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Abstract

There are many situations in practice wher~ one is interested to find the

regression effects of the covariates on polytoD:l.ous responses. Furthermore,

there lUll situations where polytornous responses are ordinal by nature. These

types of data are commonly analyzed by exploiting the well-known probit

and cumulative logit models. These methods, bowever, require the introduc­

tion of certain cut.-points to distinguish ordered categories of tbe polytomous

responses, and tbese cut-points are required <to be estimated consistently,

which may not be easily obtained. In the pract1icum, we use a recently devel­

oped noo-cut-point based cumulative logit mo del to resolve this estimation

problem. The regression anal~is chosen in t;b.e practicum was motivated

by a need for a refined analysis of a diabetes ·data set used in the Wiscon·

sin Epidemiologic Study of Diabetic RetinopatWy (WESDR). The practicum

discusses the advantages and disadvantages of the existing as well as the new

techniques. The non-eut·point based approach was found to give the best fit

to tile diabetes data, witll easy interpretation of the regression estimates.
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Chapter 1

Introduction

1.1 Motivation of the Problem

Analyzing multinomial ordinal data is important in practice. One of the maio

scientific interests in such problems is to find the effect of the covariates on

ordered responses. Consider, for example, a medical problem with regard to

diabetes, where the responses such as severity of diabetic retinopathy may

be explained as a function of associated covariatcs. There exist some studies

where this type of data are analyzed to understand the effects of the treat­

ments and other covariates on the severity of diabetic retinopathy. We refer

to the Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) as

one such study. This study contains complete records of 720 younger onset

Type 1 diabetics. The data contains information pertaining to ntanerous

covariates such as duration of diabetes and glyoosylated hemoglobin leveL

The objective is to investigate the effect of such covariates on the ordered

responses labeled as 'none', 'mild', 'moderate' and 'proLiferative' categories



which are indicators for the severity of diabetic retinopathy. As these or­

dered responses are in order from best to worst, methods to find the effect

of covariates after distinguishing these categories are required.

There exists several statistical approaches to analyze the multinomial

ordinal types of data described above. For example, we refer to McCullagh

(1980), Stram et a1. (1988), Walker and Duncan (1967), Williams and Grizzle

(1972), and Williamson et a1. (1995). These authors discuss cumulative logit

models to analyze the multinomial ordinal data. In such models, cumulative

probabilities are defined as a function of the covariates and certain cue.points,

where the cut-points distinguish the adjacent CAtegorical responses. More

specifically, the cwnulative logits are defined so that the cut-points follow an

(increasing) order restriction. For a comprehensive discussion on the basic

development of this type of model, we refer to Agresti (1990, section 9.4)

among others.

A second approach based on the probit model, available to analyze multino­

mial ordinal data, has been presented by Aitchison and Silvey (1957), Ash·

ford and Sowden (1970), Gurland, Lee and Dabm (1960), Harville and Mee

(1984) and Kim (1995). As the probabilities are based on the covariates and

cut-points, this approach is similar to the legit model. The main difference

between the probit and logit model is that the probit model uses the stan·

dard normal cumulative distribution function as the cumulative link (unction,

wbereas the logit model uses the binary logistic function as its cumulative

link function.

The above mentioned commonly used methods (cumulative logit and pro­

bit approaches) to analyze multinomial ordinal data, may however run into



difficuJties in estimating the cut-point parameters &SSOCiated with such pro­

cedures. More specifically, as the cut-points must follow an order restriction,

the estimation procedures such as the Ne\vton Raphson iteration technique

available to estimate the values of these cut-points does not guarantee that

this order restriction will be maintained. Recently, in a multivariate set up,

Sutradhar and Kovacevic (2000) (see also Oas and Sutradhar (1999)) have

proposed an alternative approach which, unlike the probit and logit mod­

els, avoids the use of the cut-points in modeling the multinomial ordinal

regression data. More specifically, they use a non-cut-point based cumula­

tive probability model which distinguishes the ordered categories in a natural

way. Note, however, that in the present practicum, we deal with the uni­

variate ordinal polytomous model which is a special case of the multivariate

model introduced by Sutradhar and Kovacevic (2000).

1.2 Objective of the Practicwn

..<\5 mentioned above, itl the present practicum, we deal \vith a utlivariate case

and simplify the multivariate procedure of Sutradhar and Kovacevic (2000)

to analyze univariate ordinal regression data. One of the strong motivatiotlS

to deal with such univariate case came from the fact that an exploratory

analysis of WESDR data did not appear to show any difference between the

left and right eye's retinopathy level. Moreover, we wish to examine the

performance of all three methods, induditlg the new tlon-cut-point based

procedure, to analyze a univariate problem.

The specific plan of the practic:um is as follows:



1. In chapter 2, l\'e provide an exploratory analysis of the covariates and

response variables of the \VESDR data, which will be helpful in devel­

oping the appropriate ordinal regression model for further statistical

analysis.

2. In chapter 3, the probit model will be exploited to analyu the relation·

ship between the ordinal response and associated covariates. Through­

out the chapter a detailed description of the model will be presented

along witn tne likelihood estimation procedure used to obtain the esti·

mates for the parameters involved in the model. The goodness of fit of

the model to the data will also be investigated.

3. In chapter 4, we will review the cumulative logit model as an alternative

model to the probit model, to analyze the ordered categorical data. To

be specific, we first show how this model can be developed and then

\\'e discuss the likelihood estimation for the parameters of the model.

Similar to chapLer 3, the goodness of fit of the model to the data \\ill

also he provided.

4. In chapter 5, we argue for a newly suggested. non-cut-point based

multinomial logistic approach to explore tbe relationship between the

ordinal response variable and associated covariates. In this chapter,

unlike chapters 3 and 4, we e.,;ploit the generalized estimating equation

approach for the estimation of the parameters of the model. Further

we investigate tbe goodness of fit of the model to tbe data, and provide

comparison of all three approaches with regard to fitting the models to

the data.



5. The conclusion of the practicum is provided in chapter 6. We also

provide some remarks on future research in this area.



Chapter 2

Background of the Problem

2.1 Severity of Diabetic Retinopathy

Diabetes is one of the most serious diseases which causes extreme suffering

and is a leading cause of death by disease. Currently 1.5 million Canadians

have been diagnosed with diabetes and an additional.75 million are suspected

to have the disease, but are unaware of it. Diabetes is a disorder which does

not allow the body to utilize sugar obtained from the foods we eat. Diabetics

are categorized into one of two typeS, Type 1 and Type 2 diabetes. A person is

identified as baving Type 1 or insulin-dependeot diabetes when the Pancreas

either stops producing or produces very little insulin. A person typically

develops Type 1 diabetes before the age of 30. Type 2 diabetes is marked as

being an older onset diabetes, usually after the age of 30, and is nonAnsulin­

dependent. Type 2 diabetes is identified when either the Pancreas does not

produce enough insulin or when the insulin produced by the Pancreas is not

being used by the body.



Although the symptoms for Type 1 and Type 2 diabetes are very similar,

they develop much faster and are more disastrous for tbe Type 1 diabetic.

These symptoms include frequent urination, unusual thirst, extreme hunger,

unusual weight loss, extreme fatigue, irritability, nausea, vomiting, blurred

vision, and others. Costing an estimated 5-6 billion doUars to the Canadian

health care system, people still fail to recognize diabetes as a serious disease.

In fact, diabetes is known to significantly increase the risk of heart disease,

kidney disease, non-tral101atic amputation, impotence, and is also the leading

cause of adult blindness.

The increased blood sugar levels caused by diabetes is known to damage

both small and large blood vessets in the body. Damaged blood vessels within

the eye will cause impaired or loss of vision referred to as Retinopathy. When

diabetes is the cause of Retinopathy it is referred to as Diabetic Retinopathy

and is mainly present with Type 1 Diabetes. It is known that among 86

percent of people diagnosed with early onset diabetes who have went blind,

the only contributing factor of their blindness was retinopathy. (source:

Canadian Diabetes Association, http://www.diabetes.ca)

..<Utbough treatments such as insulin injections, and proper diet and exer·

cise plans have been developed to create more comfortable living for diabetics,

no cure exists. Early detection of diabetes is important to halt or prevent

some of tbe complications tbat arise from diabetes such as Retinopathy. In

order to find a better clinical remedy more understanding about how other

factors such as age, sex, and duration of diabetes contribute to the disease

is necessary. For this purpose, many clinical organizations, in particular in

USA and Canada, are continually engaged in biomedical research concerning



this disease.

One such study has been recently done by WtsCOnsin Epidemiologic Study

of Diabetic Retinopathy (WESDR). This dataset was anal}'2ed by Williamson

et al (1995), among others, to understand the effects of associated co\"ariates

on the severity of Retinopathy on both the left and right eyes. Note that

as the socioeconomic conditions are similar for both USA and Canada, the

results obtained from a USA study should be useful for Canadian diabetes re­

searchers as well. Turning back to the WESDR, Williamson et al (1995) have

used a cut-point based polytomous approach and exploited suitable estimat­

ing equations to find the covariate effe<:ts as mentioned above. We however,

will take a simpler statistical approach to anal}'2e such a data set. But, be­

fore we go for details, we DOW explain the variables involved in the study and

examine the nature of these variables through an exploratory analysis.

This data set contains records of 996 younger onset Type 1 diabetics,

of which complete records are present for 720 of these persons. A lo-point

ordinal scale increasing from none to worst was used to grade the severity of

Diabetic Retinopathy for both left and right eyes. Altogether four ordered

categories were considered [ef Williamson et al (1995)1 and they are: none,

mild, moderate, and proliferative. In total, information was collected on 17

covariates: 1. right eye macular edema; 2. left eye macular edema; 3. right

eye refractive error; 4. left ej'e refractive error; 5. right eye intra-ocular

pressure; 6. left eye intra-ocular pressure; 7. age at diagnosis of diabetes;

8. duration of diabetes; 9. glycosylated hemoglobin level; 10. systolic blood

pressure; 11. diastolic blood pressure; 12. body mass index; 13. pulse ratei

14. sexi 15. proteinuria; 16. doses of insulin per day; 17. type of county of



residence.

