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ABSTRACT

Chapter I contains some necessary preliminaries which may be found
in most functional analysis texts. Also some fixed point theorems
including those of Schauder [46]}, Furi § Vignoli [22], Swaminathan §
Thompson [51], Nussbaum [36] and Petryshyn [37] are given in this

chapter.

Chapter II deals with the study of quasibounded mappings and their
fixed points. A systematic and up to date summary of known results is

given in this chapter. Also some of the known results have been extended.

In Chapter III some applications of the fixed point theorems are

illustrated by taking suitable examples.
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INTRODUCTION

Existence theorems in analysis first appeared in the ninteenth
century and since then have received much attention. These theorems
were considered for some time by mathematicians such as Cauchy, Picard,
Birkoff and Kellogg. Then in 1922, S. Banach [ 2] formulated his
classical theorem, commonly called the Banach Contraction Principle,

5 which is based on a geometric interpretation of Picard's method of

successive approximations, it reads as follows:

"A contraction mapping of a complete metric space into itself has

a unqiue fixed point'".

Because of its usefulness, the contraction mapping principle has
motivated a great deal of research in the existence and uniqueness
theorems of differential equations, partial differential equations,

integral equations, random differential equations, etc.

In Chapter I, we have given a brief survey of the fixed point theorems
proven for contraction, contractive and nonexpansive mappings in metric
spaces. In the later portion of the chapter we have given some fixed
point theorems for k-set-contraction, densifying and l-set-contraction
mappings. Some of these results are necessary in many proofs of the

thesis.

In Chapter IX, we have studied quasibounded mappings and their fixed
points. This mapping was first introduced by Granas [24] and we have

tried to give here a systematic and up to date summary of known results.




First section of this chapter is devoted to the existence of solutions of
nonlinear equations while some results for p-quasibounded mappings, intro-
duced by Cain & Nashed [8 ] are given in the second section. In the

same section we have also obtained solutions of equations for p-quasi-

bounded mappings which generalize the results due to Granas [24], Vignoli
[52] and Nashed & Wong [34]. Some intersection theorems for quasibounded
mappings have been given in the third section while in the fourth section

we have added some further results for these mappings.

In Chapter III, we have given some selected applications of fixed

point theorems established in the previous two chapters.




CHAPTER I

Preliminaries on Some Fixed Point Theorems

Our purpose in this chapter is to discuss some preliminary definitions

and some of the well-known fixed point theorems in metric and linear spaces.

1.1. Metric Spaces

Definition 1.1.1. Let X be a set and d be a function from X x X into

R+ such that for every x,y,z€ X we have:

(i) d(x,y) > 0,
(ii) d(x,y)
(iii) d(x,y)

(iv) d(x,y)

0 <=>x =y,

d(y,x) (symmetry),

| A

d(x,z) + d(z,y) (triangle inequality).

Then d 1is called a metric (or distance function) for X, and the pair

(X,d) 1is called a metric space.

When no confusion seems possible, we will refer to X as a metric space.

Definition 1.1.2. A sequence {xn} of points of a metric space X is said

to converge to a point X, if given ¢ > 0 there exists a natural number
N(e) such that d(xn, xo) < ¢ whenever n > N(e), or lim d(xn, xo) = 0.

N>
We denote this by X > X,

It can be easily verified that if x -+ x and X -+ y_ then x =y,
n o n 0 o o

i.e., a convergent sequence has a unique limit in a metric space.

Definition 1.1.3. A sequence {xn} of points of a metric space X 1is said

to be a Cauchy sequence, if for arbitrary e > 0 there exists a natural

number N(e) such that d(xn, xm) < ¢ for every n,m > N(e).




It follows directly from the triangle inequality that every convergent

sequence is Cauchy.

Definition 1.1.4, A metric space X 1is said to be complete if every Cauchy

sequence in X converges to a point in X.

Definition 1.1.5. Let T : X+ Y be a mapping of a metric space X into

a metric space Y. Then T is said to be continuous at a point xoé X
if given any ¢ > 0 there exists &6 > 0 such that d'(Tx, Txo) < ¢ when-
ever d(x, xo) < 8§, where d and d' are metrics in X and Y respect-

ively.

The mapping T is said to be continuous on X if it is continuous at

every point x & X.

Definition 1.1.6. Let A be a subset of a metric space X. Then A is

said to be bounded if there exists a positive number M such that

d(x,y) <M for every x,y € A.
If A 1is bounded, we define the diameter of A as
diam. (A) = sup{d(x,y)|x,y € A}
If A 1is not bounded, we write

diam. (A) = = .

Definition 1.1.7. A subset A of a metric space X 1is said to be totally

bounded if given e > 0 there exists a finite number of subsets A,, A,, ..., An
n

of X such that diam. (Ai) <g (i=1,2, ...,n) and A < A; .
i=1

Clearly, if a subset A of a metric space X is totally bounded then

it is bounded but the converse is not true. However, in ZR , bounded and
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totally bounded sets are equivalent.

An important and useful property of totally bounded sets is the

following. (e.g. see Goldberg [23]).

Theorem 1.1.8. A subset A of a metric space X 1is totally bounded if and

only if every sequence of points of A contains a Cauchy subsequence.

Definition 1.1.9. A metric space X 1is said to be compact if every open

covering of X has a finite subcovering.

Definition 1.1.10. Let T be a mapping of a set X into itself. A point

x€&€ X 1is called a fixed point of T if Tx = x, i.e., the fixed point is

a point that remains invariant under a mapping.

Definition 1.1.11. A mapping T of a metric space X into itself is said

to satisfy Lipschitz condition if there exists a real number k such that

d(Tx, Ty) < kd(x,y) for every x,y € X.
In particular, if 0 <k <1, T 1is said to be a contraction mapping.
A contraction mapping is always continuous.

Now we give the well-known '‘Principle of Contraction Mappings' formulated
by a famous Polish Mathematician S. Banach (1892-1945)[2 ] which is perhaps

the most elementary and by far the most fruitful method for mapping theorems

on existence and uniqueness of solutions of equations of various types.

Theorem 1.1.12. (Banach Contraction Principle): Every contraction mapping

T defined on a complete metric space X into itself has a unique fixed

point.




