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ABSTRACT 

Carotenoid pigments exist in nature and are widely distributed as colourants 

throughout the biological systems, such as microalgae, insects, birds, fish and 

crustaceans. They are responsible for interesting colours seen in various parts of these 

organisms, which play a great role in the biological functions like photoreception and 

photosynthesis. Carotenoids are mainly used as pigments for colouration of food 

products and pharmaceuticals. They also function as antioxidants and help in minimizing 

membrane-damage, and in controlling human diseases such as cancer, cataract and 

atherosclerosis. 

Astaxanthin is a red orange carotenoid produced by aquatic organisms such as 

algae and is also found in yeasts like Phaffia rhodozyma and Rhodotorula rubra. It is 

used as a pigment in feed for salmon and shellfish and also enhances immune response of 

fish and shrimp. Among yeasts, R. rubra TP l is a good source of red pigment and whole 

cells induce pigmentation in fish. It has been shown in earlier work that R.rubra bas 

faster growth rate, shorter incubation-time and yields more biomass than P.rhodozyma. 

Further, previous feeding-trial experiments canied out using rainbow trout have been 

successful and therefore R. rubra TP 1 has economic potential. 

In the current work the mutants Ml, M2 and M3 of R. rubra TPl were 

characterized and their properties compared with those of the wild type yeasts. The 

optimal pigment production was detem1incd by growing the mutants and wild type yeasts 

under different growth conditions, such as different substrates, temperatures, initial pH 

and light. The maximum pigment recovery was achieved by using different extraction 

methods which include French Press method, Freeze- dried cells, sonication and 
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enzymatic cell breakage. The spectrophotometer graph and Thin Layer Chromatograpy 

(TLC) techniques were used to estimate the total carotenoid concentration and to analyse 

the pigment in each sample. 

The experimental results showed that light enhances pigment production. Yeast 

malt broth with peat extract as a nitrogenous source showed more biomass yield. Bacto 

czapex dox broth was found to be inhibitory to growth of the mutants of R. rubra TP 1. 

The cells gave more pigment at 25 °C in the initial pH range of 5.0 to 7.0. The French 

press method was found to be more efficient to extract the optimum pigment for M 1, M2 

and M3 with values 250.6, 254.4 and 193.2 J.tg/g, respectively. Mutant 2 alone gave 

higher recovery of the pigment with Freeze- dried method. Sonication method gave less 

pigment recovery. The enzymatic method with a pH of 7.0 for all mutants gave recovery 

values of 184.4, 164.2 and 129.4 J.tg/g for Ml, M2 and M3, respectively. The pigment 

analysis confirmed that all the mutants contain ,6-carotene, torulene and torularhodin 

carotenoids in their pigments. 
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CHAPTER-1 

INTRODUCTION 

The quality of food, aside from the microbiological aspects, is generally based on 

its colour, flavour, texture, and nutritive value. Depending on the particular food, these 

factors may be weighted differently in assessing overall quality. However, one of the 

most important sensory quality attributes of food is colour, because no matter how 

nutritious, flavourful, or well textured a food is, it is unlikely to be accepted unless it has 

the appropriate colour. The acceptability of food is reinforced by economic worth since 

in many cases raw food materials are judged on the basis of their colour. 

Pigments are chemical compounds which reflect only certain wavelengths of 

visible light, making them appear "colourful". Flowers, corals, and even animal skin 

contain pigments, which give them their colors. The ability of pigments to absorb light 

of certain wavelengths is more important than reflection by them. 

The term "pigment" is used to refer to a material of known or unknown physical 

state or to an unanalyzed coloured material (Sangha, 1994). Colours of various 

carotenoids are related to the number of alternating carbon-carbon double-bond pairs in 

the long polyene chain of the molecule, known as the chromophore (Fig. 1). 

Specifically, light energy is absorbed by the carotenoid polyene system between 400 -

700 nm, and is converted into vibrational energy and heat. Each carotenoid has a unique 

resonance in this regard (Fox, 1976) through the isoprenoid pathway (Fig. 2) and they 

produce diverse compounds such as essential fatty acids, steroids, sterols, and vitamins 

A, D, E, and K. 
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Within the various classes of natural pigments, the carotenoids are the most wide spread 

and structurally diverse pigmenting agents. They are responsible, in combination with 

proteins, for many of the brilliant yellow to red colors in plants and the wide range of 

blue, green, purple, brown and reddish colors of fish and crustaceans. The general 

distribution and metabolic pathways of carotenoids have been extensively detailed 

(Goodwin 1984). Carotenoids are widespread throughout biological systems. They are 

found in the plants, algae, bacteria, animals and fungi (Goodwin, 1980). Several species 

of yeasts produce carotenoids and are grouped as the 'red yeasts'. These carotenogenic 

ascomycetes, basidiomycetes and deuteromycetes all tend to accumulate predominantly 

hydrocarbon carotenoids, such as beta-carotene and gamma-carotene (Goodwin, 1980). 

1.1 Manifestation of colour: 

Colour is displayed by organisms m two ways, namely, (1) physically, by 

colourless particles or ultramicroscopic structures called "schemochromes", and (2) 

chemically, by naturally occurring chemical substances possessing a coloured molecule, 

called "biochromes" (Fox, 1979). 

Schemochromes are exhibited by both colourless, randomly scattered, light­

diffracting submicroscopic bodies. These give rise to the Tyndall blues of scattering and 

various striations or ultrathin successive films or layers which resolve incident light into 

its components producing interference colors (Fox, 1979). 

Biochromes absorb wavelength, while reflecting and/or transmitting other 

wavelengths of visible light (Fox, 1979). The structural feature of a biochrome 
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responsible for the absorption of light is the chromophore. For example, in carotenoids 

the chromophore is the conjugated carbon-carbon double bond system. 

Other functional groups or substituents in a biochrome, which possess the ability 

to modify the absorption maximum of the molecule are termed auxochromes. Vision in 

humans and animals is a complex chemical phenomenon. The human eye, for example 

is roughly spherical with an opening to admit light, which falls on a rear surface lined 

with millions of cells. The molecules responsible for vision are attached to the cells. 

Discrimination between colours is possible because cone cells occur in three groups: 

those receptive to blue light, those receptive to green light and those receptive to yello­

red light. Each type can absorb light in a range around its primary color. When an object 

absorbs these wavelengths (visible range 400 and 750 nm), certain molecules within the 

object become excited. A molecule is excited when one of its outer orbital electrons is 

raised to a higher orbital. These electron transitions are characteristic of most biological 

materials but are particularly pronounced in biochromes (Needham, 1974a). 

1.2 Major Pigment Types: 

There are six major groups of pigments occurring in biologial systems. These are 

carotenoids , tctrapyroles, indolic biochromes, N-heterocyclic biochromes (other than 

tetrapyrroles), oxygenous heterocyclic biochromes (the flavonoids) and quinones. 

Carotenoids are nature's most widespread pigments, with the earth's annual 

biomass production estimated at 100 million tons (Fennema, 1996). In nature over 560 

carotenoid structures have been identified and compiled. They derive their names from 
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the fact that they constitute the major pigment in the carrot root, Daucus carota, one of 

the first foods observed to possess this class of pigments (Kiaui eta/., 1981 ). 

1.2.1 Functions: 

Most of the functions of carotenoids are a consequence of their ability to absorb 

visible light. It has been established that carotenoids play a role in photoreception 

(vision), photosynthesis, photoprotection, phototaxis and integumental colors (Burnett, 

1965; Needham, 1974; Goodwin, 1980; Sangha, 1994; Britton et a/., 1995). The 

luminous carotenoid colours of tropical fish are not only keys for species identification 

and mating signals they have significant physiological roles as well. The seasonal 

astaxanthin levels in the carapace have shown that the eggs parallel with the exposure to 

sunlight, indicating that the carotenoids serve to protect external proteins and eggs from 

ultraviolet exposure. Beta-carotene is converted to vitamin A, which is required for the 

biochemical processes involved in vision (Goodwin, 1980). Furthermore, vitamin A 

plays an important role in the growth, development, and integrity of mucous surfaces. 

However, the majority of research concerning astaxanthin and other carotenoids has 

been aimed at its role in photoprotection and as an antioxidant in quenching of oxygen 

radicals. 

Carotenoids owe their color to the absorption of light by the feature of their 

molecular structure known as the 'chromophore'. In most carotenoids the chromophorc 

consists entirely of a conjugated system of carbon-carbon double bonds, referred to as 

the 'polyencchain' (Fig. 3). It is possible to have up to 15 conjugated double bonds in 

the chromophore of a C40 carotenoid, although structures with 7 to 11 such bonds are 
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more common. Other features of carotenoid molecules that may constitute part of the 

chromophore are triple bonds, terminal allene groups, substituted phenyl end groups, and 

carbon-oxygen double bonds (Weedon et al., 1995). 

1.3 Applications of Carotenoids: 

Carotenoids have commercial application in various industries such as 

aquaculture, food industry, pharmaceutical, cosmetic, and medicine (Bauernfeind and 

K.laui, 1981; Munzel, 1981; Sangha, 1994 ). The use of carotenoids as pigments in 

aquaculture is well documented. It appears that their broader functions include a role as 

an antioxidant and provitamin A activity as well as enhancing immune response, 

reproduction, growth, maturation and photoprotection. An extensive body of data 

stresses the vital role of carotenoids in the physiology and overall health. It concludes 

that carotenoids are ·essential nutrients that should be included in all aquatic diets at a 

minimum level of5 - 10 ppm (Torrissen, 1989). 

1.4 Taxonomy of Rhodotorula rubra: 

Yeast is defined as a unicellular fungus that reproduces by budding or fission 

(Kreger van-Rij, 1984). Yeasts are taxonomically diverse and classified in the division 

Eurnycota, which includes the classes Ascomycotina, Basidiomycotina and 

Deuteromycotina (Kreger van-Rij, 1984). The ascomycetes are recognized as 

unpigmented yeasts possessing asci with ascospores, and reproduce by holoblastic 

budding (Kratochvilova, 1990). 
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The system of taxonomy used today is the result of the development and 

integration of various avenues of approach to the problem of yeast identification and 

classification (Lodder, 1970). Morphological and reproductive attributes are utilized to 

decide the main taxonomy- to designate higher taxa while physiological evidence is used 

to differentiate lower taxa, and in particular, species classification. Most of these 

characteristics are defined based on a particular test, such as fermentation and 

assimilation (Kreger-van-Rij , 1984). The isolation of the mutants of Rhodotourla rubra 

TP 1 used in this work has been reported (Acheampong, 2000). 

The carotenoid-producing yeasts include genera such as Cryptocccus, 

Rhodotorula, Rhodosporidium, Sporidiobo/us, Sporobolomyces, Phaffia (Johnson and 

Lewis, 1979) and Saitoella (Komagata et al., 1987). Yeasts belonging to the genera 

Cryptococcus, Rhodotorula, Rhodosporidium, Sporidiobolus, and Sporobolomyces 

typically contain {J-carotene, ')'-carotene, torulene and torularhodin as major carotenoids 

(Simpson et al., 1971). The genera Rhodospridium and Rhodotorula may also produce 

carotene, phytoene, and phytofluene, 2-hydroxyplectaniaxanthin have been found in a 

strain of Rhodotorula aurantiaca (Lui et al., 1973). Some species of Rhodotorula also 

synthesize I)-carotene, IJ-zeacarotene and plectaniaxanthin, which are also found in 

Cryptococcus laurentii (Lui eta!., 1973). 