2.2 Exploratory Analysis

In this section we provide an exploratory ana1~"Sis for tbe diabetes data set

anal)'7:ed by Williamson et al (1995), which will depict bow the response

variable as well as the covariates are behaving. Although, information on 17

covariates was collected in tbe original data set, we will only consider the so

called marginal cavariates and they are: 1. duration of diabetes; 2. glyco­

sylated hemoglobin level; 3. diastolic blood pressure; 4. proteinuria; 5. sex;

6. right or left eye macular edema. Note that these six marginal covariates

were also chosen by Williamson et al (1995). These authors, however, had

one more association covariate (doses of insulin per day) in their analysis,

which we do not include in our study as we are e."'Camining properties of the

marginal variables in this section.

In the following subsections, we exhibit various exploratory graphs for

the response as well as covariables and discuss the patterns to understand

the effect of the cavariates on the responses.

2.2.1 Response Variable

The histograms for the right and left eye retinopathy level for the 720 persons

with complete records is shown in Figure A.I. The four ordered categories:

none, mild, moderate, and proliferative represented by 0-1, 1-2, 2-3, and 3-4

respectively are given along the horizontal axis. The number of subjects in

each category is indicated on the vertical axis. It appears that there are same



number of individuals in tbe none aDd mild categories under botb left and

right eyes. Under tbe moderate aDd proliferative categories tbere are fewer

individuals as compared to the other two categories. Between the moderate

aDd proliferative groups, tbe moderate group appears to contain almost twice

the observations as compared to the proliferative group. Note that it is not

only that the none and mild groups have tbe same number of individuals

under both eyes, the overall distribution of the individuals appear to be the

same under both left aDd right eyes. For tbe left eye there are 268 individuals

in the noae category, 277 individuals in the mild category, 127 individuals

in the moderate category, aDd 48 in the proliferative category. The right

eye contains 275 individuals in the noae category, 270 individuals in the mild

categOry, 128 individuals in the moderate category, and 47 in tbe proliferative

category.

2.2.2 Explanatory Variables

Figures A.2, A.3, and A.4 show the distributions of the duration of diabetes.

In all three Figures the duration of diabetes (in years) is given on the hor­

izontal axis and is divided into six equal groups representing 10 years for

each group. The number of observations in each of the si.x intervals is given

on the vertical axis. Figure .'\.2 exhibits the distribution of the duration of

diabetes under the assumption that other covariates are held fixed at suit­

able levels. It appears that a large number of subjects suffer from diabetes

even after a period of ten years. In Figure A.3 and A.4 we look at the dis.­

tributions of the covariates separately for the left and rignt eye respectively,

and record tbe number of individuals under all four ordered categories: none,

10



mild, moderate, and proliferative. We see from Figure A.3 that in each of

the four ordered categories the histograms strongly re8ect the overall picture

displayed in Figure A.2. A comparison between the left eye (Fig A.3) and

the right eye (Fig A.4) clearly shows a remarkable resemblance between the

h.istograms for the duration of diabetes for each category under both left and

right eyes.

The second covariate, Glycosylated Hemoglobin Level, is graphically de­

picted in Figures A.5, A.6, and A.7. Glycosylated Hemoglobin Level is given

on the horizontal axis and the number of observations is given on the verti­

cal axis. From Figure A.5 it appears that the distribution is symmetric with

nearly 500 of the 7'20 subjects having a Glycosylated Hemoglobin Level in

the middle range. Figures A.6 and A.7 presents a closer look at the behavior

of Glycosylated Hemoglobin Level under each of the four ordered categories

for both left and right eyes. These pictures again show strong similarities

to the general picture displayed for Glycosylated Hemoglobin Level given in

Figure A.5. We again note the close resemblance of the left e)"e (Fig A.3)

and the right eye (Fig A.4) with regard to the distribution of Glycosylated

Hemoglobin Level under each of the four ordered categories.

The next covariate we explore is Diastolic Blood Pressure. This covariate

is displayed in Figures A.8, A.9, A.lO, with Diastolic Blood Pressure given

along the horizontal axis the number of observations on the vertical axis.

The histogram, displayed in Figure A.8, appears to have to normal curve

shape centering around 75. The distribution of Diastolic Blood Pressure for

each of the four ordered categories for both left eye and right eyes exhibited

in Figures A.9 and A.10 also follow the normal shape. Note tbat tbe left eye

11



(Fig A.9) and the right eye (Fig A.lO) produce almost identical histograms

with regard to the distribution of Diastolic Blood Pressure, under each of

the four ordered categories.

The distribution of the fowth covariate, Proteinuria, is displayed in Fig­

ure A.il, A.l2, and A.l3. Proteinuria is a dichotomous variable, that is, it

is either absent or prescnt in the individuals, which is shown by two bars

for the respective groups given along the horizontal axis. The number of

observations is indicated on the vertical aus. It appears [rom the histogram

displayed in Figure A.ll, the histogram for the overall distribution of Pro­

teinuria, that Proteinuria is absent in approximately 85 % of the individuals.

Figures A.l2 and A.13 provide information about the presence of Proteinuria

within each of the four ordered categories for both left and right eyes. The

histograms for the distribution of Proteinuria under each of the four ordered

categories strongly reflect tbe histogram for the overall distribution of Pro­

teinuria presented in Figure A.il, for both left and right e}"CS. Again, we

note the strong resemblance between the left eye (Fig A.12) and the right

eye (Fig A..13), with regard to the distributioD. of Proteinuria, under each of

the four ordered categOries.

Figures A.14, A.IS, and A.16 are graphical representations concerning

the fifth covariate, gender. Gender is indicated on the horizoD.tal a.-cis, and

the corresponding number of observations is indicated on the venical a-cis.

Figure A.14 which contains all 720 individuals gives clear indication that

there is nearly the same number of female subjects as male subjects. Further,

this representation of equal number of males and females is reflected within

each of the four ordered categories: none, mild, moderate, and proliferative.

12



The above observation suggests that retinopathy level does not appear to be

gender sensitive. Note that the histograms appear virtually unchanged from

the left eye (Fig A.15) to the right eye (Fig A.16), with regards to gender

within each of the four ordered categories.

Finally, we consider the covariate, Macular Edema displayed in Figures

A.17, A.1S, A.19, and A.20. This covariate represents a measurement taken

directly from the eyes and therefore two separate measurements arc taken

from each individual one for the left eye (Left Eye Macular Edema) and the

other for the right eye (Right Eye Macular Edema). Tb.e b.istograms for

the left eye is depicted in Figures A.17 and A.1S, wb.ile tb.e grapb.s for the

rigb.t eye are shown in Figures A.19 and A.20. For all four Figures, presence

of Macular Edema is indicated on the horizontal axis while the number of

observations under each of the two groups is shown on tb.e vertical 3)..-1s. The

overall histograms for Left Eye Macular Edema (Fig A.17) and Right Eye

Macular Edema (Fig A.19) suggest tb.at Macular Edema is present in 10 %

of individuals. The break down of the Dumber of individuals under each

of the four ordered categories is shown in Figure A.IS that corresponds to

Figure A.17 for the Left Eye Macular Edema. Similarly, the break down of

the Dumber of individuals under each of the four ordered categories is shown

in Figure A.20 which corresponds to Figure A.19 for the Right Eye Macular

Edema. A comparison of the histograms between the left eye (Fig A.lS) and

right eye (Fig A.20) again reveals the similarities between the left eye and

right eye, within each of the four ordered categories.

From the above discussion it is clear that the distribution of individuals

with regard to both response and covariables under each of the four ordered

13



categories appear to be almost identical for the len and right eyes. Conse­

quently we have decided to study, in details, about the effects of the selected

covariates on one response variable ooly, namely the Right Eye Retinopathy

Le".1.

Note however that the regression analysis for a univariate ordered cat­

egorical variable (such as Right Eye Retinopathy Level) is not adequately

discussed in the literature. Some of the e:cisting methods are:

1. Latent Gaussian process based categorical approach.

2. Linear cumulative Logits approach.

Further note that the above two approaches distinguish the adjacent cat­

egories with the introduction of an appropriate cut-point, which may not

be easy to estimate consistently. In the next two chapters we review these

two approaches in detail and apply these methods to the diabetes data set

discussed above. In chapter 5, we provide a new approach to this problem

and apply a newly suggested multinomial logistic approach, which, unlike the

approaches discussed in chapter 3 and 4, does not require the introduction of

any cut points directly. But, unlike the existing approaches, the cumulative

logits are nonlinear which is relatively slightly more difficult to interpret as

compared to the linear cumulative logit. W'hen this io.terpretation problem

is weighted against the non-cut-point based advantage, the new approach

appears to be superior to the existing approaches.

14



Chapter 3

Latent Process Based Probit

Analysis

In this approach, we assign the itb (i = 1, .. , N) individual into one of

se\o"eral categories, where its category is determined based 00 its own interval

00 the real axis of an unobservable latent variable. To be more specific, let

Y represent an underlying continuous latent response variable and Y; is the

value of Y for the itb individual. Also suppose that although Y; is unobserv­

able, an interval that contains Y; is known. Assign the numbers 1, .. ,M,

respectively, to the M ordered categories. As 1'; itself is not observable, the

ith individual is observed to belong to a category number h, say Z, = h,

through the interval relationship of 1'; given by

(3.1)

15



where h E {l, _.. , AC}. In (3.1) cro = -00, OM = +00 and 0" __ , QM-I are

unknown boundary poiats that define a partitioaing oC the real line into M

intervals. Thus, whe31 tile realized value of Yo belongs to the hth interval, we

say that Zi = h.

Under oue assum.ptions, the probability-mass functioD oC Zll' ., Zlo/ is

",.{Z,~,;(i~I, ._,N)} (3.2)

where Y;,...., N(xffJ,r;2). Here, Xi = (XiI. .. ,Xi.. , •. ,X/p)T is the px 1 covari­

ate vector Cor the itb.:. individual, fJ is the p x 1 regression vector and ".2 is the

variance of Yj discussed. Note that for the diabetes data discussed in chapter

2, p = 6, and i varies Crom 1 to N = 720. Finally these N individuals are

independent. It thel1 follows from (3.2) that

L(p,.u"l) = IT IT r: ~ (Yi. - x"l;lJ) dYi. (3.3)...,,._1 ...._. u

where IV" (h ""- 1, ...• M) identifies the number of individuals in the hth

category. Here i. inr.dicates the ith individual belongs to the hth category.

