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Abstract

The thesis consists of two distinet. but closely related parts. In the liest part we

prosent an analysis of the angular dependence of the upper eritical fiekd of

type

il superconducting film, using the de Gennes-Werthamer formalism. The results

arc presented for a range of thicknesses, which includes the special case of the

semi-infinite geometry, and for all orientations 0 < 0 < 7/2. It is shown that

carcful consideration is required Lo recover the limiting parallel field case (0 -

0) from the finite 0 calculation. A comparison with carlier work in this arca is

given and it is shown that more detailed and systematic experimental studies

required in order to resolve the differences hetween experiment and theory.  In

the sccond part, the temperature dependence of the parallel upper eritical field
for a layered superconductor is investigated within the framework of de Gennes-
Werthamer theory. The resultant upper critical field cnrves are shown Lo be strongly

dependent, upon the presence of the free surface and the character of the initial layer

deposited on an insulated substrate. A direct comparison of the caleulated npper

critical ficld curves with the experimental results on Ni/NIZr layered strucuure
given. The resulis are in good agreement provided the pair-hreaking effect of the

spin paramaguetism is included.
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Chapter 1

Introduction

In 1911, Kamerlingh Onnes [1] di 1 the superc ing state charac-

terized by the appearance of zero electrical resistance of a metal, below a certain

temperature, referred (o as the Lransiti T.. The discovery
of the Meissner effect [2) revealed a more fundamental aspect of superconductivity.
“The Meissuer effect is idealized as a total expulsion of the magnetic flux from a

metal in the superconducting state placed in a weak magnetic field.

In the cla

os of materials referred to as type I suj the total expulsi

of the magnetic flux from the superconductor, referred to as the Meissner state,

i ts up Lo some critical field /1.(T"), above which the metal makes a first order
transition to the normal state. The reversibility of the Meissner cffect indicates that

the superconducting Meissner state is a thermodynamic state. The diff in free

o

ergy between the normal state and the superconducting state in zero field may be

expre

d in terms of the critical field as H2(T')/(8). This free energy difference is
typically referred Lo as the condensation energy and Ho(T') as the thermodynamical
eritical field, Barly experiments [3] further showed that the condensation energy
4

goes to zero as T'— Tt indicating that the transition to the state

in zero field is a continuous transition.
One of carliest theoretical descriptions of the superconducting state, proposed

by Ginzburg and Landau (GL) [4], was based on the premise that the supercon-

ducting state was cl terized by the ap of an_order p described
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by a complex macroscopic quantum mechanical wave function, [W(x)[e), where

[W(x)[? is identified as the number density of superconducting carriers with charge

e* = 2e. Due to the continuous nature of the transition at 7' = T, it was further as-

sumed that the order parameter went Lo zero in the fimit 7' — 7. This implics that
the condensation encrgy could be expanded as a functional Taylor serics in powers of
the order parameter and its spatial derivatives, subject Lo the hasic requirements of
symmetry, such as translational invariance and phase invariance, of Ue free energy

functional. 1t was shown that the qualitative description of the superconducting

s
state close to T required that only quadratic terms in the spatial derivatives of the

neter, need be

order parameter, and quadratic and quartic terms in the order pa
retained. The response of the superconductor to an applicd magnetic field is accom-

plished, in the GL theory, by the gange invariant replacement V. — (V —

where A denotes the vector potential (h = V x A) and ¢, denotes the fhix quantum
fo = be.

The contribution of the gauge invariant derivative of the complex wave function,
|W(x)|e#*™), to the frec encrgy in GL theory may be separated into two distinet parts.
The first part relates to the spatial variation of the amplitude, (V|W(x)])2, while the

second part relates to the spatial variation of the phase, which appears throngh the

gauge invariant contribution 7:[Vip — ZZAJ%. This second part can be identified

as the contribution of the Mei:

ner current [5]. An analysis of the electromagnetic

the

response of the superconducting state in the [ramework of the GL theory recovers

carlier result obtained by the phenomenological London theory [6] that the magneti

flux in a superconducting metal is quantized with a flux quantum ¢,.
The minimization of the GL free energy, to obtain the equilibrium state, yields a,

set of coupled 1i partial di ial equations for the spatial variation of the

order parameter W(x) and the magnetic field. The equations are exprassed in terms
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of two distinet length scales €(7') and A(T), where €(T) is the GL coherence length

which deseribes the length scale associated with the spatial variation of the order
parameter and A(T) is the penetration depth associated with the spatial variation
the internal magnetic field h(x). 1L is possible to rescale the GL free energy, order
parameter and length scales such that the resultant equations depend only on a

single: temperature-independent, parameter i = A€,

Abrikosov pointed out [7] that for metals such that & > ‘»}5, the Meissner state
is thermodynamically unstable above a certain value of the applied external field,
referred Lo as lower critical field Ha. This instability ariscs as a consequence of the
negative surface energy associated with the interface between superconducting and

normal domains in the GL theory for & > 7‘; At the lower critical field, the Meissner

state collaps

allowing magnetic flux to enter the bulk of the superconductor in the
form of vortices. Bach vortex carries a single quantum of flux. As the applied field

further increases, more flux quanta enter the superconductor and form a magnetic

vortex lattice. At a particular value of the applied field, referred to as the upper

critical field /1.3, the undergoes a conti phase transition to the

wormal phase. The superconducting state at Heg is characterized by the vanishing
magnitude of the order parameter [¥] — 0 and an uniform internal field h(x) — H.
The superconducting state existing between Il and He, with the vortex lattice
structure, is referred to as the mixed state. A metal with & > Jz is identified as a

type 11 superconductor. 1t is possible to introduce a third length scale associated

with the vortex latt.ce defined by &7 = /7257, where &2 may be identified as the
number density of maguetic flux quanta in units of $2.

For x < 2, the surface energy associated with the interface between supercon-
ducting and normal domains is positive and the superconducting state is dominated

by the Meissner effect. Nevertheless, instead of a total expulsion of the magnetic flux
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as expected, the superconductor may exhibit a domain structure con

Ling of dis-

tinct superconducting and normal regions. due to demagnetization elfects

with the shape of the specimen. This state is wsually reforred to as the intermedi-

ate state. The particular value & = J thus provides a criterion for distinguishing

between a type I and a type 1 superconductor. While GL theory gives rise to an

impressive description of superconductivity, the superconducting order paramet
in the GL theory was nevertheless introduced phenomenologically and provides o

information as to the micr

opic nature of the superconducting state. The validity
of the GL theory was later verified by Cior'kov’s [8] work in conneeting the GL order

parameter to the pait amplitude of the mi i BCS theory [9].

The microscopic origin of superconductivity was first given in a model proposed
by Bardeen, Cooper and Schrieffer 9] (BCS). In the BCS theory, the phonon medi-
ated attractive interaction among the electrons in a metal gives rise to an instability

of the Fermi surface in the normal phase and a new microscopic

appes

cor
responding to a lower ground state energy, in which the electrons near the Fermi
surface with opposite momenta and spin bind to form Cooper pairs. AL low Lem-
perature, the pairs are correlated within the BCS coherence length &, The study

I1-

of the excitation spectrum in a mean field imation reveals the

existence of an encrgy gap A(T) in the quasi-clectron spectrum, which increases
continuously from zero at ' = T, to a saturated value A(0) at 7' < To. Many of the

superconducting propertics can be interpreted

terms of the BCS theory by virtue

of the existence of this energy gap. The superconducting transition Lemperaure

T, of a metal relates to the encrgy gap at zero temperature Urongh 29 = 1.764

and the relative finite difference of specific heat of the clectrons at 7% is expressed

=, = gy = 143 with ¢ denoting the Riemman zeta function. These



Chapler 1. Introduction 5

relations, which BCS theory predicts are universal, are satisfied to a good approxi-

ss of superconducting materials and deviations from them can

mation by a lar

he accounted for by gencralizations of BUS theory, e.g. strong coupling theory. It is

nevertheless difficult to apply the BCS theory to an inhomogencous superconducting

system due Lo the complex self-consistency condition required by the microscopic

theory.

Gor'kov [8] suecessfully derived the Ginzburg-Landau equations from the micro-

scopic BCS theory [9] close Lo the transition temperature, Ty, by means of a Green's

function method. Ie showed that the fact that the charge ¢* in the phenomenolog-

t | and

ical GL theory cquals 2¢ is with the mi ic pairing
that, the spatially varying microscopic pair amplitude, F = (;(x)¥;(x')), where
1ha(x) denotes the wave function of an electron with spin a, was proportional to the
Cil, macroscopic quantum wave function W(x). In particular, ((x)d;(x)) # 0 in-
dicates the appearance of ofl-diagonal long range order in the superconducting state
and that the phase symmetry of the Hamiltonian is broken in the superconducting
state. The equivalence of the spatial variation of the pair amplitude in the BCS
theory and the phenomenological order parameter in the GL theory allows a defini-
tion of the GL coherence length and penctration depth in terms of the microscopic
parameters of the BCS theory.

The microscopically derived GL theory is usnally referred to as Ginzburg-Landau-
Abrikosov-Gor’kov (GLAG) theory. This derivation later was extended by Maki [10]
and de Gennes [11] to include the entire temperature range close to the upper crit-
ical field H < Hey in the dirty limit { < &, where [ denotes the mean free path. A
further gencralization of the GLAG theory for arbitrary mean free path was pro-
posed by Ielfand-Werthamer-Maki-Tsuzuki-Eilenberger (12, 13, 14, 15], referred to
as HWMTE theory. It is important to note, however, that the HWMTE theory is
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derived only for the case of a homogencous superconducting sample in a constant.

magnetic field, while the dirty limit theory proposed by Maki and de Gennes is valid

for samples of arbirary shape [16].
In addition to its importance in determining the clectromagnetic propertics of

type 11 superconductors in the mixed state, the spatial variation of the GL order

parameter plays an important role in propertics associated with geometry, in which
the length scale is comparable with those length scales in GL theory. Barlier ex-

perimental evidence, which serves (o illustrate the importance of the geometry, was

given by Khukhareva (7] in his experiments on the critical field of a superconduct-

ing mercury film in a parallel applied field. Khukhareva showed that the erit
field varies inversely as the thickness of the film d and that, close to the transition

temperature T, the critical ficld varies as /1. o< /Te =T, in contrast to what is

observed in a bulk sample, in which case /, o (T. = T). The theoretical descrip-
tion of the thickness-dependent critical field hehavior may be obtained within the
framework of the lincarized GL theoty in the thin film Timit [10], together with the
CGL boundary condition that (V — i22A), ¥ = 0, where n denotes the component
normal to the film surface. It should be noted that this choice of houndary con-
dition is based on the experimental observation that the superconducting filin has
the same transition temperature T, at zero applied field as the bulk material. In

contrast, the other possible boundary condition, W = 0 at the surface, yields a

1o

transition temperature in the thin film limit [18], in contradiction with experimental

observation.
The studies of the upper critical ficld for this simple film geometry with arbitrary
thickness d were then extended by Saint-James and de Gennes [19], and Tinkham

20] using the linearized GL theory. In the former case, Saint-James and de Gennes

showed that when the field is applicd parallel to the film, then, for moderately thick
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films, the order parameter al the upper critical field was confined to a region ~ &y

near the surface. This surface superconducting state resulls in an enhancement

of the upper critical field even in the limit d — oo. The upper critical field is

generally referred to as Hg and satisfics the relation /l/He = 1.69. In the thin

film limit, d — 0, Tinkham derived an approximate analytical expression for the

angular dependence of the upper critical field, H(0), al fixed temperature T and

le-dependent upper critical

thus related the experimental of the

field o the geometrical anisotropy of the sample.

int-James [21] later studied the angular dependence of the upper critical field
for films with arbitrary thickness in the limit 0 — 0, within the framework of GL
Uheory, by means of a perturbation expansion with respect to 0. In particular, Saint-
James pointed out that the logarithmic derivative of the upper critical field with
respect Lo 0, limg—o 4232, as a function of Mg} exhibits a cusp at d = 2.55¢1, a
qualitatively different result from that obtained earlier by Tinkham. The theoretical

prediction of this cusp was sul ly confirmed experi Ily [22, 23]. However,

‘Thompson [24] pointed out that there was a mathematical error in Saint-James’
perturbation expansion.

The existence of the finite slope in #(0), in the limit 0 — 0, and the cusp in the
value of that, slope at a particular value of reduced thickness, are the result of subtle
and non-trivial aspects of the cffects of geometry on the upper critical field and the

rossover from two di ional to three di ional behavior. To understand this

we note that in the parallel field case the magnetic field is screened by the persistent
current in the surface of the superconductor. However, as the field is tilted the
flux must penetrate the superconductor. This indicates that a qualitative change
in the spatial distribution of the internal magnetic field and current must occur as

the ficld is being tilted. It is this that underlies the appearance of the finite slope



Chapter 1. Introduction N

in limg—o ,‘—,%ﬂh # 0in the limit @ = 0. The existence of the cusp arises as a
consequence of the fact that the nature of the sereening in the parallel ficld case
changes qualitatively with the appearance of vortex states for d > 2 The

value of the slope and the appearance of the cusp are therefore i sensitive indicator

of the effects of geometry, and the discrepancy between the results of Thompson

24) and Sai

-James [21] is therefore of some importance. Whilea major portion of

this thesis is concerned with the evaluation of the ¢ dependence of the upper eritical

field for lms of arbitrary thickness, we examine very carefully the behavior in the
limit 0 — 0.

Auother aspect, of superconductivity in which the spatial variation of the pair
amplitude plays an important role is the superconducting proximity elfect. The
proximity effect describes the phenomenon that occurs when two distinet metals, at

least one of which is superconducting, a

uperposed in such a way that electrons

from one can tunnel into the other. This effect gives rise Lo a wide variety of

interesting phenomena. Most notably it can induce a finite pair amplitude in an

non-superconducting metal. The simplest geometry in which the proximity cffeet

plays an important role is in a metallic bilayer cor

ing of a film comprised of
two distinct metals separated by a planar interface usnally denoted by NS. The

superconducting properties of such systems, notably the transition temperaturs

and
the upper critical field, have been the subject of considerable experimental and
theoretical study.

An obvious generalization of the metallic bilayers are multilamellar structures
such as superlattice geometries consisting of alternating layers of diflerent Lypes of

metals. Such systems are of particular intere

as the proximity effect can give

rise to a spatial coherence in the order parametor that extend s many distinct

layers. Such systems can exhibit the characteristics of both t;

Isystoms,
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Lypically ted with thin films, or three dimensional systems. A wide variety
of such systems has been studied experimentally and theoretically, as described in
the review article [25] by Jin and Ketterson, and are the subject of a major portion
of the research described in this thesis.

»

A of the recent theoretical work on the supercondncting propertics of proxim-

ity coupled superlattices is concerned with the calenlation of the ition temper-

ature and npper critical field for varions combinations of metals [25]. Many of these

calenlations are based on the formalism proposed by de Ciennes [26] in the 1960's,
derived from thie linearized Gorkov theory. Writing the kernel that appears in the
lincarized Gor’kov equation as a sum over Matsubara frequencies w, = (2n-+1)rksT

(= 0,142,

), de Gennes postulated that each term in the series would satisfy
adiffusion equation, in which the spatial variation of the kernel is characterized by a

Madsul | lependent col length, &, = \/2Z, where D denotes the

electron diffusion constant. In particular, de Gennes solved the diffusion equation
for two geometries, an semi-infinite geometry with one free surface and an infinite
bilayer system with one interface. In the former case, de Gennes derived the bound-
ary condition that the normal derivative of the kernel goes to zero at the free surface.
This leads Lo the result that the normal derivative of the pair amplitude must also

0 10 2010 at the free surface. This derivation provides the microscopic basis for the

b logical GL boundary dition, (V — i;—:A),,‘lJ = 0. In the latter case,
de Gennes derived continuity conditions for the normal derivative and the amplitude
of the kernel at the interface in terms of the diffusion constants, density of states
at the Fermi surface and the BCS constants of the component metals. This leads

to te boundary conditions for the pair amplitude F at the interface that F(x)/N;

= A). F(x) are continuous, where NV; denotes the densily of states at

Fermi sutface and D; denotes the diffusion constant for i = N, § respectively. In the
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absence of an applied field, de Gennes also showed that the thickness dependence of

the transition temperature of a thin bilayer system N reduces to the varlier rosult

of Cooper [27) for an NS hilayer.

Using a somewhat dilferent approach, based on the Green's hinetion method,
Werthamer [28] derived an explicit expression for the kernel of a homogencons super-
conductor of arbitrary shape in the dirty limit and long wavelength approsination.
The linearized Gor’kov integral equation was then cast into a dilferential eqnation
satisfied by the pair amplitude in the superconducting geometry, Werthamer ar-
gued that the differential form of the lincarized Gor'kov equation may be directly
applied to a bilayer system together with a properly chosen continuity condition
imposed on the pair amplitude at the interface. While Werthamer's formalism may

be obtained in terms of de Gennes’ theory in the one-fraquency approximation for

a thick bilayer system, it is nevertheless important to note tiat, for a thin bilayer

system, the Cooper limit [27] can not be recovered in the Werthamer formalism.

the

It is well established [25] that the Werthamer formalism usually overestina
transition temperature of a thin bilayer system at zoro field (291 The quantita-
tive difference between the result obtained from de CGennes’ theory and that ob-
tained from Werthamer’s formalism may be attributed o the approximation taken
by Werthamer, in which the non-local nature of the lincarized Clor'kov theory for
a thin bilayer system was ignored, while de Gennes treated the non-locality in the
dirty limit exactly by solving the diffusion cquation of the keruel for a bilayer system
with arbitrary thickness.

Despite the fact that Werthamers formalism is an approximate theory, it hias

been applied to a wide variety of bilayer and sandwich systems, incorporated with
de Gennes' boundary conditions [26]. The formalism has also been extended to

multilayer systems, based on the assumption that de Gennes’ boundary conditions,
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derived for the single interface case, can be generalized to the multi-interface case. It

o that for a multilayer system composed of moderately thick layers, both

is exp
Werthamer's formalism and de Gennes’ boundary conditions are applicable. This
case is usually referred to as the de Gennes-Werthamer (DW) proximity coupling
Uheory.

Meion and Arold [30] we

he first to apply the DW theory to a bimetallic

superlattice Lo study the transition temperature at zero ficld and the temperature
dependance of the upper critical field. They concluded that the application of the
DW theory in a superlattice reduces to solving for the ground state of the Cooper
pair amplitude in a periodic potential. In the absence of an applied field, they found
thal, the transition temperature T, is enbanced in comparison with the corresponding

bilayer system. Tn the parallel field case, they found that the upper critical field

exhi

a temperature dependence, at high , similar to that of a bulk
material, while al, low temperatures, the upper critical field is dramatically enhanced,

in analogy with the case of a sup ducting film. This th ical result provided

a qualitative interpretation of the experimental phenomena found earlier in the work
of Chun et al. on an Nb/Cu superlattice [31], and later in Broussard and Geballe’s
work on an Nb/Ta superlattice [32]. The dramatic enhaucement of the upper critical
field exhibited in its temperature dependence in a superlattice is referred to as
dimensional crossover.

Biagi ot al. [33] studied the superconductor-normal-metal superlattice using
the dirty limit version [34] of the Eilenberger theory [35]. With properly chosen
parameters, their theoretical results showed good agreement with experimental data
[31] for the perpendicular upper critical field. In particular, it exhibits a positive
curvature, SHL | at high temperatures consistent with experimental observation.

Nevertheless, the temperature dependence of the parallel upper critical field, and
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thus the dimensional crossover. were not covered in their work.

A systematic method of applying the de Gennes theory Lo a superlattice

later proposed by Takahashi and Tachiki [36] (T'T), in which the caleulation for

both perpendicular and parallel upper critical fields from the lincarized Gor'kov

equation is reduced to solving an cigenvalue cquation, incorporating the de Gennes

continuity conditions at the interfaces of the superlattice. One in

ing applica-

tion of the TT formalism was to a superlattice consisting of two supercondneting

metals, which share the same bulk transition temperature (Ts = Ty) but which lave

different diffusion constants (Ds # Dw). As we will show later, the T form:

m
reduces exactly to the DW formalism for this particular system. For particular

ranges of the ratio Dg/Dy and the modulation length, they show that the paral-

lel upper critical field exhibits a discontinuons slope as a funetion of temperature.

This effect, referred to as the Takahashi-Tachiki effect, provides a eritical exper-
imental test of the application of the de Gennes Uhcory of proximily coupling Lo

yer systems. The experimental work of Karkut et al, [37] on
Nb/NbTi superlattices, Kuwasawa et al. [38] on Nb/NhZr superlattices, and Aarls
et al. 39, 40, 41] on Nb/NbZr superlattices, qualitatively confirmed the effect, pre-

dicted by Takahashi and Tachiki. The TT theory was later gener:

jzed by Auvil,
Ketterson and Song [42] to include spin-orbital scattering and spin paramagnelism.
The transition temperature of a superlattice at zero field in the thin layer and thick
layer cases, and the upper critical field behavior, were experimentally examined by

Ketterson’s group [25, 29, 43, 44, 45, 46, 47], and various theoret Its obtained

from the DW theory and the T'T theory were compared with the experimental data.
In the absence of an applied field, they showed [25] that the transition temperatures
calculated for both the bilayer and the superlattice system using the T'T formalism

in the thin layer case arc in good agreement with the experimental data. For the
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thick layer case, the theoretical results obtained from both the TT and the DW

formalism agree with the experimental data.
In addition to the development of the DW theory, the application of the dirty
Jimit version of Rilenberger theory (34, 35] to superconductor-ferromagnet super-

ss was further carried out by Radovié ct al. [48, 49] following the work of

Biagi ol al. [33]. This type of superlattice is characterized by the pair breaking

mechanism in the ferromagnetic layer due Lo the strong exchange field. By a careful

choice of parameters, Radovié et al. were able to obtain good agreement with ex-

1 1

perimental data on the temy of the perpendicul

and parallel

upper critical field for a V/Fe multilayer system [44], except in a narrow region of
temperature, in which the deviation of the calculated parallel upper critical field
from the experimental data remains unexplained.

While the effect, predicted by Takahashi and Tachiki was confirmed qualitatively
hy a number of experimental results, nevertheless, a quantitative comparison of the
theoretical results with the experiment, which would provide a critical test of the
existing theorctical model, was absent. Practically, the samples used in experiments
are multilayer systems with two boundaries, which breaks the finite translational
invariance assumed in a model of superlattice geometry. Saint-James and de Gennes’
superconducting sheath theory [19] showed that the existence of a free surface could
enhance the parallel upper critical field in a homogeneous sample. This surface effect.

may play an important role as well in a multilayer system with frec boundaries.

Therelore, a realistic model of a multilayer system should include the influence of
the free surface in determining the parallel upper critical field. Yuan and Whitehead
(50, 51] modeled a practical multilayer system as a superlattice with one free surface
(semi-infinite superlattice). The two-component superlattice is assumed to satisfy

the conditions Vs = Vi, Ng = Ny, Tes = Tey and Dy # Dy, while the first layer
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may be either S type superconductor or N type superconductor. This study led

to a number of qualitative theoretical predictions that arise

consequience of

surface and the interfacial effect

. Several of these predictions have been confirmed

experimentally [41] and a I results with the

stematic comparison of the theoretd

experimental data [37, 38, 39, 40, 1] showed excellent guantitative agrecment. This

work will form the second major parl of this thesis and the various results will be

and review article of the

detailed in the subscquent chapters. An clogant analysis

development of the DW theory in multilayer systems was rocently given by Lodder

and Koperdraad [52].

The outline of the thesis is as follows: In Chapler 2, we review the micro-
scopic theory of inhomogeneous superconductors. Starting from the elfective BCS
Hamiltonian [9], we will derive the lincarized Gor'kov integral equation [8] for the
order parameter of superconductivity, following Gor’kov’s work. We will then obtain

the momentum space representation of the kemel in the Gor'kov equation nsing a

Gircen’s function method [18], including the effect of a randomly distributed impn-

rity potential. In the | length approximation and the dirty limit, we will

show that the spatial variation of the kernel s a diffusion equation, as pro-

posed by de Gennes [26]. Then we vil follow de Gen

work [26] to discuss the

al a free surface and al,

boundary and continuity conditions imposed on the kern

the interface of a bilayer system. The introduction of a magnetic ficld and th

culation of the upper critical field in superconducting films and multilayer is buscd

on the semi-classical phase integral approximation. It is shown how the de Gennes

formalism may be applied in two particular cases, namely the evaluation of the
upper critical field in the case of an infinite homogencous superconductor and the
case of a metallic multilayer consisting of two distinct Lypes of metals, at least one

of which is assumed to be superconducting. It is shown how the integral equation
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in the linearized Gor’kov equation may be transformed into a differential equation

for the pair amplitude, togethor with cortain houndary and continuity conditions,

derived from the de Gennes houndary and continuity conditions for the kernel. The

ant, formalism is referred to as the de Gennes-Werthamer formalism. We show

res
that while this is exact in the case of a homogeneous superconductor, it is, in gen-

eral, only approximate in the case of multilayered systems. This, together with the

recent developments of the de CGennes-Werthamer theory [30, 36, 43, 52, 53] are

d at the end of chapter 2.

briefly dis
In Chapter 3, we will apply the DW theory to a superconducting film to study

the influence of the and ani: of the sample on the

temperature dependence and the angular dependence of the upper critical field, re-
spectively. The parallel applied field case will be studied in detail first [19], to show

» of the nucleation site in determining the spatial distribution of the

the importan:
order parameter one obtains from the linearized GL equation [4] and the subsequent
determination of the upper critical field. An approximate analytical expression for
the upper critical field of a thin film will be obtained through a mean field approx-

imation, and the pl of surface suy ductivity will be di: 1, within

the framework of the de Gennes-Werthamer fc lism. Moreover, the und: d

ing of the importance of the nucleation site, based on detailed calculations in the
parallel field case, will provide an intuitive physical picture for later discussion of the
angle-dependent upper critical field. We will then present a detailed analysis of the

itical field by various heorics proposed in previous studies

angle-dependent upper c
20, 21, 24, 54, 55, 56]. This analysis will focus on the validity of the approximations
and the mathematical methods employed by provious authors, and will explore the
inconsistencies that exist in these carlier studies. A detailed numerical calculation of

the angular dependence of the upper aritical field in superconducting films, using an
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ique, will he presented. These results show explicitly

the non-analytical nature of the upper critical field in the limit 6 — 0, and also

au

serve to verify the carlicr results of Thompson regarding the slope 57 Ui the limit
garding LT

0 — 0. Our results predict a new dimensional crossover, from single su elleets,

dominated by the superconducting sheath, and double surface offects, dominated by

the size of the sample for a thick film in the angular dependence of the uppe

field. A semi-infinite bulk superconducting sample is also ineluded as a limiting

of thick film.

