2Q+ scheduler for fixed-sized 
packets without cross-traffic with 
maximum best-effort traffic and an 
output link rate of 100 bytes/ms. 

Figure 4.12b: End-to-end delay of 
WF2Q+ scheduler for fixed-sized 
packets without cross-traffic with 
maximum best-effort traffic and an 
output link rate of 150 bytes/ms. 



The reason for the load to exceed 100% at N3 is because of the cross-traffic from Poisson 

source at N2 and N3 which exceed their guaranteed rate by 50%. Moreover, since four 

input links are allowed to enter the switch, the load coming from each link would be so 

high that the load at the output link exceeds 100%. 

The Figure 4.l0a is completely different from the plots that were seen until this 

case. The difference in y-axis scale of the plot for the WFQ discipline (Figure 4.l0a) and 

WF2Q+ discipllne (Figure 4.lOb) should be noted. The average delay experienced by 

packets from the real-time connection at N3 is 947 ms for the WFQ discipline. This is 

unsuitable for any real-time application. Usually the network is not so heavily loaded as 

this leads to overflowing queues. Nevertheless, when compared with the average delay of 

packets under the WF2Q+ discipline (which is 2.45ms), the delay of WFQ discipline is 

much higher. In the case of WF2Q+ discipline, though the overall arrival rate at N3 is 

118%, the arrival rate Nl from the real-time source is less than 100% and the load from 

the best-effort traffic at N1 does not affect the delay of packets from the real-time 

connection. However, in the case of WFQ discipline, the maximum load arriving from 

best-effort traffic affects (increases) the delay of packets from real-time source at Nl. At 

N2, due to the traffic from Poisson sources, this delay further increases thus leading to 

queue build up. When these two figures (Figures 4.lOa and 4.lOb) are compared with the 

corresponding ones from the least best-effort case (Figures 4.7a and 4.7b), it can be seen 

that the WF2Q+ discipline tries to retain the same delay for the packets of the real-time 

connections even when there is cross-traffic from the best-effort connection at N1, 

whereas the WFQ discipline is affected by the cross-traffic from best-effort connection at 
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Nt. The results for output link rates of 100 bytes/ms and 150 bytes/ms are quite similar to 

the previous case of least best-effort traffic. 

The next case considered is the end-to-end delay of real-time source with the 

presence of cross-traffic from constant source, with least best-effort traffic and various 

output link rates of 50, 100 and 150 bytes/ms. The packets from constant source are 

spaced 135 ms apart. The results are plotted in Figures 4.13a, 4.13b, 4.14a, 4.14b, 4.15a 

and 4.15b. When the output link rate is 50 bytes/ms, the load at N3 is close to 93%. 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
Time (ms) 

Figure 4.13a: End-to-end delay of 
WFQ scheduler for fixed-sized packets 
with cross-traffic with least best-effort 
traffic and an output link rate of 50 
bytes/ms. 

Figure 4.13b: End-to-end delay of 
WF2Q+ scheduler for fixed-sized 
packets with cross-traffic with least 
best-effort traffic and an output link 
rate of 50 bytes/ms. 

Again, the average delay of the WF2Q+ discipline is less than that of the WFQ discipline 

(refer to Figures 4.13a and 4.13b). The standard deviation is close to the average delay in 

this case showing that the delays of most of the packets are distributed close to the 

average delay. Also, the maximum delays are almost the same for both the cases. The 

maximum, minimum, average delays and the standard deviation values are presented in 

Appendix B. When the output link rate is 100 bytes/ms, the load at N3 is 46%. Here 
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again, the average delay, maximum delay and the standard deviation of packets from the 

real-time connection are less for the WP2Q+ discipline than the WFQ discipline. When 

the output link rate is 150 bytes/ms, the load at N3 is 30%. For the cases when the output 

link rate is 100 bytes/ms and 150 bytes/ms, the delays experienced by packets in the WFQ 

discipline vary between the maximum and the minimum values more often. 

Figure 4.14a: End-to-end delay of 
WFQ scheduler for fixed-sized 
packets with cross-traffic with least 
best-effort traffic and an output link 
rate of 100 bytes/ms. 

Figure 4.15a: End-to-end delay of 
WFQ scheduler for fixed-sized 
packets with cross-traffic with least 
best-effort traffic and an output link 
rate of 150 bytes/ms. 
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Figure 4.14b: End-to-end delay of 
WF2Q+ scheduler for fixed-sized 
packets with cross-traffic with least 
best-effort traffic and an output link 
rate of 100 bytes/ms. 
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Figure 4.15b: End-to-end delay of 
WF2Q+ scheduler for fixed-sized 
packets with cross-traffic with least 
best-effort traffic and an output link 
rate of 150 bytes/ms. 



That is, the oscillations are hlgh which means the delay-jitter is high. The same for the 

"\VF2Q+ discipline are concentrated close to the average delay. Thus, from the Figures 

4.13a, 4.13b, 4.l4a, 4.14b, 4.15a and 4.1Sb, and also from the standard deviation values, 

it can be observed that WF2Q+ discipline has a better delay performance in terms of the 

average delay, maximum delay and the delay jitter. 

The last traffic pattern considered in the fixed-sized packets case is the case of 

maximum best-effort traffic with the presence of constant source. Here the load for a link 

Figure 4.16a: End-to-end delay of 
WFQ scheduler for fixed-sized 
packets with cross-traffic with 
maximum best-effort traffic and an 
output link rate of 50 bytes/ms. 

Figure 4.16b: End-to-end delay of 
WP2Q+ scheduler for fixed-sized 
packets with cross-traffic with 
maximum best-effort traffic and an 
output link rate of 50 bytes/ms. 

rate of 50 bytes/ms is higher than the previous case without cross-traffic and with 

maximum best-effort traffic for the same link rate. In this case, the load at N3 is 125%. 

As before, as the queue keeps building up the packets in the WFQ discipline experience 

more delay. The delays of the first few packets cause the rest of the packets to be delayed 

further and the queue builds up. As can be seen from Figures 4.16a and 4.16b, the 

maximum delay for a real-time connection under the WFQ scheme is above 2600 ms, 
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which is unsuitable for high-speed networks, whereas that under the WF2Q+ scheme is 

still close to that of the least best-effort traffic case (seen in Figure 4.13b). 

; 

4.5 ~ 

Figure 4.17a: End-to-end delay of 
WFQ scheduler for fixed-sized 
packets with cross-traffic with 
maximum best-effort traffic and an 
output link rate of 100 bytes/ms. 

Figure 4.18a: End-to-end delay of 
WFQ scheduler for fixed-sized 
packets with cross-traffic with 
maximum best-effort traffic and an 
output link rate of 150 bytes/ms. 

Figure 4.17b: End-to-end delay of 
WF2Q+ scheduler for fixed-sized 
packets with cross-traffic with 
maximum best-effort traffic and an 
output link rate of 100 bytes/ms. 

Figure 4.18b: End-to-end delay of 
WF2Q+ scheduler for fixed-sized 
packets with cross-traffic with 
maximum best-effort traffic and an 
output link rate of 150 bytes/ms. 

The results for the cases when the link rates are 100 bytes/ms and 150 bytes/ms are the 

same as the previous cases with the packets under the \VF2Q+ discipline having a lower 
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delay compared to those under the WFQ discipline (Refer to Figures 4.17a, 4.17b, 4.18a, 

4.1Sb). 

Thus it can be perceived that VlF2Q+ scheme remains unaffected by the presence 

of cross-traffic either from best-effort source or from constant source. The results 

obtained until now are consistent with those obtained by Bennett and Zhang in [21] . 

For certain applications that involve feedback-based algorithms that are used in 

data communication networks, oscillations as seen under the WFQ scheme for fixed-sized 

packets are undesirable. In this case, a data source has to balance between two 

considerations: on the one hand, it wants to send data to the network as fast as possible; 

on the other hand, it does not want to send data so fast that causes network congestion. 

The oscillations in WFQ make it unsuitable for such applications. Also, it is inferred that 

the scheduling algorithm should not send packets too fast that it causes network 

congestion in the next node [10]. For these reasons, WF2Q+ discipline which has a 

smaller delay-jitter is preferred over WFQ discipline for fixed-sized packets. 

Figure 4.193.: End-to-end delay of 
WFQ scheduler for variable-sized 
packets without cross-traffic with 
least best-effort traffic and an 
output link rate of 44 bytes/ms. 
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Figure 4.19b: End-to-end delay of 
WF2Q+ scheduler for variable-sized 
packets without cross-traffic with 
least best-effort traffic and an 
output link rate of 44 bytes/ms. 
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The same algorithms are tested for variable-sized packets. The results obtained did not 

match that obtained for fixed-sized packets. In their paper, Bennett and Zhang, did not 

consider the case of variable-sized packets. Considering the case of variable-sized packets 

with least best-effort traffic and without constant source, Figures 4.19a and 4.19b show 

the delay distribution for both the disciplines when the link rate is 44 bytes/ms. 

Figure 4.20a: End-to-end delay of 
WFQ scheduler for variable-sized 
packets without cross-traffic with 
least best-effort traffic and an 
output link rate of 320 bytes/ms. 

Figure 4.21a: End-to-end delay of 
WFQ scheduler for variable-sized 
packets without cross-traffic with 
least best -effort traffic and an 
output link rate of 1500 bytes/ms. 
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Figure 4.20b: End-to-end delay of 
WF2Q+ scheduler for variable-sized 
packets without cross-traffic with 
least best-effort traffic and an 
output link rate of 320 bytes/ms. 

Figure 4.21b: End-to-end delay of 
WF2Q+ scheduler for variable-sized 
packets without cross-traffic with 
least best-effort traffic and an 
output link rate of 1500 bytes/ms. 



In this case, the load at N3 is 638%, which is practically not possible. The scale along the 

x-axis clearly shows that it takes around 40,000 ms to serve all the packets in the queue. 

Moreover, the delay is as high as 14,000 ms for a real-time source (see y-axis scale). 

Therefore, this case is ignored (not considered for comparison). Though the delay is high 

for this case, the reason for considering this case (and similar such cases where the load is 

extremely high and the queue is overflowing) is to compare this case (and similar such 

cases) with the case of fixed-sized packets with cross-traffic and with maximum best

effort traffic and an output link rate of 50 bytes/ms (Figures 4.16a and 4.16b) where the 

queue does not overflow for WF2Q+ as it overflows in the case of WFQ eventhough the 

load exceeds 100%, in both the cases. 

The next case is a link rate of 320 bytes/ms and the same ru"'Tival pattern as before . 

In this case, the load at N3 comes to around 82%. The plots of delays are shown in 

Figures 4.20a and 4.20b. Contrary to the previous results obtained for the fixed-sized 

packets, in this case, the average delay of the WF2Q+ discipline is higher than that of the 

WFQ discipline. This is because WF2Q+ tries to approximate GPS as closely as possible. 

In other words, WFQ is far ahead of GPS in the number of bits served during any interval 

of time. The maximum, minimum, average delays and the standard deviation values are 

presented in Appendix C. It can also be seen that the delay-jitter is high for WF2Q+ 

discipline owing to the oscillations of the delay around the average delay. Although WFQ 

has higher delay and delay-jitter for fixed-sized packets, the delay and delay-jitter are 

lower for variable-sized packets. Though the delay and delay-jitter are higher for the 

WF2Q+ discipline, the end-to-end delay is bound within the tolerable limits. When the 

output link is further increased to 1500 bytes/ms, the load is around 18%. For such a light 
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load, the delays under both the disciplines are almost identical as can be seen in Pigures 

4.21a and 4.21b . 
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Figure 4.22a: End-to-end delay of 
WPQ scheduler for variable-sized 
packets without cross-traffic with 
maximum best-effort traffic and an 
output link rate of 44 bytes/ms. 
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Figure 4.22b: End-to-end delay of 
WP2Q+ scheduler for variable-sized 
packets without cross-traffic with 
maximum best-effort traffic and an 
output link rate of 44 bytes/ms. 

Por the case of maximum best-effort traffic and without cross-traffic from 

constant source the load at N3 is 864%. The plots are shown in Figures 4.22a and 4.22b. 

This is again not fit for comparison. The queues build up and the delays of the newly 

arriving packets increase because the previously arrived packets have not been 

transmitted yet. The reason for such a high traffic load is mainly because four input links 

are allowed to enter the switch. Therefore, it is possible that all four links have greater 

than 100% load or in other words, have sources that exceed their agreed traffic profile. In 

such a case, the traffic arrival load is beyond 400%. Moreover, the ouput link rate is so 

less (44 bytes/ms) that if a packet size is larger than 44 bytes, the packet will be sent in 

more than one cycle through the output link. This is the cause for such a high load of 

864%. When the link rate is 320 bytes/ms, the load at N3 is 119%. The average delay of 

packets under the WFQ discipline is lesser than that under the WF2Q+ discipline as can 
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be seen in Figures 4.23a and 4.23b. In this case, the delay of packets in the best-effort 

connection is higher under the WFQ disdpline than under the vVF2Q+ scheme (Appendix 

C). 

Figure 4.23a: End-to-end delay of 
WFQ scheduler for variable-sized 
packets without cross-traffic with 
maximum best-effort traffic and an 
output link rate of 320 bytes/ms. 

Figure 4.24a: End-to-end delay of 
WFQ scheduler for variable-sized 
packets without cross-traffic with 
maximum best-effort traffic and an 
output link rate of 1500 bytes/ms. 
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Figure 4.23b: End-to-end delay of 
WF2Q+ scheduler for variable-sized 
packets without cross-traffic with 
maximum best-effort traffic and an 
output link rate of 320 bytes/ms. 
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Figure 4.24b: End-to-end delay of 
WF2Q+ scheduler for variable-sized 
packets without cross-traffic with 
maximum best-effort traffic and an 
output link rate of 1500 bytes/ms. 



For a link rate of 1500 bytes/ms, the load at N3 is 25%. The delay under both the 

cases of WFQ and WF2Q+ disciplines are almost identical for such a light load as can be 

seen in Figures 4.24a and 4.24b. 

For the case of variable-sized packets, with constant source, with minimum best-

effort traffic and a link rate of 44 bytes/ms, the load at N3 is 664%. The packets from 

each constant source are spaced 135 ms apart as before. Again, for this heavy traffic load, 

it is not possible to compare the two disciplines as the queues build up and the delay 

gradually increases from one packet to the next. The delay plots are shown in Figures 

4.25a and 4.25b. For the case, when the link rate is 320 bytes/ms, the load at N3 is 91 %. 