Then Yi and X, for tbe ith individual are re-e.xpressed as Yi" and Xi. provided

the ith individual t>eloogs to the hth category. In (3.3), 4>(-) denotes t~e

probability density function (pdC) of the standard normal variable Yi. : Xi•.
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3.1 Estimation of the Parameters

As the likelihood function is available, the parameters may be estimated by

ma:rimiz.ing the likelihood function itself. Note however that the likelihood

estimation for all the parameters fl, (f and 01•.. ,QM-l is quite invohui as

we ha"-e to solve M +p likelihood estimating equations which is usually done

by applying tile Newton Rapnsoo iteration technique. Fwther there is no

guarantee that such likelihood solutions wiI! ensure the restriction

(3.4)

where Uh denotes the likelihood estimate of Qh. Nevertheless, in this section,

we attempt to obtain the maximum likelihood estimates of all the parame·

ters and examine whether the restriction (3.4) is satisfied or not for the Q

parameter. Further, this approach wiU be compared later on with the other

two methods to be discussed in the next two chapters. All these will be done

in connection with the analysis of the Wisconsin diabetic retinopathy data

set. TUrning back to the likelihood estimation method, we first write the

log-likelihood function or (3.3) as

l = log L = E.E log [.. (0'. -:tT.P) _.. (O'IH - rT.p)] (3.5)
...\ .... l (J" (J"

where ~(.) denotes the 'i-umulative distribution function (cd£) of the standard

normal variable Yi. : :ti
.,. This log-likelihood function (l) will be ma.ximized

to obtain the estimates of a... (h = 1, ... , M - 1), /3 as well as (72. The
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goodness of fit of the method to the data will also be e:~plored.

Note that for convenience of writing the first and second order partial

derhati....-es of the log-likelihood function, we define two functions as follows.

Let

(3.6)

and

(3.7)

be these two functions, where ~(ao - z1.:.+,) =0 and <fl(a"", - :z:T.+l) = I, as

0.0 = -00 and aM = +00.

3.1.1 Step 1: Estimation of the Regression Parameters

For suitable initial values of all. and q2, the likelihood estimate of {J is obtained

by solving the iterative equation

where,

- - [( iJ'1 ).'] [81]PIT + 1) ~ PIT) - apapr ,ap ,

18
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and

alJ~~ = ~ f..E [Wi/l(h,h-l){oll-z;,.P) - Wi,,+,(h,h+l)
y- 11._1 •• _1

(nill-l -xf'/j) - {Wi/t;(h,h-l) - Wi.+,(h,h+ l)FZ!Xi.XT,.

with p(r) as the estimated value of f3 on the rtb trial and the expression [']r

is evaluated at ,B(r}. In (3.8), ~ is the p x 1 vector of first order partial

derivatives and a:;~ is the p x p second order partial derivative matrix.

Note that the estimation of /l could be done jointly along with the es­

timation of the other parameters, namely a = (01.02 ••. ,QM_L)T and (1',

by solving p + M estimating equations. But, this is quite involved alge­

braically as well as numerically. .tv:, a remedy, we have chosen to estimate

p, oll.(h = 1•.. 1M - 1) and (7' following a three step procedlll"c. Once, for

given values of Oh and (1', the convergent values of (J'S are obtained by solv­

ing (3.8), they will be used in section 3.1.2 to obtain improved estimates for

o:,,(h = I, .. , M - 1). This will be referred to as the second step, first step

being the estimation of fJ. Next the estimates of fJ and c:r,,(h = 1, .. , M -1)

from steps 1 and 2 are used to obtain an improved value of q2 in section 3.1.3.

Once improved estimates of c:r,,(h = 1, ... , M - 1) and dl are obtained in

steps 2 and 3, they are used in step 1 to improve the fJ estimate further. This

cycle of iterations continues until convergence is obtained {or all parameters

p, c:r,,(h = 1, .. , M - 1) and q2.
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3.1.2 Step 2: Estimation of the Cut-Points

Note that for an initial value of Ul, and the P estimate from step I, the

likelihood estimates of a = (01,0'2, .. , OM_dT is obtained by solving the

iterative equation

[( 8'1 )-'] [at]a(r + 1) = o(r) - 808oT ~ aa ~ (3.9)

where oCr) is the estimated value of a on the rth iteration and the expression

(-l~ is evaluated at a(r), ;!; is the M - 1 )( 1 "'-ector of first derivatives of

the likelihood function with respect to a and ::aT is the M - 1 )( M - 1

second derivative matrix. Further, in equation (3.9),

~d

E [~Will(h,h-I)(alo -:z:T..P) - .!.W2,(h,h-l)]
;._1 U U

_ Nf' [~Wi.+I(h,h+I)(a.-:z: ... ,P) _ .!.w.:'+,(h,h+Il].
;.+.=1 U fT

for all h = I, .. , M -1, where W(.) are defined in (3.6) and (3.7). Note that

it is clear from the above second derivatives that for Ih - h'l = I, it reduces

20



otllenvise,

8'1
lJa"lJa", =0.

•'\5 tile a,,(h = 1, .. , M - 1) values are tile cut-points distinguishing the

adjacent categories, and because no order restrictions are imposed on the a,,'s

in the traditional likelihood approaches, such as in the estimating equation

(3.9), there is no guarantee that estimated values of a ... (h = I, .. , M ­

1) will maintain the restriction aJ < a2 < ... < aM_I' Further, there

may be multiple solutions or roots for these all. parameters because of the

possibility of local maxima for such a high dimensional likelihood surface that

we are considering here. Nevertheless, for simplicity we use the likelibood

estimating equation (3.9) to obtain the cut.point estimates for the diabetes

data discussed in chapter 2. These estimates will be compared with the

estimates obtained by a similar procedure in chapter 4, and with estimates

from a new non--<:ut-points based procedure to be discussed in chapter 5.

3.1.3 Step 3: Variance Component Estimation

Similar to the likelihood estimating equations for P and a, v:e write the

likelihood estimating equation for UJ as
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where,

and

81
a;;'i

,;'(r+l) ~,;'(r)- [(~rU£'-L (310)

~(q2)-i[ - f E[Wii\(h, h - l)(a,. - %[.11)
..sl ...... '

- W•••I(h,h+l)(QIl-I-::tf.Pll]

- Wi.... (h. h + 1)(011_1 - ;I;[..8)lJ

1 [M N. [ [(Q. _xTPl'+ 2(cr2)-1 -L.L Wi,,(h,h-l)(all-zrp)~
l\.. l ••=1

- ~+~{Wih(h,h-l)(Qh-:tr.fJ)

- Wi/l. .... (h.h+ 1)(0._1 -zf.P>]] - Wi..H(h,h+ 1)(0,\_1 -rT,.p)

(Qh-l2~%r..P)2 - ~ + b [Wih(h, h - l)(Qh - xT,./J)

- W;•• ,(h,h+1)(Q._, -X;.P)]])]

with ci2 (r) is the estimated value of q2 on tbe rtb iteration. The e.-cpression

[-]r is evaluated at ci2 (r).

With regard to the estimation of lil, it should be pointed out that if the

actual value of (12 is close to zero, then the above iteration equation (3.10)
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may yield a negative estimate. One may however, use restricted maximum

likelihood estimation method or EM algorithm to obtain a non-negati1;e es­

timate of cfl. For the diabetes data set hO\\'e\-er, the ma."cimum likelihood

estimate ;2 itself \vas found to be positive.

3.2 Probit Analysis of Diabetes Data

In this section we demonstrate the application of the procedure discussed

earlier in this chapter by analyzing the data from the Wisconsin Epidemio­

logic Study of Diabetic Retinopathy (WESDR) discussed in chapter 2. For

the purpose we recall all si.x covariates (i.e. p = 6), chosen in chapter 2, to ex­

amine their effects on tile categorical responses for the right eye retinopathy.

These covariates are 1. duration of diabetes x.\; 2. glycosylated hemoglobin

level %".2; 3. diastolic blood pressure X-3; 4. proteinuria x.. ; 5. sex X-!); 6. right

eye macular edema X~. Here, in general x_.. represents the uth (u = 1, ... ,6)

covariate for an individual. Note that as the ith (i = 1, .. , N = nO) indi­

vidual belongs to one of the M = 4 ordered categories: none, mild, moderate

and proliferath"e, there ace M - 1 = 3 cut-points explained by 01 < 02 < 0)

separating the adjacent categories.

Applying the three step iterative procedure given in section 3.1 ~-e ob­

tain the estimates for the unknown scale parameter u 2 , the six regression

coefficients PI, {h, .. , fJs and the three cut-point parameters 01,02, and 03.

These estimates are shown in Table 3.1. In the same table, we also provide

the standard errors of these estimates that were obtained from the observed

information matrix _[1/1(u)rl, -[¢(a)J- I, and _[1/1(p)]-1 respectively, where
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Table 3.1: Latent Process Based Probit Model Estimates for the Diabetes

data

Type of parameter Parameter Estimate Standard. errors

a, 8.66 0.2608

Cut-point a, 14.41 0.1506

a, 18.95 0.1733

p, 0.281 0.0100

P, 0.249 0.0393

Regression p, 0.028 0.0044

p, 2.964 0.3338

P, -0.340 0.2191

P, 6.440 0.4300

Scale a' 5.48 0.0543

It is dear from Table 3.1 that all si"( covariates except %"..$ (sex) have

influential effects on the severity of diabetic retinopathy. _~ far as the sex

covariate is concerned, it does not appear to have any influence on the severity

of the diabetic retinopathy as #3 = -.340 with the large standard error
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0.2191. This result however contradicts the findings of Williamson et al

(1995) as they found that the se.."( covariate also was in8uential.."'-s for the

estimation of the cut-points is concerned, ot, a", and OJ, clearly met the orner

restrictions. One of the reasons for this perhaps is that the latent variable

had high variation ~;th 0'2 = 5.48, which may have contributed in the first

instance to separate out the cut-points clearly, although the cut-points can

be close to each other even though cr is high.

