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Abstract

There are many situations in practice where one is interested to find the

effects of the covariates on poly F
where poly rdinal by nature. These

there
types of data are commonly analyzed by exploiting the well-known probit
and cumulative logit models. These methods, however, require the introduc-

tion of certain cut-points to distinguish orderedl es of the poly
responses, and these cut-points are required o be estimated consistently,
‘which may not be easily obtained. In the practicum, we use a recently devel-
oped non-cut-point based cumulative logit mo del to resolve this estimation
problem. The regression analysis chosen in the practicum was motivated
by a need for a refined analysis of a diabetes -data set used in the Wiscon-
sin Epidemiologic Study of Diabetic Retinopathy (WESDR). The practicum
di the ad and disad of the existing as well as the new

The point based h was found to give the best fit

to the diabetes data, with easy i ion of the
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Chapter 1

Introduction

1.1 Motivation of the Problem

Analyzing multinomial ordinal data is important in practice. One of the main
scientific interests in such problems is to find the effect of the covariates on
ordered responses. Consider, for example, a medical problem with regard to
diabetes, where the responses such as severity of diabetic retinopathy may
be explained as a function of associated covariates. There exist some studies
where this type of data are analyzed to understand the effects of the treat-
ments and other covariates on the severity of diabetic retinopathy. We refer
to the Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) as

one such study. This study contains complete records of 720 younger onset

Type 1 diabetics. The data contains infc to

covariates such as duration of diabetes and glycosylated hemoglobin level.
The objective is to investigate the effect of such covariates on the ordered

responses labeled as ‘none’, ‘mild’, and




which are indicators for the severity of diabetic retinopathy. As these or-
dered responses are in order from best to worst, methods to find the effect
of covariates after distinguishing these categories are required.

There exists several statistical approaches to analyze the multinomial
ordinal types of data described above. For example, we refer to McCullagh
(1980), Stram et al. (1988), Walker and Duncan (1967), Williams and Grizzle
(1972), and Williamson et al. (1995). These authors discuss cumulative logit
models to analyze the multinomial ordinal data. In such models, cumulative
probabilities are defined as a function of the covariates and certain cut-points,

where the poi istinguish the adjacent i More
specifically, the cumulative logits are defined so that the cut-points follow an
(i ing) order ictil For a i i ion on the basic

development of this type of model, we refer to Agresti (1990, section 9.4)
among others.

A second approach based on the probit model, available to analyze multino-
mial ordinal data, has been presented by Aitchison and Silvey (1957), Ash-
ford and Sowden (1970), Gurland, Lee and Dahm (1960), Harville and Mee
(1984) and Kim (1995). As the probabilities are based on the covariates and
cut-points, this approach is similar to the logit model. The main difference
between the probit and logit model is that the probit model uses the stan-
dard normal cumulative distribution function as the cumulative link function,
whereas the logit model uses the binary logistic function as its cumulative
link function.

The above mentioned commonly used methods (cumulative logit and pro-

bit approaches) to analyze multinomial ordinal data, may however run into



ifficulties in estimating the cut-point d with such pro-

cedures. More specifically, as the cut-points must follow an order restriction,
the estimation procedures such as the Newton Raphson iteration technique
available to estimate the values of these cut-points does not guarantee that
this order restriction will be maintained. Recently, in a multivariate set up,
Sutradhar and Kovacevic (2000) [see also Das and Sutradhar (1999)] have
proposed an alternative approach which, unlike the probit and logit mod-

els, avoids the use of the cut-points in modeling the ial ordinal
data. More i they use a t-point based cumula-
tive probability model which distingui: the ordered ies in a natural

way. Note, however, that in the present practicum, we deal with the uni-
variate ordinal polytomous model which is a special case of the multivariate
model introduced by and K ic (2000).

1.2 Objective of the Practicum

As mentioned above, in the present practicum, we deal with a univariate case
and simplify the ivari dure of S dhar and K evic (2000)
to analyze univariate ordinal regression data. One of the strong motivations

to deal with such univariate case came from the fact that an exploratory
analysis of WESDR data did not appear to show any difference between the
left and right eye’s retinopathy level. Moreover, we wish to examine the
performance of all three methods, including the new non-cut-point based
procedure, to analyze a univariate problem.

The specific plan of the practicum is as follows:



1. In chapter 2, we provide an exploratory analysis of the covariates and
response variables of the WESDR data, which will be helpful in devel-
oping the appropriate ordinal regression model for further statistical
analysis.

0

. In chapter 3, the probit model will be exploited to analyze the relation-
ship between the ordinal response and associated covariates. Through-
out the chapter a detailed description of the model will be presented
along with the likelihood estimation procedure used to obtain the esti-
mates for the parameters involved in the model. The goodness of fit of

the model to the data will also be investigated.

@

In chapter 4, we will review the cumulative logit model as an alternative
model to the probit model, to analyze the ordered categorical data. To
be specific, we first show how this model can be developed and then
we discuss the likelihood estimation for the of the model.
Similar to chapter 3, the goodness of fit of the model to the data will
also be provided.

4. In chapter 5, we argue for a newly suggested non-cut-point based
multinomial logistic approach to explore the relationship between the
ordinal response variable and associated covariates. In this chapter,
unlike chapters 3 and 4, we exploit the generalized estimating equation

for the estimation of the of the model. Further

we investigate the goodness of fit of the model to the data, and provide
comparison of all three approaches with regard to fitting the models to
the data.



5. The conclusion of the practicum is provided in chapter 6. We also

provide some remarks on future research in this area.



Chapter 2

Background of the Problem

2.1 Severity of Diabetic Retinopathy

Diabetes is one of the most serious diseases which causes extreme suffering
and is a leading cause of death by disease. Currently 1.5 million Canadians
have been diagnosed with diabetes and an additional .75 million are suspected
to have the disease, but are unaware of it. Diabetes is a disorder which does
not allow the body to utilize sugar obtained from the foods we eat. Diabetics
are categorized into one of two types, Type 1 and Type 2 diabetes. A person is
identified as having Type 1 or insulin-dependent diabetes when the Pancreas
either stops producing or produces very little insulin. A person typically
develops Type 1 diabetes before the age of 30. Type 2 diabetes is marked as
being an older onset diabetes, usually after the age of 30, and is non-insulin-
dependent. Type 2 diabetes is identified when either the Pancreas does not
produce enough insulin or when the insulin produced by the Pancreas is not

being used by the body.



Although the symptoms for Type 1 and Type 2 diabetes are very similar,
they develop much faster and are more disastrous for the Type 1 diabetic.
These symptoms include frequent urination, unusual thirst, extreme hunger,
unusual weight loss, extreme fatigue, irritability, nausea, vomiting, blurred
vision, and others. Costing an estimated 5-6 billion dollars to the Canadian
health care system, people still fail to recognize diabetes as a serious disease.
In fact, diabetes is known to sxg'mﬁca.utly increase the risk of heart disease,
kidney disease, i and is also the leading

cause of adult blindness.

The increased blood sugar levels caused by diabetes is known to damage
both small and large blood vessels in the body. Damaged blood vessels within
the eye will cause impaired or loss of vision referred to as Retinopathy. When
diabetes is the cause of Retinopathy it is referred to as Diabetic Retinopathy
and is mainly present with Type 1 Diabetes. It is known that among 86
percent of people diagnosed with early onset diabetes who have went blind,
the only contributing factor of their blindness was retinopathy. (source:
Canadian Diabetes Association, http://www.diabetes.ca)

Although treatments such as insulin injections, and proper diet and exer-

cise plans have been devel to create ble living for di

no cure exists. Early detection of diabetes is important to halt or prevent
some of the complications that arise from diabetes such as Retinopathy. In
order to find a better clinical remedy more understanding about how other
factors such as age, sex, and duration of diabetes contribute to the disease
is necessary. For this purpose, many clinical organizations, in particular in
USA and Canada, are i engaged in bi ical research




One such study has been recently done by Wisconsin Epidemiologic Study
of Diabetic Retinopathy (WESDR). This data set was analyzed by Williamson
et al (1995), among others, to d the effects of iated i
on the severity of Retinopathy on both the left and right eyes. Note that
as the socioeconomic conditions are similar for both USA and Canada, the
results obtained from a USA study should be useful for Canadian diabetes re-
searchers as well. Turning back to the WESDR, Williamson et al (1995) have

used a cut-point based poly and exploited suitable estimat-

ing i to find the iate effects as i above. We however,

will take a simpler statistical approach to analyze such a data set. But, be-
fore we go for details, we now explain the variables involved in the study and
examine the nature of these variables through an exploratory analysis.

This data set contains records of 996 younger onset Type 1 diabetics,
of which complete records are present for 720 of these persons. A 10-point
ordinal scale increasing from none to worst was used to grade the severity of
Diabetic Retmopazhy for both left and right eyes. Altogether four ordered

were consi [ef Willi et al (1995)] and they are: none,
mild, and proliferative. In total, i ion was collected on 17

covariates: 1. right eye macular edema; 2. left eye macular edema; 3. right
eye refractive error; 4. left eye refractive error; 5. right eye intra-ocular
pressure; 6. left eye intra-ocular pressure; 7. age at diagnosis of diabetes;
8. duration of diab 9. d h globin level; 10. systolic blood
pressure; 11. diastolic blood pressure; 12. body mass index; 13. pulse rate;

14. sex; 15. proteinuria; 16. doses of insulin per day; 17. type of county of



residence.