The maximum, minimum, average delays and the standard deviation values are presented 

in Appendix D. In this case, as before real-time packets under the WF2Q+ experience 

more delay than those under the WFQ discipline as can be observed from Figures 4.26a 

and 4.26b. 
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Figure 4.25a: End-to-end delay of 
WFQ scheduler for variable-sized 
packets with cross-traffic with least 
best-effort traffic and an output link 
rate of 44 bytes/ms. 
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Figure 4.25b: End-to-end delay of 
Vv'F2Q+ scheduler for variable-sized 
packets with cross-traffic with least 
best-effort traffic and an output link 
rate of 44 bytes/ms. 
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Figure 4.26a: End-to-end delay of 
WFQ scheduler for variable-sized 
packets with cross-traffic with least 
best-effort traffic and an output link 
rate of 320 bytes/ms. 
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Figure 4.26b: End-to-end delay of 
WF2Q+ scheduler for variable-sized 
packets with cross-traffic with least 
best-effort traffic and an output link 
rate of 320 bytes/ms. 

When the link rate is 1500 bytes/ms, the load at N3 is around 19%. As before, this 

light load causes the delays under both the schemes to be identical for real-time source. 

This is illustrated in Figures 4.27a and 4.27b. 

Figure 4.27a: End-to-end delay of 
WFQ scheduler for variable-sized 
packets with cross-traffic with least 
best -effort traffic and an output link 
rate of 1500 bytes/ms. 
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Figure 4.27b: End-to-end delay of 
WP2Q+ scheduler for variable-sized 
packets with cross-traffic with least 
best-effort traffic and an output link 
rate of 1500 bytes/ms. 



For the case when there is cross-traffic from constant source and with maximum 

best-effort traffic, the load at N3 is 927% when the link rate is 44 bytes/ms. This case is 

ignored for the reasons discussed before. The delay plots are shown in Figures 4.28a and 

4.28b. When the link rate is 320 bytes/ms, the load at N3 is around 127%. Again WFQ 

shows lower delay than WF2Q+ discipline as is shown in Figures 4.29a and 4.29b . 
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Figure 4.28a: End-to-end delay of 
WFQ scheduler for variable-sized 
packets with cross-traffic with 
maximum best-effort traffic and an 
output link rate of 44 bytes/ms. 

Figure 4.29a: End-to-end delay of 
WFQ scheduler for variable-sized 
packets with cross-traffic with 
maximum best-effort traffic and an 
output link rate of 320 bytes/ms. 
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Figure 4.28b: End-to-end delay of 
WF2Q+ scheduler for variable-sized 
packets with cross-traffic with 
maximum best-effort traffic and an 
output link rate of 44 bytes/ms. 

Figure 4.29h: End-to-end delay of 
WF2Q+ scheduler for variable-sized 
packets with cross-traffic with 
maximum best-effort traffic and an 
output link rate of 320 bytes/ms. 



From these two figures, it can also be observed that the delay-jitter is lower for WFQ 

discipline L~an the WF2Q+ discipline. Again for the case when the link rate is 1500 

bytes/ms, the load at N3 is around 27%. The delay plots are shown in Figures 4.30a and 

4.30b. For this case, the delays are almost identical for the reasons discussed previously. 

Figure 4.30a: End-to-end delay of 
WFQ scheduler for variable-sized 
packets with cross-traffic with 
maximum best-effort traffic and an 
output link rate of 1500 bytes/ms. 

Figure 4.300: End-to-end delay of 
WF2Q+ scheduler for variable-sized 
packets with cross-traffic with 
maximum best -effort traffic and an 
output link rate of 1500 bytes/ms. 

From the above discussion on variable-sized packets, it can be observed that the 

delays experienced by packets under the WF2Q+ discipline are higher than those under 

the WFQ discipline. The oscillations are high in the case of WF2Q+ discipline and 

therefore jitter is high, contrary to the results obtained for the fixed-sized packets case. 

Thus for the case of variable-sized packets, WFQ discipline could be a better choice for 

high-speed networks. For high-speed networks, the main requirement is lower 

complexity. High-speed networks can tolerate a slight increase in the average delay, but if 

the complexity of the algorithm is too high, it is not feasible to use the algorithm at high 

speeds. WF2Q+ has reduced algorithmic complexity. So, it will be a good choice to go for 
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WF1Q+ for high-speed networks even though it has a higher average delay and a higher 

delay-jitter for variable-sized packets. Although, WF2Q+ is fairer than WFQ, the only 

justification for higher average delay and delay-jitter of \VF2Q+ is that it is maintaining 

the fairness property at any cost. It is possible to make WFQ implementation simpler by 

using the method used in WF2Q+ to calculate the virtual time function. WFQ would be 

simpler but not fairer to all the connections because of its service order which is not fair 

to all the connections. 

The results obtained for variable-sized packets do not mean that WF2Q+ does not 

have a tight delay bound for variable-sized packets. It has a tight delay bound, but the 

delay bound is slightly higher than that of WFQ. That is, the average delay of WF2Q+ for 

variable size packets is higher than WFQ, but the delay is bounded around the average 

delay. Also, it is possible that the average delay of WF2Q+ is higher than WFQ, because 

this algorithm closely approximates the GPS system. That is, WF2Q+ is no earlier than, 

nor, no later than GPS by one maximum packet size. In other tenns, the lower delay 

obtained for WFQ is because it is far ahead of GPS in the number of bits served during 

any time interval. \VFQ and GPS provide almost identical service except with a 

difference of one packet, according to Parekh [8]. Parekh meant that WFQ cannot fall 

behind GPS by more than one maximum size packet. However, WFQ can be far ahead of 

GPS in terms of the number of bits served and this might be one of the reasons for the 

higher delay in WF2Q+ compared to WFQ. For WF2Q+, when the plots for variable-sized 

packets are observed, the worst-case packet delay is large compared to that of VlFQ. This 

is not the case for fixed-sized packets. The reason for this might be that WF2Q+ is trying 

to be fair to all the other connections and so, in order that the other connections do not 
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have greater delay as in the case of ViI'FQ, the packets from this connection are 

experiencing more delay. Moreover, only those packets, which have already started 

service in the corresponding GPS system, will be considered for scheduling and so, delay 

(or, worst-case delay) of WF2Q+ is higher for variable-sized packets. 

Applying the same arrival pattern shown in Figure 3.1a to the algorithms WFQ 

and WP2Q+ under the case of variable-sized packets, assume the second packet arriving 

in connection 1 is of size 1500 bytes. Then, according to the WFQ algorithm, it might 

have a finish number which is greater than the finish number of the other connections. In 

such a case, one packet from connection 2 will be sent on the output link. The time taken 

to send this 1500 byte packet will affect the departure time of the first packet in the 

second connection. This causes an increase in the delay of the first packet in the second 

connection and thus makes the algorithm (WFQ) unfair in the service provided for all 

other connections except the real-time connection. 

4.7 Discussion 

The decision on which scheduling discipline to use depends on the specific 

application, whether it can tolerate the high algorithmic cost (in which case the choice 

would be WFQ), whether it can tolerate the higher delay or whether it consists of only 

fixed-sized packets (in which case the choice would be WF2Q+). This chapter described 

the software implementation of a simulated system and discussed the results obtained in 

detail. Though the algorithmic complexity for WF2Q+ is reduced, the cost of maintaining 

the queues in the regulator and scheduler is still O(N) where N is the number of 
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connections. The next chapter describes the hardware implementation of the two 

algorithms. In the hardware implementation, the cost of maintaining the regulator queues 

is reduced by the use of calendar queue implementation. 

82 



Chapter 5 

5. Hardware Implementation 

5.1 Introduction 

Chapter 4 discussed software implementation of the two scheduling disciplines 

and the end-to-end delays for these two disciplines. This chapter discusses the details of 

hardware implementation of the two scheduling algorithms. The same network model 

assumed in the software implementation is also assumed here. Each block in the hardware 

implementation is explained with flow diagrams, where necessary. The traffic arrival 

pattern used in the hardware implementation is obtained from the software simulator and 

the results (packet arrival and departure times) of the hardware implementation are 

processed in software to obtain the desired end-to-end delay for comparison. A 

behavioural level architecture is used for writing the VHDL codes. The hardware 

implementation verifies the feasibility of realizing the scheduling algorithms using the 

prevailing VLSI design tools. 

5.2 Hardware Implementation 

The blocks involved in the hardware implementation are shown in the block 

diagram of Figure 5.1. The figure has been obtained from the framework of Mehrotra in 
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his post-doctoral work [30] with some modifications. The framework was originally 

designed for single node case and fixed-sized packets. With the introduction of multiple 

node case (network), more signals had to be introduced. Moreover, since variable-sized 

packets are also considered in our design, there was a need for more changes to be 

introduced to the existing framework. The figure details every signal flowing between the 

blocks. The main blocks involved in the hardware implementation are input unit, memory 

manager, two-port memory module, database controller, main controller, regulator, 

scheduler, bus controller, tristate buffer, server and the dispatch buffer. The regulator 

consists of calendar queue blocks, namely, decoder, buffer, counter and multiplexer to 

queue the packets until they are eligible. The implementation of each of these blocks is 

described below. The regulator queues are implemented using the calendar queues to 

reduce the implementation cost of maintaining the queues. Throughout the 

implementation, behavioural level description is used. Function verification has been 

done using simulator tools, and synthesis has not yet been carried out. 

5.2.1 Input Unit 

The input unit accepts the packet information and sends it to the memory manager 

for storage in the two-port memory. The packet information arrives from the testbench 

which reads the packet information file, pifdat, created by the software simulator's data 

handler. The packet arrival information from this file is sent to the input unit, which then 

sends this infonnation to the memory module. The packet infonnation received by the 

input unit includes node number, connection number, packet number, packet length and 
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arrival time. The input unit is implemented as an FSM with two states, waitJor yacket 

and receiveyacket. 

5.2.2 Memory Manager 

The memory manager is capable of accepting the packet information from the 

input unit and storing it in the two-port memory for future retrievals. It generates a pointer 

to the packet and stores the packet information in the two-port memory at this pointer. It 

also latches the packet pointer and the connection's details obtained from the input unit 

into the regulator and cq_decoder (these blocks will be discussed in Sections 5.2.6 and 

5.2.7). The memory manager uses the pointer as an address location in the memory to 

store the packet information in memory. This detail is required by the server at the time of 

dispatching the packet. 

location 

buffer 
full = 1 

Figure S.2: State diagram of memory manager 
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The memory unit is implemented as an FSM with seven states: init, waitJor -packet, 

waitJor Jl1,emoT}'_write, waiCbuffer -full, memo r:L'vv rite , search_nexClocation and 

waitJor _memorYJead. The state diagram is shown in Figure 5.2. The memory manager 

receives the initialize signal from the main controller. It then goes to state, 

waitJor -packet and remains there until a packet becomes available. Once the packet is 

available, the memory manager writes the packet details into the data bus and the packet 

pointer into the address bus entering the memory module. The memory manager then 

waits for the packet details to be written into the memory and then searches for the next 

location in memory where the next packet can be wlitten. Once the next location is found, 

the memory manager reads that location and is ready to receive the next packet. Sufficient 

time is allowed for the memory manager to search for the next location in memory. There 

are at most 256 searches because the size of the two-port memory is 256 locations. 

5.2.3 Two-port Memory 

The memory is. implemented as 256 X 4, that is, lK bits and does not use any 

delay to access the memory. So, the delay is assumed by the memory manager or the 

server. That is, the memory manager and server wait for sufficient time (memory access 

time) and then read from or write into the memory. This size of the memory is found to 

be sufficient for testing the scheduling algorithms. 
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5.2.4 Main Controller 

The main controller initializes mainly the memory manager, database controller, 

regulator, scheduler, server and time stamp clock. It is built as a finite state machine with 

5 states: start, init, waitJor _cell, start_regulator andvvaitJor _cqJifo. In the init state, it 

initializes all the blocks and then waits for cell. When the memory manager gives the 

command to latch data from the latch, it latches the data onto a bus and initiates the 

regulator and waits for the regulator to finish reading the data. Once the regulator read is 

done, the controller asks the cq_decoder to read the packet pointer and waits for an 

acknowledgement from the cq_fifo. Once the acknowledgement is received, the main 

controller goes back to state waitJor _cell until the next packet arrives. 

5.2.5 Database Controner 

The tristate buffer block receives the connection number and the corresponding 

details of the connection like Xmin, Xave, I, source node, destination node and the 

connection's weight required for the regulator and scheduler blocks. These details are 

read through the tristate buffer and stored in the database controller (db_controller). 

When the regulator or scheduler requires this information for any particular connection, 

they request bus access to the bus controller and then read the connection's details from 

the db_controller. 
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5.2.6 Regulator 

The regulator helps to smooth the traffic arrival pattern in the scheduler. The 

regulator delays packets from those connections that send transmit at a rate higher than 

that guaranteed to them. The regulator calculates the eligibility time for a packet and if 

the packet is not immediately eligible, then it is delayed by the delay unit (to be discussed 

in the next subsection) before sending it to the scheduler. The regulator block is omitted 

in a work-conserving scheduler. In such a case, the packets directly enter the scheduler 

from the memory manager. The regulator is implemented as an FSM with eight states: 

start, init, waitJor _cell, requesCsession_data, waitJor _session_data, calceligible, 

store_cell and waitJor _ack. The regulator is initialized by the main controller. When it 

goes to state waitJor _cell, if a packet arrives, the regulator gets the connection number 

from the packet and then checks to find out whether this particular connection's details 

are already available in the regulator's cache. If it is available then the details are obtained 

from the cache. Otherwise, the regulator tries to get hold of the bus by sending a request 

to the bus controller. Once the bus controller acknowledges, the regulator obtains the 

connection's infonnation such as Xmin, Xave, I from the db_controller and then calculates 

the eligibility time of the packet in state calc_eligibile. In order to calculate the eligibility 

time, the regulator needs to know the arrival time of the packet into the regulator. For 

this, a time stamp clock is present, which gives the time at which the packet enters the 

regulator. The time stamp clock is simply a counter which is enabled when the regulator 

is initialized. With the help of the arrival time and the information about the connection, 
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the regulator calculates the eligibility time for the packet. Once the eligibility time is 

calculated, the eligibility details are sent to the delay unit. 