Proof. Let xoe X be an arbitrary point and let

X; = Tx0
= = T2
Xo = Txy =T X,
(1)
x = Tx = .= T
n n-1 o

We shall show that the sequence {xn} is a Cauchy sequence. From the

definition of a contraction mapping, we have

d(Tx, Ty) < kd(x,y) for every x,y€ X and 0 < k < 1.

Therefore, d(xn, xm) dCTxn_l, Txm_l)

| A

kd(xn—l’ xm—l)

2
<k d(xn-Z’ xm—Z)

<k ,x ), m>n
= o’ “m-n
ikn[d(xo’ xl) + d(x-l, X2) ..o # d(xm—n—l’

< KM, )L+ k + k2 + L4 -1y

* 1
< Kdlxg, x) (7=

>0 as n-»> « , since 0 < k < 1.

Hence {xn} is a Cauchy sequence.

Since X is complete, therefore 1lim X, exists.
N>

We set lim xn = X.
Nn->o

Then by the continuity of T we get,

Tx =T lim x = 1lim Tx_ = lim Xx = X.
n n n+l
n-o>o n+® nroe

X
m-n

)]




Thus the existence of a fixed point is proved.

We now show that this fixed point is unique. Let x and y be two
distinct fixed points of T,
i.e., Tx=x and Ty =y. (x §fy).
d(x,y).

kd (x,y).

Then d(Tx, Ty)

But d(Tx, Ty)

| A

Hence d(x,y) < kd(x,y).
i.e., 1 <k, which is a contradiction to the fact that k < 1.
This contradiction implies that x =y,

This proves that the fixed point is umique.

Remark 1.1.13. Besides showing that an equation of the form Tx = x has

a unique solution, the above theorem also gives a practical method for
finding the solution, i.e., calculation of the "successive approximations'"
(1). In fact, as shown in the proof, the approximations (1) actually
converge.to the solution of the equation Tx = x. For this reason, this

fixed point theorem is often called the method of successive approximations.

Remark 1.1.14. Both conditions of the above theorem are necessary:

(a) The mapping T : (0,1] - (0,1] defined by Tx = %- is a contraction
but has no fixed point. We note that the condition of completeness

of the space is violated in this case.

(b) The mapping T : ﬁ{ > ﬁ?, where ’ﬁ? denotes the set of real
numbers, defined by Tx = x + 1 is not a contraction and has no
fixed point although R is a complete metric space.

The following two worth mentioning theorems have been given by Chu and Diaz

[10].




Theorem 1.1.15. If T maps a complete metric space X into itself and if

n

T (n 1is a positive integer) is a contraction mapping in X, then T

has a unique fixed point.

Theorem 1.1.16. Let E be any nonempty set of elements and T be a map

of E into itself. If for some positive integer n, ™ has a unique

fixed point, then T also has a unique fixed point.

The above theorem has been improved, under different conditions, by

Chu and Diaz [11] as follows:

Theorem 1.1.17. Let T be a mapping defined on a nonempty set E into

itself, K be another function defined on X mapping it into itself such

that l(l("1 = I, where I is the identity function of X. Then T has a
unique fixed point if and only if K-lTK has a unique fixed point.

The following is an immediate corollary to the above theorem:

Corollary 1.1.18. Let X be a complete metric space, T : X =+ X and

K: X> X be such that KK = I, the identity function. If K 'TK is a

contraction in X, then T has a unique fixed point.

The proof of this corollary follows directly from the Theorem 1.1.17.

and Banach's fixed point theorem.

Definition 1.1.19. A mapping T of a metric space X into itself is said

to be contractive if d(Tx, Ty) < d(x,y) for every x,y € X, Xx + y.

Clearly a contractive map is continuous and if such a mapping has a
fixed point, then this fixed point is unique. However, a contractive mapping
of a complete metric space into itself need not have a fixed point, which

can be seen from the following example:




Let T :/R +JK be defined by Tx = x + -g- - arc tan x. Since
arc tan x < % for every x, the mapping T has no fixed point although

it is a contractive map, for T'x =1 - l_i—iz' < 1.

The following theorem due to Edelstein [16] states the sufficient

conditions for the existence of a fixed point for a contrzctive mapping.

Theorem 1.1.20. Let T be a contractive mapping of a metric space X into

itself and X € X be such that the sequence {Tn(xo)} has a subsequence
n,
{T 1(xo)} converging to a point z € X, then 2z is a unique fixed point

of T.

A simple proof of the above theorem based on the same lines as due to

Cheney & Goldstein [ 9] is given here.

Proof. Since T is contractive, hence continuous and we may write
+1 _ -1 n
d(Tnxo, ™ x,) = d(T ™ x5 T+ T'x.)

<d(M™x, Tx )

< d(xo, Txo).

Thus, {d(Tnxo, Tn+lxo)} is a decreasing sequence of real numbers bounded

below by zero, and therefore has a limit.

n,
Since (T 1(x0)} converges to z € X, therefore, the sequence
ni+1 ni+2
{T (xo)} converges to Tz and (T (xo)} converges to T2z.

n n, +1
Lim d(T “(x), T k

k-)-oo

]

Now if z ¢ Tz, d(z, Tz) (xo))

n
lim d(T k(xo), T T ()

k-Nn

By the continuity of T, we have




10-

n, +1 n, +2
limd(T ¥ (x), T ©

ko

d(z, Tz)

(x,))
"k M
= 1im d(T - T "(x), T2 - T “(x.))
k_)_m 0o [o]
= d(Tz, T2z),
a contradiction to the fact that T is contractive.

Hence Tz = z.

For uniqueness of z, let y ¢ z be another fixed point of T. Then

d(y,z) = d(Ty, Tz) < d(y,z), a contradiction.
Hence 2z 1is a unique fixed point of T.

The following corollary is due to Edelstein [16].

Corollary 1.1.21. If T is a contractive mapping of a metric space X into

a compact metric space Y € X, then T has a unique fixed point.

Definition 1.1.22, A mapping T of a metric space X into itself is said

to be nonexpansive if d(Tx, Ty) < d(x,y) for every x,y €X.

Cheney and Goldstein [9 ] proved the following theorem.

Theorem 1.1.23. Let T be a mapping of a metric space X into itself such

that
(1) d(Tx, Ty) <d(x,y)
(ii) if x $ Tx, then d(Tx, T2x) < d(x, Tx)
(iii) for each x, the sequence {Tn(x)} has a cluster point,

Then for each x, the sequence {Tn(x)} converges to a fixed point of T.