2.2 Exploratory Analysis

In this section we provide an exploratory analysis for the diabetes data set
analyzed by Williamson et al (1995), which will depict how the response
variable as well as the covariates are behaving. Although, i ion on 17

covariates was collected in the original data set, we will only consider the so
called marginal covariates and they are: 1. duration of diabetes; 2. glyco-
sylated hemoglobin level; 3. diastolic blood pressure; 4. proteinuria; 5. sex;
6. right or left eye macular edema. Note that these six marginal covariates
were also chosen by Williamson et al (1995). These authors, however, had
one more association covariate (doses of insulin per day) in their analysis,
which we do not include in our study as we are examining properties of the
marginal variables in this section.

In the following subsections, we exhibit various exploratory graphs for
the response as well as covariables and discuss the patterns to understand
the effect of the covariates on the responses.

2.2.1 Response Variable

The histograms for the right and left eye retinopathy level for the 720 persons
with complete records is shown in Figure A.1. The four ordered categories:
none, mild, ds and i i by 0-1, 1-2, 2-3, and 3-4

respectively are given along the horizontal axis. The number of subjects in

each category is indicated on the vertical axis. It appears that there are same



number of individuals in the none and mild categories under both left and
right eyes. Under the mod and proliferati ies there are fewer
individuals as compared to the other two categories. Between the moderate

and proliferative groups, the moderate group appears to contain almost twice

the i as to the i ive group. Note that it is not
only that the none and mild groups have the same number of individuals
under both eyes, the overall distribution of the individuals appear to be the
same under both left and right eyes. For the left eye there are 268 individuals
in the none category, 277 individuals in the mild category, 127 individuals
in the moderate category, and 48 in the proliferative category. The right
eye contains 275 individuals in the none category, 270 individuals in the mild
category, 128 individuals in the moderate category, and 47 in the proliferative
category.

2.2.2 Explanatory Variables

Figures A.2, A.3, and A.4 show the distributions of the duration of diabetes.
In all three Figures the duration of diabetes (in years) is given on the hor-
izontal axis and is divided into six equal groups representing 10 years for
each group. The number of observations in each of the six intervals is given
on the vertical axis. Figure A.2 exhibits the distribution of the duration of
diabetes under the assumption that other covariates are held fixed at suit-
able levels. It appears that a large number of subjects suffer from diabetes
even after a period of ten years. In Figure A.3 and A.4 we look at the dis-

of the it for the left and right eye respectively,

and record the number of individuals under all four ordered categories: none,

10



mild, moderate, and proliferative. We see from Figure A.3 that in each of
the four ordered categories the histograms strongly reflect the overall picture
displayed in Figure A.2. A comparison between the left eye (Fig A.3) and
the right eye (Fig A.4) clearly shows a remarkable resemblance between the
histograms for the duration of diabetes for each category under both left and
right eyes.

The second i G H lobin Level, is i de-

picted in Figures A.5, A.6, and A.7. Glycosylated Hemoglobin Level is given
on the horizontal axis and the number of observations is given on the verti-
cal axis. From Figure A.5 it appears that the distribution is symmetric with
nearly 500 of the 720 subjects having a Glycosylated Hemoglobin Level in
the middle range. Figures A.6 and A.7 presents a closer look at the behavior
of Glycosylated Hemoglobin Level under each of the four ordered categories
for both left and right eyes. These pictures again show strong similarities

to the general picture di for G d in Level given in
Figure A.5. We again note the close resemblance of the left eye (Fig A.3)
and the right eye (Fig A.4) with regard to the distribution of Glycosylated
Hemoglobin Level under each of the four ordered categories.

The next covariate we explore is Diastolic Blood Pressure. This covariate
is displayed in Figures A8, A.9, A.10, with Diastolic Blood Pressure given
along the horizontal axis the number of observations on the vertical axis.
The histogram, displayed in Figure A.8, appears to have to normal curve
shape centering around 75. The distribution of Diastolic Blood Pressure for
each of the four ordered categories for both left eye and right eyes exhibited
in Figures A.9 and A.10 also follow the normal shape. Note that the left eye

1




(Fig A.9) and the right eye (Fig A.10) produce almost identical histograms
with regard to the distribution of Diastolic Blood Pressure, under each of
the four ordered categories.

The distribution of the fourth i P inuria, is di in Fig-
ure A.11, A.12, and A.13. Proteinuria is a dichotomous variable, that is, it

is either absent or present in the individuals, which is shown by two bars
for the respective groups given along the horizontal axis. The number of
observations is indicated on the vertical axis. It appears from the histogram
displayed in Figure A.11, the histogram for the overall distribution of Pro-

teinuria, that P inuria is absent in t 85 % of the individuals.
Figures A.12 and A.13 provide information about the presence of Proteinuria
within each of the four ordered categories for both left and right eyes. The

for the distribution of Proteinuria under each of the four ordered

categories strongly reflect the histogram for the overall distribution of Pro-
teinuria presented in Figure A.11, for both left and right eyes. Again, we
note the strong resemblance between the left eye (Fig A.12) and the right
eye (Fig A.13), with regard to the distribution of Proteinuria, under each of
the four ordered categories.

Figures A.14, A.15, and A.16 are

the fifth covariate, gender. Gender is indicated on the horizontal axis, and

the corresponding number of observations is indicated on the vertical axis.
Figure A.14 which contains all 720 individuals gives clear indication that
there is nearly the same number of female subjects as male subjects. Further,
this representation of equal number of males and females is reflected within

each of the four ordered ies: none, mild, and

12



‘The above observation suggests that retinopathy level does not appear to be
gender sensitive. Note that the histograms appear virtually unchanged from
the left eye (Fig A.15) to the right eye (Fig A.16), with regards to gender
within each of the four ordered categories.

Finally, we consider the covariate, Macular Edema displayed in Figures
A.17, A.18, A.19, and A.20. This covariate represents a measurement taken
directly from the eyes and therefore two separate measurements are taken
from each individual one for the left eye (Left Eye Macular Edema) and the
other for the right eye (Right Eye Macular Edema). The histograms for
the left eye is depicted in Figures A.17 and A.18, while the graphs for the
right eye are shown in Figures A.19 and A.20. For all four Figures, presence
of Macular Edema is indicated on the horizontal axis while the number of
observations under each of the two groups is shown on the vertical axis. The
overall histograms for Left Eye Macular Edema (Fig A.17) and Right Eye
Macular Edema (Fig A.19) suggest that Macular Edema is present in 10 %
of individuals. The break down of the number of individuals under each
of the four ordered categories is shown in Figure A.18 that corresponds to
Figure A.17 for the Left Eye Macular Edema. Similarly, the break down of
the number of individuals under each of the four ordered categories is shown
in Figure A.20 which corresponds to Figure A.19 for the Right Eye Macular
Edema. A comparison of the histograms between the left eye (Fig A.18) and
right eye (Fig A.20) again reveals the similarities between the left eye and
right eye, within each of the four ordered categories.

From the above discussion it is clear that the distribution of individuals

with regard to both response and covariables under each of the four ordered

13



categories appear to be almost identical for the left and right eyes. Conse-
quently we have decided to study, in details, about the effects of the selected
covariates on one response variable only, namely the Right Eye Retinopathy
Level.

Note however that the regression analysis for a univariate ordered cat-
egorical variable (such as Right Eye Retinopathy Level) is not adequately
discussed in the literature. Some of the existing methods are:

1. Latent Gaussian process based categorical approach.
2. Linear cumulative Logits approach.

Further note that the above two approaches distinguish the adjacent cat-

of an t-point, which may not

egories with the i
be easy to estimate consistently. In the next two chapters we review these
two approaches in detail and apply these methods to the diabetes data set
discussed above. In chapter 5, we provide a new approach to this problem
and apply a newly i ial logistic h, which, unlike the

approaches discussed in chapter 3 and 4, does not require the introduction of
any cut points directly. But, unlike the existing approaches, the cumalative
logits are nonlinear which is relatively slightly more difficult to interpret as

d to the linear

is weighted against the t-point based ad the new

logit. When this interpretation problem

appears to be superior to the existing approaches.



Chapter 3

Latent Process Based Probit
Analysis

In this approach, we assign the ith (i = 1,..., N) individual into one of
several categories, where its category is determined based on its own interval
on the real axis of an unobservable latent variable. To be more specific, let
Y represent an underlying continuous latent response variable and ¥; is the
value of Y for the ith individual. Also suppose that although ¥; is unobserv-
able, an interval that contains Y; is known. Assign the numbers 1,..., M,
respectively, to the M ordered categories. As Y; itself is not observable, the
ith individual is observed to belong to a category number h, say Z; = h,
through the interval relationship of ¥; given by

a1 <Yi<an & Zi=h (3.1)

15



where h € {1,...,M}. In (3.1) ap = —00,ap = +00 and @y, ..., @1 are
unknown boundary points that define a partitioning of the real line into M
intervals. Thus, when the realized value of ¥; belongs to the hth interval, we
say that Z; = h.