5.2.7 Delay Unit 

The delay unit consists of four blocks and is used to delay a packet by the required 

amount of time which is specified by the regulator. The delay unit is also not present in 

the work-conserving scheduler. The delay unit is implemented as a calendar queue [10] . 

As an example, one needs to schedule an event on a calendar by writing down the event at 

the appropriate page, with each page corresponding to one day. There may be any number 

of events for a particular day. The time of each event is based on its priority. Scheduling 

an event in the calendar corresponds to the enqueue operation and reading the today's 

page in the calendar and removing the first event for today is the dequeue operation. 

Implementing the same in hardware consists of a set of queues, one per page of the 

calendar. In this implementation, there are eight queues (cq_fifo) each corresponding to a 

day of the year. That means there are eight days in a year. If there is a packet in one of the 

queues but it is not currently eligible, because it does not match with the current year, 

then its eligibility will correspond to the same day of next year or the year after the next. 

In this implementation, each day corresponds to one cycle. The counter is incremented by 

one, every cycle. 

III Calendar queue decoder: This unit passes on the packet information to the 

appropriate cq_fifo. It receives the day information from the regulator and uses 

this information to select one of the eight cq_fifos and then if the cq_fifo is ready 
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to accept the packet information, the cq_decoder sends the packet information to 

the cq_fifo and waits for an acknowledgement from the cq_fifo. Once the 

acknowledgement is received, the cq_decoder passes on this acknowledgement 

signal to the regulator and main controller. 

II Calendar queue fifo (buffer): This unit stores packet information in its queues. 

There are eight instances of the cq_fifo in this implementation corresponding to 

eight days in a year. It has two main operations: enqueue and dequeue. Thus it has 

the following states in its FSM: init, waitJor j vent, enqueue, dequeue . When in 

state enqueue, the data is stored in the sorted queue. Each fifo queue has 4 buckets 

one per year and the data is entered into the bucket corresponding to the current 

year. The year value is obtained froID the data which has two additional bits 

indicating the year of arrival of the packet. The data that goes out of the cq_fifo 

into the cq_IDux does not have the two bit year information, as it is already used 

up to select the pmticular bucket in the cq_fifo. When in state dequeue, only that 

bucket which corresponds to the current year is checked and the data if there is 

any in that bucket of the cq_fifo queue is removed. 

Ii Calendar queue multiplexer: The cq_mux selects one of the available cq_fifos 

based on the current year and date received from the cq_counter. From this 

cq_fifo, it dequeues the data available and sends this data to the scheduler block. 

m Calendar queue counter: The cq30unter counts one day at a time. 
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5.2.8 Bus Controller 

The bus controller controls the access to the bus between the regulator and the 

scheduler. When either the regulator or the scheduler wants to gain access to the bus, it 

places the request to the bus controller. The bus controller, first checks to see if there is 

no other request currently being served and if not, provides access of the bus to the 

regulator or scheduler. If there is a request from regulator and scheduler, the bus 

controller uses a decoder to select one of regulator and scheduler and provides bus 

acknowledge to it. The bus controller also enables the tristate buffer and sends the 

db_controller Jead and db_controller _write control signals to the db_controner. 

5.2.9 Scheduler 

The scheduler is implemented as an FSM with 10 states: start, init, 

waitJor _event, enqueue, requescsession_data, 

calcJinish_number, dequeue, waiCto_serve-packet and serve-packet. The state diagram 

of the scheduler is shown in Figure 5.3. 

The scheduler is initialized by the main controller. Once it is initialized, the 

scheduler goes to the waitJor _event state. If a packet is available, it is indicated by the 

cq_mux and the scheduler immediately enqueues the data. The scheduler now caches 

important data required in calculating the finish number. Then, the scheduler requests the 

connection's details from the db_controller by sending a request to access the bus. Once it 

gains control of the bus, the connection's details like the connection's weight, the source 

node, the destination node, etc., are obtained from the db_controller. With these details, 
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iniCscheduler = 0 
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packet = 0 

servin~packet = 1 

Figure 5.3: State diagram of the scheduler 

the scheduler calculates the finish number of a packet and then selects a packet with the 

least finish number to be dequeued. The scheduler now waits for the server to be ready to 

receive a packet pointer. Once the server is ready, the scheduler sends the packet pointer 

to the server. Both the schemes (WFQ and v,rp2Q+) follow the same procedure. The only 

difference is in the calculation of the finish number. During the state, calcJinish_number, 

the WF2Q+ scheduler updates only one pair of start and finish number for a particular 

connection, while the WFQ scheduler maintains a pair of queues, one for start time and 

93 



the other for finish time for each connection. The new start time and finish time 

calculated will be placed in the appropriate positions in the two queues. 

5.2.10 Server and Dispatch buffer 

The server section has two blocks namely the server and the dispatch buffer. 

III Server: The server receives the packet pointer from the scheduler and retrieves the 

corresponding packet from the two-port memory. The server is implemented as an 

FSM with eight states: idle, init, waitJor yacket, waitJor _memor)'Jead, 

memory_read, waitJor_buffer, write_to_buffer and waitJor_memory_write. The 

server is initialized by the main controller. When the server is in state 

waitJor yacket, it sets the servingyacket signal low, to indicate the scheduler 

that it is not serving any packet currently. Now, the scheduler sends a packet and 

the server, sets the servingyacket signal high indicating the scheduler that it is 

currently busy serving a packet and is not free to receive any new packet pointer. 

The server then selects the memory module and sends the packet pointer in its 

address bus. The server now waits for the memory to read the address and map the 

corresponding data into the data bus. Once the data is available in the data bus, the 

server reads the data and checks the dispatch buffer until it is ready to receive a 

packet. When the dispatch buffer is empty, the server sends the packet to the 

dispatch buffer and clears that particular location in the memory, so as to allow 

other packets arriving in the memory to be written in that location. The dispatch 
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buffer clears the memory location by setting the valid_bit of that location to low 

which implies that the location is empty. 

m Dispatch buffer: The dispatch buffer is clocked by tl}e link rate clock. It sends the 

packets based on the output link rate. As soon as it receives data from the server, it 

informs the server that it is not free anymore by setting the buffer _empty signal 

low. It sends the packet into the link and if there is more space available in the 

link then it raises the buffer _empty signal. Otherwise, it will raise the signal only 

in the next link rate clock, when the packet has been served. 

The above discussion of the hardware implementation is only for a single node. In 

the case of multiple nodes the whole block diagram described in Figure 5.1, will be 

repeated for each node. This is shown in Figure 5.4. 

NWC 

scheduler 

NWC 

scheduler 

NWC 

scheduler 

NWC scheduler testbench 

Figure 5.4: Block diagram of multiple node implementation 
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Two nodes are connected with the help of a FIFO in between, which helps in buffering 

new packets entering that particular node (from File 2 or File 3) and packets departing the 

previous node. The FIFO sends the packets into the node (input unit of node) one a first 

come first served (FCFS) basis. Files 1, 2 and 3 are the packet information files (pif.dat) 

which contain information such as packet number, connection number, node number 

arrival time and also the arrival time of the next packet. The packets are actually 

generated in the software simulator and the details are stored in the above mentioned 

files. Thus, the input unit of each node gets the information about the arrival time of the 

next packet while reading the current packet. This information helps the input unit to read 

from the file only when required, that is, only when a packet is available and not every 

cycle. 

5.3 Testing 

A testbench is written to test the functionality of the hardware implementation. 

Some of the important signals involved are traced in Figure 5.5. This first signal shown is 

the system clock. A clock with a frequency of 100 MHz is used. A system clock having a 

period of 12480 ns is derived from the base clock. This time is required to allow packets 

from four different links to arrive into the switch at the same time. The first packet 

arriving is read from the packet arrival information file . The details of the packet such as 

node number, connection number, packet number and arrival time of the packet are all 

stored in the file. This detail is stored into the signal, packet_inIoN. The 

packecavailableN signal goes high when the packet has been read from the file and is 
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Figure 5.5: Timing diagram for the hardware implementation of WFQ scheduling discipline 



found to have arrived at the current time. In the example shown in Figure 5.5, a packet 

arrives at nodel. The destination node for all the packets entering at nodes NI , N2 or N3 

is node 3. Therefore, the destinaltion node for the packet under consideration is node3. 

Once the packet information has been read, the details are sent through packeCinJol and 

the packecavaiiabiel signal goes high. Once this signal goes high, the input unit reads 

the corresponding packet information from the packeCinJol and sends this information to 

the memory manager which assigns an address to the packet and stores the packet in the 

two port memory. The packet address and the connection details are alone sufficient for 

the regulation scheduling. The packet details are recovered from the two port memory 

only when the packet is ready to be served. In the Figure 5.5, the packet arrives at time 1 

ns, and is ready to be dispatched at time 6240 ns. At this time, the dispatch buffer sets the 

packet_dispatchedl signal high and sends the packet through the output_linkl. This 

packet then enters node 2. The code has been written such that the packet details are read 

by the node, during the first half of the system clock while the packet is dispatched 

through the output link at the second half of the system clock. Therefore, the packet 

which is dispatched from node 1 at time 6240 ns, will be available at node 2 at 12480 ns. 

At this time, the packecavailable2 signal goes high with the corresponding packet's 

information available in packeCinfo2. Notice the packet infonnation when the packet 

enters node 1 is given in hexadecimal as "1040014500010". This information changes to 

"2040014500010" when the same packet dispatched form node 1 enters node 2. This is 

because, the first two bits of the packeCinfo are allotted to node information and when 

the packet is in node 1, the values of the first two bits are 1 ((Olh) and when at node 2, 

these values change to 2 ((lOh). The packet is dispatched from node 2 at time 18720 ns. 
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Figure 5.7: Reading connection details from upper layer 
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Figure 5.8: Regulator reads connection's details from db_controller 
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Figure 5.9: Scheduler reads connection's details from db_controller 
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Figure 5.10: Packet dispatched from server 



This packet enters node 3 at time 24960 ns as shown in Figure 5.5 and is dispatched from 

node 3 at time 31200 ns. 

The arrival and departure of the first packet at node 1 is explained below in detail. 

Figure 5.6 shows the timing diagram for the arrival of the first packet. From this figure, 

packecavailable signal goes high showing that a packet is available and ready to be read 

by the memory manager. The corresponding packet information is present in packet_info 

signal. The memory manager now sends the data to the memory and latches the packet 

pointer information (latch_dataJroncmemory_manager). In the meanwhile, as soon as 

the simulation starts, a request arrives from the upper layer to read all the connection's 

details and store them in the db _controller. This is indicated by the signal 

requestJrom_upper _layer. Also, since the data has been latched by the memory 

manager, a request for the bus to read the connection's details arrives from the regulator. 

This is shown by the signal requestJromJegulator in Figure 5.6. Since the request from 

upper layer arrives first and also because it has a higher priority than the request from 

either the regulator or scheduler, the bus acknowledges the request from upper layer. 

Therefore, reply_to_upper_layer signal goes high and the connection's details are read 

from session (connection number) and data (X11Iin , Xave , I values) signals. The request from 

upper layer goes high until an the connection's details have been written into the 

db_controller. Figure 5.7 shows the details of connection (13)16 to connection (25)16 being 

read. In Figure 5.8, all the connection's details upto connection (34)16, which is 

connection 52, have been read. Now the regulator's request is acknowledged by the bus. 

This is shown by the signal, bus_ackJrom_tristate_decoder, becomes 1 (acknowledging 

regulator's request). So, the regulator receives the details of the connection to which the 
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first packet belongs from the db_controller through the bus. Once this is received, the 

regulator calculates the eligibility time of the packet. Since the packet under consideration 

is the first packet in this connection (also the first packet in the simulation), it is 

immediately eligible. Therefore, the cq_fifo acknowledges the cq_mux and so, 

fifo_data_available signal from the cq_mux goes high as can be seen in Figure 5.9. The 

packet pointer is then read by the scheduler. The scheduler now requests access to the 

bus. Therefore, the requestJrom_scheduler signal goes high. The bus immediately 

acknowledges the scheduler's request and so bus_ackJrom_tristate_decoder signal 

becomes 2 (acknowledging scheduler's request). Now the connection's detail (packet 

length) is sent from the db_controller through the bus_controller to the scheduler. This is 

shown by db_controller JeadJrom_bus_controller signal going high and therefore 

requescsen;edJrom_dbJontroller signal also goes high. Once the scheduler calculates 

the next packet to serve (in this case, the first and only packet), the packetJeady signal 

from the scheduler goes high as shown in Figure 5.10. This packecready signal goes high 

only during the second half of the clock cycle, in order to accommodate the arrival of 

other packets, if any, from other connections or input links, during the same time cycle. 

An the packets arrive during the first half of the system clock and during the second half 

the eligible packet(s) are served at link rate. Once the packet_ready signal goes high, 

since the buffer is empty in the dispatch buffer (buffer _empty signal is high), the server 

serves the packet (serving-packetJrom_server signal goes high). Therefore, now, the 

packeCdispatched signal goes high. The next packet arrives at the beginning of the next 

system clock (Appendix E). 
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The end-to-end delay plots obtained from the simulation of the hardware 

testbench is the same as that obtained for software simulation. As an example, the end-to-

end delay plots for the case of fixed-sized packets without cross-traffic, with least best-

effort traffic and an output link rate of 50 bytes/ms for \\'FQ and WF2Q+ ae shown in 

Figures 5.11a and 5.11b respectively. These two figures are exactly the same as Figures 

4.7a and 4.7b, thereby showing that the results obtained for hardware are the same as that 

for software. For all the other cases considered in software simulation, the results 

obtained for hardware matched that obtained for software. The only difference is that the 
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Figure 5.11a: End-to-end delay of 
WFQ scheduler for fixed-sized packets 
without cross-traffic with least best
effort traffic and an output link rate of 
50 bytes/ms. 

5.4 Discussion 
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Figure 5.11b: End-to-end delay of 
WF2Q+ scheduler for fixed-sized 
packets without cross-traffic with least 
best-effort traffic and an output link 
rate of 50 bytes/ms. 