K.L. Singh [49] proved the above theorem by relaxing conditions (ii)

and (iii) and obtained a unique fixed point. We give this theorem below.
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Theorem 1.1.24. Let T be a mapping of a compact metric space X into

itself such that d(Tx, Ty) < d(x,y), equality holds only when x =y.

Then T has a unique fixed point.

Proof. The compactness of X and the condition d(Tx, Ty) < d(x,y) imply
that each x 1in XT generates an isometric sequence (Edelstein [17],
Theorem 1'). Therefore, by the definition of isometric sequence,

d(x, Tx) = d(Tx, T2x); but from the given condition we have

d(Tx, T2x) < d(x, Tx). This shows d(x, Tk) = 0, which implies

x =Tx, i.e., x 1is a fixed point of T.

To prove the uniqueness, let us assume that y is another pecint such
that y # x and y = Ty. Then d(Tx, Ty) = d(x,y) contradicting the
condition d(Tx, Ty) < d(x,y) wunless x =y. Thus X is a unique fixed

point.

1.2. Linear Spaces

Definition 1.2.1. Let X be a nonempty set, K a field (of real or

complex numbers). A structure of vector space (or linear space) on X is

defined by two maps:

(1) amap (x,y) » x+y from X x X into X, called addition,
(2) amap (a,x) » ax from K x X into X, called scalar multiplic-

ation,

These maps must satisfy the following axioms for every x,y,z €X and

for every o,8 € K:

(1) (x+y)+z=x+ (y + 2) {commutativity)
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(ii) x+y=y +x (associativity)
(iii) There exists an element O € X, called zero element, such that
X+ 0=x
(iv) For each x € X there exists -x, called opposite of x, such
that x + (-x) = 0.
(v) alx +y) =ax + ay

(vi) (@ + B)x

ax + Bx
(vii) oa(Bx) = (@B)x

(viii) 1x = x.

Remark 1.2.2. The elements of X are called 'points' or 'vectors' while

the numbers o, B, ... are often called 'scalars’.

Definition 1.2.3. A set X is said to be a topological vector space if

(i) X 1is a vector space over field K
(ii) X 1is a topological space
(iii) the map (x,y) = x +y from X x X into X is continuous

(iv) the map (a,x) = ax from K x X into X 1is continuous.

Definition 1.2.4. Given a vector space X, a seminormon X is a map

P: x %+~ p(x) from X into R which satisfies the following axioms

(i) p(x) > 0 for every x € X.
(ii) p(x +y) < p(x) + p(y) for every x,y &€ X (subadditivity).

(iii) p(ox) = |a|p(x) for every o € /R and for every x € X.

Definition 1.2.5. A set K 1in a vector space X 1is convex if for every

x,y €K and 0 <.« <1 we have ax + (1 - o)y € K. In other words, K 1is

convex if for a >0, 8> 0, o + B =1 we have ax + By € K for every

X,y € K.
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It can be easily seen that if K is convex in a vector space X

then K + x(x € X) and oK are also convex.

Definition 1.2.6. A topological vector space X is said to be locally

convex if every neighbourhood of 0 includes a convex neighbourhood of 0.

By this we mean a topological vector space in which every open set

containing 0 contains a convex open set containing 0.

Remark 1.2.7. The notion of seminorm is of fundamental importance in

discussing linear topological spaces. In fact, the seminorm of a vector
in a linear space gives a kind of length for the vector. To introduce a
topology in a linear spaée of infinite dimension suitable for application
to classical and modern analysis, it is sometimes necessary to make use of
a system of an infinite number of seminorms. It is one of the merits of
the Bourbaki group that they stressed the importance, in functional analysis
of locally convex topological vector spaces which are defined through a
system of seminorms satisfying the axiom of separation. If the system
reduces to a single seminorm, the corresponding linear space is called a

normed linear space.

Remark 1.2.8. It can be seen that the topology of a locally convex topolog-

ical vector space is given by a set of seminorms as follows:

Let U be a convex open set containing O. Then V = U N (-U) 1is also
a convex open set containing O. It is easy to see that for every xE€ X

there exists an a € ﬂ? such that x € aV. Moreover, X &€ aV <=> -x € aV.

Let p(x)

p(0)

sup{a|x ¢ aV, a>0} , if x % 0

0.

1
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It is now a routine matter to verify that p is a seminorm and the

sets

Up r = {x|p(x) < r} for every p and for every r > 0
H

obtained in this way, form a base for the topology in X at O.

Thus, in a locally convex topological vector space, the topology is
given by a system P; of seminorms. The requirement that for every x f 0
there is an open set K €CX such that 0 €K and x <,£. K 1is translated into

the requirement that for every x $# 0 we have p; (x) £ 0.

Definition 1.2.9. A topological space X is said to be Hausdorff if for

every two points x,y(x * y) of X there exists neighbourhoods U and

V respectively such that UNV = ¢ .

Remark 1.2.10. A locally convex topological vector space with the topology

described in Remark 1.2.8 is not in general Hausdorff.

Definition 1.2.11., In the Definition 1.2.4 if the condition (i) is replaced

by
(i*) p(x) > 0 for every x € X where p(x) = 0 <=> x =0 then
p is called a norm on X.
Definition 1.2.12. A linear space X, equipped with the norm p(x) = ||x]||,

is called a normed linear space. In this case we have

(i°) |] x || >0 for every x € X where ||x|]| =0 <= x =0
@i% |]x + yl] < [Ix|| + |lyl] for every x,y € X (triangle inequality)
(1ii®) ||ex|] = |a] ||x|| for every x € X and for every o .

It can be easily seen that every normed linear space X becomes a

metric space if we set d(x,y) = ||x - y|] .
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Definition 1.2.13. A coﬁplete normed linear space is called a Banach

space.

Definition 1.2.14. A mapping f of a vector space X into ﬂ? is called

a linear functional on X if

(1) fx+y) =£(x)+ £() (x,y € X)

(ii) £(ax) = af(x) (x€X, o€/

Definition 1.2.15. A functional f 1is said to be continuous if for any

e > 0 there exists & > 0 such that lf(xl) - f(xz)! < ¢ whenever

[1x1 - xp]] <6 -

Continuity and boundedness are equivalent.

Definition 1.2.16. A subset K of a normed space X 1is said to be

bounded if there exists a2 constant M such that |[x|] < M(x € K).