As for the remaining five covariates, the covariate x.a (right eye macular

edema) seems to he the most influential followed by X.4. (proteinuria). Tbe

covariates X.I (duration of diabetes) and X.2 (glycosylated b.emoglobin level)

appear to behave similar effects and their effects seem to he Less significant

than X-4, while X.J bas the effect does not seem to be very significant.

We should however note here that the convergence values of the pa_

rameters shown in Table 3.1 were quite dependent on proper seLection of

initial values for aU the estimates of the parameters Q and p. For an as­

sumed value of (72 = 4.0, we searched for the maximum of the likelihood

function by trial and error method until the global maximum zone was

found. We have then selected initial estimates for the Q and /3 parame­

ters from that zone. These initial estimates, & = (14.79,17.75,19.95) and

/J = (-0.37,0.16,0.14, -4.33, 1.58, 10.88) were used in steps 1 and 2 to ob-

lain a temporary convergent set of estimates for Q and p. These convergent

values of Q and /3 were then used. in step 3 to obtain an improved estimate of

q2. Ne."(t, this improved estimate of q'l was used in steps 1 and 2 to further

improve the estimate of fJ and Q. This cycle of iterations continues until

convergence for all three parameters p, a and 172 • It was found that the
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convergence was achie"'ed in 8 such iterations.

Remark that at times, when the three step iterations were performed

based on poor selection of initial estimates (such as estimates yielding local

maximum) of the parameter, we observ-ed many difficulties, such as; a's were

not maintaining the order restrictions, and convergence was never achie"oed..

3.2.1 x? Goodness of Fit

In this chapter we have argued to fit a probit model to the diabetic data.

One may however, try to fit otller similar but different models to analyze the

same data set. For example, we consider a linear cumulative logit model in

chapter 4 and a new non-eut.--point based multinomial logistic approach in

chapter 5 to fit the same diabetic data. It then raises a natural concern, to

choose the best model among all possible models that one may wish to fit.

A remedy to this concern is to examine the goodness of fit of each model to

the data. With this in view, we will evaluate an appropriate goodness of fit

statistic under three different models considered in this chapter as well as ill

chapters 4 and 5.

An appropriate goodness of fit statistic for fitting the probit model to the

data is

(3.11)

where Pha is the observed proportion for the ith individual falling into tile

hth (h = 1, ... , M) category, and Pih is the estimated proportion for tile
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ith (i = 1, .. , N) individual to fall into the hth category under the probit

model. Here PiA is computed by

(" TO) (" T")Pih=<Ii Qh~ZjlJ -<Ii (th_I;Z,{J (3.12)

for i = 1, .. , Nand h ;= 1, .. , M. In (3.lt), <t(.) is the cumulative distribu­

tion function of the normal distribution, where ~(-oo) = 0 and <Il(+00) = 1.

Further in (3.lt), the observed proportions are calculated from the data just

by counting the number of individuals falling into each of the four categories.

For e..'tamp(e, if the ith individual is obsen'OO to fall into the first category

tben for all i = 1, .. ,Nt Pw. = NJ/N. The observed proportions for the foue

ordered. categories are; Pil" = 0.38, Pi2c> = 0.38, PL30 = 0.18, p;~o = 0.06. Re­

mark tbat in place of observed proportions one could test any other possible

population proportions that may be justified by scientific reasoning.

Note that under tbe problt model the test statistic in (3.lt) has asymp­

totically X? distribution with degrees of freedom N - (AT=T + p + 1), where

p + 1 is the number of regression parameters plus the scale parameter, and

Ml- is the number of cut-points. For the probit model the test statistic

51 was evaluated as 51 = 161.78 with 710 degrees of freedom (d/). Oue

calculated value of 51 is less than xts = 409.3804 < xJlO indicating tha.t the

data agrees with the null hypothesis.
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3.2.2 Display of Squared Error Distances

. "Let d; = E(Pill - P......)' denote the sum of squares of the differences be-

tween the estimated and observed proportions. Remark that, a similar

but different statistic could be constructed by using standardized distances

(Pill - PiM)/'/vQr(P.:.o.) instead of ordinary distances PiA - PiIID. Note how­

ever that it is common in practice to compute vor(pill) = PillqiJllN under

the null hypothesis. Since these variances, Pw,qilL.1N, are the same for all

individuals, d; remains to be an appropriate statistic to make any necessary

comparisons and conclusions concerning the fit of the model given in this

chapter, as will as the models to be presented in the next two chapters. rt is

clear that if d; is small then the model based estimated proportions for the

ith individual is close to the nypothesized proportions indicating a good fit

for the individuaL Consequently, to have an overall idea about the fitting of

the model, we display all these d; (i = 1 ... ,720) in Fig 3.1.

It is clear from Fig 3.1 that most of the squared error distances are fairly

close to zero. As the magnitude of the squared error distances increase, the

number of individuals decline sharply. This pattern is what one \',"Ould expect.

to see if the model fits the data well. In the contrary if the model does not

fit the data well, one would observe few'er individuals with squared error

distances close to zero.

Two other figures similar to Fig 3.1 will be constructed for the other two

procedures in chapters 4 and 5. These figures along with the values of the

test statistics 8 1 , 8, (computed in chapter 4) and 83 (computed in chapter

5) respectively will be used to compare the three models in deciding the best

fitted model among the three.
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Probit Model

Squared Error Distanees

----
Figure 3.1: Display of Squared Error Distances for the Probit Model
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Chapter 4

Linear Cumulative Logit

Analysis

In this chapter as well as in chapter 5 we maintain the same notation used

for the latent process based probit approach in chapter 3. Let Z; be the

ordered categorical response for the ith (i = 1, ..• N) individual. Also let

ViA deD.ote the random response variable for the itb. person that belongs to

the hth (h = 1, .. , M) category. It then follows that

{

I, if Z;~ h

Yih=

o ,otherwise

for h = 1, .. , M -1. Next denote the cumulative probability of Z, up to the

hth category by
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(4.1)

where Xi =: (X'I, Xi?, . . , Xip)T is the px 1 covariate vector for the ith person

irrespective of his or her category. Now, consider a link function g(.J for tbis

cumulative probability given by

(4.2)

where fJ is tbe p x 1 vector of regression coefficients. In equation (4.2) ex"

(h = 1, .. M - 1) is known as the cut4point between the lith and (Il ­

l)th categories. More specificaUy, as -riCh) 2: 1',(h - 1) always, the logit

relationship in (4.2) indicates that all has to satisfy the restriction a! <

0:'2 < ... < aM_I_ Further it follows that

(4.3)

Recall that for the diabetes data described in chapter 2, p = 6, M = 4,

and N = 720, where these N individuals are independent. The likelihood

function is written as

L(P)_ ITp"ll,O). ·ITp;.(h,h-')" IT f';M(M,M-I) (4.4)
.,_1 I~_l /.... _1
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where Nh (h = 1, .. , Af) is the number of individuals that we obsel"'ed in

the hth (h = 1, .. _, M) categOry with regard to the diabetic data set. In

(4.4), Pi.(h,h - 1) is the probability of the ith individual falling into the

hth category based on the covariate information of the individual. This

probability is e.-qlressed as

p.,,(h, h - 1) = 'Yi.(h) - 'Y•• (h - 1) (4.5)

where ill indicates the ith individual belongs to the hth category, and 'Y•• (h)

and 'Yi. (h - 1) are given by

eO.-.,r.."
7•• (h) = 1 + eo"-:rr.,,

with Xi. written for Xi UDder the condition that the ith individual belongs

to the hth category. Note that as tbe 7i" 's ace tbe cumulative probabilities,

'Y;.(O) =0 and 'Yi.(M) =1.

4.1 Estimation of the Parameters

Recall that tbe maximum likelihood estimation method was used in chapter

3 in order to find estimates for tbe unknown parameters for the probit model.

As tbe likelihood function is also available under the logit model, we e.'q)loit

the similar likelihood estimating equation approach (as in chapter 3) and

obtain the estimates of the parameters.
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The proposed logit model gi'l.-en in (4.2) will require us to solve (M""=l+
p) likelihood estimating equations as \'I.1! have to find estimates for (3 and

at, .. , aU_t. These likelihood estimating equations will be solved. byapply­

ing the Newton Rhapson iteration technique as before. Remark that the re­

striction placed on Q't, .. ,QJ,f_1 given in (3.4) namelYQI < Q2 < .. < Q/o{_1

may not be achieved. when traditionally non·restricted likelihood estimating

method is used as an estimation technique. Here Q is the estimated value of

a based on the logit model. No\v, maximizing the likelihood function given

in (4.4) is equivalent to maximizing the log-Likelihood function given by

M N,

I ~ 10gL <L L 10gp,,(h,h -')
"_li~..1

(4.6)

where pj~(h,h - 1) = 1'j~(h) - "j~(h - 1).

Note that for analyzing bivariate ordinal polytomous data, some authors,

for example Williamson et al (1995) have used the generalized estimating

equation approach to obtain the estimates of the cut,.points as well as regres­

sion parameters. This is because the likelihood method is quite cumbersome

in the bivariate set up.

4.1.1 Step 1: Estimation of the Regression Parameters

To find the likelihood estimate for P nameLy 1J we first choose some initial

value for a,. (h = 1, ... , M-l) and tb.ensolve the foUowingiterativeequation.
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(4.7)

where,

~d

with,

ah,/l-l 1'/. (h) [-ro.Ch - 1),.•• (h) -1'i.(h -1)J

bllJI-L "'flACh) h'i.{h){l -"flhCk)} - 'Yi.{h -l){l +1'i.{h - I)} + 21'i.(h - Ih•• (h)J

'-._, 1,,(h -1) [-1;,(h)1,,(h -1) +1I,(h)]}

In (4.7), ij(r) is the estimated value of IJ on the rtb trial and the expression

Hr is evaluated at per).
.lu mentioned in chapter 3 one can estimate IJ jointly along with the

estimation of the a parameters. Instead, for reasons outlined in chapter 3,

we have chosen to estimate P and all (h = 1, .. , M - 1) using a two step

approach, step 2 being discussed below.
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4.1.2 Step 2: Estimation of the Cut-Points

Using the estimates for fJ obtained in step 1, as the initial values for P. the

likelihood estimates of Q = (QI> Q2,"" QM-I) are obtained by solving the

iterative equation.

where.

and

with.