This chapter described the hardware implementation in detail. The cost involved 

in implementing the regulator queues has been reduced by the use of calendar queues in 
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hardware. But the cost involved in selecting the next packet to be served by the scheduler 

could not be reduced. The code was written using the behavioral architecture and the 

individual blocks were tested with a testbench for each block and then the blocks were 

included into one big block constituting a single node (shown in Figure 5.1) and this code 

was simulated. Finally, the multiple node case was implemented. The synthesis has to be 

carried out. 
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Chapter 6 

6. Conclusions and Suggested Future Work 

6.1 Conclusions 

The choice of a particular scheduling discipline for high-speed packet-switched 

networks plays an important role in fast switching. This thesis compares the two 

scheduling disciplines WFQ and WP2Q+ in terms of fairness, algorithmic complexity and 

end-ta-end delay bound they guarantee for both fixed- and variable-sized packets. It had 

been reported that WP2Q+ performs better than WPQ in terms of end-to-end delay in 

every sense. This belief is based on the results of fixed-sized packets (such as in ATM 

networks) only. Contrary to this belief, in this thesis, it is shown that for the case of 

variable-sized packets, as found in high-speed networks, the delay bound provided by 

WPQ is lower than that provided by WP2Q+. 

It was shown in Section 3.3.4 that WF2Q+ which is the same as WF2Q with 

reduced complexity involved in calculating the system virtual time function, has a WFI 

that is not a function of the number of connections (N), while WFQ has a WFI that is a 

function of WFI. Therefore, in terms of the fairness property, WF2Q+ is a better choice. 

The speed with which a scheduling discipline serves packets should match the 

switching speed. Thus it is highly desirable to reduce the time complexity of the 

scheduling algorithm chosen. Among the two scheduling disciplines considered in this 

thesis, the three tasks of computing the system virtual time function, maintaining a set of 
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queues sorted by eligibility time in the regulator, and, maintaining the set of eligible 

connections sorted by virtual finish times can be accomplished with O(log N) complexity 

in WF2Q+ discipline and with O(N) complexity in WFQ discipline. Thus for high-speed 

networks WF2Q+ discipline is a better choice in terms of the complexity involved in 

selecting the next packet to transmit. 

From the plots on end-to-end delay for real-time connections shown in Section 

4.7, it clear that WF2Q+ has a lower end-to-end delay when the packet size is fixed. 

However, when the packet size is variable, the end-te-end delay of WFQ is lower. This 

leads to two observations. It can be said that WFQ is a better choice when the packet sizes 

are variable. However, the low delay provided by WFQ for variable-sized packets is at 

the cost of increased delay for packets of other connections (best-effort, Poisson sources 

and constant sources). Thus it is unfair in the service provided to other connections. In the 

case of WF2Q+, the slightly higher delay obtained by real-time connections of variable

sized packets is because the algorithm is trying to be fair to all the connections. Thus 

WFQ is a better choice than WF2Q+ for variable-sized packets only if the connections 

other than the real-time connections do not have a strict service guarantee requirement. 

6.2 Other Contributions: 

iii A model for the distribution of packet lengths for variable-sized packets: From the 

data obtained from Traffic CAIDA Organization, various packet lengths and their 

arrival patterns have been plotted as a probability density function. 
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III With the help of framework provided by Mehrotra for the system [30], an 0(1) 

priority queue implementation (calendar queue implementation) of the regulator 

queues has been carried out. 

6.3 Suggested Future Work 

This section discusses some of the tasks that can be done in future in order to 

improve the existing implementation and also to extend it for the needs of the future 

communication networks . 

D1 Synthesizing the hardware blocks: The hardware implementation currently 

consists of behavioral level architecture. The code needs to be synthesized. 

Currently, work is on progress in synthesizing the blocks involved in the hardware 

implementation, one by one. The result of this synthesis would help in deciding 

whether an ASIC is required or an FPGA is sufficient for building the scheduling 

disciplines in hardware for use in high-speed networks. 

III Reducing the space complexity: It is possible to reduce the implementation 

complexity to be less than O(log N). The implementation complexity can be 

reduced such that it is no more a function of number of connections, rather a 

function of number of discrete rates [4] . In the case of ATM networks (fixed-sized 

cells), the server supports fixed number of rates and groups the connections with 

the same rate together. Thus the number of queues is reduced from being equal to 

the number of connections to the number of service rates. Now, the only 

requirement is to schedule among the connections at the head of each group. The 
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complexity grows with number of rates for virtual time completion and priority 

management. 

In the case of ATM networks, all the connections that share a common rate 

are in one group. From each group, the connection with the smallest virtual 

starting time is placed in the scheduler. The advantage of such a policy is that if 

connections in a group are eligible, the connection within the group in the 

scheduler may also be eligible since it has the smallest virtual start time in the 

group. Since it also has the smallest virtual finish time in the group, the packet 

with the smallest eligible finish time in the scheduler is the one with the smallest 

eligible finish time among all packets within the group. Each rate group has a 

linked list of time stamps belonging to cells at the head of the queue for each 

connection in the group. The entries in the linked list are stored in order of 

increasing time stamp. 

In the case of packet networks, it is possible to perfOlID regulation (based 

on virtual start times) and scheduling (based on virtual finish times) in an 

integrated manner. This reduces the worst-case complexity of the overall system. 

Instead of using two I-D priority queues, it is possible to use 2-D sorting 

structure. Here, the grouping is done such that connections having the same 

difference between their finish and start times are grouped together. This 

difference between the finish time and start time of a connection is called the 

service interval. Within each group, a timestamp is present to sort among 

connections within the group. However, in this case, a connection may not always 

be bound to the same group since its service interval depends on the rate and 
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length of the first packet in the connection's queue. The connection's queue will 

change its group based on the new packet that is at the head of the queue. This is 

because the service interval may change with change in packet length. When a 

connection changes its group, it can be inserted at an arbitrary position in the 

priority queue of new group. Therefore, it is not possible to maintain a sorted 

relationship within each group with FIFO queue. Now the virtual finish times of 

flows with similar service intervals should be sOlted. The virtual finish times of 

connections in each group span a range of LmaxiLmin times the service interval, 

where, Lmax is the maximum packet size and L min is the minimum packet size for 

variable-sized packets. Therefore if an increase in the delay bound by a fraction of 

one service interval can be tolerated, then the complexity of sorting can be 

reduced by measuring the virtual finish times in units of fractions of the group's 

service interval. Thus a two-level hierarchical calendar queue (trie) is obtained. 

041 ~ <IIi ... .. 
B 'B • I. I I I I I I I I I I I I I c o 0 I I • I 

+ + + .. + 
0 TT 0 T 

CJ T T 
CJ CJ 

Figure 6.1: Hierarchical calendar queue for intra-group scheduling[4] 
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This is shown in Figure 6.1. The worst-case complexity is: an enqueue operation 

requires one insertion into a linked list along the leaves of the trie and one 

replacement of the value within the group data structure. A dequeue operation 

needs one scheduler selection among the elements within the group data structure, 

one removal of a connection from the head of the linked list and the cost of an 

enqueue. Thus the complexity is not a function of number of connections. 
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Appendix A 
Software Simulation Results 
Fixed -sized packets 
Without constant source 
Least best-effort traffic pdf 
600 20 
800 20 
1000 20 
1200 20 
1400 20 

Output link rate = 50 bytes/ms 

WFQ scheduler 
Total traffic load at node 1 = 30.07 % 
Total traffic load at node 2 = 52.26 % 
Total traffic load at node 3 = 85.5 % 
Node Parameters 
Node Session Entered Total Lost MinOelay AvgOelay MaxDelay SO 

1 1 2999 2999 0 0 0 0 0 
2 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 

1 11 0 0 0 0 0 0 0 
1 12 0 0 0 0 0 0 0 
1 13 0 0 0 0 0 0 0 
1 14 0 0 0 0 0 0 0 
1 15 0 0 0 0 0 0 0 
1 16 0 0 0 0 0 0 0 
1 17 0 0 0 0 0 0 0 
1 18 0 0 0 0 0 0 0 
1 .19 0 0 0 0 0 0 0 
1 20 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 

1 23 0 0 0 0 0 0 0 
1 24 0 0 0 0 0 0 0 
1 25 0 0 0 0 0 0 0 
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Node Session Entered Total lost MinOelay AvgDelay MaxDelay SD 
1 26 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 
28 0 0 0 0 a 0 0 
29 0 a 0 0 0 0 0 
30 0 a 0 0 0 0 0 
31 0 0 0 0 0 0 0 
32 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 
34 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 
36 0 0 0 a 0 0 0 

1 37 0 a 0 0 0 0 a 
1 38 a 0 0 a 0 0 0 

39 0 0 0 a 0 0 0 
40 0 0 0 0 0 0 0 
41 0 0 a 0 0 0 a 
42 0 0 a 0 a 0 a 
43 0 0 0 0 0 a a 
44 a a a a a a a 
45 0 0 0 0 0 0 0 
46 0 0 0 0 0 0 0 
47 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 
50 0 0 0 0 0 0 0 
51 0 0 0 0 0 0 0 

1 52 8 8 0 1 1 0 
2 1 2999 2999 0 0 0.0663555 2 0.192596 
2 2 111 111 0 0 0.198198 2 0.422543 
2 3 109 109 a 0 0.422018 2 0.627953 
2 4 111 111 0 0 0.468468 2 0.685165 
2 5 109 109 0 0 0.743119 3 0.906802 
2 6 114 114 0 0 0.763158 3 0.924616 
2 7 112 112 0 0 0.901786 3 0.919849 
2 8 111 111 0 0 1.02703 4 1.01318 
2 9 114 114 0 0 1.16667 3 0.949305 
2 10 113 113 0 0 1.1 8584 4 1.07362 
2 11 109 109 0 0 1.66972 5 1.05755 
2 12 110 110 0 0 1.69091 4 1.14736 
2 13 111 11 1 0 0 1.90991 11 1.34967 
2 14 110 110 0 0 1.64545 5 1.20525 
2 15 110 110 0 0 1.63636 5 1.14029 
2 16 111 111 0 0 1.96396 5 1.17383 
2 17 111 111 0 0 2.22523 11 1.32261 
2 18 110 110 0 0 2.28182 11 1.35866 
2 19 111 111 0 0 2.33333 11 1.31195 
2 20 110 110 0 0 2.33636 11 1.44724 
2 21 112 112 0 0 2.30357 6 1.19509 
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Node Session Entered Total lost MinDelay AvgOelay MaxDelay SD 

2 22 a 0 0 0 0 0 0 

2 23 0 0 0 0 0 0 0 

2 24 0 0 0 0 0 0 0 

2 25 0 0 0 0 0 0 0 
2 26 0 0 0 a 0 0 0 
2 27 0 0 0 a 0 0 0 
2 28 0 0 0 0 0 0 0 
2 29 0 0 0 0 0 0 0 
2 30 0 0 0 0 0 0 0 
2 31 0 0 0 0 0 0 0 

2 32 0 0 0 0 0 0 0 

2 33 0 0 0 0 0 0 0 
2 34 0 0 0 0 0 0 0 
2 35 0 0 0 0 0 0 0 

2 36 a a 0 0 0 0 0 

2 37 0 0 0 0 0 0 0 
2 38 0 a 0 0 0 0 0 
2 39 0 0 0 0 a 0 0 
2 40 0 0 0 0 0 a 0 
2 41 a 0 a 0 0 0 a 
2 42 0 0 0 0 0 0 0 
2 43 0 0 0 0 0 0 0 
2 44 0 0 0 0 0 0 0 
2 45 0 0 0 0 0 0 0 

2 46 0 a 0 0 0 0 0 

2 47 a 0 0 0 0 0 0 
2 48 a 0 a 0 0 0 0 
2 49 0 0 0 0 0 0 0 

2 50 0 0 0 0 0 0 0 
2 51 0 0 0 0 0 0 0 
2 52 8 8 0 0 0.875 1 0.353553 
3 1 2999 2999 0 0 1.87863 13 2.04402 

3 2 111 111 0 0 4.07207 10 1.72691 

3 3 109 109 0 0 3.91743 8 1.6763 

3 4 111 111 0 0 4.27027 9 1.92979 

3 5 109 109 0 1 4.33028 12 1.95772 

3 6 114 114 0 0 4.47368 11 2.02798 

3 7 112 112 0 0 3.67857 9 1.68325 

3 8 111 111 0 0 4.00901 9 1.80249 

3 9 114 114 0 0 4.16667 11 2.07635 

3 10 113 113 0 0 4 10 1.88982 

3 11 109 109 0 '1 4.45872 11 2.33826 

3 12 110 110 0 0 4.40909 12 2.26451 

3 13 111 111 0 0 4.01802 8 1.88104 

3 14 110 110 0 0 4.3 13 2.22393 

3 15 110 i 10 0 0 3.91818 9 1.65198 

3 16 111 111 0 0 4.11712 13 2.18184 

3 17 111 111 a 0 3.99099 11 2.17402 
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Node Session Entered Total Lost MinOelay AvgOelay MaxOelay SO 
3 18 110 110 0 1 4.27273 9 1.73638 
3 19 111 111 0 0 4.02703 9 2.01188 
3 20 110 110 0 0 4.15455 9 1.89043 
3 21 112 112 0 0 4.09821 10 2.16004 
'l 22 164 164 0 0 0.689024 6 1.23134 v 

3 23 166 166 0 0 0.963855 7 1.54877 
3 24 164 164 0 0 1.03659 6 1.41374 
3 25 165 165 0 0 1.24848 7 1.52382 
3 26 166 166 0 0 1.42771 8 1.51884 
3 27 162 162 0 0 1.6358 8 1.37876 
3 28 166 166 0 0 1.57229 9 1.48278 
3 29 170 170 0 0 1.85294 8 1.61361 
3 30 170 170 0 0 2.15882 10 1.64848 
3 31 167 167 0 0 2.29341 7 1.62386 
3 32 169 169 0 0 2.39645 8 1.52515 
3 33 165 165 0 0 2.33939 9 1.62769 
3 34 165 165 0 0 2.64848 11 1.61952 
3 35 171 171 0 0 2.74269 12 1.61846 
3 36 166 166 0 0 2.88554 8 1.6457 
3 37 169 169 0 0 3.2071 9 1.59627 
3 38 171 171 0 0 3.2807 9 1.60417 
3 39 164 164 0 0 3.82317 10 1.59519 
3 40 164 164 0 0 3.73171 11 1.80842 
3 41 160 160 0 0 3.99375 10 1.66547 
3 42 0 0 0 0 0 0 0 
3 43 0 0 0 0 0 0 0 
3 44 0 0 0 0 0 0 0 
3 45 0 0 0 0 0 0 0 
3 46 0 0 0 0 0 0 0 
3 47 0 0 0 0 0 0 0 
3 48 0 0 0 0 0 0 0 
3 49 0 0 0 0 0 0 0 
3 50 0 0 a 0 0 0 0 
3 51 0 0 0 0 0 0 0 
3 52 8 8 0 2 5.125 9 2.6959 
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WF2Q+ scheduler 
Total traffic load at node 1 = 30.07 % 
Total traffic load at node 2 = 52.26 % 
Total traffic load at node 3 = 85.5 % 
Node Parameters 

