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ABSTRACT 

Studies have shown that constraint-induced therapy (CIT) improves recovery of 

the impaired upper extremity and influences neuroplastic changes in the recovering brain, 

primarily in chronic stroke populations and when paired with six hours of additional 

therapy per day. A protocol of mitten constraint was developed in which subjects, during 

the rehabilitation phase of stroke, wore a mitten on the sound hand rather than a sling and 

splint as used previously, gradually increasing wearing time, without hours of additional 

therapy. The purpose of this exploratory study was to evaluate the effectiveness of this 

constraint protocol and compliance to the treatment. Subjects were randomly assigned to 

CIT plus conventional therapy or conventional therapy only. Upper extremity, lower 

extremity and trunk motor control and strength were evaluated along with shoulder pain, 

compliance and level of dependence on caregivers. CIT appeared to significantly improve 

recovery of postural control and augmented recovery ofthe impaired upper extremity. 

The constraint protocol was most effective in male subjects and subjects with left 

hemiplegia. Compliance varied according to level of disability on admission but was not 

related to overall recovery. CIT did not induce increased dependence on caregivers and 

was not associated with adverse events however there was a trend toward increased 

hemiplegic shoulder pain in some subgroups that was associated with poorer outcome. It 

was concluded that this constraint protocol was a clinically relevant and practical method 

to apply CIT in the acute rehabilitation setting. 
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INTRODUCTION 

Stroke is caused by transient or permanent reduction in cerebral blood flow either 

by emboli or thrombus formation or hemorrhage. This loss of blood supply causes a 

cascade of events leading to varying degrees of brain tissue loss. The nature and extent of 

impairment and disability depends mainly on the precise location of the stroke within the 

brain. Patients, post-stroke, typically suffer from a range of impairments including paresis 

of the body opposite to the cerebral lesion, contralateral sensory loss, expressive and/ or 

receptive aphasia, swallowing difficulties, and intellectual, memory and perceptual 

impairment. 

It has been demonstrated that a coordinated approach to rehabilitation in 

specifically dedicated stroke units is superior to rehabilitation provided in a general 

hospital ward (lndredavik 1997; Langhorne 2001). There are a number ofhistorical and 

philosophical approaches to the rehabilitation ofthe stroke patient that have been 

employed over the past 60 years. For example, Neuro-Developmental Treatment suggests 

attainment of upright postural control and skill in weight bearing positions before 

progressing to skilled activity whereas the Motor Learning Approach recommends 

beginning skilled activity using accepted motor learning principles. The Proprioceptive 

Neuromuscular Facilitation Approach teaches therapists to move the limbs and trunk in 

combinations of movements through functional ranges facilitating and providing 

resistance to gain motor control. None of these treatment approaches has been found to be 

superior to the other (Barreca 200 I). There is evidence, however, that certain specific 

treatments such as repetitive skilled activity, constraint of the sound arm, treadmill and 



strength training, functional electrical stimulation, among others, have significant benefit 

(see review Ploughman 2002). 

To complicate physical rehabilitation, stroke patients also suffer from altered 

muscle tone in the trunk and limbs theorized to occur as a result of release of inhibitory 

supraspinal control as well as other mechanisms. The hemiplegic arm and hand often 

adopt stereotypical postures; the arm tends to be biased toward elbow flexion, wrist and 

fmger flexion with combination of forearm pronation or supination and shoulder flexion 

and medial rotation. The lower limb usually moves into extension synergy with knee 

extension and ankle plantarflexion making it difficult for the limb to swing freely during 

gait. The stroke survivor often develops shoulder subluxation due to the weight of the arm 

and an unprotected, mal-aligned shoulder joint. This will sometimes be related to 

shoulder and hand pain and swelling. It has been estimated that up to 75% of stroke 

patients experience hemiplegic shoulder pain and this pain has been associated with 

poorer functional outcome after stroke (for review see Turner-Stokes 2002). 

Stroke patients with a lesion affecting the right or non-dominant hemisphere will 

often have spatial neglect, a perceptual impairment in which the stroke patient fails to 

attend to stimuli originating from the hemiplegic (contralateral) side. This phenomenon is 

reported in up to 85% ofleft hemiplegic (right brain lesion) stroke patients and has been 

suggested to limit stroke recovery (Paolucci 2001; Azouvi 2002). 

A philosophical approach exists in rehabilitation in which patients with stroke are 

encouraged to compensate for unilateral impairment using the sound side. After stroke, 

patients are fitted with an arm sling to support the affected arm and a four-point quad 

cane or a wheelchair to provide safe and independent ambulation. They are taught to use 
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the sound limb to perform activities of daily living (ADL) such as dressing, eating and are 

provided with devices that assist with one-handed activities. Although this approach may 

provide the patient with early independence, it may also impede optimal recovery of the 

affected side. There is also a trend especially in managed-care settings in the United 

States to limit the intense rehabilitation phase as an inpatient to 2 weeks followed by less 

intense therapy in an outpatient or day hospital setting. Accepted practice in Canada is an 

average rehabilitation length of stay of about 50 days (Canadian Institute for Health 

Information 2003). Patients who do not require nursing or medical care are often provided 

rehabilitation services in an outpatient or day hospital setting. The rehabilitation period is 

most often determined by attainable goals set by the patient and the rehabilitation team. 

This thesis begins in Chapter 1 by reviewing the 'state of the art' in physiotherapy 

and stroke rehabilitation, specifically, the effect of physiotherapeutic techniques on 

plasticity of the recovering brain. The information provided in this chapter was previously 

published in the peer-reviewed journal Physiotherapy Canada in October, 2002. A 

number of questions are posed to rehabilitation professionals and researchers in the article 

regarding the analysis of specific physiotherapy approaches and treatments in stroke 

rehabilitation. 

The second chapter contains the details and results of a randomized controlled 

exploratory study performed at the L.A. Miller Centre in St. John's between June 2001 

and February 2003. This trial, approved by the Human Investigations Committee, 

examines the effect of a method to intensify input to the affected upper extremity during 

the rehabilitation phase of stroke. The study also explores the practical issues and 
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compliance to such a treatment within a rehabilitation setting and makes 

recommendations for future research in the field. 
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CHAPTER I 

A Review of Brain Neuroplasticity and Implications for 

the Physiotherapeutic Management of Stroke 

1.1 Introduction 

Health Canada reports that there were over 49,000 hospitalizations due to stroke 

in 1997 (Health Canada 2000). Hemiparesis contralateral to the side ofthe lesion, is the 

most common deficit after stroke acutely affecting 80% of patients and greater than 40% 

chronically (Cramer 1997). Recovery of the hemiplegic upper extremity is one ofthe 

main challenges in the rehabilitation management of stroke. For many years clinicians 

have held the view that brain tissue had little or no potential for recovery {Turton 1996). 

However, despite this belief, in the rehabilitation setting, stroke patients showed 

continued functional improvement beyond the 'window of recovery' often considered to 

be 6 months post-injury. Over the past ten years, advances in experimental techniques and 

brain mapping technology have shown that the adult brain continues to be modified with 

experience and after injury (Kolb 1992; Hallett 1999; Johansson 2000).This can be 

examined at a molecular or cellular level and on a larger systems level. This paper will 

review current brain plasticity research in humans and animals, examine the influence of 

rehabilitative techniques, particularly in the upper extremity, and discuss the implications 

in the physiotherapeutic management of stroke. This is a scientific review rather than a 
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systematic one, so although the literature search is comprehensive, one cannot be assured 

that every research paper has been cited. 

1.2 Neuroplasticity in the Intact Adult Brain 

1.2.1 Environmental enrichment 

There have been numerous studies examining the effects of sensory impoverishment and 

sensory and social stimulation on the rodent brain. Mice housed in enriched environments 

with climbing and manipulative toys (Kempermann 1997) or with free access to a running 

wheel (van Praag 1999) typically have increased number of neurons in the hippocampus. 

Voluntary running has also been shown to increase the levels of brain-derived 

neurotrophic factor in the rat brain (Neeper 1995). Black (Black 1990) examined the 

cerebellar neurons of rats placed in four housing conditions for 30 days: 1) obstacle course 

(AC), 2) forced treadmill exercise (FX), 3) voluntary wheel running (VX) and 4) 

individual cages (IC). The groups with the highest activity, FX and VX, had increased 

capillary density in the cerebellum while the AC rats had dramatic increases in the 

synapses per neuron of the cerebellar Purkinje cells. Similar findings were reported by 

Kleim et al. (Kleim 1996) in the rat motor cortex with acrobatic training and there is 

reported increased number of bifurcating and multi-headed spines in neurons of the 

caudate nucleus of rats housed in enriched environments (Comery 1996). Others have 

shown that environmentally influenced neuronal modification also occurs in the brains of 

aged mice although to a lesser degree than adults (Kempermann 1998; Greenough 1999). 
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Overall, these studies indicate there is evidence in animals that various parts of the brain 

including hippocampus, cerebellum, cortex and striatum are changed in response to 

environmental stimulation and exercise. 

1.2.2 Motor Learning 

It is now generally accepted that the mammalian brain is capable of change 

throughout the lifetime in response to the environment and subsequent sensory 

experience. Investigators have used a number ofbrain mapping techniques to examine 

brain topography modification. 

Positron Emission Tomography (PET) scanning is used to measure regional 

cerebral blood flow (rCBF). Specific tracers are either injected or inhaled by subjects and 

while they move a particular body part their brain is scanned. Increased tracer uptake 

reflects areas with enhanced rCBF as a result of increased metabolic activity from the 

movement related neural activity (Rossini 1998; Hallett 1999). Focal transcranial 

magnetic stimulation (TMS) typically involves using a figure-of-eight coil placed over 

the skull to apply a stimulus to the cortex. The motor response to this stimulus is then 

recorded peripherally using EMG electrodes placed on the target muscles. In this way 

researchers can not only map brain regions but also record amplitude and latency of the 

motor evoked potential (MEP). Higher MEP amplitude and short latency are indicative of 

efficient cortical transmission (Rossini 1998). Functional magnetic resonance imaging 

(fMRI) measures small changes in blood flow that accompany brain activation during 
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performance of a task. Brain structure and blood flow can be measured simultaneously 

using fMRI (Cramer 2000). 

Specific sensory enrichment causes plastic change in the corresponding cortical 

map. A number of fascinating studies investigated cortical map enlargement of 

preferentially used digits, specifically the index finger of Braille readers and the digits of 

the playing hand of string players (Pascual-Leone 1993; Elbert 1995). It appears that the 

cortical territory serving the preferentially used digits in these individuals expands and the 

enhancement is temporally dependent, since it occurs to a greater degree when the 

practice is initiated at an early age and for longer periods. An interesting phenomenon in 

the proficient Braille readers is that the representation for the reading finger appears to be 

enlarged at the expense ofthe remaining fingers. As well, the same researchers (Pascual­

Leone 1995) examined cortical maps of Braille proof readers and showed that the map 

enlargement was larger on work days indicating the brain was capable of making a rapid 

change in response to input (or need). 

Motor task learning can be described as specific sensory and environmental 

enrichment since motor tasks are accomplished using repetitive sensory feedback to learn 

and refme the skill. Pascual-Leone (Pascual-Leone 1994)and Karni (Kami 1995) trained 

adult human volunteers on finger and/or thumb repetitive movements. The training 

groups had progressively larger cortical outputs to the involved muscles along with 

improved task performance. Pascual-Leone's group had a subsequent decrease in map 

size back to baseline after the motor sequence was learned indicating possible 

contribution of other brain structures rather than primary motor cortex. This is supported 

by others (Jenkins 1994; Kawashima 1994) who found that after learning a complicated 

8 



sequence of finger movements, rCBF shifted from cortex and cerebellum to the striatum. 

Several researchers have found that learning of motor skills in animals similarly increased 

the numbers of synapses per neuron in the motor cortex (Kleim 1996) and in the 

cerebellum (Anderson 1996; Kleim 1997; Kleim 1998) and in one study these findings 

persisted for at least four weeks after cessation of the training (Kleim 1997). These 

fmdings support the notion that motor skill practice may lead to structural brain changes 

that allow the skill to become "less cortical" and more automatic. This is important in 

relearning a skill particularly after neurological or orthopedic injury. 

Sensory/environmental impoverishment also appears to induce cortical change 

(Sanes 1998; Coq 1999). Amputees, in particular, have been studied to determine the 

extent of cortical change as a result of removal of input to the cortex from the amputated 

body part. Cohen (Cohen 1991) and Flor (Flor 1995) used magnetic source imagery 

(magnetic responses to stimuli of the digit cortical representations of the amputated hand) 

to show change in cortex topography. They demonstrated a mean shift in cortical 

responsivity to facial stimulation indicating that the somatotopic representation of the 

missing limb was 'taken over' by that of the face. Another study by Florence (Florence 

1998) used neural tracers to map the hand representation of four monkeys with chronic 

upper extremity injury. The findings were similar to Flor and colleagues, with the face 

and remaining upper limb maps expanding into the cortex representing the damaged limb. 

Two studies examined the speed and topography of cortical plasticity during short 

term deafferentiation using a blood pressure cuff on the arm and leg of normal human 

subjects (Brasil-Neto 1992; Brasil-Neto 1993). Within minutes MEPs from more 

proximal unaffected muscles increased then returned to baseline once the cuff was 
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removed. The cortical representation area for the muscle proximal to the tourniquet was 

enlarged. Is the cortical map change due to peripheral nerve impairment or decreased use 

of the particular muscles or both? Liepert (Liepert 1995) examined individuals with 

ankle immobilization following ankle injury without peripheral nerve damage. The 

immobilization caused a decrease in the cortical map representation for the tibialis 

anterior muscle, which quickly returned to baseline with muscle contraction. 

These studies may indicate that cortical maps are changing on a daily and even 

minute-to-minute basis depending on increase or decrease in sensory input and motor 

activity. It suggests that when a body part is injured, immobilized or missing, there is a 

neuronal change along with the more readily acknowledged musculoskeletal impairments. 

Garraghty and Muja (Garraghty 1996) have proposed that deafferentation in primates 

probably occurs in two phases; in the first phase some deprived neurons immediately 

express new receptive fields while in the second phase the remaining majority regain 

responsiveness over weeks or months. These changes in cortical representation are 

proposed to be mediated at the synaptic level via unmasking of latent synapses or an 

increased responsivity of synapses in the short term and modified synaptic morphology in 

the long term In summary, these research fmdings suggest that: 

• Acquisition of motor skill is mediated by change in cortical map topography. 

• An inability to move or perform a task due to physical injury causes brain topography 

modification. Therefore, patients with musculoskeletal injury likely have neuroplastic 

change as well. 

10 



• Specific skill training and practice may be integral to reacquire the skill and the 

corresponding cortical map representation. True intrinsic (automatic or unconscious) 

motor skill learning seems to occur when the activity becomes subcortical. 

1.3 Neuroplasticity in the Damaged Adult Brain 

If neuroplasticity occurs in the normal brain, does the damaged brain undergo 

similar processes and is neuroplasticity related to functional outcome? There are a 

number of morphological changes that have been demonstrated in cortically lesioned rats. 

For example, in the intact hemisphere there is evidence for increased cortical thickness, 

dendritic branching and number of synapses per neuron. These changes result from the 

combined effects of the lesion itself and the ensuing forelimb asymmetry (Jones 1994; 

Jones 1996). 