Under our assum ptions, the probability-mass function of Z,, ..., Zy is

P(zi,...p2n) = (32)

where Y; ~ N(zTB,c?%). Here, ; = (it - -, Tius - - - 24p)T is the px 1 covari-
ate vector for the ith. individual, 3 is the p x 1 regression vector and ¢ is the
variance of ¥; discussed. Note that for the diabetes data discussed in chapter
2, p =6, and i varies from 1 to N = 720. Finally these N individuals are
independent. It them follows from (3.2) that

(.o ’)-IIH/'

A=Lix=1

(uﬁ) dys, (33)

where N (R = 1,..., M) identifies the number of individuals in the hth
category. Here i, imdicates the ith individual belongs to the hth category.
Then y; and z; for the ith individual are re-expressed as y;, and z;, provided
the ith individual b-elongs to the hth category. In (3.3), ¢(-) denotes the
probability density function (pdf) of the standard normal variable y%l



3.1 Estimation of the Parameters

As the likelihood function is available, the parameters may be estimated by
maximizing the likelihood function itself. Note however that the likelihood
estimation for all the parameters 8, o and au, . . ., @1 is quite involved as
we have to solve M +p likelihood estimating equations which is usually done
by applying the Newton Raphson iteration technique. Further there is no
guarantee that such likelihood solutions will ensure the restriction

G <Gy <...<dm (34)

where &, denotes the d estimate of a;. Ne , in this section,
we attempt to obtain the maximum likelihood estimates of all the parame-
ters and examine whether the restriction (3.4) is satisfied or not for the a

Further, this h will be d later on with the other

two methods to be discussed in the next two chapters. All these will be done

in connection with the analysis of the Wisconsin diabetic retinopathy data
set. Turning back to the likelihood estimation method, we first write the
log-likelihood function of (3.3) as

I=logL= ZZlag[ ("" I'*ﬁ) ¢(°"“¢;’Tﬂ)] (35)

Lin=t
where ®(-) denotes the cumulatwe distribution function (cdf) of the standard

normal variable —;—-z—‘k This log-likelihood function (I) will be maximized
to obtain the estimates of ay (h = 1,...,M — 1), B as well as 0. The



goodness of fit of the method to the data will also be explored.
Note that for convenience of writing the first and second order partial
derivatives of the log-likelihood function, we define two functions as follows.
Let

Wa(hh—1) = ¢(an—45) @9
& (an—256) — @ (an
and
i
Wi (hh+ 1) = slon-af,0) @7

o =) -0 (a0~ Ao’

be these two functions, where ®(ag — z7,

Tt

) =0and ®(ap —z},,) =1, a5
ag = —oc and ayy = +00.
3.1.1 Step 1: Estimation of the Regression Parameters

For suitable initial values of o, and 62, the likelihood estimate of § is obtained
by solving the iterative equation

B(r+1)=B(r) - [(%;f??) —‘] [%], o

where,

a L AR S
%= _;"Z‘ _21 [Win(h,h = 1) = Wiy (B h+1)] X,
v
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and
Fl
8pasT
(a1 — 7%,0) — (Win(h,h — 1) — Wiy, (b, h + 1)1?] X;, XT

Ny
L 3" 3° Winlhoh — Dan — 2L6) ~ Wis,(huh+1)
o h=liy=1

with B(r) as the estimated value of § on the rth trial and the expression [},
is evaluated at §(r). In (3.8), g—; is the p x 1 vector of first order partial

&l
apapT
Note that the estimation of § could be done jointly along with the es-

derivatives and is the p x p second order partial derivative matrix.
timation of the other parameters, namely & = (ou, @2, ..., ap—1)7 and o?,
by solving p + M estimating equations. But, this is quite involved alge-
braically as well as numerically. As a remedy, we have chosen to estimate
B, ax(h=1,...,M —1) and o following a three step procedure. Once, for
given values of o, and o2, the convergent values of A's are obtained by solv-
ing (3.8), they will be used in section 3.1.2 to obtain improved estimates for
an(h =1,...,M —1). This will be referred to as the second step, first step
being the estimation of . Next the esti of fand ay(h=1,..., M —1)
from steps 1 and 2 are used to obtain an improved value of o2 in section 3.1.3.
M — 1) and o2 are obtained in

Once improved estimates of ay(h = 1

steps 2 and 3, they are used in step 1 to improve the § estimate further. This
cycle of iterations continues until convergence is obtained for all parameters
B,on(h=1,...,M —1) and o2



3.1.2 Step 2: Estimation of the Cut-Points

Note that for an initial value of o2, and the § estimate from step 1, the
likelihood estimates of @ = (az,q, .., ay-1)7 is obtained by solving the

iterative equation

ar+1) =(r) - [(%) E‘]r [27':}, (39)

where &(r) is the estimated value of a on the rth iteration and the expression
[]- is evaluated at &(r), g—i is the M — 1 x 1 vector of first derivatives of
&l
dada™
second derivative matrix. Further, in equation (3.9),

the likelihood function with respect to & and isthe M —1xM—-1

a Na Nast
=S Wirlhh=1)= % Wa(hh+1),
= el
and
2 [iw,- (hoh—1)(cn — =T B) — W2 (h, h-l)]
Banda = L W @ e
Nasr 1 1 5
- 3 [t D -z - WA+ D],
Pored

forallh=1,..., M —1, where W(-) are defined in (3.6) and (3.7). Note that

it is clear from the above second derivatives that for [h — A| = 1, it reduces

20



2l s
o z;l SWin(hh =)W, (hh+1),
otherwise,
*
dapdaw

As the ap(h = 1,..., M — 1) values are the cut-points distinguishing the
adjacent categories, and because no order restrictions are imposed on the ax’s
in the traditional likelihood approaches, such as in the estimating equation
(3.9), there is no guarantee that estimated values of ax(h = 1,...,M —
1) will maintain the restriction oy < a2 < ... < aa—1- Further, there
may be multiple solutions or roots for these o, parameters because of the
possibility of local maxima for such a high dimensional likelihood surface that

we are idering here. N hel for simplicity we use the Lil

estimating equation (3.9) to obtain the cut-point estimates for the diabetes
data discussed in chapter 2. These estimates will be compared with the

i btained by a similar in chapter 4, and with estimates
from a new t-points based d to be di: in chapter 5.
3.1.3 Step 3: Vari Comp Esti i

Similar to the likelihood estimating equations for 8 and a, we write the
likelihood estimating equation for o2 as
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sesn=oto- (2] [,

where,
M Nu
g = 5[~ L Zwamn-e-s
= Wi (b b+ Dot —20)]]
and

ﬂ_ﬁ(.,z)—![ 3 S Wiath A= (on—B)
g A=1.‘Z=:x a(h, = Ty,

= Wb+ 1)(ens —0)]

e

. g + _{Wxn(h h—1)(an—z%B)

(@nt—ahBP 1

Wi (e 1) (e = X, 8)] ]

(3.10)

l(a*)-![ 5 5 [t - e - o[22

Wi o (b, b+ 1)(enmn —zi‘ﬂ)]] ~ Wiy, (b b+ 1)y —216)

77+ 55 | Win(u b~ (e — 210)

with 62(r) is the estimated value of o2 on the rth iteration. The expression

[ is evaluated at o2(r).

With regard to the estimation of o2, it should be pointed out that if the

actual value of o2 is close to zero, then the above iteration equation (3.10)
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may yield a negative estimate. One may however, use restricted maximum
ikelil imation method or EM
timate of o2. For the diabetes data set however, the maximum likelihood

to obtain a gative es-

estimate o? itself was found to be positive.

3.2 Probit Analysis of Diabetes Data

In this section we the ication of the

earlier in this chapter by analyzing the data from the Wisconsin Epidemio-
logic Study of Diabetic Retinopathy (WESDR) discussed in chapter 2. For
the purpose we recall all six covariates (i.e. p = 6), chosen in chapter 2, to ex-
amine their effects on the categorical responses for the right eye retinopathy.
These covariates are 1. duration of diabetes z.;; 2. glycosylated hemoglobin
level z.5; 3. diastolic blood pressure z.3; 4. proteinuria z.4; 5. sex z.s; 6. right
eye macular edema z.. Here , in general z., represents the uth (u =1,...,6)
covariate for an individual. Note that as the ith (i = 1,..., N = 720) indi-
vidual belongs to one of the M = 4 ordered categories: none, mild, moderate
and proliferative, there are M — 1 = 3 cut-points explained by a; < a2 < a3

the adjacent
Applying the three step iterative procedure given in section 3.1 we ob-
i for the scale o2, the six

tain the
coefficients £y, s, . - -, B and the three cut-point parameters a, a2, and as.
These estimates are shown in Table 3.1. In the same table, we also provide
the standard errors of these estimates that were obtained from the observed

information matrix —(1(c)] ™", —=[¥6(a)] ™", and —[15(8)] ! respectively, where
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&l &l &l
Y(o) = ot Y(a) = Fagar 2nd w(6) = FE8T

Table 3.1: Latent Process Based Probit Model Estimates for the Diabetes

data
Type of parameter | Parameter | Estimate | Standard errors

a 8.66 0.2608

Cut-point a 14.41 0.1506

a3 18.95 0.1733

B 0.281 0.0100

B 0.249 0.0393

Regression Bs 0.028 0.0044

By 2.964 0.3338

Bs -0.340 0.2191

Bs 6.440 0.4300

Scale a? 5.48 0.0543

It is clear from Table 3.1 that all six covariates except z.5 (sex) have
influential effects on the severity of diabetic retinopathy. As far as the sex
covariate is concerned, it does not appear to have any influence on the severity

of the diabetic retinopathy as fi; = —.340 with the large standard error
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0.2191. This result however contradicts the findings of Williamson et al
(1995) as they found that the sex covariate also was influential. As for the
estimation of the cut-points is concerned, &1, &, and &s, clearly met the order
restrictions. One of the reasons for this perhaps is that the latent variable
bad high variation with 62 = 5.48, which may have contributed in the first

instance to separate out the cut-points clearly, although the cut-points can
be close to each other even though &2 is high.
As for the remaining five iates, the iate 7. (right eye macular

edema) seems to be the most influential followed by z.; (proteinuria). The

covariates z.; (duration of di; and z. (gl in level)
appear to behave similar effects and their effects seem to be less significant
than z.4, while z.; has the effect does not seem to be very significant.

‘We should however note here that the convergence values of the pa-
rameters shown in Table 3.1 were quite dependent on proper selection of
initial values for all the estimates of the parameters a and . For an as-
sumed value of g® = 4.0, we searched for the maximum of the likelihood
function by trial and error method until the global maximum zone was
found. We have then selected initial estimates for the o and § parame-
ters from that zone. These initial estimates, & = (14.79,17.75,19.95) and
B = (—0.37,0.16,0.14, —4.33, 1.58,10.88) were used in steps 1 and 2 to ob-

tain a set of esti for a and . These convergent

values of @ and f were then used in step 3 to obtain an improved estimate of
o?. Next, this improved estimate of 62 was used in steps 1 and 2 to further
improve the estimate of A and a. This cycle of iterations continues until

convergence for all three parameters 8, a and ¢2. It was found that the
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convergence was achieved in 8 such iterations.