In Chapter 4, we focus on the parallel upper critical licld of a metallic mu

yer

composed of alternating layers of different types of metal. In particular we will con-

share the same

sider a class of superlattice structures in which the composite met;

transition temperature but which have a dilferent electron mean free path. We show

how the problem may be formulated within the de Gennes-Werthamer formalism,

tlated and the

hiki

how the upper critical field for an infinite superlattice may be

1. The Takahashi

effect of the modulation on the nucleation site

cffect is obtained and discussed in some detail. We then go on to consider a mos

realistic model of a metallic superlattice, a semi-infinite superlattice, that includes

free surface. Particular attention is given to the subtle interplay hetween the surface
effect and the effect of the modulation on the location of the nncleation center. In
particular we will show that the upper eritical field for such a system will depend

, 40, 41). ‘Phis result

on the sequence in which the layers are deposited [37, :

has been confirmed experimentally by Maj and Aarts [11] who arrived at a similar

conclusion independently, through their experimental studies. Our results also show

geometry by

that the ratio Hes/Hea can be significantly enhanced in a superlatti
virtue of the modulation. Again this result has been confirmed experimentally [41].

In this work we also consider the effect of the free surface on the




Chapter 1. Introduction 17

, predicted by Takahashi and Tachiki. It is shown that both the ap-

in the slope 2

pearance of the discontinnity and the temperature at, which it occurs are dependent,

on the sequence in which the layors are deposited. 1t is also shown how the field

1%, at which this discontinuity occurs, satisfies a simple scaling law with respect to
the modulation length. Several data sets are analyzed and are shown to satisfy this
scaling law, and it is shown that the apparent, discrepancies between different data

sets may be attributed to the sequence in which the layers are deposited.

In the final part of chapler 4, we consider, in some detail, a particularly elegant
sol of experiments on a sequence of multilayer which differ only in the composition
and thickness of the initial layer. It will be shown that, provided the effects of spin
paramaguetism are included, the results obtained from the de Gennes theory are in
excellent agreement with the experimental data.

In chapter 5 we present a number of conclusions that can be drawn from the

rescarch work presented in this thesis.



Chapter 2

The Microscopic Theory of Inl Superconductors

In this chapter, we will review the de Gennes-Werthamer dirty-limit theory in de-
Lail. We start by introducing the effective BCS Hamiltonian, in Section 2.1, that
arises as a result of the electron-phonon interaction [57). In Section 2.2, this BCS

Hamiltonian is transf

is 1 from momentum space: to coordi

space by a Fourier
transformation. Introducing the Matsubara Green’s function and applying the mean

field approximation, we obtain the Gor’kov equations [58] for the Green’s functions.

In Section 2.3, a linearization approximation is applied to the Gor'kov equation and

thus a solution of the Gor’kov equation, in integral form, is obtained. The kernel
of the integral equation is studied in detail for a dilute doped superconductor and

an explicit form of the kernel is obtained. In Section 2.4, we show how the kernel

may be evaluated in the long-wavelengtl imation and expressed in terms of

a differential equation. Then, following de Cennes” work, we discuss how the ef-

fect of surfaces and interfaces on the kernel may be introduced through appropriate

boundary conditions. We then go on to discuss two important applications of e

de Gennes formalism. The first involves the evaluation of the upper critical ficld of a

f 1

type 11 sup , while the second is the caleulation of the tran-

sition temperature and the upper critical field of a metallic multilamellar system.

The first example serves as a straightforward application of the de Gennes formal-
ism while the sccond provides the theoretical framework for much of the subscquent.

analysis, and includes the superconducting film as a special case.
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2.1 BCS Hamiltonian
2.1.1 The Electron-Phonon Interaction

In the second quantization representation, the model 11 of the clectron-

phonon system ! may be written as [57)
1= Hy+ 1l , (1)

s cloctrons,

where [y is the Hamiltonian for free phonons and fr

Ho =3 hwqadaq + 3 ke, ko (2.2)
q ke
and 11y is the interaction Hamiltonian of the electrons and the phonons,

= 3 (Dqaqcfq.cio + Daadcl_qocka) - (23)
ka0

indices q and k denote the wave vectors of the phonons and the electrons

2 _ 1 is the encrgy of a single clectron in the state k relative

respectively, g = 2
Lo the cheniical potential g1, hwq denotes the energy of a phonon in the state g and
o is the spin index of an clectron. Dy is the electron-phonon coupling constant
while D is its complex conjugate, which depends on the interaction potential, and
af (aq) and 6, (ciq) are the creation (annihilation) operators of the phonons and

clectrons, which satisfy the algebra

g — aqa = Sqq s (2.4)

[adyaq) =
and
{6k 2o} = 6yl + Cloarch, = bk 65015 (2.5)

respectively.

'We consider a " jellium" model for the metal, therefore, only the longitudinal phonon is included
in the Hamiltovian /1. We also neglect a constant. part of the energy, Yq Lhwg.
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Starting [rom the Hamiltonian (2.1), ¥eohlich [37] derived the effective Tamil-

tonian by means of the canonical transformation
He =SS, (2.6)

where the operator S is chosen suel that the transformed amiltonian s has the
same cigenvalue spectrum as that of /1.
Equation (2.6) may be expanded as
Hg = 1+ (18] + {1, 8], 8] 4+
= o+ (Hy 4 [Ho,S]) + 5LUT -+ [T, S1), 5] (2.7)
F5U OS] U A+ (1SS 4

We can eliminate the interaction Lo lowest order if we choose 8 Lo satisy U cquation
I+ [l 8] =0, 2.8)

so that there is no lirst order electron-phonon interaction and we obtain the following

expression for [,

s = Mo+ 5[, 8] 31 [ 8] 8] 4 -

(2.9)
~ o+ 5[0, 5]
If the operator 8 is assumed to be of the form
§= 3 (Mg pqntho + Bt g aka) o (2.10)
ka
then using equation (2.8), we can determine the coeflicients Ag and 1y
Aq = Dylex+ hwy — ¢ i
a altk 1= (kq) )
By = Dy = hwy = te-q)™
thus ) e expressed as
ayc Ck o atet . ek
P b O e 1 kega k) (2.12)

otk = e Fhag T = ey = g
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To obtain the effective Hlamiltonian which describes the scattering process of the

electrons through exchange of one phonon, we can take the expectation value of the
term Mg with respect to the phonon vacuum state [0), which is defined as
aq 0) =0, (213)
to give
Hey = (0]Hs|0)
| g 1
=5 3 {01 Hifig) (nql $10) — (01S[na)(nql H:[0)} (2.14)
W q
1 q
=5 2A(01H 1a){1alS10) = (01511} (1al 1[0} -
a

where we have used the completeness of the phonon eigenstates

Y Ingdngl =1, (2.15)

nea

and the property of the operator

(alSI0) =0 for  nq#lq. (2.16)

Substituting (2.12) and (2.3) iuto (2.14) and leting the algebraic
we obtain the cffective interaction Hamiltonian

2hw,

1, "_ q ’Mq)zc; =01k S - (2.17)

1
=5 X 21D
2 e (ek = Ckeq)?
which deseribes Lhe interaction between two electrons through the one-phonon-
exchange process. The otlier terms describing multiphotion processes can be omitted

due to Migdal’s theorem [59).
2.1.2 The Effective BCS Hamiltonian

The effective electron-phonon interaction may be written as

1
Hy =35 2 X Via e GrmqorCicotia + (2.18)
Kknaoe
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where
2h
Viq = [Dql? kot (2.19)

When both of the electrons scattered by exchanging a phonon are sufliciently close
to the Fermi surface, determined by chemical potential g, that the ditfference in the
energies satisfies the condition [k —cicrq] < hewq % hup (wp is the Debye frequency),
then the coupling constant Viq < 0, which yields an atbractive interaction. On the
other hands, if the difference in the energies is larger than hwp, the coupling constant

Vi is positive, and in that case, g is & repulsive interaction, the strength of which

rapidly with i ing energy di
In the superconducting state, only the clectrons occupying stales with energy in
the range of i & fiwp can be scattered to new states through the phonon-exchange
process. Thus, in the application of (2.19) to superconduetivity, Cooper [60] made
the appropriate assumption that for the electrons in states with ¢ < hwp the
coupling induced by phonons is a constant, Vieq = =V with V> 0, and for those in
the states ¢ > hwp, the coupling vanishes. So the effective Hamiltonian becoms,

in the BCS approximation,

Hg=—=5V 3 3 yqnthi-qurtktatia - (2.20)

kkqmo'
where k and k' are the momenta of electrons in a shell with width 2hwy at the
Fermi sphere.
The approximation obtained here is valid only for a “weak conpling” supercon-
ductor, since the form of H,g implies two assumptions:
(i) In assuming a coupling constant which is independent, of the encrgy variables
cx and hwq, we have neglected the cffect of retardation.

(ii) All the processes of absorption and emission of phonons involving the creation
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and annihilation of a pair of quasi-particles have been neglected so that the quasi-
particles are treated as having infinite lifetime.

To consider both of the influences mentioned above, a theory of strong coupling
superconductivity should be built, however, we will only discuss the weak coupling
Jimit.

In applying the theory to the inhomogencous geometry, it is necessary Lo trans-

form 11, into the coordinate representation by means of the transformation,

ho(x) = Yok,
3

., (2.21)
W =Yook,
k
which may be inverted to yield
~ikex %
o = [ % (x) d%
[y s, -

&, = / ekl ) Pz,

where we have chiosen the volume to be unity. The operators ¥,(x) and ] (x) can

be shown to satisfy the anti-commutation algebra
() , B3} = 6x = X)bo . (229)

The effective i ion Hamiltonian in the BCS approximation may be written

in terms of the operators 3 and ! as
fg =V =3V [x) Bhx) halx) o)
afi
= [0 {60 i) i) s,

(2.24)

where we have further si the effective i by considering

the Pauli exclusion principle, which prohibits two electrons from occupying the same

state, i,

e i =8l 90 =dix) dix) =headi) =0, (229)
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In the Hamiltonian (2.2) for free phonons and electrons, we can omit, the free
phonon term, since in superconductivity. the physical properties of a superconduct-
ing state mainly depend on the behavior of the electrons, and consider the phonons

only in a role which induces a new attractive interaction /g, The free part of the

Hamiltonian, Hy may then be written as

R / & f1 () (V) a(x), (2.26)
with
e
divy=5 T g

Combining Eq. (2.24) and (2.26), we finally obtain the BCS Hamiltonian
K=Re+V, (2.27)

which includes the pl ed attractive intera among the electrons. Such

a new mechanism enables one to calculate various parameters in superconduetivily
and explain experimental phenomena.

2.2 Gor’kov Equation

2.2.1 Mean Field Approximation

zed Lo inelude bhoth the

The theory obtained in the last section can be casily gene
influence of an external magnetic ficld and the existence of non-magnetic impuritics.

Following the method of A. L. Fetter and J. ). Walecka [61], we obtain

K = KoV, (2.28)
£ = /d“zﬁ(x){%'; ~ihV+£A(x)]"—;L+U(x]}v/7,.(x), (2.29)

o

~5VE [H460 B0 ) ) s, (2)
af
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where A(x) is the vector potential and U(x) is the impurity potential which is of

the form
Ulx) = u(x—x4), (2.31)

@
th

with x, being the position of at* impurity.
Cienerally, one can obtain a non-linear differential equation describing the spatial
and temporal evolution of the operaor fields, ,(x), by means of the Hamiltonian
(2.28). However, this cquation is too complicated to be solved completely, so a mean
field approximation has to be taken. In this approximation, one can decompose the
product of the four field operators in the interaction term, V, into the following
T T T (232)
= —ert“z{(w. ()] () (x)ibi(x) + ] (x)aby (x) (1 ()1 (%))}
The reason for making such a decomposition is that an essential characteristic of
superconductivity is the formation of Cooper pairs by two electrons with oppo-
site spins, which resnlts in the appearance of an order parameter () # 0. The
other terms coming from the Hartree-Fock decomposition such as (3 (x)ia(x)) and
(vi!l(x)v/‘:g(x)) lave been omitted since only the difference between the superconduct-
ing state and the normal state is of interest; thes. *lartree-Fock terms are assumed
to be the same in both of states and hence have no influence on the differences
between these two states.

With the mean field approximation, the effective llamiltonian now becomes

g = Ko+ Vig - (2.33)

and the pair amplitude in the decomposition is defined as

Ty g} ) )]

R (2.34)

(eodf) =



Chapter 2. The Mi ic Theory of Inl clieous S luctors 26

with
AV = kT
Eq. (2.31) provides us with a self-consistent definition of the pair amplitude, which
depends on the cffective Hamiltonian, including the pair amplitude itself,
2.2.2 Gor’kov Equation

To calculate the pair amplitude, one needs to introduce the generalized Heisenberg,

field operators defined as

Pri(xer) = Ry () e~ Ren i

Py = i o) o=Fanei | (2.36)
Dri(x,r) = K gy (x) e~/ (2.47)
u/l},(x,v) = K/t ,/‘,If(x) R rin | (2.38)

where we may regard T as an Uhe imaginary time. With this definition, one can
establish the equations of motion for the field operators from the effeetive Hamilto-

nian, K.z, using the Heisenberg equation

w =10k Reg] s (2.89)

where O is a arbitrary operator defined by Oy = e¥on 7/hQe=Kar 170 By means
of the anti-commutation algebra, Eq. (2.23), we obtain the cquations of motion for

the field operators as follows

a . ) o c , . T
gy = =[5 (=il + EAGIY = o+ Uy = VChhibky (2an)

a . Lo e . ey
r.a—rw,{., SV + %A(x))‘ — et UG - vt 2an
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Note that the pair amplitudes may be expressed in terms of the Heisenberg field
G, T
of of A i
pLpTY = (bl (m)hy (7))
(’{1‘!1) ('{1\1( )'{l\l( N (2.42)
(i) = (i (T)brea(7)) -
Siiiee weare only fiterested in finding the pait amplitude, which gives the order

ter in a superconductor, rather than the detailed representation of the quan-

Lizedd wave functions 9 and T themselves, we introduce the Matsubara function,

which is given by
Glxr,x'7') = ~(T by (xr Wby (7)) (243)

Logether with the anomalous Matsubara function F(xr, xr'), which is closely related

1o the pair amplitude and is given by
Flar,x'7') = =Ty ey (6, 7)biey (¢, 7)) (2.44)
Fhir,x'r') = =T b (6, 7)ok ¢, 7)) (2.45)
‘The sell-consistent expression for the order parameter is
Ax) = VF(xr®, xr) = V(i (x)ibi (%) - (2.46)

‘The time-order operator Ty, which appears in the definition of the Matsubara func-

tions, with respect to the imaginary time 7, is defined as
(A B = 07 = ) AT B(r) = 0r' = 1)(B()A(r)),  (2.47)

where A and B are any fermion operators and 0(r) is the step function

1 >0
o(r) = (2.48)
0, r<o.
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If we use Eq. (2.41) and take the derivative with respect to imaginary time 7 of
the Matsubara functions defined by Eqs. (2.43) and (2.45), we obtain the Gor'kov
equations

a L e 2 o 1 ot

{_55; — 5 =iV + ZAGOF 4~ U(x)} Gxr,x'r) +AX)FH(xr,x'7)

=hé(x ~x'),
(2.49)

{—r% = 5:,—,l—ihV + %A(x)]’ . U(x)} Flxr,xXr') —A(X)G(xr,x'")

=0,
(250)
12— Lk AP 4 - )V F (e, xr) —at )G (xr, x0r)
o " m F ! ' '
=0,
(2.51)
In the case that the Hamiltonian is independont of 7, e Matsubara funct

only depend on the time difference (7 — 7'). The Fouricr transformation, in this

case, of the Matsubara functions with respect to 7 yiclds

Glxr,x'7') = (Bh)' e TIg(x, X w) (2.52)
Flxr,xr) = (B0 e 17 (x, %, w,) (2.53)

where w, = (2n + 1)7/fh and n = 0,%1,%2,... and we have used the periodicity

of the Matsubara function [61] given by

G(r<0)=-G(r+A>0). (2.51)
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The equations of motion for the Fouricr components can be written as

il + SAGEI U(x)} G(x,Xw,) +A(x)FH(x, %, wn)
=hé(x—x'),

{ihw,, sl
2m

(2.55)
i + EAGOR + 0= U ) ) —al (090, ,0.)

{-mu,. -
2m

(2.56)
The self-consistency condition for the order parameter given by Eq. (2.46) becomes
Ax) = V(i (x)(x)
= VF(xr*, xr) (2.57)
= V(Bh)™ e Fx, X, wy) «
0

The Gor’kov equations obtained above provide an effective basis for the self-

ent caleulation of the order . The theory obtained incorporates

most of the carly theories such as Ginzburg-Landau theory (GL) and BCS theory.
Gor’kov [8] succeeded in deriving the GL equation near the critical temperature,
Tty from the Gor’kov equations. The derivaiion determines the phenomenological
constants appearing in the GL theory in terms of the microscopic constants and the
appropriate range for which the GL theory is applicable. Thus the GL theory has
a firm basis in the microscopic theory, and hence can be generalized to much more
complicated systems.

If one applies the Gor’kov equations to the spatially homogencous bulk supercon-
ductor in the absence of an external magnetic field, one recovers the results obtained

from the BCS [9] theory (see Appendix A).
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2.3 Linearized Gor’kov Equation

We have discussed the theoretical description of an inhomogencous superconductor
based on the Gor'kov equations which includes the GL theory and BCS theory as
special cases. The Gor'kov theory in principle allows one to consider more general
situations, including the case of an applied magnetic field as well as both magnetic
and nonmagnetic impurities, for example. However, it is very difficult to solve the
Gor'kov equations directly, and further approximation methods have Lo be consid-

ered to specific

2.3.1 Linearization of Gap Equation
The differential equations, Eqs. (2.49) and (250), can he rewritten in terms of
integral equations;

G(x,%,) = G, ¥sw)

= / Py PG (% X1,0)A X1 )G (X2, X1, —w) A (x) 7 (302, %, ), (2.58)

Fhx,x,w) =/tf'1:|§~(x|‘x, —w)atx)on(xi,x',w)
= [ P eaulxi, x, —w)AT(x1)Gn(1, Xe, ~0)A k) (2, ', 10) (259)

where Gn(x,%/,w) denotes the normal state Creen’s function, which satislics the

equation

i 1 j [ 4 , ' T
- (-—-zV ¥ ;A(x)) + = Ux)| Onlx,xow) = 6(x —x),  (2:60)

In order to calculate the upper critical field in a type 1T superconductor, it is suf-

ficient to consider the lincarized Gor'kov equation, since the ordor parameter gocs
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continuously to zcro at the transition. Substituting the linear term in Eq. (2.59)

into the self-consistent gap equation, Eq. (2.57), we obtain

al) = v [ @v@uxyate),
v [ ¢y ey aly). (2:61)

The kernel Qu(x,y) with a single Matsubara frequency w is defined as
Qu(x,y) = (On(y, %, ~)On (¥, x,w)) (2.62)

where the bracket denotes the average over the randomly distributed impurity con-
figurations. We average over all possible distributions of impurities, since we are
interested only in the large scale behavior of the clectrons. The kernel Q(x,y) is
defined as

Qxy) = A7 L Quxy)- (2.63)
It is important to note that the kernel is determined only by the Green’s functions
of the normal state clectrons. Ounce the kernel Qu(x,y) has been determined for a
given applied field then the dependence of the transition temperature on the field
may be determined from the solution of Eq. (2.61).

In order to obtain the kernel, Q,,(x,X'), appearing in the linearized gap equation
q. (2.61), onc has to solve Eq. (2.60) for the Matsubara function describing an
clectron in the normal state, and perform the average described in Eq. (2.62). It is
quite diflicult to solve such an equation exactly, so some further approximations are
normally made.

In the next section we show how the kernel, Qu(%,y), may be evaluated in the
case of a “dirty superconductor”. First, assuming that the dependence of the Mat-
subara function on the impurity potential U(x) and the vector potential A(x) may

be dealt with independently, we show how the normal state single particle Green’s
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function, {Gn), may be calculated in the absence of an applied external field. We

then show how the kernel, Qu(x, y), defined by Bq. (2.62), may be caleulated, in the
long-wavelength limit and obtain an explicit expression. We then go on to show how
the resultant kernel can be recast into the form of a differential cquation. Following
the work of de Gennes, we show how the effect of boundaries and interfaces on the

kernel may be included through the introduction of suitable boundary conditions.

2.3.2 Explicit Form for the Kernel Q,(x,x’)

We denote by G, the one-particle Gireen's function in the absence of the impurity

potential, which may be obtained from the solution of the differential equation

& V2 ' ’ 9 0
it ) Gl Xy w) = 6(x — X). (2.64)
m
This may be readily solved to yield
i (x=x)

Go(x—xw) = (21 [ e, (2.65)

with
by = (2o} (2:66)

2m
To obtain the explicit spatial representation of the one-particle Green's function G,
one can integrate (2.65) over momentum space (Appendix A) to obtain

TN S il (267)

Gol(x; %', w)

Tprlx—=x
where N denotes the density of states at the Fermi surface and pp and ve = prefm

denote the Fermi momentum and the Fermi velocity, respectively. In the abs of

impurities we may define the kernel Q(x, x') as

Qix=x) = Gofx = x,w)G(x - X', —w)

_‘L1|;—x'| >
[ﬂrix = x/|] (2.8
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The Fourier transform of the kernel Q2(x — X') is given by

Qxa) = [ PaQipxe

2 osui fo]
- A [N] foslen) ot
b=

q Lpe

2Ny (avr

LA ). 2.69)
wr (ZIwI) @)

In a dilute doped superconductor, the one-particle Green’s function G(x;x,w)
satislics

foe Ul 3% w) = 6(x — ' 2.70

lw+2m+u— (x)] G(x; %', w) = §(x —x'). (2.70)

The Green’s function that we obtain from Eq. (2.70), and the resultant kernel, will

depend on the explicit form of the impurity potential. We will deal with the effect

of the scattering of the clectrons by impurities through a perturbation expansion

which assumes a low concentration of impurities and weak coupling between the
clectrons and the impurities. Using the result that

v? vz
Goliw + Crek 16 = Gliw+ T WGo +V - [G,YG - GVG,], (2.71)

m

we may write the solution for G in an integral form as
Glx,x\w) = Gufx = X\0) + [ Flu(x =y, Kw),  (272)

where we have assumed that the boundary conditions on G are such that surface
terms may be neglected. For simplicity, we assumne that the impurity potential may

be approximated by a & function potential as a short range approximation, i.c.,

U(x) =1 8(x - %), (2.73)

where u denotes the coupling constant between the clectrons and the impurities and

X, denotes the position of the impurity. The iteration of Eq.(2.72) and the average
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over the impurities yields

(O, X)) = Galx = %) + [ Ep(Galx = YN (YIGy = X))
+ [ Ry ey U)LY - 2@ - X))
o (2.74)

While the above expansion is indeed an exact solution and cach of the terms may in

principle be calculated, it is impossible to sum over all the Lorms in this expansion

and obtain a solution in closed form. Nevertheless, il we examine the iteration

expansion term by term, we can pick out leading terms in cach order and obtain an
approximate solution in closed form.

Let us consider explicitly the Ist order term in the expausion

[ EulGulx =y UGy = X))
/ CylGo(x — y,0) T ub(y — %u)Guly — X,w))
32 u(Go(% — Xayw)Go(%a — X',w))

I

Ty [ 2.6l =)o~ X0)
0 [ @9u(p)Gulpr)e )

nu(2m)™ [ @pG,(pyw)Go(p,w)e ), (2.75)

(]

where V denotes the volume of the sample, ; = V='S, denotes the concentration

of the impurities, and the average over the impuritics has been replaced by
i l/,p, (2.76)
o i

The first order term may be represented graphically by
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" Go(Pw) Go(pw) x'

niu

Figure 2.1: Diagrammatic representation of term of order nt.

where @ denotes the impurity and the line denotes the Gireen’s function of a free
clectron. The average over the impuritics for the second order term in Eq. (2.74)
should be dealt, with carefully since the doubled summation can be divided into two

distinet parts, specifically

U = 3 w6y = x.)b(z— %)
+ S u6(y — %.)8(z - Xa). (2.17)

Substituting this into the sccond order term in Eq. (2.74) yields

[ Euz (Gx - v, )U)Gly - 2,)U(2)G(z ~ X))
= 3w {Go(X = Xay ) Go(Xa — X5, w)Go(Xs — X', w))
f*;" wH{Go(X = Xayw)Go(0,w)Go(Xa — X', w))
- % w % [ Gk = Xay )Galxa = X1y0)Gis = X' 10)

+ 3 0 [ PraGulx = xa,0)G0(0,0)Gulxe = X,)

[}

(naa)? (27)"° [ €pGo(p,10)0(p,)G0(py1) X
S0, (0, w)(2m) / @pGo(pyw)Go(p,w) P X (2.78)
The second order term is represented graphically in Fig, 2.2. From this diagrammatic

representation it is readily seen that the first order term (2.75) corresponds to the

de that a particle ing from x to x’ will be scattered once
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Gl

Go(Pw) Go(Pw) Go(Pw)
x ] + : mGulw)
nau niw

g

o Golpw)

Figure 2.2: Diagrammatic representation of terms of order (nu)* and nju?.

by a single impurity. This term contributes to order ;1 Lo e propagator. Similarly
the second order term in Eq. (2.78), corresponds Lo the probability amplitude that
a particle propagating from x to X' will be scattered twice by the impuritios. The
first term of Eq. (2.78) corresponds to the case of two distinet impuritics, while

the second term of Eq. (2.78) corresponds Lo the case of multiple seatlering of the

particle by the same impurity. These terms contribute with order (mie)? and ngu?,

pectively. A di ic representation of the contribution to the third order
term is shown in Fig. 2.3. (A diagrammatic representation for the fourth order term
is given in Fig. A.l and A.2 in Appendix A).