(4.8)

d••_, ",(h)(1 -",(h)) [--r,,(h -1) - -?,(h - 1) + 2,~(hh,,(h - l)J

<••_, " ..,(h)(1 - ",.,(h)) [,;,.,(h + 1) - 27;,.. (h + 'ho,., (h) + -?,.,(h)]

for aU h = l, .. , M - 1. Note that for Ih - h'l = 1, the second deri'l:atives

may be expressed in a simpler form given by,
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whereas for lh - h'! f:. 1,

In equation (4.8) aCr) is the estimated value of a on the rth iteration and

the expression Hr is evaluated at a(r). Also, in equation (4.8) ;- is the

.. 821. a
M - 1 x 1 vector of first derivatives and 8a8aT IS the M -1 x M -1 second

derivative matrix.

We remark that in the manner similar to that of chapter 3, the likelihood

equation for P (4.7) and a (4.8) will be solved in t'I\o1) steps as mentioned

before, where these two steps constitute a cycle. This cycle of iterations

continue until convergence.

Note that, in estimating the cut-point parameters 011, .. ,aM_1 one e."(­

peets that these estimates maintain the order al < a2 < ... < OM-I, but

there is no guarantee that these likelihood estimates of OI/t. 's will maintain

this order restriction.

4.1.3 Some Remarks on Choosing the Initial Estimates

To choose initial estimates for the unknown a and P parameters, it is natural

to make an attempt to use the estimates given in Williamson et al (1995), al­

though their analysis is done for the two variable case while the present study
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deals with the one variable case. More specifically. the bivariate correlation

I ;0'1j -----=J n==-----.I.
Probability 01 rallng In rlrst calegory

Pn>babilityotf6lglntlWdcalegOrY

Probability OrrlllJing In second category

P~otl~lnfoulth~

Figure 4.1: Display of Estimated proportions based on the Cumulative Logit

Model

may not have large iD8ueDce on these common parameters Or and Ii betWee.D

the two variables. Furthermore, these are only initial values to start the

iterative procedure explained in the last sectio:l.

As we explain below, we bowever, find that Williamson et ai's (1995)
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estimates when used in our univariate case fall short in producing esti­

mated proportions those should be in agreement with the observed propor­

tions. To be precise, we first used their estimates for 0 ( 01 = -.823, Ci'1; =

1.58,03 = 3.67) and {1 ({11 = -0.129,112 = -0.0913,P3 = -0.0421,{1" =
-0.901, fJs = 0.338,fJ. =-0.138) and calculated the probabilities for the ith

(i = 1, .. ,720) individual to faU iota each of the four ordered categories.

These probabilities under each category for all 720 individuals are shown in

Figure 4.1. It is clear from tbe figure that an individual appears to have ex­

pected probability close to one for the first category but his/her probahility

to be in any other category appears to be almost zero. As the observed pro­

portions for an individual belonging to these four categories are .38, .38, .18,

.06, there does not appear any agreement between these observed proportions

and estimated proportions given in Figure 4.1.

Further, when these estimates, provided by Williamson et al (1995) were

used as initial estimates, we v.-ere not able to obtain convergent estimates.

This is not unlikely as the probabilities computed. hased. on such estimates

for an individual to belong to the last three categories were found to be

e.'~tremely low. A5 in the probit analysis discussed in the last chapter, there

does not appear any easy alternative way to choose appropriate initial values

for the parameters all &" &3 tbat might lead to the global maximization of

the likelihood function (4.4) with respect to these parameters..Ao.s a remedy,

we adapted a trial and error method to choose initial values of 0" &" 03

such that the expected proportions reflect tbe observed proportions to a

good extent. Note that in calculating such expected proportions, we used P

estimates as in Williamson et al (1995) as, unlike the estimation of a values,
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it is straight forward t.o obtain consistent estimates ofP based on any suitable

initial values.

To be more precise, for a selected individual, we use his/ber covariate

information along with Williamson et ai's P estimates to solve equation 4.3

forah (h= I, .. ,M-l) taking'Y;(h) (h= 1, .. ,M-l) to betheobse.rved

cumulative proportions for the individual to belong to the hth or lower cate­

gory. For example the observed cumulative proportion for the first category

is .38, therefore, we set ")';(1) = .38 in equation 4.3. Now, using Williamson

et ai's {3 vector (P' = [-0.129, -0.0913, -0.0421, -0.901, 0.338, -0.1381) and

the selected individuals covariate information along with ")',(1), we arrived at

a starting value for Qt. Similarly, as the 1'.(h)'s are cumulative probabilities,

we took 7;(2) = .76 and ")';(3) = .94, and solved for 0'2 and 0'3 respectively.

These initial values of a" 0'2, 0'3 were used to compute the probabilities for

each of the four categories for all 720 individuals. Next we computed the av­

erage probability for each of the four categories, which we denoted by PI, fi"l.

P3 and 15.· A comparison was made between Ph (h = I, ", M) and the ob­

served proportions. As expected, to begin with, there were some differences

between Ph and the obsen'ed proportions, which lead us to select improved

values of a... 's to minimize such differences. This procedure was repeated

UDtil the values of 0'1> CJ2 and 0'3 produced Ph.'S that reBect the observed pro­

portions to a good extent. These values then became the initial estimates of

the cut-point parameters namely ai, a2 and a3.
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4.2 A Limited Simulation Study to Verify Ini­

tial Cut-Points

To verify the validity of the cut..-point estimates obtained in the previous

section, l\"e now conduct a limited simulation study. Note however that,

as indicated before, since fJ is a non-restricted regression vector, it was not

necessary to examine the performance of fJ estimates tbrough the simulation

study.

To generate the multinomial response data using ordered initial Q values

obtained as in section 4.1.3, Williamson et ai's (1995) fJ values, and the

covariates available for all no individuals, we calculate

e6,-:s;rfJ e<'i2-zT6 e6,-",rfJ
Pil = 1 + eO,-rr~' Pi2 = 1 +e'h-.:';6 - 1 +c6,-z;t1'

eO.-",r6 eO.->:r6 e<4-",r6
Pis = 1+e"'.-rr4 - l+elq-"rJ' Pi. =1- 1 +eO.-.:fp

for the ith individual. The initial values of a's were

0:, = -8.5, 02 =-6.5, Q3 = -5.0 (4.9)

We supply these probabilities and use the IMSL subroutine RJ\IMTN to gen­

erate the multinomial response such as (1,0,0,01 or [O,l,O,Oj or [0,0, l,OJ or

(0,0,0, 1). Here {I, 0, 0, Ii], for example, indicates that tbe itb person belongs

to the first category. We have done it for 720 individuals.
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Next these responses are used along with the covariates, to estimate a by

(4.8). The simulation was carried out 2000 times and the average value of

ctt. ct2 and ct3 were found to be

ct, = -8.05, ct2 = -5.86, ct3 = -4.67 (4.10)

which appear to agree to a good e:<tent with the initial chosen value of cta,

ct2 and ct3 shown in (4.9).

4.3 Fitting Cumulative Logit Model to the

Diabetes Data

In this section we analyze the dal.a from the WESDR to illustrate the ap­

plication of the proposed method given in this chapter. Again, recall from

chapter 2 that the sb:: covariates (i.e. p = 6) used to explain severity of

right eye diabetic retinopathy are 1. duration of diabetes %".,; 2. glycosy(ated

hemoglobin level X.2; 3. diastoUc blood pressure X.3; 4. proteinuria x""; 5. sex

X.$; 6. right eye macular edema %'-6, where %'." denoteS the vth (v = 1, ... ,6)

covariate for an individuaL In this study an individual is assumed to belong

to one of the M = 4 possible categories: none. mild, moderate and prolifera­

tive with a suitable probability. To distinguish the adjacent categories there

are M - 1 = 3 cut-point parameters al, 0"2,0'3 which need to be estimated.

Further we require these cut-point parameters to hold the order restriction



To obtaiD estimates for all nine unknown parameters: six regression and

three cut-point parameters, we exploit the 2 steps iterative procedure dis­

cussed in section 4.1. More specifically, based on some initial values of 0'

and P we solve the iterative equation (4.7) until convergence is achieved for

p. Now, suppling these new convergent values of P and the initial values

of Ii to step 2 of the procedure in section 4.1, equation (4.8) is solved until

convergence is achieved for a. These new improved values of a from step 2

and the improved values of fJ from step 1, are then used in step 1 to obtain a

new set of improved estimates for /3. This cycle of iterations continues until

convergence is obtained between cycles. The final estimates for the cut-point

parameters ai, a2, 0'3 and the regression coefficients /3\,132, .. , /36 are shown

in Table 4.1. We also report the standard errors of these estimates that were

obtained by using the observed information matrix -[tP(aW I and -[tP(PW I

respectively for the estimates of 0' and /3.

t/J(O') = a:;~T' and tP(fJ) =a:;~'

A.11 covariates (x.•) appear to have a signiJicantcontribution for explaining

severity of diabetic retinopathy. Remark that, in this approach the covariate

for 5e..'t (x.s) also has influential effect on the severity of diabetic retinopathy

as opposed to the method of chapter 3 which concluded that the sex covariate

was not infiuential. Fuether, the most influential covariate was found to be

%.6 (right eye macular edema) followed by %.4 (proteinuria), %·5 (sex), X·I

(duration of diabetes), %.2 (glycosylated hemoglobin level) and %.3 (diastolic

blood pressure). This pattern in the behavior of the covariate estimates
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Table 4.1: Linear Cumulative Logit Model Estimates

Type of parameter Parameter Estimate Standard errors

Q, -8.14 0.09460

Cut-point Q, -6.62 0.09349

Q, -5.20 0.14890

p, -0.1290 OO325סס.0

{J, -0.0902 0.0005216

RegressioD. {J, -0.0400 OO172סס.0

p, -<).9006 0-lXn2251

fJo 0.3395 0.0017232

{J, -1.3790 0.0013490

appears to be the same as tbat produced by the Probit AD.alysis of chapter

3 except for the sex covariate X.5. Note that the estimates for the regression

parameters displayed in table 4.1 are almost ideD.ticai to those of Williamson

et at (1995).