The yeast Phaffia produces astaxanthin as its most abundant carotenoid. Other 

characterized carotenoids are I)-carotene, -y-carotene, neurosporene, lycopene, 

echinenone, 3-hydroxyechinenone, 3-hydroxy-3', 4'-didehydro-1)-carotene- 4- 1 and 

phoenicoxanthin (Andrewes et al., 1976). 
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1.6 Mutagenesis: 

Several methods are available for genetic manipulations of biological cells. 

Newer techniques include protoplast fusion, pulsed field electrophoresis and 

recombinant DNA techniques. However, difficulty arises in applying these methods 

when genetic information of a species is lacking. More fundamental approaches for 

strain improvement involve genetic mutations (Crueger and Crueger, 1989). 

To enhance the potential of a microorganism, the genotype can be manipulated by 

inducing mutations in the genome. Common mutagenic agents include ultraviolet and 

ionizing radiations and chemical agents. These affect non-replicating DNA and cause 

frame-shifts in DNA and base substitution by analogs (Crueger and Crueger, 1989). 

Short wavelength ultraviolet rays between 200 - 300 nm, with an optimum 

wavelength at 265nm, are effective in causing mutations. The absorption maximum of 

DNA is 265 nm. The most important products of this type of radiation are pyrimidine 

dimers, formed between adjacent pyrimidine bases on complementary strands of DNA. 

Long wavelength ultraviolet rays between 300 - 400 nm are less lethal mutagens. 

However, if cells are exposed to this type of radiation in the presence of various dyes, 

increased mutation frequency is induced (Crueger and Crueger, 1989). Ionizing radiation 

includes x-rays, y-rays, P-rays. These types of radiations are seldom used for 

mutagenesis as the rays cause a much greater percentage of single and double strand 

breaks in DNA than the other mutagens, which can result in major structural changes in 

the chromosome. A variety of chemicals are known mutagens and are used in genetic 

studies. These chemicals are classified according to their mode of action. Frame-shift 

mutagens intercalate into the DNA molecule, causing errors in the reading frame and 
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result in the formation of faulty proteins or no proteins at all. Examples of this type of 

mutagen are acridine dyes, such as acridine orange, proflavine and acriflavine. Although 

useful in research, frame-shift mutagens are not very suitable for isolation of mutants in 

strain development, because they have little or no mutagenic effect in bacteria and yeasts 

(Crueger and Crueger, 1989). 

Base analogs, such as 5-bromouracil and 2-aminopurine, act as mutagens by 

being incorporated into replicating DNA in place of the corresponding bases thymine 

and adenine because of their structural similarity. These cause transitions to occur, 

resulting in the wrong base pair being incorporated into the replicated DNA. Conditions 

for the development of this type of mutants are costly and as such, base analog mutagens 

are rarely used in practical applications. 

Many carotenogenic, or red yeasts have also been genetically altered using N­

rnethyi-N-nitro-N-nitrosoguanadine (NTG). An et al., (1989) evaluated the effectiveness 

of UV light, etbylmethanesulfonate (EMS) and NTG in generating greater pigment 

producing mutants of Pha.ffia rhodozyma. NTG was reported to be the best mutagen. 

However, most of the mutants were unstable. In another attempt to obtain hyper 

pigment producing mutants, Lewis eta/. (1990) exposed Pha.ffia rhodozyma to NTG and 

then screened the astaxanthin-overproducers using beta-ionone. Acheampong (2000) 

successfully treated Rhodotoru/a rubraTP 1 with NTG in order to produce mutants with 

enhanced pigmentation and a better capacity to utilize cheaper substrates for growth. 
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1.7 Astaxanthin: 

Astaxanthin is the main carotenoid pigment found in some aquatic animals. This 

red-orange pigment is closely related to other well-known carotenoids such as beta­

carotene or lutein, but has a stronger antioxidant activity (10 times higher than beta­

carotene). Studies suggest that astaxanthin can be 1000 times more effective as 

antioxidant than vitamin E. In many of the aquatic animals where it can be found, 

astaxanthin has a number of essential biological functions, ranging from protection 

against oxidation of essential polyunsaturated fatty acids to enhance immunity and 

growth. In species such as salmon or shrimp, astaxanthin is even considered as essential 

for normal growth and survival, and has been attributed to have vitamin-like properties. 

Some of these unique properties have also been found to be effective in mammals and 

open very promising possibilities for nutritional and pharmaceutical applications of 

astaxanthin in humans. It can be found in many of seafoods such as salmon, trout, 

shrimp, lobster and fish eggs. It is also found in a number of bird species. Astaxanthin 

cannot be synthesized by animals and must be provided in the diet as is the case with 

other carotenoids. While fish such as salmon are unable to convert other dietary 

carotenoids into astaxanthin, some species such as shrimp have a limited capacity to 

convert closely related dietary carotenoids into astaxanthin, although they will benefit 

strongly from being fed astaxanthln directly. Mammals are also unable to synthesize 

astaxanthin. Some microorganisms can be quite rich in astaxanthin. 

A ubiquitous micro-algae, Haematococcus pluvialis is believed to be the 

organism, which can accumulate the highest levels of astaxanthin in biological system. 

The function of astaxanthin appears to be to protect the algae from adverse environment 
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changes, such as increased UV -light photoxidation and evaporation of the water pools in 

which it lives. Haematococcus algae can accumulate as high as 10 to 30 g of astaxanthin 

per kg of dry biomass. This level is 100 to 3000 fold higher than in salmon fillets. Some 

strains have even been observed to accumulate as much as 70 to 80 g of astaxanthin per 

kg of dry biomass. Esterified astaxanthin from Haematococcus pluvialis alagal meal is 

the preferred form in several oral prophylactic and therapeutic formulations for muscular 

dysfunction, such as exertional rhabdomyolysis (also known as exertional myopathy, 

tying-up syndrome, azoturia, or Monday morning sickness) in horses (Lignell, 1999), as 

well as for mastitis (mammary inflammation) in dairy cows (Lignell, 1999). 

Astaxanthin is one of a group of natural pigments known as carotenoids. The 

astaxanthin molecule is similar to that of the familiar carotenoid, beta-carotene. The 

small differences in structure of these confer large differences in the chemical and 

biological properties of these two molecules. In particular, astaxanthin exhibits superior 

antioxidant properties to beta-carotene in a number of in vitro studies (Krinsky, 1992). 

Higher survival rate in red sea-bream was found to be that astaxanthin enhanced liver 

cell structure. Glycogen storage in red tilapia increases fertilization and survival rates of 

eggs. Higher growth rates during the early-feeding period of young salmonids have all 

been associated with dietary astaxanthin supplementation (Sommer et a!. 1991; Torrissen 

and Christiansen 1995; Kawakami eta!. 1998). When astaxanthin was included in 

poultry feeds, dietary astaxanthin was reported to improve egg production, the general 

health of hens and also increase in the hatching percentage, resistance to Salmonella 

infection, and shelf life of eggs. (Lignell et al. 1998). 
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1.8 Significance of Carotenoids: 

The food and pharmacological industries are potential users of large amounts of 

natural antioxidants. One of the advantages for the food industry is that these 

antioxidants may be used as preservatives against both enzymatic and spontaneous 

oxidation of foods, thereby extending their shelf life. Astaxanthin, which belongs to the 

carotenoid group, is a very valuable natural red dye used as a feed additive for deepening 

the pigmentation of salmon and organic chicken eggs. Initial results also show that 

astaxanthin is a promising cancer preventing agent and hence has potential for use as an 

additive for promoting good health (Tanaka, 1995). 

In nature, like other pigments, astaxanthin is synthesized only by microalgae and 

then passed up the food chain. Salmon and other marine animals cannot make the 

compound themselves and must get it in their food. Traditionally astaxanthin has been 

added to commercial aquaculture diets to improve the pigmentation of the flesh of fish. 

Thjs use remains by far the largest market in terms of volume and market value. 

However a number of studies (Klaui H. and Bauernfeind, J.C., 1981) have shown that 

astaxanthin was muc_h more than a pigment and in fact had vitamin-like properties. As a 

result, astaxanthin is now also used to enhance the immune response of fish and shrimp 

to secure maximum survival and growth. Recent studies (Ito et a!., 1986) with young 

shrimp and other fish species have shown a superior uptake of natural astaxanthin from 

microalagae compared to the synthetic form. Another reason for aquaculturists to prefer 

natural astaxanthin is the growing demand from consumers for fish being fed natural 

pigments, identical to those fish that acquire natural astaxanthin from the environment. 
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1.9 Carotenogic Yeasts as sources of Carotenoids: 

The pink to red color of the flesh of salmon ids is an important factor in consumer 

preference for coloured fish. Colour is not an intrinsic component of the fish, but results 

from the deposition of dietary carotenoids. Astaxanthin is an abundant carotenoid in the 

marine environment. Salmonids, like most animals, are unable to synthesize or 

biologically transform carotenoid precursors into the pigments found in their tissues. 

Wild salmon obtain their carotenoids from marine zooplankton, nekton, and their natural 

foods. Pen-raised salmonids, in tum, must derive this pigmentation from sources in their 

feed. 

The dominant pigment source in aquaculture is synthetic astaxanthin and 

canthaxanthin, commercially produced by Hoffman La Roche (Basle, Switzerland), 

which are marketed under the trade names of 'Carophyll pink' and 'Carophyll red', 

respectively (Torrissen et al., 1989). However, the use of synthetic feed colorants is 

quickly declining due to strict regulations and the increasing reluctance of consumers to 

accept chemicals as food additives. 

In recent years, yeasts have been used as a pigment source for fish. The species 

Phaffia rhodozyma possesses high levels of carotenoids, of which astaxanthin is the most 

abundant. In feeding trials, the incorporation of this yeast's pigment into the diets has 

achieved high levels of pigment deposition in rainbow trout, lobsters and salmon 

(Johnson and Lewis, 1977). However, three major obstacles have prevented the 

commercial use of Phaffia rhodozyma as a natural source of carotenoids in fish feeds: a 

rigid cell wall, which limits the pigment extractability, a slow growth rate and poor 

digestibility of the whole Phaffia cells by the fish. 
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A strain of the Rhodotorula species, Rhodotorula rubra TPl, was also found to be 

a good source of pigments for rainbow trout. Unlike Phaffia rhodozyma, whole cells of 

Rhodotorula rubra TPl were able to induce pigmentation. In addition, this has been 

found to have a faster growth rate and easier pigment extractability than Phaffia 

rhodozyma (Sangha, 1994). 

1.10 The Genus Rhodotorula: 

The genus Rhodotorula belongs to the class Deuteromycotina, family 

Cryptococcaceae (Kreger van-Rij, 1984) and sub-family Rhodotoruloideae (Ladder and 

Kreger-van Rij, 1954). 

Yeasts are classified in the family Cryptococcaceae by the constant presence of 

budding cells- although a pseudomycclium, true mycelium and arthrospores may be 

formed. Culture cells are hyaline, red, orange or yellow due to carotenoid pigments, and 

are seldom brown or black. Dissimilation is strictly oxidative or oxidative and 

fermentative (Kreger van-Rij, 1984). 