The analysis of the diagrammatic expansion suggests Uit all the terms presonted

in the iterative expansion of B, (2.74) may be classified into gronps characterized

by a combination of concentration n; and weak coupling constant w. For example,
in Fig. 2.3, one can see that the diagrammatic contribution in (a) will contribute
to order (nyu)® and is simply a triple product of the first order term while (b), (¢)
and (e) consist of a product of the first order term and the second order term as
analyzed previously and contribute to order (ngu)(niu?). A new term (d), which

contributes to order (n;u?), appears in this third order expansion.
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x
—e——e—* }
() ) *
X X
|
I
() X (d) X
X
|
|
() x

Figure 2.3: Diagrammatic representation of torms of order (nu)?, n?u and nad.

A similar analysis may be applied to all the higher order terms in the pertur-
bation series and the various diagrammatic contributions classified according Lo the
cocllicient nfu?. llaving classified cach of the contributions to the perturbation se-
ries in terms of the concentration n; and the coupling constant u, we can identify
the leading order contribution in each term in the perturbation series. These are
shown diagrammatically in Fig. 2.4. We may immediately write down the solution

of the Gireen’s function expressed diagrammatically in Fig. 2.4 as

G(x, %', w) = Go(x, X'y w) + nyu(2m)™ / EpGo(p,w)eP*XIG(p.w).  (2.79)
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— R — + @@ + —®®®— +

Figure 2.4: Diagrammatic representation of lowest order approximation.
The Dyson equation (62, 63] corresponding Lo Iig. 2.4 may be writlen as

G7'pw) = G7'(pw) —mu
PR
= -l p—nm
om T H
i »”
= w—p— . (2.80)

This result suggests that the lowest order process only leads Lo a renormalization
of the Fermi surface (chemical potential), hence, we can absorb the leading order
contribution of order n;u into a renormalized chemical potential g/, This Fermi
surface renormalization implies that all the terms with a factor (nau)™ Ve # 0
give rise Lo zero contribution and thus greatly simplifies the analysis of the higher
order terms. It may be readily scen, for instance, that only (d) in Fig. 2.3 has a
non-zero contribution and similarly (n), (h) and (g) in Fig. A.2and A.L.

In order to obtain the leading correction we need therefore to consider the cor-

rections cl ized by the fents (nu?)™. Negleoting the vertex correction

terms, for example (g) in Fig. A.l, these terms may be reprosonted diagrammati-
cally as shown in Fig. 2.5. The solution of the Green’s function, obtained from this

diagrammatic representation, may be written as
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- +‘l

Figure 2.5: Sum of the terms of order (ngu?)™

G(x = %, w) = Ga(x — X',w) + nu?G(0,w)(2r) " / Ppa(p,w)ePEX)G(p,w).

(2.81)
The Dyson equation corresponding to Fig, 2.5 reads
G (p,w) = G, (p,w) — niuG(0,w). (2.82)
Assuming the Matsubara Green'’s function to have the following form
Gl (pw) =i =& (283)

Where & was defined carlier as € = #(pz—‘lmu). I'is determined self-consistently
x

from the Dyson cquation, Eq. (2.82), as
1
I'=wt 5osgw, (2.84)

with 77! = 2rnu® N, through the integral

Glx—x' = 0,0) = (20)° [ Pyt = —inNogal = —irNogn.  (285)
=&
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The spatial representation of the Matsubara function in an infinite domain may be
writlen as
LA P (e

S —— 2.86
prEr] H

Glx—x\w) =
which is the same form as G, with w being replaced by . The kernel for a di-

lute doped superconductor defined by Ba. (2.62) may be obtained using cquation,

Eq. (2.72), and averaging over the impuritics. We would then find that

Qulx-%)
= (Bx =%\ -0)G(x ~ x'\w)
= Go(x = X', —w)Go(x — X', w)
+ ol =) [ E5(Galx =y, (¥)0ly = X'\0))
+ Galx =) [ Y (Gulx — v, ~)U(F)GLy - X, ~w)
+ [ @y, Uy = =) [ (Gl = U 2)G e = )
+ [ Eub (G = .~ U5y - X, —a).(x = 2 (2)G(z - X.)

= [ Ey(0lx =y, =V @ISy - X~} [l (G~ m ) @)Lz - )

(2.87)
where the bracket denotes the average over a random impnrity pot
The first and the second terms in Eq. (2.87) may be combined as
Gulo = ¥, =) (G(x = ¥y) | (2)
and the third and forth terms in Eq. (287) may be written as
[ PulGux =3, 0BGy = %, —w) Gx =)} . (289)

Then, terms in Eq. (2.88) and Eq. (2.89) can be expressed as

@2(x = x) = (G(x—x',)) (6x = X)) , (2.90)
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Figure 2.6 Impurity averaging diagrams of vertex in the ladder approximation.

d

which describes two clectrons propagating in the ttered indepen-
dently by impurities. Further analysis of the average over impurities for the fifth

term in Bq. (2.87) is tedious. However, Werthamer [18] points out that if one only
considers the ladder approximation as shown graphically in Fig. 2.6, the fifth and

the sixth terms in Bq. (2.87) may be expressed as

0 (G(X — Xa, ~w)) (G(X = Xa,)) Qu(Xa — X, w), (2.91)

where the & function potential has heen used.
The integral solution for the kernel is given by
Qulx—x') = (G(x—x',—w)) (G(x—x',w))
+ i [ g (O = %0, =) (G(x = Xay)) Qula =),
= Qo(x—x)+nu? / PoaQo(x~%)Qulxa —¥).  (292)

Using Bq. (2.86), one obtains

2
T TR
LR

Qix—x)= (2.93)

while the Fourier transform of Q2(x — x) is given by

iy 20Ny (opq
Qw(q)——m] tan (le‘l i (2.94)
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The Dyson equation for the kernel in the ladder approximation is

Qz'(q) = [Qu(a)™" — [2rN7] "

and the kernel, in momentum space, is given by
. e 1
Qu(q) = Z”N{[Tﬁ tan™! (;l'—l"l)} - } . (2.96)
The result given in Eq. (2.96) for the kernel may be generalized for a more realistic
approximation to the impurity potential than that used in obtaining Eq. (2.96). To
obtain the equivalent result for the more gencral form of the impurity potential,

Ux) =Y u(x —x),

one needs only to replace 7! = 2N in Bq. (2.96) by

nimpr
(2)?

/ [(0)PdS2 = nivper, (297)

where o denotes the ction in the Born apy

The preceding derivation assumed that the impurity concentration was low, and

therefore, strictly speaking, the result is only valid for the case of a dilute doped
superconductor. However, Werthamer [18] has pointed out that the resull. given in

Eq. (2.96) is entirely equivalent to that obtained by de Cennes [26] for the case of

a high impurity concentration, when expressed in terms of scatbering time 7 rather

than the concentrations n;.

2.4 Boundary Conditions and the Proximity Effect

In deriving the expression for the kernel, given by Eq. (2.96), we

sider the role of the boundary conditions,

suming only that th
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not, contribute. In order to consider the effects of geomelry on the transition tem-

perature, however, we need Lo consider the effect of surfaces and interfaces on the

keriel, Qu(%, ).

While in principle it is possible to generalize the preceding argnments to in-

clude the houndary couditions on the single electron Green's function, and hence
o evalnate the kernel, the generalization to inhomogencons systems is most

[26].

accomplished following the formulation given by de Genne

We begin this section by showing how the kernel derived in the preceding sections

may be recast in the form of a differential equation, We will then argue, as de Gennes

did, that the differential equation deseribing the kernel is valid even in the pi

nee

ol surfaces and interfa

We will then go on to show that the kernel is modified

by a free sutface through the boundary conditions. An analogous result, for a planar

interface between two materials is also derived.
Finally, we will show how the kernel may be generalized to include the effect of

a homogencous maguetic field.

2.4.1 Long Wavelength Approximation

I we restrict onr considerations to sitnations for which the spatial variation of the

pair amplitude is small, then we need ouly evaluate the kernel in the long wavelength
limit. Expanding the tan=" (oq/2|T]) in Bq. (2.96) in powers of the momentum leads
Lo
N

jwl + q222[67(1 + 2rfw])]-1

™
~ LR (2rlw] < 1),

2N

.. - D
1+ g’ (2:5)

Qula) =

with 1) = 4o denoting the diffusion constant.
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The spatial representation of the kernel in this long wavelength limit may be
given by

Qux—x) = [ FIQ () Yy (29)

It is readily shown that Qu(x — x') is simply the Green's function for the three

dimensional diffusion equation
(2lw] = DV?) Qu(x — x) = 27 N §(x - '), (2.100)
subject to the boundary conditions

lim — Qu(x,x) =0. (2.101)

=]
Based on a more heuristic argument, de Cennes has shown that Qu(x,x') satisfies
Eq. (2.100). He also argued that the effect of surfaces and interfaces on the kernel
may be incorporated by a suitable modification of the boundary condition given by

Eq. (2.101).

2.4.2 de Gennes Boundary Conditions for a Free Surface

In order to derive the de Gennes boundary conditions for a free surface, we consider
the case of a planar boundary at & = 0, with the superconductor ocenpying the
region z > 0. In the absence of an applied external field, the order parametor is
independent of y and =z and thus may be written as

Alx) = Alx). (2.102)

The linearized Gor'kov gap equation, . (261), then reduces to

Al) = VA Z[ ds' Qulz, =) A=)
The one dimensional kernel, Q,(z, 2'), satisfies the one dimensional diffusion equa-
tion

[2|w1 - Dﬁ;] Quls,4') = 27 N b(c —2'). (2.103)
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The explicit form of the kernel obtained by the integration of the result given by

12q. (2.99) may be readily evaluated as

Qo-3) = [dydzQuix—x),
Zﬂ'N o0 xq (x=x")
= (ma/ q2|w|+D 2””””
2N eirle==")

= o ./»oo'qZ[uJ]-}-Dq"

N o i)
- 2|w|£u/ o 1+

N gl e
Lo

2|W|£w
= chll\;u elemsles | @.104)

whare £, = \/D/2Jw]. However, while this provides a particular solution to Eq. (2.103),

it is possible to construct other solutions expressed as the sum of a singular part

Q2(z,2'), and a non-singular part, Ry(z, '), i.c.,
Qulz, ') = Qi(x,2) + Ru(z,), (2.105)

where the kernel, @2, is given by Eq. (2.104) and R, is required to satisfy the

homogencous diffusion equation given by
& .
2l = D4z | Rule,2) = 0, (2.106)

together with the reciprocity condition, namely, Ry(z, ') = R,(a',2). In order
to uniquely determiue the solution R, (z,2"), it is necessary to impose a boundary
condition that reflects the presence of the free surface. To obtain the appropriate
boundary condition, we integrate Eq. (2.103) with respect lo @/ over the domain

[0,00] to obtain the following cxpression

2ol 7 ' Qulaya') = D L Qe =N (2.107)
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This condition together with the sum rule [26]

5
| / de' Qule, ') = TN, (2.108)
o
and the requirement that
i L Que, ) =0 (2.100)
o da P .

yields the boundary condition

9 ’
b ¥ g 2
i Qul:) R (2.110)
The homogeneous contribution o the kernel is then given by
- LU 0. 4
(4 = W >0, i
Ru(,z') 2|W|fme x>0, > (2.111)
which yields the following expression for Qu (i, z')
o TN (lomtlfn L et us 0 By
Qu(z,z]—lelfu(e =l gt IR) 50,4 > 0. (2.112)
At the free surface denoted by & = 0, we have
a e, i
7200, 2) = QU =) + R, )] = 0, (2.113)

which determines » = 1. The homogencous contribution to the kernel may be

readily lated for the more i

I case of two frec surfaces. Substituting
this kernel into the self-consistent gap cquation (2.61), it is casy lo show that the

boundary condition satisfied by A(z) is

at the free surface @

= (2.114)

2.4.3 de Gennes Continuity Condition for a Planar Interface

A similar boundary condition may be obtained for the kernel Qu(z,z’) at a planar
interface between two distinct metals [26]. Let us consider a bilayer structure labeled

by A and B separated by the plane 2’ = 0 as shown in Fig. 2.7.
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Figure 2.7: Bilayer Geometry.

Using the dilfusion equation as derived in the previous section by the Green’s
Tunction method, we can write down the diffusion equations for the kernels in regions

A and B. They are

(i, 2') = 27 Nad(z = 2'), (2.115)
and
& ’
2] = Do | Qul,2') = 2 Nobl(a - (2.116)
poctively. Integrating the twa equations with respect to o' over the hall space,
we obtain
L . -
2ol [ drQue,s! [DAd—t,Qu(z,:r')]M
d =
= [DBWQV(I, m')} = 21[0(z)Na +0(—2)Ng].  (2.117)
< 00

Using this result, together with the sum rule [26],

N ca
ol [ da' Quie, ') = n{ N‘ “ N (2.118)
s z€E
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and the requirement that the contribution at [x| — co vanishes, we obtain the

following boundary condition:

Da L Qufe0) =

l)u T (Jw(,l' 0). (2.119)

In order to find the sccond continuity condition, we write the kernels in regions

A and B as follows

Na

Qufz,2") TR et Ven gppemtetelea] 0,0 > 0, (2120)
Que,2") lTui\I,: b e e fen] <0, <0, (2021)
Qalein) 2’[“‘ e el ey 50, <0, (2.122)
Qulw,a’) = 2|u T g0, ! >0, (2.123)

Using the continuily condition Eq. (2.119)

and the reciprocity condition, we obtain

(I=ra)Na = opNgy,
(1—rp)Ng = oaNs,
% "'2—:/”, (2.124)
which may be expressed as
fos) = B
Ny + Naa
(I-rg) = ¢ -
Nus + Naka
on = o—NHG
Nyéu + Naba
o Natin (2.125)

© Non + Nita’

with ¢ to be determined. Atz =0, the kernel (2.120) and (2.123) are written as
Qu(0*,2) 7 /\(5 el e ) 0t >0, (2126)
Qu(07,%) Ny ot g mtn, 250 (2127)

7 Fales
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The ratio of the two kernels is given by

Q“(n* x >n) Ny [ 2—61\’353]

c ¢ Naba

(2.128)

Similarly, the ratio between kernels (2.122) and (2.121) at @ = 0 is expressed as

_QuOt, ' <0) _ Naf2 | 2-cNa&a]™ ,
B ] @)
Therefore, we have
Qu(ot, 2’ >0) = RQuL(0™,z >0), (2.130)
Qu(0*,2' <0) = RQu(07,2' <0). (2.131)

de Gennes stated that a gencral boun(lary condition of the kernel is of the form

Qu(0*,#) = aQu(0™, &) |1+ £ Q..,(O ) (2.132)

«Qu(0~,7) (o- @) da
lHowever, the sccond term in the bracket is proportional to I/, and thus it is

negligible in the dirty limit. This leads to
Qu(0*,2) = aQu(07,2')  Va'. (2.133)

By applying de Gennes' argument, we have Ry = Rz, which leads to ¢ = 2. de
Gennes’ second boundary condition of the kernel may be expressed as

Qu(0*,#') _ Na Qu(0t,2) _ Qu(07,2)
SN * TN Twm (2.134)

Following de Gennes’ work [26], we have obtained the boundary conditions for the
spatial variation of the kernel for a bilayer system., While the boundary conditions
given by Eqs. (2.114), (2.119) and (2.134) were derived for the particular case of a
single planar surface and a single planar interface respectively, they may be cast in
a more general three dimensional form as

n-VQu(x,x) =0, for x at free surface,

Dan-V Qu(x*,x) = Dyn-VQu(x™,x'), forx at interface, (2.135)

FQu(x*,X) = FrQu(x™,x), for x at interface,
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where n denotes the unit vector normal to the surface or interface.

These results allow us to extend the de Gennes formalism to non-planar geome-

tries. The formalism can also be ¢

Lended to include multiple surfaces and interf,

by requiring that the kernel s

tisfy the appropriate houndary condition at. cach of

the bounding surfaces and interfaces in the s

lows us to apply the de

Gennes formalism to restricted geometric

guicl as superconducting films, superlat-

tice and multilamellar structures, the principal focus of the present work.

Effect of Magnetic Field

We can also extend the formalism to include the effect of a magnetic field, This
is most easily accomplished if we modily the one-particle Green's funetion, derived
for the homogencous case in Eq. (2.86), to include the effect of the veetor potential
through the semiclassical phase integral approximation that

On(x—-x\w) = ¢ o Aty G(x—x,w),

n AR Gy ), (2.136)

Uhe resultant kernel may then be exprossed as

Qix,x) = FAREHQ (x - x),
SEAR)-(x-x") Qu(x—x). (2.137)

with ¢ = ﬁ. The diffusion cequation for the kernel given by Fq. (2.103) is then
modified to give a generalized gange invariant form

[ohol + L(0)] Quix,¥) = 22N 8(x —y), (2.138)
where the operator I is defined as

o N
m= [V-zE ] i (2.139)
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and L is given by

) = —hD [v-iz—"AT. (2.140)
bo

By analogy with the zero field case, the effect of surfaces and interfaces may be

incorporated by means of appropriate boundary conditions, similar Lo those given

in Eqs. (2.135). However, in order to preserve the invariance of the theory under

a gange transformation, the boundary conditions must be modified to include the

elfect, of the vector potential. The boundary conditions are therefore given by
n-TQu(x,y) =0, for x at free surface,
Dan-MQu(x*,y)=Dpn -IQ.(x",y), forx at interface, (2.141)
7 Qu(xt,y) = 75 Qu(x,y), for x at interface.

‘The boundary conditions imposed on the pair amplitude F may be readily obtained

by using Gor’kov equation, Eq. (2.57), together with Eq. (2.141),

n-IF(x)=0, for x at free surface,
Dan-MF(x*)=Dgn-MF(x7), forx at interface, (2.142)
M F(x) = foF(x0), for x at interface.

2.5 Application of the de Gennes Formalism

In the preceding sections we have shown how the solution of the linearized Gor’kov
equation may be expressed in terms of the keruel, Qu(x,x)). Following the argu-
ments of Werthamer (18], we have shown how the kernel may be expressed in terms
of a diffusion equation as proposed by de Gennes [26], when the spatial variation of
the order parameter is small. We then went on to show how the effects of surfaces
and interfaces might be included in the kernel through the application of appropri-

ale boundary conditions. The resultant formalism was readily extended to include
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the effect of a finite maguetic field by the gauge invariant replacement

. . . 2

iV il = i(V - i~ A). (2.143)

In this section, we apply the de Gennes formalisn (o two explicit. examples,
In the first we consider a homogencous maguetic field in an infinite sample. Phis
relatively simple application illustrates the simplest, non-trivial application of the
de Gennes theory and allows us Lo recover some results for the upper critical field
that will be useful in our subsequent discussion. The second example we wish Lo
consider is the less trivial case of a system consisting of M alternating layers of
metals 4 and B, at least one of which is superconducting. We assume that, the
thickness of the layers does not vary along the length of sample and we denote
the thickness of the A-type layers by ds and Uhe thicknoss of the B-lype layers by
dg. This geometry includes the superconducting film (A = B) and the superlattice

(M — o0) as specific cases.

2.5.1 Homogeneous Superconductor

For a homogeneous superconductor, the lincarized Cor'kov equation for the pair

amplitude is given by
F)= kT T [ Quxy)VF(y), (z.144)

where the kernel satisfies the boundary condition specified by Ba. (2.101). Let us

consider the following eigenvalue equation
le; = L(T0)] 4i(x) = 0, (2.115)

subject to the boundary condition

!xlligu 9i(x) (2.146)
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"The orthogonality and closure properties of the eigenfunctions are

[0 500 = b, (2.147)
3 4i()e5(y) = Né(x—y). (2.148)
5
The kernel, Qu(x, y), can now be written as
_ $i(x) ¢3(v)
Q) =20 SRR, (2.149)

and the summation of the kernel over the Matsubara frequency can be expressed as
kaT 3 Qu(xy) = 3 4i(%) 45(v) 5(e5), (2.150)
w J
where S(e;) is defined as

$les) = 2wk (2.151)

2|u] Ew
It is readily scen that S(e;) would diverge if the summation over the Matsubara
frequencies went Lo infinity. However, this divergence does not occur because of the

prasenca of the BCS cutolf, [w] < w,, that yields the result

oL [ 1134hwp
S(0) = Zﬂkyl‘?zlwl =In (-——kBT ) . (2.152)

We then write the frequency sum in the form proposed by de Gennes [26]

§4%e) = [S(e;) = S(0)] + 5(0)

=T (”2:#) - (%2#) ; (2153)
whery
o)) e

and (z)

argued that this cutoff may produce unphysical results if ¢; % Awp. Instead they

the digamma function. However, Lodder and Koperdraad [52] have

proposed the following for S(e;)

Ky lwp €
5%(;) = ¢ (—wkﬂ + ) - 4( (2.155)
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together with a modified BCS transition temperature formula [52]

w7 =+ (i) -+ (6)-

§99(¢;) and S (¢;) arc consistent for « € wp.

Using the complete set of the cigenfunctions, {¢;(x)}, we write the ordor paran-

eter, the left side of Eq. (2.144), as

Fx) = [ Eysx-y)Fy)
/""v T 4ilx) é;(y)%. (2157)
7

while the right side of Eq. (2.144) is expressed as
BTY [ EQuxy)VEE) = [ €3 T 4040 SV Fly),  (2158)
o 7
Substituting Eqs. (2.157) and (2.158) into Eq. (2.144), we obtain
[ ): (%) 3(y) [— —.S(zj)] VFy) =0, (2.159)
which for a homogeneous superconductor reduces to
[L— 5‘((-)] =0 (2.160)
NV TP T .

with F(y) « ¢;(y) since N and V are constants. Using the conventional entofl
introduced by de Gennes, Eq. (2.153), we obtain the familiar Werthamer relation
128)

(msT)“"( ) o (aitst)

where the BCS relation
| (LiMhwp 5
yrivs -In( T ) i (2.162)

was used.
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The problem of finding the highest transition temperature for a homogencous
superconductor in the presence of applied field s rednced to finding the minimum

walue equation, Eq. (2.145), subject to the bound-

nvaliie o, by solving the

ary condition, Eq. (2.146). We choose the London gauge
A = 11(0,2,0), (2.163)

and write the ansatz for the pair amplitude

Flx) = Jix). (2.164)

The cigenvalie problem, Eq. (2.145) and Eq. (2.146), reduces to a quantum me-
chanical harmonie oscillator problem

wl-L +2:—’£(.r—k)2 Jilw) = ¢ fi=), (2.165)

with
Jim fie) =0, (2.166)

and p = 0 was taken since we are interested in the lowest cigenvalue. The lowest

cimenviline-e Ty roudily Tonnd to b
2mH
«=hD—, 2.167)
4 (2151)
iU highet LU teniperature is detenitned from the exgpresion
WD 2l T )
\ [,_,MHI ==l +m (T) =0, (2.168)

which deseribes the co-existence curve at the upper critical field, H = He, as a

function of temperature, T, A second order phase transition occurs when this curve

is erossed.
OF particular interest are the two limits, ' — Tt and 7" — 0. We have in those
Lwo cases

= hD 2wH(T) T.—

6o

T Ty, (2.169)

T 2mkgT
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and
h D
DIV

2 11(0)
b0

where the Taylor expansion and the asymptotic expansion of the digamma function,

T -0, (2.170)

(=), were used, and 4 = 0.5772 is the Euler constant. 1t is important to note that
Eq. (2.169) provides a means of determining the dilfusion constant, 1, from the

slope of the upper critical field at the transition temperature, 1

(2171)

The upper critical field al zero temperature is related Lo the transition temperature
at zero field through Eq. (2.170), and is piven by

il
dr

i = 0.6927
e

al field

It is scen that, within the framework of de Giennes’ theory, the upper crit
at zero temperature for a homogencous superconductor is proportional to the tran-

sition temperature at zero ficld, 7., with a non-trivial proportio

ity constant,

o7 | dH.
0.6927 |44

.+ & measure of the “dirtiness” of the superconducting material.

2.5.2 Multilayered Systems

In oder to apply the de Gennes theory to a multilayer system, we hegin with the

linearized Gor'kov equation in a multilayer system, given by
F = kTS [ Quixy) V) F(y). (217)

We assume thal the de Gennes’ diffusion equation, Eq. (2.138), and the continnity

condition, Eq. (2.141) derived for a bilayer sys

i, ean be generalized Lo @ multi-

interface system. Without loss of generality, we consider a two component. nmltilayer

system, with the components denoted by A and B, respectively and introduce the



Chapter 2. The Mi ic Theory of Inh Sur I 57

notation

Va, X€EA,
Va, X€ B,

(2.174)

Ng, X€ B,

Dy, xX€A,
(2.176)
Dg, xX€ B,

T €A,
i x (2177

Nx) = { N, wed, (2.175)

Ts, x€B.

We rewrite the gauge invariant diffusion equation for the kernel, Eq. (2.138), as
2] + L(D)Qu(x,¥) = 2mN (x) S(x — ), (2.178)

with

. DA TR, A,
L) =~ =] x€ (2.179)
—iDsTE,  x€B.

By analogy with the cigenfunction method used for the homogencous superconductor

case, we consider the cigenvalue equation

[ = Lm)] ¢(x) =0, (2.180)
together with the boundary condition at the free surfaces

n-Tg;(x) =0, (2.181)
and continnity conditions at the interfaces denoted by xo,

1 1
— $j(x — ¢i(x X 2.182
Na 4ilx) xeA—x0 Ny #ilx) xeB—xo feie2)

Dan-Tj(X)gepax, = Pun-Ti(x)yep x, - (2.183)
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The orthogonality and closure propertics of the cigenfunctions are given by
[d i (x)N(x) (X) = b0 (2.181)
T 4ix)83(y) = N(x)d(x ~ y). (2.185)
7

the algebraic shown previously, we can write the linearized

Clor’kov equation as

/ Ey Y 4i(x) 65(y) [m —8() | viny Fy) =0. (2.186)

The problen is to find the highest temperature which yields a solution to the ahove

cquation. In the following section, we discuss two approaches. The first, the so-

called Werthamer approximation. is valid for systems involving large length scales,

The second, while somewhat more complicated, is nevertheless valid over a much

wider range of length scales.

2.5.3 Werthamer Approximation

The well-known Werthamer approximation can be explicitly shown by using Fq. (2. 186).
If one assumes that the closure property of the cigenfunctions, K. (2.185), is still

valid in the integraud of Eq. (2.186). One can introduce the BCS relation

1 T'(x) y
Neves " (Ll!thu) ' (2.187)

and find that

/ &y [1.. (7"(Iy)) Ty (1'7(::—),)] S(x—y) N(y)V(y)Fly) =0.  (2188)

This leads to the Werthamer differential equation
T (1)
[ln (m) +x (m) ] N(x)V(x)F(x)
T L
= [1., (I(x)) +x (ﬁ)] N(x)A(x), (2.189)

0
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except for a modulated density of states, N(x), which was treated as a constant in

Werthamer's original work [28].