Definition 1.2,17. A linear operator f mapping a Banach space X into

itself is said to be completely continuous if

(i) f is continuous, and

(ii) it maps every bounded set into a relatively compact set.

Remark 1.2.18. If X 1is finite-dimensional then every linear operator is

completely continuous, while in an infinite-dimensional space, complete
continuity of an operator is a stronger requirement than merely being

continuous (i.e., bounded).

We now state the celebrated fixed point theorem of Brouwer the proof

of which may be found in Dunford § Schwartz [15].
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Theorem 1.2.19. (Brouwer's Fixed Point Theorem). A continuous map of a

ball in E" into itself has at least one fixed point.

Remark 1.2.20. The Brouwer fixed point theorem in the form stated above does

not hold in infinite dimensional spaces as the following example shows:

Consider the space 22 of sequences X = (X3,Xp, +¢+ )

with z|xi|2 < » . Define T as a map of the closed solid sphere into

itself as follows: For x = (X;,Xp, ....) let Tx = (V1 - [X]2 5 X15Xg, o)
ITxl2 = 1,

Suppose x is a fixed point. Then |x| = |[Tx| = 1. But then x; =0

and one sees in turn that x, = 0, x3 = 0, ...., and hence x = 0. There-

fore, T has no fixed point. This is due to S. Kakutani [35].

Schauder [46] extended Brouwer's theorem to infinite-dimensional spaces

in the following way:

Theorem 1.2.21. (Schauder's Fixed Point Theorem - 1st. form). A continuous

map of a compact convex set K in a normed linear space X into itself

has at least one fixed point.

Theorem 1.2.22. (Schauder's Fixed Point Theorem - 2nd. form). A completely

continuous map of closed convex set K in a complete normed linear space

X into itself has at least one fixed point.
The proofs of the above two theorems may be found in Nirenberg [35].

It has been shown by Tychonoff that the 1st. form of Schauder's fixed

point theorem holds if X is a locally convex topological vector space.




17. J

Theorem 1.2.23. (Schauder-Tychonoff Fixed Point Theorem). Let K be a

non-empty compact convex subset of a Hausdorff locally convex topological
vector space X, and let T be a continuous mapping of K into itself.

Then T has a fixed point in K.

The proof of the above theorem may be found in Bonsall [3 ].

Definition 1,2.24. A Banach space X is called uniformly convek if for

any ¢ > 0 there is a § > 0 such that if ||x|] = ||y|] =1 and

Hx -yl e then |[232 0] <1

Definition 1.2.25. A Banach space X 1is called strictly convex if for

any x,ye X, |[|x+vy]|=]|x]| * |ly]| = x=2y, a>o0.

Remark 1.2.26. Every uniformly convex Banach space is strictly convex. But

the converse is not true.

Definition 1.2.27. Let X be a Banach space and X* denote its first

dual space. For any fixed vector x € X, the mapping of X* into R
which assigns to every u € X* the value (u,k) of u at x is a

linear continuous functional in the space X*, 1i.e., an element of X*¥*,
Moreover the norm of this functional is equal to ||x||. Also the canonical
mapping of X into X* defined by this correspondence between elements

of X and linear continuous functional on X* is linear and one to one.

Therefore, it is an isometrical imbedding of X into X**.

Now, a Banach space is called reflexive if X = X**, i.e., the

canonical mapping of X into X** is onto.
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Remark 1.2.28. Every uniformly convex Banach space is reflexive.

Definition 1.2.29. A point X € KX is a diametral point of K if

§(K) = sup{||x - y|| |y e K}

where §(K) denotes the diameter of K.

Definition 1.2.30. A convex set K€ X 1is said to have a normal structure

if for each bounded convex subset H of K which contains more than one

point, there is some point x € H which is not a diametral point of H.

Remark 1.2.31. Every uniformly convek space X has a normal structure.

Definition 1.2.32. Let X be a vector space over K (real or complex).

A mapping of X x X into K which takes ordered pair {x,y} &€ X x X

into the number (x,y) € K is called an inner product in X if
1) x,y) = (v,x)
(1) (x+ vy, 2) = (x,2) + (¥,2)
(1i1)  (ex,y) = alx,y)

iv) (x,x) > 0 if x # 0.

A vector space X, together with an inner product in X, is called

an inner product space or pre-Hilbert space.

Definition 1.2.33. A Hilbert space is a pre-Hilbert space which is

complete w.r.t. the norm derived from the inner product. In this case the

i
norm and the inner product are related by ||x|]| = (x,x)™.

Remark 1.2.34. Every Hilbert space is relfexive.
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We now state without proof the following fixed point theorem due to

Browder [ 5]:

Theorem 1.2.35. Let X be a uniformly convex Banach space, T a non-

expansive mapping of the bounded closed convex subset K of X to itself.

Then T has a fixed point in K.

Remark 1.2.36. (i) If K 1is compact or T is completely continuous, it

becomes a particular case of the Schauder fixed point theorem.

(ii) If T 1is contraction, then the result follows from

the Banach contraction principle.

(iii) The following eﬁample shows that the result cannot be

extended to the general Banach spaces.

Let X = Co’ the space of sequences converging to 0, C the unit
ball in the maximum norm, e; the unit vector given by e, = (1,0,0,0, ...),

S(X) = (0,X],Xps +++)-

Then the mapping Tx = e; + s(x) maps C into itself, is non-expansive,

and has no fixed point in C.

Kirk [27] gave the following generalization of the above theorem:

Theorem 1.2.37. Let X be a reflexive Banach space and K a nonempty

bounded closed convex subset of X. Furthermore, suppose that K has normal
structure. Then a non-expansive mapping T of K into itself has a

fixed point.

In the following examples it has been shown that the restrictions on

K are necessary.




Example 1. (Boundedness of K). A translation in a Banach space is an

isometry and obviously has no fiied points.

Example 2. (Closedness of K). Let X ==ﬂ? be a Hilbert space. Let C

be the interior of the unit ball, i.e., C = {x| ||x|| < 1}. Consider T

the mapping of C into itself defined by
= X a
Tx = > + >
where a é‘ﬂ? is a vector of unit norm. In this case T has no fixed

point in C.

Example 3. (Convexity of K). Let X = ﬂR be a Hilbert space. Let C

be a set containing just two distinct points a and b. Define T : C-=>C

as Ta=b and Tb = a. Clearly T 1is an isometry and has no fixed point.