Remark that at times, when the three step iterations were performed
based on poor selection of initial estimates (such as estimates yielding local
maximum) of the parameter, we observed many difficulties, such as; &'s were

not maintaining the order ictions, and was never achieved.

3.2.1 2 Goodness of Fit

In this chapter we have argued to fit a probit model to the diabetic data.
One may however, try to fit other similar but different models to analyze the
same data set. For example, we consider a linear cumulative logit model in

chapter 4 and a new t-point based multinomial logistic in

chapter 5 to fit the same diabetic data. It then raises a natural concern, to
choose the best model among all possible models that one may wish to fit.
A remedy to this concern is to examine the goodness of fit of each model to
the data. With this in view, we will evaluate an appropriate goodness of fit
statistic under three different models considered in this chapter as well as in
chapters 4 and 5.

An appropriate goodness of fit statistic for fitting the probit model to the

data is

N M
=3 [Sou- ] @)

where pa, is the observed proportion for the ith individual falling into the
hth (h = 1,..., M) category, and pi is the estimated proportion for the
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ith (i = 1,..., N) individual to fall into the hth category under the probit
model. Here py, is computed by

(3.12)

. Nand h=1,..., M. In (3.11), &(-) is the cumulative distribu-

tion function of the normal distribution, where $(—oc) = 0 and ®(+o0) = 1.
Further in (3.11), the observed proportions are calculated from the data just
by counting the number of individuals falling into each of the four categories.
For example, if the ith individual is observed to fall into the first category
then foralli =1,..., N} ps, = Ni/N. The observed proportions for the four
ordered categories are; py, = 0.38, pi2, = 0.38, piso = 0.18, piso = 0.06. Re-
mark that in place of observed proportions one could test any other possible
population proportions that may be justified by scientific reasoning.

Note that under the probit model the test statistic in (3.11) has asymp-
totically x? distribution with degrees of freedom N — (M — 1+ p+ 1), where

p+1 is the number of i plus the scale and
M —1 is the number of cut-points. For the probit model the test statistic
Sy was evaluated as S; = 161.78 with 710 degrees of freedom (df). Our
calculated value of S; is less than xZ; = 409.3804 < x2,, indicating that the

data agrees with the null hypothesis.
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3.2.2 Display of Squared Error Distances

Let d; = i(p,-,. — Pino)? denote the sum of squares of the differences be-
tween the esti and observed fons. Remark that, a similar
but different statistic could be by using standardized di

(P — pine)/\/var (Pun) instead of ordinary distances pix — Pino- Note how-
ever that it is common in practice to compute var(pin) = pingin/N under

the null hypothesis. Since these variances, pinogino/N, are the same for all
individuals, d; remains to be an appropriate statistic to make any necessary

and

the fit of the model given in this
chapter, as will as the models to be presented in the next two chapters. It is

clear that if d; is small then the model based estimated proportions for the

ith individual is close to the hy a good fit
for the individual. Consequently, to have an overall idea about the fitting of
the model, we display all these d; (i = 1....,720) in Fig 3.1.

It is clear from Fig 3.1 that most of the squared error distances are fairly
close to zero. As the magnitude of the squared error distances increase, the
number of individuals decline sharply. This pattern is what one would expect
to see if the model fits the data well. In the contrary if the model does not
fit the data well, one would observe fewer individuals with squared error
distances close to zero.

‘Two other figures similar to Fig 3.1 will be constructed for the other two
procedures in chapters 4 and 5. These figures along with the values of the
test statistics S}, S, (computed in chapter 4) and S; (computed in chapter
5) respectively will be used to compare the three models in deciding the best
fitted model among the three.
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Chapter 4

Linear Cumulative Logit

Analysis

In this chapter as well as in chapter 5 we maintain the same notation used
for the latent process based probit approach in chapter 3. Let Z; be the
ordered categorical response for the ith (i = 1,...,N) individual. Also let
Yix denote the random response variable for the ith person that belongs to

the hth (A =1,..., M) category. It then follows that

0 , otherwise

for h=1,..., M —1. Next denote the cumulative probability of Z; up to the
hth category by
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Yilh) = Fa(z:) = Pr(Z: < h|X; = z;) (1)

where X; = (Xi1, X2, - - ., Xip)7 is the px 1 covariate vector for the ith person
irrespective of his or her category. Now, consider a link function g(-) for this
cumulative probability given by

logit(Fi(z:)) = 9(%(h)) = an — 27 B (42)

where § is the p x 1 vector of i fici I ion (4.2) an
(h =1,...M — 1) is known as the cut-point between the hth and (h —
1)th categories. More specifically, as 7;(h) > ~(h — 1) always, the logit
relationship in (4.2) indicates that o has to satisfy the restriction oy <

@y < ... < ap-. Further it follows that

ex—=I8

Trens’ )

Yilh) =

Recall that for the diabetes data described in chapter 2, p = 6, M = 4,

and N = 720, where these N indivi are i The li

function is written as

M Ny Nae
L(B) = II pa(1,0)-+- I pun(hh— 1)~~-{H Do (M, M — 1) (4.4)
=l ip=1 M=l
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where Ny (h = .., M) is the number of individuals that we observed in
the hth (h = » M) category with regard to the diabetic data set. In
(4.4), ps,(h,h — 1) is the probability of the ith individual falling into the
hth category based on the iate i ion of the individual. This
probability is expressed as

Pin(hoh —1) = 135, (R) — v (R — 1) (4.5)

where i, indicates the ith individual belongs to the hth category, and ;, (h)
and 7, (h — 1) are given by

an—z], 8 an-1-75 8
e n e A
aairero CR

with z;, written for z; under the condition that the ith individual belongs
to the hth category. Note that as the ;,’s are the cumulative probabilities,
7, (0) = 0 and 7, (M) = 1.

4.1 Estimation of the Parameters

Recall that the maximum likelihood estimation method was used in chapter

3 in order to find esti for the for the probit model.
As the likelihood function is also available under the logit model, we exploit
the similar likelihood estimating equation h (as in chapter 3) and

obtain the estimates of the parameters.
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The proposed logit model given in (4.2) will require us to solve (M — 1+
p) likelihood estimating equations s we have to find estimates for § and
Qy, - -, aa—1- These likelihood estimating equations will be solved by apply-
ing the Newton Rhapson iteration technique as before. Remark that the re-

striction placed on @, . . ., Gar—1 given in (3.4) namely &; < Gz < ... < Ga—1
may not be achieved when traditionally non- i likelihood estimati
method is used as an estimati i Here & is the esti value of

« based on the logit model. Now, maximizing the likelihood function given

in (4.4) is equi to maximizing the log-likelihood function given by
M Ny

I=logL=3 3 logpi(hh—1) (46)
b

where i, (B, h — 1) = 74, (h) — 73y (A — 1)-

Note that for analyzing bivariate ordinal polytomous data, some authors,
for example Williamson et al (1995) have used the generalized estimating
equation to obtain the esti of the cut-points as well as regres-
sion parameters. This is because the likelihood method is quite cumbersome

in the bivariate set up.

4.1.1 Step 1: Estimation of the Regression Parameters

To find the likelihood estimate for # namely § we first choose some initial

value for o (R = 1,..., M—1) and then solve the following iterative equation.
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Br+1)=5(r) - [aﬂa,, ] [ @7

where,

B S L (= (h) = 2 — (L a(h— 1) X
%= A=1;§Pin(hvh‘l) [Yir (R) (1 = %iu (R)) = Fir (R — 1) — %, (h = 1))] Xz,

and
21 A
P6o5T EI.EA m[ﬂu— —bap1—enpa]
with,

ana-t = Y (h) [y (b = 1)y (B) — % (R —1)]

bupr = 7 () [ ({1 = %y (B)} = 9 (b = {1 475, (B = 1)} + 2, (h = 1) 3, (B)]

Chnt = Vgl = 1) [T (W7 (b = )+ 72 (W]}

In (4.7), B(r) is the estimated value of 3 on the rth trial and the expression
[]- is evaluated at §(r).

As mentioned in chapter 3 one can estimate f jointly along with the
estimation of the o parameters. Instead, for reasons outlined in chapter 3,
we have chosen to estimate 8 and a; (h = 1,...,M — 1) using a two step
approach, step 2 being discussed below.
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4.1.2 Step 2: Estimation of the Cut-Points
Using the estimates for § obtained in step 1, as the initial values for f, the
likelihood estimates of @ = (o, @2, ..., 1) are obtained by solving the

iterative equation.

Fp
S+ =80~ [(Wfﬂ) } [g—i]' (“8)
where,
al L) 1
o = “z_:‘ ATy (B = T )
Nast 1
TR e W T (k)
and
&1 LA 1 J Haer 1
Bandar ..Z:, Pulhh—1) T .E:‘ Py (B + L) A
with,
dapr = Yaa(A)(L =% () [~ (b — 1) = 72 (h — 1) + 2%, (B} (A — 1)]

et = o ()1 = Vi () (s (1) = 2 (b o+ D () + 72, ()]

forall h =1,...,M — 1. Note that for |h — k| = 1, the second derivatives

may be expressed in a simpler form given by,
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21 Nagt

o =~ 2 TRy M O = T () s+ D = T (4 1)

ihgr=1 P?M..
whereas for |k — k| #1,

el
Pesbow

In equation (4.8) &) is the estimated value of a on the rth iteration and

the expression [], is evaluated at &(r). Also, in equation (4.8) :—a is the
2

M —1x1 vector of first derivatives and el is the M —1 x M —1 second

dada”

derivative matrix.