It is readily scen that the application of the closure property of the eigenfunc-
tions Lo the integral equation, Eq. (2.186), is ot justified, since the modulated BCS

conpling constant, V(y), does not satisfy the same continuity condition at the in-

s do the cigenfunctions, ¢;(y). In particular, at the interface (x = o), the

integral
[ Ersa-y) Vi) = Vi) or Vixg), (2:190)

is not well defined.
Under the Werthamer imation, the t ition { at zero applied

field for a thin bilayer system, (e.g. Nb/Cu with Ve, = 0 for Cu and de,, dy, — 0),

is given by (28]

r 1
— 2.191
T TR i

Phis expression gives rise to a higher transition temperature than that given by

Cooper [27] and de Gennes [26]

&
T _ (T \ )
I (I.MOD) E (2.192)

1tis generally established that Werthamer’s result, Eq. (2.191), is inappropriate in
the thin film limit 25, 43] sinee 7' s higher than that found in experiments [44], and
thus q. (2.192) is applicable. Towever, for thick flms, Eq. (2.191) qualitatively
fits the experimental data and Eq. (2.192) usually underestimates the transition

temperature,

2.5.4 General Formalism

In order to avoid the difficulty met in Werthamer’s approximation, we notice that

the pair amplitude satisfios the same boundary conditions specified in Eq. (2.142)
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as {g;(x)} specified in Eqs. (2181), (2.182) and (2.183), so we expand the pair
amplitude as

Fly) =3 cidily).

and substitute into Eq. (2.186). We obtain

zas,(x)/fw(y) [ln(,( )) B

Multiplying Eq. (2.194) by g, (x)/N(x) and integrating with respect to x, we obain

= [ evai [ (7555) +x (i) | Vs =0

We introduce two matrices,

5]

M)] V) dily)ei =0, (2191)

—

ant) = [ Puon (715) Vi i), (2196)
() = x(577) [ vV 4(5). (2.197)

The existence of a non-Lrivial solution of Fq. (2.195) then leads to a secular equation

det | A1) = BT (2.198)

The highest temperature obtained in solving this

cular equation is the transition

temperature. Of particular interest are Lwo classes of materials specilied by
Ta=Ts, Va=Vs, Ny=Np, Da#Dp, Iforasuperlattice, (a.190)
Ta=Ts, Va=Va, Na=Np, Dy=Dy, forasingle film,

for which the secular cquation, Eq. (2.198), reduces to the Werthamer equation,

Eq. (2.189), and therefore, the Werthamer formalism bec

mes exact. ‘The applica:

tion of DW formalism to thes tries in Lhe p

e of an applied field reduces

to solving an eigenvalue equation

- IzD(V—z—A) F(x) = ¢; F(x), (2.200)
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Logether with the houndary conditions, Eq. (2.142).

s consists of theoretical studies of the

The rescarch work presented in this v
transition temperature in the presence of applied field for these two classes of ma-
terials,

It can be readily shown that secular equation, Eq. (2.198), reduces to the form

proposcd by Takahashi and Tachiki [25, 36, 42, 52],

det (2.201)

without introducing de Gennes’ cutoff. Auvil and Ketterson [43] and Lodder and

Koperdraad [52] were able to show ically that the transiti for
a bilayer in both thick and thin flm limits, e.g. Nb/Cu or Nb/Al, can be recovered
by using Takahashi-Tachiki's sccular equation, Bq. (2.201), if the cutoff is treated

carcfully and §(¢;) is ovaluated using Eq. (2.155).
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Surface Super ivity in a H

3.1 Introduction

It is well established both theoretically and experimentally that the temperature
dependence of the upper critical ficld can be significantly modified by the presence
of surfaces. The best known result in this context is the expression for the parallel
critical field, first obtained by Landau and Ginzburg [64], for a superconducting thin
film

Iy = fzﬁ# 1(7), (3.1)
where d denotes the thickness of thin film, A(7") is the penctration length and /1,(1)
is the thermodynamic critical field. This yiclds the following temperature depen-

dence

g 2 [12kedd i 5
=\ rpag V=T, Tl (:2)

in terms of the extended GL theory in dirty limit [10, 11]. '

his result, has been

confirmed by numerous experimental studies and dilfers significantly from the cor-

result for a 1 system in Ginzburg-Landan theory, in which
case
_ T OB B p— ¥ e i
Ha=V2rkl(T) = arpte=1, Tt (3.3)

The upper critical field in systems of intermediate thickness was studied in the
carly sixties by Saint-James and de Gennes [65] within the framework of Ginzburg-

Landau theory. They discovered that while the temperature dependence of the upper

62
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critical field exhibited a crossover from a two-dimensional regime, limy_z, Hyj o

VTZ=T, to a three dimensional regime, limpg, Hy o (T. = T), with increasing
thickness, the resultant proportionality coefficient is 1.69 times larger than that

of a homogencous superconductor, /) = 1.69 H. This result implied that the

presence of a free surface could induce the superconductivity to persist to a higher

applied field than it otherwise would. This phenomena is referred to as surface
suporconductivity, since the order parameter is localized close Lo the surface within
a distance of zo = VOB9010&y (€4 = y/$a/2rH), and forms a superconducting

sheath. The theoretical results of Saint-James and de Gennes have been confirmed

| fucti blished

experimentally and the of surface ity is well

In addition to the work of Saint-James and de Gennes, Tinkham [20] examined
the angular dependence of the upper critical field for a thin film, //(0). He obtained
the following result

%siuw %ﬂ,’”)mszh Iz (3.4)
with /1y = 1(3). While Tinkham’s result is, strictly speaking, valid only in the thin
film limit, expressed in the above form, it is often used as an interpolation formula
for films of arbitrary thickness by substituting the experimentally determined values
for /1 and /1 into the above formula. This interpolation formula is even used in
the interpretation of the angular dependence of upper critical field in superlattice
geometries.

The extension of Tinkham’s result to the angular dependence of the upper critical
field for films of arbitrary thickness may be expected to lead to some understanding
as to how the superconducting sheath, appearing in the parallel field case, is modified
in the case of a finite angle. The first such studies were presented by Saint-James

[21]. Using Ginzburg-Landau theory, Saint-James derived an expression for the
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logarithmic derivative, @, in the limit 6 — 0, defined by

—
=ty 7

ol
as a function of the reduced feld, i = 4 with d denoting the thickness of a
film and €y denoting the maguctic coherence length, by means of a perturhation
expansion in terms of the angle 0 of the applied field relative to the surface, One
particularly interesting aspect of the result obtained by Saint-James was that the
dependence of the logarithmic derivative , on the reduced field h, oxhibited a cusp

at h = h. = 1.62. The value of the logarithmic derivative at b = b, is & = —(0.5341.

While experimental studies appeared Lo confirm the result obtained by Saint-

James, Thompson [24] later pointed ont that Saint-James result was in fact in error.
Specifically Thompson was able Lo show that all the even terms in the perturbation

series used by Saint-James contributed to the logarithmic derivative, ®, and, by

int-James had

considering only the second order term in the perturbation soric
obtained only an approximate result. Thompson was able to sum the leading terms
in each order of the perturbation series and oblain an exact expression. While the
result obtained by Thompson was qualitatively similar to that given by Saint-Jates,
inasmuch as it reduced to Tinkham’s result in the thin film limit and it exhibited a
cuspsh s =159, Lfiere wre Simporiant gusnbitalive diffaronces hilwenn tieiwo
results. Most notably, the value of the logarithmic derivative, ®, goes 1o zero at the
cusp in Thompson’s analysis. Thompson [24] also analyzed carlier work, carried out

by Yamafuji et al. [55], on the full angular dependence of the upper critical field

for a semi-infinite geometry. In this case, Thompson pointed out that the houndary
condition used by Yamafuji et al. [55] was inappropriate.

Despite the fact that previous studics, notably that of Saint-James [21] and

Yamafuji et al. [55], on this topic have a restricted domain of validity and the fact

that their work was mathematically problematical, both claim good agreement, with
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certain experimental studies. In the case of the results presented by Saint-James
22, 23] we suggest, on the basis of results obained from our analysis and presented
in this chapter, that the experimental results considered by Saint-James are not
sufficiently precise to distinguish between the various theoretical results and that
more detailed and systematic experimental studies are required.

While new results and a critical re-cxamination of previous work on the upper

critical fields in superconducting films are of themselves interesting, the results arc
also relevant to similar studies on superconducting superlattices, a topic of consider-
able current interest both theoretically and experimentally. Indeed it was the analy-
sis of the angular dependence of the upper critical field in superlatlice structures [38]
that motivated the present calculation for a single film, since we have already noted
that, results obtained for thin films are often used in the interpretation of data from
superlatiice structures. The formalism used in the present study and the subtleties

ed also manifest th 1

in the case of the superlattice geometries.

In this chapter, we will caleulate the upper critical field for a superconducting
filim for all orientations 0 < 0 < /2 and a range of thicknesses, including both finite
thickness and the semi-infinite geometry.

In Scction 3.2, we will formulate the cigenvalue problem based on the de Gennes-
Werthamer dirty limit theory. 1t will be shown that the application of de Gennes-
Werthamer dirty limit theory to a superconducting film can be accomplished by
two steps. One first needs to solve the partial differential equation for the order
parameter, incorporating the given geometry and boundary conditions given by
Egs. (3.6) and (3.7), in order to obtain the cigenvalue, . Then one maps the
cigenvalue to the temperature dependent upper critical field using the Werthamer
equation, Eq. (3.8), to obtain the transition temperature.

In Section 3.3, we will show how we can recover the thin film limit, Eq. (3.2),
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using the DW formalism by means of a simple mean field argument. We will then
introduce the concept of the nucleation conter and show how it plays a crucial role
in determining the wpper critical field and the nature of the order parameter when
the reduced field h > he (i.c., for moderately thick flms). In particular, we will
show how this leads to the enhancement of the upper critical field in the case of
thick films (& > h.) and the fact, alluded Lo earlicr, that the order parameter is

confined to a thin sheath (g ~ &) close o the surface,

In Section 3.4, we will review in somewhat more detail previons work [20, 21,

24, 54, 55] on the angular dependence of the upper critical fickd in superconducting

films. The purposc of this review is to examine the validity of earlier work and

to draw attention to the inconsistenc as that exist among the various theorelical
results.

In Section 3.5, we present an cigenfunction expansion Lechnique to solve the
cigenvalue problem posed by the DW formalism for the case of a tilted magnetic

field. Using this technique we are able to calenlate the cigenvalue as a funetion of

0 over the range 0 < 0 < 7 for various values of slab thicknasses. In particular, we
discuss the non-analylic nature of the cigenvalue problem in the limii 0 = 0,

In Section 3.6, we use the cigenvalue calelated in Scetion 3.5 to study the full

angular dependence of the upper critical field, /(0), at fixed Lemperature

g the
Werthamer equation, Eq. (3.8). The range of thickness of the slab studied includes

thin, moderate and thick films. A semi-infinite geometry is included as the limiting

case of a thick film. A new dimensional crossover, which may be referred to as a

transition from a surface effect (single surface dominant) to a size el

ot (double

surface dominant), is predicted by the theoretical calculation.

In Section 3.7, we show the consistency between our numerical results for the

logarithmic derivative, limo—o % 242] , and Thompson’s theoretical result. One
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interesting and important aspect associated with the calculation of the angular
dependence of the upper critical field relates to the fact that, while the result of

the npper eritical field in the limit 0 — 0 agrees with the result oblained for the

parallel field case, the limit is far from trivial. This arises as a consequence of the
fact that the underlying cigenvalue problem for the tilted field differs qualitatively

from the corresponding cigenvalue problem in the parallel field caleulation. This is

more than a simple technicality, as it means that particular care is needed in the

determination of ® = 24| iy the limit 0 — 0. This is particularly so in the case
a4

of the analyses presented by Saint-James [21] and Thompson [24] who evaluated

the slope by means of a perturbation with respect to the parallel field case. We

il

will show that onr results for & = are, within the numerical precision of our
caleulations, consistent with those obtained by Thompson [24]. The experimental
implications of measuring this quantity are discussed in detail. In Section 3.8, we

present a number of conclusions drawn from the present work.
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3.2 Eigenvalue Problem in the de Gennes-Werthamer Theory

In this section we wish Lo consider the evaluation of the upper critical field of a
superconducting film of arbitrary thickness mounted on an insulating substrate at
an orientation 0 relative to the direction of the applied field, by means of the DW

theory. The specific geometry is shown in Fig, 3.1,

Hy

Figure 3.1: Slab Geometry.

Since the superconducting properties of the film are uniforin across the thickness,
we see from our carlier discussion that the problem, defined by Eq. (2.200), reduces
to the determination of the minimum cigenvalue, which we denote by £, defined

by

DV - LZIA)" F(x) = £, F(x), )

together with the boundary condition

U
0w

=0. (8.7)

z=u,

o
EA:)J"(X)

The transition lemperature for a given applicd magnetic field 17, orientation 0 and

thickness 2a, may then be obtained from the Werthamer equation, 1. (2.200),

X(zﬂ’i‘;l )+ (IL) - ()
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For the geometry shown in Fig. 3.1, we choose the London gauge,
A(x) = (0, cos 0 - 5in0,0), (3.9)

where 0 is the angle botween the direction of the applied field and the = axis and

lies in the & — z planc,

The operator, ~(9 =2 A)2, in Eq. (3.6), for the chosen gauge is expressed as

LA W
72 oy

2 l(cos0— zsin O)F . (3.10)
%

We define a magnetic coherence length €y as

bn= (3.11)
ael introduce the dimensionless variables
g e, e (3.12)

&n

and we will hereafter use

s[>
L= {’aﬂ

We therefore wish to determine the minimum cigenvalue & = B, /h D that satisfies

inl))]’} . (3.14)

the dilfersutial equation

LF(a,y=

e Fle,y,z) (3.15)

together with the boundary condition

0
_‘T.F(.n!/,:) =0. (3.16)
(: lr=sar /&gy
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In the following sections, we will first solve Eq. (3.15) for the parallel field case,
0= 0. We will show the role played by the nueleation center in the determination of

the lowest eigenvalue due to the houndary conditions imposed by the surface effect

[19]. We then study the case of arbitrary angle (0 # 0) for which the surface effect is

completely destroyed die to the perpendicular component of the applied field which

penetrates the entire slab, The per

ence of the surface effeet in the parallel lield

case and the destruction of the su

o elfect when the applied field tilted at an angle

relative Lo the surface lea

Lo a non-analytical he

ior of the lowest cigenvalies

determined by the cigenvalue equation, Eq. (3.15), in the limit 0 — 0.
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3.3 Parallel Upper Critical Magnetic Field

I this section, we show how the lowest cigenvalue determined from the Weber equa-
tion and corresponding bonndary condition may be obtained by solving a non-linear
first order differential equation, the Ricatti equation, through a proper transforma-
tion of both the equation and houndary condition. Numerical solutions to the

ciganvalue problem are presented and disenssed, Using the Ricatdi function, wo

then obtain an approximate expression for e lowest cigenvaluc as a function of the

reduced applied field, h, over the range h < he, by a mean field approximation,
The temperature dependence of the upper critical field for T < 7% is given to

show the dimensional transition as the thickness of the slab varies from finite to

infinite. We show how the results of Ginzburg and Landan, and Saint-James and

de Gennes may be recovered in the thin film and thick film limits respectively.

3.3.1 Weber Equation and Ricatti Equation

For the 0 = 0 case, the cigenvalue equation, Ba. (3.15), reduces to

)
(% — iw)?| Fla,y,2) = € Fle,y,2). (3.17)

Substituting the following ansatz for the order parameter
Fle,y,2) = [(x) e, (3.18)
into Eq. (3.17), the eigenvalue equation further reduces to the Weber equation

da?

[ £ +(.r—z-)*] M) = A A, (319)

where the Weber function, fi(r), is subjeet to the boundary condition

=0, a=X (5.20)

d
E""(")rm =&
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The cigenvalue, ¢, defined in Eq. (3.17), is then given by

c= A+t

1t is readily seen that p = 0 is necessary to oblain the minimun cigenvalie.

Since the solution cor Lo the mini g lie has no nodes, we
may introduce an auxiliary funetion, Ra(e), defined as

Ld
I() dr

Using the Weber equation, By, (3.19), one can show that, this auxiliary function

Ra(a) = INGE

22)

satisfies the Ricatti cquation

d’_.lz"“(‘") = —Ri(x) + (e — k) =X,

subject to the boundary condition

Ra()mp

(i8.24)

The minimum cigenvalue problem stated by Eqs. (3.23) and (3:24) in terms of the
function, Ry(z), is entirely equivalent to the one stated by Eqs. (3.19) and (3.20)

iu terms of Weber function, fy(x). However, because it is a first. order diferential

equation, Eq. (3.23) is particularly well-suited to numerical calenlation. In addition

Lo providing a basis for numerical calenl

ation, 3. (3.23) may also be used to oblain
approximae results,
We have solved Eq. (3.23) numerically, together with the boundary condition,

(3.24). The cigenvalue spectrum for the reduced applied fields in the range, 0.1 <

h £ 5 is presented in Fig. 3.2. It is scen that for b < ke = 162 the minimum

cigenvalue, denoted by A", is found at k* = 0. ‘The corresponding cigenfunction,

Ja(=), is a symmetric function, This indicates that the spatial distribution of the
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Figure 3.2: Surface plot of the cigenvalue A as a function of k and 4 for the slab

geometry in parallel applied field case.
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order parameter in the film is dominated by the size effect. since the character of the

order parameter is strongly influenced by both of the frec surfaces. For b > h, how-

ever, we

ce that the cigenvalue A has double minima at k = +k pectively, which

shows a Lwo-fold degencracy of the cigenstate [65] corresponding to the appearance

of a vortex solution as proposed by Saint-James [66]. The mininmm cigenvalue, A°,
as a function of h is presented in Fig. 3.3 (curve (1), The temperature dependence

of the upper critical ficld in the thick film limiting case may be obtained by the

foll..wing analys

For b3 he, we approach the limiting form

k= a— V059010,

in which the corresponding eigenfinctions are strongly localized around & ~ 4k

with a spatial extent of order ~ £y. The corresponding cigenvalue is given by

AT = 0.59010. (3.26)
This Is to the ph of surface sip luctivity first di 1 by
Saint-James and de Gennes [65]. Substituting the asymptotic form of the cigenval

into the Werthamer equation, Eq. (3.8), we oblain

0.59014 D 2711 i 7%
i (WT) i (I—) =0, (1.27)
Taking the limit that 7" — 7% and I/ — 0, we obtain the result, given by Eq. (3.3)
N a1 g A BakB 0 o
1!|_u1|_< nry = 1.1,9FW(IC— ), (3.28)

where we have used the expansion of lim.—.o x(2) = Zz. Comparing this with the

corresponding result for the upper critical field of an infinite: homogencons supor-
conductor given by Eq. (2.169), we see that
(')

= 1.69. 3.24
o = M (.29
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Figare 3.3: Plotof the minimum of the eigenvalue A" found at & as function of & for
the slaly geometry. The solid line is the result of numerical caleulation. The other
two curves are obtained using the mean field approximation (2) and linearization
(3), respectively.
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The parallel upper eritical field for a semi infinite supereonductor is typically referred
1o as Il Thus we see that the appearance of the double minima in the spectrum

of Mk) for h > h, signals the onset of surface superconductivity.

3.3.2 Mean Field Approximation in the Thin Film Limit

In order to treat the thin film limit, we consider the dispersion relation obtained by

integrating Eq. (3.23)

(3.30)

2a = 2V/h, and the phase parameter k. In order Lo obtain an analytic
of the minimum eigenvalie over a certain range of ky we suggest the ollowing mean

field approximation and then verify its validity by comparing with the numerical

result. For the symmetric solution, k* = 0, The Ricatti cquation, K. (3.23), may

be approximated as

d
ey Ra(

where the average s defined as

T | B L
D) E/_.. () d.

The solution is immediately found to be

- A+ TR (@) s (3.33)

with

? — 1E(a). (3.44)



Surface Sur luctivity in a Il Suj d (i

The average value, T(a), is then oblained self-consistently through the integral

__ . L
B = o I ['I ’-%n‘m] e,

8 o B
945 25

e minimum cigenvalue in this mean field approximation can be expressed as

b L8 oa . L Bl <
X = a1 - ) = b1 - ). (3.35)

Tn Ll approximation, 3%:4? < 1, we obtain
==h (3.36)

Maki [67] obtained this result in the thin flm limit of 24, < &y by treating the order
parameter as a constant. In fact, this result may be obtained from the approximation
of B(x) = 0 in Eq. (3.30), whic is a much looser condition than Za, < €. The

curves of A” as a function of k for both the mean field approximation and the thin

film approximation are given in Fig. 3.3, curves (2) and (3), respectively, Compared

s

with the numerical solution, it is seen that the validity of the thin film approximation
is b S 0.5 or 24, § V26 instead of 2a, < €y, and the mean ficld approximation
provides a good description of the minimum cigenvalue, A", for b < k..

“The temperature dependence of the parallel upper critical fild for a given film

with thickness 2a, can be obtained by substituting the mini igenvalue, A",

into the Werthamer equation, Eq. (3.8),

& hX(h) ;
X [.T(:T +In(t) = (3.37)
where ¢ = £ and we introduce
,_ _hD
&= opr (3.38)
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Near the bulk transition temperature 7= T, (h — 0), we obtain

(3.39)

where lime—o (=) = =72/4 was used. The temperature dependence of the upper

eritical field in thin film limit is recovered by substituting A = Lh into By, (3.

which yields
128,
30 a?

and thns
2, [ (=) B
g\ ge W=

3.3.3 Dimensional Crossover for Films of Intermediate Thickness

Using the calenlated values of the lowest cigenvalues shown in g, 3.3, we can

compte the temperature dependence of the upper eritical field Tor any value of

thickness @,. The results for several values of ¢, are shown in Fig. 3.4 (a). The

upper critical ficld is normalized with respect 1o He(0), which is defined hy

Haf0) = f—w

(3.42)

These results clearly show the crossover from the two-dimensional hehavior as 1' —

T, to the three-dimensional behavior as the upper eritical field curve oblained for

the films with finite thickness mery

|

into the upper eritical field enrve denoted by

2, /€& — 0. Defining the temperature at which the crossover oceurs as the value of

at which the mini sigenvalue A hecomes ey we

k=1

an readily

calenlate the dependence of the crossover temperature on the thickn

s dp. The

graph is given in Fig. 3.4(b). Again the thicknoss is expressed in terms of the length

seale &.
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Figure 3.4: Fig. (a) shows the temperature dependence of the parallel upper critical
field corresponding to various reduced thicknesses of 2a,/€ (3.4 — o0). Fig. (b)
shows the critical thickness at which the dimensional crossover occurs.
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3.4 Angular Dependence of the Upper Critical Field

The earliest work on the angular dependence of the upper critical fild was carricd
out by Tinkham [20] based on the lincarized Ginzburg-Landan (GL) theory using
a variational method. We can recover the result obtained by Tinkham within the

DW theory in a relatively straightforward manner. Substituting the ansatz

Flyysz) = bl Fg

R (313)

into Eq. (3.15), the cigenvalue problem reduces to

Flr,z), (B.44)

P
{-% o % + [ = k) cos0 = = sin 0)]'*} Fla,

2 _
527 (1.45)

Tinkham’s [68] approximation is based on the premise that for a vory thin film, the
boundary conditions given by Eq. (3.45) implics that the cigenfunction F(u, z) wil
depend only weakly on the coordinate @ and, the nucleation center & = 0 can e
chosen to be the same as in the parallel field case [67]. Integrating Bq. (3.44) with

respect to x over the range (—a < & < a) yields the following cigenvalue problem
&> - e
—m H{(ecosd = zsin0)%) | g(2) = eg(2), (13.46)

where we have defined

= ﬁ /_' F(EEyitE, (3.47)

Cn=

Assuming F deponds only weakly on i, we may approximate

and

(-+)F (2, 2) e ([ Fla, z),t.r)" . (1.4%)

n'0+%

{(cos 0 — zsin 0)?) ~ z* st 0, (18.49)
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and the cigenvalue equation reduces Lo

(5 - %hrus“ 0) 9E) (3.50)

ot siu’tl] e
with @ = V& This may be solved to yield a minimum cigenvalue
1
i:sinl)+§hm>10, (3.51)

The minimnm cigenvalue, £, defined by Bq. (3.6), is thus written as

Ly " 12 2 .

5 = MO = h(0)sin0 + 512(0) cos™ 0. (3.52)

2 ;

At fixed temperature, 7, differentiating the Werthamer equation, Eq. (2.161),

\ (%) 4l (,L) -0, (3.53)

with respect o 0 leads to 4 ,[(0), 0] = 0 for all the orientations (0 < 0 < Z). One

fines that

E, Shijs 0=0,

e 351

kD { hy 0=z ey
] 5.

Pinkha’s formula, 1. (3.4), for the angular dependence of te upper eritical field

is s wiven by

.
LIOPHIL(O ey
W "

2
= % sind + ”T(ﬁa) cos?0. (3.55)

While experiments by Harper and Tinkham [69] show excellent agreement with
Tinkham's formula for thin lilms, as they should, however, for moderately thick
films the data falls consistently above or helow the theoretical curve, depending on
the tilm thickness and temperature, Our own numerical results (will be shown in

Section 3.6) indicate that Tinkham's formula gives a good approximation to the
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angular dependence of the upper eritical field for a, < &/v2. Yamafuji ot al. [54]
claim to have generalized Tinkham's formula to include flms of moderate thickness.
They give the following formula for 11(0) for a film of moderate thickness:

12(0
IH

) cost(o) |1 —m+\f)”*”“') ()] + ”“”*..,(m-u (8.56)

Vamaluji et al. showed the agreement of this formula with a set of experimental data,

which lies above Tinkham’s curve. However, given the fact that, the experimental
data [69] may also lie below Tinkham’s curve for thick lilins, it is dillicnll to draw
any conclusion from Yamafuji’s formula, Eq. (3.56). In a later paper, Yamafuji ot
al. [55] suggested a somewhat different formula for extremely thick films by means

of a variational method,

9 oy =1, (157
R

cos?(0) [1 + Lan(0)(1 — sin(0))] + ’:I‘ )

and again, Yamauji et al, were able to find a set of experimental data which agrecd
with their expression. However, as Thompson [24] pointed ont, a boundary condition
valid in the parallel field case,

o = 0y instead of 2| 0, was used in

Yamafuji’s work.
The carliest calculation of the angular dependence of the wpper eritical field for
fils of arbitrary thickness was given by Saint-James [21] using the Gl formalisi.

s able

However, due to the perturbation nature of the caleulation, Saint-James

to obtain the slope of the logarithmic derivative %22 only in the limit 0 — 0.