Members of the genus Rhodotorula have ovoidal, spheroidal or elongate cells. 

They reproduce vegetatively by multilateral budding and variants of some species form 

psuedohyphae or true hyphae. Neither ascospores nor ballistospores are formed. Red or 

yellow carotenoid pigments are synthesized in malt agar cultures (Kreger van-Rij, 1984). 

Regarding culture appearance, some strains appear mucoid due to capsule formation, 

while others seem pasty or dry and wrinkled (Kreger-van Rij, 1984 ). 
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1.11 Commercial Importance of Rhodotorula Species: 

The metabolic capabilities of some Rhodotorula species have indicated possible 

applications of this genus in the commercial industry. Two Rhodotorula rubra strains 

were found to degrade 4-hydroxy-benzoate and as such could be used in oil sludge 

treatment (Wright and Ratledge, 1991 ). 

Ogrydziak (1993) reported the production of extra cellular proteases by a strain of 

Rhodotorula rubra. It was proposed that these proteases could be used to degrade the 

proteins responsible for protein hazes that form in wines and beers during storage. 

1.12 Tbe red yeast, Rhodotorula rubra: 

The species Rhodotorula rubra was first disvovered in 1889 by Demme under the 

name Saccharomyces ruber. Like all Rhod.otorula species, ascospores or ballistospores 

are not produced and reproduction is by multilateral budding. As described by Kreger 

van Rij (1984), Rhodotorula rubra assimilates glucose, sucrose, trehalose, raffinose, D­

xylose, ribitol, melezitose and succinic acid. Galactose, maltose, cellobiose, L-arabinose, 

D-ribose, L-rhamnose, D-mannitol and citric acid are assimilated by some strains while 

lactose, soluble starch, erythritol, inositol, melibiose and nitrate are not assimilated 

(Kreger van Rij , 1984). 

Cells grown in malt extract or on malt agar vary from short ovoidal to elongate, 2-

5.5 nm in width, and occur singly, in pairs, short chains or in clusters. Colony color 

ranges from deep coral to pink or salmon-colored. Colony surface is glistening and 

usually smooth, but is sometimes reticulate, corrugated and the texture varies from soft 

to mucous Kreger van Rij , ( 1984). 
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The carbohydrate patterns of Rhotorula rubra whole cell hydrolysates show the 

presence of fucose and mannose as the dominant sugars in this yeast, while hexitol and 

pentitol also occur in high concentrations (Weijman and Miranda, 1988). The total lipid 

content of Rhodotorula rubra is about 6.0% of dry weight, with palmitic acid, oleic acid 

and linoleic acid as the major lipids (Perrier et al., 1995). This carotenogenic yeast also 

contains about 100 mg carotenoids/g dry weight, which includes beta-carotene, beta­

zeacarotene, torulene and torularhodin as the major components (Perrier et al., 1995). 

The G+C content is 60-63.5 mol% (Nakase and Komagata, 1971). 

1.13 Description of Rhodotorula rubra TPl : 

Rhodotorula rubra strains have been isolated from leaves, flowers, soil, 

atmosphere and marine sources (Cook, 1958; Ingram, 1955; Kreger van Rij, 1984). 

Recently a new strain has been isolated from yogurt (Hari et a!., 1992). A new strain of 

red yeast contaminating a home-fermented yogurt was isolated and, using the Analytical 

Profile Index (API) clinical yeast system, was identified as Rhodotorula rubra 

(Hari et a!., 1992). The results confirmed by Microcheck Inc. Northfield, VT using a 

technique involving cell wall fatty acid analysis. The isolate was named Rhodotorula 

rubra TP 1 (Hari et al., 1992). Rhodotorula rubra mutants were isolated by Achempong 

(2000). He used three different mutagens including UV irradiation, ethyl methane 

sulfonate (EMS) and nitrosoguanadine NTG. He found NTG to be a better mutagen and 

he was able to isolate 8 mutants of R.rubra TPl. 

Like other Rhodotorual rubra strains, Rhodotorula rubra TP 1 does not form 

ascospores or ballistospores, and reproduces by multilateral budding (Sangha, 1994). 
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However, in one study, Sangha, (1994) observed the presence of ascospores in this strain 

of yeast. As such, this experiment needs to be repeated. As described by Hari et a/., 

(1992). Rhodotorula rubra TPl assimilates melezitose, melebiose, maltose, mannitol, 

trehalose, D-ribitol, raffinose, citric acid, sucrose, arabinose, 0-xylose, succinic acid, 

soluble starch, galactose, and nitrate. It is unable to assimilate glucose, erythritol, 

inositol, rhamnose, cellobiose, and lactose. 

Cells grown in yeast extract/malt extract (YM) broth are circular or ellipsoidal 

and average 2 to 4 nm in diameter. Colony color is best described as salmon-colored and 

the colony surface is glistening and smooth. The absorption spectrum of the pigment 

from Rhodotorula rubra TPl shows that the pigment belongs to the family of 

carotenoids. Rr values of the pigment on a thin-layer chromatography plates were 

similar to those obtained for standard astaxanthin, while a mass spectrometry analysis 

showed a molecular mass similar to that of astaxanthin (Hari eta/. 1992). 

1.14 Potentia l Commer cial Applications of Rhodotorula rubra TPl: 

Sangha ( 1994) found Rhodotorula rubra TPl to be an efficient source of 

pigments and nutrients for aquacultured rainbow trout. The yeast was found to be more 

economically favorably over Pha.ffia rhodozyma, which has also been successful in 

pigmenting pen-raised salmonids. However, Rhodotorula rubra TP I has a faster growth 

rate with greater leve ls of pigment production compared to Phaffia rhodozyma under 

similar conditions of growth. Moreover, whole cells of R. rubra TP 1 were able to 

pigment rainbow trouts but cells of Ph. rhodozyma showed no pigmentation (Hari et al. 

1993). They also found that Rhodotorula rubra TP I could be successfully grown on 
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various industrial and agricultural by-products for biomass production. This has 

important implications, as the cost of growing sufficient amounts of yeast cultures for 

commercial use has always been a concern. These raw material by-products are readily 

available, relatively low in cost while pure sugars like glucose and sucrose, which are 

often used for microbial growth in laboratory situations, are too expensive for use on an 

industrial scale. 

1.15 Research Objectives: 

An increased production of carotenoids by microorganisms such as red yeasts will 

make its industrial applications cost effective and competitive. With this in mind, mutant 

strains of R. rubra TP I were examined with the following objectives: 

(i) To determine optimal growth conditions for pigment production under the influence 

of pH, light, temperatures, and different sources of carbon and nitrogen. 

(ii) To investigate efficient methods for optimal extraction of pigments from mutants and 

parent cells using Freeze-drying, French Press, Sonication and enzymatic cell breakage 

methods in order to determine their efficiency on pigment recovery. 
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CHAPTER2 

METHODS AND MATERIALS 

2.0 Materials 

2.1 Chemicals: 

Acetone, dimethyl sulphoxide (DMSO), sodium chloride, sulphuric acid, sodium 

hydroxide, petroleum ether, hexane, iodine crystals, citrate phosphate, ethyl methane 

disulphate (EDTA), trizma base (Tris HCI), dithiothreitol and beta mercapto ethanol 

which were purchased from Fisher Scientific Company Ltd., Fair Lawn, N.J. , U.S.A. All 

the chemicals were of Analar Grade and were used without further purification. 

2.2 Sources of Microorganisms: 

The test strain used in the experiments was Rhodotorula rubra TPI from earlier 

collection from Dr. T. R. Patel's Laboratory, Department of Biology, Memorial 

University of Newfoundland (MUN), NL, Canada. Mutants strains, Mutant 1 (MI), 

Mutant 2 (M2) and Mutant 3 (M3) were isolated earlier by Acheampong (2000) working 

in the same laboratory. These mutants, maintained on Rose Bengal Agar plates 

(purchased from Difco Laboratories, Detroit, MI, U.S.A.) and stored at 40" C. These 

were transferred once a month onto new plates. Rhodosporidium toruloids ( 1 0657) and 

Rhodotorula minuta ( 1 0658) were from American Type of Culture Collection (ATCC). 

2.3 Peat Extract and Cane Molasses: 

Peat extract was a gift from Dr. A.M. Martin's Laboratory, Department of 

Biochemistry, MUN. Cane molasses was procured from Lalle Nand Inc., Montreal, PQ. 
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2.4 Lysing Enzymes: 

Lysing enzymes from Trichoderma harzianum, Aspergillus species, Cytophaga 

species and Rhizoctonia so/ani were purchased from Sigma Chemical Company, St. 

Louis, MO, U.S.A. 

2.5 Media: 

Yeast Malt Broth (YMB), Potato Dextrose Agar (PDA), Bacto Czapex Dox Broth 

(BCDB) and Rose Bengal Agar base (RBA) were purchased from Difco Laboratories. 

2.6 Methods: 

2.6.1 Preparation of Media and Inoculum: 

Yeast malt (YM) broth was prepared according to the instructions given by the 

manufacturer. Loop-fulls of yeast from RB agar plates were aseptically added to 10 ml 

of saline water and vortexed. This suspension was used for inoculating growth media. 

2.6.2 Growth of Cultures and Harvesting of Yeast Cells: 

Yeast cells were grown in liquid media of different types. Erlenmeyer flasks (2 L) 

containing 500 ml liquid YM broth were inoculated with yeast suspension and were 

incubated at 28° C for 5 days in a Psychrotherm Temperature Control Shaker (New 

Brunswick Scientific Co. Inc., Edison, New Jersey, U.S.A). The cultures were agitated at 

150 rpm. Liquid cultures were centrifuged at I 0,000 rpm for 10 minutes to pellet the 

cells. The pelleted cells were used for pigment extraction after washing three times in a 

saline solution. 
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2.6.3 Optimization of Growth Conditions: 

Different growth conditions such as substrate concentration, initial pH of the 

culture medium, temperature, light, fermentation time, initial optical density of the 

inoculum and agitatio~ speed were tested to detennine the optimum growth parameters 

for the mutants of R.rubra TPl. 

2.6.4 Growth on Molasses and Peat Substrates: 

(i) Crude molasses diluted at a ratio of I: 10 was used to determine the effect of 

carbon source on pigment production. YM broth medium (500 ml) contained 50 ml cane 

molasses, as a supplement of carbon source was incubated in 2 L flasks at 28° C on a 

shaker at a speed of 150 rpm for 4 days. Aliquots (1 ml) were removed in 3 hour 

intervals and optical density was measured on a Pharmacia LKB Novaspec II 

spectrophotometer at a wavelength of 600 nm. 

(ii) Peat extract diluted at a ratio of I : 10 was used to detennine the effect of 

nitrogen source on pigment production. YM broth (500 ml) contained 50 ml peat extract 

as a supplement of nitrogeneous source. Broth cultures were incubated at 28° C on a 

shaker at a speed of 150 rpm. Aliquots (1 ml) were removed in 3 hour intervals and the 

optical density was measured using a spectrophotometer. 