‘We remark that in the manner similar to that of chapter 3, the likelihood
equation for 8 (4.7) and & (4.8) will be solved in two steps as mentioned
before, where these two steps constitute a cycle. This cycle of iterations
continue until convergence.

Note that, in esti ing the cut-point @y,...,Qp— ONE ex-

pects that these estimates maintain the order & < G, < ... < Gp-—1, but

there is no that these likelihood esti: of ay’s will maintain

this order restriction.

4.1.3 Some Remarks on Choosing the Initial Estimates

To choose initial esti for the unk aand B it is natural

to make an attempt to use the estimates given in Williamson et al (1995), al-
though their analysis is done for the two variable case while the present study
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deals with the one variable case. More specifically, the bivariate correlation
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Figure 4.1: Display of Estimated ions based on the C ive Logit
Model

may not have large influence on these common parameters « and 3 between
the two variables. Furthermore, these are only initial values to start the
iterative procedure explained in the last section.

As we explain below, we however, find that Williamson et al’s (1995)
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estimates when used in our univariate case fall short in producing esti-
mated proportions those should be in agreement with the observed propor-
tions. To be precise, we first used their estimates for & ( a; = —.823,0, =
1.58,a3 = 3.67) and 8 (B = —0.129,5, = —0.0913,8; = —0.0421,8, =
—0.901, Bs = 0.338, B = —0.138) and calculated the probabilities for the ith
(i = 1,...,720) individual to fall into each of the four ordered categories.
These probabilities under each category for all 720 individuals are shown in
Figure 4.1. It is clear from the figure that an individual appears to have ex-
pected probability close to one for the first category but his/her probability
to be in any other category appears to be almost zero. As the observed pro-
portions for an individual belonging to these four categories are .38, .38, .18,
.06, there does not appear any agreement between these observed proportions
and estimated proportions given in Figure 4.1.

Further, when these estimates, provided by Williamson et al (1995) were
used as initial estimates, we were not able to obtain convergent estimates.
This is not unlikely as the probabilities computed based on such estimates
for an individual to belong to the last three categories were found to be
extremely low. As in the probit analysis discussed in the last chapter, there
does not appear any easy alternative way to choose appropriate initial values
for the parameters &, &», Gy that might lead to the global maximization of
the likelihood function (4.4) with respect to these parameters. As a remedy,
we adapted a trial and error method to choose initial values of &, @&, @
such that the expected proportions reflect the observed proportions to a
good extent. Note that in calculating such expected proportions, we used 8

estimates as in Williamson et al (1995) as, unlike the estimation of & values,
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it is straight forward to obtain consistent estimates of § based on any suitable
initial values.
To be more precise, for a selected individual, we use his/her covariate

information along with Willi et al’s f esti to solve equation 4.3
for s (R =1,..., M —1) taking %(h) ( =1,..., M —1) to be the observed

ions for the individual to belong to the hth or lower cate-

gory. For example the observed cumulative proportion for the first category
is .38, therefore, we set v;(1) = .38 in equation 4.3. Now, using Williamson
et al’s § vector (8’ = [—0.129, —0.0913, —0.0421, —0.901, 0.338, —0.138]) and
the selected individuals covariate information along with 7;(1), we arrived at
a starting value for ay. Similarly, as the 4;(h)’s are cumulative probabilities,
we took 7;(2) = .76 and 7(3) = .94, and solved for a; and az respectively.
These initial values of &,, &, &3 were used to compute the probabilities for
each of the four ies for all 720 indivi Next we the av-

erage probability for each of the four categories, which we denoted by 51, P2,
73 and 7. A comparison was made between 5 (h =1,..., M) and the ob-
served proportions. As expected, to begin with, there were some differences
between p and the observed proportions, which lead us to select improved
values of &’s to minimize such di This d was repeated
until the values of &, @, and a3 produced pj’s that reflect the observed pro-
portions to a good extent. These values then became the initial estimates of

the cut-point parameters namely &, &» and &;.
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4.2 A Limited Simulation Study to Verify Ini-
tial Cut-Points

To verify the validity of the cut-point estimates obtained in the previous
section, we now conduct a limited simulation study. Note however that,

as indicated before, since § is a non-restricted regression vector, it was not

to examine the of f esti through the si.
study.
To generate the multinomial response data using ordered initial o values
obtained as in section 4.1.3, Williamson et al’s (1995) § values, and the
covariates available for all 720 individuals, we calculate

humeTh P R
P s P  md 1y b
_ eds==Th
P p=1-

for the ith individual. The initial values of a’s were

& =-85 @=-65 a=-50 (4.9)

We supply these probabilities and use the IMSL subroutine RNMTN to gen-
erate the multinomial response such as [1,0,0,0] or [0,1,0,0] or [0,0,1,0] or
[0,0,0,1]. Here [1,0,0,0], for example, indicates that the ith person belongs
to the first category. We have done it for 720 individuals.
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Next these responses are used along with the covariates, to estimate a by
(4.8). The simulation was carried out 2000 times and the average value of

@), @&, and @3 were found to be

G =-805 @& =-586 a3=—467 (4.10)

which appear to agree to a good extent with the initial chosen value of &,
&, and &; shown in (4.9).

4.3 Fitting Cumulative Logit Model to the
Diabetes Data

In this section we analyze the data from the WESDR to illustrate the ap-
plication of the proposed method given in this chapter. Again, recall from
chapter 2 that the six covariates (i.e. p = 6) used to explain severity of
right eye diabetic retinopathy are 1. duration of diabetes z.;; 2. glycosylated
hemoglobin level z.; 3. diastolic blood pressure z.g; 4. proteinuria z.4; 5. sex
z.5; 6. right eye macular edema z.5, where z., denotes the vth (v =1,...,6)
covariate for an individual. In this study an individual is assumed to belong
to one of the M = 4 possible ies: none, mild, di and prolife

tive with a suitable ility . To disti ish the adjacent ies there

are M — 1 =3 cut-point parameters a;, @z, @3 which need to be estimated.
Further we require these cut-point parameters to hold the order restriction

a <o <a.
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To obtain estis for all nine unk six ion and

three cut-point parameters, we exploit the 2 steps iterative procedure dis-
cussed in section 4.1. More specifically, based on some initial values of
and § we solve the iterative equation (4.7) until convergence is achieved for
B. Now, suppling these new convergent values of 8 and the initial values
of & to step 2 of the procedure in section 4.1, equation (4.8) is solved until
convergence is achieved for & These new improved values of & from step 2
and the improved values of J from step 1, are then used in step 1 to obtain a
new set of improved estimates for 8. This cycle of iterations continues until
convergence is obtained between cycles. The final estimates for the cut-point
parameters o, @, a3 and the regression coefficients S, fs, . . ., f are shown
in Table 4.1. We also report the standard errors of these estimates that were
obtained by using the observed information matrix —[t(a)] ™ and —[%:(8)]™*

respectively for the estimates of « and 8.

&)
¥() = g2tz and ¥(6) = st

All covariates (z.,) appear to have a signi ibution for
severity of diabetic retinopathy. Remark that, in this approach the covariate
for sex (z.5) also has influential effect on the severity of diabetic retinopathy

as opposed to the method of chapter 3 which concluded that the sex covariate
was not influential. Further, the most influential covariate was found to be

z.6 (right eye macular edema) followed by z.4 (proteinuria), z.5 (sex), z..

duration of diabetes), z. (glycosy bin level) and x5 (diastolic

blood pressure). This pattern in the behavior of the covariate estimates
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Table 4.1: Linear Cumulative Logit Model Estimates

Type of parameter | Parameter | Estimate | Standard errors
P -8.14 0.09460
Cut-point a -6.62 0.09349
as -5.20 0.14890
B -0.1290 0.0000325
B -0.0902 0.0005216
Regression B -0.0400 0.0000172
B -0.9006 0.0012251
Bs 0.3395 0.0017232
Be -1.3790 0.0013490

appears to be the same as that produced by the Probit Analysis of chapter
3 except for the sex covariate z.5. Note that the estimates for the regression
parameters displayed in table 4.1 are almost identical to those of Williamson
et al (1995).

As far as the cut-points are concerned, we can clearly see from table 4.1
that these estimates (&, &2, &) meet the order restriction of & < &; < Gz as
in Williamson et al (1995), but they are quite different than those estimates
provided by these authors. Further there is no standard errors available in
Williamson et al (1995) for these estimates.



4.3.1 x? Goodness of Fit

In this section we investigate the goodness of fit of the logit model to the
diabetes data. This will examine whether the logit model is an appropriate
model to describe the relationship between the covariates and severity of
diabetic retinopathy. Further, the goodness of fit statistic for the logit model
will be compared to that of the probit model to aid in deciding which of the
two models appear to have the best fit to the data. These two goodness of fit
statistics will be recalled again in chapter 5 in order to compare them with

the new t-point based
For the current cumulative logit model, we may use the goodness of fit

statistic

N [M
- - 2
S = kz - E_l(nn Pho) ] (411)

to test the fitting of this model to the data. In (4.11) py, is the observed
proportion for the ith individual to fall into the hth (h =1,..., M) category,
and these py, are: (pio = .38, p2o = -38, p3, = .18, py, = .06,) as in chapter
3. Now, in (4.9) fi is the estimated proportion for the ith (i = 1,...,N)
individual to fall into the Ath category under the cumulative logit model.
More specifically, for the current logit model, these p;, are given by

Bin = wi(h) —wi(h —1) (4.12)



where,

= g._ﬂrar
1+ eor1—=18

fori=1,...,N and h = 1,..., M. Further, in equation (4.12) w(0) = 0
and wi(M) =1.