As far as the cut~points are concerned, we can clearly see from table 4.1

that these estimates (al> Q2.~) meet the order restriction of QI < a2 < 0:3 as

in Williamson et al (1995), but they are quite different than those estimates

provided by these authors. Further there is no standard errors available in

Williamson et at (1995) for these estimates.
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4.3.1 r Goodness of Fit

[n this section we investigate the goodness of fit of the logit model to the

diabetes data. This will examine whether the logit model is an appropriate

model to describe the relationship between the covariates and severity of

diabetic retinopathy. Further, the goodness of fit statistic for the logit model

will be compared to that of the probit model to aid in deciding which of the

two models appear to have the best fit to the data. These t'vo goodness of fit

statistics will be recalled again in chapter 5 in order to compare them with

the new non-cut-point based approach presented.

For the current cumulative logit model, we may use the goodness of fit

statistic

(4.11)

to test the fitting of this model to the data. In (4.11) P"", is the observed

proportion for the ith individual to fall into the hth (h = t, .. ,M) categ0fY,

and these PIto are: (P1D = .38, p,., = .38, P3<> = .18, P.... = .06,) as in chapter

3. Now, in (4.9) Pih is tbe estimated proportion for the ith (i = 1, .. ,N)

individual to fall into tbe htb category under the cumuJative logit modeL

More specifically, for the current logit model, these Pih are given by

jj.;" =w;(h) - w;(h - 1)
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where,

edJ,.-%r~

wi(h) = 1 + e6.-%;6'
eO·-·-%r~

wi(h-l)= 1+e6.-.-%;d

for i = 1, .. ,N and h = 1,. "M. Further, in equation (4.12) w;;(O) = 0

andwi(M) = l.

Remark that the goodness of fit statistic 52 in (4.11) is quite similar to

that of 51 in equation (3.11). The only difference is, PUt. is the estimated

proportion for the ith (i = 1, ... , N) individual to faU into the hth category

under the cumulative logit model and Pih is the estimated proportion for the

ith (i = 1, .. , N) individual to fall into the hth category under the probit

model.

The test statistic 52 (4.11) for testing the closeness of the estimated pro­

portions under the logit model to the observed proportions, has asymptoti­

cally r distribution with degrees of freedom N -o;T="T+p). It is dear that

as compared to the probit model, we now have one less parameter, yielding

the degrees of freedom N - (M=T + pl. For the logit model the test statis­

tic !h was evaluated as ~ = 126.55 with 711 degrees of freedom (df). Our

calculated value of~ is less than ~45' = 409.3804 < xiu indicating that the

data agrees with the null hypothesis.

[n chapter 3, we investigated the fit of probit model as a reasonable model

for explaining severity of diabetic retinopathy in the diabetes data set. For

the probit model we calculated the test statistic 51 given in equation (3.11)

to be 51 = 161.78. As 51 = 161.78 is greater than 52 = 126.55 it appears

that the logit model provides an improved fit to the data over the probit
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model.

4.3.2 Display of Squared Error Distances

For a deeper insight with regard to the goodness of 6t of the cumulative logit

model to the diabetes data, we calculated the squared distances between the

model based proportions and the observed proportions. T~lese distances for

the ith (i = 1, .. ,720) individual are calculated by tk = ECP;h - PiII,,)2. If

the logit model provides a good fit to the data we expect to observe a small

value for tk for the ith (i = 1, ... ,720) individual. In contrary, a large value

of d; will indicate that the logit model is providing a poor fit to the data.

These squared distances d; for all individuals (i = 1, ... ,720) are displayed

in figure 4.2.

This figure dearly shows that the majority of the individuals have a

squared error distance that is fairly close to zero, which in turn shows that the

probability for an individual to fall in the four categories reBect the observed.

proportions indicating that the cumulative logit model is pro..iding a good

fit to the diabetes data..

A comparison of the squared error distances for the probit model wi.th the

squared error distances for the logit model provides additional information

to support the notion that the logit model appear5 to pro...ide a better 6t

to the data than the probit model. A comparison of figure 3.1 and figure

4.1 demonstrates this fact, as the logit model exhibits more squared error

distances closer to zero. As well, the logit model appears to have [ower

squared distances overalL The largest squared error distance for the probit

model is nearly 1.2 while it is less then .8 for the logit model.
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LogitModel

Figure 4.2: Display or Squared Error Distances ror the Logit Model

47



Chapter 5

Non-Cut-Point Based

Multinomial Logistic Approach

[n tllis chapter we apply a new muJtinowiallogistic: approach to model ordinal

categorical responses, which was recently suggested by Oas and Sutradhar

(1999) in connection with bivariate ordinal polytomous data analysis and

by Sutradhar and Kovacevic (2000) in a multh-wate set up. Unlike the

probit and the cumulative logit approaches discussed in chapter 3 and 4

respectively, this approach does not require any cut-points at alL This is a

big improvement over the ~ting procedures, as all the parameters become

non-restricted regression parameters which may be consistently estimated by

a suitable method such as the generalized estimating equation approach. To

be more specific, although after a lengthly trial and error search, we were able

to find cut-point estimators under both of the probit and cumulative logit

models, there is however no guarantee tbat these types of cut~pointestimates

will maintain the order restriction which is inherent in the model. In other
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words, the cut-point estimates will be consistent or will maintain the order

restriction only when suitable ordered restricted estimation is exploited. This

is howe,'er extremely complicated for the logistic multinomial data. Note that

as it will be described in this chapter, the current procedure maintains the

order nature of the data without any introduction of the cut-points.

We now describe the present model for the univariate case foUowing Suo

tradhar and Kovacevic (2000). Maintaining the same notation as in chapters

3 and 4, let Zi be the ordered categorical response for the itb (i = 1, .. , N)

individual. Thus Zi can take on values of 1, ... , M following the cumulative

probability

(5.1)

where h indicates the hth (h = I, .. ,M), and xr = (Xil ,X'"2, .. ,XiP ) is

the p x I covariate vector for the ith individual. R.ecall that the cumulative

probabilities shown in (5.1) is exactly the same as the cumulathoe proba­

bilities defined in (4.1). Further this cumulative probability, by using the

polytomous logistic regression, may be written as

7;(h) PT(Zi:5 h)

~e:l"r.~,

f;e:r;r.~
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for h = 1, ..• M. In (5.2) {J.. (u = 1, .. , M) is the p x 1 vector of regression

parameters corresponding to the uth category, and xT.. = (XilOl,Xid, .. ,Xiup)

is the p x 1 covariate vector for the ith individual that belongs to the tLth

category. Note, however, that in the present data set, the covariates for the

ith individual remains the same irrespective of the category. That is xT.. = xf.
Consequently, in what follows we use xf for %f,. for all u = 1, .. , M. Further,

in (5.2), without any loss of generality, we assume that PM = O.

It then follows that the multinomial logistic marginal probability that

Zi = h is given by

Pr(Zi=h) Pr(Yih =1)

,~

~r~..
~~r~.·

(5.3)

.£n (5.3), Y;h. (h = 1, .. , M -1) is the dichotomous random response variable

for the ith (i = 1, .. , N) individual that belongs to the htn (h = 1, .. , M)

category. More specifically, it follows that Zi and fill. are connected through

the following relation

,ifz;=h

, otherwise
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Note that the logits of the cumulative marginal probabilities are given by

(5.4)

which is rather in log odds ratio fonn. Further, the logits of the marginal

probabilities are given by

(5.5)

for h = 1, .. , M - 1. Note that, the logits for the cumulative probabilities

given in (5.4) are quite similar to their corresponding logits for the marginal

probabilities shown in (5.5). In the marginal case, the logits are the log of

the odds of an exponential function for an ordinal category versus a sum

of the similar exponential functions for the remaining categories, whereas

in the cumulative case, the logits are the log of the odds for a sum of the

exponential functions up to an ordinal category versus the sum of the similar

exponential functions for the remaining categories. Thus, as it happens io

the multinomial logistic case, we do not have any lioear logits (in covariates)

either for the cumulative margins or for the margins themselves. The non­

linear logits in the present approach are, however, easy to interpret.
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5.1 The Estinlating Equations For Regression

Parameters

For the cut-point based probit and cumulative logit models, we have exploited

the likelihood estimation for the regression and cut-point parameters. Since

the present approach does not suffer from the complexity of involving cut­

points, 9."e choose to use the generalized estimating equation approach. This

estimating approach, however, is technically much easier than the likelihood

estimating approach.

To obtain estimates for the regression parameter vector /3 = (PT, .. ,t1I,
P:ft-d, where Ph = (/3,,1. ",Phi' ··,f3"plT we observe that fJ is present in

allll"i = (?rill ··,'lfiA, .. ,'Ir'M_dT for i = 1, .. ,N, where E(YiII ) = 1I"i/'

(5.3). Consequently, to construct the estimating equations for P, \'i-e mini­

mize a suitable weighted distance vector, where the distance vector is given by

Yi - '11"" for the itb (i = 1, .. , N) individual, Y; = (YiI , .• , ViA, .. , YiM_tlT

being the observation vee::tor and 'lI"i = E(Yi). More specifically we estimate

(3 by solving

where

N

N-l t;DTV-1(Yi-'lI"i) =0

Vi var(Yil
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(5.7)

Further in equation (5.6)

(5.8)

where Di is an (M - 1) x (M -1) matri'C, and Xi is the p x 1 covariate vector

and 0 denotes the Kronecker product.

Note that the estimating equation (5.6) is usually referred to as the quasi­

likelihood estimating equation [ef Miller et al (1993), McCullagh (1983)1·

5.1.1 Newton Rhapson Iteration Technique

Estimates for the M - 1 regression parameter vectors is obtained by solving

equation (5.6). This solution denoted by P". may be obtained by the New­

ton Raphson iterative technique. For some initial value of P" we solve the

following iterative equation

pO(r + 1) =p'(r}+ ['f.DTV;-IDij-' ['tDTV;-t(Y; -1ril] (5.9)
i_I ~ ._1 ~
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where Hr denotes that the expression within the bracket is evaluated at

p·(r). Further, it follows tbat Ni(p· - P) is asymptotically multivariate

normal with zero mean and covariance matrix VB given by

(5.10)

This covariance matrix VB of p. may be consistently estimated by using p.

for p in obtained from (5.9).