1.3.1 Role of Motor Association Areas 

WeiHer and colleagues in two separate studies (Weiller 1992; Weiller 1993) used 

PET to study organizational changes after recovery from subcortical (internal capsule and 

striatum) stroke in ten and eight subjects, respectively, compared to controls. Regions 

such as the basal ganglia, thalamus, sensorimotor cortex contralateral to the recovered 

hand, and the ipsilateral cerebellum, had decreased rCBF indicating the dysfunction 

related to the ischemic lesion. Regions that had increased rCBF compared to controls 

were the prefrontal cortex, insula, cingulate and inferior parietal cortex of the damaged 
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hemisphere and the premotor cortex, basal ganglia and cerebellum of the undamaged 

hemisphere. The patterns of activation were variable among subjects and among infarct 

sites but a common theme was the finding of increased activity in areas remote from the 

lesion and their involvement in movement of the recovered hand. Other studies have 

confirmed these fmdings (Chollet 1991; Fries 1993; Netz 1997; Seitz 1999). Notably, the 

structures involved during movement of the recovered hand in these studies were 

primarily, cortical supplementary and association areas, striatum (bilaterally) and the 

cerebellum contralateral to the recovered hand. 

It has been suggested that different motor areas operate in parallel. Fries et al., 

identified in monkeys, descending pathways from multiple topographically organized 

cortical maps that pass through the internal capsule in an orderly manner (Fries 1993). 

Descending fibres from the supplementary motor area (SMA) and limbic motor fields 

pass through the anterior limb of the internal capsule, the premotor cortex fibres through 

the ventral posterior limb and primary motor fibres through the middle third of the 

posterior limb. The authors suggest that these parallel cortical maps are able to substitute 

for each other functionally. Non-primary motor areas may play an increased role in 

generating voluntary movement during recovery from brain injury (Schreiber 1995). This 

has been further supported by Seitz et al. using TMS, MRl and PET in seven patients with 

middle cerebral artery(MCA) infarct (Seitz 1998). These researchers found that motor 

recovery appeared to rely on activation of premotor cortical areas of both cerebral 

hemispheres. Dettmers and colleagues report similar findings and suggest that the 

increased recruitment of executive cortical areas in tasks that require little demand in 

normal subjects may be the reason many stroke patients experience an increased sense of 
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effort and ensuing fatigue with motor task practice (Dettmers 1997). When infarcts 

damage either large portions of the cortex or capsule, the brain may rely on the less 

functional, ipsilateral pathways. The authors correlated these findings with quantitative 

motor recovery in 23 patients with various infarcts of the internal capsule and striatum. 

Ischemic lesions in the internal capsule, therefore, can have a relatively large effect on 

multiple motor maps. This may explain the fact that patients with subcortical (internal 

capsule, basal ganglia and thalamus) stroke are reported to have less favourable outcome 

than those with cortical stroke (Shelton 2001). 

1.3.2 Role of Ipsilateral Connections 

Interestingly, stroke has also been associated with both neurophysiological and 

functional impairments in the so-called 'unaffected' hand (Jones 1989) which may lend 

some evidence for the role of ipsilateral pathways in limb control and recovery from 

stroke. 

One of the most remarkable cases for studying the role of ipsilateral pathways in 

recovery from brain damage is the patient with hemispherectomy (or hemidecorticate) 

(Rose 1992). This procedure has been performed on patients with severe epilepsy or 

tumor and the post-operative motor function depends largely upon the age when the 

surgery is performed. The functional recovery after hemispherectomy is much better in 

the infantile versus adult onset group (Benecke 1991). The motor recovery seen in 

hemispherectomy patients is proposed to be mediated via ipsilateral corticospinal 

projections and the cortico-reticulospinal pathway. 
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Benecke and colleagues used TMS to show the existence of both pathways in 

early and late brain damaged groups with hemispherectomy and severe hemispheric 

lesions but identified primarily the cortico-reticulospinal pathways in the late onset group. 

Both groups had more impairment (increased latency and decreased amplitude ofMEPs) 

of the distal muscles suggesting that these ipsilateral pathways may predominantly 

activate proximal muscles (Benecke 1991 ). It is interesting that stroke patients frequently 

show a proximal to distal gradient with control proximal musculature returning (i.e. 

sitting balance, bed mobility, and gait) before dexterous limb activity. 

1.3.3 Role of Map Representation Changes in the Lesioned Hemisphere 

Mapping techniques have identified areas of increased activation in the lesioned 

hemisphere in the motor association areas and surrounding cortex (Cramer 2000). There 

appears to be a correlation between enlargement of the motor map of the hand and the 

degree of clinical improvement (Cicinelli 1997; Traversa 1997). 

Using intracortical recording techniques, Jenkins and Merzenich have 

demonstrated that in various species of monkeys, restricted cortical lesions are followed 

by dramatic reorganization of cortical maps (Jenkins 1987). Regions surrounding the 

damaged area gain new receptive fields in which much of the skin surface formerly 

represented in the infarcted cortex becomes represented around the rim or penumbral 

zone of the infarct. This fmding is supported by another study using PET to examine 

rCBF changes in patients with tumors occupying the hand area of the motor cortex (Seitz 
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1995). These patients retained their ability to use the hand and rCBF activity was 

identified solely around the edge of the tumor rather than at more remote sites. Other 

researchers have used a relatively new mapping technique, magnetoencephalography, 

which measures the magnetic field distribution over the scalp during peripheral nerve 

stimulation (Rossini 1998). This mapping method showed the same enlargement and 

shift of hand distribution areas in the affected hemispheres as the PET, fMRI and TMS 

studies. 

Not all studies are in agreement however. A later study by Nudo and Milliken 

using intracortical mapping techniques in squirrel monkeys, showed that movements 

formerly represented in the infarcted zone did not appear in the cortical sector 

surrounding the infarct, at least in the absence of post-infarct training (Nudo 1996). They 

showed an apparent increase in proximal limb representations that may have accounted 

for the animals' recovery. In summary, motor recovery can be mediated through a number 

ofneural pathways (Seitz 1999). 

• Cortical map reorganization involving tissue surrounding the infarct mediated by 

unmasking oflatent synapses and/or growth of new intracortical connections. 

• Association motor areas in the lesioned cortex 

• Association motor areas in the opposite cortex that probably have redundant collosal 

connections 

• Uncrossed pyramidal and reticulospinal pathways in the opposite cortex. 

15 



1.4 Effect of Training on Plasticity in the Damaged Brain 

1.4.1 Enhancement of Recovery in Animals 

As previously discussed, environmental and sensory enrichment can induce plastic 

changes in the normal adult brain. Can manipulation of the environment through 

treatment influence plastic changes in the damaged brain? The answer is, yes, there is 

ample evidence in animal and human studies supporting an active role of rehabilitation in 

remodeling cortical maps (Nudo 1996). 

Xerri and colleagues performed intracortical mapping procedures in adult owl and 

squirrel monkeys, trained to master small object retrieval, before and after primary 

somatosensory cortex lesions (Xerri 1998). Their goal was to gain insight into the 

specific neurophysiological processes that mediated behavioral recovery. Lesioned 

monkeys had the expected impairments in dexterity of the affected upper limb however 

they were able to accomplish the task post lesion as they were previously trained to do. 

Monkeys then initiated compensatory use of the opposite upper limb for the task but this 

resulted in a performance drop. The monkeys then reinstituted the affected limb and 

exhibited gradual recovery of function over several weeks. This recovery was paralleled 

by striking enlargement of the motor and sensory representation of the fingers in the 

damaged hemisphere. There was no significant change in the intact hemisphere. Nudo 

and Milliken used similar methods to show that map remodeling around the infarct did 

not occur (Nudo 1996). However, the studies are different in that Xerri's animals with 

behavioral training showed increased hand map representation while Nudo's untrained 

monkeys did not. In another study by Nudo and colleagues, they demonstrated that 
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retraining of skilled hand use after infarct resulted in prevention of loss of hand territory 

adjacent to the lesion suggesting that rehabilitative training can indeed shape the 

reorganization of cortical tissue (Nudo 1996). Others have had similar findings in skilled 

motor activity training in animals (Jones 1999), visuospatial training in hemineglect 

(Pizzamiglio 1998) and aphasia training (Mimura 1998; Musso 1999) in humans. 

Friel and Nudo also discuss the issue of compensation versus recovery (Friel 

1998). They examined monkeys attempting to retrieve food pellets following minute 

ischemic cortical lesions of the primary motor cortex. Frame by frame video analysis 

revealed that some monkeys, although achieving pre-lesion performance levels, used 

slightly different movement strategies. These monkeys had slightly larger lesions and 

more distal limb involvement than the monkeys that made a full recovery. These authors 

as well as others (Levere 1980) propose that compensatory strategies in the affected limb 

may be a natural course of functional return but should not be equated to 'true' recovery. 

Johansson and Ohllson have examined environment, social interaction and 

physical activity as determinants of functional outcome after cerebral infarction in rats 

(Ohlsson 1995; Johansson 1996). In their first study, lesioned rats were placed in three 

groups; Group A were in single cages, Group B were in enriched cages (elevated boards, 

chain, swing, blocks, etc.) and Group C were in enriched cages both before and after the 

lesion (Ohlsson 1995). Overall, animals with pre- and post- lesion enrichment improved 

sooner and to a slightly higher degree than the other rats. The rats housed in individual 

cages had the poorest scores on measures of functional outcome. The authors suggested 

that perhaps the pre-lesion environment had a neuroprotective effect. Further, the same 

researchers' second study attempted to differentiate between the benefits of the social 
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group housing and the enriched environment (Johansson 1996). Group A rats were 

housed in groups in enriched environments, Group B rats were housed together in the 

same size cage with no toys and Group C rats were housed in individual cages with free 

access to a running wheel. In terms of recovery measured on behavioral testing 

(climbing, balance beam, etc.), social interaction was superior to wheel running but an 

enriched environment combined with social interaction resulted in the best performance. 

It may be that the combination of social interaction in group activities and the more 

intensive approach toward therapeutic activities found in typical specialized stroke units 

mimic these enrichment studies. Indeed, it appears that functional outcome and long term 

survival is significantly better in stroke units compared with general wards (Indredavik 

1997; Langhorne 2001). 

An important recent study combined environmental enrichment and skilled 

reaching activity for two months beginning 15 days after ischemic injury in rats with the 

objective of enhancing dexterous limb activity (Biernaskie 2001). Despite a large 

ischemic injury to both cortex and striatum, animals in the treatment group had 

significantly greater dendritic branching of pyramidal neurons in the intact cortex and 

better functional outcome than the control animals. Interestingly, little spontaneous 

recovery was observed in animals unless they were exposed to the enrichment plus skilled 

reaching therapy. 

All of these studies suggest that following brain injury, social interaction and 

complex exercise have an effect on the mechanisms underlying neural plasticity. Current 

evidence suggests that in animal models of brain injury and neurodegeneration, exercise 

induces the brain uptake of insulin-like growth factor-1 (IGF-1), a neurotrophic hormone 
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that has been shown to be neuroprotective (Carro 2001). Exercised animals perform better 

on behavioral tests and demonstrate neuronal preservation in a number of brain regions 

compared to sedentary animals. Ivanco and Greenough state, "If experience can influence 

plasticity (anatomical and physiological) in the injured brain, we are on strong empirical 

grounds to suggest behavioral therapies following brain injury" (Ivanco 2000) 

The question is, what specific tasks promote plasticity and at what point in the 

recovery process should these be undertaken? An interesting phenomenon occurred in 

Johansson and Ohlsson's study (Johansson 1996). After the complete MCA occlusion, the 

rats displayed locomotor hyperactivity when given unlimited access to a running wheel 

24 hours post surgery and only three of the nine rats survived the 13-week testing period. 

It was thought that the intensive exercise ahhough voluntary, was too stressful for the 

animals. Recent studies have found that for about 7 days after brain lesions in rats, 

extreme behavioral demand placed on the affected limb (i.e.forced use) caused an 

exaggeration of neuronal injury and further tissue loss (Kozlowski 1996; Humm 1998; 

Humm 1999). It was found that the excitatory neurotransmitter glutamate was probably 

involved since increased levels of this neurotransmitter may cause cell death in the early 

post-lesion period (Choi 1990). Accordingly, glutamate receptor blockers spared the 

neural tissue during forced use and enhanced functional recovery. The authors suggest 

that although behavioral experience and therapy can enhance neuronal growth after brain 

injury, the region surrounding the injury may be particularly vulnerable to behavioral 

pressure (or stress) in the early post-lesion period. 

Jones and Schallert also reported that directly following the lesion to the rat 

sensorimotor cortex there was an increase in dendritic arborization of the pyramidal 
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neurons of the opposite cortex (Jones 1994). This reached a maximum about 18 days 

post-lesion, which closely paralleled a measured overuse of the unimpaired limb. Once 

the animals began to use their affected limb again, there was pruning of the dendrites and 

functional recovery. The researchers restricted either the ipsilateral unaffected limb or 

the contralateral affected forelimb to examine the effects on dendritic arborization. 

Restriction of the contralateral limb in the first 15 days post lesion had no effect but 

restriction of the ipsilateral side reduced neuronal arborization and was associated with 

poorer performance on tests of bilateral sensorimotor function afterwards. The authors 

suggest that complete restriction of the intact limb acutely post stroke may worsen overall 

function. There may be a specific time period when the development of compensatory 

strategies involving the use of the nonimpaired limb is optimal. 

Bury and colleagues further investigated the effect of constraint of the unaffected 

forelimb on plasticity after lesions to the corpus callosum in rats (Bury 2000). Lesioned 

or sham operated rats were either forced to use the affected forelimb (via a plaster of paris 

one-holed vest) or permitted to use both forelimbs normally for 8 days directly post 

surgery. Histological examination of the affected sensorimotor cortex showed increased 

density of proteins associated with the astrocytic changes and plasticity in the lesioned­

only animals and the forced-use only animals but density was greatest in the lesioned + 

forced-use animals. Basic fibroblast growth factor (bFGF), a neurotrophic growth factor, 

was also increased by lesion and forced use alone but was not further enhanced by the 

combinations of the conditions. These findings suggest that astrocytic reactions post 

cortical lesion can be shaped by behavioral demand, which may ultimately lead to 

enhancement of neural growth following injury. This is in contrast to the previous study 
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by Jones and Schallert suggesting early tissue loss in response to excessive behavioral 

demand (Jones 1994). Perhaps this represents a balance of intensity of the rehabilitation 

program or shows that larger lesions are more vulnerable to excitotoxity. 

In summary, environment and skill practice have an effect on neuroplasticity post­

stroke. Animals exposed to enrichment, socialization and skilled activity have better 

functional outcome, increased complexity of neuronal branching and enhanced cortical 

activation. In the early days of recovery, intense use of the affected limb especially in 

large lesions may be contra-indicated. Therefore bilateral and reciprocal activities early 

post stroke may be recommended then progressing to more focused intense treatment of 

the impaired limb itself 

1.4.2 The Constraint- Induced Therapy Paradigm 

Taub and colleagues investigated the effect of restraint of the intact upper 

extremity and recovery of function of primates in the late 60' s and 70' s (Taub 1993). 

They proposed that animals with chronic deficit had 'learned non-use' of the affected 

limb since attempts to use the hand post injury were unsuccessful and reinforced or 

conditioned. Taub and others then used the 'forced use' paradigm in human stroke 

patients (Wolf 1989; Tangeman 1990; Kunkel1999; Mihner 1999; van der Lee 1999). In 

these studies patients were typically one to 20 years post left-sided infarct, right-handed 

with partial recovery of wrist and fmger extensors and no cognitive or perceptual deficits. 