To recover Saint-James’ result within the DW framework, we write the cigenvalue

problem as

> :
{_% + (= k) cost— 2 sinl))]‘}f(.m £ F(w,z), (.58

927 " 922

a
77|

=0, lim Fle,z)-0, (3.59)
- i
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where the ansatz defined in Eq. (3.1

3) was used.

Defining

(= k) cost0, (3.60)

—l;? 2 cost, (3.61)

= =2(r—k)z sinfeosd, (3.62)

Saint-James noted that the term V- tends to zero in the limit # = 0 and. he argued,

it should be possible Lo obtain an espression for the angular dependence of the cigen-

value in the limit & — 0 using perturbation theory. The unperturbed cigenvalue, o,

may be obtained by solving the following cquations

L filx) = Mfi(e), =0, (3.453)

=t
Logn(z) = ugun(2), i g(z) =0, (3.64)

with

Co=Nj+im = (4 )eosO+2m+)sing,  jom=0,1,2,,

x (2o 1)+ (2m+1)0. (3.65)
Including the second order perturbation correction, e cigenvalue is expressed s
o A
{0 = eo—Zsinamslll;Z[(/\—"‘('M]
70 o
B
s ez |y e By ]
Li#v b A 00
= d—50 (4.66)
where
s Il = i)

i#0 A= !
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Cliapte

and the notation

) = fiz), ln) = gn(2), (3.68)
and the relations
(n]zV2sinOn) = 0, (0]zV2Zsn0]1) =1, (3.69)

were used.
Saint-James [66] was then able to relate the summation of the matrix clements
over the excited states Lo the curvature of Lhe eigenvalue spectrum, A(k) at k = &7,

caleulated in the parallel case, through

Pho(k)| [Qol(z = &)
e W 2|1 4;# s (3.70)
which leads to
1 o",\a(k)]
Fad [H— . @.71)
1 FLZIN P

Saint-James obtained the expression for the logarithmic derivative of the upper

critical field in the limit 0 — 0 for fixed T as

1ol _ 1[2 (k) (a(h,\;,

ak?

7y a0 |, =7 @12

Originally, Saint-James’ result had been thought to be an exact solution, since all the

higher order terms in the perturbation are characterized by a factor of 67 (p > 1).
llowever, Thompson [24, 56] later pointed out that Saint-James’ calculation of the
perturbation correction up to the second order was in error and that there should
he contributions proportional to 0 from higher order terms. The problem stems
from the fact that the cigenvalues for the excited states with the same value of j
are degenerate in the limit & — 0. As a consequence of this, it can be shown that

all the even-ordered terms in the perturbation series contribute to €(0) to order 0.



Chapter 3. Surface Superconductivity in a Homogencons Superconductor 85

Thompson (24] concluded that, summing over all the leading term contributions,

the correct expression for the slope should e of the form

(8.73)

J#0
The corrected logarithmic derivative of the upper eritical field in the limit @ — 0 at

temperature, T, s given by

f L 2O [TEE) (2(0%)
o2 T1(0) a0 3ok o

I

22, 23] appeared to confirm the result given

Despite the fact that carly experiments
by Eq. (3.72), the result is obviously in crror. To understand this we simply apply
Eq. (3.72), to a homogencous superconductor, with the boundary conditions given
by

im Fla,g)=0. (3.75
In this case the cigenvalue A" = 1 is entirely independent of the wave mmber k and

hence we obtain the result
PAR)
DIE

=0. (3.76)
From Eq. (3.72), this implies that, in the case of a homogencons bulk sample, the

upper critical field would exhibit an angular dependence with

Ll
i e rris £y
7w, aan
el Ul i5calb Vo Hibrracic
On the other hand, Thompson’s result, Eq. (3.74), gives
Vil
it =, (4.78)

e, =

for a homogeneous sample.
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In the case of thin films, the results obtained from Eq. (3.72) and (3.74) arc

closely approximated by the corresponding results obtained from the Tinkham for-

mula given by Bq. (3.55). For a, 2 &, however, the results obtained differ sig-
nificantly. In particular the theory of Saint-James predicts the existence of a cusp
when the logarithmic derivative of the upper critical field is plotted as a function

of the reduced magnetic field b = a2/€4. The value of the reduced field  at which

the cusp appears corresponds to the value for which the nucleation center acqu
a non zero value, Thus, while Thompson®s result, exhibits a cusp as the nucleation
cenler acquires a non-zero value, the derivative is zero, in obvious contradiction lo
the value of —0.5341 obtained previously by Saint-James. Harper and Tinkham [69]

measured limg_o 752 - for a Pb film and showed that the experimental data were

systematically larger than Saint-James result around the cusp point, however, all
the data are finite and 1o zero slope was found. As far as we arc aware there have
been no experimental studies which resolve the diserepancy between the two results,
and the result obtained by Thompson appears to have gone largely unnoticed in the
literature. A comparison of the values obtained for the Timo_o 32|, given by the
different, anthors s presented in Fig. 3.5.

While Thompson has cortectly identified an inconsistency in Saint-James anal-

it is nevertheless not entirely clear that the result presented by Thompson is

correct. To understand this we note that Thompson’s result depends on the nucle-
ation center, k°, found in the parallel field case. While the corresponding eigenvalue
cquation for the parallel field case, Eq. (3.17), may be obtained by setting 0 =0 in

12q. (3.44), it can be readily shown that the resultant cigenvalue spectra, €, differs

qualitatively. This is best demonstrated if we consider the fact that, in the case of

a parallel field, the cigenvalue spectrum that one obtains from Eq. (3.17) exhibits
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Figure 3.5: Plot of the logarithmic derivative limo_o 77(5; 200 . a5 funetion of the
dimensionless magnetic field 0.5 < & < 3.0 for the theories of Tinkhani, Saint-James

and Thompson.
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Chapter

a non-trivial dependence on the valie of the wave number k. Tn contrast, for finite
0 one can simply remove the varable & from the cigenvalue equation, . (3.44),

slormation

through the

o=z hcoll. (3.79)

Sinee this transformation leaves the boundary conditions unchanged, this implies
that, the resultant cigenvalue spectrum s entirely independent of k. Given the

jon of the parallel field case, and in particular, the critical role

previous disc
plaged by the wave number k in defining the nucleation center, this represents an

inction between the parallel field case and the case of finite 0.

important i

These e ¢ show that the caleulation of the npper eritical ficld for finite

0 cannol be regarded as a simple generalization of the parallel field case. Moreover,
this distinction between the cigenvalue spectra at finite 0 and in the parallel field
case leads to the question of how the results of the parallel field case are recovered

and we will show explicitly, that

in the limit 0 = 0. 1t sonable Lo suppose,

the minimum eigenvalue (0) approaches &, the value obtained in the parallel field

If-evident. Morcover,

case, in the Timit 0 — 0. However, this is by no means
even if the limiting cigenvalue limg_o €7(0) agrees with the corresponding eigenvalue

, it is obvious that the eigenvalue spectrum, defined

obtained for the parallel field c
by 1. (3.41) together with the boundary conditions Eq. (3.45), will exhibit non-

analytic behavior in the limit @ — 0.

This non-analytic behavior is examined in more detail in Appendix B. In this

en analytically by introducing an ad-

appendix, we show how the limit may be
ditional term, a 2%, in the cigenvalue equation, Eq. (3.44). The limit o — 0 is then
investigated and the non-analytical character of the limit 0 — 0 examined. How-
ever, we will show this non-analytical behavior of the eigenvalue spectrum € in the

cases of finite 0 and 0 = 0 explicitly by performing a numerical caleulation in next
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section.

3.5 Eigenvalue Problem for the Tilted Field

We have shown Liow previous work on this topic has heen restricted to cither thin

films [20] or to the limiting case of 0 — 0 [21, 24]. Tn thi

seetion we will present
numerical calenlations for the angular range 0 < 0 < 7/2 for the entire range of
thicknesses.

In order to obtain the eigenvale from the partial differential equation, Fy. (3.58),

we expand the order parameter in terms of a complete sel, of cigenfunctions as

Fla,

3 Ay i) gn(=) (3.80)

ma

where the cigenfunction f;(x) satisfies the Weber equation, 1. (3.19),

9
L: fi( [ 1;17 +a?cos 0| [i(e) = A i), (3.81)
subject. to
& Jix) =0 (382,
P e 82)
and the cigenfunction g, (=) satisfies
s & 3 "
Lagn(z) = | =7 + 2510 0] gun(2) = 1 ga(2), (3.83)
subject to
im gu(z)=0. (3.81)
The ort} lity of the cigenfunctions is 1 as

/_ d [y (2) fy(e) = b3, (4.85)
/_i A2 () gl2) = Bt (3.86)

Substituting the ion of the order into the ¢ 2 eoquation

Eq. (3.58), yields
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+[k— i cos0+ = sin ﬂ]"} Ji#) gm(2)

£ Flayz) = ZAW,{

ey

= €3 Aujfile)gulz) , (3.87)

where, for convenience, we have absorbed the cos 0 dependence in k.

Multiplying Iq. (3.87) with fi() g (=) and integrating with respect to @ and =,

e cigenvalue, £, may be expressed as

-1
e = X Ay [deds o) gu(2)Ele ) Sl n(z) [2 |A,,.,|ZJ

e .
= 5 Ay A (G [£(8)]iym) [Z I/l,,‘,ll] i (3.88)

where we have introduced Uie notation [j,m) = f(z) gu(z). The derivation of the

matrix representation of the differential operator, £, is given in Appendix B. There

it is shown that

GomlE(R)lim) = /_ dr /_: dz [3() gu(2) £ Jilz) ga(2)
= [/\j + 2 + L-“] 8 6yun — Vsin 0 cos 0.V Zy,
+ [V b V20050 — Zy 85 V250 0] (3.89)

where the matrix elements Vi; and 2, are given by

av/Teonl 12

ey [1=y
il R ¢
e

] 12dL,(3.90)

=
it

o

e~ 2 '2'%2
Zun = [VOF T8t + Vit buna] 5 (3.91)
. WEST [
o= -3 2 3.9
77 = L5 (a2
. VI L i *] s
A B { E] i, (3.93)

where M[a,b, 2] is the Kummer function [70] and A; = (2v; + 1) cos 0.
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I order to obtain the minimum cigenvalue, we require

5 (3.04)

which yields the seeular equation
det [(jomlE(k)lion) = (k)] =0, (.95)

where we write & as (k) to explicitly indicate the & dependence of the cigenvalie,

Thi

s seoular equation provides a basis for the computation of the mininmm cigen-

value for given magnetic field 17, angle 0 and sample thickuess. However, we note
al thicknoss

that the maguetic field and the phys of the sample, denoted by a,,

leul of the ¢i lne ind lently. The ei lie is
B | )

do not enter the
determined by a dimensionless quantity defined by

2
ey 220 a. (13.96)

bo

In Fig. 3.6(a) and (b), we show the minimum eigenvalie obtained for two values

of the effective thickness as a function of the reduced wave number & for 0 = 1% and

9

The corresponding result for the parallel field « o shown. Note that, for

the case of finite 0, the minimum cigenvale is, within the numerical precision of

the caleulation, entirely independent of the wave number £, 1t is also worth noting

s of

ry Lo inelude in ey

that in order to obtain sufficient acenracy it was nece

1,000 terms in the expansion for F(,2). As a comparison, a curve caleulated by
including 100 terms in the expansion for F(i, 2) is plotted in Fig. 3.6(a) and ().
In Fig. 3.7 we show a plot of the minimum cigenvaluc as  function of angle 0

for the values of reduced thickness shown in Fig. 3.6, The minimum cigenvalue for

the corresponding parallel field case is also included and we see that, despite the
qualitative differences between the curves of e(k) for the the parallel ficld case and
the finite 0 case, the minimin eigenvalue nevertheless appears Lo map continnously

to the value found in parallel field case as a function of 0.
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Fignre 3.6: Plots showing the k-independence of (k) for 0 # 0 and k-dependence
for 0 = 0, respectively. Two values of reduced field & = 1.095 in (a) and h = 2.095
in (b) a osen. Curve (parallel) shows the A-dependence of e(k) in parallel field
case. Curve (100 cigenstates 1°) shows the artificial A-dependence for § = 1° by
including 100 cigenstates in numerical calculation. The other two curves show the
k-independence of (k) by including 1,000 ci in numerical calculation for
0 = 1° and 2°, respectively.
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3.6 Angular Dependence of the Upper Critical Field //(0)

Given the cigenvalue, e, calenlated in last section, we obtain the upper eritical field

from the Werthar

quation, Eq. (3.8),

Y [;’iMJ +lu(t) =0, (3.97)

where £ = /T, denotes the reduced temperature (0 < ¢ < 1) and 7% is the transition
temperature of the supercondictor at zera magnetic field. 10 is readily seen that

the Tull angular dependence of the reduced critical magnetic field #(0) at fixed

temperature Lis determined by the condition

(0)e[h(0),0] = const. (3.98)
and this constant may be calenlated from the cigenvalue found at 0 =0
1(0) e[1(0),0] = h(0) e[h(0),0 = 0]. (3.99)

A sell-consistent equation determining the rednced angular dependent upper eritical
field s given by
_j’(”) =2 _Z((‘) e —‘”’(U)'”L‘;] s (3.100)
h(0) ~ 11(0) & [0, (0) 18]
where h(0) may be given by the experimental data /= 1/(0) and thickness a, of
the sample and the eigenvalue e[0, h(0)] is determined by
Hy

&[h(0),0] = T (3.101)

The numerical results of 11(0)/H(0) corresponding to several values of the reduced
parallel field, h(0) = Ay, are presented in Figs. 3.8 and 3.9. For Iy = 0.49h, we sce
from Fig, 3.8(a) that the angular dependence of the critical field is well approximated
by Tinkham's expression, Eq. (£.55). However for h = 1,05k, we see that the angular

dependence of the upper critical field, shown in Fig, 3.8(b), deviates significantly
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Figure 3.8: Plot of 1/(0)/1(0) vs. 0 for h = 0.8 v (a) and b= 1.7 in (b). The solid
line shows the result from the sell-consistent cquation. The dashed line is computed
using Tinkham’s formula. Fig. (1) shows the thin il behavior of 1(0). Fig. (b)
shows the deviation of /(0) from Tinkham’s theory for a larger thickness,
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Figure 3.9: Plot of 11(0)/11(0) vs. 0 for h = 2.2 in (a) and h = 3.5 in (b). In Fig.
(@), for a thicker film, a knee appearing at a small angle (0 ~ 5°) shows a transition
from semi-infinite to finite-thickness behavior. Fig. (b) shows that for h = 3.5, the
cal results differ significantly from those of Tinkham for all 0.
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from Tinkham’s curve, particnfarly close to @ = 0, where the slope is close to zero,
Increasing the effective field beyond ke to a value of 136k, we see in Fig, 3.9(a).

that of //(0) again acquires a finite slope for 0 = 0 which is close 1o the correspond-

ing value given by the Tinkham formula. Tlowever the disagreement between the

Tinkham's formula and the results of the present work hecome more prosouneed

with increasing 0. As hy is inereased yet further to a value of 216k, shown in

Fig. 3.9(b), the slope at 0 = 0 falls helow the value given by the Finkham’s for-

mula. However the slope of the enrve obtained from the pr wor

the curves cross at a value of around 16° and the calenlated value then |

the valie obtained by Tinkham'’s formula. In order to understand this dime
crossover predicted by onr theoretical calenlation in the thick film case, we perform

imit of a thick film.

a scparate calculation for the semi-infinite geometry

3.6.1 [1(0) for the Semi-Infinite Geometry

The semi-infinite geometry is shown in Fig. 3.10.

|”‘|

Figure 3.10: Semi-Infinite Bulk Superconductor.

, used in this calenlation remains un-

The form of the secular equation, Eq. (

changed. However, the matrix element Xij is recaleulated corrasponding to the
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change of the boundary condition, An appropriate set of cigenfunctions correspond-
ing to the modificd boundary conditions imposed on the order parameter may be

chosen by solving the Weber equation

Aifila)s (3.102)

dx?

&
[7— +a? cos 0] f(
subject. to the houndary conditions

dfi(x)

Ji()] ;e =0 (3.103)

lz=0

1t is immediately seen that the following complete set of the normalized eigenfunc-

Lions
Ji(e) = Cyp ™5V g1y (2/cos0) (3.104)

where [y denotes the even order Hermite polynomial, and
A= (2020 + 1) cos0;  1=0,1,2,.- (3.105)

satisly both the Weber equation and the boundary conditions. The normalization

constant is determined by

cit= /a om0 g2 (a/cos0) de . (3.106)

the z ds d of the

The cigenvalie A; of the set of basis functi
ordor parameter is a function of 0 and independent of the magnitude of the applied
magnetic field /1. Labeling A; by 21 so that fy(z) = fu(a), it is straightforward to

calculate the matrix element Xy

Xu= [7 faw) ful) do. (3.107)

A numerical caleulation of the minimum eigenvalue £(0), similar to the calculation
for the finite sample, generates the full angular dependence of the upper critical field

11(0) given by

H(0) _ h(0) _ £(6=0) _ 059010

WO W) @) @ (31198)
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where £(0) = 0.59010 is the cigenvalue obtained in Section 331, and first given
by Saint-James [66] in considering the surface superconductivity for a semi-infinite
bulk superconductor.

We can qualitatively understand the curve shown in Fig. 3.9(b) if we compare

it with the corresponding curve obtained for the semi-infinite case a,/y — 0o, In

Fig. 3.11 the dependence of 1(0)/Hy on 0, obtained from the present calenlation,

ented. We note that

for both the semi infinite case and the case hy =

6h, are pre

the value of /1(0)/11) is close Lo the corresponding value for the semi-infinite ¢

for small values of 0 but deviates significantly for higher values of 0. This sugg

that we can attribute the abrupt increase in the slope that appears in the curve for

h = 2.16h, at around 10° as arising from crossover from a domiinant single surface
effect to a size effect (double-surface cffect).

In Fig

11, we also show the dependence of 1(0)/ 1) on 0 obtained from the

calculation by Yamafuji et al. for the semi-infinite case. While the two results a

for small values of 0, the curves differ significantly for larger values of 0.

A summary of the results obtained by the present caleulation is given in I

The results are normalized with respect Lo /1 to show the systematic variation with

respect to the reduced field.

In comparing the results for the full angnlar dependen

s of the npper eritical field,
we note that while the result obtained by Yamafiji et al. for moderately thick films

[54], falls above the curve obtained from Tinkham’s interpolation formula, the result,

obtained for the semi-infinite geometry [55] falls below. Yamafuji has argucd that
his results are consistent with certain experimental studis [71], and indeed the later
results of Harper and Tinkham [69] show measurements of 1/ vs. 0, which fall either
consistently above or below the theoretical curve given by . (3.55), depending on

the film thickness. It is nevertheless difficult to sce how the experimental data can
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Figure 3.11: 11(0)/11(0) for a thick film is compared with that for the semi-infinite
seometry. Yamafuji’s curve is also presented as a comparison. The knee at 0 = 10°
in the thick flm curve clearly indicates a dimensional crossover from single surface
ellect Lo donble surface effect.
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Figure 3.12: H(0)/Hy calculated for various values of the reduced ficld b = 0.49h,,
1.05hc, (c) 1.36h. and (d) 2.6k, together with the result obtained for the
semi-infinite geometry.
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e systematically acconnted for by the results obtained Yamafuji [54, 55). Morcover,

given that the honndary condition used in the variational procedure by Yamafuji

ot al. [55] is inadequate, we must conclude that the degree of agreement between
3. (3.57) and the experimental results is fortuitous.

While the results contained in the present work exhibit many of the features

observed i the experimental studies, a quantitative comparison is difficult due in
part o the lack of precise systematic studies of the angular dependence of the
upper eritical field of superconducting films. Part of the motivation in prescnting
the results of these caleulations is to point out the discrepancies that exist in the

existing experimental and theoretical work and to illustrate the need for further

investigation in this arca.

3.7 11(0) in the Limit 0 — 0

We have i i 1 the full angular d [ the upper critical field for several

sample thicknesses ranging from thin film, k(0) = 0.8, to thick film, h(0) = 3.5, as
well as for the sample with infinite length scale. It is found, from the results and

di ons presented in previous sections, that the small-angle behavior of H(0)

undergoes an intriguing dimensional crossover between a single surface sffect and a
size eflect as the sample thickness is increased. Therefore, in this section, we will
study the small-angle dependence of H(0) in more detail in the range 0.5 < h(0) <
2.2 and compare our numerical results with the theoretical work of previous authors.

Using the seeular equation, Eq. (3.95), it is possible to estimate the derivative
limg—o 22, and hence caleulale the logarithmic derivative of the upper critical field

as a function of angle at fixed temperature by means of the equation

Vone)| _ oef,., ,ox]"
o), [,\ +hﬁ] (3.109)
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In order to evaluate the expression for 4248 given in . (3.109) the mininmm
cigenvalue €*(0) was calculated for 0 = 0.2° o 1% in intervals of 0.2, Tor a fixed
value of the reduced field h. These data, together with the corresponding result
obtained from the parallel field case, were combined and fitted with an interpolating
function in the range 0° to 1° using cubic spline fit. "The derivative limg_q de* /00
was then extracted from the interpolating function. Estimating the derivative in
this way assumes that the result of the parallel field calenlation maps continnously
to the result obtained for finite 0 and requires that the cigenvalies be caleulated
with sufficient precision. Both these conditions appear to be satislied in the present
calculation.

However, over a narrow range of the reduced ficld, 159 < b < 1.76, the value

of the slope estimated by using cubic spline fit from our numerically caleulated

eigenvalues deviates slightly from Thompson’s result as shown in Fig. 3. 13, This may

be attributed to the fact that the caleulated angular d ! of the ¢i |

cannot be adequately represonted by its

value at a diserete sob of points, in the
domain 0° — 1° for this particular range of reduced field. From this graph it is
seen that, except for the range 1.59 < h < 1.76, the numerically calenlated slope
agrees very closely with the result obtained by means of Thompson’s formula given

by Eq. (3.74). While this means that we

unable to coufirm the Thompson’s

expression within this region, it suggests that the limit limp_g d1//D0], may not

be a particularly useful means of charact field for 0 = 0,

izing the uppe
and difficult to determine experimentally in this range of reduced ficld. Tn the thick
film limit, the semi-infinite geometry, the value of logarithmic derivative of the
ented

upper critical field in the limit 0 — 0 obtained from various theorics arc pre

in Table 3.1,
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Ifigure 3.13: A plot showing the calculated value of the limiting slope “Ihy-u;—‘ % -

as a function of the reduced ficld &, together with the result given by Eq. (3.74). The
culated values of the limiting slope are obtained from a cubic spline interpolation of
ninimum energy cigenvalue €* in the range 0° < 0 < 1°,
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Author References iy 3y 2

Tinkham [69] 0150
Saini-James [21]
Yamafuji 53]
Thompson o]
Prosent work 12963

Table 3.1: Values of logarithmic derivative of the upper critical field in the limit
0= 0 for a semi-infinite geomelry.

In the preceding discussion we have drawn attention Lo the fact that there exist,

within the existing literature, several distinet and mutually exclusive theorel

predictions for both the slope limg—o 4 ], and the full angular dependence of the
upper critical field of a planar superconducting film. We have shown Lo what, extent
the results of the present calculation arc consistent, with previous work and where

s to what measurements would

there exist differences. The question then a
allow one to distinguish between the various theoretical results and what conclusions
one can draw from existing experimental data,

If we first consider the limiting slope lina—o % 2|, then it is important to
note that the results given by Eqs. (3.72) and (3.74), and discussed in the previous
sections, reduce to the Tinkham’s result, Eq. (3.55), in the thin film limit a < &y,

3.72) and (3.74) do differ

In the other limit « 3> &y, the results given by Eqs.
somewhat from the value given by Tinkham’s interpolation formula, however the
difference between the results given by Bas. (3.72) and (3.74) are small and might

not provide a practical means of distinguishing experimentally hetween the alternate

expressions. The difference between the alternate expressions given by Bqs. (3.72)

and (3.74) is most marked for films of intermediate thickness. Morcover il is in

this domain that the most notable distinction between the expression obtained from
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Tinkham’s interpolation formula, Bq. (3.55), and Eqs. (3.72) and (3.74) occurs,

» shown in Fig. (3.13) for by = h* = 1.62. It is

specifically the presence of U

therefore significant, that, while both the expression given by Thompson, Eq. (3.74),

and that of Saint-James, . (3.72), predict the existence of a cusp at h = h*,

Thompson predicts that, the value of the slope at the cusp is zero while Saint-James
[21] results yield a value of —0.5341.
While several experimental studies [23, 69, 71, 72] concerning the angular depen-

dence of the upper critical field of a superconducting film have been published, their

interpretation in the light of the ling discussion is ) blematical. In
particular, early experimental work [23, 71, 72] appears o be in good quantitative
agreement with the expression given by Eq. (3.72). However later, more detailed,
experimental studics by Harper and Tinkham [69] appear to indicate that, while the
logarithmic derivative of the upper critical field in the limit @ = 0 is finite at the
eusp, its value is nevertheless lower than that predicted by Eq. (3.72).

A possible explanation for these discrepancies not only between theory and ex-
periment, but also between different experiments, may be attributed to the fact that,
over a range of values of the reduced field, in the vicinity of the cusp, the limiting
slope limg— O11/0];. serves to characterize the angular dependence of the upper
critical field only in a very narrow domain close to 0 = 0. This implies that, in this
region at least, the precise experimental determination of the slope dH/90 will be
limited by the angular resolution of the measurements. This may be demonstrated
explicitly if we define an cffective slope as
_ H(AO) - H(0)
= Tno)a0

The effective slope is plotted for various values of A0 in Fig. 3.14. We note that,

(3.110)

while the effective slope exhibits a well defined maximum as distinct from a cusp,

the value of the logarithmic derivative at the maximum does not go to zero, but
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Figure 3.14: A plot of the effective slope defined by Eq. (3.110) for (3) A0 = 1°
and (4) A0 = 5° in comparison with Thompson's result (1) from Iq. (1.74) and
Saint-James’ result (2) from Eq. (3.72).
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cad exhibits a finite value whose magnitude increases as A0 increases. This

possible explanation of the discrepancy between experiment and theory is consistent

with the Fact that the angular resolution in Harper and Tinkham’s experiments [69]

is greater than that in the carlier work of Burger et al. [71] and that consequently

e value of the slope at, the casp is smaller.