Remark that the goodness of fit statistic S, in (4.11) is quite similar to
that of Sy in equation (3.11). The only difference is, pi is the estimated
proportion for the ith (i = 1,...,N) individual to fall into the hth category
under the cumulative logit model and f is the estimated proportion for the
ith (i = 1,..., N) individual to fall into the hth category under the probit
model.

The test statistic S, (4.11) for testing the closeness of the estimated pro-
portions under the logit model to the observed proportions, has asymptoti-
cally x? distribution with degrees of freedom N — (M — 1+p). It is clear that
as compared to the probit model, we now have one less parameter, yielding
the degrees of freedom N — (M — 1 + p). For the logit model the test statis-
tic S, was evaluated as S, = 126.55 with 711 degrees of freedom (df). Our
calculated value of S; is less than xZ5 = 409.3804 < x2, indicating that the
data agrees with the null hypothesis.

In chapter 3, we investigated the fit of probit model as a reasonable model
for explaining severity of diabetic retinopathy in the diabetes data set. For
the probit model we calculated the test statistic S; given in equation (3.11)
to be S; = 161.78. As S; = 161.78 is greater than S, = 126.55 it appears
that the logit model provides an improved fit to the data over the probit
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model.

4.3.2 Display of Squared Error Distances

For a deeper insight with regard to the goodness of fit of the cumulative logit
model to the diabetes data, we calculated the squared distances between the
model based proportions and the observed proportions. These distances for
the ith (i = 1,...,720) individual are calculated by d; = 3 (5 — Pino)®. If
the logit model provides a good ft to the data we expect to observe a small
value for d; for the ith (i = 1,...,720) individual. In contrary, a large value
of d; will indicate that the logit model is providing a poor fit to the data.
These squared distances d; for all individuals (i = 1,...,720) are displayed
in figure 4.2.

This figure clearly shows that the majority of the individuals have a
squared error distance that is fairly close to zero, which in turn shows that the
probability for an individual to fall in the four categories reflect the observed

i that the ive logit model is providing a good
fit to the diabetes data.

A comparison of the squared error distances for the probit model with the
squared error distances for the logit model provides additional information
to support the notion that the logit model appears to provide a better fit
to the data than the probit model. A comparison of figure 3.1 and figure
4.1 demonstrates this fact, as the logit model exhibits more squared error
distances closer to zero. As well, the logit model appears to have lower
squared distances overall. The largest squared error distance for the probit

model is nearly 1.2 while it is less then .8 for the logit model.
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Figure 4.2: Display of Squared Error Distances for the Logit Model
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Chapter 5

Non-Cut-Point Based
Multinomial Logistic Approach

In this chapter we apply a new multinomial logistic approach to model ordinal
categorical responses, which was recently suggested by Das and Sutradhar
(1999) in connection with bivariate ordinal polytomous data analysis and
by dhar and K ic (2000) in a ivariate set up. Unlike the

probit and the ive logit in chapter 3 and 4
respectively, this approach does not require any cut-points at all. Thisis a
big improvement over the existing procedures, as all the parameters become
non-restricted regression parameters which may be consistently estimated by

a suitable method such as the equation h. To

be more specific, although after a lengthly trial and error search, we were able
to find cut-point estimators under both of the probit and cumulative logit
models, there is however no guarantee that these types of cut-point estimates

will maintain the order restriction which is inherent in the model. In other
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words, the cut-point esti: will be i or will maintain the order
restriction only when suitable ordered restricted estimation is exploited. This
is however i for the logistic inomial data. Note that
as it will be described in this chapter, the current procedure maintains the

order nature of the data without any introduction of the cut-points.

‘We now describe the present model for the univariate case following Su-
tradhar and Kovacevic (2000). Maintaining the same notation as in chapters
3 and 4, let Z; be the ordered categorical response for the ith (i =1,...,N)
individual. Thus Z; can take on values of 1,..., M following the cumulative
probability

(k) = Fu(z:) = Pr(Z: < h| X = z:) (5.1)

where h indicates the hth (h = 1,..., M), and XT = (Xu, Xaz, -- -, Xsp) is
the p x 1 covariate vector for the ith individual. Recall that the cumulative
probabilities shown in (5.1) is exactly the same as the cumulative proba-
bilities defined in (4.1). Further this cumulative probability, by using the
polytomous logistic regression, may be written as

%(h) = Pr(Z:<h)
-2 62)
ngﬁs.

u=1
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forh=1,...,M. In (5.2) fu (u=1,..., M) is the p x 1 vector of regression
parameters corresponding to the uth category, and z%, = (Tiu1, Tiwz, - - - Tiup)
is the p x 1 covariate vector for the ith individual that belongs to the uth
category. Note, however, that in the present data set, the covariates for the
ith individual remains the same irrespective of the category. That is z7, = z7.
-y M. Further,
in (5.2), without any loss of generality, we assume that Sy = 0.

It then follows that the multinomial logistic marginal probability that
Z; = h is given by

Consequently, in what follows we use z7 for z7, forallu =1,

Pr(Zi=h) = Pr(Ya=1)
=
T
I
S eTe

=1

(53)

In (5.3), Y (A =1,..., M —1) is the dichotomous random response variable
for the ith (i =1,..., V) individual that belongs to the Ath (b =1,..., M)
category. More specifically, it follows that Z; and Y, are connected through
the following relation

1 ,ifx=h

0 , otherwise
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Note that the logits of the cumulative marginal probabilities are given by

> To
logit(vi(h)) = log | 5 (5.4)

S eth

=1

which is rather in log odds ratio form. Further, the logits of the marginal

probabilities are given by

. T -
logit(maa) = log | s—— (5.5)

5ot

u=t
for h=1,...,M — 1. Note that, the logits for the cumulative probabilities
given in (5.4) are quite similar to their corresponding logits for the marginal
probabilities shown in (5.5). In the marginal case, the logits are the log of
the odds of an exponential function for an ordinal category versus a sum
of the similar ial i for the ini ies, whereas

in the cumulative case, the logits are the log of the odds for a sum of the
mcpnnennal functions up to an ordinal category versus the sum of the similar
for the inis ies. Thus, as it happens in

the multinomial logistic case, we do not have any linear logits (in covariates)
either for the cumulative margins or for the margins themselves. The non-

linear logits in the present approach are, however, easy to interpret.
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5.1 The Estimating Equations For Regression
Parameters

For the cut-point based probit and cumulative logit models, we have exploited

the lil imation for the

and cut-point Since
the present approach does not suffer from the complexity of involving cut-

points, we choose to use the generalized estimating equation approach. This

however, is ically much easier than the likelihood
estimating approach.
To obtain esti for the i vector A = (B7,...,6F,...
B 1), where By = (But,---,Bhjs---»Brp)T we observe that f is present in

all w1 = (Mity- oy Miny - ooy Tang—1)T for i = 1,...,N, where E(Y) =
(5.3). Consequently, to construct the estimating equations for 8, we mini-
mize a suitable weighted distance vector, where the distance vector is given by
Y; — m;, for the ith (i = 1,..., N) individual, ¥; = (Ya,-.., Y, ..., Yaar—1)7
being the observation vector and x; = E(Y;). More specifically we estimate
B by solving

= (55)

N-} f: DIV-Y(Y; —=;
=

where



=]z Tin £ —mAr 5.7)

0 v ses 0 WiEei

Further in equation (5.6)

= VieX (5.8)

where D; is an (M —1) x (M — 1) matrix, and X; is the p x 1 covariate vector
and ® denotes the Kronecker product.

Note that the estimating equation (5.6) is usually referred to as the quasi-
likelihood estimating equation [cf Miller et al (1993), McCullagh (1983)].

5.1.1 Newton Rh Iteration Tech

for the M — 1 i vectors is obtained by solving
equation (5.6). This solution denoted by 87, may be obtained by the New-
ton Raphson iterative technique. For some initial value of 8* we solve the

following iterative equation
N “lrwn
B(r+1)=p(r)+ [5; D.-TV.»"D.-] [): DIV (Yi = m) (5.9)
i=1 r L=l -
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where [], denotes that the expression within the bracket is evaluated at
B*(r). Further, it follows that N §(B' — B) is asymptotically multivariate

normal with zero mean and covariance matrix Vj given by

-1

N
V= Jlim N (; D?v,“D.-) 5 (5-10)
=1

This covariance matrix V3 of § may be consistently estimated by using 3"
for 4 in obtained from (5.9).