Patients wore either a sling, splint or both to restrict movement of the intact upper 

extremity for 90% oftheir waking hours. They engaged in 6 hours of motor relearning or 
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'shaping' therapy, five days per week, as well as using the affected extremity during ADL 

at home. All studies showed marked improvement on subjective and objective testing of 

recovery and function. The researchers suggested that this recovery was new and not 

associated with spontaneous recovery since so much time had elapsed post-stroke and the 

patients' recovery had 'plateaued' pre-treatment. Further to this, with the advent ofTMS 

mapping procedures, Taub and others have examined the cortical change resulting from 

this treatment (Kopp 1999; Liepert 2000; Levy 2001; Liepert 2001). Consistently, 

subjects had recruitment of motor areas adjacent to the lesion as indicated by increased 

motor output area and increased MEP amplitudes. Another study used EEG and showed 

an anterior shift of the hand cortical map into the supplementary motor area of the 

affected cortex with forced use therapy (Kopp 1999). At three month follow-up the 

affected hand movement source actually shifted to the opposite or ipsilateral hemisphere. 

The authors suggested that this may have reflected the recruitment of ipsilateral 

pathways. In forced use studies that had follow-up, patients maintained their acquired 

skill up to 2 years post-intervention (Taub 1993). 

It is unknown which aspect of the treatment in these studies contributed most to 

recovery, the 6 hours per day spent in direct therapeutic activities or the remaining 6 - 8 

hours of restraint. The former could have accounted for the significant improvement 

since other studies have documented the benefit of massed practice in physiotherapy 

(Woods Duncan 1997; F eys 1998; Linco In 1999) or perhaps the latter, since a preliminary 

TMS study has demonstrated increased motor excitability with forced-use plus 

conventional therapy without the 6 hours per day of' shaping' (Liepert 2001 ). In a review 
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article by Taub et al., it was suggested that when 'conventional' physiotherapy is 

administered 6 hours per day for 10 consecutive days there is a similar increase in arm 

use to that seen in CI therapy (Taub 1998). The conclusion was that some chronic and 

subacute patients, who are able to tolerate it, could greatly benefit from physiotherapy if 

they received multiple hours of motor skill practice per day. 

Since the CI therapy technique is useful in patients with chronic stroke, it may be 

even more effective in patients involved in active rehabilitation programs. In fact two 

recent studies have shown that cortical activation is significantly greater when forced-use 

therapy is combined with skilled arm training two weeks post-infarct in humans 

(Dromerick 2000) and primates (Friel2000). In a recent randomized clinical trial, patients 

began two weeks of constraint-induced movement therapy within 14 days of their stroke 

versus traditional therapy. The CI group had less impairment on some outcome measures 

without any adverse reactions to the treatment (Dromerick 2000). 

For rehabilitation professionals, forced-use offers more treatment options for 

patients without cognitive or perceptual problems and some motor recovery in the hand. 

More research needs to be undertaken in acute and rehabilitation settings since the stress 

of such a treatment may affect these patients as previously documented in animals77
-
79

• It 

is also possible that the compensatory strategies learned in rehabilitation contribute to the 

learned non-use of the affected limb (Geer Russo 1995; Benevento 1998). 
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1.4.3 Motor Relearning 

Cramer and Chopp suggest that in the past 1 0 years, research supports the 

hypothesis that recovery from stroke resembles stages in childhood development (Cramer 

2000). They state that motor recovery follows the proximal (bilateral) to distal gradient 

from gross motor function to fine motor function and this is paralleled by cortical map 

plasticity and molecular events that resemble those in the developing brain. They suggest 

that different recovery stages probably call for different clinical approaches, an emphasis 

on bilateral activity initially and unilateral skilled activity in later rehabilitation or in mild 

hemiparesis. The developmental approach to management of stroke was developed by 

the Bobaths in the 1960's (Bobath 1990) and the motor relearning (skilled activity 

acquisition) approach by Carr and Shepherd in the 1970's (Carr 1987). Perhaps the 

approaches are not mutually exclusive but can be combined. Initially, moderately to 

severely affected patients would benefit from the symmetrical postural activities, 

especially of the trunk (Bobath) and later skilled task learning (Carr and Shepherd) 

(Miller 1998). In fact, a preliminary study indicates that bilateral movement activates the 

damaged hemisphere in acute stroke significantly more than unilateral limb activity 

(Staines 2001). 

Interestingly, Nelles and colleagues have examined changes in rCBF post stroke 

(Nelles 1999; Nelles 1999). This, in itself, is not new, but whereas previous researchers 

studied recovered stroke patients, these investigators followed individuals for the first 12 

weeks after their first cortical or subcortical stroke. Rather than patients performing a 
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fmger tapping task, the patients underwent passive elbow flexion and extension of the 

affected arm using a continuous passive motion (CPM) device. Remarkably these 

patients had activation of association cortices bilaterally as did the stroke patients moving 

their recovered hand actively in other studies. This is direct evidence of the benefit of 

passive range of movement acutely post stroke, a common treatment instituted to prevent 

musculoskeletal complications of immobility. An intriguing recent randomized control 

study by the same researchers using PET scanning investigated the effect of task-oriented 

arm training using motor learning techniques compared to passive ROM in 9 severe 

hemiplegics about 22 days post subcortical stroke (Nelles 2001). Treatment was 

individually applied by physiotherapists and occupational therapists for 45 minutes, four 

days per week for 3 weeks. Although the functional outcomes between the groups after 

the 3 weeks were not significant, the arm training group showed significantly more 

activation of the contralateral parietal cortex and primary motor area and bilateral 

premotor areas. This study, although small, presents compelling evidence that 

physiotherapy techniques influence cortical reorganization. 

It appears that although passive and bilateral movement of the involved limb 

activates the damaged cortex (and association areas), when the patient is able to move the 

limb actively, active movement is the most effective method to stimulate neuroplasticity. 

This is confrrmed in a study in which TCS mapping techniques were used to examine the 

effect of various physiotherapeutic techniques on MEPs of wrist and hand muscles in 

stroke patients (Hummelsheim 1995). The researchers compared five treatment 

approaches to baseline and control subjects; 1) cutaneous stimulation of wrist extensors 
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by tapping, 2) upper extremity weight bearing, 3) proximal activation of the shoulder, 

4) maximum isometric contraction of contralateral wrist extensors, and 5) attempt to 

activate affected wrist and fmger extensors. Patients were placed in three groups by 

severity of hemiplegia. Group I had severe impairment, Group 2 was moderate and 

Group 3 had mild impairment. All approaches improved the frequency of occurrence of 

the MEPs. Attempting to isolate the affected wrist extensor in Approach 5 was overall the 

most effective at consistently generating MEPs in all groups. One approach, Approach I, 

cutaneous tapping, was effective at raising the amplitude of the response potential in the 

most severe patients but had little effect in the other groups. Tapping was actually 

inhibitory in the healthy controls. Latencies of MEPs were diminished during the 

physiotherapeutic techniques and this benefit was most pronounced in the more 

hemiplegic groups. The exception was the cutaneous tapping techniques, which 

lengthened latencies in Group 3 patients and healthy controls. In summary, direct 

activation of the target muscle induced the most facilitory effect. In a follow-up study 

these researchers assessed the effect of voluntary fmger flexing and extension against 

various loads I5 minutes twice per day compared to the Bobath method of upper 

extremity weight bearing on motor outcome of the hemiplegic hand (Butefisch 1995). All 

27 patients were 3 - 19 weeks post stroke, had some isolated movement in the fmgers and 

they were placed randomly in the two groups. The patients undergoing the weight 

bearing approach alone did not experience a significant improvement on measures of 

strength and contraction velocities ofthe hand, whereas the hand exercise group did. The 

problem with this study is that patients at this relatively high level of function would not 

receive weight bearing alone as a focused treatment strategy. Many physiotherapists use 
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weight bearing early in the rehabilitation program before skilled activity can be 

performed to facilitate more proximal muscle groups. Therapists often employ an eclectic 

individually tailored treatment program rather than a specific philosophical 'school' 

approach. (Bobath, Brunnstrom, PNF, Carr and Shepherd) The important point here is 

that patients had good outcomes with graduated strength training with only minimal 

therapy time (about 30 minutes per day). Another study reports increased motor output 

area to the abductor pollicis muscle following one 90 minute intense physiotherapy 

treatment for the impaired upper extremity (Liepert 2000). It should be noted again 

however that patients with sensory deficits, neuropsychological deficits and complete 

paralysis of the hand were excluded from these studies. Further, a randomized controlled 

study of 132 stroke patients also demonstrated that an enhanced therapy program 

consisting of self directed exercise, forced-use and biofeedback improved strength and 

speed of movement over a weight-bearing only treatment regime and the effects were 

sustained at a 12 month follow-up (Sunderland 1992). 

Treadmill training in stroke patients is gaining increased interest in physiotherapy. 

Preliminary studies show that early intense treadmill training in stroke patients improves 

gait velocity (Richards 1993) and measures of gait parameters (Laufer 2001). In fact, 

there is evidence that treadmill training with partial body weight support during the acute 

rehabilitation phase of stroke may be more effective with regards to restoration of gait 

ability and parameters than conventional gait training (Hesse 1994; Hesse 1995; Visitin 

1998; Teixeira da Cunha Filho 2001). The method can be compared to both 'forced-use' 

and motor learning therapy since the patient is cued constantly by the moving belt during 
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daily intense treatment sessions. It would be interesting to examine neuroplastic response 

to such a treatment. 

In summary, there is a mounting body of evidence that indicates physiotherapeutic 

techniques ranging from PROM to intense motor skill training are able to directly impact 

cortical reorganization following stroke and that this modification is paralleled by 

functional recovery. 

1.4.4 Functional Electrical Stimulation, Biofeedback, and Strength 

Training in Stroke 

There is evidence that stroke patients despite having spasticity, can benefit from 

progressive resisted exercise. They experience a measurable improvement in strength 

without increases in spasticity (Engardt 1995; Teixeira-Salmela 1999). No study has 

shown that increased strength correlates with any neuroplastic change but one study 

showed that 60 to 90 minute physical training, three times per week, improved measures 

of overall gait speed 28% and stair climbing 37.4% in chronic stroke patients (Teixeira­

Salmela 1999). The authors suggest that training specificity is required to improve 

functional tasks and their program incorporated actual task practice along with specific 

muscle strengthening. They state that since functional tasks require components of 

strength, balance and coordination, strength training alone is unlikely to improve 

functional ability. Patients in these studies had established isolated movement of the 

affected muscle groups before they began their training. 
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Studies examining the benefit of functional electrical stimulation (FES) in stroke 

have been equivocal. A meta-analysis of four studies revealed that FES improves strength 

but there is no evidence that the treatment improved function (Woods Duncan 1997). 

Another meta-analysis also supports that FES promotes the recovery of muscle strength 

after stroke and suggests that sustained improvement and functional change are promising 

as well (Glanz 1996). More recent examination ofFES suggests upper extremity motor 

recovery after stroke is facilitated by FES especially during the rehabilitation stage when 

worn for long periods (up to 6 hours, 6 days per week), and when the stimulated 

movement is augmented by volitional activation ofthe target muscles (Faghri 1994; 

Francisco 1998; Chantraine 1999; Cauraugh 2000; Yu 2001). Two studies using 

biofeedback in combination with FES demonstrated positive effects on measures of upper 

extremity motor recovery (Francisco 1998; Cauraugh 2000). Hummelsheim and 

colleagues have found that once the stroke patient has regained functional movement, 

FES is not as beneficial as active hand strengthening in improving measures ofhand 

function (Hummelsheim 1997). FES treatment does not appear to be as effective in 

chronic stroke deficit (Cauraugh 2000; Wang 2000). Studies examining the use ofFES 

with or without treadmill training to restore walking in stroke patients are preliminary but 

promising (Hesse 1995; Wieler 1999). Presently, studies examining biofeedback have 

not shown a significant benefit (Moreland 1994). Task specificity and incorporation of 

movements into function were not employed so these results are not surprising. 

Researchers have yet to examine neuroplastic change during FES or biofeedback 

treatment. 
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1.5 Neuroscience Evidence-Based Practice 

Physiotherapists have the skills and knowledge to influence and sculpt stroke recovery. 

(See Figure 1.1 ). They can employ rehabilitative intervention to influence the 

neuroplastic changes that lead to functional recovery. The efficacy of this intervention is 

determined by the skill of the therapist, the patient's motivation, his or her social support, 

and the pre and post-stroke environments. Neuroscience evidence-based practice is 

constantly evolving based on sound neuroscience research in humans and animals and 

probably incorporates the following: 

• The patient, within the first few days post-stroke, may be vulnerable to a use­

dependent increase in brain tissue loss especially when the infarct is severe 

and the therapy intense. 

• In the early days and weeks post stroke, emphasis could be placed on bilateral 

and reciprocal activities. Passive range of motion (PROM) exercise ofthe 

affected limb likely has a direct effect on neuronal function even when the 

patient is unable to actively move the limbs. PROM and bilateral activity can 

be implemented to activate the cortex and other brain areas. 

• Enrichment and exercise pre-stroke may have a neuroprotective effect. This is 

another sound reason for physiotherapists to encourage participation in an 

active lifestyle. 
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• Patients who have suffered a stroke should be in a stimulating, engaging 

environment with social support and physical activity to facilitate the recovery 

process. 

• Patients in the early stages of recovery or with severe motor deficit may 

benefit from facilitory stimuli such as cutaneous and proprioceptive 

techniques such as brushing, tapping, weight bearing, and FES. 

• Patients who begin to have voluntary motor activity may benefit from therapy 

focused on repetitive active movement of the target muscles integrated into 

functional tasks. Patients should engage in these activities frequently 

throughout the day, everyday. 

• If possible, patient and caregivers should be instructed in homework that 

specifically targets the problematic movement. It appears that task repetition is 

required for neuroplasticity to occur. 

• Some patients, who have consistent isolated movement, may benefit from 

progressive strength training and constraint-induced therapy. 

31 



STROKE 

Rehabilitative 
Techniques 

Patient 

Spontaneous 
Recoverv 

Behavioral 
Intervention 

Sensory input Environ ental 
Enrichment 

Recruitment of 
Supplementary and 
Association Areas 

~----~------~A{ 
Unmasking of Latent 

Synapses and 
Neuronal 

Morphological 
Change 

Change in Adjacent 
Cortical Map 

Behavioral(~unctionaQ 
Improvement 

/ 

Compensatory and 
Alternative 
Strategies 
/ 

/ 
/ 

/ 

Recruitment of 
Ipsilateral 
Pathways 

Figure 1.1: Physiotherapists can use behavioral interventions including 
rehabilitative strategies, sensory stimulation and environmental enrichment, to 
influence cortical reorganization after stroke. These interventions facilitate the 
recruitment of undamaged brain areas leading to functional recovery. 
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At this stage in our understanding of stroke recovery, there are certainly a number of 

unresolved questions that scientists and rehabilitation professionals may continue to 

contemplate. 

1. Does compensatory use ofthe unaffected limb, likely resulting in synaptic 

morphological change in the intact hemisphere, occur at the expense of cortical 

plasticity in areas controlling the affected upper extremity? 

2. In the first days or weeks after stroke in humans, is there a vulnerable period? 

How much intervention and what specific intervention, if any, should be 

employed during this period? 

3. What specific rehabilitation practices should be undertaken to create an 'enriched 

environment' for stroke patients? 

4. How much therapy is required to obtain the optimal neuroplastic effect? The 

evidence varies from 15 minutes twice per day to 6 hours per day. Is targeted 

home exercise able to induce a similar cortical change? 

5. Do therapies such as strength training, FES, and biofeedback, (with adequate 

repetition and training specificity) induce neuroplastic changes? 

6. What therapies are the most effective for moderate to severe hemiplegia and for 

those stroke patients with cognitive and visuospatial impairment? 
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7. At what point along the recovery continuum does the potential neuroplasticity 

end, if ever? 