2.6.5 Growth Measurement and Generation Times: 

Growth and biomass of the wi ld type R.rubra TPI and the mutants were measured 

using methods such as (i) optical density measurement, (ii) dry weight and wet weight 

determinations. Growth in liquid media were examined as follows: YM broth (500 ml) in 
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2 L flasks were incubated at 28° C on a shaker (at 150 rpm) after inoculation with 2 ml 

suspension of the yeast. Aliquots (1 ml) were removed at 3 hour intervals and optical 

density readings were used to establish growth curves. Generation times were calculated 

using the logarithmic growth phase of each culture. Readings were taken in triplicates 

for each yeast sample. After 5 days of incubation the yeast cells were collected by 

centrifugation in a pre-weighed centrifuge bottles, washed twice with saline, weighed 

and dried in a hot air oven at 80° C (Oven, Blue M electric company, Blue Island, 

Illinois, U.S.A.). The dry weight was recorded after three constant readings were 

observed. Growth table gives the generation time values given by T = (t2-t1) I log (y/x), 

where x = cells/ml at time t1 andy= cells/ml at time t2. 

2.6.6 Effect of Temperature on Pigment Production of the R. rubra TP 1 mutants: 

To study tbe effect of different temperatures on growth and pigment production, 

the culture flasks (70 ml Hquid medium in 250 ml flasks) were incubated at 15, 20, 25, 

28, 30 and 35° C on a shaker for 5 days. Growth was determined by wet weight and dry 

weight of the cells. 

2.6. 7 Effect of Initial pH of the Growth Media on Pigment Production of Mutants: 

To study the effect of different initial pH on growth and pigment production, the 

pH of the growth medium was adjusted between pH 3 to 10. This was achieved by 

adding NaOH (l M) or by adding HCI (1 M) to the broth. Yeast cell suspension (2 ml) 

was added to 100 rnl of YM broth contained in 250 ml flasks. These flasks were 
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incubated at 28° C on a shaker for 5 days. Growth was detennined by the optical density 

method as well as by the wet weight and dry weight methods. 

2.6.8 Effect of Light on Growth and Pigment Production of R.rubra TPI Mutants: 

To study the effect of light on growth and pigment production, the culture flasks 

were incubated in dark or in the presence of light on a shaker at 28° C for 5 days. 

Biomass-yield was obtained by using wet weight and dry weight methods. 

2.6.9 Pigment Extraction: 

2.6.9.1 Extraction using French Press: 

Wet cells ( 4 g) were placed in the French Press Cell (SLM Instruments, Chicago, 

Illinois, U.S.A.) and chilled by placing the cylinder in a freezer(- 70° C) for 15 minutes. 

Partially frozen cells were ruptured at 20000 psi. The broken cell mass was collected in a 

125 ml flask and 20 ml of acetone was added to it. After shaking the cells suspension 

thoroughly the mixture was centrifuged at 5000 rpm in Sorvall RC-5B Plus centrifuge 

(Dupont-Sorvall Instruments, Newark, DE, U.S.A). The supernatant was decanted into a 

clear flask and 20 ml fresh acetone was added to the pellet. It was then mixed and 

centrifuged as before. The extraction protocol is shown in Fig. 4. The acetone extracts 

were pooled (60 ml, approx.) and filtered through Whatman No I filter paper. 

Carotenoid containing acetone solution was added to 50 mi of n-hexane and mixed in a 

separatory funnel. Sodium chloride was (0.5%, I 00 ml) added to maximize tbe 

extraction of the carotenoids. Carotenoid containing hexane solution was concentrated 

using an evaporator (Roto vapour-R, Brinkmann, Buchi Laborotoriums, Ontario) to 3 ml. 
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Yeast Cells 4 g 
Broken by French press .. Broken 

biomass 

l 
Add acetone, 20 ml 

Supernatant (s 1) 

Add acetone, 20 ml ~ Pellet 

t 
) Centrifuge, 5 min, 5000 rpm 

Vortex 

cJtrifuge, 5 min, 5000 rpm 

/~ 
Pellet Supernatant (s2) 

l 
Add acetone, 20 ml 

Vortex 
Centrifuge, 5 min, 5000 rpm 

Pellet 

Transfer into 250 ml separatory funnel 

Supernatant (s3) 

~ 
Add sl and s2 to s3 

( 60 ml approx.) · 

Add 50 ml n-hexane + 100 ml NaCI solution (0.5%) 

Aqueous phase 

Concentrate, Roto­
vap 3ml 

/ ~ 
Organic phase (hexane layer) 

~ 
Collect in a clean flask 

Fig 4. French press procedure for pigment extraction. 
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The absorption spectrum was recorded in the region 400 to 600 nm using a 

spectrophotometer (Shimadzu photo spectrometer UV-260, Kyoto, Japan). 

2.6.9.2 Extraction by Freeze Drying: 

ln freeze-drying methods, I 0 g frozen cells were dried usmg a lyophi lizer 

LABCONCO, Freeze Dry System, Indiana, U.S.A.). The dried powder (1 g) was treated 

with 6 ml of warmed dimethyl sulphoxide in a 40 ml test tube. The tube was kept in the 

dark at room temperature for 20 minutes by covering it with aluminum foi l. The mixture 

was centrifuged at 5000 rpm for 5 min and the supernatant was collected. The pellet was 

extracted with 5 ml of additional acetone and centrifuged as before. The supernatant was 

collected and the pellet was treated once again with 5 ml acetone and centrifuged. The 

supernatants · obtained were pooled together (15 ml) were filtered through a No.1 

Whatman filter paper. Petroleum ether (30 ml) and 15 ml water were added to this 

fi ltered supernatant in a separatory funnel. After thorough mixing the organic phase was 

allowed to separate. The bottom aqueous phase was removed and discarded. The organic 

phase (30 ml) containing carotenoids was dried with anhydrous sodium sulphate 

Na2 S04) and then concentrated using an evoporator to 3 ml as showed in Fig. 5. 

2.6.9.3 Extraction by the Method of Sonication: 

In sonication method fresh cells (I gm) were suspended in 2 ml acetone and 

sonicated for a period of 3 minutes at intervals of 30 seconds using Braun-Sonic, B 

Braun, Model2000 sonicator. The suspension was centrifuged for 5 minutes (5000 rpm). 

Separate the supernatant (sl) from the pellet and add 2 ml of acetone to it and vortexed. 
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Freeze dried 
Cells 1 g 

Centrifuge, 5 min, 5000 rpm 

/~ 
Pellet Supernatant (sl) 

~ 
Add acetone, 5 m.~.--1 ___ ___..., 

Add warm DMSO, 6 ml 

l 
Incubated, dark, 20 mins. 

Centrifuge, 5 min, 5000 rpm 

Add acetone, 5 ml 
/~ 

..___ Pellet 2 Supernatant (s2) 

Centrifuge, 5 min, 5000 rpm 

/~ 
Pellet3 Supernatant (s3)1------+ll' 

s l + s2 + s3 
separatory funnel 

Add 30 ml petroleum ether+ 25 ml distilled water 

Aqueous phase Organic phase 

Add Na2S04 (anhydrous) 

l 
Concentrated, roto-vap, 3 ml 

Fig 5. Freeze drying procedure for pigment extraction. 



This suspension was again sonicated and centrifuged as before and added the 

supernatant (s2) to sl. From this acetone extraction mixture 1 ml was taken to run the 

spectrum for the analysis of the pigment. 

2.6.9.4 Extraction using Enzymes: 

In enzymatic cell breakage method 1 g of wet cell mass was suspended in 2 ml of 

Tris HCI (pH 7) buffer or Citrate Phosphate buffer (pH 7) in a centrifuge tube (15 ml). 

Lysing enzyme (3.5 mg) was added to the tube and was incubated for 24 hours in a water 

bath (Precision scientific Company, U.S.A.) at 25° C. Reaction mixtures were 

centrifuged for I 0 minutes, at a speed of 5000 rpm. The supernatant was then decanted 

off and 2 ml acetone was added to the pelleted cells. It was then vortexed and sonicated 

for 3 minutes and centrifuged again as before. The acetone layer (supernatant 1, sl) was 

collected in a fresh bottle, and the pellet was resuspended in 2 mJ acetone. After 

thorough mixing, it was once again centrifuged and the supernatant s2 was obtained, 

then mixed with s I in a round bottom flask and concentrated to 3 ml using an evaporator 

(Fig. 6). 

2.6.9.4.1 Freeze and Thaw method: 

In this method yeast cells were frozen at -70° C for 3 hours and were then thawed. 

Thawed cells (1 g) were separately suspended in 2 ml of Tris HCI buffers with pH 

ranging between 7 and 9 or citrate phosphate buffer (pH, 5 to 7). These suspensions were 

treated with a 3.5 mg lytic enzyme (Rhyzoctonia solani) and were incubated for 24 hours 

at 25° C in a water bath. The incubated cell suspension was sonicated for 3 minutes and 

2 ml of acetone was added to it. This suspension was centrifuged at 5000 rpm, for 10 
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Wet cells, l g + 2 ml buffer+ 3.5 mg enzyme ---. Mix, incubate 24 hours, 25 deg C 

1 
Centrifuge, 5000 rpm, 1 0 min 

Supernatant 
~ 

Pellet 

1 
Sonication, 3 minutes Add 2 ml acetone, Vortex 

l 
Centrifuge, 5000 rpm, 1 0 min 

Supernatant S l Pellet 

\ 
Sonication, 3 minutes Add 2 ml acetone, Vortex 

1 
Centrifuge, 5000 rpm, 10 min 

Supernatant S2 Pellet 

+ 
Add S 1 and S2, 4m1 Run the spectrum 

Fig 6. Enzymatic cell-breakage procedure for pigment extraction. 
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minutes. The supernatant was decanted off and the pellet was suspended in 2 ml acetone. 

This was vortexed and was sonicated for 3 minutes. The sonicated cell suspension was 

centrifuged at 5000 rpm for 10 minutes. The supernatant (sl) was separated from the 

pellet and 2 ml of acetone was again added to the pellet. This cell suspension was 

sonicated for 3 minutes and was centrifuged as mentioned above. The supernatant (s2) 

was mixed with sl (4 ml). Spectrum of this mixture was obtained between 200 - 600 

nm. All the experiments were done in triplicates. 

2.6.9.4.2 Effect of Thiol Group on P igment Recovery: 

Reducing agents such as dithiotbreitol (DTT) and beta mercapto ethanol (BME) were 

used at different concentrations to evaluate their effects on pigment extraction. Wet cells 

(1 g) were separately added to 2 ml citrate phosphate buffer (pH, 7.0) in four different 

tubes. The concentrations ofBME in the buffer were 50 mM, 150 mM and 200 mM. One 

g of cells were separately added to 2 ml citrate buffer (pH, 7.0) in four different tubes. 

The concentrations of DTT in the buffer were 15, 20, 25 and 30 mM respectively. To 

this cell suspension 3.5 mg lysing enzyme was added and incubated for 24 hours at 25° 

C. The cell suspension was sonicated for 3 minutes and then 2 mJ acetone was added to 

it. This was then centrifuged at a speed of 5000 rpm, for 10 minutes and decanted. Two 

ml of acetone was then added to the pelletted cells. The cells were vortexed and 

sonicated for 3 minutes and centrifuged at 5000 rpm for 10 minutes. The supernatant was 

separated from the pellet and 2 ml of acetone was added to the pellet. It was then 

vortexed, sonicated for 3 minutes and centrifuged again. The two supernatants were 
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mixed and the spectrum for the sample-mixture was recorded for the analysis of the 

pigments. 