3.8 Conclusions

We have presented a calculation of the full angular dependence of the upper eritical
field using the de Gennes-Werthamer formalism, that is valid for both thin and
thick films and includes the case of the semi-infinite geometry. It is also valid for
all angles 0 < 0 < 7/2. The resultant eurves for several values of the reduced field
I are shown in Fig. 3.12.

It is shown that while the underlying cigenvalue problem differs qualitatively

from that posed by the parallel field calculation, we nevertheless recover the upper

cal ficld for the parallel ficld casc in the limit @ — 0. The numerical results for

an

the slope limg—o & 22| arc consistent. with the expression obtained by Thompson

1 a1

[24]. This prodicts that the dependeice of the slope lime—o 77 22| on the reduced

= 0. This

lr

thickness b will exhibit a cusp al b= h* = 162 with limo_o 2|

result contradiets the carlier work of Saint-James [21] .

While existing experimental studics indicate the presence of the cusp predicted

by Thompson [24] and Saint-James [21], the observed slope remains finite [69), in
contradiction with the result obtained by Thompson [24]. In the present work it is
shown that for b & i the precise experimental determination of the slope, 4 24|,
at 0 = 0 will be limited by the angular resolution of the measurements. 1t is

suggested that this may account for the apparent discrepancy, and more careful and

systematic experimental studies are required in order to distinguish between the
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various theoretical predictions. In particular, it is important to establish whether

tive limg_a 37 34

the maximum value of the deri

o as predicted.

5

A comparison with previous theoretical work is given and it is shown that, the
results obtained for the full angular dependence are in good agreement, with those
of Tinkham for thin films and, for small angles, are in good qualitative agreement

with Yamafuji ct al. in the ease of the semi-infinite geomed

Finally we note that much of this work was motivated by our interest in the

corresponding problem in the superlatice geometry. While the superlattice geom-

etry represents a more technically difficult problem with a much wider range of

phenomena than the case of the superconducting film, many of the problems that

manifest themselves in the superlattice find a similar counterpart in the supe

il
ducting film. In particular it has been shown [56] that the result given by K. (3.7)
for a superconducting film may be readily gencralized to the superlatbice grometry.
A proper understanding of the problem posed by the superconducting film must be
regarded as an essential precursor to a proper understanding of the corresponding,
problem in the superlattice geometry. This is particularly so given the nabure of

the inconsistencies that we have alluded to that exist within the current, lit

rature

regarding the angular dependence of the upper critical field in a superconducting

film.



Chapter 4

Upper Critical Field of a Superconducting Superlattice

“There exists considerable theoretical and i linterest in synthetically mod-
ulated materials consisting of alternating layers of metals, at least one of which is
a superconductor. A number of such systems have been fabricated and studied.
These inelnde superlattice structures consisting of superconducting/normal metal
layers [25, 3] and superconducting/ferromagnetic layers 45, 47, 74], as well as su-

perla

compuosed of alternating layers of superconducting materials with differ-
ent bulk propertics [37, 38, 39, 40, 75]. This new class of superconducting materials

exhibits a wide range of intrigning phenomenon that provides a critical test of the

current. theor

tical models of the proximity coupling in superconductivity. Of par-
Licular interest arc effects that arise as a consequence of the colierence between the

order parameter in the separate layers, Such effects can manifest themselves quite
Tramati

Ily in the temperature depends of the upper critical field.

OF the various proximily coupled superlattice structures that have been stud-
ied, the effect of an applied magnetic field is perhaps the most prominent in those
in which the composite metals share the same bulk transition temperature, but
which have different electron diffusion constants. In such systems, differences in
the superconducting properties only become apparent in the presence of an ap-
plied magnetic field. At least two superlattice structures, Nb/NbTi and Nb/NbZr
[87, 38, 39, 40, 75], arc known to belong to this class of structures. Such systems
have the additional advantage of being easier to understand theoretically. As we

diss

ssed in Section 2.5, the de Gennes theory reduces to the much simpler de

110
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Gennes-Werthamer theory, if we can assume the composite metals share the same

BCS coupling constant, density of states and Debye temperat

Despite the simplicity of such systems, the temperature dependence of the np-

per critical ficld is known to cxhibit a number of interesting features that ari

1
a consequence of the prosimity effect. The most obvions is the rapid upturn in

the parallel upper critical field curve that is observed close to 7% as the magnetic

coherence length approaches the modulation length of the superlattice. "This is gen-

erally referred to as the dimensional crossover from two Lo three dimensions, an

effect first predicted and discussed for Josepl coupled superlatti

. s by Lawrence

and Doniach [76]. More recently Takahashi and Tachiki [53] predicted that, for
certain parameters, the upper critical field curve for such a system would exhibit
a discontinuous slope. The origin of the discontinuity in the slape of the upper
critical field lies in the effect of the superlattice geometry on the nucleation of the

superconductivity. For sufliciently low values of 11 it is found that, the supercon-

ductivity nucleate in a cloan (V) layer. However for a ccrtain range of parame

the nucleation switches to a dirty (S) layer when the field I exceeds a certain value

H=. It is this translation of the nucleation center that gives rise Lo the discontinnity

in slope.

1t should also be noted that experimental studics on other structures in which the

Iy (Nb/NWTa

32]) or which include a non superconducting component (V/Cu [77]) exhibit a sim-

bulk iti of the ite materials

ilar feature at low indi that the ph lict

hashi and Tachiki [53] may manifest itsclfin a wide variety of superlattice structures.

The ph: of surface

' Inctivity, discussed earlier in the contéxt of

I upercond (19, also manifests itself in these layored systens. I

such systems the location of the nucleation center i

determined throngh the subtle
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combination of the attractive nature of the free surface and the modulation induced
by the multilamellar structure of the superlattice. This gives rise to a qualitatively
different temperature dependence of /1 than obtained in the case of the homoge-
neous superconductor discussed in the previous chapter. The de Gennes-Werthamer
theory of the proximity effect predicts two distinct effects here. The first is that the
upper critical field 7/ can be considerably larger than is the value calculated for a
homogencons supercondictor and can exhibit a non-trivial lemperature dependence.
The second is that the upper critical field exhibits a sensitive dependence on the
nature of the initial layer. Both these effects have been observed experimentally and
provide a crucial test of the de Gennes-Werthamer theory of the proximity effect.
The layout of this chapter is as follows: In Section 4.1, the dimensional crossover
induced by the modulation of a superlattice, predicted by Takahashi and Tachiki
(53] will be studied in detail. Our theoretical calculation will be performed using a
ratio of diffusion constants Dyy/Dysz, = 0.2586 and the layer thickuess d = dy, =
iz = 250 A corresponding to an Nb/NbZr superlattice prepared by Kuwasawa ct

[#8]. In this superlattice, we will show that the origin of the discontinuity in the

Lemperature dependence of the upper critical field originates from a discontinuous
translation of the nucleation center of the pair amplitude. For sufficiently low values
of the applied field, the nucleation center of the pair amplitude at the transition
temperature is located in the center of a clean N (Nb) layer. As the applied field #
i increased beyond a certain value H* the nucleation center shifts discontinuously to
the: center of a dirty S (NbZr) layer at temperature T, We then will show the one-

Lo-one cor d of the discontinuous slation of the nucleation center and

the discoutinuous slope in the temperature dependence of the upper critical field,

, through the application of the Werthamer equation, Eq. (3.8). The

=T

theoretical results obtained show good quantitative ag with the |
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data.

In Section 4.2, we will investigate the interplay of the surface effect [19] and the
Takahashi-Tachiki effect [53] in a multilayer system, which will be modeled as a
superlattice with one free surface, starting with cither the N or the § component.
It will be shown [50] that the location of the nucleation center and the resultant
temperature dependence of the upper eritical field in a layered strueture are strongly

affected by the presence of a [ree surface. This ha:

guilicant, implications for the
interpretation of existing experimental data and suggests farther work in this area.
Similar conclusions have been arrived at independently by Aarts el al. on the basis of
experimental studies [41, 78]. Their studies confirmed the principal results contained
in our work, namely that the nature of the initial layer (i.c. N or S) significantly

modifies the temperature dependence of the upper critical field.

In Section 4.3, detailed results from an investigation of the dependence of the

g
surface effect on the various parameters will be presented. Our caleulation for a
superlattice with one free surface will cover a wide range of the ratio of the diffusion

constants, 0.05 < Ds/Dy < 1, while the layer thicknesses will be assumed to be

equal. We will present a scaling law describing the relation between the modulation
length of the sample and the critical value [1°, al which the slope of the upper
critical field curve as a function of temperature is discontinuous.

A further quantitative examination of the effects of the insulating substrate on

the temperature dependence of the upper critical field, fur Nb/NLZr superlattic
will be presented in Section 4.4. In particular we will show how differences between
previous measurements [38, 39, 40] of the upper critical ficld on Nb/NbZr superfat-
tice structures can be reconciled if surface effects are included. We also show how

the experimental results of Maj and Aarts [41], which examine the effect on the

can he acconnted for

upper critical field of varying the thickness of the initial layes
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by the de Gennes-Werthamer theory of the proximity coupling. The analysis will
show that the pair-breaking clfect of the clectron spin paramagnetism contributes

significantly to the evalnation of the upper critical field at low temperatures.
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4.1 Upper Critical Field for Infinite Superlattice

In this section, we wish to consider the superconducting transition temperature in

an infinite superlattice in the presence of a homogencous magnetic field applicd

parallel to the planes. The geometry is shown schematically in Fig. 4.1,

Figure 4.1: Parallel upper critical field applied to a superlattic
Ds # Dy. d = dy = ds denote the thicknesses for N and S layers,

We further assume that the superconducting materials, which we label N and
S, share a common BCS coupling constant, density of stales at the Fermi surface
and Debye temperature. We assume, however, that, the electron diffusion constant

D is different in the two materials, with

Ds < Dn. (4.1)

We denote the thickness of the S N layers by dg and dy, respectively.
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As discussed previously in Section 2.5.4, the calculation of the transition temper-

ature in a multilayer system reduces Lo the determination of the minimum eigenvalue

given by Eq. (2.180),
o B8R
aDs [iVv-2ZA) F = E,7F,
4o
o B Y
hDy xV—;—;A F = EF,
subject to the continuity conditions
» 2 .
Dyn - (zV— ?A) F(xeN) = Dsn- (zV
o
F(xeN) = F(xe¥),

at cach of the interfaces.

We introduce dimensionless ratios

D5
/= D
and
E,
& =%y

Eqs. (4.2), (4.3) and (4.4) then become
o 2\
" (;V—ZA) F = &F,
g or \?
xV—ZA) F = g7F,
with
i (iV— %’IA) F(xeN) = - (iV—
FlxeN) = F(xeS),

at each of the interfaces.

2m

g0

i
- IA) F(xeS),

)F(xES),

(4.2)

(4.3)

(a.4)

(4.5)

(4.6)

(4.7

(.8)

(4.9)
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The reduced transition temperature, ¢

s then given by the Werthamer
relation
2 &
x( fvT”) +h()=0, (4.10)
where £ = ,—“gﬁr Choosing the London gauge, we have for the vector potential
A(x) = 1(0,2,0). (.11)
We then introduce the dimensionless variables

! syt o 1
w @ Y Tw (@.12)

where £ is the maguetic coherence length defined by Eq. (3.11). We can write the

order parameter in terms of these dimensionless coordinates as

Flx)= Dy(e), for weN,S, (4.13)

where fy(z) satisfies the following differential cquation (Weher Equation):
& ;
P [_dT;? +(z— L-)’] Dwlz) = Ak) fig(=), =€5, (4.14)
i
[+ o= ] fanle) = A0 fagle), sEN, i
with
& =&t [Mk) +97] (4.16)
From which it is clear that p = 0 is necessary lo obtain the minimum cigenvalue.

The continuity condition at the interfaces given in B, (4.9) reduces to

= %fx(k)(z-') s D) = (), (4.17)

14 d—'if«\(k)(zi
with z; denoting the coordinate of it interface of the superlattice. The periodic
nature of the superlattice geometry means that the cigenvalue spectrum is highly
degenerate with

A(k) = Mk + A/én), (4.18)
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where A = (ds + dy) denotes the modulation length of the lattice in reduced units

and

Trkrnseny(@) = Say(z = Aén)- (4.19)

1qgs. (4.14) and (4.15) together with the continuity condition specified by Eq. (4.17)
provide a basis for the numerical calculation of the eigenvalue spectrum, A(k), for a
wide class of superlattices specified by 0 < p < 1. Since the cigenvalue spectra cor-
responding to different values of p show qualitatively similar structure, we present
onr numerical results only for p = 0.2586 and ds = dy = 250 A, which corresponds
to the Nb/NbZr multilayer system prepared by Kuwasawa et al. [38]. The purpose
of choosing this superlattice model is to provide a quantitative comparison of the
theoretical calculation with the experimental data.

A surface plot of the eigenvalue A as a function of & and a = A/(26) = d/éy is
shown in Fig. 4.2 for the wave number k crossing four NS cells. From this surface
plot of the eigenvalue we find that for H sufficiently small (i.e. modulation length
A < magnetic coherence length £;), the detailed structure of the superlattice does

not manifest itsell in the functional d d of the mini i lue A* on

the parameter k. Instead what is observed is a flat line with a constant eigenvalue

which can be evaluated in the limit H — 0, (see Appendix C) as,
Jim A= 7 (4.20)

This behavior is characteristic of an infinite homogeneous superconductor, with an
cffective electron diffusion constant /DsDy. However, as the applied field H is
increased, the modulated structure of the superlattice is seen to manifest itself in
the & dependence of A. What we observe is a curve with multiple minima located at
the centers of the N layers, reflecting the periodic nature of the superlattice. The

fact that the nucleation center A* switches over from the clean (N) layer to the dirty
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Figure 4.2: Surface plot of the cigenvalue spectrum, A(k, a), as a function of k and

ey
a for a superlattice geometry in parallel field case (p = 0.2586).
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(5) layer with increasing magnetic field gives rise to a discontinuous slope in the
dependence of A*(a) on the reduced layor thickness a, as may be seen in Fig. 1.3(a).

Substituting the igenvalue into the Werthamer equation, Eq. (4.10),

&N 5
X(E%T) +In(t) =0 (4.21)

with ¢ denoting the reduced temperature 7z, we obtain the temperature dependent
upper critical field shown in Fig. 4.3(b). This figure clearly shows a discontinuity in
the slope of the upper critical field ) corresponding to the discontinuity in slope
of the minimum cigenvalue. This is the basis for the novel dimensional crossover
hehavior predicted by Takahashi and Tachiki [53] and subsequently confirmed exper-
imentally [37, 38]. Nevertheless, we note that the determination of the temperature
dependence of the upper critical field in a superlaitice using the Werthamer equa-
tion, Eq. (4.10), depends explicitly upon the length scale d = dy = ds, while the
minimum cigenvalue, A*, depends only on the reduced thickness @ = d/¢y for a
given value of p. Therefore, to observe the dimensional crossover in the curve Hy(t)
for £ > 0 for a given material (c. g. Nb/NbZr), one has to choose an appropriate
layer thickness. For the samples prepared by Kuwasawa et al. [38], we can estimate
the smallest layer thickness in terms of the asymptotic expansion of the x function

in the limit 7' — 0 as

de 2> EnV2e a2, (4.22)
where
_ [kDn_ _ | 4dy |aH|™" _ 3
&= TnieT. = \ 3T d’r| =0.514 x 10?4, (4.23)

with 7. = 9.2K and |%| = 0.550 T/K, y = 0.5772 is the Euler constant, a” = 2.015
and A* = 04757, The resultant thickness is d; ~ 135 A. For a superlattice with

layer thickness less than d., the dimensional crossover in the upper critical field is
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Figure 4.3: Fig. (a) shows the minimum cigenvalues found at the N and § centers,
respectively. Fig. (b) shows the upper critical field, /1(1), and the dimensional
crossover at (H*,17). The higher field is defined as the upper critical field of the
superlattice, (p = 0.2586).
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not obscrvable for £ > 0. “This estimate is consistent with the experimental data in
Ref. [38].

1t needs to he emphasized that, in a multilayer system, the surface effect will
dominate for sufficiently small 7/ [50,51], and the dimensional crossover observed in
H(T) may not correspond to the Takahashi-Tachiki effect. However, a model of the
superlattice provides a simple geometry for the demonstration of the influence of the
interfacial offect on //(T'). In the next scetion, we will show that the dimensional

crossover will be significantly changed as the surface effect is included.

4.2 Surface Super Juctivity in a Super Superlattice

1 how the

In the provious chapler we of surface suy
ductivity could be understood in terms of the location of the nucleation center at
the free surface. Likewise in the provious scction, we showed that the modulation of
the superconducting properties of the superlattice could give rise Lo a discontinuous
shift in the location of the nucleation center resulting in a discontinuity in the slope
of the upper critical ficld. It is therefore interesting to explore the behavior of the

nucleation center under the combined effect of a free surface and a modulation of the

| d

sample. More specifically, we ask how the of surface ivity

itsell in a multilamell I d . In order to investigate the com-
bined influence of the surface and interfacial effects, we extend our calculation to a
semi-infinite superlattice geometry. The results of this calculation have appeared in
two published papers [50, 51].

We apply the de Gennes-Werthamer theory to two multilamellar structures com-

posed of N (clean) type and § (dirty) type superconductors as discussed in the

previous section. In one structure, referred to as NSN -+, the initial layer (surface

layer) is type N, while in the other, referred Lo as SNS -+, the initial layer is type
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. Both geometries are illustrated in Fig. 4.1,

"
s dn
5 Ny % Nz Sy
0 "
Ny s, Ny Sy Ny (NSN-)

Figure 4.4: Parallel upper critical field applicd to semi-ind

(NSN ) and (SNS---).

s superlat

Of particular interest is the influence of competition hetween the surface effect

and the modulation induced by the multilayer structure on the location of the nu-

cleation site & and the eigenvalue A(k*). The latter will determine the hebavior of
upper critical field H as a function of 7. To best illustrate the modification of the
temperature dependence of the upper critical ficld that results from the presence of
a free surface we chose the parameter p = 0.05 and dy = dy = d. A more general
discussion of the effects of varying the parameters p and d will be given in next
section.

For the (NSN-+-) and (SN ) structures, Eqs. (4.15) and (4.14) still hold

in the N and § layers respectively. However, a sutface boundary condition must, be
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added at = = 0:

=0

d .
,;_mf,\u-)(l - v lim Sl k)= o0. (4.24)

Surface plots of the cigenvalue spectrum obtained from solving the Eqs.(4.15)
and (4.14) together with the newly added boundary condition (4.24) are shown in

5 and 4.6. The surface plots shown in Fig. 4.5 and 4.6 share a number of

qualitatively similar features. In particular we find that for sufficiently small # (A <
&), the detailed structure of the semi-infinite superlattice does not manifest itself

in the functional d: { of the mini igenvalue A(k) on the k.

Instead what is observed is a smooth curve with a single minimum. The position

of the mini k=, and the cor li igenvalue, A”, can be 1 in the

limit 11 = 0 (see Appendix C) as

0.59010. 1
limk = 05%010y/8 (L+) (4.25)

‘llimu AT = 059010/, (4.26)

This behavior is characteristic of the semi-infinite homogeneous superconduc-
tor disenssed in the previous chapter, with an effective electron diffusion constant
/DsDy. The effect of the minimum of A(k), induced by the presence of the free
surface, is to enhance the critical field, giving rise the phenomenon of surface super-

ed carlier.

conduetivity [66] disc

This rather simple behavior disappears, however, as the applied field H is in-
creased, and the modulated structure of the superlattice is seen to manifest itsell
in the k dependence of the cigenvalue A(k). For A > €y, the modulation gives rise
to multiple minima located either close to the center of the clean N layers or, with
increasing magnetic ficld, H, close to the center of the dirty S layers. Except for in
the initial layer, the effect of the free surface is negligible and the dependence of the

smallest cigenvalue on the wave number &* is dominated by the modulation of the
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geometry, similar to what was found in the superlattice case discussed in the previous
section.
More intercsting, and indeed the substance of the present work, is the modifica-

tion of the fu I d !

of the cigenvalue A(K) on the | er k due to

the presence of the free surface in this particular regime (i.c., A 2 &) and the corre-
sponding values of k* and A* obtained. In particular we find, not surprisingly, that
in the case of the semi-infinite geometry we must distinguish between the eigenvalue
spectrum shown in Fig. 4.5, obtained from the case in which the first layer is elean
(NSN - (see Fig. 4.4), and that shown in Fig. 4.6, obtained from the case in which
the first layer is dirly (SN.S++) (see Fig. 4.4). In the case of the former, the resull
obtained in the (NSN ---) geomelry shows that as A(k) begins Lo develop multiple
minima with increasing magnetic field, the nucleation center is located in the first
layer denoted by Ny. As the magnetic field H is ivcreased further the nucleation
center then shiflts to one of the interior N layers and multiple minima with nearly
degenerate eigenvalues appear. Thus we observe a crossover from nucleation at the
surface to nucleation in the “bulk” of the sample. This gives rise to the very shallow
discontinuity in the slope of the curve A* vs. H, shown in Fig. 4.7(a), in comparison
with the curve for A* which results from a superlattice geometry.

As the magnetic field is increased further, the nucleation centers shifl Lo the

dirty S layers, giving risc to a second discontinuity in the slope of the curve A* vs
H. The resultant critical field curve is presented in Fig, 4.7(b) and shows the effeet
of the two successive shifts in the nucleation center. For the particular parametors

considered here, the first shift in the nucleation center at the crossover from surface

nucleation to nucleation in bulk has very little quantitative of

et on the caleulated
upper critical field curve. Nevertheless, Maj and Aarts [41] reported that a small

kink qualitatively similar to that obtained from the our theoretical calenlation, was
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I (Tesla)

Figure 4.7: The minimum eigenvalues A* as a function of the applied magnetic
field, for the lattice(1) and the semi-infinite (NSN---)(2) and (SNS---)(3)
geometries for p = 0.05 are shown in (a). The corresponding upper critical field as
a function of ¢ for the three geometries are shown in (b).
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found in their experimental measurement.

In the case of the (SNS-+-) geomery, Fig. 4.6, we find that, as A(k) begins to
develop multiple minima with increasing magnetic field 17, the nucleation center £
occurs in the Ny layer. As the applied magnetic field is increased the nucleation
center shifts from the Ny layer to one of the interior § layers, However, due to
the effect, of the free surface, the shift in the nucleation center occurs ab a mich
lower value of H than in cither the (NSN -+-) geometry or the infinite superlattice
geometry. The resultant critical field curves for p = 0.05 are shown in Fig. 4.7(h) and
show that the discontinuity in the upper critical field curve oeeurs al a much lower
value than in the corresponding (NSN ---) goometry and the infinite superlattice

geometry.

We have examined the effect of a free boundary on Uhe upper critical field of

I ucti latti isting of alternating layers with a particular ratio
of electron diffusion constants (p = 0.05). For the paramater values studied, we find
that in the (NSN --+) geometry, in which the initial layer is a clean (N) layer, the
upper critical field is very close to the value obtained for an infinite superlattice,
and hence Ha ~ He. In particular, the temperature at, which the discontinuity in

the slope in the upper critical field occurs is relatively insensitive Lo he presence of

the free surface. This is consistent with claims made in the literature regarding the
interpretation of the experimental data [39, 40, 38]. Perhaps more interestingly, we
find that in the case of the (SN - ) geometry, in which the fuitial layer is a dirty
(5) layer, the upper critical field deviates significantly from the value caleulated in
the case of the infinite superconductor, and hence Hey > Hea.

We find that the surface effect is crucial in determining the site of the nucleation

f

center, k*, and thus the dimensional crossover in the temperature depende
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the upper critical field. This is best demonstrated by the significant deviation be-
tween the two curves for the upper critical field //(7') in the NSN -+ and SN+

shown in Fig. 4.7(b). This theorctical prediction has been confirmed

geometr
experimentally by Maj and Aarts [41]. It should be noted that in determining the
temperature dependence of the upper critical field from the minimum cigenvalue us-
ing the Werthamer equation, Eq. (4.10), a length scale given by the layer thickness d
is ineluded, as demonstrated in the previous section. This means that the tempera-
tre dependence of the upper critical field would change with the layer thickness. In
our calculation, however, we used the same layer thickness for all these geometries,
50 the siguificant difference in the upper critical field between SNS - geometry
and the superlattice and NSN - geometries, shown in Fig. 4.7(b), can only be due

to the existence of the free surface,
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4.3 Geometry and the Scaling Hypothesis

An important experimental test of the preceding arguments lies in the fact, that the
magnetic field is introduced into the theory only through the magnetic coherence

length £y. This implies that the shift in the nucleation site and the subsequent

upturn in the upper critical field occur when

A
—-—=U (17 = const. (4.27)
&

where A = dy + ds denotes the modulation length. This in turn implies that, if the

ratios ¢ and p remain fixed, then the value of the magnetic ficld at which this shift

occurs is inversely proportional to the square of the modulation length

" el (4.28)

where the constant of proportionality may be expressed in terms of the function

U caleulated for the appropriate values of o and p. The occurrence of a shifl in

the nucleation center is, however, a necessary but not & suflicient condition for the
appearance of a discontinuity in the slope of the upper critical field curve, ‘The
appearance of this discoutinuity also requires that the temperature obtained from
Eq. (4.10), corresponding to the cigenvalue A* at which the shift in the nucleation
center occurs, is greater than zero. Taking the limit 7' — 0 of Fq. (4.10), this

reduces to the requirement that the modulation length A satisfy the incquality
&\
(l) < 27N (4.29)
139

where v = 0.5772 is the Euler constant, éy = \/hDy[2xkyTe, and A* and & refer

to the value of the mini igenvalue and magnetic col length at which

the shift in the nucleation center occurs. The latter quantities depend only on the

dimensionless ratios p and o and the particular geometry considered.
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It should be noted that the above scaling law has a wider range of applicability
than the simple superlattice geometry. Provided the composite alloys share the
same bulk transition temperature, the field at which any discontinuous shift in the

ncleation center induced by the spatial inhomogeneity occurs may be characterised

by a similar scaling law, with A denoting the ch istic length scale
with the particular geometry.