1.6 Conclusion 

Research in animals has demonstrated that structural and functional 

neuroplasticity occurs in normal and damaged brains and is enhanced by enrichment and 

rehabilitative training. Using imaging technology, similar research is being undertaken in 

humans with encouraging results. The effectiveness of physiotherapy in management of 

stroke may be examined using standardized outcome measures as well as functional 

imaging techniques. It is important for physiotherapists to have a clear understanding of 

the science of neuroplasticity to provide rationale for specific physiotherapy practice in 

stroke. 
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CHAPTER 2 

Can Constraint-Induced Therapy Be Clinically Applied 

During the Rehabilitation Phase of Stroke? A 

Randomized Controlled Exploratory Study 

2.1 Introduction 

Stroke is one of the leading causes of adult disability in the United States and 

Canada (American Heart Association 2003, Health Canada 2000). The rate of 

hospitalizations for stroke in Canada has been increasing for the past 20 years and is 

projected to continue to increase with an aging population (Health Canada 2000). 

Weakness, or hemiparesis, of the body contralateral to the lesion is the most common 

deficit after stroke with over 50% of stroke patients suffering from residual motor 

impairment (Wilkinson 1997). Rehabilitation of the upper extremity is one of the 

foremost challenges facing rehabilitation professionals and it has been estimated that only 

5% of stroke survivors who have complete paralysis regain functional use of the impaired 

arm and hand (Duncan 1999). Evidence suggests that focused, intensive rehabilitation of 

the upper extremity in both sub-acute and chronic phases of stroke improves functional 

outcomes and influences neuroplastic change in the recovering brain (see Ploughman 

2002 for review). Rehabilitative therapy involving frequent repetitive training of the 

hemiplegic upper extremity increases arm and hand movement (Sunderland 1992; 

Butefisch 1995; Feys 1998), increases cortical motor output to the involved hand (Liepert 
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2000; Nelles 2001) and increases motor evoked potentials (Hummelsheim 1995). These 

fmdings are paralleled in animal studies where it has been shown that skilled reach 

training in a rat model of stroke improves motor recovery and enhances dendritic growth 

in the intact hemisphere (Biernaskie 2001). In addition to this, it has been demonstrated 

that in monkeys with focal ischemic infarct, retention of hand area in the primary motor 

cortex requires intense rehabilitation of the impaired band (Nudo 1996; Nudo 1996; Friel 

2000). Without specific arm and hand training after stroke, at least in this primate stroke 

model, the cortical area dedicated to the impaired hand is taken over by neighbouring 

proximal limb representations. 

Taub has proposed that both monkeys with somatosensory deafferentation and 

humans with stroke, develop 'learned-nonuse' ofthe involved upper extremity. He has 

devised a program of restraint of the intact limb using a hand splint and sling for 90% of 

waking hours combined with 6 hours per day of intensive training or 'shaping therapy' 

months and years after stroke with positive results (Taub 1993). Others have 

demonstrated that in chronic stroke, this constraint of the uninvolved upper extremity 

known as Constraint-Induced Movement Therapy or CIMT applied for two weeks, 

improves motor recovery ofthe impaired upper extremity (Kunkell999; Miltner 1999; 

van der Lee 1999). The patients recruited for these studies were typically one to 18 years 

post-stroke, relatively high functioning with at least 10 degrees of active 

metacarpalphalangeal joint and interphalangeal joint extension and at least 20 degrees of 

active wrist extension of the impaired upper extremity and were independent ambulators. 

The study by van der Lee (1999) was the largest with 66 subjects having dominant side 

hemiplegia however the other studies were smaller ranging from 5 to 15 subjects. 
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Brain imaging technology in stroke patients has shown that CIMT increases 

cortical representation area of the affected hand (Liepert 2000), increases neuronal 

excitability of the damaged hemisphere (Liepert 1998) and increases activation of the 

undamaged cortex (Kopp 1999). However, some studies in rats suggest that restraint of 

the unaffected forelimb soon after stroke may exaggerate neuronal injury (Kozlowski 

1996) possibly via a glutamate mediated hyperexcitability (Humm 1998; Humm 1999) or 

by reducing adaptive remodeling (Jones 1994). In contrast, it has been reported that 

forced use in rats directly following ischemic brain injury encourages neural restructuring 

without detrimental effects (Bury 2000). 

In CIMT studies, it is not clear which aspect of the treatment regime influences 

the positive outcomes observed, the 6 hours per day of intense therapy or the constraint 

since it is likely that both can have beneficial effects. Practically, it is difficult to provide 

6 hours of one-on-one therapy. Can constraint alone impact outcome? A recent study 

indicates patients long after stroke also benefit from constraint paired with only 3 hours of 

shaping therapy although the benefit is less than that with 6 hours (Sterr 2002). In that 

study, the standard CIMT inclusion criteria and treatment protocols were used; however, 

the 3 hour per day training group (n=8) were, on average, almost 20 years older than the 6 

hour per day group (n=7). They modified the constraint for some subjects with balance 

deficits by using a half-glove on the less involved side. In a randomized controlled acute 

rehabilitation CIMT study by Dromerick et al. (Dromerick 2000), a mitten constraint was 

paired with 2 hours per day of upper extremity therapy for two weeks with positive 

results (n=20). Subjects wore a padded mitten rather than a splint and sling. Another 

feasibility study (n=6) suggests that CIMT can be successfully administered on an 
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outpatient basis for chronic stroke patients with only one halfhour of physiotherapy and 

occupational therapy three times per week for 10 weeks (Page 2001 ). 

Liepert has shown that just constraint, in addition to conventional therapy, 

applied 4-8 weeks after stroke, enhances motor cortex excitability and improves motor 

performance over conventional therapy alone (Liepert 2000). Wolf demonstrated that two 

weeks of forced use of the impaired limb without additional therapy in patients with 

chronic stroke and head injury, improved measures of arm function which were 

maintained at one year follow-up (Wolf 1989). It has not been demonstrated if constraint 

ofthe affected upper limb without the addition of shaping therapy can be successfully 

incorporated into an acute rehabilitation setting and if, indeed, there is any benefit in this 

model. 

Although one study suggests CIMT can be used for stroke patients in active 

rehabilitation programs (Dromerick 2000), it is not clear if constraint, because of its 

intensity, may worsen hemiplegic shoulder pain, a common complication post-stroke. Is 

sound limb constraint safe in acute stroke rehabilitation settings? Does the technique, 

because the sound arm is restrained, increase dependence on staff or place the patient at 

risk for falls? If patients with stroke develop learned nonuse, then constraint of the sound 

arm during the active rehabilitation phase in functional activities should prevent such a 

phenomenon. It is also unclear if compliance and outcomes are influenced by the side of 

the lesion or hand dominance. Patients, at an early stage of stroke rehabilitation, struggle 

to carry out activities of daily living. Can the constraint compromise an already stressed 

individual? In previous CIMT studies, subjects with chronic stroke volunteered for the 

studies and were compliant to the treatment protocol. This degree of motivation and 
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compliance may be different and difficult to achieve in the actual rehabilitation setting. 

On the other hand, stroke patients spend much of the day outside of active therapy and 

CIMT may be a strategy to take advantage of otherwise underutilized time. Page and 

colleagues (Page 2001) report that preliminary fmdings from a survey of therapists and 

stroke patients examining opinions about CIMT, suggest that the majority of stroke 

patients would not wish to participate in two weeks of CIMT and were unlikely to be 

compliant to the treatment. The majority of therapists reported they did not have the 

resources to apply the intense shaping therapy component of the CIMT protocol. 

At this stage in the development of CIMT, it is important to assess the treatment in 

active rehabilitation for rehabilitation specialists to evaluate its usefulness in the setting 

where it is actually applied. For the purpose ofthis study, the term Constraint-Induced 

Therapy or CIT will be used to differentiate constraint without shaping therapy from 

CIMT. Since this method of CIT has never been examined in this context, it is important 

to explore the potential benefits or difficulties with such a program. 

The objectives of this exploratory study were: 

1) to determine if CIT, without additional therapy, integrated into the acute 

rehabilitation service improves upper extremity functional outcome, 

2) to determine if CIT has any negative effects 'i.e. increased hemiplegic shoulder pain, 

falls, increased dependence on staff, 

3) to identify subgroups of patients who may benefit more from CIT ' i.e. patients with 

right or left hemiplegia' , 
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4) to investigate if clients would be compliant with CIT since it would be performed 

with minimal supervision by the therapist. 

We hypothesized that CIT, without many hours per day of 'shaping' therapy, 

combined with conventional rehabilitation, applied throughout the acute rehabilitation 

period, would lead to improved upper extremity outcomes over conventional therapy 

alone. 

2.2 Subjects 

All patients admitted to multidisciplinary rehabilitation services from June 2001 

to February 2003 were screened for entry into the study. The criteria for inclusion into the 

study were: 

1) first ischemic or hemorrhagic stroke confirmed both clinically and with CT scan or 

MRI, 

2) receiving active physical rehabilitation services at least twice per week as an 

inpatient or outpatient, 

3) no more that 16 weeks post stroke at time of inclusion, 

4) motor control of the upper extremity of more than stage 2 on the Chedoke-McMaster 

Impairment Inventory (CMII) for the arm and hand but not more than stage 6. 
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Patients were excluded if they scored 25 or lower on the Folstein Mini-Mental Status 

Exam (Molloy 1998), had a history of upper extremity injury or pain, had severe sensory 

or language loss or henri-neglect or were more than 75 years of age. 

Of the 30 subjects who fit the criteria, three did not provide consent. Some subjects 

were admitted to the study up to 4 weeks after beginning rehabilitation until they 

achieved adequate upper extremity function (all elements of level2 on the CMII of the 

arm and hand). Three subjects, who had initially provided consent, discontinued their 

involvement in the study during the last stages of their initial assessment processes; one 

69 year old female was in the control group and two males, ages 64 and 68, were from the 

CIT group. These three subjects were an average of 49.3 days post-stroke. All reported 

they did not wish any further stress during their recovery. One other male subject from 

the CIT group was unable to continue due to an episode of septic arthritis of the knee 

requiring a transfer to an acute facility. Ofthe remaining 23 subjects, 10 were in the CIT 

group and 13 in the control group. Subjects were discharged from the inpatient units 

when they had reached the goals set by the team. The length of stay varied among 

subjects. Outpatients were discharged from the study if they were reduced to one 

physiotherapy treatment per week for more than two weeks. 

2.3 Study Design/Methods 

The study took place within a tertiary rehabilitation hospital with 36 mixed 

rehabilitation beds serving an urban and rural population of 500,000. The hospital also 
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has a well-developed multidisciplinary outpatient program providing active therapy and 

follow-up for stroke patients discharged from both acute care and rehabilitation beds. 

Patients were screened by review of the health record and discussion with the 

attending physiotherapist. Patients who met the inclusion criteria were admitted to the 

study and informed consent was obtained. Subjects were randomly assigned, using 

random number generation, to either conventional rehabilitation or conventional 

rehabilitation plus constraint. Conventional treatment for the upper extremity involved 

facilitation of the trunk and proximal motor control progressing to supported movement 

training of the limbs, then skilled task training. Subjects also received strength and 

endurance training, functional electrical stimulation, gait training, and education as 

appropriate. Constraint involved wearing a long, thick, knitted acrylic thumbless mitten 

extending from the fingertips to just below the elbow, on the uninvolved hand (Figure 

2.1). The protocol ofwear was progressive, beginning one hour per day increasing to 6 

hours per day by week two of rehabilitation and continuing for the remaining 

rehabilitation period. We developed a thumbless mitten that discourages use of the 

uninvolved arm and hand but allows for bilateral activities and use of the sound arm to 

stabilize when walking. 
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Figure 2.1: Subject with right hemiplegia wearing constraint mitten on the left hand 

(left) and typical constraint mitten (right) 

2.4 Evaluation 

On entry to the study, patient characteristics such as age, gender, lesion type, side 

of paresis, hand dominance, medications and co-morbid health conditions were recorded. 

The physical outcome measures were administered on day one and two after entry to the 

study and during the last two days of active rehabilitation. The treatment condition was 

concealed during the initial clinical evaluation performed by physiotherapists. Evaluation 

was performed by the attending physiotherapists on discharge, with the exception of the 

Action Research Arm Test (ARAT), which was performed by the investigator. The 
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Functional Independence Measure (FIM) evaluation was part of the regular assessment 

process on admission and was performed by the multidisciplinary team or in consultation 

with them. The study was approved by Memorial University Human Investigations 

Committee. 

Level of disability was measured using the FIM, an 18 item (13 motor and 5 

cognitive) seven-point scale that measures burden of care. Items examined included 

dressing, toileting, walking, and language with scores ranging from a low score of 18 to a 

high of 126. There are subsets of data within the FIM. We specifically examined the six 

items of Self-Care (i.e. eating, grooming, dressing ofthe upper and lower body, bathing 

and toileting), which would more likely involve the use of the upper extremities. The 

range of potential scores for the Self-Care portion of the FIM is from 6 to 42. The FIM is 

widely used and its validity and reliability are well documented (Segal1994; Kidd 1995) 

Impairment was measured using the Chedoke~ McMaster Impairment Inventory 

(CMII) for arm, hand, leg, foot, postural control, and shoulder pain. The CMII is a seven­

point scale ranging from one to seven representing seven stages of motor recovery with 

the exception of shoulder pain, which is a severity scale. At level 2, the subject is able to 

perform facilitated reflexive movements and a level 7 is able to perform movements of all 

joints out of synergistic patterns in a specified time. Its validity and reliability are well 

documented and it is widely used in clinical settings (Gowland 1995). 

Arm and hand dexterity was measured using the Action Research Arm Test 

(ARAT). The ARAT consists of 19 tasks involving moving blocks, tubes, and spheres 

and pouring water. It uses a four-point scale, ranging from 0, indicating inability to 

perform any component of the task, to 3, in which the subject can perform the entire task 
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within the specified time limit. This measurement tool has been shown to have good 

inter-rater and intra-rater reliability and validity (Hsieh 1998; van der Lee 2001). The 

ARAT testing apparatus was fabricated at Memorial University using specifications 

outlined in Carroll (Carroll1965) and scored using time limits determined from 

performance times of healthy elderly subjects (van der Lee 2001). 

Grip strength was measured using the Jamar Hand Dynamometer. Grip strength 

was also measured weekly by the attending therapist for the last 15 subjects in the study. 

Grip strength evaluation, using the Jamar Hand Dynamometer, has been shown to have 

good inter-rater reliability (Bohannon 1987; Riddle 1989) and accurately measures 

recovery after stroke (Sunderland 1989). The Jamar Hand Dynamometer was calibrated 

every 8 months. Consensus was reached among therapist raters, using documented 

guidelines (Mathiowetz 1984; Gage Richards 1996) on positioning ofthe subject and 

verbal directions. Subjects were seated without back support with the affected arm in 

neutral shoulder and forearm position with the elbow flexed at 90 degrees, if the subject 

was able. Subjects were instructed not to push against the thigh and the best score out of 

two attempts was recorded. 

Before the study began, rehabilitation personnel were trained on the FIM and 

received 80% or better on the case study examination. The initial six physiotherapists 

involved received video training for the Chedoke-McMaster and ARAT measures and 

achieved 99% inter-rater reliability. All other therapist raters received video training and 

the instruction manual. 

The principal investigator and/or the research assistant met with all subjects 

weekly to discuss and document rehabilitation progress, pain or discomfort, and 
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compliance issues for subjects in the constraint group. Hours of mitten wearing per day 

were recorded weekly at these sessions and confirmed by family, caregivers and attending 

physiotherapists. Minutes of physiotherapy and occupational therapy were recorded 

weekly from therapists' schedule logs and verified with attending therapists. 