2.6.10 Measurement of Pigment: 

The total carotenoid concentration in yeast cells was calculated using the formula, 

. lOOAV 
Carotenozd(J.Jg)l dty yeast(g) = ---

EW 

where A is the absorbance maxima at 474 nm, Vis the total volume of the sample (ml), 

E is the extinction coefficient and W is the dry weight of the cells. Since the crude 

extracts usually contained a variety of carotenoids an average coefficient of 2100 was 

used in the calculations and the concentrations of the individual pigments were 

calculated using the method according to An et al. 1989. The absorbance values of the 

pigment extracts in acetone were measured by spectrophotometer. The maximum 

absorbance determined by scanning from 600 to 300 run in a Shimadzu Ultra Violet 260 

Recording spectrophotometer. Identification of the individual pigments was done by 

comparison of their absorption maxima with those of standard carotenoids reported by 

other researchers (Davies, 1976; Bauerfeind and Klaui, 1981). 

2.6.1 1 Thin Layer Chromatography: 

The pigments were separated by means of Thin Layer Chromatograph. Pre-coated silica 

gel (Whatman International Ltd. , Maidstone, England) plates were used to 

chromatograph the samples. The solvent used was a 10% toluene mixed in 90% 

petroleum ether (v/v). The spotted TLC plate was developed in this solvent until the 

solvent front was about 1 em below the top of the plate. The spots were visuaHzed under 
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ultra-violet rays and also by iodine vapours. Rr (Retardation factor) values were 

calculated by using the ratio of the distance traveled by the substance to the distance 

traveled by the soJvent. 
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CHAPTER3 

RESULTS AND DISCUSSION 

3.1 Growth and pigment production by R.rubra mutants: 

The growth rate was determined in YM broth. R. rubra mutants (Ml, M2 and 

M3), showed Jess growth than the parent TPI. The generation times for mutants M1 and 

M2 were 12.0 and 11.52 hours, respectively. Figure 7 illustrates the generation times for 

the wild type and mutant yeasts. The time required for the population to double in the 

case of TP 1 was less, indicating faster growth rate compared to the mutants. R. rubra 

TPI had a shorter generation time and greater biomass yield than that of P. rhodozyma, 

in an earlier investigation (Sangha, 1994). 

The growth curves for the mutants and the wild type organisms at 15° C are 

shown in Fig.8. All the isolates showed a Jag period of about fifteen hours as shown in 

the figure. Figure 9 examines the growth curves at 25° C. The cell yields were greater 

for cultures grown at 25° C (Table 1 ). The time to reach stationary phase for the mutants 

M l, M2 and M3 were 42.8, 41.2 and 43.2 hours, respectively (Fig. 10). M3 showed 

more time as parent TPI to reach stationary phase than the other two mutants, Ml and 

M2. This figure shows the differences in times to reach stationary phase by the mutants 

and the wild type yeasts. 

3.1.1 Growth on Cane Molasses and Peat Extracts: 

Greater biomass yield was obtained upon addition of peat extract to the YM broth. 

Figure 11 shows the effect of 1 % peat extract, on M 1, M2, M3 and TP 1. The yields 
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Fig. 7. Generation times of different yeasts. 

Yeast cells were growing in liquid media as described under Materials and Methods. 
Each of tbe data points represents the mean value of three determinations. The standard 
errors in the mean for TPl , Rm, Rt, Ml , M2 and M3 are ± 0.12, ± 0.23, ± 0.20, ± 0.31, ± 
0.25 and ± 0. 11 hour, respectively. 
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Fig.8 Growth of yeasts on YM-broth at 15° C. 

Erlenmayer flasks (500 ml) containing 300 ml of the Liquid medium were inoculated with 
freshly grown yeasts on RB agar and incubated on a Psychrotherm, agitated at150 rpm. 
The solid curve is shown for Ml only. The data points are averages of three 
determinations (standard deviation,± 0.5 O.D. units). 
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Fig. 9 Growth of different yeasts on YM-broth at 25° C. 

Growth conditions were similar to those given in the figure caption for Fig. 8 except 
temperature. The figure represents growth measured at different time intervals. The 
solid curve is shown for TPI , yeast only. The data points are averages of 3 
determinations (standard deviation,± 0.5 O.D. units). 
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Fig. 10 Time needed for achieving stationary phase by different yeasts in liquid cultures. 

Each of the data points represents the mean value of three determinations. The standard 
errors in the mean for TPl, Rm, Rt, Ml, M2 and M3 are ± 0.2, ± 0.3, ± 0.3, ± 0.5, ± 
0. 1 and± 0.1, respectively. 
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Table I. Biomass yield (giL) in wild type and mutant yeasts at various temperatures. 

Yeast TP l Rm Rt Ml M2 M3 

Temp. Biomass yeild 

15 4.0 ± 0.2 4.1 ± 0.3 3.5 ±0.2 4.6± 0.2 3.7 ± 0.1 3.2 ± 0.3 
20 8.3 ±0.2 6.9 ± 0.1 8.0 ± 0. 1 7.6 ± 0.1 8.4 ± 0.2 7.3 ± 0.2 
25 10.2 ± 0.1 11.2 ± 0.6 12.5 ± 0.4 9.3 ± 0.3 8.6 ± 0.2 8.4 ± 0.2 
28 12.5 ± 0.2 12.0 ± 0.4 13. 1 ± 0.3 11.0 ± 0.3 10.2 ± 0.2 9.5±0.1 
30 9.4 ± 0.2 10.9:!: 0.1 12.7 ± 0.2 7.1:!:0.1 7.1 ± 0.2 7.6± 0.2 
35 7.0 ± 0.1 10.3 ± 0.3 11.2 ± 0.3 6.3 ± 0.3 5.9 ± 0.2 6.1 ± 0.2 

Yeasts were grown in a liquid media in flasks (500 ml) containing 300 mJ YM-broth. 
Inoculated flasks were incubated at various temperatures (15 to 35° C) separately, in a 
Psychrotherm shaker at 150 rpm. Cells were collected by centrifugation after 5 days. 
Wet weights and dry weights were determined in pre-weighed glass centrifuge tubes. 
Each experimental point represents average of three determinations. Errors given are 
standard deviations. 
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Fig. 11 Biomass yield of different yeasts grown in YM-broth with 1 % peat extract. 

Yeast cells were grown in liquid cultures in Erlenmeyer flasks (500 ml) containing 300 
ml liquid media inoculated with different yeasts. Culture flasks were incubated at 25° C 
and shaken in a Psycbrothenn at 150 rpm. Yeast cells were harvested by centrifugation 
as described under Materials and Methods. 
Each experimental point represents an average of three readings. The standard error in 
the mean for TPl , Rm, Rt, Ml, M2 and M3 are± 0.25, 0.32, 0.42, 0.51, 0.23 and 0.39 
giL, dry weight, respectively. 
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were 7.87, 8.29, 11.42 and 9.54 giL (dry weight), respectively. The effect of 2 % peat 

extract in YM broth was observed to be better for larger biomass yields. At this 

concentration M2 and M3 resulted in biomass yield of 9.71 and 9.84 giL, respectively. 

In contrast under similar conditions the parent TPl gave 10. 12 giL, as shown in 

Fig. 12. Further increases in peat extract concentrations for the growth medium did not 

give corresponding increases in the biomass yields except in the case of M I (Fig. 13). 

The yeasts were able to utilize a wide variety of inorganic nitrogen sources with 

an optimum growth in the presence of ammonium sulphate and ammonium hydroxide 

(Sangha, 1994). However, an organic nitrogen source like peptone was assimilated 

much better than an inorganic-nitrogen source (Sangha, 1994). Abour-Zeid and Yousef 

(1972) also reported similar behavior with Streptomyces caespitosus. The yeast 

preferred molasses may be because of the presence of lower amount of reducing sugars 

in the peat hydrolysate. Anderson (I 979) grew Candida uti/is on a commercial scale 

using sulfite waste liquor. Nitrogen supplementation of sulphite waste liquor in the form 

of urea or ammonium sulfate and phosphorus as phosphoric acid was found to enhance 

the biomass yield and substrate consumption (Simard and Cameron, 1974). 

Figure 14 shows the effect of different concentrations of cane molasses in YM 

broth on biomass yield. With 1 and 2 % cane molasses the mutants and the parent 

organism showed much greater cell growth than with the higher concentration (3 %). 

The biomass yield by mutants showed considerable variation as shown in figure 14. 

Earlier workers found that cane molasses were better than beet molasses in 

supporting the growth of the yeast (Peppler, 1979). It is postulated that the higher 
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Fig. 12 Biomass yield of yeast cells grown in YM-broth with 2% peat extract. 

Growth conditions were similar to those described for caption for Fig. II except the 
concentration of peat extract in the growth medium. 

Each experimental data represents an average of three readings. The standard error of 
mean for TPI , Rm, Rt, Ml, M2 and M3 are ± 0.39, 0.23, 0.51, 0.42, 0.23 and 0.32 giL, 
dry weight, respectively. 
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Fig. 13 Effect of3% peat extract on the biomass yield of yeast cells. 

Growth conditions were similar to those described for caption for Fig. 11 except the 
concentration of peat extract in the growth medium. 

Each experimental data represents an average of three readings. The standard error of 
mean for TPl, Rm, Rt, Ml, M2 and M3 are ± 0.23, 0.25, 0.32, 0.39, 0.42 and 0.32 giL, 
dry weight, respectively. 
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Fig. 14 Effects of cane molasses concentrations on the biomass yield in yeasts. 
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Yeasts were grown in YM-broth plus different concentrations of cane molasses as 
indicated. Liquid cultures were grown as described under Materials and Methods. Each 
experimental point represents an average of three readings. The standard errors of mean 
for TPl, Rm, Rt, Ml, M2 and M3 are 0.51, 0.42, 0.32, 0.25, 0.42 and 0.14 giL dry 
weight, respectively. 
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content of sugars (55 - 62% compared to 48 % for beet molasses) in cane molasses may 

have a role in growth of yeast. Cane molasses are also richer in biotin, pantothenic acid, 

thiamin, magnesium and calcium (Peppler, 1979). These may also have a stimulatory 

effect on growth parameters of a yeast. Cane molasses have been used as a substrate for 

the production of bio mass. Rolz (1984) reported a fed batch system with molasses to 

optimize cell yields and substrate utilization using S. cereviceae. Estevez and Almazan 

( 1973) used a continuous culture system with high test-molasses and crude sugarcane 

juice as the substrate and reported excellent biomass yields. Moreira et al. (1976) 

supplemented molasses with urea and inorganic phosphorus to grow R. gracilis and 

Candida uti/is. 

In the present study also the highest biomass yield was obtained with the YM 

broth meclium (Difco) than with YM broth supplemented with cane molasses. All three 

mutants responded similarly. The presence of growth-limjting impurities in the molasses 

plus the deficiency of some nutrients may account for the differences in growth response 

of the yeast. Molasses and wort also have been used to grow P. rhodozyma (Okagbue 

and Lewis., 1985) while wort has been used to boost astaxanthin production by the same 

yeast (Johnson and Lewis, 1979). 