The material properties assamed in the preceding analysis have been realised
10 a good approximation in botl Nb/NbTi [37] and Nb/NbZr [38, 39, 40, 41, 75]
superlattices. Both systems cxhibit a discontinuous upturn in the upper critical
field that is al least in qualitative agreement with the prediction of Takahashi and
Tachiki [53]. In Fig. 4.8 we plot the valuc of H at which the upturn s observed as
a function of go/2mA? for three sels of data [37, 38, 40], all of which show a linear
behavior consistent with the scaling law, Eq. (4.28). The values obtained for the

slopos are given in Table 4.1,

Material Reference (j:—:y
Nb/NbTi 37] 24.5
Nb/Nbar 0] )
Nb/NbZr 38] 6.7

Table 4.1: The value of A?/€j,* at which the discontinuity in the temperature de-
pendence of the upper critical field is observed.

In Fig. 4.9 we show the dependence of  on the ratio p for o = 1, together with
the values obtained from the data on Nb/NbZr superlattices in Refs. [38, 40].
One striking aspect of the experimental data summarized in Table 4.1 is the

difference between the two values found for the Nb/NbZr superlattice structures.
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Figure 4.8: Plot showing the observed value of applicd field 117, at, which the slope
of the upper critical field exhibits a discontinnity.
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Figure 4.9: Plot showing the value of & = 22%(2)? calculated for the superlattice
as a function of p. Also shown are the two experimental points listed in Table (4.1).
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While it should noted that the data sets correspond Lo different values of o and a

slightly different value of the composition in the NbZr layers, the main difference lies

in the fact that in Ref. [38] the superlattice was deposited with an initial Nb layer,
(an N layer in our terminology), while in Ref. [40], the superlattice was doposited

with an initial NDZr layer, (an § layer in our terminology). T see this we draw

what may be regarded as a pha

o diagram for the two semi-infinite superlatti
geometries, NSN -+ (upper portion) and SNS- (lower portion), in Fig. 1,10,

The lines indicate the values of 221°

(£)* at which a shift. in the nucleation center

takes place as the applied field is increased at a fised value of p.
In the NSN - case the nucleation center moves continuonsly towards Uhe free
surface as the applied field is increased wntil it reaches the first layer (M), Tor

p > 0.08 the nucleation center remains in Ny until the applicd field exceeds a in

value whereupon it shifts discontinuously Lo the center of one of the interior S layers.

This di i shift in the nucleation center gives rise to a discontinuily in the

slope of the upper critical field, which may be denoted as Hani — llag. Vor
p < 0.08 the situation is slightly more complicated in that, when the field reaches

a certain value, the nucleation center shifts first to the center of one of the interior

N layers and, as the field is further increased, the nucleation center shifts again
to the center of one of the interior S layers. This results in an additional shallow

discontinuity in the slope of the upper critical field, discussed in the previo clion.

The value of A?/€;,? at, which the shift in the nucleation center oceurs is shown in
Fig. 4.10 for o = ds/dy = 1, as a function of p.

Note that for p < 0.08 there are two branches corresponding Lo Uhe shift from

the first layer (M) to the center of one of the interior N layers, the lower branch
(Hant = Hean), and from the centers of N layers Lo the centers of S layers, the

upper branch (Heay — Heas). This last case is analogons to the effect. predicted by
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Kuwasawa et. al.

Exprimental data
He3N -> HeaN

* Awiset.al

Figure 4.10: Plot of 22 (2)2 at which the nucleation center shifts discontinuously,
plotted as a function of p for both the NSN -+ and the SNS--- geometries with

o =d,/d, = 1. O represents the experimental data.
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Takahashi and Tachiki in the case of a superlattice.

In the case of the SNS -+ geometry, the nucleation conter again moves contin-

uously towards the free surface with increasing applicd field, mntil it reaches the
second layer (M), When the applied field reaches a cortain value the nueleation
center shifts to the first layer (), producing a discontinnity in the slope of the

upper critical ficld curve (Heny = Hessi). While this rosembles the cor

sponding

shift in the case of the infinite superlattice, the shi

in the nucleation contor appears
at a much higher lemperature and persists over a much wider range of parmelers.
Also included in Fig. 4.10 are the values given in Table 4.1 for the Nb/NWZr su-
perlattices. The comparison indicates that indeed the difference helween the two
data sets can be largely accounted for by the fact, that the two samples dilfer in the

nature of the initial layer.

Wihile the preceding comparison of the different measurements of the upper ¢

ical field of Nb/NbZr superlattices offers convincing evidence for the importanee of
surface effects in the determination of the upper critical field in layered structures,
more direct evidence is provided by more recont experiments in which the upper
critical field is measnred for Nb/NhZr superlattice structures that, differ only in the
order in which the layers are grown onto the substrate [78]. The results obtained
from these experiments confirm the predictions of our carlier work [50], and demon-

strate quite clearly the importance of surface effects in layered superconductors.

4.4 Dependence of the Upper Critical Field on Initial Layer

Recent measurements of the parallel upper eritical field of Nb/NbZr

supes

structures, in which the thickness of the first layer is varied in a systematic manner

[41], show a dramatic dependence on the thickn

s and type (i.c, N or §) of the

initial layer. These experiments not only serve to emphasize the crucial importance
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of the character of the initial layer in the determination of the upper critical field,

It s provide an excellent basis for a quantitative test of the application of the de

Ciennes-Werthamer theory of the proximity effect to superlattice structures [36, 42].

"
& dn e

(S1N5w)
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0
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Ay fo—

Figure 4.11: [lustr
ments. dy =240 &,

jon of the geometry corresponding to Maj and Aarts’ experi-
s =165 A and p = 0.1

In order to compare the results of the de Gennes-Werthamer theory with the
experimental results contained in Ref. [41], we consider two semi-infinite superlat-

ticos consisting of alternating layers of different superconducting metals. In one

case we consider an initial N layer (VSN -+« geomelry) in the other we consider

an initial § layer (SyNS ... geometry). As in the previous discussion, both metals

are assnmed to have the same ting it e in the bulk,

but have different electron diffusion constants. The thicknesses of the layers are
assumed constant, for all but the initial layer, and are denoted by dy and ds for the
N and § layers respectively, as shown schematically in Fig. 4.11. The thickness of
the initial layer we denote by dyy and dsy for the (MSN ...) and the ($;NS...)

geometries respectively. The material parameters used in the calculation are chosen
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to correspond to those used in the experimental studies deseribed in Ref. [41], We

take the ratio o = ds/dy = 165/240. The value of Dy is determined from the me

surements of dfy/dT'|p_y. on a single Nb layer (2,000A), while the bulk transition

temperature is Te = 9.2 K. Rosults for a value of the ratio p = 0.1 are presented,
however, calculations for several other values of p were performed,

In Fig. 4.12 we present the caleulated temperature d lence of the upper
'8 B i 1 PR

critical field for ds = ds, 0.75dy, 0.5ds and 0.25ds. The corresponding enrves are
denoted by S(1)NS -+, SB/AYNS -, S(1/2)NS -+ and S(1/4)NS - respeetively.
Also included is the curve obtained for the Ny SN -+ geometry with dyy = dy. A

comparison of the calculated results shown in Fig. 4.12 with the corresponding

experimental results given in Rel. [11] indicates that the preceding analysis provides

a good qualitative account of the temperature depende

of the upper critical fi

In particular we see that T, where 7 denotes the temperature at which the shify
in the nucleation center occurs, is reduced for decreasing values of the thickness
ds1, and that for T > T* the temperature dependence of the upper critical field is
little affected by the thickness of the first layer. Roughly speaking, this result may

be understood as resulting from the fact that, for 7' > 7", the nucleation center is

located in the second layer and the presence of the free surface has little effect, on
the value of the cigenvalue, On the other hand, for 7' < I* the nucleation center is
Tocated in the first layer, where the value of the cigenvalie is strongly dependent. on

the presence of the free surface. The temperature dependence of the upper eritical

field consequently exhibits a strong dependence on the thickness of the initial layer.

It is also interesting to note that there s no discontinuity in the slope of the upper

critical field curve for the S(1/2)NS - -+ geometry. Instead there

continuons, hut.

rapid, increase in the slope around £ = 0.55, reflecting the fact. that the meleation

center moves continuously from Ny layer to the initial Sy layer as the applicd ficld
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Figure 4.12: The upper critical field as a function of temperature for the SN ---
geometry for dsy = ds,0.75ds,0.5ds, and 0.25ds. The dashed line is the upper

critical field calculated for the N(1)SN geometry.
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H is increased.

In Fig. 4.13 we present the caleulated temperature dependence of the upper
critical field for the N;SN - - - geometry, with dy; = dy, 0.75dy, 0.5dy and 0.25dy.
The corresponding curves are denoted by N(1)SN -+, N(3/4)SN +-- N(1/2)SN -
and N(1/4)SN - - respectively. Also included is the curve obtained for the SN -+
geometry with dsy = ds. The qualitative character of the curves may be understood
in terms of the dependence of the nucleation center &* on the applied licld 77 and the
reduced temperature £ = T/T., For the N(1)SN -+ and N(/4)SN -+- geomelries

the nucleation center moves continuously towards the free surface with dee

ing
temperature, until it reaches the first layer (Ny). The nucleation center remaing
in the first layer (V) until T = 7" whercupon it shifts Lo the second layer (S)),

with T*/T. = 0.55 and 0.5 for the N(1)SN -+ and the N(3/4)SN -+ geometries

respectively. For the N(1/2)SN --- geometry the nucleation center docs not move

continuously towards the free surface with decreasing temperature but is “trapped”

in the second layer (S;) until it jumps to the first layer (Ny) at £ = 0.96. As the
temperature is further reduced the nucleation center shifts from the first layer (V)
to the second layer (S)) at 7' = 7 = 0.457.. Similarly with the N(1/4)SN ---
geometry the nucleation center does not shift continuously towards the surface but.
is “trapped” in the third layer (N3) close to the interface with the sccond layer (S))
until it jumps to the first layer (Vy) as the temperature is further reduced, where it
remains as the temperature is reduced to zero.

One striling leature of the above analysis is the sensitivity of the location of

the nucleation center, and ly the t t I I of the upper

critical field, on the boundary condition at the surface of the superlattice and the
detailed nature of the geometry considercd. That such a sensitivity has some hasis

in reality, and is not simply an artifact of the formalism used in the analysis, is
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Figure 4.13: The upper critical field as a function of Lemperature for the NSN ---
geometry for dy; = dy,0.75dy,0.5dy, and 0.25dy. The dashed line is the upper
critical field calculated for the S(1)NS geometry.
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supported by the fact that the resnlts shown in Figs. 4.12 and 413 provide a good

qualitative accomnt of the corrosponding experimental results prosented in Ref. [11].

This indicates that the subtle geometric effects manifested within the de Gennes-

Werthamer theory are at least con:

ent. with observation.  Similarly with the
N(1/4)SN -+ geometry the nucleation center does not shift continnonsly towards

the surface but is “trapped” in the third layer (V) close Lo the interface with the

sccond layer (Sy) nntil it jumps to the first layer (Ny

the temperature is further

reduced, where it remai is reduced 1o zero,

s the temperatu

is the

One striking feature of the above analysis nsitivily of the location of

the nucleation center, and ly the temy

e of the upper

critical field, on the boundary condition at the surface of the superlatti d the

detailed nature of the geometry considered. That such a sensitivity has some basis

in reality, and is not simply an artifact of the formalism used in the analysis, is
supported by the fact that the caleulated results obtained fron the prosent analysis
shown in Figs. 4.12 and 4.13 provide a good qualitative account, of the corresponding

experimental results given in Ref. [11]. This indicates that the subtle geometric

effects manifested within the de Gennes-Werthamer theory are at, least. consist

with observation.

4.5 Effect of Spin Paramagnetism

For the particular choice of parameters used in the preceding analysis we find the

zero temperature critical field to be substantially higher than the observed value

itical field

for all the geometries considered. While a lower value of the upper

may be obtained by modifying the parameters used in the analysis, this results in

other discrepancies between the observed data and the caleulated upper critical field

curves.
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"Phe large valie of the critical field at low temperatures suggests that pair break-
ing effects induced by the clectron spin paramagnetism may substantially modify
the results of the preceding analysis. Tn fact, the upper critical field at, low temper-
atures is comparable with the paramagnetic limiting field at T = 0, which is given
by (79, 80]

11,(0) ~ 2.5 o

= 18.57 Tesla. (4.30)

This indicates that the polarization energy of the clectrons is a substantial fraction
of the condensation encrgy.

A general theory including spin paramagnetism and spin-orbit impurity scatter-
ing, developed by Maki [10, 67] and Werthamer [81] in the dirty limit, has been
extended to the case of spatially modulated systems [36, 42]. Neglecting the effect
of spin orbit scattering, the effect of spin paramagnetism may be included in the
preceding analysis by replacing the expression for the transition temperature given
by Eq. (4.10) by the relation

S(_¢ s Hy
"(m,,r+ ThaT +hht=0, (4.31)

where ¥ is defined as

- 11 1

X(=z) f%[vl'(z =55 —w(2)]< (4.32)
The results of calculations including the effect of electron spin paramagnetism on
the (N, SN ---) and (Sy NS ---) geometries, for p = 0.1, are shown in Figs. 4.14 and

Tudi

1,15 respectively, While the results oblained i electron spin

are qualitatively similar to those presented in the previous section, the effect of the

spin paramaguetism nevertheless leads to signifi itative modification of

the upper critical field curves, particularly at low temperature, The resultant upper

critical field curves are also in excellent with experi | data p
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Figure 4.14: The upper critical field calenlated as a function of temperature for the
NSN -+ geometry for dyy = dy,0.T5dy, 0.5dy, and 0.25dy, including the effect of
electron spin paramagnetism. The dashed line corresponds lo SNS++ geometry
with d; . Also included is the experimental data of W. Maj and J. Aarts [11)
(reprinted by permission from J. Aars).
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Figure 4.1

The upper eritical field calenlated as a function of temperature for the
SNS- geomelry for dsy = ds, 0.75ds, 0.5ds, and 0.25ds, including the effect of
clectron spin paramaguetism. The dashed line corresponds to NSN -+ geometry
with dyy = dy. Also included is the experimental data of W. Maj and J. Aarts [41]
(reprinted by permission from J. Aarts).
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by Maj and Aarts [41] and reproduced in Figs. 4.14 and .15, The various fea-
tures of the upper critical field for those geometries studied by Maj and Aarts are

summarized in the Table 4.2,

Geometry | Thickness of Ist. Layer [ Dinensional Crossover |

dyy = 100y Ty — 1

dyy = 0.5dy Hany — |
0.50dy = oy = s
0.25dy ans = Hani = las
1.00ds Heanz = Heas
0.75ds Manz — st
0.50ds [

dsy = 0.25dy Heswz = Heas

Table 4.2: Dimensional crossover of the npper eritical fiekl in the NySN -« and
S NS - .- geometries composed of Nb and NbZr in Maj and Aarts” experinent [11].
ds =165 A, dy =210 A, and p=0.1.

4.6 Conclusions

I this chapter we have examined the parallel upper eritical field in a number of
superlattice geometrics, in which the component, metals shared a common BCS cou-
pling constant, density of states at the Formi surface, and Debye temperature, bt
differed in the size of the clectron diffusion coustant. A number of systems have
been studied experimentally for which this is a reasonably good deseription. One
of the more intriguing features in these systoms arises from the discontimons shift

in the nucleation site of the superconducting order parameter, induced by the dis-

continmons change in the slope of the upper critical field. This effect, first predicted

by Takahashi and hiki (53], has been confirmed by a number of experiments
[37, 38, 39, 40, 75].

Of particular interest in onr research are the effects which may he attributed
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 insulating substrate, which we represent by a free surface,

1o the presence of t]

through the boundary condition given by Eq. (4.24). One important aspect of

the present, analysis is the sensitivity of the location of the nucleation center to the

presenceof the free surface, notably in the NSN -+« and SN - - - geometry discussed

in Seet 1o two important results, the first is that the ratio of

tion 4.2, This give

the npper critical fields, 1/ He, shows a on
and geometry and can yield values considerably higher than those obtained in the
case of a homogencons system. The second result is that the upper critical field
curve depends strongly on the nature of the initial layer.

The experimental evidence for this predicted sensitivity comes from a detailed
comparison of diflerent data sels for Nb/NbZr superlattices. Those superlattice
differ prineipally in the order in which the layers are deposited on an insulating sub-
strate [11], and differ in the thickuess of the initial layer, denoted by Ny SN -+ and

al test of the de Gennes-Werthamer

SN S Both of the results represent a crd

theory of the proximity effect. In the former case, the field at which the nucleation

shift, is observed to oceur is shown Lo satisly the scaling law given by Eq. (4.28) for

three different geometries. Moreover it is shown that the constant, which depends on

the detailed nature of the geometry, can be caleulated using de Gennes-Werthamer

Ueory with parameters determined from the bulk properties of the component met-
ali for the Nb/NbZr superlattices. In the case of the experiments of Maj and Aarts

[41], i is significant that the complexity regarding the location of the nucleation

center is reflected in the calculated upper critical field curves, which are qualita-

tively similar to those observed experimentally [78]. This suggests that the subtle

alfects arising from the interplay of the free surface and the layered structure in
determining the mcleation center are al least consistent with observation,

Another result that emerges from the present analysis is the importance of the
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pair breaking die to the clectron spin paramaguetism in the case of the layored

Nb/NbZr structures. This effect substantially veduces the calenlated value of the

upper critical field at low temperatures. With the inclusion of the spin paramag:

netism the agreement, betwean the caleulated upper eritical field curves for both

the (N SN -+) and the (53 NS ++) geometrios and the corresponding experinental
curves [41] is good.

The present analysis demonstrates that, provided the geometric elfect of the

free surface and the pair breaking cffect of the electron spin paramagnetism

included, the de Gennes-Werthamer theory of the proximity elfect provides a very

tisfactory itative deseription of the parallel upper

Nb/NbZr systems. It should be noted that all of the parameters used in obaining

the curves presented in Figs. 4.14 and 4.15, on which this conclusion is based, may

be determined independently. The close accord between theory and experiment

obtained within this work suggests that a quantitative study of other aspeets of

the superconducting properties of layered structnres such as Ni/NbZr would he of
considerable value. One such study concerns the angular dependence of tie upper
eritical field at a fixed temperature, analogous to our work on superconducting films

presented in chapter 3. This rescarch is pres

atly in progr




Chapter 5

Summary and Conclusions

We have rederived the de Gennes-Werthamer dirty limit theory from the microscopic

BCS theory using the Green's function method. The application of this theory to

inl p d has been ined for both sup: ducting films
and multilayer systems. Studies of the angular dependence of the upper critical field
(0 < 0 < 90°) for the former geometry reveal the importance of the surface effect
[19] and the size effect in determining the upper critical field, while for the latter
case, detailed studies of the upper critical field lead to a number of experimentally

testable theoretical predictions. The results of our numerical calculations show

excollent ive ag with existing experimental data.

In this chapter, we will briefly review the basic properties of the de Gennes

theory and summarize the key results obtained from the research described in this

thesis. We then draw a number of conclusions based on this work and discuss what

related problems require further analysis and investigation.

A detailed review of the mi ic theory for
was presented in Chapter 2. We derived the linearized Gor’kov integral equation,
Eq. (2.61),

aleg=vp [ &y Ta.mnate),
for a homogencous superconductor from the BCS theory. We then went on to
examine how to evaluate the kernel, @, in the linearized Gor'kov equation for

the case of electrons in a randomly distributed impurity potential, by means of

150
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the Green’s function method. The solution for the kernel in momentum space,
Eq. (2.96), was given by
1
(q) = 27N (0) { | — ta
Qula) = 26N ){[W n

where 7 denotes the clectron collision time.

Applying the long wave length approximation, [q| ~ 0, to this kernel, we showed

that it reduces to the result proposed by de Gennes for a dirty superconducting

alloy, which satisfies the tl I diffusion equation, 1q. (2.100),

2lw] = DV?) Qu(x —x') = 27 N §(x — x).
The consistency between the kernel in the linearized Gor’kov equation under the
long-wavelength approximation and de Gennes’ kernel suggests that the original
Gor’kov theary for a homogeneous superconducior may be readily extended to in-
clude inhomogeneous superconductors, provided the boundary conditions and con-
tinuity conditions of the kernel in de Giennes’ proximity theory are incorporated.
Following de Gennes’ work, we examined the influence of a planar surface and a

planar interface on the kernel @, and showed how the cff

could he deseribed by
supplementing the de Gennes dilfusion equation with certain houndary and continu-
ity conditions. Using the linearized Gor’kov equation, the boundary and continuity
conditions obtained for the kernel result in certain boundary and continuity condi-
tions on the gap function. The theory was then generalized to include the effect of

an applied field through the semi-classical phase integral approximation, which is

equivalent to the replacement
2
Vol=V-iZA.
B
While this theory may be readily applied Lo an inhomogencous superconductor,

a single film and multilayer systems, two assumptions made in obtaining this theory

should be emphasized.
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The

s e long-wavelength approximation, |g| ~ 0. In applying this the-
ory to an inhomogencous system, e, a bilayer, this approximation requires that
the cigenvalue used in Werthamer cquation, Eq. (3.8), should be small. Certain
results for e transition temperature at zero ficld in a bilayer system, based on the
de Gennes-Werthamer theory, are inconsistent with this approximation [44].

The second is the assumption that de Gennes' continuity condition, derived in

e case: of a single interface, is applicable (o a system with multiple interfaces.

While we have: not examined the validity of this assumption theoretically, the quan-
Litative comparison of the theoretical results of our calculation with experimental
data suggests that it is indeed valid for a wide class of multilayer systems.

In the last part of chapter 2, we reviewed briefly the recent development of
de Gennes-Werthamer theory, notably the Takahashi-Tachiki formalism. For the
particular case of a two component multilayer system, in which the component
metals share the same Lransition temperature at zero field, e.g. Nb/NbZr, the

‘achiki formalism reduces to the de Gennes-Werthamer theory. While

‘Takahashi-’

s an interesting and important case, it does not really provide an adequate test

of the Takahashi-Tachiki formalism and other recent gencralizations of the de Gennes
theory. A more demanding and revealing test would be the careful and systematic
comparison of the Takahashi-Tachiki formalism with the large amount of existing
experimental data.

In chapter 3, we applied the de Gennes-Werthamer theory to a superconducting
il to study the temperature dependence of the upper critical field in the parallel
field case and the angular dependence of the upper critical ficld at fixed temperature.

The non-trivial dependence of the cigenvalue, A, on the wave number, &, in the

parallel field case is clearly shown by the numerical result of Fig. 3.2. For thin films

we found that the minimum cigenvalue, A*, found al & = 0 can be analytically
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expressed as

through the mean field approximation. This

xpression also shows that the cigen-
value in the thin flm Timit, \* = 3k, is applicable to a wider range of ilm thickness,

2, S V3, instead of 20, & £y as Maki [67] suggested. The distinet tempera-

in the thin film ¢

ture dependence of the upper critical ficl and for the infinite

geometry are given by Eq. (3.2) and Eq. (3.3). The rest of chap

3 was devoted

to a detailed analysis of the angular dependence of the upper critical field for a

superconducting film.

A general framework [or cal ing the angular ¢ of mini cigen-

value was blished in terms of an ci i ion method. The formula

serving as the basis of our numerical calculation was given by
det (7, mIE(k)li,n) = e(k)| = 0,
with matrix element

Grmll(R)in) = [N+ M+ K] 855 6 — VSN0 o5 0.V Zun
4k (X 6 V2005 0 = Zyu 655 V250 D)

Using this formula, our numerical results showed that the underlying cigenvalue
problem for the finite-angle case differs qualitatively from that. applicable to the
parallel field case. This is best scen from the fact that the minimum cigenvalue in
the tilted field case, presented in Fig. 3.6, is independent of wave number, in contrast

with the non-trivial d d

of the mini iienvalie on wave mimber in the
parallel field case presented in Fig. 3.2.
The full angular dependence of the upper critical field at fixed temperature was

obtained using the de Gennes-Werthamer formalism from the minimum cigenvalue
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calenlated from By, (:

95). This calculation is valid for both thin and thick films

and all angles in the range 0 < 0 < /2. The calculation of the full angular
dependence for a semi-infinite geometry is also given for the limiting case of a thick
film. While our results were consistent with Tinkham’s results for thin films, we
were able to show that Tinkham’s formula, given by Eq. (3.55), is not valid in the

of thick films, even il the experimental values of H) and Hy are used. In

comparing the full angle-dependent upper critical field of a thick film with that of
a semi-infinite geometry, a dimensional crossover was found from our theoretical

calculation presented in Fig. 3.11. This dimensional crossover reflects a transition

from surface effect Lo size cffect as the angle increases.
‘T'he upper critical field in the limit @ — 0 was studied in detail by computing
the: quantity, limp—o 355 2 @5 a function of the reduced applied field, k. The

erical results aro consistent with the ion obtained by Thompson [24]

and Takanaka [56] in the superconducting film case. Our calculation shows that,
within the numerical precision we reached, lima—o 77 3if|,. is very close to zero at
b= he = 1.62. This result contradicts the earlicr work of Saint-James [21] and
supports Thompson's theoretical analysis.

While the existing experimental data show the presence of a cusp, as predicted
by Saint-James [21] and Thompson [24], a quantitative comparison between the

theoretical results and experimental data show significant differences. The earlier

experimental data [71, 23] were in good with Saint-James® theoretical
prediction. However, later experiments carried out by Harper and Tinkham [69]
showed that the value of lima—o 7 2|, at the cusp lies betaveen Saint-James’ and

Thompson’s result. Harper and Tinkham's measurement is obviously in contradic-

tion of Saint-James’ theoretical result. Its deviation from Thompson’s prediction

and our calculation may be attributed to imprecision in the measurement of the
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slope, due to limitations in the angular resolution in the experiments. The possible

1Al

error involved in the measurement, of the quantity, limp— fy 44|, caused by Tim-

itations in the angular resolution was estimated using . (3.110) and the results
were presented in Fig. 3.14.

In chapter 4, we studicd the temperature dependence of the upper eriti

in a multilayer system. In this class of systems the elfects of geomelry arise

a consequence of the inherent modulation imposed by the layered structure and

surface effects. Both play an important role in determining the upper critical field,

Particular attention is paid to the Nh/NbZr multilayer system as it satislies, to a

good approximation, the requirement that Tes = Ten, and is used in a mmber of
experimental studies.