2.5 Statistical Procedures 

Data were analyzed using Statview (SAS Institute 1998). Descriptive statistics, 

chi-square tests and two-tailed independent t-tests were used to analyze characteristics of 

the control and treatment groups. Paired t-tests examined the improvement from 

admission to discharge for the outcomes measured. Simple and stepwise regression were 

used to study the effect of continuous and nominal variables on the outcome measures 

and correlation analysis examined the relationship between compliance to the constraint 

and recovery. Multivariate ANOV A, ANOV A and Scheffe's F procedure for post-hoc 

comparisons, determined the differences between outcome measures in control and 

treatment groups and subgroups. Subgroup analysis was only performed on those groups 

with significant differences or significant interaction effects. Measures of recovery were 

tested for normal distribution and significance level was set at p=0.05 for all statistical 

analyses. 
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2.6 Results 

2.6.1 Subject Characteristics 

Table 2.1 summarizes admission and rehabilitation characteristics ofthe CIT 

(treatment) and control groups. There were no significant differences in admission 

measures of impairment and disability, age, gender, admission status, stroke onset to 

study entry interval (OSI), stroke onset to rehabilitation interval (ORI), days in study, 

therapy time, type of stroke, cognition or side of hemiplegia. All subjects were right­

handed. 
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Table 2.1: Subject Characteristics 

Control Treatment 
Criteria Mean ±SO Mean ±SO P-Value 

Age 61.62 ±5.68 57.80 ±10.65 0.281 

OSI 38.08 ±23.40 36.00 ±22.50 0.832 

ORI 26.31 ±19.96 15.70 ±8.30 0.131 

Days in Study 67.39 ±29.97 58.20 ±23.69 0.435 

Therapy Time (hrs) 58.90 ±41.45 61 .74 ±23.68 0.849 

Gender 5 F/8 M 3 F/7 M 0.673 

Admission Status 8 inpt/ 5 outp1 7 inpt/ 3 outpt 0.673 

Side of Hemiplegia 9L/4R 4U6R 0.161 

MMSE Score 29.00 ±1.29 29.33 ±0.75 0.508 

Admission Arm Score 2.77 ±0.93 3.00 ±0.94 0.563 

Admission Hand Score 2.54 ±0.88 3.10 ±0.88 0.143 

Admission Leg Score 4.39 ±1.77 4.10 ±0.99 0.652 

Admission Foot Score 4.00 ±1 .96 2.90 ±1.79 0.181 

Admission Shoulder Pain 4.69 ±1 .32 5.30 ±0.82 0.216 

Admission Postural Control 4.92 ±1.11 4.30 ±0.95 0.172 

Admission Grip Strength (kgl 3.14 ±4.70 4.95 ±6.22 0.436 

Admission ARAT 16.00 ±13.64 20.70 ±15.49 0.448 

Admission FIM 99.23 ±21.41 100.20 ±19.79 0.913 

Admission FIM Self-Care 29.62 ±8.98 30.40 ±8.34 0.833 

osr stroke onset to study entry interval 

ORI stroke onset to rehabilitation interval 

F female, M male 

L left, R right 
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Figure 2.2 depicts the location of the stroke in both the CIT and control groups. 

Only one subject suffered a hemorrhagic stroke (ofthe thalamus) while the remaining 

subjects experienced ischemic stroke. The subject with the hemorrhagic stroke was 

randomly assigned to the CIT group. Subcortical lesions were the most common stroke in 

the CIT group and cortical lesions were the most common type in the control subjects. 

Overall, 61% of the study subjects had either subcortical lesion only or subcortical lesion 

with cortical involvement, 26% had only cortical stroke and 8.6% had brainstem stroke. 

LJ Treatment 

mControl 

Figure 2.2: Prevalence of stroke types in each group 
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Figure 2.3 shows the number of subjects in each of the age categories. There was 

less variability in age in the control group with most subjects being between the ages of 

55 and 64. The youngest subject was 37 years of age in the CIT group. 
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Figure 2.3: Number of subjects in age categories for both groups 
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Figure 2.4 depicts the interval, in days, between stroke onset and admission to 

rehabilitation services. Subjects in the treatment group tended to have earlier admission to 

rehabilitation, however, this did not reach significance. 
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Figure 2.4: Number of subjects in categories of Stroke Onset to 

Rehabilitation Interval (ORI) in days 
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Figure 2.5 depicts the interval in days between stroke onset and admission to the 

study. Most subjects in both groups were between 20 and 39 days post-stroke. The most 

acute stroke patient was 5 days post-stroke in the control group. There were no subjects 

more than 100 days post-stroke when entering the study. Some subjects were delayed in 

entering the study until they had scored above 2 on the CMII for the arm and hand. On 

average, the difference between admission to rehabilitation and admission to the study 

was 11.8 days for control subjects and 21 days for CIT subjects. 
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Figure 2.5: Number of subjects in categories of Stroke Onset to Study Entry 

Interval (OSI) in days 
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Figure 2.6 shows the number of subjects in each of the Therapy Time categories. 

Therapy Time consisted oftotal hours of physiotherapy and occupational therapy during 

the study period. There was no significant difference in average therapy time between the 

groups however more subjects in the control group received less than 51 hours of 

physiotherapy and occupational therapy. 
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Figure 2.6: Number of subjects in Therapy Time categories in hours 
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Table 2.2 shows the average admission values and characteristics of the male and 

female subjects. There was no significant difference in therapy time, age, admission 

status, side of hemiplegia, admission CMII arm score or admission FIM score. There was 

a significant difference in the acuity of male and female subjects with females being an 

average of23 days post-stroke and the males 45 days post-stroke on admission to the 

study. There were three times as many subjects with left hemiplegia in the male group. 

Seven ofthese male left hemiplegic subjects were randomly assigned to the control 

group. 

Table 2.2: Admission Characteristics of Males and Females 

Average Males Females P- value 

Mean ±SO Mean ±SO 

Age 58.67 ±9.70 62.38 ±3.82 0.315 

OSI 44.53 ±23.35 23.38 ±13.02 0.028 

ORI 25.93 ±18.22 13.75 ±9.38 0.093 

Therapy time (hrs) 66.78 ±27.99 47.66 ±36.17 0.209 

Side of Hemiplegia 10 U5R 3U5R 0.179 

MMSE Score 29.14 ±1.13 29.13 ±1.17 0.973 

~tatus 1 0 inptl 5 outpt 5 i nptl 3 outpt 0.842 

ype of Stroke * * 0.519 

Admission ARAT 18.8 ±15.05 16.63 ±13.73 0.737 

Admission Arm 2.87 ±0.91 2.88 ±0.99 0.984 

Admission FIM 98.2 ±22.64 102.38 ±15.86 0.649 

* Males- 2 Brainstem, 4 Cortical, 3 Cort/Subcort, 6 Subcortical 
Females- 2 Cortical, 1 Cort/Subcort, 4 Subcortical, 1 unknown 
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Table 2.3 shows the average admission values and characteristics of subjects with 

right and left hemiplegia. There were no significant differences between these measures 

and characteristics although subjects with right hemiplegia scored lower on the ARA T on 

admission than subjects with left hemiplegia 

Table 2.3: Admission Characteristics of Subjects with Right and Left Hemiplegia 

Average Right Left P- Value 

Mean ±SO Mean ±SO 

Age 64.6 ±11.0 62.46 ±5.75 0.784 

OSI 36 ±25.08 38.08 ±21.35 0.832 

ORI 21.2 ±15.02 22.1 ±18.26 0.903 

Therapy Time (hrs) 63.3 ±22.95 57.69 ±41.62 0.706 

Gender 5 F/5 M 3 F/10 M 0.179 

MMSE Score 29.3 ±1.21 29.0 ±1.06 0.547 

Status 8 inptl 2 outpt 7 i nptl 6 outpt 0.192 

Type of Stroke * * 0.201 

Admission ARAT 13.7 ±14.71 21.39 ±13.65 0.21 

Admission Arm 2.9 ±0.88 2.85 ±0.99 0.893 

Admission FIM 103.4 ±15.43 96.78 ±23.52 0.449 

* Right- 1 Brainstem, 1 Cortical, I Cort/Subcort, 7 Subcortical 
Left- 1 Brainstem, 5 Cortical, 3 Cort/Subcort, 3 Subcortical, 1 unknown 
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Table 2.4 shows the results of unpaired t-tests between male and female subjects 

and right and left hemiparetic subjects in the control group. There was a significant 

difference in both stroke onset to rehabilitation (ORI) and stroke onset to study interval 

(OSI) between females and males in the control group. Female subjects were an average 

11.6 (±7.1) days ORI and 18.8 (±10.6) days OSI while male subjects entered 

rehabilitation an average 35.5 (±20.1) days post-stroke and entered the study an average 

50.1 (±21.1) days post-stroke. Although not significant, subjects with right hemiplegia in 

the control group had an average score of5.5(±1.67) on the ARAT compared to subjects 

with left hemiplegia who scored on average 20.67 (±14.1). Due to small subgroup sizes, 

analysis of differences between the types of stroke for these subgroups was not possible. 

Results of unpaired t-tests between both male and female subjects and subjects 

with right or left hemiplegia in the treatment group showed no significant difference 

between variables (data not shown). 
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Table 2.4: Comparison of Control Subgroup Characteristics with P-values 

Average Male vs. Female 

Age 0.712 

OSI 0.011 

ORI 0.028 

Therapy Time 0.224 

Side of Hemiplegia 0.071 

Gender N/A 

MMSE Score 0.678 

~tat us 0.207 

n"ype of Stroke * 

Admission ARAT 0.969 

~dmission Arm 0.502 

~dmission FIM 0.673 

* Male- I Brainstem, 3 Cortical, 2 Cort/Subcort, 2 Subcortical 
Female- 2 Cortical, I Cort/Subcort, 2 Subcortical 
Right- 1 Cortical, 3 Subcortical 
Left- 1 Brainstem, 4 Cortical, 3 Cort/Subcort, I Subcortical 
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Right vs. Left 

0.513 

0.446 

0.905 

0.608 

N/A 

0.071 

1 

0.506 

* 

0.06 

0.509 

0.835 



2.6.2 Compliance with Constraint 

None of the subjects in the treatment group, despite encouragement, were able to 

achieve 6 hours of constraint wearing per day. The average amount of constraint time per 

day was 2.7 hours (±2.0). However, five of 10 CIT subjects were able to tolerate the 

constraint 3 to 5.5 hours per day. Figure 2.6 depicts the number of subjects in the CIT 

group in each compliance category. Only one subject did not wear the constraint mitten at 

all. This subject was a 57 year old male with the lowest FIM score of60 in the CIT group 

indicating severe disability. 
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Figure 2.7: Number of subjects in the treatment group in each ofthe 

compliance categories in hours of constraint per day 
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Stepwise regression was performed, using a model which included all admission 

and rehabilitation variables ofthe CIT group subjects, to identify the relationship of the 

variables to compliance. Compliance (hours of constraint wearing per day) was not 

related to inpatient or outpatient status, age, side of hemiplegia, type of stroke, therapy 

time, ORI or OSI, or level of physical impairment on admission. There were no 

significant differences in average compliance between gender groups; however, male 

subjects wore the mitten constraint an average of 3.2 hours daily whereas female subjects 

were constrained on average, 1.5 hours per day. Subjects with right hemiplegia wore the 

mitten constraint an average of3.4 hours per day while subjects with left hemiplegia wore 

the constraint for 1.6 hours per day. 

Compliance (hours of wear per day) was significantly related to MMSE score on 

admission (R=0.902, p=0.0008). Subjects scoring lower on the MMSE wore the mitten 

constraint fewer hours per day (Figure 2.8). 
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Figure 2.8: Scattergram of compliance to constraint versus admission MMSE score 
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Although not significant, there was a trend toward a positive correlation between 

admission FIM score and compliance (R=0.534, p=O.ll5), which appeared to suggest that 

subjects who entered the study with less disability tended to have better compliance to the 

mitten constraint. Figure 2.9 depicts the relationship between compliance to the mitten 

constraint (in average hours of constraint wear) and admission FIM score for each of the 

10 subjects in the constraint group. The single subject who was unable to wear the 

constraint mitten at all had the lowest FIM score and MMSE score in the CIT group. 

-c 
l! u; 
c 
0 
0 

6 I 

5 j 
i 

4 ~ ....... 
0 ftS 
fCI)3 -
::s3: 

• 

0 
::c 
Cl) 
a 
l! 
Cl) 

: j • • 
a L---• ----.. -----.-------r-~-----,-----> 

<( 

50 60 70 80 90 100 

Admission FIM Score 

• 
• • 

• 
• 

110 120 

Figure 2.9: Scattergram of compliance to constraint versus admission FIM score 
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Table 2.5 shows the correlation between compliance to the mitten constraint and 

recovery (change in outcome measure score). Compliance to the mitten constraint was not 

correlated with change in the CMII stages of recovery, grip strength recovery, ARAT 

recovery or improvement oflevel of disability measured by the FIM in the CIT group. 

Table 2.5: Correlation Between Compliance and Recovery 

Correlation P- Value 

Compliance, Arm Recovery -0.027 0.943 

Compliance, Hand Recovery -0.171 0.647 

Compliance, Shoulder Pain Recovery 0.109 0.772 

Compliance, Postural Control Recovery -0.234 0.527 

Compliance, Grip Recovery -0.105 0.781 

Compliance, ARAT Recovery 0.345 0.341 

Compliance, FIM Recovery -0.431 0.223 

Compliance, FIM Self-Care Recovery -0.394 0.223 

In summary, MMSE score was strongly related to hours of constraint wear. 

Subjects with lower scores wore the constraint mitten the least. Compliance to constraint 

was not related to other subject characteristics or the physical impairment level on 

admission except that there was a trend suggesting that the least disabled subjects 

(measured by FIM) were able to tolerate the most hours of constraint time. Male subjects 

tended to wear the mitten constraint about twice as much as female subjects. The only 

subject who was not able to wear the mitten at all scored the lowest on both the FIM and 

the MMSE in the CIT group. Hours of constraint wearing were not related to degree of 

improvement on any of the outcomes measured. 
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2.6.3 Recovery From Stroke 

Figure 2.10 shows the average admission and discharge CI\111 scores for all the 

subjects. Subjects generally showed significant improvement (p<0.001) between 

admission and discharge on the CI\111 measures of arm, han<L leg, foot, and postural 

control. There was no significant difference in shoulder pain measures between admission 

and discharge. 

On admission to the study, 82.6% of subjects had severe arm hemiparesis, scoring 

between 2 and 3 on the CMII for the arm, and 17.4% had moderate hemiparesis, scoring 

between 4 and 5. On discharge, only 8.7% made a full recovery, 8.7% had mild residual 

paresis of the arm while 82.6% continued to have moderate or severe arm hemiplegia. 