3.1.2 Effects of the Media on Biomass yield: 

Bacto Czapex Dox Broth (BCDB) was used to grow the yeast cultures. It was 

found that there was very less growth and practically no pigment. Rose Bengal agar was 

found to be better medium and promoted greater growth when compared to BCDB. 
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R. rubra TPI was found to grow readily on the common laboratory media while 

P. rhodozyma showed reduced growth on many of the medja tested, including PDA, 

SDA and malt agar (Sangha, 1994). The mutants, Ml, M2 and M3 did not grow either 

in Bacto Czapex broth or on Sabroud dox agar plates. Under similar and the same 

conditions and the same substrates, the parent TPl showed reduced growth with no 

pigment production. 

3.1.3 Effects of Temperature: 

The optimum temperature was found to be 28" C for the parent organisms and the 

mutants. At thls temperature, both, cell biomass as well as pigment production was 

enhanced with all test organisms (Table 1 ). The extracted pigment from these cells was 

analysed by using thin layer chromatography (Table 2). From the table it is evident that 

mutants produced four of the carotenoids present in the wild type, TPI but lacked 

phytoene. The Rf values determined for the individual carotenoids also coincided with 

those reported in literature (Acheampong, 2000). The differences in Rr values observed 

for pigments in mutants and wild - type yeasts were very minute. 

In a study using mutants of R. mucilaginosa, Villoutreix (1960) reported that 

torulene, torularhodin, y-carotene and P-carotene were the principal pigments of the 

parental strain, whereas phytoene and phytofluene were absent. Nakayama et al., (1954) 

also examined the pigments from several Cryptococcus and Rhodotorula species and 

concluded that quantities of the red and yellow pigments varied depending on cultural 

condition specially, by temperature. According to these authors the concentrations of the 

red pigments decreased at 5° C but increased as the temperature was increased. 
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Table 2. Rr values of carotenoids from various yeasts . 

Yeast TPl Ml 1M2 M3 
Carotenoids Rrvalues Experimental Rf values 

Literature * 
Phytoene 0.84 0.86± 0.1 # - - -
Phytofluene 0.62 0.62 ± 0.05 0.64 ± 0.02 0.61 ± 0.05 0.62 ± 0.03 
13-carotene 0.50 0.49 ± 0.06 0.48 ± 0.07 0.51 ± 0.06 0.50 ± 0.07 
Toluene 0.30 0.32 ± 0.04 0.30 ± 0.05 0.28 ± 0.02 0.29 ± 0.04 
Torularhodin 0.19 0.19 ± 0.03 0.16 ± 0.04 0.17±0.03 0.18 ± 0.06 

Pre-coated silica gel plates were used to spot the yeast samples. The solvent is the 
mixture of 10 % toluene in petroleum ether. Pigments were visualized by Iodine vapour 
and the Rf values were calculated. 
# Each of the data point is an average of 3 determinations. 
* Reported values are from Acbeampong, 2000. 
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Inspection of the carotenoid composition of R. rubra TP1 as well as the mutagenized 

cells allowed the identification of most of the carotenoid previously described in other 

Rhodotorula species (Bonner et at., 1946; Hayman et al., 1974., Simpson et al., 1964). 

In the present study, torulene, torularhodin and J3-caroten were determined to be the 

major pigments produced by the new yeast isolate R. rubra TP I , as reported earlier 

(Hari, 1994). In Rhodotorula and Rhodosporidium species, carotenoids, torulene and 

torularhodin are produced in high amounts even though several others carotenoids 

including J3, y and o-carotene, phytoene, phytofuluene and J3-zeacarotene may balso be 

present (Ciegler, 1965; Hayman et al. 1974). 

In a study to re-examine the pigments produced by R. glutinis strain 48-23T 

which had been studied earlier by Nakayama et al., (1954). Simpson et al., (1964) 

reported that the total carotenoid concentration, on a dry weight basis, was nearly equal 

at both room temperature and 5° C, however, the level of torulene and torularhodin 

coupled with a decrease in the levels of ~-carotene when the yeast was cultured at a 

higher temperature, 25° C. The gain in the levels of torulene and torularhodin were 

nearly equal to the decrease in the level of J3-carotene. According to Simpson and group 

( 1964 ), these results suggest that y-carotene lies at the branch point in the carotenoid 

biosynthesis sequence, and that intermediates can be channelled through it either to J3-

carotene or to the red pigments, torulene and torularhodin, depending on the growth 

temperature. Similarly, in R. pallida 62-506, it was shown that there was an increase in 

the level oftorulene and torularbodin as the level ofy-carotene decreased. 
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3.1.4 Effects of Initial pH: 

Optimum biomass production was achieved when the initial pH range was 

between 5 and 7 (Table 3). The differences in biomass yields of all the mutants and the 

parent were statistically significant. In an earlier study (Sangha. 1994) it was found that 

the amount of growth decreased for R. rubra TPl as the pH increased from 7.2 to 10. 

This was also the case in the present study. Sangha ( 1994) also reported that yeasts had 

difficulty in growth at pH between 3.0 and 4.9. 

3.1.5 Effects of Light: 

It is known that light influences pigment production in biological systems. The 

effect of light enhanced biomass yields and pigment production in the parent and the 

mutant yeasts. Mutants MI. M2 and TPl gave high carotenoid concentration than 

mutant M3. Figure 15 shows the effect of light on total carotenoid concentrations in 

yeasts grown at 28° C in YM broth. The light source was a tungsten lamp in a 

Psychrothenn. Effect of darkness on pigment production was observed by growing the 

yeast in dark brown flasks and incubated in a psychrotherm with lights turned off. The 

pigment concentrations in yeast grown were very low in darkness compared to that of 

samples grown under light. Figure 16 shows the total carotenoid concentration (TCC) of 

all the yeast samples tested. Parent TP l and M2 showed almost the same TCC, 148.4 

and 152.5 jlg/g (dry weight), respectively. 

Girard et al. (1994) observed that yellow mutants of P. rhodozyma accumulated 

high concentrations of ~-carotene while the white mutants produced no carotenoids. In 

Rhodotorula species, y-carotene produced in then biosyntbetjc pathway is usually 
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Table 3. Effect of initial pH on biomass yeilds- in yeasts. 

Yeast TPl M1 M2 M3 

Initial pH Biomass yeild (giL) 

3 5.2 ± 0.1 4.8 ± 0. 1 4.4 ± 0.3 3.8 ±0.6 
5 5.9 ± 0.1 5.2 ± 0. 1 5.6 ± 0.2 4.8 ± 0.3 
7 8.8 ± 0.1 7.9 ± 0. 1 7.4 ± 0.2 6.7 ± 0.3 
9 5.4±0.1 4.8 ± 0.1 4.6 ± 0.1 3.8 ±0.2 

Yeasts were grown in pre-adjusted pH liquid media flasks (500 ml) containing 300 ml 
YM-broth. Inoculated flasks were incubated at 25° C in a Psychrotherm shaker (150 
rpm). Cells were collected by centrifugation after 5 days. Wet weights and dry weights 
were determined in pre weighed glass centrifuge tubes. Each experimental point 
represents an average of three readings. Errors given are standard deviations. 
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Fig. 15 Effect of light on total carotenoid concentration in different yeasts. 

Yeasts were grown in liquid media in flasks (500 ml) containing 300 ml YM-broth as 
described under Materials and Methods. The standard errors in the mean for TPl, Rm, 
Rt, Ml, M2 and M3 are± 4.6, 5.3, 5.6, 4.5, 6.2 and 4.3, ~g/g, dry weight, respectively. 
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Fig. 16 Effect of darkness on total carotenoid production in different yeasts. 

Yeasts were grown in liquid media in flasks (500 ml) containing 300 ml YM-broth as 
described under Materials and Methods. The standard errors in the mean for TPl, Rm, 
Rt, Ml, M2 and M3 are ± 5.2, 5.7, 4.7, 5.4, 4.8 and 5.4, ~g/g, dry weight, respectively. 
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transfonned to yield either J3-carotene or torulene (Goodwin, 1965). The torulene can 

then be oxidized to form torularhodin (Simpson et al. 1964). In a study (Kayser and 

Volloutreix, 1961 ), it was found that the isolated J3-carotene over producing mutants 

were similar to ~-carotene accumulating mutants of the yeast R. glutinis. 

Although the mutants appeared to produce pigments similar to those encountered 

m the parent strain the total quantity was reduced in them. Girard et al., (1994) 

postulated that low pigment production in mutant is due to inhibition of the early steps of 

carotenogenesis and the enzyme, phytoene synthetase, may be affected. In the present 

study mutants M2 and M3 in which ~-carotene in the total carotenoid content was 

detected may represent similar condition. 

Spectral analysis (Table 4) and the wild-type reported that all the mutants contain 

torulene, torularhodin and J3-carotene. Simpson et a/. ( 1964), in their investigation of 

pigment production in P. rhodozyma reported that y-carotene is converted to torulene 

which is in tum converted to torularhodin. Nakayama et al. ( 1954) determined the 

content of individual carotenoids present in several species of Rhodotorula and reported 

that torulene, torularhodin, ~-carotene and y-carotene to be the principal pigments in 

these yeasts. Although all investigators agree on the presence of these three components, 

torulene, torularhodin, and ~-carotene, the data with respect to concentrations reported 

was variable. Perhaps, all these researchers used different strains of yeast and cultural 

conditions in their studies. 

Since it has been reported that pigment composition depends on the strain of yeast 

and particular cultural conditions (Nakayama et al., 1954; Kavanikov et al., 1978; 

Bonner et al., 1946), the variations in the concentration of the different pigments should 
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Table 4. Absorption maxima (f.. max) of carotenoids from different yeasts. 

Carotenoid 
Torularhodin 465, 501, 537 a* 
Toluene 454-460,480-484 513-518 b* 
{J-carotene 425 448-453,475-482 a* 

a"' Goodwin, 1955; b* Liggen-Jensen, 1965. 
Absorption spectra were obtained on a Shimadzu spectrophotometer using visible light 
between 400 - 600 nm. 
Ml: Mutant l., M2: Mutant 2 ., and M3: Mutant 3. 
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not be surprising. In the current work the major pigments produced by these mutants 

have been identified to be torulene, torularhodin and ~-carotene. The findings of present 

investigations are supported by the earlier work (Simpson, 1964; Nakayama et al., 1954; 

Kavanikov et al., 1978 and Bonner, 1946). 

3.2 Effect of Extraction Methods on Pigment Recovery: 

3.2.1 French Press: 

Mechanical disruption of yeasts has traditionally been accomplished by using 

either a French press or a Bead beater. In the present study, the recovery of carotenoids 

from wild-type yeasts, TPI, Rm, Rt and mutants Ml, M2 and M3, were 326.7, 277.5, 

291.6, 245.4, 242.5 and 193.2 j.lg/g, dry weight yeast, respectively, using French press 

method (Fig. 17). Mutants Ml and M2 showed comparable pigment recovery. The least 

yield of pigment recovery was obtained with M3 i.e. 59.1 % compared to that from TPI . 

The wild type yeasts gave superior yields compared to the mutant yeasts. 