5.2 Multinomial Logistic Analysis of Diabetes
Data

In this section we illustrate the ication of the new point based
by and Ko ic (2000) by ing the
data from the WESDR. The present data set, which was introduced in chap-

ter 2, contains a large number of covariates, six of which were considered in
the probit analysis of chapter 3 and the cumulative logit analysis in chapter 4.
‘We continue to consider these same six covariates in the present analysis. For
the purpose of the analysis of this section we recall all six covariates to study
their effectiveness in explaining severity of right eye diabetic retinopathy.
These covariates are 1. duration of diabetes z.,; 2. glycosylated hemoglobin
level z.,; 3. diastolic blood pressure z.3; 4. proteinuria z.; 5. sex z.5; 6. right
eye macular edema z.. Here, in general z.,, represents the wth (w =1,...,6)

covariate for an individual.
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The application of the multinomial logistic model (discussed earlier in this
chapter) to the WESDR data, will require the estimation of p x (M — 1) =
6 x 3 = 18 regression coefficients denoted by 8* = (8;7,..., 57, ....BiF_;)
with M = 4. To compute this 3° we apply the estimating equation ap-
proach of Section 5.1. Supplying suitable initial values of 8* = §°(0) =
BT BT
achieved for all § parameters except 85, the regression coefficient for right

2 B{¥i—1)o) to the iterative equation (5.9), convergence was

eye macular edema, for the ‘none’ category. Note that, even though the es-
timates provided by Das and Sutradhar (1999) were obtained from bivariate
analysis, they may still be used as suitable initial values of 3* for the present
univariate approach. These values are: §;7 = (~0.1261, 0.0182, 0.0122,
—0.8868, 0.5066, —0.5302), 37 = (0.0530, 0.0175, —0.0012, —0.2371, 0.1321,
—2.02341), ﬂ;oT = (0.0511, 0.0075, —0.0017, 0.3112, —0.4283, 0.5704). As for
the sixth covariate, convergence was obtained for B and fss, but not for
B, this prompted us to investigate the reason why problems were occurring
when trying to obtain a solution for this covariate under the ‘none’ category
as opposed to the other two categories, namely the ‘mild’ and ‘moderate’ cat-
egories. For the purpose, we decided to take a detailed look at the WESDR
data set. The data for sixth covariate z.5 (right eye macular edema) is a
series of 0°s and 1’s only, where 1 represents that macular edema is present
in the right eye and 0 indicates that macular edema is not present in the
right eye. Of the 720 individuals it was observed that 33 of them showed
macular edema present in the right eye, which means that there are 33 1’s
and 687 0’s representing this covariate. A more through inspection revealed

that none of these 33 1's were present with the 275 individuals who belong
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to the ‘none’ category, while two 1's showed up in the ‘mild’ category, 14 in
the ‘moderate’ category and 17 were observed in the proliferative category.
As this covariate consists of only 0s for the ‘none’ category, it becomes clear
that there is no unique solution for 6.

To shed further light into this non-convergence problem, we also con-
ducted a search procedure to select a possible estimate of §is by computing
the distance function

d={d+...+ B+ +dH (5.11)

for many possible values of B, namely —50 < fi¢ < 3, while the values for
all other regression estimates were kept fixed at their convergent values. In
(5.11),d; (1 =1,
(5.6)- It was observed that d* was decreasing to zero as the value of 8j; was

,18) is the value of the I/th element of the 18 x 1 vector in

decreasing to —oo. Also, it was observed that the corresponding variance
of the estimate of f§)s was getting larger as fj; was getting smaller. Conse-
quently, the covariate z.¢ under the ‘none’ category, appears to contribute
nothing to the change in the response variable. Because of this, in calculating
the goodness of fit of the model to the data, we will use 85 = 0. Also, we

perform a separate analysis, ludis her the sixth i The

final estimates of 3 except for i are shown in Table 5.1, along with their
standard errors obtained from (5.10)

The present model provides a separate set of regression coefficients for
each of the categories of ‘none’, ‘mild’ and ‘moderate’ for explaining severity
of diabetic retinopathy, as shown in table 5.1. But, the probability for an
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individual to fall in the hth category depends on all 18 regression coefficients,

Table 5.1: Non-Cut-Point Based Multinomial Logistic Model Estimates

Category Parameter | Estimate | Standard errors
B -0.2767 0.0658
B2 0.0745 0.5828
NONE B 0.0268 0.0067
B -2.3475 0.4237
Bs 0.9784 0.3210
B - .
B -0.0377 0.0204
B2 0.1314 0.0584
MILD B 0.0047 0.0067
Ba -1.6306 0.4153
Bs 0.6525 0.3324
Bs -4.1458 1.3067
By 0.0099 0.0176
B2 0.1543 0.0526
MODERATE Bs -0.0009 0.0059
By -1.1392 0.3523
Bs -0.2226 0.2968
Bs -1.5781 0.4254
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as the probability for an individual to belong to the hth category is deter-
mined by

P
=
>

=1

Tin

Thus, the i i ing the signi of @’s is different than it

usually is for linear or non-linear simple multiple regression problems. This
is, however, generally true that a small value of the regression coefficient for
any covariate under a given category, as compared with any larger value of
the same covariate under another category, will indicate its poor influence in

ining the ility for the i

to belong to that particular

category. For example, consider the value of A under all three categories
of ‘none’, ‘mild’, ‘moderate’. As under the ‘none’ category 8* has large

dard error as

negative value along with its ively) small
to its values in the other two ies, the ibution of this iate is
naturally significant in yielding a large probability for an individual falling

into the ‘none’ category.

It is clear from Table 5.1 that all covariates (z.,) appear to be necessary to
explain the severity of diabetic retinopathy. Note however, the contribution
pattern of the covariates does not appear to be the same from category to
category. More specifically in the ‘none’ category, the influential covariates
are duration of diabetes z.,, diastolic blood pressure z.3, proteinuria z.4, and -
sex .5, where as glycosylated hemoglobin level z., does not appear to be

an influential covariate under this category. This means that z., does not
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to make the larger for an i 1 to belong to the
‘none’ group. Further, for the same reasons discussed earlier in this chapter,
the regression effect of the sixth covariate, right eye macular edema z., is
not reported. In the ‘mild’ category all covariates appear to be important to
the model except for diastolic blood pressure z.3. As far as the ‘moderate’
category is concerned, only half of the covariates appear to be influential.
These covariates are: glycosylated hemoglobin level z.,, proteinuria z.4 and

right eye macular edema z.s.

5.2.1 x> Goodness of Fit

In this chapter we have proposed a non-cut-point based multinomial logistic
approach to model severity of diabetic retinopathy. The purpose of this Sub-
section is to investigate the goodness of fit of this model to the diabetes data,
in order to make inferences as to whether this model is an adequate model
to describe the diabetes data set. Once an appropriate statistic is calculated
we will compare it with the goodness of fit statistics for the probit model of
chapter 3 and the cumulative logit model of chapter 4. This comparison will
assist in choosing the ‘best’ fit of all three models proposed.

An appropriate goodness of fit statistic for testing the fit of the current

non-cut-point based multinomial logistic model to the data is given by

N M
5=3 e —pm?] (12
i=1 la=1
which is a comparable statistic to the goodness of fit statistic S, (3.11) for
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the probit model and S, (4.11) for the cumulative logit model. In (5.12),
Py denotes the estimated proportion for the ith (i = 1,...,N) individual
to belong to the Ath category under the non-cut-point based multinomial
logistic model, which is computed by

. T
P = (5.13)

fori=1,...,Nand h =1,...,M. Note that, in (5.12) ps, which is the
same as in the equations for S, in (3.11) and S; in (4.11), is the observed
proportions. The values of ps, are: pi, = .38, p2o = .38, p3, = .18, and
Pao = .06

Recall from chapters 3 and 4, that the goodness of fit statistics S) and Sp
differ from each other through the estimating formulas for the proportions
Pin and Py, respectively. Here, py, is the estimated proportion for the ith
(i=1,..., N) individual to fall in the Ath category under the probit model
and P is the estimated proportion for the ith (i = 1, ..., N) individual to fall
in the hth category under the cumulative logit model. In the same manner,
the goodness of fit statistic Sy differs from S, and S, as it is defined based on
different estimated proportions than used for S; and S,. More specifically, in
(5.12), p}, is computed by (5.13), which is quite different than the formulas
for pix and P discussed in chapters 3 and 4 respectively.

The test statistic Sy for testing the fit of the non-cut-point based multino-
mial logistic model to the data given in (5.12), has asymptotically x? distri-
bution with N — (M — 1 x p) degrees of freedom. Under the current non-

60




cut-point based model the statistic S; has the value S3 = 100.74 with 702
degrees of freedom. As x2p, > X2so = 409.3804, the value of Sy indicates that
the model is an appropriate fit to the data.

In chapters 3 and 4 we concluded that the probit model and cumulative
logit model respectively, are both appropriate models explaining severity of
diabetic retinopathy for the diabetes data. Further, we decided in chapter
4 that the cumulative logit model provided an improved fit over the probit
model since S; = 161.78 is greater than S, = 126.55. Now, we observe
that the value of the test statistic S; = 100.74 for the non-cut-point based
multinomial logistic model is less than the values of both of the statistics for
probit model (S, = 161.78) and the cumulative logit model (S; = 126.55).
C the t-point based i i

logistic model provides
the best fit to the data among the three competitors.

5.2.2 Display of Squared Error Distances

To gain further insight regarding the fit of the t-point based multino-
mial logistic model to the data, a graphical display of the squared error
distances between the model based proportions and the observed propor-
tions is shown in Figure 5.1. In the manner similar to that of chapters 3
and 4, these distances for the ith (i=L, ..., N) individual are calculated by
d; = f:(l’;n — Pino)”- Forevery i =
d; close to zero if the proposed model is providing a good fit to the data.

It is clear from Figure 5.1, that for a large number of individuals, the value

. 720 we expect to observe values of

of their squared error distances are very close to zero. Thus the model based

estimated proportions, for an individual to fall in one of the four ordered
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categories are in agreement with the observed proportions for an individual
to fall into one of the four categories. This verifies the adequacy of the

non-cut-point based multinomial logistic model in fitting the diabetes data.

Multinomial Logistic Model
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Figure 5.1: Display of Squared Error Distances for the Multinomial Logistic
Model

B when this hi: is with the hi in

Figure 3.1 and Figure 4.2 it is clear that Figure 5.1 exhibits the largest
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number of squared error distances close to zero, along with the smallest
number of large values of squared error distances. Consequently, the non-
cut-point based multinomial logistic model fits the data best as compared to

it’s other two competitors.