The following example indicates that one cannot expect existence of
fixed points for non-expansive mappings in the most general class of

Banach spaces.

Example 4. Let C[0,?] be a Banach space with
llf[l = max+|£(x) |
x€[0,1

It is known that C[0,1] is not a reflexive Banach space.

Let C = {f €C[0,1]] £(0) =0, £(1) =1, 0 < f(x) < 1}.

Then C is bounded, closed and convex.
Let T be a mapping defined as follows:

T:C~»C
f(x) » xf(x), 1i.e. Tf(x) = xf(x)

and T is non-expansive.
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It is easy to verify that T(C) € C and T has no fixed point.

Example 5. (Normal structure of K). The mapping T : Co > Co defined

by
T : CCI,CZ, ...-)')' (1,CI,C2, -...)

maps the unit ball <, into itself but does not have any fixed point,
since (¢;,c5, ....) = (l,¢7, ...) would simply mean that ¢, =¢, , ...,

and this is impossible.

Browder & Petryshyn [ 7] and Kachurovskii [25] independently proved

the following fixed point theorem in Hilbert spaces:

Theorem 1.2,38. Let K be a closed bounded convex subset of a Hilbert space

X and T : K+ K a non-expansive mapping. Then T has at least one fixed

point in K.

Remark 1.2.39. It may be noted that the proofs of Theorem 1.2.35 and

Theorem 1.2.37 are based on a transfinite argument due to Brodsky & Milman
[ 4] while in the case of Hilbert spaces, i.e., in Theorem 1.2.38 the proof

is given by using a connection with monotone operators.

Definition 1.2.40. Let X be a metric space and A be a bounded subset

of X. Then we define measure of non-compactness of A, denoted by a(A),
as
alA) = {e > 0| A can be covered by a finite number of subsets of

diameter < ¢}

The above concept was introduced by Kuratowski.[32]. This measure of

non-compactness o« satisfies the following properties:
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(1) 0 <a(A) < 8(A), where § is the diameter of A.

(1i) a(A) = 0 <=> A 1is totally bounded.
(iii) o(rA) = |A|a(A), where A is a real number.

(iv) a(AV B) = max{a(A), a(B)}.

(v) o(A + B) < a(A) + a(B).

(vi) If AC B, then «a(A) < a(B).

(vii) If A is the closure of A, then a(A) = a(A).
(viii) «(N () < a(A) + 2r, where N_(A) = {x € X|d(x,A) <} isa

neighbourhood of A,
(ix) a(co(A)) = a(A), where co(A) denotes the convek closure of A.

(x) o(B) = a(S) = 2, where B = {x€ X| ||x]| <1} and

S = {x€Xx| ||x|| = 1} in an infinite-dimensional Banach space X.
,f;; These properties are discussed in details by Darbo [13], Nussbaum [36]
14 and Sadovskii [45). Closely associated with the measure of non-compactness

i is k-set=contraction mapping introduced by Darbo [13].

Definition 1.2.41. Let A be a subset of a metric space X and T : A+ X

be continuous. Then T is said to be a k-set-contraction mapping if given

any bounded subset D of A we have

a(T(D)) < ka(P)

for some k > O.

It may be noted that every contraction mapping is k-set-contraction

with k < 1.

The following result is due to Darbo [13].
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Theorem 1.2.42. Let K be a non-empty closed convex bounded subset of a

Banach space X and T : K * K be a k-set~contraction mapping with k < 1.

Then T has a fixed point in K.

A slightly extended result of the above theorem was given by Nussbaum [36]

as follows:

Theorem 1.2.43. Let X and K be as in Theorem 1.2.42 and T : K + K be

continuous. Further let (i) Kj=coT(K), (ii) Kh==EET(Kn-1)’ n>1 and

(1ii) @(K) >0 as n+« Then T has a fixed point.

Definition 1.2.44. In the definition of k-set-contraction if k =1, i.e.,

if o(T(D)) < o(D) for every bounded subset D of A, then we call this

mapping to be l-set-contraction.

Remark 1.2.45. Clearly, a nonexpansive mapping is l-set~contraction, but the

converse is not true. The difference between these two types of mappings
may well be illustrated by comparing Theorem 1.2.38 with the following

conjecture.

Conjecture: Let K be a non-empty closed convex bounded subset of a Hilbert
space X and T : K* K be a l-set-contraction mapping. Then T has no

fixed point.
To see this let us consider the following example:

Consider the 22-space and a mapping f : ¢ + ¢, where c is the unit

ball in f2-space, be defined by

f(x) = ¢1 - Hx”2 s X1,Xg, see Xy oeeel)
i
where x = (x;,X5,....) and |[x]|]| = (zlxilz)z.

Clearly, f is continuous. Suppose now that f has a fixed point. Then,
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£(X) = X = (X1,Xp, ....) = (/1 - HXHZ s XysXps eeee)

Let us take the elementary case,

i.e., f(0)=0-= (0,0, ...) = @1 - ||0|| » 0,0, ....)
i.e., (0,0, ....) = (1,0,0, ....), which is impossible.

Hence f has no fixed point.

The following useful theorem was given by Nussbaum [36]:

Theorem 1.2.46. Let B = {x € X]| ||x]] < 1} be a ball in a Banach space X

and let R : X +~ B be a radial projection (also called, radial retraction),

i.e.,
X
Rx = | —— for X > 1
A Il =
X for ||x]|]| < 1.

then R is a l-set-contraction.

Definition 1.2.47. Let T : X+ X be a continuous mapping of a metric

space X into itself. If for any bounded set AC X with (A) > 0 we

have o(T(A)) < a(A) then the mapping T 1is said to be densifying.

This definition was introduced by Furi § Vignoli [21]. Sadovskii [45]

called this as condensing map.

It may be noted that contraction mappings and completely continucus
mappings are densifying. Also sums of contraction and completely continuous

mappings defined on Banach spaces are densifying.
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The following theorem was given by Furi § Vignoli [22].

Theorem 1.2.48. Let T : K+ K be a densifying mapping from a non-empty

closed convex bounded subset of a Banach space X into itself. Then T

has at least one fixed point.

The above important fixed point principle for densifying operators was
generalized to topological vector spaces by Swaminathan § Thompson [51] as

follows:

Theorem 1.2.49. Let K be a complete, convex bounded subset of a locally

convex topological vector space X and T : K-+ K be densifying. Then

T has a fixed point in K.