3.2.2 Freeze-drying: 

Figure 18 shows the recovery of carotenoids from freeze-dried cells of TP 1, Rrn, 

Rt, Ml , M2 and M3. The yields were 282.2, 196.3, 243.5, 158.6, 237.4 and 214.4 j.lg/g, 

dry weight yeast, respectively. In the present study it was observed that M2 gave higher 

recovery than other two mutants Ml and M3. Compared to yield from TPl, the recovery 

of carotenoids from M3 was 84% while those from Ml and M3 were 56.2 and 75.8 %, 

respectively. The yeasts, Rt and M2 gave comparable yields of carotenoids with values 

of 86.1 %and 84.1 %, respectively, compared to that from TP 1. M3 gave slightly better 

55 



350 - - 326:-7-

-C) 
300 -C) 

..--
291.6 - 277.5 .----

::l -c 250 
..-- 245.4 242.5 - ¥ - -0 

:.::: 
CJ 200 ::l 

,. .. 193.2 ... . . 
-~. ~ 

"C ~ 

0 150 '-c. 
k . 

... 
c 100 Q) 

. 
E ' ' 
CD 50 a.. - ' 

0 I I I T 

TP1 Rm Rt M1 M2 M3 

Fig. 17 Effects of French press method on pigment recovery in different yeasts. 

Known amounts of yeast cells were broken in a French press and the broken cell 
mass extracted with acetone as described under Materials and Methods. 

The values represent averages of three detenninations. The standard errors in the 
mean for TPl , Rm, Rt, Ml , M2 and M3 are± 8.1, 4.7, 9.2, 5.4, 6.2 and 4.2 ~gig, dry 
weight, respectively. 

56 



·--

300 

-C) 
.5 "C - 237.4 ·- C) 250 0 ~ 

c:-
Q) c: 
..... 0 
0 ·- 200 '- ..... ca ca u.::: - c: 
('Q G> ..... u 150 0 c: t- 0 

(.) 

100 

TP1 Rm Rt M1 M2 M3 
Yeast sample 

Fig. 18 Pigment extractability using freeze drying method in yeasts. 

Known amounts of frozen yeast cells were lyophalized for 24 hours and the dried 
powder was treated with DMSO and petroleum ether. The pigment was collected by 
centrifugation and the total carotenoid concentration was achieved by using spectrophoto 
meter results as described under Materials and Methods. The values represent averages 
of three determinations. The standard errors in the mean for TP 1, Rm, Rt, M 1, M2 and 
M3 are± 8.2, 6.3, 8.1, 5.2, 3.4 and 7.3 J.tg/g, dry weight, respectively. 
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recovery of pigments than wild type yeast, Rm. Compared to other yeasts M 1 gave least 

amounts of pigment recovery, with a value of only 56.2 %. 

3.2.3 Sonication: 

Figure 19 shows pigment recoveries from various yeasts broken by sonication. 

Pigment recoveries from Rt, Rm and Ml were 98.7, 86.5 and 92.3 %, respectively, when 

compared to the parent organism, TPl. Wild type yeast, Rt showed 1.3 %reduction and 

Ml showed 7.7% reduction in their pigment recovery with values compared to that from 

TPI. Pigment recovery from Rrn and M2 were similar with values of 86.5 and 84.0 %, 

respectively, when compared to the recovery from TPI. Least quantity of carotenoids 

were released from M3 with a value of77.6% compared to that from TPl. 

Figure 20 shows comparative recovery of carotenoids using different extraction 

methods. It is evident from the figure that French press method is superior compared to 

the other two methods. The recovery of carotenoids from TPl, using French press method 

was greatest (326 /Lg/g, dry weight). In contrast other methods decreased the amounts of 

carotenoids released. Example, yields using sonication method and freeze-drying method 

were 37 % and 86.4 %, respectively, compared to that from French press method. 

Compared to the other extraction methods, pigment recoveries from Ml and M3 were 

greater with French press method. Yields with sonicaton method for Ml, was only 46 % 

while that with freeze-drying method was 64.6 % of the value obtained with the French 

press method (Fig. 21). Similarly percentile pigment recovery from M2, revealed 

decreased values with sonication and freeze- drying methods. Values observed were 57.5 

%and 47 %, respectively (Fig. 22). In the case ofM3, surprisingly, the highest yield of 
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Fig. 19 Pigment extractability using sonication method in different yeasts. 

Known amounts of yeast cells were treated with enzyme and incubated for 24 hours. 
This cell mass was sonicated for 3 minutes with 30 second intervals for each. This cell 
debris was treated with acetone and the pigment was collected by centrifugation as 
described under Materials and Methods. The values represent averages of three 
determinations. The standard errors in the mean for TP 1, Rm, Rt, M 1, M2 and M3 are ± 
7.6, 4.3, 5.2, 6.4, 5.7 and 7.2 J..tg/g, dry yeast, respectively. 
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carotenoids was obtained with freeze-drying method (Fig. 23). The percentile recoveries 

obtained with the French press and sonication method were 44.4 and 90 %, respectively. 

compared to that with the freeze-drying methods. Results of extraction of carotenoids 

from Rm using the three methods as described above are illustrated in Fig. 24. From this 

figure it is evident that French press method is superior compared to the other two 

methods. Pigments recovered using sonication and freeze drying methods represent 38.3 

% and 70.7 %. respectively. when compared to quantity of pigment released using the 

French press method. Figure 25 compares quantities of pigment released from Rt with the 

three methods. Once again French press method caused highest amounts of pigments to 

be released from this yeast. The amounts of pigments released with sonication and freeze 

drying methods represented 41.6 %and 83.5 %compared to the French press method. 

Hari (1994) compared pigment release from P. rhodozyma and R. rubra using French 

pressure methods and found that the pigment yield from R. Rubra was more (2.07 mg/L 

of medium) than from P. rhodozyma(l.21 mg!L medium). 

Several methods have been attempted to enhance pigment extraction from 

P.rhodozyma including mechanical breakage and chemical (acid or alkaline) hydrolysis 

(Simpson et al. 1971 ). These investigators found both methods to be very laborious. It 

was also observed that acid or alkaline hydrolysis resulted in denaturation of carotenoids 

(Davies. 1976). Phaff ( 1977) proposed that the digestion of yeast cell walls for the 

extraction of pigment protein employing microbial lytic enzymes. 
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3.2.4 Extraction using Enzymes: 

(i) Effect of different lytic enzymes on pigment release: 

Three different lytic enzymes used were from Rhyzoctonia so/ani, Aspergillus 

species, and Trichoderma hazarium. Table 5 shows the effect of these enzymes on the 

recovery of carotenoids from different yeasts. From this table it is evident that the 

enzyme from Rhyzoctonia so/ani is more efficient in lysing the cell walls of the mutants 

and the parent yeast, TPl compared to lytic enzymes from other yeasts. 

(ii) Effect of Buffers: 

Breakage of various yeasts at different pHs using Tris-HCl (pH: 7.0, 7.5, 8.0, 8.5 

and 9.0) and citrate phosphate (pH: 5.0, 5.4, 6.0, 6.6 and 7.0) buffers was examined. 

Table 6 and 7 show the total carotenoid recovery from different yeasts. It is apparent 

from these two tables that optimum cell breakage occurs at pH 7.0 with maximum 

pigment release. With Tris-HCl buffer (pH 7.0) Ml, M2 and M3 gave 76 %, 68% and 

53.5 %, respectively, of pigment recovery compared to that from TPI. It is also observed 

that the recoveries decreased with higher pH values of the buffers (Table 6). In the case 

of citrate phosphate buffer (pH 7.0) the pigment yields from Ml, M2 and M3 were 

197.7, 162.1, 141.7 and 101.1 JLg/g, dry weight, respectively. When pigment recoveries 

from Ml, M2 and M3 at this pH are compared to that from TP 1, there is a reduction by 

18.1, 28.4 and 48.9 %, respectively. In the case of Ml the pigment recovery at pH 5.4 

and 6.0 were similar ( 105 and l 06 JLg/g). 
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Table 5 Effects of lysing enzyme from djfferent sources on pigment recovery of yeasts 

Enzyme Source Total Carotenoid concentration (JJ.g/g 
Yeast Sample TP I Ml M2 M3 
Aspergillus 182.2 ± 6.4 * 154.4 ± 5.2 88.5 ± 7.8 104.3± 5.0 
species 
Trichoderma 176.3 ± 7.5 104 5 ± 8.7 142.2 ± 6.8 96.5± 7.1 
Hazarium 
Rhyzoctonia 194.5 ± 6.2 114.3 ± 5.8 104.1 ± 6.3 102.3 ± 7.0 
So/ani 
No enzyme 82.7 ± 5.5 85.5 ± 6.0 62.7 ± 6.5 45.9 ± 5.7 

The yeast cells ( 1 g) were suspended in 2 ml of tris HCl and treated with 3.5 mg 
of enzyme from different sources separately. This cell suspension was sonicated after 24 
hours of incubation. The pigment was then extracted as described in Materials and 
Methods. 

*Standard errors are for averages of three determinations. 
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Table 6. Recovery of carotenoids by using lytic enzyme (R. so/ani) in Tris-HCl buffer 

Carotenoids (j.i.g/g) 
pH 

7.0 7.5 8.0 8.5 9.0 
lsoJate 

TPl 241.5 ± 3.4* 212.7 ± 4.3 192.3 ± 6.4 182.2 ± 5.2 147.3 ± 6.7 
Ml 184.4 ± 4.1 158.5 ± 6.4 132.4 ± 5.4 112.6 ± 4.8 98.7 ± 3.2 
M2 164.2 ± 5.2 127.6 ± 3.7 113.9 ± 5.0 102.3 ± 4.3 85.3 ± 2.7 
M3 129.4 ± 4.9 106.5 ± 5.4 96.5 ± 4.1 87.4 ± 2.8 78.2 ± 3.5 

The yeast cells (I g) were suspended in 2 mJ of tris HCI and treated with 3.5 mg of 
enzyme. This cell suspension was sonicated after 24 hours of incubation. The pigment 
was then extracted as described in materia] and methods. The procedure is same as 
mentioned in the caption of Table 3 except the concentrations for each sample were 
varied between 7.0 and 9.0. 
*Standard errors are for averages of three determinations. 
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Table 7 Recovery of carotenoids by lytic enzyme (R. so/ani) in citrate phosphate buffer 

Carotenoids )tglg, dry weight) 
pH 

5.0 5.4 6.0 6.6 7.0 
Isolate 
TPl 114.3 ± 4.1 129.6 ± 3.6 144.2 ± 3.4 170.5 ± 4.2 197.7 ± 4.9 
Ml 75.7±4.1 106.5 ± 4.7 105.4 ± 3.4 134.5 ± 3.6 162.1 ± 3.1 
M2 64.2 ± 5.2 81.9 ± 5.8 94.2 ± 4.8 104.5 ± 6.5 141.7 ± 6.0 
M3 56.2 ± 4.7 63.5 ± 4.5 77.4 ± 4.2 89.6 ± 3.6 101.1 ± 5.3 

The yeast cells ( 1 g) were suspended in 2 ml of citrate phosphate buffer and 
treated with 3.5 mg of enzyme. This cell suspension was sonicated after 24 hours of 
incubation. The pigment was then extracted as described in material and methods. The 
procedure is same as mentioned in the caption of Table 3 except the concentrations for 
each sample were varied between 5.0 and 7.0. 
*Standard errors are for averages of three determinations. 
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(iii) Effect of reducing reagen ts: 

Different Molarities of reducing reagents were obtained using dithiothreiotol 

(DTT, 5.0, 10, 15.0, 20.0, 25.0 and 35.0 mM) and beta-mercapto ethanol (BME, 50, 

100, 150, and 200 mM). Table 8 shows the effect ofDTT on pigment recovery in TP1 , 

Ml, M2 and M3 yeasts. The table shows that the best concentration of DTT for higher 

enzyme activity is 25 mM and the yields observed forMl, M2 and M3 were 90.5, 85.9 

and 79 %, respectively, compared to that from TP 1. lt is observed that the pigment 

recovery increased with the increasing concentrations of the reducing agent (5 to 25 

mM). 