5.2 MultinOInial Logistic Analysis of Diabetes

Data

In this section we illustrate the application of the new non-cut--point based

procedure introduced by Sutradhar and Kovacevic (2000) by reanalyzing the

data from the WESDR. The preseot data set, wbich '<\-"as introduced in chap­

ter 2, contains a large number of covariates, sb: of which were considered in

the probit analysis of chapter 3 and the cumulative logit analysis in chapter 4.

We continue to consider these same six covariates in the present analysis. For

the purpose of the analysis of this section \\-'C recall all six covariates to study

their effectiveness in e.xplaining severity of right e}'C diabetic retinopathy.

These covariates are 1. duration of diabetes ~'I; 2. glycosylated hemoglobin

level ~.2; 3. diastolic blood pressure ~-3; 4. proteinuria ~-4; 5. sex ~-lIi; 6. right

eye macularedemaz-G' Here, in generalz... represents thewth (w = I, .. ,6)

covariate for an individual.
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The application of the multinomial logistic model (discussed earlier in this

chapter) to the WESOR data, will require the estimation of p x (M - 1) =

6 x 3 = 18 regression coefficients denoted by fJ· = (fJiT, ... , fJiT, ... ,IJ;J_,)

with M = 4. To compute this fJ· .....1! apply the estimating equation a~

proach of Section 5.1. Supplying suitable initial values of fJ· = fJ·(O) =

(Pi";, ... ,fJ'iJ, ... ,fJ{[,_l)o) to the iterative equation (5.9), convergence was

achieved for all fJ parameters e.'{cept /116, the regression coefficient for right

eye macular edema, for the 'none' category. Note that, e\1!Q though the es­

timates provided by Oas and Sutradhar (1999) were obtained from bivariate

analysis, they may still be used as suitable initial values of po for the present

univariate approach. These values are: p(: = (-0.1261, 0.0182, 0.0122,

-0.8868, 0.5066, ~0.5302), pi[ = (0.0530, 0.0175, -0.0012, -0.2371, 0.1321,

-2.023(1), /1;; = (0.0511, 0.0075, -0.0017, 0.3112, -0.4.283, 0.5704). As for

the sixth covariate, convergence was obtained for fJN. and fhr" but not for

P16, this prompted us to investigate the reason why problems were occurring

when trying to obtain a solution for this covariate under the 'none' category

as opposed to the other tl\"O categories, namely the 'mild' and 'moderate' cat­

egories. For the purpose, we decided to take a detailed look at the WESOR

data set. The data for sixth covariate %011 (right eye macular edema) is a

series of a's and 1's only, where 1 represents that macular edema is present

in the right eye and a indicates that macular edema is o.ot present in the

right eye. Of the 720 io.dividuals it was observed that 33 of them showed

macular edema present in the right eye, which means that there are 33 1's

and 687 O's representing this covariate. A more through inspection revealed.

that none of these 33 l's were present with the 275 individuals who belong

55



to the 'none' category, while two l's showed up in the 'mild' category, 14 in

the 'moderate' category and 17 were observed in the proliferative category.

As this covariate consists oC only O's for the 'none' category, it becomes clear

that there is no unique solution for f3t6-

To shed further light into this non-<anvergence problem, we also con·

ducted a search procedure to select a possible estimate of PI6 by computing

the distance function

(5.11)

for many possible values of PIS, namely -50 :51316 :5 3, while the values for

all other regression estimates were kept fi..'(ed at their convergent values. In

(5.11), dt. (! = 1, .. ,18) is the value of the lth element of the 18 x 1 vector in

(5.6). It was observed that d" was decreasing to zero as the value of fJi6 was

decreasing to -00. Also, it was observed that the corresponding variance

of the estimate of PIS was getting larger as Pis was getting smaller. Conse­

quently, tbe covariate :r.. under the 'none' category, appear.; to contribute

nothing to the change in the response variable. Because of this, in calculating

the goodness of fit of the model to the data, we will use PIS = O. Also, we

perform a separate analysis, excluding altogether the sixth covariate. The

final estimates of P e.'(cept for PH; are shown in Table 5.1, along with their

standard errors obtained from (5.10)

The present model provides a separate set of regression coefficients for

each of the categories of 'none', 'mild' and 'moderate' for e.xplaining severity

of diabetic retinopathy, as shown in table 5.1. But, tbe probability for an

56



individual to rall in the hth category depends on all 18 regression coefficients,

Table 5.1: Non-Cut--Point Based Multinomial Logistic Model Estimates

Category Parameter Estimate Standard errors

p, -0.2767 0.0658

P, 0.0745 0.5828

NONE P, 0.0268 0.0067

p, -2.3475 0.4237

p, 0.9784 0.3210

flo

p, -0.0377 0.0204

P, 0.1314 0.0584

MILD P, 0.0047 0.0067

p, -1.6306 0.4153

P, 0.6525 0.3324

flo -4.1458 1.3067

p, 0.0099 0.0176

P, 0.1543 0.0526

MODERATE P, -0.0009 0.0059

p, -1.1392 0.3523

p, -0.2226 0.2968

flo -1.5781 0.4254
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as the probability for an individual to belong to the hth category is deter­

mined by

Thus, the interpretation regarding the significance of P's is different than it

usually is for linear or non·linear simple multiple regression problems. This

is, hO\'<"ever, generally true that a small value of the regression coefficient for

any covariate under a given category, as compared with any larger value of

the same covariate under another category, will indicate its poor inffueoce in

determining the probabitity for the individual to belong to that particular

category. For e.'Cample, cOllSider the value of Pi under all three categories

of 'none', 'mild', 'moderate'..!Jv5 under the 'none' categOry p. has large

negative value along with its (relatively) small standard error as compared

to its values in the other t\\"O categories, the contribution of this co"ariate is

natucally significant in yielding a large probability for an individual falling

into the 'none' category.

It is clear from Table 5.l that a1lcovariates (z... ) appear to be necessary to

explain the severity of diabetic retinopathy. Note however, the contribution

pattern of the covariates does not appear to be the same from category to

category. More specifically in the 'none' category, the influential covariates

are duration of diabetes Z.I, diastolic blood pressure Z~, proteinuria Z..j, and,

sex Z..s, where as glycosylated hemoglobin level %.2 does not appear to be

an inffuential covariate under this category. This means that X.2 does not
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contribute to make the probability larger for an individual to belong to the

'none' group_ Further, for the same reasons discussed earlier in this chapter,

the regression effect of the sixtb. covariate, right eye macular edema X.I" is

not reported. In the 'mild' category all covariates appear to be important to

the model except for diastolic blood pressure X.J. As far as the 'moderate'

category is concerned, only half of the covariates appear to be influential.

These covariates are: glycosylated hemoglobin level X.'l, proteinuria X..j and

right eye macular edema X-6'

5.2.1 X2 Goodness of Fit

In this chapter we have proposed a non-cut-point based multinomial logistic

approach to model severity of diabetic retinopathy. The purpose of this Sub­

section is to investigate the goodness of fit of this modeL to the diabetes data,

in order to make inferences as to whether this model is an adequate model

to describe the diabetes data set. Once an appropriate statistic is calculated

we will compare it with the goodness of fit statistics for the probit mode! of

chapter 3 and the cumulative logit model of chapter 4. This comparison will

assist in choosing the 'best' fit of all three models proposed.

An appropriate goodness of fit statistic for testing the fit of the current

non-cut-point based multinomial logistic model to the data is given by

(5.12)

which is a comparable statistic to the goodness of fit statistic 8\ (3.11) for
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the probit model and 52 (4.11) for the cumulative logit modeL In (5.12),

Plh denotes the estimated proportion for the ith (i = 1, .. , N) individual

to belong to the hth category under the non-cut-point based multinomial

logistic model, which is computed by

(5.13)

for i = 1, .. ,N and h = 1, .. ,M. Note that, in (5.12) Pho which is the

same as in the equatioDS for St in (3.11) and 52 in (4.11), is the observed

proportions. The values of Pho are: Pt" = .38, P"uo = .38, P3<I = .18, and

p~" = .06.

Recall from chapters 3 and 4, that the goodness of fit statistics 51 and 52

differ from each other through the estimating formulas for the proportioDS

Pi1>. and Pm respectively. Here, Pu. is the estimated proportion for the ith

(i = 1, .. , N) individual to fall in the hth category under the probit model

and PiA is the estimated proportion for the ith (i = 1, .. , N) individual to fall

in the hth category under the cumulative logit model. In the same manner,

the goodness of fit statistic $3 differs from 51 and 52, as it is defined based on

different estimated proportiODS than used for 51 and 52. More specifically, in

(5.12), piA is computed by (5.13), which is quite different than the formulas

for Pin. and PiA discussed in chapters 3 and 4 respectively.

The test statistic 53 for testing the fit of the non-cut*point based multino­

miallogistic modeL to the data given in (5.12), has asymptoticaUy X' distri­

bution with N - (u=T x p) degrees of freedom. Under the current 000-
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cut-point based model the statistic 5, has the value 53 = 100.74 with 702

degrees of freedom. As r702 > r4S9 = 409.3804, the value of 5, indicates that

the model is an appropriate fit to the data.

In chapters 3 and 4 we concluded that the probit model and cumulative

logit model respectively, are both appropriate models explaining severity of

diabetic retinopathy for the diabetes data. Further, we decided in chapter

4 that the cumulative logit model provided an improved fit over the probit

model since 51 = 161.78 is greater than S, = 126.55. Now, we obsen'e

that the value of the test statistic 53 = 100.74 for the non-cut-point based

multinomial logistic model is less than the values of both of the statistics for

probit model (51 = 161.78) and the cumulative logit model (~ = 126.55).

Consequently, the non-cut-point based multinomial logistic model provides

the best fit to the data among the three competitors.