The following theorem was given by Petryshyn [37].

Theorem 1.2.50. Let B be an open ball about the origin in a Banach space

X. If T : B+ X is a densifying mapping which satisfies the boundary

condition
(*) If Tx = ax for some x in 3B, then a <1,

then T has a fixed point.

Proof. We define first a radial retraction mapping R : X - B, by

x if ||x]| <~
Rx =
X .
if X > T,
= x>

Then by Theorem 1.2.46, R 1is a l-set-contraction.
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We now define a mapping T; on B by Ti(x) = RT(*), for every
x€ B. Then T, maps B into itself which is also densifying, for

a(T1B) = a(RTB) < o(TB) < a(B). Therefore by Theorem 1.2.48, T; has

a fixed point in B, say x_, i.e., Tix = x_. We claim that Tx_ = x .
(o} o o o o

Indeed, if x € B, themn Rx =x and T;x = RTx_ = x_, therefore
[o] [o] [o] [o] [o} [o]

Txo = x . And, if xoé 9B, then

o}
Rxo = % and Tlxo = RTx0 = X3 therefore, r Txo =X, 1i.e.,
x4 TN
Tx°= X, ”T:OH , 1.e., &x0= X, “T:o” , i.e., a= HTon > 1,
T

which is a contradiction to («). Hence the proof.
The following three corollaries were given by Petryshyn [37].

Corollary 1.2.51. Suppose T : B +X is densifying such that

(i) TBYC B, or
(ii) T@B)C B, or
2 2 2
(ii)  frx - x> Ix|l - ||l for a11 x €3B, or
(iv) (Tx, Jx) < (x, Jx) for all x €93B, where J 1is a duality
*
mapping of X into its dual X* (or rather into the set ZX

of all subsets of X*) such that

2
Ix, x) = |lx]| and |Jx|] = ]lx]| for all x & X.

Then T has a fixed point.

Corollary 1.2.52. Let T : B~ H be any mapping and To : B+H be

densifying (H is the Hilbert space), such that
2
1) (Tx, x) < |[x]]
(i) [|tx - T x}| < ||x - Tx|| for all x € aB.

Then T has a fixed point.

e S
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Corollary 1.2.53. Let T =S+ C be amap from B to X such that

S is contraction on B and C is compact on B. Suppose also that
T satisfies condition (%) of Theorem 1.2.50 on 3B. Then T has a

fixed point.

The following theorem was also given by Petryshyn [37].

Theorem 1.2.54. Let C be a bounded open subset of a Banach space X

and T : C > X be a l-set-contraction mapping satisfying either of the
following two conditions:
(a) there exists an X, € C such that if Tx - X, = a(x - xo)

holds for some x & 3, then a < 1.
(b) C is convex and T(aC)C C.

Then T has a fixed point if (I - T) C is closed.

Proof. Define Q =C - x = {x - x_ |x & C} .

Then it follows that Q is bounded, open, 0 € Q, 3Q = 3C - x,

and Q =C - Xy Furthermore, Q is convex if C 1is convex.

Now define the map T'(y) for y in Q and y = {x - xolx € C}
by T'(y) = Tx - X, Then T' maps Q@ into X and T' is l-set-con-
traction and T' satisfies condition (*) of Theorem 1.2.50 on .
Furthermore, (I - T')Q is closed since (I - T')Q = (I - T)C. Thus
T' and Q satisfy all the conditions of Theorem 7 of Petryshyn [37].
Hence there exists a y in Q such that T'(y) =y, i.e.,

Tx - x, = X - X with x€ C or Tx = x.

Next we show that (b) implies (a). Suppose (b) is given and let




i

e

X € C be any fixed element. Then Q = C - Xy is convex, 0 &€ Q, and

Tyl

T'(3Q) < Q since T'(3Q) = T(3C) - x, & g - x, = Q and ¢ is convex.

Hence T' satisfies boundary condition on @8Q , i.e., condition (a) of

this theorem is satisfied.

Hence the proof.

A
i
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CHAPTER II

Some Fixed Point Theorems for Quasibounded Mappings

2.1. Quasibounded Mappings § Fixed Point Theorems

Definition 2.1.1. Let X be a Banach space and T : X + X be continuous.

If |T| = lim {sup TiX)ll} is finite then T is called quasibounded
pre | |x|[2p [1X]]
and |T| is called quasinorm of T.

Example 2.1.2. Any bounded linear mapping is quasibounded and its norm

coincides with its quasinorm.

Remark 2.1.3. The notion of quasibounded mappings was first introduced by

Granag [24]. The same mapping was termed as linearly upper bounded by
Kolomy [28] § Srinivasacharyulu [50]. It is easy to see that T is quasi-
bounded if and only if there exist o,8 > 0 such that ||Tx]|] 5_3[]1]]

for ||x]] > « .

The following known result is due to Granas [24].

Theorem 2.1.4. Let T : X+ X be a quasibounded completely continuous

mapping of a Banach space X into itself. If |T| <1 then the equation

y = x - Tx has a solution for every yé€ X.

Proof. Let y* € X be arbitrary. We define a mapping T by
Tx = y* + Tx for every x € X.

Clearly T is completely continuous.

Since |T| < 1, therefore it follows that }}iT} < 6 <1 holds for

every x with |[|x|] > r; , where & and r; are some constants.
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Let ¢ > 0 be such that ¢ + § <1 and let T, = ll%:LL
Now, for every x with ||x|| > r, we have %—%I—i-j_e .
Let r=r;+1; , K ={xe&X| [|x|]|] <r} and S. = {x €Xx| [|x|| = r}.
Also, let x € S_. Then [1x]| > ry , ||x|] > r, a.d hence
el Al Ll s,
X = 11X =[]

It then follows that T(sr)cz K.
Now by a fixed point theorem of Rothe [44], T has a fixed point in

K., say x*. Therefore, Tx* = x* = y* + Tx*, i.e., y* = x* - Tx*.

The theorem is now proved.

The following corollary is due to Granas [24].

Corollary 2.1.5. Let T : X » X be a quasibounded completely continuous

mapping. If ||Tx|] = 0(||x||)(as ||x|| » +=) then the equation
y = x - ATx with the real parameter A has a solution for every y € X

and for every A

Proof. Clearly, for every i, the mapping AT 1is completely continuous and

quasibounded; also the quasinorm |AT| is equal to 0. Hence the corollary

follows from the last theoren.