Node Session Entered Total Lost MinDelay AvgOelay MaxDelay SO 
1 1 2999 2999 0 0 0 0 0 
1 2 0 0 0 0 0 0 0 
1 3 0 0 0 0 0 0 0 
1 4 0 0 0 0 0 0 0 
1 5 0 0 0 0 0 0 0 
1 6 0 0 0 0 0 0 0 
1 7 0 0 0 0 0 0 0 
1 8 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 

1 12 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 
20 0 0 " 0 0 0 0 v 

21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 

1 25 0 0 0 0 0 0 0 
1 26 0 0 0 0 0 0 0 
1 27 0 0 0 0 0 0 0 
1 28 0 0 0 0 0 0 0 
1 29 0 0 0 0 0 0 0 
1 30 0 0 0 0 0 0 0 
1 31 0 0 0 0 0 0 0 
1 32 0 0 0 0 0 0 a 
1 33 0 0 0 0 0 0 0 
1 34 0 0 0 0 a 0 0 
1 35 0 0 0 0 0 0 a 
1 36 0 0 0 0 0 0 0 
1 37 0 0 0 0 0 0 0 
1 38 0 0 0 0 0 0 0 
1 39 0 0 0 0 0 0 0 
1 40 0 0 0 0 0 0 0 
1 41 0 0 0 0 0 0 0 
1 42 0 0 0 0 0 0 0 
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Node Session Entered Total Lost MinDelay AvgDelay MaxDelay SO 
1 43 0 0 0 0 0 0 0 
1 '44 0 0 0 0 0 0 0 
1 45 0 0 0 0 0 0 0 
1 46 0 0 0 0 0 0 0 
1 47 0 0 0 0 0 0 0 
1 48 0 0 0 0 0 0 0 
1 49 0 0 0 0 0 0 0 
1 50 0 0 0 0 0 0 0 
1 51 0 0 0 0 0 0 0 

52 8 8 0 1 1 1 0 
2 1 2999 2999 0 0 0.267422 3 0.591677 
2 2 111 111 0 0 0.009009 1 0.094916 
2 3 109 109 0 0 0.192661 4 0.535362 
2 4 111 111 0 0 0.27027 3 0.555075 
2 5 109 109 0 0 0.449541 3 0.787474 
2 6 114 114 0 0 0.54386 4 0.923061 
2 7 112 112 0 0 0.660714 4 0.982308 
2 8 111 111 0 0 0.765766 4 1.08674 
2 9 114 114 0 0 0.842105 4 0.955459 
2 10 113 113 0 0 0.893805 4 1.09677 
2 11 109 109 0 0 1.41 284 6 1.20981 
2 12 110 110 0 0 1.48182 6 1.33225 
2 13 111 111 0 0 1.62162 4 1.19499 
2 14 110 110 0 0 1.43636 5 1.30118 
2 15 110 110 0 0 1.34545 5 1.22123 
2 16 111 111 0 0 1.79279 5 1.31625 
2 17 111 111 0 0 1.81081 6 1.20084 
2 18 110 110 0 0 1.96364 6 1.32147 
2 19 111 111 0 0 2.01802 6 1.28036 
2 20 110 110 0 0 2.02727 6 1.40323 
2 21 112 112 0 0 1.95536 6 1.35588 
2 22 0 0 0 0 0 0 0 
2 23 0 0 0 0 0 0 0 
2 24 0 0 0 0 0 0 0 
2 25 0 0 0 0 0 0 0 
2 26 0 0 0 0 0 0 0 
2 27 0 0 0 0 0 0 0 
2 28 0 0 0 0 0 0 0 
2 29 0 0 0 0 0 0 0 
2 30 0 0 0 0 0 0 0 
2 31 0 0 0 0 0 0 0 
2 32 0 0 0 0 0 0 0 
2 33 0 0 0 0 0 0 0 
2 34 0 0 0 0 0 0 0 
2 35 0 0 0 0 0 0 0 
2 36 0 0 0 0 0 0 0 
2 37 0 0 0 0 0 0 0 
2 38 0 0 0 0 0 0 0 
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Node Session Entered Total Lost MinDelay AvgDelay MaxDeiay SO 
2 39 0 0 0 0 0 0 0 
2 40 0 0 0 0 0 0 0 
2 41 0 0 0 0 0 0 0 
2 42 0 0 0 0 0 0 0 
2 43 0 0 0 0 0 0 0 
2 44 0 0 0 0 0 0 0 
2 45 0 0 0 0 0 0 0 
2 46 0 0 0 0 0 0 0 
2 47 0 0 0 0 0 0 0 
2 48 0 0 0 0 0 0 0 
2 49 0 0 0 0 0 0 0 
2 50 0 0 0 0 0 0 0 
2 51 0 0 0 0 0 0 0 
2 52 8 8 0 0 0.125 0.353553 
3 2999 2999 0 0 1.64388 11 2.34203 
3 2 11 1 11 1 0 0 3.78378 10 1.85321 
3 3 109 109 0 0 3.83486 10 1.84209 
3 4 111 111 0 0 4.04504 13 2.03445 
3 5 109 109 0 1 4.12844 14 2.01664 
3 6 114 114 0 0 4.2807 16 2.22821 
3 7 112 112 0 0 3.85714 15 2.27317 
3 8 111 111 0 0 3.71171 14 2.08436 
3 9 114 114 0 0 4.4386 16 2.85084 
3 10 113 113 0 0 3.9646 16 2.21287 
3 11 109 109 0 4.34862 15 2.77024 
3 12 110 110 0 0 4.69091 16 3.09664 
3 13 11 1 11 1 0 0 4.04504 16 2.33097 
3 14 110 11 0 0 0 4.45455 16 2.80533 
3 15 110 110 0 0 3.87273 10 1.92499 
3 16 111 111 0 0 4.18018 16 2.80584 
3 17 111 111 0 0 4.3964 19 3.1379 
3 18 110 110 0 1 4.62727 14 2.67339 
3 19 111 111 0 0 4.57658 15 3.16009 
3 20 110 11 0 0 0 4.77273 16 3.09786 
3 21 112 11 2 0 0 4.36607 14 2.70776 
3 22 164 164 0 0 0.628049 11 1.70584 
3 23 166 166 0 0 0.626506 12 1.50322 
3 24 164 164 0 0 0.890244 10 1.63179 
3 25 165 165 0 0 1.03636 9 1.55348 
3 26 166 166 0 0 1.68072 16 2.52752 
3 27 162 162 0 0 1.51235 10 1.4881 
3 28 166 166 0 0 2.01205 17 2.72475 
3 29 170 170 0 0 2.24706 17 3;15771 
3 30 170 170 0 0 2.57059 17 3.03703 
3 31 167 167 0 0 2.46108 21 2.64911 
3 32 169 169 0 0 2.66272 17 2.32274 
3 33 165 165 0 0 2.69697 18 2.8567 
3 34 165 165 0 0 3.12727 20 2.97544 
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Node Session Entered Total Lost MinOelay AvgOelay MaxOelay SO 
3 35 171 171 0 0 3.05263 20 2.51731 
3 36 166 166 0 0 2.92771 21 2.54103 
3 37 169 169 0 0 3.59172 23 3.05078 
3 38 171 171 0 0 3.73684 16 2.74172 
3 39 164 164 0 0 3.93902 14 2.11162 
3 40 164 164 0 0 4.03659 19 2.85221 
3 41 160 160 0 0 3.78125 17 2.26354 
3 42 0 0 0 0 0 0 0 
3 43 0 0 0 0 0 0 0 
3 44 0 0 0 0 0 0 0 
3 45 0 0 0 0 0 0 0 
3 46 0 0 0 0 0 0 0 
3 47 0 0 0 0 0 0 0 
3 48 0 0 0 0 0 0 0 
3 49 0 0 0 0 0 0 0 
3 50 0 0 0 0 0 0 0 
3 51 0 0 0 0 0 0 0 
3 52 8 8 0 0 0.125 0.133631 
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Appendix B 
Software Simulation Results - Contd. 
Fixed-sized packets 
Constant source traffic pdf 
135 100 
Least best-effort traffic pdf 
600 20 
800 20 
1000 20 
1200 20 
1400 20 
Output link rate = 50 bytes/rns 
WFQ scheduler 
Total traffic load at node 1 = 30.09 % 
Total traffic load at node 2 = 59.61 % 
Total traffic load at node 3 = 92.94 % 
Node Parameters 
Node Session Entered Total lost MinOelay AvgDelay MaxOelay SO 

1 1 2999 2999 0 0 0 0 0 
2 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 

1 5 0 0 0 0 0 0 0 

1 6 0 0 0 0 0 0 0 
1 7 0 0 0 0 0 0 0 
1 8 0 0 0 0 0 0 0 
1 9 0 0 0 0 0 0 0 
1 10 0 0 0 0 0 0 0 
1 11 0 0 0 0 0 0 0 
1 12 0 0 0 0 0 0 0 
i 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 
1 15 0 0 0 0 0 0 0 
1 16 0 0 0 0 0 0 0 
1 17 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 

1 24 0 0 0 0 0 0 0 
1 25 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 
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Node Session Entered Total Lost MinOelay AvgOelay MaxOelay SO 
1 27 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 
32 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 

34 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 
37 0 0 0 0 0 0 0 

38 0 0 0 0 0 0 0 

1 39 0 0 0 0 0 0 0 

1 40 0 0 0 0 0 0 0 

1 41 0 0 0 0 0 0 0 

1 42 0 0 0 0 0 0 0 

1 43 0 0 0 0 0 0 0 

1 44 0 0 0 0 0 0 0 

1 45 0 0 0 0 0 0 0 

46 0 0 0 0 0 0 0 
47 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 
50 0 0 0 0 0 0 0 
51 0 0 0 0 0 0 0 

1 52 10 10 0 1 1 0 

2 1 2999 2999 0 0 0.1994 4 0.530483 

2 2 112 11 2 0 0 1.07143 13 3.03349 

2 3 109 109 0 0 0.825688 11 1.81478 

2 4 113 113 0 0 0.858407 12 1.84133 

2 5 11 3 113 0 0 1.23894 12 1.92388 

2 6 110 110 0 0 1.74545 12 2.90345 

2 7 112 112 0 0 1.76786 12 2.80277 

2 8 108 108 0 0 2.30556 13 3.35851 

2 9 111 111 0 0 1.83784 12 2.25445 

2 10 111 111 0 0 2.04505 14 2.81855 

2 11 108 108 0 0 2.40741 14 2.70353 

2 12 111 111 0 0 2.26126 14 2.54414 

2 13 112 112 0 0 2.60714 14 3.01551 

2 14 110 110 0 0 2.45455 13 2.98495 

2 15 111 111 0 0 2.75676 13 2.82534 

2 16 110 110 0 0 2.90909 14 3.1732 

2 17 109 109 0 0 3 21 3.51847 

2 18 109 109 0 0 3.25688 21 3.21159 

2 19 109 109 0 0 3.6055 22 3.70335 

2 20 113 113 0 0 3.53982 15 3.22566 

2 21 111 111 0 0 3.63063 21 3.28951 
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Node Session Entered Total Lost MinOelay AvgOelay MaxOelay SO 
2 22 0 0 0 0 0 0 0 
2 23 0 0 0 0 0 0 0 
2 24 0 0 0 0 0 0 0 
2 25 0 0 0 0 0 0 0 
2 26 0 0 0 0 0 0 0 
2 27 0 0 0 0 0 0 0 
2 28 0 0 0 0 0 0 0 
2 29 0 0 0 0 0 0 0 
2 30 a 0 0 a a a a 
2 31 0 0 0 0 a a 0 
2 32 0 0 0 a a 0 0 
2 33 0 0 0 0 0 0 0 
2 34 0 0 a 0 0 0 0 
2 35 0 0 0 0 0 0 0 
2 36 0 a 0 a 0 0 0 
2 37 0 0 0 0 0 0 0 
2 38 0 0 0 0 0 0 0 
2 39 0 0 0 0 0 0 0 
2 40 0 0 0 0 0 0 0 
2 41 0 0 0 0 0 0 0 
2 42 74 74 0 0 1.28378 11 1.87745 
2 43 74 74 0 1 2.5 12 2.08878 
2 44 74 74 0 2 4.12162 13 2.80467 
2 45 74 74 0 3 6.78378 14 2.99277 
2 46 74 74 0 4 8.27027 15 3.41383 
2 47 74 74 0 5 9.43243 16 3.29883 
2 48 74 74 0 6 10.4324 17 3.32415 
2 49 74 74 0 7 11.4324 18 3.35883 
2 50 74 74 0 8 12.51 35 19 3.80446 " 
2 51 74 74 0 9 13.7568 20 3.7641 
2 52 10 10 0 0 1.2 3 0.918937 
3 1 2999 2999 0 0 3.88663 16 3.25629 
3 2 112 112 0 1 5.66964 13 2.74054 
3 3 109 109 0 0 5.77064 13 2.98996 
3 4 113 113 0 1 5.87611 14 3.03929 
3 5 113 113 0 0 5.9115 14 2.96006 
3 6 110 110 0 1 5.90909 16 3.0318 
3 7 112 112 0 1 5.97321 14 2.85073 
3 8 108 108 0 0 6.25 14 3.04215 
3 9 111 111 0 0 5.94595 16 3.24976 
3 10 111 111 0 2 6.21622 14 2.88391 
3 11 108 108 0 1 6.12037 14 3.25852 
3 12 111 111 a 1 6.15315 16 3.21186 
3 13 112 112 0 0 5.78571 16 3.32418 
3 14 110 110 a 1 6.49091 16 3.39088 
3 15 111 111 0 5.72072 16 3.01324 
3 16 110 110 0 5.88182 16 3.11922 
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Node Session Entered Total Lost MinOelay AvgOelay MaxOelay SO 