5.3 Fitting a Reduced Model

As it was discussed in the previous section, there was no convergent solution
for Bis which is the effect of the sixth covariate under the ‘none’ category. A

for this problem was also provided in the same

section. As the values of the sixth covariate never varied under the ‘none’
category, it was natural to explore the convergence problem. As a remedy,
in this section, we consider modeling severity of diabetic retinopathy based
on one less covariate, that is, the covariate z.5 (right eye macular edema)
will be omitted as we fit the non-cut-point based multinomial logistic model
to the data. Further, we will give the final estimates for this reduced model
and investigate the goodness of fit of this model to the data. A comparison
will then be made only between the non-cut-point based multinomial logis-
tic model based on six i and the t-point based i ial

logistic model based on five covariates.
As we now have p = 5 covariates, we require the estimation of p x (M —
=0T,

B3iT,) with M = 4 categories. We exploit the same methods provided in sec-

1) =5 x 3 =15 regression coefficients denoted by 5"

tion 5.1 to obtain the esti for these 15 unk 8 For the

purpose recall equation (5.6), and compute the 15 values using the iterative
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equation (5.9). The only difference is that in (5.9), we computed 18 values
of B denoted by 3" and here we denote the 15 estimates of the components
of 8 by 8**. Note that, the dimension of D; matrix was adjusted to re-
flect this change in the number of regression parameters. Also, the formulas
appropriate for the V; matrices were adjusted.

Convergence was obtained for all 15 regression parameters in six itera-
tions. These estimates along with their standard errors are given in Table 5.2.
It is clear from Table 5.2 that these estimates and their standard errors are
very close to the estimates and standard errors (displayed in Table 5.1) for
the non-cut-point based multinomial logistic model based on six covariates.
More specifically, within each of the ordered categories, the covariates that
were deemed non-influential for the analysis based on six covariates, appear
to maintain their patterns for the analysis based on five covariates.

Similar to the analysis provided for the non-cut-point based model for all
six covariates, a goodness of fit statistic is provided and a graphical display of
the squared error distances is displayed in Figure 5.2 for the model based on
five covariates. The goodness of fit statistic for the reduced model denoted by
53, was evaluated as S5 = 94.97 which is is found to be less than S3 = 100.74.
Note that since a model with more covariates is expected to produce a smaller
value for the goodness of fit statistic, the value of S3 = 100.74 > S5 =
94.97 appears to indicate a problem with the larger model which we already
explained in the last section as a possible effect of the sixth covariate in
general.

The histogram of the squared error distances in Figure 5.2 appears to be
quite similar to that of Figure 5.1. The only difference is that in Figure 5.1,
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there appear to be a few squared error di: which are large in
which may be a result of the non-convergence problem of the sixth covariate.

Table 5.2: Non-Cut-Point Based Multinomial Logistic Model Estimates (Re-
duced Model)

Category | Parameter | Estimate | Standard errors
B -0.2881 0.0767
B 0.0750 0.0606
NONE B 0.0241 0.0069
Ba 24745 0.4495
Bs 10712 0.3343
B -0.0468 0.0185
B 0.1258 0.0564
MILD B 0.0022 0.0062
A -1.7387 0.3644
Bs 0.7548 0.3084
B 0.0069 0.0187
B 0.1592 0.0590
MODERATE B -0.0040 0.0065
Ba -1.1901 0.3827
Bs -0.1638 0.3290
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Multinomial Logistic Model (Reduced Model)
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Figure 5.2: Display of Squared Error Distances for the Multinomial Logistic

Model (Reduced Model)
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Chapter 6
Concluding Remarks

Many studies in the scientific field involve analyzing multinomial ordinal
data. Such studies involve i igating the effect of i on ordinal

responses. When conducting an analysis on multinomial ordinal data a com-
mon problem arises in selecting a model that can adequately distinguish the

ordered responses. A standard practice is to utilize models that implement

known as cut-points to distinguish the adjacent ordered cate-
gories (responses).

In chapters 3 and 4, we discussed in details two such models that re-
quire the inclusion of cut-point parameters namely the probit model and
the cumulative logit model respectively. A serious problem one faces when

point based is that the esti of the cut-

points of such models must follow an order restriction. More specifically,
if the cut-points are thought to be in increasing order, then it is required
that the cut-point estimate that distinguishes category 1 form category 2
must be less than the cut-point estimate that distingui: category 2 from
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category 3 and so on. But the existing
used to estimate the restricted parameters of the probit and logit models do
not guarantee that the order restriction will be maintained. Although, in
this practicum we were able to estimate these point para-

meters, it was however not without any di The imati

of these parameters relied heavily on initial estimates which were already
close to maximizing the likelihood surface. Further, with regard to the cu-

mulative logit model, additional including a small si ion were

conducted to find suitable initial estimates, which is expensive as it required
extra efforts. Moreover, in general, there is no guarantee that such searches
will always be successful.

In chapter 5, we looked for a suitable resolution to this cut-point problem.
An obvious remedy was to find a model which does not rely on any cut-
points to distinguish the adjacent ordered categories. One such model is the

t-point based multinomial logistic model d by har and
Kovacevic (2000) [see also Das and Sutradhar (1999)]. This model uses a
logistic bability model, where ility depends only on the
i More specifically, each category is described by its

own set of regression coefficients, as opposed to the other approaches which
had only one set of regression coefficients.

It is not enough to explore models based on the ease of their compu-
tations, but to find a model which provides an adequate fit to the data as
well. Therefore, in the chapters we investigated the goodness of fit of the
different models to the diabetes data. It was concluded that among the

three models described in the i the t-point based multino-
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mial logistic model provides the best fit to the diabetes data. The goodness
of fit was measured by a suitable statistic based on observed and expected

proportions.
Note that the ordinal analysis presented in the practicum requires com-
plete i ion on the covariates of all It may, however, be

the case that information on some or all covariates may be missing for some
respondents. For these types of missing information cases, one needs to
develop suitable methodology in addition to taking care of the cut-points.
This problem requires further investigation which is beyond the scope of the

present practicum.
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Figure A.3: Histogram of the Distribution of the Covariate Duration of Di-
abetes within each of the ordered categories for the Left Eye
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Figure A.4: Histogram of the Distribution of the Covariate Duration of Di-
abetes within each of the ordered categories for the Right Eye
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Figure A.6: Histogram of the Distribution of the Covariate Glycosylated
Hemoglobin Level within each of the ordered categories for the Left Eye
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Figure A.7: Histogram of the Distribution of the Covariate Glycosylated
Hemoglobin Level within each of the ordered categories for the Right Eye
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Figure A.9: Histogram of the Distribution of the Covariate Diastolic Blood

Pressure within each of the ordered categories for the Left Eye
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Figure A.10: Histogram of the Distribution of the Covariate Diastolic Blood
Pressure within each of the ordered categories for the Right Eye
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Figure A.12: Histogram of the Distribution of the Covariate Proteinuria

within each of the ordered categories for the Left Eye
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Figure A.13: Histogram of the Distribution of the Covariate Proteinuria

within each of the ordered categories for the Right Eye
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Figure A.14: Histogram of the Distribution of the Covariate Gender
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Figure A.15: Histogram of the Distribution of the Covariate Gender within
each of the ordered categories for the Left Eye
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Figure A.16: Histogram of the Distribution of the Covariate Gender within
each of the ordered categories for the Right Eye
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Figure A.17: Histogram of the Distribution of the Covariate Left Eye Macular
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Figure A.18: Histogram of the Distribution of the Covariate Left Eye Macular

Edema within each of the ordered categories
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Figure A.19: Histogram of the Distribution of the Covariate Right Eye Mac-
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	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Information To Users
	0006_Note To Users
	0007_Copyright Information
	0008_Title Page
	0009_Abstract
	0010_Acknowledgements
	0011_Table of Contents
	0012_Table of Contents iv
	0013_Table of Contents v
	0014_List of Tables
	0015_List of Figures
	0016_List of Figures viii
	0017_List of Figures ix
	0018_Chapter 1 - Page 1
	0019_Page 2
	0020_Page 3
	0021_Page 4
	0022_Page 5
	0023_Chapter 2 - Page 6
	0024_Page 7
	0025_Page 8
	0026_Page 9
	0027_Page 10
	0028_Page 11
	0029_Page 12
	0030_Page 13
	0031_Page 14
	0032_Chapter 3 - Page 15
	0033_Page 16
	0034_Page 17
	0035_Page 18
	0036_Page 19
	0037_Page 20
	0038_Page 21
	0039_Page 22
	0040_Page 23
	0041_Page 24
	0042_Page 25
	0043_Page 26
	0044_Page 27
	0045_Page 28
	0046_Page 29
	0047_Chapter 4 - Page 30
	0048_Page 31
	0049_Page 32
	0050_Page 33
	0051_Page 34
	0052_Page 35
	0053_Page 36
	0054_Page 37
	0055_Page 38
	0056_Page 39
	0057_Page 40
	0058_Page 41
	0059_Page 42
	0060_Page 43
	0061_Page 44
	0062_Page 45
	0063_Page 46
	0064_Page 47
	0065_Chapter 5 - Page 48
	0066_Page 49
	0067_Page 50
	0068_Page 51
	0069_Page 52
	0070_Page 53
	0071_Page 54
	0072_Page 55
	0073_Page 56
	0074_Page 57
	0075_Page 58
	0076_Page 59
	0077_Page 60
	0078_Page 61
	0079_Page 62
	0080_Page 63
	0081_Page 64
	0082_Page 65
	0083_Page 66
	0084_Chapter 6 - Page 67
	0085_Page 68
	0086_Page 69
	0087_Bibliography
	0088_Page 71
	0089_Appendix A
	0090_Page 73
	0091_Page 74
	0092_Page 75
	0093_Page 76
	0094_Page 77
	0095_Page 78
	0096_Page 79
	0097_Page 80
	0098_Page 81
	0099_Page 82
	0100_Page 83
	0101_Page 84
	0102_Page 85
	0103_Page 86
	0104_Page 87
	0105_Page 88
	0106_Page 89
	0107_Page 90
	0108_Page 91
	0109_Page 92
	0110_Blank Page
	0111_Blank Page
	0112_Inside Back Cover
	0113_Back Cover