The following theorem due to Nashed and Wong [34], may be treated as a
perturbation theorem where completely continuous quasibounded mappings are

perturbed by contraction mappings.

Theorem 2.1.6. Let S : X+ X be a contraction mapping and T : X » X be

completely continuous and quasibounded. If |T| <1 - v, where v is the

contraction constant, then the equation y = x - Sx - Tx has a solution
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for every y € X.

Proof. For any fixed element 2z € X, we define an operator S by
Sx=Sx+Tz+y* . . .. ... ......1)

where y* € X is arbitrary. A simple computation shows that § is
again a contraction mapping. So we may define a mapping G which

associates to each z € X the unique fixed point of 8.
In other words, from (1), we have,
Gz =86z =86z +Tz+y* . ... .......2

Now for any u,v € X, we obtain from (2), the following estimate:

] Gu - 6v]| < [[Tu =Tv]] . . . . . o o v . (3)

1
1 -y
It clearly follows from (3) that G 1is completely continuous.

In order to establish that G has a fixed point, we need to show that

G maps a certain closed ball into itself. Denote by
Sn(y) = {x € X| ||x - y|]| <n} where n is a positive integer. We claim
that there exists a positive integer N > O such that G(SN(y))g; SN(y).
Assume the contrary, then there must exist for each n > 0, u, e'Sn(y)
such that ]]Gun -y||] >n. Since G is completely continuous, we must
then have [|u || >« as n >« . From (2), we may estimate |1Gu - ¥|]

as follows:

Heu - yl| < [ISGu, = syl| « [ISy|] « [[Tu ] - . ... .(4

For each ¢ > 0, choose n, such that for n >n, we have
Htu |1 < ATh+ Il s TSY]] < elluyll/3

and ||Gun -yl > - 5ffgj'gqulun|l )
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which is possible by the choice of {u }. Dividing (4) by ]Iunll, and

substitute these estimates for n >, in (4), we obtain

a-v) [I'E(TE_\;)]‘ §_€+ | T|

or, (1-v)<e=+ [T

Since e is arbitrary, we conclude that |T[ > (1 - v), which is a

contradiction to our hypothesis that |T| < 1 - v.

Thus G : Sn(y) - Sn(y) is a completely continuous operator. Hence
by Schauder's [46] fixed point theorem, G has a fixed point in Sn(y),

say Xx*,
Therefore, Gx* = x* = Sx* + Tx* + y*
i.e., y* = x* - Sx* - Tx* .

Hence the proof is complete.

Corollary 2.1.7. We obtain Theorem 2.1.4 of Granas [24] when S =0 in

Theorem 2.1.6.

The following result was given by Nashed § Wong [34]:

Theorem 2.1.8. Let S be a bounded linear operator on X such that s

is a contraction mapping (with contraction constant v , 0 <v < 1) for
some q > 1, and T be quasibounded and completely continuous on X.
If |T| <1 - v then the equation y = x - Sx - Tx has a solution for

every y € X.

Proof. Proceeding in the same manner as that of Theorem 2.1.6, we define

for each z € X the operator S by (1). Again we may show by the
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linearity of S that §9 is a contraction, hence we may define a mapping
G which maps z to the unique fixed point of § in such a way that

(2) of Theorem 2.1.6 holds. Note that instead of (3) we have from

q-1 .
Gu - Gv =8%0Gu-6v) + J si(u-1v,
3=0
the following estimate

lou - ovl] < LB =TIl %7 sy
y

>

which establishes the complete continuity of G. A similar argument as
q-1 .
that of Theorem 2.1.6 applied to the balls Sn(u) where u = Z SJy

j=0
completes the proof.

Remarks 2.1.9. (i) Theorems 2.1.6 and 2.1.8 may be considered as variants

of a fixed point theorem of Krasnoselskii [29].

(ii) The utility of Theorems 2.1.6 and 2.1.8 result from the
fact that, unlike the standard form of Schauder Theorem,
they do not require a priori that a certain closed
bounded convex set is mapped into itself by the completely

continuous operator.

(iii) The hypotheses of Theorems 2.1.6 and 2.1.8 guarantee the
existence of some closed ball which is mapped into it-
self by a certain completely continuous operator G
whose fixed point coincide with the fixed point of the

operator Sx = Sx + Tx + y*.

Theorem 2.1.4 was extended for densifying mappings by Vignoli [52] as

follows:
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Theorem 2.1.10. Let T : X » X be a quasibounded densifying mapping of

a Banach space X into itself. If |T! <1 then the equation

y = x - Tx has a solution for every y € X.

Proof. Let y* €& X be arbitrary. We define Gx = y* + Tx for every
x € X. Clearly G 1is densifying. We consider now the following family

of balls with center y*:

Qk) = {x€ X| ||x-y*|] <k} , k=1,2,....

We want to show that for some integer q > 0, the mapping G maps Q(q)
into itself. Assume the contrary. Then for any positive integer k

there exists an element Xy such that

[16x, - y*[] > k.

But
[16x = y*|1 = lITx ||
Hence, 'lTxkl| S k .
IEXIRIEY)

On the other hand,

[x D < Tly*[] + &

Then it follows that

[T || s K K

> 1lim

. R, =1,
|]x| |- X TT = oe X T ksw Y]] * K

which is a contradiction.

This contradiction shows that for some q > 0, G : Q(q) ~ Q(q) is a
densifying mapping. Then, by Theorem 1.2.48 of Furi § Vignoli [22], G

has a fixed point in Q(q), say x*.
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Therefore Gx* = x* = y* 4 Tx*

x* - Tx* ,

By W
Hence the proof is complete.

The following four corollaries are due to Vignoli [S52]:

Corollary 2.1.11. Let T : X+ X be a quasibounded densifying mapping i.;

from a Banach space X into itself. Let |A| |T|] <1 where A is a

real number such that |A| < 1. Then the equation y = x - ATx has a

solution for every y & X. g

.
3
5
i

Corollary 2.1.12. Let T : X + X be a densifying mapping from a Banach

space X into itself. Let |[|Tx|| = 0(||x|]) as ||x|] + =. Let A be
a real number such that |[A| < 1. Then the equation y = x - ATx has at

least one solution for each y € X.

Remark 2.1.13. (i) In the above two corollaries, the condition |[A]|<1

is required in order that AT is densifying.