The lower extremity was less impaired with 30.4% of subjects having severe leg 

hemiparesis on admission, 47.8% having moderate hemiparesis and 21.9% having either 

mild or no leg paresis. On discharge, 13% of subjects had complete recovery ofthe leg, 

30.4% had mild residual hemiparesis, 43.5% had moderate hemiparesis and 13% 

continued to have severe lower extremity hemiparesis. 
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Figure 2.11 shows the average admission and discharge scores for the ARA T and 

the average grip strength measured in kilograms. There was a significant difference in 

mean values for both measures between admission and discharge (p <0.001). On 

admission to the study, 56.5% of subjects scored less than 20 out of 57 on the ARA T 

suggesting clinically severe hemiparesis of the arm and hand while 30.4% scored between 

20 and 34 indicating moderately severe hemiplegia. On discharge, 8. 7% of subjects bad 

full recovery scoring 55-57 on the ARAT, 17.4% had mild residual hemiparesis, 26.1% 

bad moderate hemiparesis, 30.4% were moderately severe and 17.4% continued to have 

severe upper extremity hemiparesis. 
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Figure 2.11: Average ARAT score and grip strength in kg on admission and 

discharge for all subjects (mean ±SE) 
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Figure 2.12 shows the average FIM and FIM Self-Care scores at admission and 

discharge for all subjects. Subjects had a significant improvement in level of 

independence on both measures (p <0.001). On admission to the study 39.1% of subjects 

were independent with activities of daily living (ADL) with adaptations, 30.4% required 

supervision, 21 .7% required minimal assistance for AD L, while 8. 7% required either 

moderate or complete assistance for ADL. On discharge, 13% were completely 

independent, 73. ~lo were independent with adaptations and 13.1% required only 

supervision or minimal assistance of caregivers to carry out ADL. 
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Figure 2.12: Average FIM and FIM Self-Care score on admission and discharge for 

all subjects (mean ±SE) 
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Figure 2.13 shows the average CMII score change (improvement in score from 

admission to discharge) for both the CIT treatment group and control subjects. There was 

a trend toward better recovery of function in the CIT group measured by the CMII scores 

of arm, leg, foot, and postural control although postural control was the only measure that 

reached significance. Subjects in the CIT group experienced a 53% improvement in arm 

function while the control group subjects had a 33% improvement. There was no 

difference in hand recovery between groups. 
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Figure 2.13: Mean change of Chedoke-McMaster Impairment Inventory score 

(mean ± SE); Control versus treatment group (* p= 0.019). 
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Although not significant, there was a trend toward worsening shoulder pain score 

in the CIT group compared to controls. The data indicate that 14 of 23 subjects or 61% 

had shoulder pain on admission to the study (scoring 5 or less on CMII). Five of the 

subjects with shoulder pain were in the CIT group and nine in the control. Twelve of the 

14 subjects with shoulder pain had mild pain (scoring 4 or 5 on the CMII). On discharge, 

15 subjects had shoulder pain, seven from the CIT group and eight from the control 

group. Overall, of the five subjects who had worsening shoulder pain, four were from the 

CIT group. Figures 2.14 and 2.15 depict the number of subjects in each group at each 

level of the CMII shoulder pain scale on admission and discharge. Most subjects scored 

between 4 and 6 on admission. Level 6 indicates scapular and shoulder mal-alignment 

with no pain and level4 indicates intermittent pain localized to the shoulder only on 

testing. There were some subjects in both groups whose pain worsened on discharge 

indicated by lower shoulder pain scores. Only one subject in the control group (female, 

right hemiplegia, age 64) had a normal pain score of 7 on discharge. 
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Figure 2.16 shows the average ARA T score change from admission to discharge 

for the CIT treatment group and the control group. There was a trend, albeit non-

significant, toward more improvement in ARA T score in the CIT group compared to 

controls (p=0.136). Subjects in the CIT group experienced an 85% improvement in 

ARAT score while control subjects experienced a 74% improvement. 
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Figure 2.16: Mean change in ARA T score (mean ± SE); Control versus treatment 

groups. 
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Figure 2.17 shows the mean change in grip strength using the Jamar Hand 

Dynamometer for the CIT and control groups. There was no difference in recovery of 

grip strength. 
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Figure 2.17: Mean change in grip strength in kg (mean ±SE); Control versus 
treatment groups. 
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Figure 2.18 shows the mean change ofFIM and FIM Self-Care scores for the CIT 

and control groups. There was no significant difference in these variables between the 

CIT group and controls. 
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Figure 2.18: Mean change ofFIM score and the Self-Care portion ofFIM (mean 

±SE); Control versus treatment. 

In summary, it was found that subjects in the CIT group experienced more 

recovery of the arm, leg and trunk than control subjects although this reached significance 

only on the CMII measure of postural control. There was no difference between groups in 

recovery of grip strength or disability measured by FIM. Sixty-one percent of the subjects 

had shoulder pain on admission to the study and of the 5 subjects who had worsening of 

shoulder pain, 4 were in the CIT group. 
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2.6.4 Variables Affecting Recovery 

All subjects characteristics and admission scores were entered into a stepwise 

regression model to determine the relationship of the variables to arm recovery measured 

by both the CMII and ARAT. Table 2.6 shows the results of regression analysis for CMII 

arm score change (recovery). Arm recovery was positively correlated only with admission 

CMII shoulder pain score (bolded). Simple regression (not bolded) suggested a negative 

correlation between arm recovery and stroke onset to rehabilitation interval (ORI) as well 

as a relationship with admission CMII hand score. 

Table 2.6: Relationship Between CMII Arm Recovery and Admission 

and Rehabilitation Variables 

R-Value P- Value F- Value 

Arm Recovery, Admission Shoulder Pain 0.472 0.022 6.02 

~rm Recovery, ORI -0.441 0.035 3.99 

Arm Recovery, Admission Hand 0.437 0.036 3.21 
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Figure 2.19 shows the relationship between CMII arm recovery and CMII shoulder pain 

score. Those subjects with less shoulder pain on admission experienced more arm 

improvement. 
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Figure 2.19: Scattergram of CMII ann recovery and admission shoulder pain for 

both control and treatment groups (R=0.472). 
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Figure 2.20 shows the relationship between arm recovery measured by the CMII 

for both the CIT and control groups and ORI. The outlying subject from the control is the 

same outlying subject in Figure 2.21. This subject had the highest admission CMII score 

for the hand of all subjects and one of the longest stroke onset to study entry intervals at 

81 days. This subject may have experienced most ofhis recovery before entering the 

study. 
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Figure 2.20: Scattergram of CMll arm recovery and Onset to Rehabilitation 

Interval (ORI) for both control and treatment groups (R=-0.441). 
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Figure 2.21 shows the relationship between CMII arm recovery and admission 

CMII hand score. The outlying subject from the control group scoring 5 on admission 

CMII for the hand, was one of the subjects with the longest OSI at 81 days. 
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Stepwise regression showed that recovery measured by the ARA T was related 

only to OSI, admission hand score and admission ARAT score (p=0.004). No significant 

relationship was found between other variables, gender, inpatient or outpatient status, side 

ofhemiplegia, or type of stroke, and recovery ofthe upper extremity measured by the 

ARAT. Table 2.7 shows the results of stepwise regression for recovery measured by the 

ARA T and the admission and rehabilitation variables for all subjects. 

Table 2.7: Relationship-Between ARAT Score Recovery and 

Admission/ Rehabilitation Variables 

ARAT Recovery, OSI 

ARAT Recovery, Admission Hand 

ARAT Recovery, Admission ARAT 
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R- Value P- Value 

-0.585 0.004 

0.276 

-0.305 



Figure 2.22 shows the relationship between ARAT recovery and stroke onset to 

study entry interval (OSI). Those subjects more than 45 days post-stroke on study entry 

made less impressive gains in ARAT recovery. 
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Figure 2.22: Scattergram of ARA T score recovery and OSI for both control and 

treatment groups. 
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Improved ARAT score was associated with higher CMII hand score on admission 

to the study (Figure 2.23) but higher admission ARAT score was associated with less 

ARAT score change (Figure 2.24) 
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Figure 2.23: Scattergram of ARA T score recovery and admission CMD band score 

for both control and treatment groups. 
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Figure 2.24: Scattergram of ARA T score recovery and admission ARA T score. 

Side of hemiplegia was significantly related to arm recovery (p=0.023) with 

subjects with left hemiplegia having better recovery than those with right hemiplegia. 

Figure 2.25 shows the average improvement in CMII scores for subjects with right and 

left hemiplegia in the treatment and control groups. Analysis of subjects with right or left 

hemiplegia separately revealed a significantly greater improvement in CMII leg recovery 

in CIT group subjects with left hemiplegia than control subjects with left hemiplegia. 

Although non-significant, there was a tendency for subjects with left hemiplegia to have a 

more robust arm improvement with CIT than those in the control (p= 0.093). Subjects 

with left hemiplegia in the CIT group experienced a 44% improvement in arm score over 

subjects with right hemiplegia in the CIT group and left hemiplegic subjects in the control 

group. There was also a tendency for right hemiplegics in the treatment group to have 
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worsening of shoulder pain over subjects in other subgroups but this did not reach 

significance. 
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Figure 2.25: Mean change of Chedoke-McMaster Impairment Inventory score 

(mean ±SE); Treatment versus control and right versus left hemiplegia(* p<0.05). 
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Figures 2.26 and 2.27 show the average improvement in ARAT score and grip 

strength respectively, for subjects with right and left hemiplegia in the treatment and 

control groups. There were no significant differences between scores in subjects with 

right and left hemiplegia in the control and CIT groups. 
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Figure 2.26: Mean ARAT score change (mean ±SE); Control versus treatment and 

left versus right hemiplegia. 
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Figure 2.27: Mean change in grip strength in kilograms (mean ±SE); Control versus 

treatment and right versus left hemiplegia. 
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Figure 2.28 shows the average recovery of independence measured by the FIM for 

subjects with left and right-sided involvement for both study groups. Subjects with left 

hemiplegia in the CIT group had up to 100% more recovery than the other subgroups 

however this did not reach significance. 
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Figure 2.28: Mean change in FIM and FIM Self-Care scores (mean ±SE); Control 

versus treatment and right versus left hemiplegia. 
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There was a significant interaction effect between gender and treatment condition 

(control or Cin with regard to recovery of the arm. Figure 2.29 depicts the average CMII 

score recovery for male and female subjects in the treatment and control groups. When 

female and male subjects were analyzed separately, there was a significantly greater 

improvement in CMII arm recovery in male subjects in the treatment group compared to 

controls. It should be noted that although not reaching significance, male subjects were 

more compliant with the mitten constraint than female subjects. There was also a 

significant difference in shoulder pain recovery with the females in the CIT group having 

significantly worse shoulder pain than females in the control group; a mean decline of 1.5 

points on a seven point scale. They also developed significant worsening of shoulder pain 

compared to their male counterparts in the CIT group. There was a significant difference 

in improvement of CMII postural control in favour of females in the CIT group compared 

to those in the control group. Females in the control group had significantly better hand 

recovery than male subjects in the control group. Although not reaching significance, 

females in the control group demonstrated better recovery on the CMII measures of arm, 

hand and leg than female subjects in the treatment group. 
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Figure 2.29: Mean CMH score change (mean ±SE); Control versus treatment and 

males versus females(* p<0.02, ** p<O.OS). 
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Figures 2.30 shows the average grip strength recovery for females and males in 

the treatment and control groups. Male subjects in the treatment group had significantly 

better grip strength recovery than males in the control and females in the treatment group. 

There was a trend, although not significant, toward better recovery of grip strength in 

female subjects in the control group over females in the CIT group. 
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Figure 2.30: Mean change in grip strength in kilograms (mean ±SE); Control versus 

treatment and females versus males (* p< 0.02, **p< 0.05). 
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Figure 2.31 shows the average change of ARAT score in both the female and male 

subjects in the treatment and control groups. Male subjects in the treatment group had 

significantly better recovery of hand and arm movement and coordination as measured by 

the ARA T than males in the control group. 
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Figure 2.31: Mean ARAT score change (mean ±SE); Control versus treatment and 

females versus males ( * p< 0.02). 
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Figure 2.32 shows the average FIM and FIM Self-Care score recovery for female 

and male subjects in the CIT and control groups. There was no significant difference 

between average improvement in FIM and FIM Self-Care measures between females and 

males in the control and treatment groups. 
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Figure 2.32: Mean FIM and Self-Care portion ofFIM score change (mean ±SE); 

Control versus treatment and females versus males. 
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Figure 2.33 represents the average grip strength each week for the last 15 subjects 

in the study. There was a trend toward increasing grip strength in both groups from week 

1 to week 8, with somewhat greater improvements in the CIT group. In weeks 9 and 10, 

strength decreased in both groups, corresponding to the time of peak reported shoulder 

pain. However it appears that the CIT subjects returned to a trend toward recovery while 

the control group did not. 
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Figure 2.33: Average weekly grip strength values in kilograms for subjects in the 

control and treatment groups 

101 



2.6.5 Validity of Measures 

Table 2.8 shows the relationship between the outcome measures used in the study. 

Recovery of arm function measured by the CMII was strongly correlated with 

improvement on other upper extremity recovery measures, grip strength recovery, ARAT 

recovery, and Chedoke-McMaster hand recovery. Arm recovery on the CMII was 

correlated with the Self-Care portion of the FIM but not the FIM in its entirety. Grip 

strength correlated with both ARAT recovery and hand recovery but not total FIM 

recovery or the Self-Care portion ofFIM. The ARAT score recovery was correlated with 

all measures used in this study including those above as well as FIM, Self-Care, and hand 

recovery. Hand recovery was not correlated with either FIM or the Self-Care portion of 

FIM. Change in shoulder pain was correlated only with grip strength recovery and not 

with any of the other upper extremity measures. 
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Table 2.8: Relationship Between Recovery Measures 

R-Value P- Value 

rrn Recovery, Hand Recovery 0.603 0.002 

rrn Recovery, Postural Control Recovery 0.459 0.026 

rrn Recovery, Shoulder Pain Recovery 0.037 0.868 

rm Recovery, Grip Strength Recovery 0.559 0.005 

rrn Recovery, ARAT Recovery 0.526 0.009 

rrn Recovery, FIM Recovery 0.388 0.067 

rm Recovery, FIM Self-Care Recovery 0.424 0.043 

Hand Recovery, Postural Control Recovery 0.302 0.164 

Hand Recovery, Shoulder Pain Recovery 0.096 0.668 

Hand Recovery, ARAT Recovery 0.434 0.038 

Hand Recovery, Grip Strength Recovery 0.675 0.0002 

Hand Recovery, FIM Recovery 0.249 0.256 

Hand Recovery, FIM Self-Care Recovery 0.350 0.102 

houlder Pain Recovery, Grip Strength Recovery 0.513 0.011 

Shoulder Pain Recovery, ARAT Recovery 0.106 0.633 

Shoulder Pain Recovery, FIM Recovery -0.029 0.895 

Shoulder Pain Recovery, FIM Self-Care Recovery -0.133 0.551 

Grip Strength Recovery, ARAT Recovery 0.471 0.022 

Grip Strength Recovery, FIM Recovery 0.249 0.255 

Grip Strength Recovery, FIM Self-Care Recovery 0.263 0.228 

RAT Recovery, FIM Recovery 0.603 0.002 

RAT Recove , FIM Self-Care Recove 0.551 0.006 
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2. 7 Discussion 

2.7.1 Constraint-Induced Therapy Affects Stroke Outcome 

Constraint of the sound arm following stroke paired with intensive 'shaping' 

therapy has been shown to improve upper extremity outcome (van der Lee 1999). 

However, it has yet to be determined if the principles of CIT can be practically applied 

within the current model and resources of stroke rehabilitation. In this study, CIT applied 

with conventional therapy during the rehabilitation phase of stroke, appeared to augment 

functional recovery, although significant results were not found on most outcome 

measures. The constraint therapy appeared to have a significant effect on recovery of 

CMII scale of postural control and subjects in the CIT group had 20% greater arm 

recovery, measured by CMII, over control subjects. 

This method of constraint encouraged bilateral, symmetrical activity and perhaps 

intensified the rehabilitation experience. It may be that the constraint, because of its 

intensity, places additional challenge on the stroke patient and has an influence on 

physical recovery of the trunk in addition to the impaired upper extremity. Subjects in the 

CIT group also had greater improvement than controls on other measures unrelated to the 

upper extremity, including recovery of the leg and foot. It could be suggested that more 

frequent attempts at use of the impaired upper extremity in functional activities would 

likely encourage enhanced activation of the trunk and increased loading of the lower 

extremities especially during reaching tasks. 