Table 9 shows effect of BME on pigment recovery in the isolates. The pigment 

recovery decreased in MI, M2 and M3 by 8.9, 14.6 and 26.2 %, respectively, when 

compared to that from TPJ. From the table it is evident that the best recovery was 

observed with BME concentration of 100 mM. When 150 to 200 mM BME was used 

with the lytic enzymes the pigment release was reduced. Of the two reducing agents, 

DTT was found to be superior in stimulating enzyme activity. The total carotenoid 

recovered with OTT using TPI, MI, M2 and M3 were 96.5, 87.4, 82.9 and 76.3 p.g/g, 

respectively. 

(iv) Effect of freezing and thawing: 

Table l 0 shows that freeze and thaw method enhances pigment release from cells 

treated with lytic enzymes and then sonicated. TPI showed more recovery than the 

mutants. Pigment recovery in frozen and thawed cells doubled or tripled when compared 

to unfrozen yeast cells (Table 10). The recoveries in Ml, M2 and M3 were about 85 %, 

78 % and 73 %, respectively, compared to that from TPI. 
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Table 8 Recovery of carotenoids by using lytic enzyme (R. solani) in Dithio threiotol 
(DTT) buffer 

DTT 
Concentration 
(in mM) Carotenoids (p.g/g, dry weight) 

TPl Ml M2 M3 
5 63.2 ± 3.2 * 54.1 ± 4.3 48.3 ± 5.2 42.7 ± 4.9 
lO 73.6 ± 4.1 69.1 ± 5.1 55.4 ± 4.2 57.4 ± 5.4 
15 81.3 ± 5.2 74.5 ± 4.7 55.4 ± 4.2 64.2 ± 4.6 
20 87.6 ± 3.5 81.9 ± 5.3 76.5 ± 5.4 71.4 ± 5.1 
25 96.5 ± 4.1 87.4 ± 3.7 82.9 ± 3.4 76.3 ± 2.9 
30 82.4 ± 2.0 73.9 ± 2.3 67.5 ± 2.7 58.9 ± 2.6 
35 63.4 ± 3.2 54.2 ± 2.7 50.6 ± 3.9 43.2 ± 3.4 

The yeast cells ( 1 g) were suspended in 2 ml tris HCl contained DTT with various 
concentrations (5 to 35 mM) and treated with 3.5 mg of enzyme. This cell suspension 
was sonicated after 24 hours of incubation. The pigment was then extracted as described 
in material and methods. 

* Standard errors are for averages of three determjnations. 
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Table 9. Recovery of carotenoids by using lytic enzyme (R. solani) in Beta Mercapto 
Ethanol (BME) buffer 

BME 
Concentration Carotenoids (!J.g/g, dry weight) 
(in mM) 

TPl Ml M2 M3 
50 81.8 ± 3.2 * 74.6 ± 2.3 63.8 ± 2.6 54.3 ± 3.5 

lOO 92.7 ± 2.7 84.5 ± 2.1 79.2 ± 3.1 68.5 ± 2.7 
150 79.3 ± 2.4 73.2 ± 2.6 64.7 ±2.7 56.2 ± 3.3 
200 64.2 ± 2.8 61.4 ± 3.1 53.2 ± 2.4 48.9 ± 2.1 

The yeast cells (1 g) were suspended in 2 ml tris HCI contained BME with various 
concentrations (50 to 200 mM) and treated with 3.5 mg of enzyme. Tbjs cell suspension 
was sonicated after 24 hours of incubation. The pigment was then extracted as described 
in material and methods. 

* Standard errors are averages of three determinations. 
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Table l 0. Recovery of carotenoids by using lytic enzyme (R. so/ani) by freeze and thaw 
method 

Carotenoids (JlH)f!., dry weight) 
Isolate Fresh cells Method Freeze and thaw Method 
TPl 82.5 ± 2.6 * 194.3 ± 1.7 
Ml 85.9 ± 2.4 165.5 ± 2.3 
M2 62.8 ± 2.1 81.9 ± 5.8 
M3 45.7 ± 3.1 142.5 ± 2.2 

Known amounts of yeast cells were allowed to thaw after being frozen and treated 
with enzyme. The cell suspension was then incubated for 24 hours and the pigment was 
then extracted by centrifugation after sonication as described in material and methods. 
* Standard errors are averages of three determinations. 
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Figure 26 illustrates effects of increasing substrate (one gram of yeast cells) on 

the activity of lytic enzymes. From the figure it is observed that with a constant amount 

of lytic enzyme, the pigment recovery increased as substrate amounts were raised from 1 

g to 4 g of yeast cells. Optimum pigment recovery resulted with 4 g of yeasts and 3.5 mg 

of lytic enzyme. 

Substrate concentration greater than 4 g per assay did not increase pigment 

recovery. Figure 27 illustrates effects of increasing enzyme concentration on the 

recovery of pigments from frozen and thawed yeast cells. Optimum pigment release 

occurred with enzyme concentrations of 2.5 - 3.0 mg per assay. In the case of TPI 

maximum pigment release was observed with 2.5 mg enzyme, while in the case of other 

yeasts, this concentration was found to be 3.0 mg per assay. Higher enzyme 

concentration did not show corresponding increases in pigment release. French press 

method showed better pigment recovery with all the isolates. Pigment recovery in cells 

broken by French press doubled when compared to enzymatic breakage (Table 11 ). 

Sangha (1994) also found in a study that R. rubra cell wall was resistant to the enzyme 

treatment and practically no pigment was extractable from the enzyme treated. Hence, P. 

rodhozyma cells were much more amenable to rupture by the funcelase than to 

mechanical rupture in a Frech press. It was also noted that, the enzyme had a pH 

optimum of 4 to 5 and a temperature optimum of 30° C. In the present study enzyme 

activity was tested at 25° C using a water bath. Sangha, (1994) also found that the 

enzyme treatment requires a more scrupulous control of experimental conditions in order 

to be effective than the French press rupture method. Also, the economic feasibility of 

enzyme treatment is questionable as reported by 
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Fig. 26. Effects of cell biomass on the activity of the lytic enzyme. 

Different amounts of yeast cells (wet weight) were treated with the same amount 
of (3.5 mg) enzyme and were incubated for 24 hours and the pigment was extracted as 
described in Material and Methods. Amounts of carotenoids released were qualitatively 
measured by determining absorption by the extract preparations at 400 nm. 

Each data point represents an average of 3 readings. The standard errors of the 
mean for Tpl, Ml, M2 and M3 are± 0.1, 0.2, 0.1, and 0.1, respectively. 
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Fixed amount of cell mass was treated with the different volumes of enzyme and 
incubated for 24 hours. The pigment was extracted as described in the Materials and 
Methods. 

Each data point represents an average of 3 readings. The standard errors of the 
mean for TPl , Ml , M2 and M3 are± 0.2, 0.2, 0.1 and 0.3, respectively. 
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Gentles and Haard ( 1991 ). These factors tell that the enzymatic technique is less 

commercially practical than the French press. French press method showed better 

pigment recovery with all the isolates. Pigment recovery in cells broken by French press 

doubled when compared to enzymatic breakage (Table 11). Sangha (1994) also found in 

a study that R. rubra cell wall was resistant to the enzyme treatment and practically no 

pigment was extractable from the enzyme treated cells. Gentles and Haard ( 1991) 

treated P. rhodozyma with the enzyme funcelase and reported that the yeast capsule, not 

the cell wall, was removed by enzyme treatment. This would explain the susceptibility of 

the P. rhodozyma cell wall, by the enzyme treatment perhaps, that the apparent 

differences in the structure of capsule in these two red yeasts (Gentles and Haard, 

(1991 ). ln the present study, cells were incubated for 24 hours before extracting the 

pigment. French press ruptured method showed more extractability than with the 

enzymatic cell breakage. 
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Table 11. Recovery of carotenoids by enzymatic breakage and French press 

Carotenoids (p.g/g, dry weight) 

Isolate French press method Lytic enzyme method 
· TP1 326.7 ± 1.2 * 194.3 ± 1.7 

Ml 245.4 ± 1.6 165.5 ± 2.3 
M2 242.5 ± 1.4 81.9 ± 5.8 
M3 193.2 ± 2.1 142.5 ± 2.2 

*Standard errors are for averages of three determinations. 
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CONCLUSIONS 

The yeast cells were grown under different growth conditions and observed that 

the optimum temperature for all the mutants was 28°C. Parent TPI yielded 12.5 g/L 

biomass and other the mutants Ml, M2 and M3 13.1, 11.0 and 9.5 giL, respectively. 

Yeast malt broth with 2 % peat extract as a nitrogenous source was observed to be a 

good substrate concentration. The cane molasses concentration 1 to 2 % as a carbon 

source also gave good biomass yield, whereas bacto czapex dox broth was found to be 

inhibitor of the growth and pigment production in all the yeast samples. The initial pH of 

the media was found to be 5.0 to 7.0 for the optimum growth. In all the growth 

conditions light enhanced the pigment production. 

The French press method was found to be an efficient extraction method for the 

mutants as well as the wildtype yeasts. The total carotenoid concentrations for Ml, M2 

and M3 are 250.6, 245.4 and 193.2 J,lg/g (dry yeast), respectively. Mutant 2 gave high 

amount of pigment when it was extracted with Freeze dryer method. Sonication method 

alone did not give much extraction of the pigment in all the mutants.Tbe cells that were 

treated with lysing enzyme from Aspergillus species gave higher yields of pigments. 

Lysing enzymes tested with Tris- HCI and Citrate-phosphate buffers at pH 7.0 resulted 

in relatively greater pigment release. The freeze and thaw method also enhanced the total 

carotenoid concentration compared to fresh, unfrozen/thawed yeast cells. Yeast cells 

when treated with different concentrations of thiol reagents like beta mercapto ethanol 

(100 mM) and Ditbio thritol (25 mM) showed less pigment recovery. 
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In the presence of 1 to 2 % cane molasses or 2 % peat extract supplements in YM 

broth, better growth yields combined with higher pigment production were noted. All 

yeast cultures grew well between pH 5.0 and 7.0, at 28" C. 

From the above it is concluded that French press method is superior extraction 

technique as compared to other methods. Enzymatic methods did not improve the 

extractability of pigments when compared to other methods. For better understanding of 

the biology of the mutant strains the following directions may be adopted: 

(i) Proximal analysis. 

(ii) Regulation of the biosynthetic pathway for carotenoids. 

(iii) Characterization of the key enzymes in the biosynthetic pathway for carotenoids. 
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