We calculated the upper critical field of a superlattice model, NIy/NWZr, «

sponding to the sample prepared by Kuwasawa et al. [38]. The detailed depende

of the cigenvalue on wave number was presented in Fig, 4.2, which explicitly show

the shift in the nucleation center at the critical reduced thickness, «* = 2.05. Us-

ing the de Gennes-Werthamer formula, with the minimum cigenvalue presented in
Fig. 4.3 (a), the temperature dependence of the upper critical field for this super-
lattice model shown in Fig. 4.3 (b) arc in good quantitative agrcement with the
experimental data of Kuwasawa et al. [38]. The investigation of the upper critical

or

behavior was then extended to a semi-infinite superlattice with one free surfac

particular interest in this type of geometry are effects attributed Lo the presence

effect and the effect of the

of a free surface and the interplay between the surf:
modulation.
For a sample with a ratio of diffusion constants given by %ﬁ = 0.05, we showed,

in Fig. 4.5, that the NSN

cation site from

geometry undergoes a shift in the une

the surface to the center of oue interior N layer at low applied field, and then from
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the center of one interior N layer to the center of one interior § layer as the applied
ficld increases. The second nucleation site shift corresponds to the interfacial effect
found in a superlattice geometry, which indicates the presence of the Takahashi-
Tachiki effect in this semi-infinite superlattice. The first shift in the nucleation
site corresponds to a transition from a pure surface superconducting state to a
bulk superconducting state. Both shifts in the nucleation site manifest themselves
as discontinuities in the slope of the temperature-dependent upper critical field
presented by curve (2) in Fig. 4.7. We describe the transitions corresponding to
the discontinuous slopes by liay — Hean — Has. The first transition, denoted by
Hen = Hen, shows only a very shallow discontinuity in the slope of the curve and
therefore is difficult to detect [rom measurements of the upper critical field. However,
recent experimental measurements of the logarithmic derivative of the upper critical
field for the multilayer Nb/NbZr system, carried out by Kuwasawa et al. [82], show
clearly that two distinct upper critical fields are found at temperatures Ty and T
at which the logarithmic derivative of the upper critical field changes abruptly.

For the SN -+ geometry, the nucleation site undergoes only one shift, from a
surface to the center of one interior S layer, as shown in Fig. 4.6. The temperature
dependence of the upper critical field is presented by curve (3) in Fig. 4.7. We
describe the upturn of the upper critical field in this geometry by H,ss — Huas.

Comparing the results obtained for the NSN -+ geometry with that for the
SNS- .- geometry, we conclude that the surface effect is crucial in determining the

upper critical ficld of a multilayer system. The importance of the surface effect is

shown by the two distinct upper critical field curves presented in Fig. 4.7, cor-

responding Lo the SNS-«- and NSN -+« ies, respectively. This th ical

prediction was confirmed by the experiment carried out by Maj and Aarts [41] in the

Netherlands, who arrived at this lusion ind d

ly through their
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experimental work.
Through a careful examination of the wave number dependence of the cigenvalue
calculated for the given geometry, we found that the shift in the nucleation site and

the subsequent upturn in the upper critical field occur when

& Dy
& _u(ﬂ_ﬁ’p_ DN) '

where the function ¥ can be calculated numerically for a given geometry. This
implies a scaling law that the upper critical field, [I*, at which the upturm ocenrs,
is inversely proportional to the square of the modulation length

H* x -
This scaling law was shown to be satisficd by several sets of experimental data,
presented in Table 4.1.

We calculated 2/ as a function of p for ¢ =

s for the NSN ooy SNS -+ and
the superlattice geometries. The results were shown in Fig. 4.10. In the case of the

(NSN ) geometry, the shift in the nucleation centre, ey — Heag, is described

by the upper curve for p > 0.08, while for p < 0.08, the two branches of the upper
curve describe two successive shifts in the nucleation site, denoted by ey —

Han — Heas. The lower curve corresponds to the shift in the nucleation site

Hes — Heas in SNS -+ geometry. While for a given multilayer system containing
sufficient layers with o = 1 and Ts = T, the magnitude of the applied field al
which the upturn of the temperature dependent, parallel upper critical field ocenr

for both NSN--+ and SN§

-+ geometries are predicted by the npper and lower
curves in Fig. 4.10, to observe the upturn of the upper critical field in experiment,
the inequality, Eq. (4.29), has to be satisfied.

The last part of chapter 4 consists of a detailed quantitative examination of the
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de Gennes-Werthamer formalism to multilayer systems. The temperature depen-

dence of the upper critical ficld as well as the upturn in upper critical field for two

sets of multilayer systems, corresponding to the samples studied experimentally by
Maj and Aarts [41] and illustrated schematically in Fig, 4.1, were examined. For

tose two sets of samples, the surface effect was investigated systematically by vary-

ing the thickness of the first layer for both NSN +-- and SNS--- geometries, and a
quantitative comparison with the experiment data of Maj and Aarts was made. The
results of our calculation for the upper critical field, shown in Fig. 4.12 and 4.13,
are in excellent agreement with the experimental measurements over the entire tem-
perature range, provided the effect of the spin paramagnetism is included. While
most of the upper critical field curves in Fig. 4.12 and 4.13 exhibit a discontinuity in
the slope that arises as a consequence of the shift in the nucleation site, it is worth
noling that the S(1/2)NS -+ geometry exhibits a smooth upper critical field curve.
In this geometry, the nucleation site moves continuously from the Ny layer to the S
layer as the applied field increases, reflecting the fact that a superconducting sheath
exists over the entire temperature region. The various features of the upper critical
licld for those samples prepared by Maj and Aarts [41] are summarized in Table 4.2.

Certain conclusions may be drawn from our theoretical studies. First the dis-
crepancies between the earlier theoretical studies on the angular dependence of the
upper critical field of superconducting films may be attributed to non-analytical
behaviour of the eigenvalue problem in the limit ¢ — 0. The validity of the ap-
proximations used by previous authors may be examined in the light, of our exact
numerical results. It was also shown that the non-analytical nature of the angular
dependence in the limit 0 — 0, would also make the precise experimental determina-
Lion of the slope, limg_o 5 |+ difficult. It is interesting to note that the size effect,

introduced by the thickness of the film, manifests itsell in both the temperature
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dependence and the angular dependence of the upper critical field and leads Lo a

r r from two I behavior to thr I behavior,

which should be observable experimentally. Finally, our theoretical result, wi

the framework of DW theory, extends the knowledge of the second order ph

sition in uctivity for a suj ncting film from a co-cy

Lenee curve Lo
a co-existence surface in the phase space spanned by (1), 11, 0).

For all the multilayer cases we studied, our caleulations show the importance
of the surface superconducting state in determining the upper eritical lield. The

of this surface sup lucting state stems from the macroscopic nature

of the superconducting order parameter and can manifest itsell in an cnha
parallel upper critical field. In addition to the influence of the surface effect on

the ic sup ducting order ter, the modulation of the multilayer

system also plays an important role in determining the spatial variation of the
order parameter. This was shown in our work by the complex dependenee of the
nucleation site on the magnetic field and resultant temperature dependence of the
upper critical field in the multilayer system. Oue consequence of Uhis was that
sit

our calculations showed that the upper critical ficld was extremely sensitive to the

properties of the initial layer. The fact that this sensitivity was also present in the

corresponding experiments of Maj and Aarts is of some importance as it suggests

Uit this sensitivity is no simply an artifact of the de Gennes formalism. These
calenlations taken together with the experimental results thercfore provide a critical
{est, of the de Gennes boundary and continuity conditions.

There are a number of interesting and important extensions to the rescarch
presented in this thesis. One abvious extension is the cvaluation of the angular de-
pendence of the upper critical field in the case of the superlattice, particularly in the

limit & — 0. Recent experimental data [82] show discontinuities in the logarithmic
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derivative of the angular dependence of the upper critical field, limg—o 22, , that are

possibly correlated with shifts in the nucleation site. Also, while we have been able
10 obtain good agreement between theory and experiment for multilayer systems, it
should he noted that we have restricted our consideration to the case where both

the composite metals share the same transition t rature. A far more d di

nnes formalism would be the extension of

and possibly revealing test of the de

these studies Lo the case Tis # Ten or to the case in which one of the components

contained magnetic impurities. It would also be feasible to extend this work to
cxamine Uhe region just below the upper critical field. This would be carried out
by an appropriate application of Abrikosov’s theory of the vortex lattice [7] based
on the cigenvalue solutions obtained for the superlattice. It would be interesting
Lo discover whether the vortex lattice would be commensurate or incommensurate
with the superlattice and what consequences this would have for the magnetization
eurve and the critical current.

Finally we note that all the discussion contained in this thesis has been directed
towards so called conventional superconductors. While there have been a number of

experiments done on syntheticall dulated high Tt ds, the theory of the

superconducting state in these compounds is not well understood and it is far from
obvious that the de Gennes theory of the proximity effect is applicable to them.
However it should be noted that these compounds do exhibit a second order phase
transition at the upper critical field. It would be interesting, therefore, if certain
phenomena observed in the high 7. compounds were also present in multilamellar

1 of tonal 1

structures comp



Appendix A

A.1 Gor’kov Equation and the BCS Gap Equation

In section 2.2 of chapter 2, we obtained the Gor'kov equation, s, (2.56) and

(2.55). We wish to show how the Gor'kov equation may be

ieed o the BCS

gap equation [9], and how the formula for the transition temporature in BCS theory

may be recovered by solving Eqs. (2.56) and (2.56) for a spatially homogenous

superconductor in the zero applied field case, specified by

A(x)=0,
Ux) =0,
Alx)=A.

Eqs. (2.56) and (2.56) can be written, in this case, as

[ihw,. = ﬁ(—mvﬁ + ,L] Gk, Xun) + AFT (¢, 5, ) = hi(x = x')

[—ilzw,, . 2L(mv)’ + ,t] Foe o) = ATG(x, ) = 0.
=
The translational invariance of the above equations fmplics that

G(x,x\w)  =G(x—x",wn),

Fxxiw) =Flx-xw),

(A1)

(A2)

(A3)

(A1)

and hence we have the Fourier transformation of the Matsubara funclions with

respect to spatial coordinates
G(x — xywy) = (1)~ [ Pk KOGk w,)

161

(A5)
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Fhx = xyw,) = (20)7 / Pl (k w,)

Substituting Eqs. (A.5) and (A.6) into (A.2) and (A.3), we get
[ihwn — G (kywa) + AF (kyw,) = & ,
[—ihwn — A F (kyw,) = A*G(k,w) = 0.
where the order parameter A is of the form
A = V()T e Fx = 0,0,) .
The solutions of the Eqs. (A.7) and (A.8) are given by
—h(ihw, + e)
1w+ + AR
har
Mot t G +]AR]

50 the self-consistent cquation for the order parameter is

. LrhA
A=V ‘Z/ @r) (han) + B2

G(k,wn) =

FHaew) =

with

By =(d +A%)}.
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(A6)

(A7)

(A8)

(A9)

(A.10)

(A1)

(A12)

(A13)

We climinate the common factor A in Eq. (A.12) and complete the summation over

w, using the following formula,

lig >~

104 i,

i

)
Tl

where F corresponds to Boson and Fermion, respectively. We obtain

P N B i D S .
W)+ B T 2B [iwa+ B iw, — By

S

26k |e Pk +1 PPk +1
B 3By _ o~3PEY
2y 2B 1 ¢~ 1PPk

_ 8 1
= 3 b 3ABc

J

(A14)

(A.15)
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Eq. (A.12) is thus written as
1= V(Zr)"/ Lk (2E)™ tanh(BE/2) . (A.16)
This equation determines the transition temperature and order parameter A(T). At
T = T, the system goes to the normal state so that A(TH) = 0, and Kq. (A.16) is
of the form
hwp
T VN/ " (e /2), (A7)
o
This equation allows us to write down the expression for transition temperature 7.

in the bulk superconductor as

T

-
” %hu,, expl=1/NV) (A18)

where 7 is Euler’s constant. This is the same resnlt as that of BCS theory, obtained
by means of a variational method [9].
Another interesting limiting case is the value of the order parameter al 7' = 0.

In this case, Eq. (A.16) becomes

- hwp de _ ﬂ
l_vNL =YV, (A.19)
so that
A(0) = 2hwpexp(=1/NV) . (A20)

The more general relation between the order parameter and Lemperature requires

numerical calculation and we do not discuss it here.

A.2 Spatial Representation of G,

To obtain the spatial variation of the one-particle Green’s function in the absence
of the impurity potential and magunetic ficld, we write down Iq. (2.64)

- (X-X')
—_—, (A21)

Golx — X'yw) = (25)° I’ &)
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and define the following variables

=
=g PR
de = pdp/m
p=pr+&/vr
N e
2n?
@ = prpdpdQ

=N dé dQ.

Thus we obtain

Gulx~xw) = (2m) 20N f" ,1¢[°° w“_f

N 1 > & c;(pr+;g)x_e—i(rp+;;-)¢]

2 ippt J-oo i — €
with & = [x = x/|.

Choosing the contour in the upper half plane

1
dzciPlix=xl:
-

o - ~IET >0
(2mi) / e I v
oo =L 0 w<0
d - <0
g w
(2mi) / rE i
0 w>0,
Finally,
Gu(xixyw) = =T Bl ipsie-slegns

pelx—x|
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(A.22)

(A.23)

(A.24)

(A.25)

(A.26)
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A3 Diagrammatic Representation for Fourth Order Term

x__®_
*—®—8—8—8—X : %
(a) () X
[
L,
(@ —x'

x
|
HZL
@ x
x x
| |
(e (N |
x

]

]

*
| @
| 1
(k) éif

Figure A.1: Diagramatic representation of the fourth order term in the perturbation
expansion of Eq. (2.74).
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x ;z
[ —
x
’

W o

x
x

5
X
T%X’ (,U)Ex'

Diagramatic representation of the fourth order term in the perturbation
of Eq. (2.74) (continucd).
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B.1 Non-Analytical Behavior of the Ei E i

In this section, the non-analylical heliavior of the vigenvalue equation, Bq. (3.11),
corresponding Lo the limit 0 — 0 is discussed. In section B1.1, a perturhation
potential characterised by a small parameter o is infroduced which modifios the
cigenvalue equation. In scction B.1.2 and B.1.3, the orthonormal basis used to solve

the partial differential cquation is chosen. Finally, in section B.1.4, it is shown that

the secular equation approaches for 0 — 0 differently for a =0 and o # 0.

B.1.1 Eigenvalue Equation
We wish to find the lowest cigenvalie of the partial differential equation

» [.a R
{-ﬁ = [za—y+(umo- .>.1|0)] o

subject to the boundary conditions

}F(J?,!/,L‘):Ef(.l"//,:]. (B.1)

=0. (B.2)

The solution is of the form

Feyy,2) e (1.3)

where 1(z, z) satisfies the cigenvalue equation

a2 ot
O (k= os0 4 zsin ) — 3']— s

-3 = eih(in, =), (13.4)
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subject to the houndary conditions

P

= =0 (B.5)

il

T order Lo show tie non-analytical behavior of the cigenvalue equation in the limit

0= 0, we modify the above cigenvalie equation by introducing an small perturba-
tion potential az? to give

o

Tt

0
+ (—k = cos0+ zsin0)* — (;’__1 + 0?2 P,

hnl,2). (B6)
We are obviously interested in the limit
e=lim. (B.7)

We expand the cigenfunction (2, ) as

thaly2) = 3 Aju [3(%) 93:(2) 5 (B.8)
o

where fj(i) satisfies the Weber cquation (3.81) and the subscript j denotes the

cigenvalue A;.

B.1.2 Harmonic Oscillator Equation

The functions g5(=) satisfy the equation

+(zsin0— k)2 + akﬂ] 95(2) = A%05 (=) (B.9)
“The potential part may be written as

(s5in 0 — k) 4 a2z
) ksino 1 sin?/
— (sin? 3 (O P -
= (sin 0+n>[— si,,z,,w] +# [’ T
00 ]2 k2ﬂ2

tamiT e (B.40)

= (sin?0+a?) [: s s
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A translational transformation

ksin0
o
T T ()

can be made, and the cquation now hecomes

+(sin’a+n“):"] o= = (\t?. (18.12)

We further define a scaling transformation

' o=t 0+t (B.13)

[—%w ] ou(r) = ( .ol ) o) g Dule), (1)

,,z
where g o gu. We note that the scaled Tunction @, is independent of o sinec
the boundary conditions are not changed by the scaling. The cigenvalues may he

readily found to be

o= (>m+l)\/<m’a+nl+

m‘ﬂ I—W‘
- (1.15)
Using Eq. (B.12) and the eigenvalues (B.15), it can be verified that
ga(#) = Ny exp (=2 25?0+ u‘f) i (V0 4
= Ia) 1, (2v7)
= 1 (7)
= \|l|‘0+n‘) (B.16)
satisfies the Bq. (B.12). The normalization of the cigenfunction yields
Now vo..1 (1B.17)

= VR
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and

1 1
#nlr) = G s (—§T7) Ha() . (B.18)

Now we use
1
/m () rirel(n) = [V + T bt + Vit | (B.19)
and the matrix clement is expressed as

O Y ACETC)
= /:: dz' g0 () (:r_(_%) £
= [ i ™ o) + !

s b
sin?0 + a?
1
= o= [VAFT bt + Vi bt | + — 57 Sy

ksing
S0+t
tui
= =L

= — fm (B.20)

with

Zun = [V F T + Vi St - (B.21)
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B.1.3  Eigenfunctions for Weber Equation

In this section, we derive the matrix clement .Vij, given by Eq. (3.90), in terms of

the Kummer function [70]. The equation

&
[—-ﬁ + mJﬂ] Sile) = A S
may be writlen as

’7
[—%Jr (Vs 0 )] fil) = (nj + )/,(.)

d(zv/Zcos 0)2
with

/\J

20+ 1)cos 0. (1.23)
The parity of f; is specificd by

{ [ile) = Ji{-); J=02,4,

Jile) = ~fi(~x); J= 1,85,

In terms of the Weber and Kummer functions [70], we write the wmormalized

(13.24)

eigenfunctions as
Ji(®) = nla,zv2cosl); (J‘-O 2,4,+)

= et/ M[ (n/z.T)] (13.25)

y2(a,2v2cos 0); j=1,3,5,-

= VIR [__

filz) = )
= :c\/‘lcosﬂc_“"“““"”M[%u+:‘-i,:2£,% VTl )’] (13.26)
= z\/zmsoc-%(’m'“"”M['—Tzﬁ,% J \/21:030)"]

where a = —(v; +1).
The recurrence relation of the Weber functions
1 1
yila,t) = —Elm(u, i+ (e + i)yg(u +1,0) (1B.27)

1
yala,t) = Ailyz(u,l)—{-m(u—{—l,l,) (13.28)
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with ¢ = ovZcosl gives rise to

i 1 vi 11 v;i 31
Wil = =he 1"{5/14[ 4 L2]+u,M[1—§,§,§z’]} (B.29)

,-;—l’}+ M [' _2"" ,%,%LZ]},(B,SO)

vlayt) = i {-%z’ M [

J; through the

‘These two jons determine the cigenvalues of the ei

boundary condition

which are written explicitly as

Ply;) = 0 (B.31)
|

O(u) = 0 (B.32)

- TTl(txx/Qcasﬂ)zn/l [‘—‘2’2 ',2, Lavicos )’],

where zeros of P(v;) and O(v;) give rise Lo the cigenvalues v; for even and odd
cigenfunctions.

The normalization constant of the Weber function may be expressed as

o= /, JH()de (B.33)
= /_ : y}(u 2V cos 0) dz

J‘(n Ot

T

= [ vy [_"f —,i(z‘\/ZmS )] de

| Vel
T Vaeest «:—a‘f%‘zw[_% : i‘z] i (G=024
50 J-ovzem

and
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- /_ HOLS (13.34)
= f_ v2(a,2V3cos 0) dr
e

= Tod e ya(a,t)dl
= [ (evEcnye bV e |

1 VIl v p % i
= T 2cit All[ = ,E,EI‘] dty (= 1,8,5,).
08 0 J-avzcost

The normalized eigenfunction are expressed as

Ji(e) = Cf yi(a,2v2cos0) (13.35)
= Cf /e M[

Ji(z) = Cf male,wvZeosd)
= CfwVZoosOe VIO gy [' -

with
oy A
Cf = Vieosh He [‘ BT
g B emitir” (i)
.
av/Zcasl - e
¢ = \/'2::050{./;" - z'a-%"M’[ (B38)
In terms of the normalized eigenfunctions, the matrix clemont is axprossesd as

X5 = [ H@) fie)ade

e = 2l 2
= ofer € FM[I 2” ‘,%Ll] 2’("” M[z i]
aviEs
fetem [%ﬂ 3 “z] M[; 3 u't] 2l
/———ZCOS ‘/je__,zM, e «l/\/f L R
2;“ s (B.39)

where we have used

Xaigj = Xaiyr g = Xig =0, Xij=Xjs (B.40)
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B.1.4 Matrix Element and Secular Equation

In the Hilbert space spanned by the chosen cigenbasis |j,m) = f;(x) gu(z), the

matrix rej

is wrilten as

Gom i)

It is seen that

entation of the differential operator

)2 2

= [—{—;7;—?+(—k—mcosﬂ+:siu0)1—%-{-u?:?
2

= {—L +.n’<:os‘ri]

+ [—%wv 22 4 (esin0 - f»)]

~ 2 cos0(z5in 0 — k) (B.41)

= [ @ [ L) 6i)

= (,\ cos0-+ (2m+ 1)y/5in? 0+ o2 + smz“",) 635 b
n zmsoj" dz fiz)z fi{z) /m dz g2 (2) [k — zsin 0] g%(2)
= (A cos 0 + (2m + 1)\/sin? 0 + a2 +——,m;) 8 6mn

e ) ksin?0
+ V2cos 04 [L‘ Sun — SN 0TZ"." e m6""']

= (A cos 0+ (2m + 1)\/sin?0 + o2 +_’0+—a) 85 6mn
)

it
"
+ V2cos 03 [m i — Sin aﬁzmu} .

li VGl dliyn) = (A4 k) 6+ VI kb, (B.42)

lim i, mlLim) = fim[A; cos0-+ (2m + 1)sin 0] & bun

0=0a—0

/5005 0 Xy Zpun
= A 655 (B.43)
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That the two limits do not commute shows the non-ai

alytical property of the cigen-
value cquation.

The secular equation is given by
det [(G,mlLliyn) — | =0 (13.41)

Using this secular equation, we found that, provided a non-vanishing o ~ 0 is
included, the minimun cigenvalue, e(k, 0), obtained from our mumerical calenlation
showed explicit & dependence and continuously maps to (k*,0) as 0 — 0, where k*

denotes the nucleation center found in parallel ficld case. Nevertheless, in the case

of o= 0, &(k,0) maps to £(0,0) as 0 — 0 which is correct only in the thin filim case
cortesponding to k* = 0. For the thick film case, it gives rise to a higher cigenvalue

found at k = 0 and the surface suj lucting state case cor ling to k* #0

cannot be recovered.
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C.1 FEvaluation of the Eigenvalue of Small H

In this Appendis, we derive a rescaled eigenvalue equation, Eq. (C.16), in the limit

1 = 0 for a multilayer system. This equation allows us to treat the multilayer

system as a homogencous superconductor with an elfective coherence length éorp =

VEnEs « VDsDy and oblain the cigenvalues for a superlattice and a semi-infinite

snperlaltice given in Eq. (4.20) and Eq. (4.25).

Let’s consider the no-node solution which gives rise to the lowest eigenvalue, we

define the function 1 as
!
R(w) = ,,(1)(;—; In fa(e). (c.1)

The cigenvalue equation (3.19) becomes

d = —R? l - l ooy 2

FhE) = -R@)+3e7-5-1 zeN (c2)
(_l . = _l 2( 4 L b2 — l Yo~ 1 B
ZE) = SR gt —5 -4 wes. (C.3)

We wish to show how Eqs. (C.2) and (€.3) may be solved, subject to the appro-
priate boundary conditions, in the limit # — 0, and the minimum eigenvalue A*
obtained.

In the limit H — 0 the maguetic coherence length £;; goes to infinity hence the
reduced thickness of the layers, § = /&y, with d being the physical thickness of an
N or § layer, becomes vanishingly small. In this limit Eqs. (C.2) and (C.3) are well

approximated by the lincarized difference equations
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=1
=]

= Rlain) -6

~ e )] renN ()

R(xi) = R(wip) — 6 [ it —

- llf‘(.n-m)] rEN. (€.5)
P
To solve these lincarized equations in the limit § — 0 we apply the coarse
graining procedure developed in the analysis of self similar multilamellar lattice
structures[50]. The technique considers the superlattice as an alternating sequence of

§(SNS) and N (NSN) trilayers. Using the continuity of the logarithmic der

gt Uhe interface between the layers, together with Eqs. (C.4) and (C.
1o obtain a set of rescaled cquations for the superlattice composed of alternating

trilayers, namely

) = Rein) = 00 [30 - - D] wen (e

) = Ri) = DID) [Jattye, - 2 - 20

u(.m] wes (€

with
D(1) =36
a(l)=4(2p+1) - (€.8)

Repeating the procedure m times yields the

o(m

R(z1) = R(er) - D(m) [41/7(171)27?,— %A )/{’( ,)] SN (C9)

R(z1) = R(zx) — D(m) [%n(m)m‘;, = %,\ = @n'(m] ceS  (C0)
with
D(m) = 8D(m — 1)
afm) = & 2a(m = 1)+ f(m=1)) - (€
Blm) = § (28(m — 1) + o(m ~ 1))
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The above cquations may be solved and the explicit form for D(m), a(m) and
() obtained. We find that limy...c[a(n) — B(m)] = 0 so that the above difference

cquations reduce Lo a single difference equation

1) = R(zr) = D(m) %7:1,'1, 2 %/\ - %m(mn) reN or 5, (CI2)

where y is defined as
7= lim afm) = lim A(m)= %(1 +0)- (C.13)
Provided D(m) is sufliciently small we can approximate the above difference

equation by the differential equation

(C.14)
By defining
Ru(a) = % R(z), ar= ‘{—Zz, Ar (C.15)
we can rescale Uhe equation (C.14) as
dRp(xr) _ o 1, 1 .
o =~ Rhlan) + k= 5w (C.16)

Applying Bq. (C.16) to asuperlattice geometry yields the result Ay = | and thus A =
/A Tor the semiinfinite superlattice (VSN --+) or (SNS--+) with the boundary
condition at free surface Rye(0) = 0, the cigenvalue can be readily calculated to give
[66)

=0 (C.17)
A = 0.59010

{ i = /OFI0T0

and henee

(C.18)

while

A =059010/5 1 —0. (€.19)
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