& (ii) 1If the mapping T is assumed to be completely continuous
then both the above corollaries can be proved without
the assumption |A| < 1 (see Granas [24] for Corollary

2.1.11 and Dubrovskii [14] for Corollary 2.1.12).

Corollary 2.1.14. Let S : X + X be a quasibounded densifying mapping from

a Banach space X into itself with quasinorm [S| < a, 0 <a <1, and let
T : X+ X be completely continuous with quasinorm |T| <1 - o . Then the

equation y = x - Sx - Tx has a solution for every Yy € X.
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Remark 2.1.15. In Corollary 2.1.14, if in particular S is assumed to be

a contraction mapping with constant o <1 then S 1is densifying and

satisfies the condition |S| < ¢. Indeed,

[Isx|| . Hsx-sll , Hsoll __, ls@[] . ex
T[T =" 11T IR TN TR

and hence S| < a.

Corollary 2.1.16. Let S : X » X be a quasibounded densifying mapping from

a Banach space X into itself with quasinorm |[S| <a, 0 <a < 1, and
let T : X » X be quasibounded and completely continuous. Let ) be a
real number such that |A||T| < 1 - q. Then the equation y = x - Sx - ATx

has a solution for every y e X.

The following theorem due to Petryshyn [38] is the generalization of
the results of Granas [24] for quasibounded compact maps and of Vignoli

[52] for quasibounded densifying mappings.

Theorem 2.1.17. Suppose T : X + X is quasibounded 1-set-contraction

such that (I - T)(B(0,r)) is closed for each r > 0 and |T| < 1. Then

(I - T) 4is surjective.

Definition 2,1.18. Let X,Y be two Banach spaces, f be a mapping of

an open subset V of X into Y and let Xy € V; if there exists a
bounded linear operator S : X > X such that

1im f(xo + tx) - f(xo)
t-+0 t

= S(x)
for every x € X, we say that f has the Gateaux derivative S at x .

The following result is due to Srinivasacharyulu [50]:
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Theorem 2.1.19. Let f : X+ X be a mapping of a uniformly convex Banach

space X into itself such that it has the Gateaux derivative f'(x) for
every x &X. Let T : X+ X be a linear mapping of X onto X having
an inverse and let F = I - Tf, where I is the identity mapping of X. vli
Assume further that sup ||F'(i)|] < 1. If |F| <1, then the equation “
f(x) =y has at leas:ezne solution for each y in X.

Proof. By definition, F(x) = x - Tf(x) and F(x) has the Gateaux
derivative F'(x) given by F'(x) = I - Tf'(x); since

|[|Fx - Fy|| < [|F'(2)]]| ||x - y|| for some 2z on the segment [i,y] and
su§ [|[F*(x)|| < 1, we see that F is a non-expansive mapping. Let y*
x€

be an arbitrary point of X and let T(y*) = z*; the equation f(x) = y*

is equivalent to x - F(x) = z*.

We prove that f£(x) = y* has a solution x* in X; to prove this,

we define a mapping F : X+ X by F(x) = F(x) + z*, x € X.

Since |F| < 1, we have l%%ﬁ%% <e < 1 for all x with
||x|| > a;. Let & > 0 be such that ¢ + 6 <1 and let a) = lli%li ;

put o« =a; +a, , B={xe&X| ||x|] <a} . Clearly, B is bounded,

closed, and convex and

|1Ex|| < [[Fx|[] + |]z*]]
< (e +8) |x[]
< x|
for x € B.
Moreover, ||Fx; - Fxp|| < ||x; - xp|| for every xj,x; € B; hence F

has at least one fixed point x* € B by Theorem 1.2.35 of Browder [5 ].




Therefore Fx* = x* or equivalently f£(x*) = T_l(z*) = y*. Thus the

theorem.

We next give an existence theorem for nonlinear problem due to Kolomy

[28].

We shall say that a linear continuous mapping A : X + X of Hilbert

space X 1is normal if AA* = A*A, where A* denotes the mapping adjoint

to A.

Theorem 2.1.20. Let F : X+ X be a mapping of a Hilbert space X into

itself such that, for every x & X it has the Gateaux derivative F'(x).
Let PF'(x) be a normal mapping for every x € X such that
(PF' (x)h,h) > 0 for every x € X, h e X, where P is a linear mapping
of X onto X having an inverse P, [P ] :_(Tszﬁ ]lF'(x)lL) -

x

If |I - PF| < 1, where I is the identity mapping of X, then the

equation F(x) = y has at least one solution for every y € X.

Proof. For every x & X the mapping G(x) = x - PF(x) has the Gateaux
derivative G'(x) and G'(x) = I - PF'(x). Because G'(x) 1is a normal

mapping for every x € X, then

l6rx)|| = su | (G' (x)h,h) ] su | (h = PF' (x)h,h)|
[T} =1 e

su [1 - (PF'(x)h,h)]
[Tn [=1

<1,

since 0 < (PF'(x)h,h) < |]P||(sup [|IF*(x)]|) <1 for every x € X and
h € X with ||h|] = 1. Because ]IGx -6yll < |16 )| |lx - yl|, where

X is an element which lies on the line-segment connecting the points

X,y € X and sup ||G'(x)|| < 1, we conclude that G : X » X is Lipschitzian
x€X




mapping with constant one.

Now let y* be an arbitrary point in X and set z* = P(y*). The
equation F(x) = y* is equivalent to x - G(k) = z*., We shall show that

there exists an element x* € X such that F(x*) = y*,

Define a mapping G : X » X by G(x) = G(x) + z* for every x € X.
Since |G| < 1, it follows that the inequality [16x) || ||x]|-1 <eg<l1
holds for all x with norm |[[x|| > pj , where e,p, are some constants.
Now choose a positive number v such that ¢ + vy <1 and let
o2 = z*|[v. Put v =p; +p,, D=txex| [[x]]| <1},

S={xeX| ||x]] =r}). Let x &S, then

G| < [z*[1 + et || < & + v Ix|] < [|x]].

Thus ||G(x)|| < ||x]| for every x& S. Also, "||Gx; - Gx,|| < ||x; - x,]]|
for every x;,x, € D. Hence G is Lipschitzian with constant one on D,
G:D~+X and G(S)C D. Since all the assumptions of Browder's theorem

[ 6] are fulfilled, there ex