5.2.2 Display of Squared Error Distances

To gain further insight regarding the fit of the non·cut-point based multino­

mial logistic model to the data, a graphical display of the squared error

distances between the model based proponions and the observed propor­

tions is shown in Figure 5.1. In the manner similar to that of chapters 3

and \,.these distances for the ith (i=I, , N) individual are calculated by

di = E(Pil\. - p,:,w)2. For every i = 1, ,720 we e...:pect to observe values of

di close to zero if the proposed model is providing a good fit to the data.

It is clear from Figure 5.1, that for a large number of individuals, the value

of their squared error distances are very close to zero. Thus the model based

estimated proportions, for an individual to fall in one of the four ordered
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categories are in agreement with the observed proportions for an individual

to fall into one of the four categories. This verifies the adequacy of the

non-cut--point based multinomial logistic model in fitting the diabetes data.

Multinomial Logistic Model

I .._~__-
Figure 5.1: Display of Squared Error Distances for the Multinomial Logistic

Model

FUrthermore, when this histogram is compared with the histograms in

Figure 3.1 and Figure 4.2 it is clear that Figure 5.1 exhibits the largest
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number of squared error distances close to zero, along with the smallest

number of large values of squared error distances. Cousequently, the non­

cut-point based multinomial logistic model fits the data best as compared to

it's other two competitors.

5.3 Fitting a Reduced Model

As it was discussed in the previous section, there was no convergent solution

for Pl6 which is the effect of the sixth covariate under the 'none' category. A

justification for this non-convergence problem was also provided in the same

section. As the values of the sb:th covariate never varied under the 'none'

category, it was natural to explore the convergence problem. As a remedy,

in this section, we consider modeling severity of diabetic retinopatby based

on one less covariate, tbat is, tbe covariate x~ (rigbt eye macular edema)

will be omitted as we fit the non-cut-point based multinomial logistic model

to the data. Further, v."e will give the final estimates for this reduced model

and investigate the goodness of fit of this model to the data. A comparison

will then be made ooly between the non-cut-point based multinomiallogis­

tic model based on six covariates and tbe non-cut-point based multinomial

logistic model based on five covariates.

As we now have p = 5 covariates, we require tne estimation of p x (M -

1) = 5 x 3 = 15 regression coefficients denoted by po. = (pj.r, ... ,p;..r,
P;;~l) with M = 4 categories. We exploit the same metbods provided in sec­

tion 5.1 to obtain the estimates for these 15 unknown {3 parameters. For the

purpose recalt equation (5.6), and compute the 15 values using the iterative
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equation (5.9). The only difference is that in (5.9), we computed 18 values

of /3 denoted by po and here we denote the 15 estimates of the components

of /3 by P··. Note that, the dimension of D; matrix was adjUSted to re­

flect this change in the number of regression pa.ra.llleters. Also, the formulas

appropriate for the Vi matrices were adjusted.

Convergence was Gbtained for aU 15 regression parameters in Sl.X itera·

tions. These estimates along with their standard errors are given in Table 5.2.

It is clear from Table 5.2 that these estimates and their standard errors are

very close to the estimates and standard errors (displayed in Table 5.1) for

the non~ut-pointbased multinomial logistic model based on six covariates.

More specifically, within each of the ordered categories, tbe covariates that

were deemed non-influential for the analysis based on Sl.X covariates, appear

to maintain their patterns for the analysis based on five covariates.

Similar to the analysis provided for the non~ut-pointbased modeL for all

Sl."< covariates, a goodness of fit statistic is provided and a graphical display of

the squared error distances is displayed in Figure 5.2 for the model based on

five covariates. The goodness of fit statistic for the reduced model denoted by

5i. was evaluated as S; = 94.97 which is is found to be less than 53 = 100.74.

Note that since a model with more covariates is e.,,<pected to produce a smaller

value for the goodness of fit statistic, the value of 53 = 100.74 > S; =
94.97 appears to indicate a problem with tbe larger model which we already

explained in the last section as a possible effect of tbe sbctb covariate in

general.

The h.istogram of the squared error distances in Figure 5.2 appears to be

quite similar to tbat of Figure 5.1. The only difference is tbat in Figure 5.1,
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there appear to be a few squared error distances which are large in magnitude,

which may be a. result of the non-eonvergence problem of the sixth covariate.

Table 5.2: Non-Cut-Point Based Multinomial Logistic Model Estimates (Re­

duced Model)

Category Parameter Estimate Standard errors

p, -0.2881 0.0767

{J, 0.0750 0.0606

NONE {J, 0.0241 0.0069

p, -2.4745 0.4495

r;, 1.0712 0.3343

p, -0.0468 0.0185

{J, 0.1258 0.0564

MILD {J, 0.0022 0.0062

p, -1.7387 0.3644

p, 0.7548 0.3084

p, 0.0069 0.0187

{J, 0.1592 0.0590

MODERATE {3, -0.0040 0.0065

.8, -1.1901 0.3827

p, -0.1638 0.3290
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Multinomial Logistic Model (Reduced Model)

SquarooErrorDislances

Figure 5.2: Display of Squared Error Distances for the Multinomial Logistic

Model (Reduced Model)
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Chapter 6

Concluding Remarks

Many studies in the scientific field involve anal~ing multinomial ordinal

data. Such studies involve investigating the effect of covariates 00 ordinal

responses. When conducting an analysis on multinomial ordinal data a com­

mon problem arises in selecting a model that can adequately distinguish the

ordered responses. A standard practice is to utilize models that implement

parameters known as cut-points to distinguish the adjacent ordered cate­

gories (responses).

In chapters 3 and 4, we discussed in details two such models that re­

quire the inclusioD. of cut-point parameters namely tbe probit model and

the cumulative logit model respecti,"-cl.y. A serious problem one faces when

implementing cut-point based procedures is tbat the estimates of the cut­

points of such models must folio..... an order restriction. More specifically,

if the cut-points are tnought to be in increasing order, then it is required

that the cut-point estimate that distinguishes category 1 form category 2

must be less than the cut-point estimate that distinguishes category 2 from
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category 3 and so on. But the existing non-restricted estimation procedures

used to estimate the restricted parameters of the probit and loglt models do

not guarantee that the order restriction will be maintained. Although, in

this practicum ~1! were able to successfully estimate these cut-point para­

meters, it was however not without any difficulty. The successful estimation

of these parameters reLied heavily on initial estimates which were already

close to ma.'Cimizing the likelihood surface. Further, with regard to the cu­

mulative logit model, additional measures including a small simulation were

conducted to find suitable initial estimates, which is expensive as it required

extra efforts. Moreover, in general, there is no guarantee that such searches

will always be successful.

In chapter 5, we looked for a suitable resolution to this cut-point problem.

An obvious remedy was to find a model which does not rely on any cut­

points to distinguish the adjacent ordered categories. One such model is the

non-cut-point based multinomial logistic model proposed by Sutradhar and

Kovacevic (2000) [see also Oas and Sutradhar (1999)). This model uses a

logistic cumulative probability modeL, where probability depends only on the

regression parameters. More specifically, each category is described by its

own set of regression coefficients, as opposed to the other approaches which

had oDly one set of regression coefficients.

It is not enough to explore models based on the ease of their compu­

tations, but to find a model which provides an adequate fit to the data as

well. Therefore, in the chapters we investigated the goodness of fit of the

different models to the diabetes data. It was concluded that among the

three models described in the practicum, the non-cut-point based multino-
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mial logistic model provides the best fit to the diabetes data. The goodness

of fit was measured by a suitable statistic based on observed and expected

proportions.

Note that the ordinal analysis presented in the practicum requires com·

plete information on the covariates of all respondents. It may, howe..-er, be

the case that information on some or all covariates may be missing for some

respondents. For these t)-pes of missing information cases, one needs to

develop suitable methodology in addition to taking care of the cut-points.

This problem requires further investigation which is beyond the scope of the

present practicum.
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Appendix A

Graphs
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Figure A.l: Histogram of the Distribution of the Response Variable Left Eye

and Right Eye Retinopathy Le....els
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Figure .61...2: Histogram. of the Distribution of the Covariate Duration of Di­

abetes
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Figure .'\.3: Histogram of the Distribution of the Covariate Duration of Di-

abetes within each of the ordered categories for the Left Eye
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Figure A.4: Histogram of the Distribution of the Covariate Duration of Di·

abetes within each of the ordered categories for the Right Eye
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Figure A.5: Histogram or the Distribution or the Covariate Glycosylated

Hemoglobin Level
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Figure .'\.6: Histogram of the Distribution of the Covariate Glycosylated

Hemoglobin Level within each of the ordered categories for the Left Eye
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Figure A.7: Histogram or the Distribution of the Covariate Glyc:osylated

Hemoglobin Level within each of the ordered categories for the Rigb.t Eye
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Figure A.8: Histogram. of the Distribution of the Covariate Diastolic Blood

Pressure
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Figure A.9: Histogram of the Distribution of tbe Covariate Diastolic Blood

Pressure within each of the ordered categories for the Left Eye
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Figure A.10; Histogram of the Distribution of the Covariate Diastolic Blood

Pressure within each of the ordered categories for the Right Eye
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Figure :\.11: Histogram or the Distributioa or the Covariate Proteinuria
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Figure A.12: Histogram or the Distribution or the Covariate Proteinuria

within each or the ordered categories ror the Left Eye
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Figure A.13: Histogram of the Distribution of the Covariate Proteinuria

within each of the ordered categories for the Right Eye
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Figure A.14: Histogram of the Distribution of the Covariate Gender
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Figure A.15: Histogram of the Distribution of th.e Covariate Gender witilin

each of the ordered categories for the Left Ere
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Figure A.16: Histogram of the Distribution of the Covariate Gender within

each of tbe ordered categories for the Right Eye
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Figure A.17: Histogram of the Distribution of the Covariate Left Eye Macular

Edema
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Figure A_18: Histogram of the Distribution of the Covariate Left Eye Macular

Edema within each of the ordered categories
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Figure A.19: Histogram of the Distribution of the Covariate Right Eye Mac­

ular Edema
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Figure .'\.20: Histogram of the Distribution of the Covariate Right Eye Mac­

ular Edema within each of the ordered categories
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