3 17 109 109 0 1 6.09174 14 3.11 887 

3 18 109 109 0 1 6.36697 16 3.36135 

3 19 109 109 0 1 6.30275 14 3.11779 

3 20 11 3 113 0 0 5.81416 14 3.1257 

3 21 111 111 0 1 6.21622 13 3.02366 

3 22 172 172 0 0 2.27326 13 2.87168 

3 23 171 171 0 0 2.5614 13 2.91457 

3 24 164 164 0 0 2.81707 11 2.82029 

3 25 162 162 0 0 3.24691 12 2.88509 

3 26 167 167 0 0 3.0479 12 2.80019 

3 27 168 168 0 0 3.30357 13 2.95629 

3 28 164 164 0 0 3.5122 14 2.94848 

3 29 166 166 0 0 3.80723 13 2.94089 

3 30 170 170 0 0 3.53529 11 2.91555 

3 31 170 170 0 0 3.77059 12 2.91129 

3 32 166 166 0 0 3.6747 13 2.63684 

3 33 167 167 0 0 4.29341 13 2.79282 
3 34 169 169 0 0 4 .53846 14 2.9794 

3 35 160 160 0 0 4.48125 14 2.92352 
3 36 166 166 0 0 4.66867 15 2.74021 

3 37 166 166 0 0 5 15 3.05703 
3 38 161 161 0 0 5.1118 15 2.97832 

3 39 170 170 0 0 5.17647 15 2.85177 
3 40 171 171 0 0 5.50292 13 3.01085 
3 41 163 163 0 0 5.23926 13 2.69752 
3 42 74 74 0 0 3.64865 9 2.1004 

3 43 74 74 0 0 3.66216 9 2.1 5989 
3 44 74 74 0 0 3.90541 9 2.34181 

3 45 74 74 0 0 4.7973 10 2.33484 
3 46 74 74 0 0 5.02703 10 2.34098 
3 47 74 74 0 5.74324 10 1.99838 
3 48 74 74 0 5.85135 10 1.97265 
3 49 74 74 0 1 6 .1 4865 10 2.05158 
3 50 74 74 0 1 6.48649 11 2.20959 

3 51 74 74 0 2 7.63514 14 2.50918 

3 52 10 10 0 2 6.9 14 3.61632 

129 



WF2Q+ scheduler 
Total traffic load at node 1 = 30.09 % 
Total traffic load at node 2 = 59.61 % 
Total traffic load at node 3 = 92.94 % 
Node Parameters 

Node Session Entered Total Lost MinOelay AvgOelay MaxDelay SO 
1 1 2999 2999 0 0 0 0 0 
1 2 0 0 0 0 0 0 0 
1 3 0 0 0 0 0 0 0 
1 4 0 0 0 0 0 0 0 
1 5 0 0 0 0 0 0 0 
1 6 0 0 0 0 0 0 0 
1 7 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 
1 9 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 
16 a 0 0 0 0 0 0 
17 a 0 0 0 a a 0 
18 0 0 0 a 0 0 0 
19 0 a a 0 0 0 0 
20 0 0 a 0 0 0 0 
21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 
23 0 0 0 a 0 0 0 
24 0 0 0 0 0 0 0 

1 25 a 0 0 0 0 0 0 
1 26 0 0 0 0 0 0 0 
1 27 0 0 0 0 0 0 0 
1 28 0 0 0 0 0 0 0 
1 29 0 0 0 0 0 0 0 
1 30 0 0 0 0 0 0 0 
1 31 0 0 0 0 0 0 0 
1 32 0 0 0 0 0 0 0 
1 33 0 0 0 0 0 0 0 
1 34 0 0 0 0 0 0 0 

35 0 0 0 0 0 0 0 
36 0 0 0 0 0 0 0 

1 37 0 0 0 0 0 0 0 
1 38 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 
40 0 0 0 0 0 0 0 
41 0 0 0 0 0 0 0 
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Node Session Entered Total lost MinDelay AvgDelay MaxDelay SD 
1 42 0 0 0 0 0 0 0 

43 0 0 0 0 0 0 0 
44 0 0 0 0 0 0 0 
45 0 0 0 0 0 0 0 
46 0 0 0 0 0 0 0 
47 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 

50 0 0 0 0 0 0 0 
51 0 0 0 0 0 0 0 

1 52 10 10 0 1 1 1 0 
2 1 2999 2999 0 0 0.733911 9 1.50556 

2 2 112 112 0 0 0.776786 11 2.52094 

2 3 109 109 0 0 0.559633 10 1.39729 

2 4 11 3 113 0 0 0.584071 11 1.61315 
2 5 113 113 0 0 0.911504 11 1.71941 

2 6 110 110 0 0 1.26364 11 2.1 4038 

2 7 112 112 0 0 1.47321 12 2.6027 
2 8 108 108 0 0 1.84259 13 2.84872 
2 9 111 111 0 0 1.54054 11 2.2715 
2 10 111 111 0 0 1.73874 14 2.71344 
2 11 108 108 0 0 1.91667 13 2.45758 
2 12 111 111 0 0 1.96396 11 2.30541 
2 13 112 112 0 0 2.11607 13 2.48452 
2 14 110 110 0 0 1.98182 12 2.40589 
2 15 111 11 1 0 0 2.31532 14 2.36624 

2 16 110 110 0 0 2.45455 12 2.5251 
2 17 109 109 0 0 2.7156 18 3.25957 
2 18 109 109 0 0 2.66055 14 2.35241 
2 19 109 109 0 0 3.00917 16 2.86141 
2 20 113 113 0 0 3.00885 13 2.66135 
2 21 111 111 0 0 3.04505 14 2.53576 
2 22 0 0 0 0 0 0 0 
2 23 . 0 0 0 0 0 0 0 
2 24 0 0 0 0 0 0 0 
2 25 0 0 0 0 0 0 0 
2 26 0 0 0 0 0 0 0 
2 27 0 0 0 0 0 0 0 
2 28 0 0 0 0 0 0 0 

2 29 0 0 0 0 0 0 0 

2 30 0 0 0 0 0 0 0 
2 31 0 0 0 0 0 0 0 

2 32 0 0 0 0 0 0 0 

2 33 0 0 0 0 0 0 0 
2 34 0 0 0 0 0 0 0 
2 35 0 0 0 0 0 0 0 

2 36 0 0 0 0 0 0 0 
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Node Session Entered Total Lost MinDelay AvgOelay MaxOelay SO 

2 37 0 0 0 0 0 0 0 
2 38 0 0 0 0 0 0 0 
2 39 0 0 0 0 0 0 0 
2 40 0 0 0 0 0 0 0 
2 41 0 0 0 0 0 0 0 
2 42 74 74 0 0 1.14865 7 1.38759 

2 43 74 74 0 1 2.37838 9 1.49081 
2 44 74 74 0 2 3.75676 11 1.3698 

2 45 74 74 0 3 4.89189 13 1.52506 
2 46 74 74 0 4 6.2973 15 2.16396 

2 47 74 74 0 5 7.75676 16 2.30038 
2 48 74 74 0 6 9.21622 17 2.56367 
2 49 74 74 0 7 10.6892 18 2.89713 
2 50 74 74 0 8 11.8784 19 3.46199 
2 51 74 74 0 9 13.2973 20 3.62297 
2 52 10 10 0 0 0.2 1 0.421637 
3 1 2999 2999 0 0 2.8923 14 3.07643 
3 2 112 11 2 0 1 5.83929 24 4.30546 
3 3 109 109 0 0 6.14679 21 4.53681 
3 4 11 3 113 0 1 6.11504 28 4.77799 
3 5 113 113 0 0 6.68142 20 4.87819 
3 6 110 110 0 1 6.85455 24 5.04315 
3 7 11 2 112 0 1 6.64286 23 4.77903 
3 8 108 108 0 0 7.46296 24 6.09663 
3 9 111 111 0 0 7.10811 24 5.74847 
3 10 111 111 0 1 7.40541 24 5.23361 
3 11 108 108 0 1 7.14815 22 5.26004 
3 12 111 111 0 1 7.37838 26 5.7114 
3 13 11 2 11 2 0 0 6.84821 24 5.83619 
3 14 11 0 110 0 1 7.15455 23 5.59591 
3 15 111 111 0 1 7.14414 24 5.44359 
3 16 110 110 0 1 6.4181 8 22 4.89534 
3 17 109 109 0 1 7.01835 24 5.45121 
3 18 109 109 a 1 7.73394 25 5.52108 
3 19 109 109 0 1 7.50459 23 5.40515 
3 20 113 113 0 0 7.37168 24 5.65299 
3 21 111 111 0 1 7.36036 22 5.28235 
3 22 172 172 0 0 2.44186 21 5.16308 
3 23 171 171 0 0 1.89474 21 4.1 2746 
3 24 164 164 0 0 2.1 5244 20 4.01774 

3 25 162 162 0 0 2.48148 25 4.32704 

3 26 167 167 0 0 3.36527 28 5.36876 

3 27 168 168 0 0 3.29762 30 4.80464 
3 28 164 164 0 0 3.14024 23 4.56555 
3 29 166 166 0 0 3.3012 28 4.97518 
3 30 170 170 0 0 3.54118 30 5.09004 
3 31 170 170 0 0 3.84118 28 5.08982 
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Node Session Entered Total Lost MinOelay AvgOelay MaxOelay SO 
3 32 166 166 0 0 3.31325 27 4.28155 
3 33 167 167 0 0 4.97006 26 5.85709 
3 34 169 169 0 0 4.26035 28 4.74241 
3 35 160 160 0 0 4.125 33 5.05442 
3 36 166 166 0 0 4.1988 23 4.50396 
3 37 166 166 0 0 4.21687 26 4.59385 

3 38 161 161 0 0 4.41615 28 4.58047 
3 39 170 170 0 0 5.56471 31 5.54948 
3 40 171 171 0 0 5 20 4.49182 
3 41 163 163 0 0 4.93252 24 4.62732 
3 42 74 74 0 0 4.09459 14 3.30441 
3 43 74 74 0 0 4.74324 17 3.8537 
3 44 74 74 0 0 5.22973 16 4.00187 

3 45 74 74 0 0 6.2973 17 4.27714 
3 46 74 74 0 0 7.21622 17 3.90189 
3 47 74 74 0 8.14865 19 4.34544 
3 48 74 74 0 8.63513 19 4.42815 
3 49 74 74 0 9.7027 21 4.99956 
3 50 74 74 0 10.8649 21 5.03799 
3 51 74 74 0 2 12.3378 22 5.09658 
3 52 10 10 0 0 0.2 1 0.333333 
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Appendix C 
Software Simulation Results - Contd. 
Variable~sized packets 
44 60 
250 15 
552 10 
1500 10 
1000 5 
Without constant source 
Least best-effort traffic pdf 
600 20 
800 20 
1000 20 
1200 20 
1400 20 
Output link rate = 320 bytes/ms 
WFQ scheduler 
Total traffic load at node 1 = 30.2627 % 
Total traffic load at node 2 = 52.9301 % 
Total traffic load at node 3 = 87.8166 % 
Node Parameters 

Node Session Entered Total Lost MinDelay AvgOeiay MaxDeiay SD 
1 1 2999 2999 0 0 1.6939 18 1.90682 
1 2 0 0 0 0 0 0 0 
1 3 0 0 0 0 0 0 0 
1 4 0 0 0 0 0 0 0 
1 5 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 
8 a 0 0 0 0 0 a 
9 0 a 0 0 a 0 a 

1 10 0 0 0 0 0 0 a 
1 11 0 0 0 0 0 0 a 

12 a 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 
15 a 0 0 0 0 0 a 
16 0 0 a 0 0 0 0 

1 17 0 0 0 0 0 0 0 
1 18 0 0 0 0 0 0 0 
1 19 0 0 0 0 0 a 0 

20 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 
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Nodel Session Entered Total Lost MinDelay AvgDelay MaxDelay SD 

1 22 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 

1 25 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 

1 31 0 0 0 0 0 0 0 
1 32 0 0 0 0 0 0 0 
1 33 0 0 0 0 0 0 0 
1 34 0 0 0 0 0 0 0 
1 35 0 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 
37 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 
39 0 0 0 0 0 0 0 
40 0 0 0 0 0 0 0 
41 0 0 0 0 0 0 0 
42 0 0 0 0 0 0 0 
43 0 0 0 0 0 0 0 
44 0 0 0 0 0 0 0 
45 0 0 0 0 0 0 0 
46 0 0 0 0 0 0 0 
47 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 
50 0 0 0 0 0 0 0 
51 0 0 0 0 0 0 0 