The subjects in this study had greater motor impairment and were more disabled 

than subjects in previous studies (Taub 1993; Miltner 1999; van der Lee 1999; Dromerick 
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2000). Over 80% of our subjects bad severe upper extremity hemiplegia on admission to 

the study, as indicated by CMII stage and ARAT score, which is typical of patients seen 

in a rehabilitation hospital. In fact, subjects in this study waited, on average, 15 days to be 

included in the study after entering rehabilitation because of severity of arm dysfunction. 

This delay was required to allow the subjects to recover at least facilitated band grasp and 

release and arm flexion and extension. Studies have shown that initial paralysis is 

associated with poorer outcome (Harvey 1998; Macciocchi 1998; Hendricks 2002) thus 

these subjects were at significant disadvantage compared to more mildly affected stroke 

patients. In this study, it was also found that lower admission hand scores and more 

shoulder pain on admission to the study were associated with poorer arm recovery. Data 

also indicated that delayed stroke onset to study entry interval was associated with less 

recovery of the arm during the study period. In addition, 61% of the subjects in this study 

suffered subcortical lesions or lesions with both subcortical and cortical involvement. 

Studies indicate that patients with subcortical stroke have less favourable outcomes than 

patients with cortical stroke (Macciocchi 1998; Shelton 2001). Despite having factors that 

predict a negative outcome (i.e. severe stroke, subcortical lesions) all subjects, 

particularly the CIT subjects, demonstrated significant functional recovery. 

The data from this study indicated that subjects in the CIT group had 11% more 

improvement on the ARA T and 20% more improvement on the CMII than control 

subjects. In the study by Dromerick et al., in an acute rehabilitation setting, subjects in the 

constraint plus ' shaping' group experienced an additional36% improvement over 

controls measured by the ARAT, however the constraint subjects were on average 10 

years younger than the control subjects (Dromerick 2000). The subjects in our study were 
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also more impaired on admission than subjects in the Dromerick study, scoring, on 

average, 9.5 points out of 57 lower on the ARAT. In the study by van der Lee et al., 

comparing CIMT to bimanual exercise in chronic stroke, CIMT subjects experienced a 

17.4% improvement on the ARAT while control subjects experienced a 6% improvement 

(van der Lee 1999). One of the earliest CIMT studies by Taub demonstrated that chronic 

stroke patients experienced approximately 18% improvement on the Arm Motor Activity 

Test and 26% improvement on the Emory Motor Function Test over control subjects 

(Taub 1993). Considering that our subjects were more impaired than those in comparable 

studies, the improvement found in this study may be clinically relevant and since the CIT 

program was performed with very little therapist intervention, it has the potential to be a 

cost and resource-efficient method to intensify rehabilitation. 

It was also noted in this study, that although 47% and 30% of subjects in both 

groups had severe or moderate arm hemiplegia respectively on discharge measured by the 

ARAT, 80% of subjects achieved independence or adapted independence in ADL 

measured by the FIM score. This suggests that our subjects, despite the CIT intervention, 

developed compensatory strategies using the sound arm to achieve independence in ADL. 

2.7.2 Compliance with the CIT Program 

Previous questionnaire results have reported that the majority of patients would 

not be compliant with wearing the sling and splint for 90% of waking hours together with 

6 hours per day of therapy (Page 200 I) . In contrast, the graduated program of mild 

constraint used in this study was generally accepted by our patient population. 
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Full compliance (i.e. 6 hours of constraint per day) was not achieved in this study 

in the acute rehabilitation setting although 3 to 5.5 hours per day was achieved by half of 

the treatment group. Daily wear time was not individually prescribed, and clinically, it 

appeared that subjects wore the mitten constraint as they were able. Because of the extent 

of upper extremity impairment of the subjects in our study, it may be unrealistic to expect 

these patients to wear the constraint for 90% of waking hours. 

The two subjects from the CIT group, who discontinued their participation, did so 

prior to initiation of the CIT program. It was the burden of the assessment procedure, 

rather than the CIT protocol, that precipitated their termination. Only one subject in the 

CIT group did not wear the mitten constraint at all and that subject had the lowest FIM 

score in the group and experienced average recovery. The other CIT subjects wore it to 

varying degrees. The amount of wearing did not seem to be related to recovery however 

subjects in addition to constraint, were coached on the principles and rationale of CIT and 

the learned non-use theory. 

It was difficult to predict which subjects would be most compliant. It was 

anticipated that inpatients, because of closer supervision, would be most compliant, but 

this was not the case. There was no evidence that compliance was related to the level of 

upper extremity impairment or shoulder pain on admission, as might be expected. 

However, compliance was related to the MMSE score on admission. This finding was 

unexpected since all subjects in the study were screened and scored greater than 25 on the 

MMSE, considered to be within normal limits, and did not demonstrate obvious cognitive 

deficits. It was apparent that the subjects who reached the full score of 30 were able to 

achieve the most hours of constraint wearing and even MMSE scores of two or three 
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points lower than the maximum score were associated with poorer compliance. 

Admission FIM score was also related to compliance, albeit non-significantly. Those 

subjects who were most disabled and dependent on others for daily care on admission to 

the study tended to be least compliant with the mitten constraint. MMSE score and the 

cognitive subscale of FIM have been shown in previous studies to be highly correlated 

(Zwecker 2002), so the subjects with low MMSE scores may also be those likely to score 

lower on the FIM. Other constraint-induced therapy studies have not reported difficulties 

with compliance, however this study did not provide the individual attention and 

additional therapy time provided by others, and subjects were encouraged to carry out the 

constraint protocol independently. Some studies examining compliance to self­

administration of medications have reported that MMSE scores lower than 25 predict less 

medication compliance in elderly subjects (Okano 2001; Salas 2001). Findings from this 

study may suggest that even very mild cognitive impairment may impede the stroke 

patient' s ability to completely participate in the CIT program or that patients participating 

in CIT should be screened and the amount of wearing tailored to the individual's abilities. 

2.7.3 Adverse Effects of the CIT Program 

Examination ofFIM and the Self-Care items ofFIM score change revealed that 

CIT subjects were no more reliant on caregivers for ADL than control subjects. In fact, 

subjects in the CIT group tended to have more improvement ofFIM and FIM Self-Care 

than controls. There was no evidence to suggest that CIT would be too intense for the 

sub-acute rehabilitation setting. There were no adverse events during the study including 
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second stroke, falls, or worsening of status. Whereas other studies completely disallowed 

use ofthe sound arm for 90% ofwaking hours, this method of mitten constraint was 

designed to encourage bilateral activity and to act more as a 'use-cue' for the affected arm 

and hand rather than a total restraint. Subjects were not frustrated or uncomfortable with 

the mitten constraint. It could be suggested that this method of minimal constraint is more 

appropriate in the acute rehabilitation setting because it does not compromise 

independence or place excessive stress on the recovering stroke patient, on the other 

hand, it did not appear to prevent learned non-use as the majority of subjects despite 

significant hemiparesis were able to carry out ADL independently. 

Sixty-one percent of the subjects experienced hemiplegic shoulder pain (HSP) on 

admission to the study which is consistent with other studies reporting between 5 and 

85% occurrence ofHSP in rehabilitation (for review see Turner-Stokes 2002). It was 

found that the amount of mitten wearing was not correlated with worsening of shoulder 

pain and shoulder pain was not correlated with recovery. Despite this, there was a trend 

toward less recovery in those subgroups (female subjects and subjects with right 

hemiplegia in the CIT group) with more shoulder pain. Although the pain was mild and 

did not seem to be related to the CIT treatment, it is an area warranting further 

investigation. There was an interesting temporal association between a reduction in grip 

strength and onset of peak shoulder pain in both CIT and control groups. Grip strength 

was the only outcome measure that was significantly related to shoulder pain. To our 

knowledge, this is the first study, albeit preliminary, to address the relationship between 

upper extremity constraint, arm recovery and hemiplegic shoulder pain. 

109 



2. 7.4 Some Patients May Benefit More Than Others 

Subjects with left hemiplegia in the CIT group had significantly more leg 

improvement and a trend toward more arm recovery than those in the control group. This 

subgroup of subjects experienced 44% more improvement of CMII scores than left 

hemiplegics in the control group and right hemiplegics in the CIT group. Since all of the 

subjects were right hand dominant, this finding suggests that the benefits of CIT may be 

greater when the dominant hand is constrained. No difference in admission and 

rehabilitation variables such as admission scores or therapy time were found between 

subjects with right and left hemiplegia or between right and left hemiplegics in the 

treatment group. We suspect that the phenomenon of'learned non-use' may be more 

problematic when the stroke affects the non-dominant side because the patient may learn 

to compensate by using the sound, dominant hand. Although right hemiplegic subjects 

also benefited (17% more improvement in CMII arm score than controls), it appears that 

CIT has less of a robust effect when hemiplegia involves the dominant side. Perhaps there 

is an innate drive to use the dominant hand after stroke with or without constraint. As far 

as we are aware, there have been no previous studies that report such a phenomenon. It is 

difficult to draw conclusions since the sub-group sizes were small and there were no left­

hand dominant subjects to compare outcomes. Alternatively, subjects with right 

hemispheric lesions are more likely to suffer from spatial neglect (Su 2000) and tend to 

have poorer functional outcomes than those with left hemispheric stroke (Macciocchi 

1998). Mild stimulation such as transcutaneous nerve stimulation (TENS) can improve 

scanning and attention to the left side in patients with right-sided stroke (Perennou 2001) 

so it is possible that the CIT program serves as a cue, encouraging the right hemispheric 
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stroke patient to use the often neglected arm and hand. Findings in this study suggest that 

the mitten constraint may have had a significant beneficial effect on leg recovery in the 

left hemiplegic group. The constraint mitten may act as a use-cue to the left side generally 

and holistically. It was also noted that the subjects with right hemiplegia tended to have 

an increase in shoulder pain over other subgroups and this may have had an influence on 

upper extremity outcomes in that group. Upper extremity outcomes in subjects with right 

or left hemiplegia were examined in the CIMT study (n=15) by Miltner and colleagues 

(Miltner 1999). Their findings suggested that CIMT had an equally beneficial effect in 

both groups. However, other studies tended to include subjects with hemiplegia on the 

same side. Taub et al. included subjects with either left hand dominance or left 

hemiplegia while van der Lee and colleagues chose only subjects with dominant side 

hemiplegia with equivocal benefits (Taub 1993; van der Lee 1999). This appears to be the 

first study to suggest a disparate effect in left versus right hemiplegia. 

For those patients who would typically experience poorer outcomes, those with 

right hemispheric or subcortical stroke, lower admission FIM scores, and more motor 

impairment on admission, the CIT program appears to offer some benefit. These are 

issues of interest to clinicians who must determine the most appropriate CIT candidates. 

A larger study with subgroups of subjects with left and right hemiplegia and hand 

dominance would help defme selection criteria. 

A significant difference was found in all measures of upper extremity recovery 

(CMII arm, hand, shoulder pain, grip strength, and ARAT) in the male subjects in the CIT 

group compared to controls. Male subjects appeared to be most compliant with the mitten 

constraint although the rationale was not apparent. There were no differences in initial 
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outcome scores and demographics between male and female subjects but other factors 

such as educational level or depression were not measured. The CIT program did not 

seem to have a beneficial effect for the female subjects other than in recovery of postural 

control, although females were underrepresented in the study. Furthermore, there was 

worsening of shoulder pain in the females versus males in the CIT group and versus 

females in the control group. In fact, females in the control group recovered to a greater 

degree on measures of grip strength, ARAT, Chedoke-McMaster arm and hand scores 

than those who were in the CIT group. This finding may have been due to differences in 

compliance and increased shoulder pain rather than any gender difference, since the 

female subjects in the CIT group were less compliant to the mitten constraint and 

experienced more shoulder pain. Other studies have suggested that hemiplegic shoulder 

pain can impede motor recovery (Teaselll998; Turner-Stokes 2002), however, a 

correlation between shoulder pain and recovery of the hemiplegic arm was not found in 

this study. This disparity in outcome may also have been due to the fact that females in 

the control group entered rehabilitation significantly sooner post-stroke than males in the 

control, which placed them at a considerable advantage. Data from this study indicated 

that a shorter interval between stroke and initiation of rehabilitation was associated with 

improved functional recovery, a finding supported by other researchers (Harvey 1998; 

Musicco 2003). The numbers of subjects in these subgroups were too small to draw 

definitive conclusions, however, it is an area worthy of further investigation. 
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2.7.5 Limitations in Experimental Methods and Recommendations for 

Future Studies 

We had difficulty maintaining concealed discharge assessment by raters. Since the 

research was conducted in a small facility, after randomization to treatment groups, 

subjects and therapists were aware of treatment group assignment. However, the 

discharge raters were the attending therapists who had no stated bias toward study 

outcomes. The ARAT admission and discharge assessments were performed by the 

principal investigator for which the treatment condition was concealed only on admission 

assessment. Bias could be suggested on this test, but we note the strong correlation 

between change of ARA T score and change measured by other tests. The scores on the 

ARAT were highly correlated with scores of tests performed by other raters. Future 

studies should ensure that evaluators are consistently blinded to avoid potential bias. 

We did not begin weekly grip strength testing until the tenth subject bad entered 

the study so conclusions drawn from this data, although interesting, are limited. We did 

not measure spatial neglect, motivation, or educational level. This information may have 

assisted our determination of compliance issues as well as clarified the beneficial effect in 

male subjects and left hemiplegics. Hours of constraint wear were recorded weekly and 

relied on the memory of subjects and caregivers for accuracy. It is recommended that 

hours of constraint wear be measured daily in subjects to avoid potential errors. 

Clinical interpretation of our results is limited due to the small number of subjects 

especially in subgroup analysis. However we note that our subject number exceeds many 

of the previous CIMT and CIT studies. It will be important in future CIT studies to 
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examine this practical method of CIT in a much larger sample of stroke patients in active 

rehabilitation to begin to draw definitive conclusions about its usefulness. Since this study 

only examined functional outcome following the active phase of stroke rehabilitation, it is 

not known if CIT provided any long-term benefit. Subjects should be reassessed at one 

and two-years post-intervention. 

Because we examined CIT in a clinical setting with both inpatients and 

outpatients, there was variance in the lengths of stay and therapy time among subjects. 

The duration of intervention was not controlled. However we recorded these parameters 

and there was no significant difference between groups. Exposure to routine therapy in 

terms of duration, skill of therapists and specific techniques were not controlled therefore 

the contribution of these factors are not known. Any causative effects of CIT cannot be 

surmised with any certainty in this study due to this variability. It is recommended that 

researchers examining CIT attempt to control at least treatment duration and therapeutic 

strategies, to help determine the effects of CIT itself. It is conceivable that variations in 

conventional therapy could explain the results. 

2.8 Summary and Conclusions 

The CIT program, without additional 'shaping' therapy, appeared to have 

beneficial effects on recovery of postural control in the rehabilitation stage of stroke. CIT 

also seemed to augment functional recovery of the arm by about twenty percent. 

Forced-use is not a novel approach for physiotherapists skilled in the management 

ofthe sequelae of stroke. Physiotherapists employ techniques that require the stroke 
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survivor to direct attention and control to the affected side. For example, therapists 

routinely approach and treat patients from the affected side to encourage visual scanning 

and weight shift to that side. Despite this practice, therapeutic goals and strategies vary 

among caregivers and professionals and there is a defmite approach in rehabilitation 

toward compensation, teaching patients to 'make-do' with the remaining function on the 

sound side. Patients are provided a wheelchair, walking cane, arm sling and one-handed 

devices for ADL soon after stroke. Argument can be made that these methods improve 

the stroke survivors' independence and self-esteem. However, it has been demonstrated 

that intense rehabilitation, either constraint-induced therapy or skilled task training for the 

upper extremity and adapted treadmill training for the lower extremity, influences 

neuroplastic change in the recovering brain and enhances the restoration of motor control. 