1 52 10 10 0 0 5.2 44 9.18322 
2 1 2999 2999 0 0 2.14538 10 2.09739 
2 2 107 107 0 0 2.07477 17 2.89577 
2 3 112 112 0 0 2.98214 23 3.90481 
2 4 114 114 0 0 2.53509 12 3.133 
2 5 108 108 0 0 2.03704 17 2.45746 
2 6 111 111 0 0 2.04505 17 2.82486 
2 7 113 113 0 0 2.11504 18 2.62104 
2 8 111 111 0 0 2.40541 9 2.51593 
2 9 110 110 0 0 2.29091 24 3.28692 
2 10 112 112 0 0 2.8125 14 3.34701 
2 11 109 109 0 0 2.98165 15 3.5065 
2 12 110 110 0 0 3.36364 11 3.78843 
2 13 111 111 0 0 2.16216 18 2.68804 
2 14 114 114 0 0 2.34211 18 2.94615 
2 15 110 110 0 0 2.36364 20 2.70097 
2 16 107 107 0 0 2.81308 25 3.68932 
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Node Session Entered Total Lost MinOelay AvgOelay MaxDelay SO 
2 17 112 112 0 0 2.45536 42 4.6749 
2 18 111 111 0 0 2.44144 20 3.03934 
2 19 113 113 0 0 2.50442 19 3.07248 
2 20 109 109 0 0 2.14679 17 2.50326 
2 21 110 110 0 0 2.23636 12 2.337 
2 22 0 0 0 0 0 0 0 
2 23 0 0 0 0 0 0 0 
2 24 0 0 0 0 0 0 0 
2 25 0 0 0 0 0 0 0 
2 26 0 0 0 0 0 0 0 
2 27 0 0 0 0 0 0 0 
2 28 0 0 0 0 0 0 0 
2 29 0 0 0 0 0 0 0 
2 30 0 0 0 0 0 0 0 
2 31 0 0 0 0 0 0 0 
2 32 0 0 0 0 0 0 0 
2 33 a 0 a 0 a 0 0 
2 34 0 0 0 0 0 0 0 
2 35 0 0 0 0 0 0 0 
2 36 0 0 0 0 0 a 0 
2 37 0 0 0 0 0 0 0 
2 38 0 0 0 0 0 0 0 
2 39 0 0 0 0 0 0 0 
2 40 0 0 0 0 0 0 0 
2 41 0 0 0 0 0 0 0 
2 42 0 0 0 0 0 0 0 
2 43 0 0 0 0 0 0 0 
2 44 0 0 0 0 0 0 0 
2 45 0 0 0 0 0 0 0 
2 46 0 0 0 0 0 0 0 
2 47 0 0 0 0 0 0 0 
2 48 0 0 0 0 0 0 0 
2 49 0 0 0 0 0 0 0 
2 50 0 0 0 0 0 0 0 
2 51 0 0 0 0 0 0 0 
2 52 10 10 0 0 8.9 105 18.80432 
3 1 2999 2999 0 0 3.33144 10 2.45307 
3 2 107 107 0 0 7.20561 103 22.5675 
3 3 112 112 0 0 8.94643 83 13.09741 
3 4 114 114 0 0 7.0i754 31 14.84314 
3 5 108 108 0 0 9.87037 128 24.0418 
3 6 111 111 0 0 8.4955 92 20.535 
3 7 113 113 0 0 8.58407 82 20.1207 
3 8 111 111 0 0 9.56757 99 21.3877 
3 9 110 110 0 0 7.45455 47 11.24267 
3 10 112 112 0 0 8.55357 66 15.04435 
3 11 109 109 0 0 7.6055 45 16.09005 
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Node Session Entered Total Lost MinOelay AvgOelay MaxOelay SO 

3 12 110 110 0 0 10.30909 85 29.69664 

3 13 111 111 0 0 9.89189 55 17.77367 

3 14 114 114 0 0 7.30702 82 13.1062 

3 15 110 110 0 0 10.3 98 22.7672 

3 16 107 107 0 0 13.68224 106 29.9756 

3 17 112 112 0 0 12.38393 113 26.3317 

3 18 111 111 0 0 9.81 982 74 19.82557 

3 19 113 113 0 0 9.45133 89 19.95564 

3 20 109 109 0 0 10.80734 84 22.3993 

3 21 110 110 0 0 11.23636 87 21.8242 

3 22 169 169 0 0 8.46154 39 24.17393 

3 23 166 166 0 0 8.89157 51 24.911 96 

3 24 162 162 0 0 8.41358 25 23.63157 

3 25 162 162 0 0 8.46296 24 23.5397 

3 26 164 164 0 0 9.1 7683 74 37.49651 

3 27 167 167 0 0 8.1 5569 34 23.96197 

3 28 170 170 0 0 9 27 24.42157 

3 29 172 172 0 0 10.08721 61 25.62825 

3 30 160 160 0 0 10.19375 40 24.98456 

3 31 172 172 0 0 9.37209 51 24.63648 

3 32 166 166 0 0 10.9759 50 26.18712 

3 33 164 164 0 0 9.60976 27 23.65585 

3 34 166 166 0 0 12.53614 41 25.68524 

3 35 171 171 0 0 11.80117 58 26.74036 

3 36 167 167 0 0 - 10.34132 32 25.53984 

3 37 163 163 0 0 9.92025 106 22.2443 

3 38 163 163 0 0 13.49693 54 26.97948 

3 39 165 165 0 0 12.41212 69 26.5502 

3 40 170 170 0 0 13.74706 92 21 .9519 

3 41 165 165 0 0 16.29091 84 20.3812 

3 42 0 0 0 0 0 0 0 

3 43 0 a 0 0 0 0 0 

3 44 0 a 0 a 0 a 0 

3 45 0 a a a 0 a 0 

3 46 0 0 0 0 0 0 0 

3 47 0 0 0 0 0 0 0 

3 48 0 0 0 0 0 0 0 

3 49 0 0 0 0 0 0 0 

3 50 0 0 0 0 0 0 0 

3 51 0 0 0 0 0 0 0 

3 52 10 10 0 0 9.8 107 19.57762 
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WF2Q+ scheduler 
Total traffic load at node 1 = 30.2627 % 
Total traffic load at node 2 = 52.9301 % 
Total traffic load at node 3 = 87.8166 % 
Node Parameters 

Node Session Entered Total Lost MinOelay AvgOelay MaxDelay SD 
1 1 2999 2999 0 0 1.69423 18 1.90693 

2 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 

1 4 0 0 0 0 0 0 0 
1 5 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 

1 8 0 0 0 0 0 0 0 
1 9 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 

1 22 0 0 0 0 0 0 0 
1 23 0 0 0 0 0 0 0 
1 24 0 0 0 a 0 a 0 
1 25 0 0 0 0 0 0 0 
1 26 0 0 0 0 0 0 0 
1 27 0 0 0 0 0 0 a 
1 28 0 0 0 0 0 0 0 
1 29 0 0 0 0 0 0 0 
1 30 0 0 0 0 0 0 0 
1 31 0 0 0 0 0 0 0 
1 32 0 0 0 0 0 0 0 
1 33 0 0 0 0 0 0 0 
1 34 0 0 0 0 0 0 0 
1 35 0 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 
1 37 0 0 0 0 0 0 0 
1 38 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 
1 40 0 0 0 0 0 0 0 
1 41 0 0 0 0 0 0 0 
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Node Session Entered Total Lost MinOelay AvgOelay MaxOelay SO 

1 42 0 0 0 0 0 0 0 
1 43 0 0 0 0 0 0 0 

44 0 0 0 0 0 0 0 
1 45 0 0 0 0 0 0 0 
1 46 0 0 0 0 0 0 0 
1 47 0 0 0 0 0 0 0 
1 48 0 0 0 0 0 0 0 
1 49 0 0 0 0 0 0 0 
1 50 0 0 0 0 0 0 0 
1 51 0 0 0 0 0 0 0 

1 52 10 10 0 0 1.2 4 1.18322 

2 1 2999 2999 0 0 2.70257 22 3.01453 

2 2 107 107 0 0 1.71963 16 2.16613 

2 3 112 112 0 0 1.73214 15 2.22424 

2 4 114 114 0 0 1.36842 11 1.81054 

2 5 108 108 0 0 1.91667 19 2.56033 
2 6 111 111 0 0 1.91892 17 2.51282 
2 7 113 113 0 0 1.88496 14 2.18772 

2 8 111 111 0 0 1.54054 18 2.12207 
2 9 110 110 0 0 1.94545 9 2.04258 
2 10 112 112 0 0 1.78571 23 2.78902 
2 11 109 109 0 0 2.0367 11 2.23571 
2 12 110 110 0 0 1.33636 8 1.44088 
2 13 111 111 0 0 1.86486 15 2.1377 
2 14 114 114 0 0 2.16667 17 2.2808 
2 15 110 110 0 0 2.43636 21 2.99351 
2 16 107 107 0 0 2.34579 18 2.56944 
2 17 112 112 0 0 2.07143 19 2.51175 
2 18 111 111 0 0 2.45946 20 3.00994 
2 19 113 113 0 0 2.27434 19 2.73158 
2 20 109 109 0 0 1.93578 16 2.15653 
2 21 110 110 0 0 2.38182 16 2.63451 
2 22 0 0 0 0 0 0 0 
2 23 0 0 0 0 0 0 0 
2 24 0 0 0 0 0 0 0 
2 25 0 0 0 0 0 0 0 
2 26 0 0 0 0 0 0 0 
2 27 0 0 0 0 0 0 0 
2 28 0 0 0 0 0 0 0 
2 29 0 0 0 0 0 0 0 
2 30 0 0 0 0 0 0 0 
2 31 0 0 0 0 0 0 0 
2 32 0 0 0 0 0 0 0 
2 33 0 0 0 0 0 0 0 
2 34 0 0 0 0 0 0 0 
2 35 0 0 0 0 0 0 0 
2 36 0 0 0 0 0 0 0 
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Node Session Entered Total Lost MinOelay AvgOelay MaxOelay SO 

2 37 0 0 0 0 0 0 0 

2 38 0 0 0 0 0 0 0 

2 39 0 0 0 0 0 0 0 

2 40 0 0 0 0 0 0 0 

2 41 0 0 0 0 0 0 0 

2 42 0 0 0 0 0 0 0 

2 43 0 0 0 0 0 0 0 

2 44 0 0 0 0 0 0 0 

2 45 0 0 0 0 0 0 0 

2 46 0 0 0 0 0 0 0 

2 47 0 0 0 0 0 0 0 

2 48 0 0 0 0 0 0 0 

2 49 0 0 0 0 0 0 0 

2 50 0 0 0 0 0 0 0 

2 51 0 0 0 0 0 0 0 
2 52 10 10 0 0 1.5 4 1.50923 

3 1 2999 2999 0 0 8.55218 49 8.43839 

3 2 107 107 0 0 6.38318 58 10.3064 

3 3 112 112 0 0 4.72321 42 6.53506 

3 4 114 114 0 0 6.91228 71 13.0769 

3 5 108 108 0 0 4.77778 81 9.09589 

3 6 111 111 0 0 7.25225 79 13.6515 

3 7 113 113 0 0 8.11504 110 17.9473 

3 8 111 111 0 0 4.1982 71 7.31098 

3 9 110 110 0 0 6.11818 69 10.3279 

3 10 112 112 0 0 5.08036 53 8.42006 

3 11 109 109 0 0 5.72477 53 8.99016 

3 12 110 110 0 0 4 35 4.78817 

3 13 111 111 0 0 6.78378 134 16.3252 

3 14 114 114 0 0 7.01754 65 10.7689 

3 15 110 110 0 0 9.5 115 16.826 

3 16 107 107 0 0 9.72897 100 17.453 

3 17 112 112 0 0 6.32143 119 13.7943 

3 18 111 111 0 0 6.62162 66 11.4764 

3 19 113 113 0 0 8.37168 162 19.4588 

3 20 109 109 0 0 8.00917 85 13.9124 

3 21 110 110 0 0 6.83636 62 12.2137 

3 22 169 169 0 0 7.10059 126 15.0329 

3 23 166 166 0 0 5.51807 85 10.7055 

3 24 162 162 0 0 4.87654 70 8.32431 

3 25 162 162 0 0 7.25926 110 15.473 

3 26 164 164 0 0 6.41463 76 13.0345 

3 27 167 167 0 0 5.2994 80 11.1074 

3 28 170 170 0 0 7.80588 128 16.9018 

3 29 172 172 0 0 8.45349 99 14.2672 

3 30 160 160 0 0 9.7125 91 18.1906 

3 31 172 172 0 0 6.15116 72 11.4848 
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Node Session Entered Total Lost MinOelay AvgDelay MaxOelay SO 
3 32 166 166 0 0 5.99398 78 11.0655 
3 33 164 164 0 0 5.96341 100 12.0498 
3 34 166 166 0 0 6.56627 76 10.7271 
3 35 171 171 0 0 7.77778 116 14.3513 
3 36 167 167 0 0 7.04192 83 12.1068 
3 37 163 163 0 0 6.37423 114 12.6772 
3 38 163 163 0 0 5.25767 86 9.66897 
3 39 165 165 0 0 7.93939 123 15.8981 
3 40 170 170 0 0 5.92353 76 10.4426 
3 41 165 165 0 0 8.92121 119 16.3221 
3 42 0 0 0 0 0 0 0 
3 43 0 0 0 0 0 0 0 
3 44 0 0 0 0 0 0 0 
3 45 0 0 0 0 0 0 0 
3 46 0 0 0 0 0 0 0 
3 47 0 0 0 0 0 0 0 
3 48 0 0 0 0 0 0 0 
3 49 0 0 0 0 0 0 0 
3 50 0 0 0 0 0 0 0 
3 51 0 0 0 0 0 0 0 
3 52 10 10 0 0 1.9 6 1.71594 
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Appendix D 
Software Simulation Results - Contd. 
Variable-sized packets 
44 60 
250 15 
552 10 
1500 10 
1000 5 
Constant source traffic pdf 
135 100 
Least best-effort traffic pdf 
600 20 
800 20 
1000 20 
1200 20 
1400 20 
Output link rate = 320 bytes/ms 
WFQ scheduler 
Total traffic load at node 1 = 28.8986 % 
Total traffic load at node 2 = 58.5099 % 
Total traffic load at node 3 = 91.3006 % 
Node Parameters 
Node Session Entered Total lost MinDelay AvgDelay MaxDelay SO 

1 1 2999 2999 0 0 1.52518 13 1.74551 
2 0 0 0 0 0 0 0 

1 3 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 

1 5 0 0 0 0 0 0 0 
1 6 0 0 0 0 0 0 0 
1 7 0 0 0 0 0 0 0 
1 8 0 0 0 0 0 0 0 
1 9 0 0 0 0 0 0 0 
1 10 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 
1 12 0 0 0 0 0 0 0 
1 13 0 0 0 0 0 0 0 
1 14 0 0 0 0 0 0 0 
1 15 0 0 0 0 0 0 0 
1 16 0 0 0 0 0 0 0 
1 17 0 0 0 0 0 0 0 
1 18 0 0 0 0 0 0 0 
1 19 0 0 0 0 0 0 0 
1 20 0 0 0 0 0 0 0 
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Node Session Entered Total lost MinOelay AvgOelay MaxOelay SO 

1 21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 
25 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 

1 31 0 0 0 0 0 0 0 
1 32 0 0 0 0 0 0 0 
1 33 0 0 0 0 0 0 0 

34 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 
36 0 0 0 0 0 0 0 
37 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 
39 0 0 0 0 0 0 0 
40 0 0 0 0 0 0 0 
41 0 0 0 0 0 0 0 
42 0 0 0 0 0 0 0 
43 0 0 0 0 0 0 0 
44 0 0 0 0 0 0 0 
45 0 0 0 0 0 0 0 
46 0 0 0 0 0 0 0 
47 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 
50 0 0 0 0 0 0 0 
51 0 0 0 0 0 0 0 
52 10 10 0 0 1.5 3 1.2693 