It could be suggested that the compensatory approach instituted directly following stroke 

may be counter-productive in assisting the stroke patient to achieve his or her maximal 

recovery. 

There is nothing profound about a mitten constraint. It appears that it functions as 

a 'use-cue' following stroke and encourages the patient to continue to attempt to use the 

affected arm for even simple tasks such as stabilizing a sliding plate of food. Each 

movement attempt probably serves as a stimulus to the recovering brain and likely to 

branching neurons. Stroke patients in rehabilitation spend much of the day in non­

therapeutic and usually sedentary activities when attention is not directed to the affected 

side. The mitten constraint may optimize this otherwise underutilized time and transform 

it into therapeutic time. In fact, we found that CIT seemed to be most beneficial in 

subjects with left hemiplegia, who are reported to more likely neglect the affected side. 
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This intensified rehabilitation may have other benefits, since we observed some additional 

improvements in other aspects of function (ie. trunk and lower extremity recovery) in 

subjects receiving constraint therapy. 

Compliance with CIT was better in subjects with a normal MMSE score, those 

with less disability on admission, and male subjects. We did not specifically examine 

factors that may be related to compliance to CIT such as educational level, motivation or 

depression. Examination of these factors will be important in order to inform 

rehabilitation clinicians of appropriate selection criteria for the application of CIT. 

Our method of CIT was safe and well-tolerated and did not increase the stroke 

patient's dependence on staff. We found, however, that there was a worsening of 

hemiplegic shoulder pain (HSP) in the female subjects in the CIT group and these 

subjects did not improve as much as females in the control group. The relationship 

between shoulder pain and CIT may be a concern for rehabilitation professionals but we 

found no relationship between shoulder pain recovery and upper extremity recovery. HSP 

was not found generally among the CIT subjects, even the most compliant, and the 

increase in shoulder pain was mild. This is an area worthy of further exploration. Future 

investigations using a larger sample will be helpful in determining more conclusively the 

benefits suggested in this exploratory study. 

The most salient points in this study were that no additional 'shaping' therapy was 

added to the constraint protocol and the constraint was worn each day for the duration of 

the rehabilitation program once the subjects had gained at least facilitated flexion and 

extension of the arm and hand. The levels of impairment and disability of the subjects in 

our study were typical of those who participate in stroke rehabilitation, and therefore our 
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preliminary findings have direct clinical relevance. We suggest that this CIT protocol is a 

practical method to apply constraint therapy principles in the acute rehabilitation phase of 

stroke. 
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APPENDIX A 

Faculty ofMedicine- Memorial University ofNewfoundland 
And 

Health Care Corporation of St. John's 

Consent To Participate In Bio-Medical Research 

TITLE: Effect of Constraint-Induced Therapy on Outcome during the 
Rehabilitation Phase in Stroke Patients 

INVESTIGATORS: Michelle Ploughman, Physiotherapist 
LA Miller Centre, Health Care Corporation 

OfSt. John's. 

Dr. Dale Corbett 
Faculty of Medicine 

Memorial University ofNewfoundland 

You (or your child or ward) have been asked to participate in a research study. 
Participation in this study is entirely voluntary. You may decide not to participate or may 
withdraw from the study at any time without affecting your normal treatment. 

Information obtained from you or about you during this study, which could identify you, 
will be kept confidential by the investigator(s). The investigator will be available during 
the study at all times should you have any problems or questions during the study. 

1. Purpose ofthe study: 

Research in humans and animals has shown that forced-use of the weak arm, months and 
years after stroke, improves recovery and causes changes in the brain towards normal. 
This study will use a thick, knitted mitten, applied to the good hand to encourage use of 
the weak arm and hand in every day activities. The study will attempt to show how useful 
this treatment is during the rehabilitation phase after stroke. 

Participant's Initials _ ____ Page 1 
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2. Description of procedures and tests: 

You will be assessed by a physiotherapist at the beginning and end ofthe study. The 
therapist will test the strength of your arm and hand and you will be placed randomly in 
one of two groups. 'GroupA' will participate in the regular rehabilitation program at the 
Miller Centre. Group B, in addition to this, will wear a special mitten on the good hand 
for 6 hours per day. You will be asked to complete a daily journal of your activities. 
Because the group selection is random, your chance of being in one group or the other is 
even. 

3. Duration of participant's involvement: 

You will be involved in the study during your entire rehabilitation stay. Your initial and 
discharge assessment by the physiotherapist will take about an hour each. 

4. Possible risks, discomforts, or inconveniences: 

You will experience minimal or no risk or discomfort during this study. You may feel 
slight inconvenience or frustration when wearing the mitten on your good hand as you 
may find performing your daily activities, such as grooming and eating, more difficult. 

5. Benefits which the participant may receive: 

There is no immediate benefit to either group while participating in the study. Presently, 
we do not know the benefits, if any, of this type of treatment in the rehabilitation phase 
after a stroke. 

6. Alternative procedures or treatment for those not entering the study: 

If you decide not to enter this study, you will participate in the regular rehabilitation 
program at the Miller Centre. 

7. Liability Statement. 

Your signature indicates your consent and that you have understood the information 
regarding the research study. In no way does this waive your legal rights nor release the 
investigators or involved agencies from their legal and professional responsibilities. 

Participant's Initials _____ Page 2 
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Signature Page 

Title ofProject: Effect of Constraint-Induced Therapy on Outcome during the 
Rehabilitation Phase in Stroke Patients 

Name of Principal Investigator: Michelle Ploughman BScP. T. 

To be signed by participant 

I, 
to the participation of 
research study described above. 

, the undersigned, agree to my participation or 
(my child, ward, relative) in the 

Any questions have been answered and I understand what is involved in the study. I 
realize that participation is voluntary and that there is no guarantee that I will benefit from 
my involvement. 
I acknowledge that a copy of this form has been given to me. 

(Signature ofParticipant) (Date) 

(Signature of Witness) (Date) 

To be signed by investigator 

To the best of my ability I have fully explained the nature ofthis research study. I have 
invited questions and provided answers. I believe that the participant fully understands 
the implications and voluntary nature of the study 

(Signature oflnvestigator) (Date) 

Phone number 
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Chedoke-McMaster Stroke Assessment 
SCORE FORM Page 1 of 4 

IMPAIRMENT INVENTORY: SHOULDER PAIN AND POSTURAL CONTROL 

POSTURAL CONTROL: Start at Stage 4. Starting position is 
indicated beside the item or underlined. No support is permitted. 
Place an X in the box of each task that is accomplished. Score the 
highest Stage in which the client achieves at least two Xs. 

SHOULDER PAIN POSTURAL CONTROL 

1 D constant, severe arm and shoulder pain 1 c:::J not yet Stage 2 
with pain pathology in more than just 
the shoulder 

2 D intermittent, severe arm and shoulder 2 Supine CJ facilitated log roll to side lying 
pain with pain pathology in more than Side lying c:::J resistance to trunk rotation 

· just the shoulder 
Sit 0 static righting with facilitation 

3 D constant shoulder pain with pain 3 Supine c:::J log roll to side lying 
pathology in just the shoulder Sit 0 move forward and backward 

Stand D remain upright 5 sec 

4 D intermittent shoulder pain with pain 4 Supine 0 segmental rolling to side lying 
pathology in just the shoulder Sit c:::J static righting 

Sit CJ stand 

5 D shoulder pain is noted during testing, 5 Sit c:::J dynamic righting side to side, feet on floor 
but the functional activities that the Sit CJ stand with equal weight bearing 
client normally performs are not 

Stand c:::J step forward onto weak foot, transfer weight affected by the pain 

6 D no shoulder pain, but at least one 6 Sit D dynamic righting backward and. sideways with 
prognostic indicator is present displacement, feet off floor 
• Ann Stage 1 or 2 

Stand D on weak leg, 5 seconds D sec • Scapula malaligned 
• Loss of range of shoulder movt Stand c:::J sideways braiding 2 m 

- flexion/abduction < 90° 
or external rotation < 60° 

7 D shoulder pain and prognostic 7 Stand D on weak leg: abduction of strong leg 
indicators are absent Stand D tandem walking 2 m in 5 sec · 

Stand c:::J walk on toes 2 m 

D ' 
STAGE OF SHOULDER PAIN D STAGE OF POSTURAL CONTROL 
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Chedoke-McMaster Stroke Assessment 
SCORE FORM Page 2 of 4 

IMPAIRMENT INVENTORY: STAGE OF RECOVERY OF ARM AND HAND 

ARM and HAND: Start at Stage 3. Starting position: sitting with forearm in lap in a neutral position, wrist at oo and fingers 
slightly flexed. Changes from this position are indicated by underlining. Place an X in the box of each task accomplished. 
Score the highest Stage in which the client achieves at least two Xs. 

ARM 

1 CJ not yet Stage 2 

2 0 resistance to passive shoulder abduction or elbow 
extension 

. 0 facilitated elbow extension 

0 facilitated elbow flexion 

3 D touch opposite knee 

D touchchin 

CJ shoulder shrugging > 1h range 

4 D extension synergy, then flexion synergy 

CJ shoulder flexion to 90° 

D elbow ht side, 90° flexion: supination, then 
pronation 

5 CJ flexion synergy, then extension synergy 

. D shoulder abduction to 90° with pronation 

0 shoulder flexion to 90°: pronation then supination 

6 D hand from knee to forehead 5 x in 5 sec. 

D shoulder flexion to 90 o: trace a figure 8 

D arm resting at side of body: raise arm overhead 
with full supination 

7 D clap hands overhead, then behind back 3 x in 5 sec 

D shoulder flexion to 90°: scissor in front 3 x in 5 sec 

0 elbow at side, 90° flexion: resisted shoulder 
external rotation 

D STAGE OF ARM 

HAND 

1 CJ not yet Stage 2 

2 D positive Hoffman 

D resistance to passive wrist or finger extension 

D facilitated finger flexion · 

3 CJ wrist extension . > lh range 

D fmger/wrist flexion > 1h range 

CJ supination, thumb in extension: thumb to index 
finger 

4 D finger extension, then · flexion 

D thumb extension > 1h range, then lateral 
prehension 

D fmger flexion with lateral prehension 

5 CJ finger flexion, then extension 

D pronation: finger abduction 

CJ hand unsupported: opposition of thumb to little 
fmger 

6 0 pronation: tap index fmger 10 x in 5 sec 

CJ pistol grip: pull trigger, then return 

0 pronation: wrist and finger extension with finger 
abduction 

7 CJ thumb to finger tips, then reverse 3 x in 12 sec 

D bounce a ball 4 times in succession, then catch 

CJ pour 250 ml. from 1 litre pitcher, then reverse 

D STAGE OF HAND 
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Chedoke-McMaster Stroke Assessment 
SCORE FORM Page 3 of 4 

IMPAIRMENT INVENTORY: STAGE OF RECOVERY OF LEG AND FOOT 

LEG: Start at Stage 4 with the client in crook lying. FOOT: Start at Stage 3 with the client in supine. Test position is beside 
the item or underlined. If not indicated, the position has not changed. Place an X in the box of each task accomplished. 
Score the highest stage in which the client achieves at least two Xs. For "standing" test items, light support may be provided 
but weight bearing through the hand is not allowed. Shoes and socks off. 

1 

2 Crook 
lying 

3 

4 

Sit 

5 Crook 
lying 
Sit 
Stand 

6 Sit 

Stand 

LEG 

D not yet Stage 2 

D resistance to passive hip or knee flexion 

D facilitated hip flexion 

D facilitated extension 

. D abduction: adduction to neutral 

D hip. flexion to goa 

D full extension 

c::J hip flexion to goa then extension synergy 

c::J bridging hip with equalweightbearing 

c::J knee flexion beyond 100° · 

D extension synergy, then flexion synergy . 

0 raise thigh off bed 

CJ hip extension with knee flexion 

D lift foot off floor 5 x in 5 sec. 

D full range internal rotation 

c::J trace a pattern: forward, side, back, return 

1 

2 Crook 
lying 

3 Supine 
Sit 

4 

. 5 

6 

FOOT 

0 not yet Stage 2 

c::J resistance to passive dorsiflexion 

D facilitated dorsiflexion or toe 
extension 

0 facilitated plantarflexion 

CJ plantarflexion > 1h range 

c::J some dorsiflexion 

D extension of toes 

c::J some eversion 

D inversion 

D legs crossed: dorsifleiion, then 
plantarflexion 

o·-legs crossed: toe extension with arikle 
plantarflexion 

D sitting with knee extended: ankle 
plantarflexion, then dorsiflexion 

D heel on floor: eversion 

D heei. on floor: tap foot 5 x in 5 sec 

D foot off floor: foot circumduction 

c::J knee straight, heel off floor: eversion 

7 Stand 0 unsupported: rapid high stepping 7 D heel touching forward, then toe touching 
behind, repeat 5 x in 10 sec 10 x in 5 sec 

D unsupported: trace a pattern quickly; 
forward, side, back, reverse 

D on weak: leg with support: bop· on weak: leg 

D STAGEOFLEG 

D foot off floor: circumduction quickly, 
reverse 

D up on toes, then back on heels 5 x 

D STAGEOFFOOT 
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ACTIVITIES AND PARTICIPATION I 
FIM™ instrument 

Self-Care 
41. Eating 
42. Grooming 
43. Bathing 
44. Dressing-Upper Body 
45. Dressing-Lower Body 
46. Toileting 

Sphincter 
47. Bladder Management 
48. Bowel Management 

Transfers 
49. Bed, Chair, Wheelchair 
50. Toilet 
51. Tub, Shower 

Locomotion 
52. Walk/\Nheelchair 

53. Stairs 

Communication 
54. Comprehension 

55. Expression 

Social Cognition 
56. Sociallnteraction 

57. Problem Solving 

58. Memory 

Admission 

B 

0 Walk 

D { 0 Wheelchair 

0 Both 

D 
0 Auditory 

D { 0 Visual 

0 Both 

0 Vocal 

D { 0 Non-Vocal 

0 Both 

D 
D 
D 

FIM Levels 
NO HELPER 
7 Complete Independence 

(Timely, Safely) 
6 Modified Independence 

(Device) 

HELPER 
Modified Dependence 

5 Supervision 
4 Minimal Assistance 

(Subject= 75% +) 
3 Moderate Assistance 

(Subject= 50%+) 
Complete Dependence 

2 Maximal Assistance 
{Subject= 25% +) 

1 Total Assistance 
(Subject = 0% +} 

(NOTE: Leave no blanks; enter 
1 if not testable due to risk} 

Copyright @1997 Uniform Data System for Medical Rehabilitation, a division of U B Foundation Activities, Inc., all rights reserved. 
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Subject #: __ 

Sub test 

Grasp 

Grip 

Pinch 

Gross Movements 

Action Research Arm Test 
Date: 

Items 

Block2.5 em 

Block 5 em 

Block 7.5 em 

Ball7.5 em 

Stone 

Block 10 em 

Tube2.25 em 

Tube 1 em 

Place washer over bolt 

Pour water from glass to glass 

Large marble: first fmger and thumb 

Large marble: second finger and thumb 

Large marble: third finger and thumb 

Small marble: first finger and thumb 

Small marble: second fmger and thumb 

Small marble: third fmger and thumb 

Move hand to mouth 

Place hand on top of head 

Place hand behind head 
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-------

Time limit Score 
(s) 
3.6 

3.5 

3.9 

3.8 

3.6 

4.2 

4.2 

4.3 

4.0 

7.9 

3.8 

3.8 

4.1 

4.0 

4.1 

4.4 

2.4 

2.7 

2.7 