2 1 2999 2999 0 0 2.1884 9 2.05701 
2 2 111 111 0 0 11.87387 15 12.7173 
2 3 108 108 0 0 12.25926 27 13.5295 
2 4 111 111 0 0 11.83784 19 12.3508 
2 5 111 111 0 0 12.07207 34 17.8209 
2 6 109 109 0 0 12.81651 24 13.043 
2 7 109 109 0 0 12.21101 33 13,545 
2 8 108 108 0 0 11.74074 16 12.2531 
2 9 111 111 0 0 12.28829 23 12.8555 
2 10 110 110 0 0 12.05455 23 12.8334 
2 11 110 110 0 0 12.54545 29 18.1062 
2 12 110 110 0 0 12.46364 27 13.7142 
2 13 109 109 0 0 12.24771 20 12.655 
2 14 110 110 0 0 12.37273 22 12.7327 
2 15 110 110 0 0 12.37273 23 13.5038 
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Node Session Entered Total Lost MinOelay AvgOelay MaxOelay SO 
2 16 11 3 113 0 0 12.86726 38 14.8735 
2 17 108 108 0 0 12.10185 19 12.1823 
2 18 110 110 0 0 12.47273 20 22.8339 
2 19 110 110 0 0 12.72727 29 13.2511 
2 20 109 109 0 0 12.77982 15 12.8755 
2 21 110 110 0 0 13.25455 34 14.4644 
2 22 0 0 0 0 0 0 0 
2 23 0 0 0 0 0 0 0 
2 24 0 0 0 0 0 0 0 
2 25 0 0 0 0 0 0 0 
2 26 0 0 0 0 0 0 0 
2 27 0 0 0 0 0 0 0 
2 28 0 0 0 0 0 0 0 
2 29 0 0 0 0 0 0 0 
2 30 0 0 0 0 0 0 0 
2 31 0 0 0 0 0 0 0 
2 32 0 0 0 0 0 0 0 
2 33 0 0 0 0 0 0 0 
2 34 0 0 0 0 0 0 0 
2 35 0 0 0 0 0 0 0 
2 36 0 0 0 0 0 0 0 
2 37 0 0 0 0 0 0 0 
2 38 0 0 0 0 0 0 0 
2 39 0 0 0 0 0 0 0 
2 40 0 0 0 0 0 0 0 
2 41 0 0 0 0 0 0 0 
2 42 74 74 0 0 13.05405 49 14.5186 
2 43 74 74 0 0 12.47297 67 13.3666 
2 44 74 74 0 0 13.32432 42 14.3437 
2 45 74 74 0 0 14.12162 60 14.8855 
2 46 74 74 0 1 15.71622 56 16.6245 
2 47 74 74 0 1 16.28378 63 17.3912 
2 48 74 74 0 1 16.40541 46 16.6545 
2 49 74 74 0 1 16.02703 68 20.2915 
2 50 74 74 0 2 26.94595 51 27.4535 
2 51 74 74 0 2 26.93243 58 26.5143 
2 52 10 10 0 0 52.7 96 41.4089 
3 1 2999 2999 0 0 3.24141 51 2.3661 
3 2 111 111 0 0 29.4955 564 65.6994 
3 3 108 108 0 0 26.23148 156 32.8097 
3 4 111 11 1 0 0 27.38739 130 55.1591 
3 5 111 111 0 0 35.0991 297 68.352 
3 6 109 109 0 0 34.6147 266 53.4093 
3 7 109 109 0 0 29 240 40.052 
3 8 108 108 0 0 25.5 108 40.8778 
3 9 111 111 0 0 26.91892 237 33.1615 
3 10 110 110 0 0 27.78182 226 38.3022 

144 



Node Session Entered Total lost MinDelay AvgDelay MaxDelay SD 
3 11 110 110 0 0 27.14545 274 48.7028 
3 12 110 110 0 0 31.0364 242 54.2969 
3 13 109 109 0 0 29.61468 310 65.9303 
3 14 110 110 0 0 32.4364 273 50.2664 
3 15 110 110 0 0 29.30909 286 64.5187 
3 16 113 113 0 0 33.7522 333 77.4625 
3 17 108 108 0 0 27.60185 202 58.7323 
3 18 110 110 0 0 26.68182 233 86.2476 
3 19 110 110 0 0 27.47273 155 73.5133 
3 20 109 109 0 0 24.73394 93 55.9309 
3 21 110 110 0 0 30.8636 197 65.166 
3 22 168 168 0 0 23.57143 103 54.4566 
3 23 164 164 0 0 23.59756 108 45.2281 
3 24 167 167 0 0 24.10778 91 37.0367 
3 25 167 167 0 0 23.69461 82 35.056 
3 26 164 164 0 0 23.45732 88 34.8058 
3 27 163 163 0 a 24.57669 90 36.3482 
3 28 161 161 0 0 23.43478 67 33.2837 
3 29 168 168 0 0 24.851 19 99 46.6542 
3 30 168 168 a 0 25.04167 83 37.4172 
3 31 170 170 0 0 23.62941 93 34.0552 
3 32 168 168 0 0 24.11 31 86 34.9745 
3 33 168 168 0 0 24.58333 97 37.0293 
3 34 170 170 0 0 24.81176 83 45.1272 
3 35 166 166 0 0 24.70482 94 55.8625 
3 36 169 169 0 0 23.72189 91 43 .9197 
3 37 165 165 0 0 24.05455 80 44.5252 
3 38 166 166 0 a 24.57831 108 46.2025 
3 39 169 169 0 0 24.1716 103 44.4608 
3 40 168 168 0 0 23.49405 92 43.9568 
3 41 169 169 0 0 23.99408 102 55.7228 
3 42 74 74 0 0 28.52703 199 61.6249 
3 43 74 74 0 0 27.16216 164 44.2873 
3 44 74 74 0 0 27.18919 177 46.6672 
3 45 74 74 0 0 30.0676 201 83.3164 
3 46 74 74 0 0 31.2432 232 76.0804 
3 47 74 74 0 0 30.027 215 53.4727 
3 48 74 74 0 0 40 364 73.3005 
3 49 74 74 0 0 26.2973 121 42.5952 
3 50 74 74 0 0 32.1216 229 57.5658 
3 51 74 74 0 0 28.06757 127 54.6478 
3 52 10 10 0 0 22.4 270 91 .8973 
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WF2Q+ scheduler 
Total traffic load at node 1 = 28.8986 % 
Total traffic load at node 2 = 58.5099 % 
Total traffic load at node 3 = 91.3006 % 
Node Parameters 

Node Session Entered Total Lost MinDelay AvgOelay MaxDelay SO 
1 1 2999 2999 0 a 1.52518 13 1.74551 

2 0 0 0 0 0 0 0 
3 a a 0 0 a 0 0 

1 4 0 0 0 0 a a a 
1 5 0 0 0 a 0 a 0 
1 6 0 0 0 0 0 0 0 

7 0 0 0 a 0 0 0 
8 0 0 0 0 0 a 0 
9 a a 0 0 0 a 0 
10 0 0 0 0 0 a 0 
11 a 0 0 a 0 0 0 

1 12 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 0 0 a 0 
15 a 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 
25 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 
32 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 
34 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 

1 36 0 0 0 0 0 0 0 
1 37 0 0 0 0 0 0 0 
1 38 0 0 0 0 0 0 0 
1 39 0 0 0 0 0 0 0 
1 40 0 0 0 0 0 0 0 
1 41 0 0 0 0 0 0 0 
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Node Session Entered Total lost MinDelay AvgDelay MaxDeiay SD 
1 42 0 0 0 0 0 0 0 

43 0 0 0 0 0 0 0 
44 0 0 0 0 0 0 0 

1 45 0 0 0 a 0 a 0 
1 46 0 0 0 0 0 0 0 
1 47 0 0 0 0 0 0 0 

48 0 0 0 0 0 0 0 
1 49 0 0 0 0 0 0 0 
1 50 0 0 0 0 0 0 0 
1 51 0 0 0 0 0 0 0 
1 52 10 10 0 0 1.4 3 1.18322 
2 1 2999 2999 0 0 3.20473 25 3.70701 
2 2 111 111 0 0 1.74775 12 2.17014 
2 3 108 108 0 0 2.64815 27 3.79708 
2 4 111 111 0 0 1.88288 16 2.35145 
2 5 111 111 0 0 1.90991 29 3.28728 
2 6 109 109 0 0 2.50459 24 2.90967 
2 7 109 109 0 0 2.04587 29 3.23039 
2 8 108 i08 0 0 2.17593 38 4.21819 
2 9 111 111 0 0 2.14414 22 2.71788 
2 10 110 110 0 0 2.35455 30 3.58149 
2 11 110 110 0 0 2.03636 22 2.50551 
2 12 110 110 0 0 2.87273 42 5.08596 
2 13 109 109 0 0 2.1 2844 10 2.10316 
2 14 110 110 0 0 2.52727 20 2.66347 
2 15 110 110 0 0 2.64545 42 5.15111 
2 16 113 113 0 0 2.58407 29 3.84379 
2 17 108 108 0 0 2.08333 18 2.09899 
2 18 110 11 0 0 0 2.33636 16 2.40892 
2 19 110 110 0 0 3.25455 27 4.08177 
2 20 109 109 0 0 2.56881 15 2.48997 
2 21 110 110 0 0 2.89091 23 3.23853 
2 22 0 0 0 0 0 0 0 
2 23 0 0 0 0 0 0 0 
2 24 0 0 0 0 0 0 0 
2 25 0 0 0 0 0 0 0 
2 26 0 0 0 0 0 0 0 
2 27 0 0 0 0 0 0 0 
2 28 0 0 0 0 0 0 0 
2 29 0 0 0 0 0 0 0 
2 30 0 0 0 0 0 0 0 
2 31 0 0 0 0 0 0 0 
2 32 0 0 0 0 0 0 0 
2 33 0 0 0 0 0 0 0 
2 34 0 0 0 0 0 0 0 
2 35 0 0 0 0 0 0 0 
2 36 0 0 0 0 0 0 0 
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Node Session Entered Total Lost MinOelay AvgDelay MaxDelay SO 

2 37 0 0 0 0 0 0 0 
2 38 0 0 0 0 0 0 0 
2 39 0 0 0 0 0 0 0 
2 40 0 0 0 0 0 0 0 
2 41 0 0 0 0 0 0 0 
2 42 74 74 0 0 2.72973 29 4.11861 

2 43 74 74 0 0 2.44595 24 3.11857 

2 44 74 74 0 0 3 22 3.28342 

2 45 74 74 0 0 4.02703 24 4.15107 
2 46 74 74 0 1 5.58108 29 5.78117 

2 47 74 74 0 1 6.12162 32 5.95188 
2 48 74 74 0 5.86486 26 5.14082 
2 49 74 74 0 1 5.41892 36 5.40854 
2 50 74 74 0 2 6.39189 33 5.90761 

2 51 74 74 0 2 6.6081 1 33 6.3344 
2 52 10 10 0 0 2.9 6 2.01384 
3 1 2999 2999 0 0 9.62287 54 8.91575 

3 2 111 111 0 0 15.1 532 240 38.8567 
3 3 108 108 0 0 10.0093 167 21.7944 

3 4 111 111 0 0 10.3514 194 24.8564 
3 5 111 111 0 0 8.7027 152 20.5335 
3 6 109 109 0 0 12.6239 177 24.7063 
3 7 109 109 0 0 14.2844 161 27.7493 
3 8 108 108 0 0 7.41667 85 15.2082 
3 9 111 111 0 0 10.1622 122 19.6204 

3 10 110 110 0 0 14.6273 225 35.6284 
3 11 110 110 0 0 8.39091 164 20.536 
3 12 110 110 0 0 10.2091 103 18.5074 
3 13 109 109 0 0 10.4128 184 24.2798 
3 14 110 110 0 0 17.4455 250 42.0692 
3 15 110 110 0 0 14.0455 162 29.3769 
3 16 11 3 113 0 0 14.6372 157 33.21 

3 17 108 108 0 0 6.85185 94 13.0361 
3 18 110 110 0 0 7.55455 79 14.0661 

3 19 110 110 0 0 10.7636 129 19.2144 

3 20 109 109 0 0 6.26606 99 12.6257 
3 21 110 110 0 0 15.4636 190 33.8084 
3 22 168 168 0 0 12.1 786 162 27.8515 
3 23 164 164 0 0 7.45732 151 17.1937 

3 24 167 167 0 0 8.35329 104 16.127 
3 25 167 167 0 0 11.7126 135 24.2615 

3 26 164 164 0 0 8.07927 110 17.0404 

3 27 163 163 0 0 18.4172 235 43.6005 

3 28 161 161 0 0 14.1988 253 34.3033 
3 29 168 168 0 0 12.2202 124 23.0952 
3 30 168 168 0 0 15.8631 229 33.0788 

3 31 170 170 0 0 10.5706 139 20.9214 
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Node Session Entered Total Lost MinDelay AvgDelay MaxDelay SO 
3 32 168 168 0 0 12.744 154 26.7467 
3 33 168 168 0 0 10.4405 136 22.3689 
3 34 170 170 0 0 9.80588 124 18.634 
3 35 166 166 0 0 15.861 4 170 31.5794 
3 36 169 169 0 0 9.28994 140 19.7114 
3 37 165 165 0 0 10.9939 159 27.5445 
3 38 166 166 0 0 11.4639 141 21.7097 
3 39 169 169 0 0 10.2722 114 18.8775 
3 40 168 168 0 0 9.0119 128 19.1944 
3 41 169 169 0 0 9.74556 106 18.0556 
3 42 74 74 0 0 7.86486 118 17.466 
3 43 74 74 0 0 7.86486 11 8 16.898 
3 44 74 74 0 0 5.71622 68 9.64026 
3 45 74 74 0 0 6.66216 68 10.0461 
3 46 74 74 0 0 8.66216 154 20.2655 
3 47 74 74 0 0 8.91892 73 14.5713 
3 48 74 74 0 0 8.1 8919 104 16.6352 
3 49 74 74 0 0 5.67568 48 8.7381 
3 50 74 74 0 0 11.3378 155 24.7769 
3 51 74 74 0 0 8.77027 115 18.611 
3 52 10 10 0 0 2.5 8 1.90029 
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