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ABSTRACT 

Chapter I contains some necessary preliminaries which may be found 

in most functional analysis texts. Also some fixed point theorems 

including those of Schauder [46], Furi & Vignoli [22], Swaminathan & 

Thompson [51], Nussbaum [36] and Petryshyn [37] are given in this 

chapter. 

Chapter II deals with the study of quasibounded mappings and their 

fixed points. A systematic and up to date summary of known results is 

given in this chapter. Also some of the known results have been extended. 

In Chapter III some applications of the fixed point theorems are 

illustrated by taking suitable examples. 
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I. ~ • 

INTRODUCTION 

Existence theorems in analysis first appeared in the ninteenth 

century and since then have received much attention. These theorems 

were considered for some time by mathematicians such as Cauchy, Picard, 

Birkoff and Kellogg. Then in 1922, S. Banach [ 2] formulated his 

classical theorem, commonly called the Banach Contraction Principle, 

which is based on a geometric interpretation of Picard's method of 
. ./ .... successive approximations, it reads as follows: 

"A contraction mapping of a complete metric space into itself has 

a unqiue fixed point". 

Because of its usefulness, the contraction mapping principle has 

motivated a great deal of research in the existence and uniqueness 

theorems of differential equations, partial differential equations, 

integral equations, random differential equations, etc. 

In Chapter I, we have given a brief survey of the fixed point theorems 

proven for contraction, contractive and nonexpansive mappings in metric 

~paces. In the later portion of the chapter we have given some fixed 

point theorems fork-set-contraction, densifying and !-set-contraction 

mappings. Some of these results are necessary in many proofs of the 

thesis. 

In Chapter II, we have studied quasibounded mappings and their fixed 

points. This mapping was first introduced by Granas ( 24] and we have 

tried to give here a systematic and up to date summary of known results. 
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First section of this chapter is devoted to the existence of solutions of 

nonlinear equations while some results for p-quasibounded mappings, intra-

duced by Cain & Nashed [8 ] are given in the second section. In the 

same section we have also obtained solutions of equations for p-quasi-

bounded mappings which generalize the results due to Granas [24], Vignoli 

[52] and Nashed & Wong [34]. Some intersection theorems for quas i bounded 

mappings have been given in the third section while in the fourth section 

we have added some further results for these mappings. 

In Chapter III, we have given some selected applications of fixed 

point theorems established in the previous two chapters. 
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CHAPTER I 

Preliminaries on Some Fixed Point Theorems 

Our purpose in this chapter is to discuss some preliminary definitions 

and some of the well-known fixed point theorems in metric and linear spaces. 

1.1. Metric Spaces 

Definition 1.1.1. Let X be a set and d be a function from X x X into 

.£)+ 
Q"\ such that for every x ,y, z G. X we have: 

(i) d (x,y) > 0, 

(ii) d(x,y) = 0 <=> x = y, 

(iii) d (x,y) = d (y ,x) (symmetry), 

(iv) d(x,y) < d(x,z) + d(z,y) (triangle inequality). 

Then d is called a metric (or distance function) for X, and the pair 

(X,d) is called a metric space. 

When no confusion seems possible, we will refer to X as a metric space. 

Definition 1.1.2. A sequence {xn} of points of a metric space X is said 

to converge to a point x
0 

if given E > 0 there exists a natural number 

N(E) such that d(xn' x0) < E whenever n ~ N(E), or lim d(xn' x
0

) = 0. 
n-+oo 

We denote this by X -+ X • n o 

then It can be easily verified that if xn -+ x
0 

and xn -+ Y
0 

i.e., a convergent sequence has a unique limit in a metric space. 

Definition 1.1.3. A sequence {x } of points of a metric space X is said n 

to be a Cauchy sequence, if for arbitrary E > 0 there exists a natural 

number N(£) such that d(x, x) < E for every n,m _> N(E). n m 
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It follows directly from the triangle inequality that every convergent 

sequence is Cauchy. 

Definition 1.1.4. A metric space X is said to be complete if every Cauchy 

sequence in X converges to a point in X. 

Definition 1.1.5. Let T X ~ Y be a mapping of a metric space X into 

a metric space Y. Then T is said to be continuous at a point x t X 
0 

if given any e > 0 there exists 0 > 0 such that d'(Tx, Tx) < 8 
0 

when-

ever d(x, x
0

) < o, where d and d' are metrics in X and Y respect­

ively. 

The mapping T is said to be continuous on X if it is continuous at 

every point x €. X. 

Definition 1.1.6. Let A be a subset of a metric space X. Then A is 

said to be bounded if there exists a positive number M such that 

d(x,y) ~ M for every x,y EA. 

If A is bounded, we define the diameter of A as 

diam. (A)= sup{d(x,y)lx,y € A} 

If A is not bounded, we write 

diam. (A) = oo • 

Definition 1.1.7. A subset A of a metric space X is said to be totally 

bounded if given € > 0 there exists a finite number of subsets Al, A2' ... , 
n 

of X such that diam. (A.) < € (i = 1,2, ... , n) and A C U A .. 
1 i =l 1 

Clearly, if a subset A of a metric space X is totally bounded then 

it is bounded but the converse is not true. However, in 1R , bounded and 

A n 
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totally bounded sets are equivalent. 

An important and useful property of totally bounded sets is the 

following. (e.g. see Goldberg [23]). 

Theorem 1.1.8. A subset A of a metric space X is totally bounded if and 

only if every sequence of points of A contains a Cauchy subsequence. 

Definition 1.1.9. A metric space X is said to be compact if every open 

covering of X has a finite subcovering. 

Definition 1.1.10. Let T be a mapping of a set X into itself. A point 

x~ X is called a fixed point of T if Tx = x, i.e., the fixed point is 

a point that remains invariant under a mapping. 

Definition 1.1.11. A mapping T of a metric space X into itself is said 

to satisfy Lipschitz condition if there exists a real number k such that 

d(Tx, Ty) ~ kd(x,y) for every x,y t X. 

In particular, if 0 < k < 1, T is said to be a contraction mapping. 

A contraction mapping is always continuous. 

Now we give the well-known "Principle of Contraction Mappings" formulated 

by a famous Polish MathematicianS. Banach (1892-1945)[2] which is perhaps 

the most elementary and by far the most fruitful method for mapping theorems 

on existence and uniqueness of solutions of equations of various types. 

Theorem 1.1.12. (Banach Contraction Principle): Every contraction mapping 

T defined on a complete metric space X into itself has a unique fixed 

point. 



Proof. --- Let X E X be an arbitrary point and 
0 

x l = Tx 
0 

Xz = Tx1 = T2x 
0 

x = Tx = n n-1 
n · = T X 

0 

let 

We shall show that the sequence { x } 
n 

is a Cauchy sequence. 

definition of a cont raction mappi ng, we have 

(1) 

From the 

d (Tx, Ty) ~ kd (x,y) for every x,y € X and 0 < k < 1 . 

< knd(x , x ) m > n 
- o m-n ' 

6 . 

+ d(x 
1

, x )] m-n- m-n 

~ knd(x
0

, x1 )[1 + k + k2 + 

~ knd(xo, xl ) ( 11- k) 

••• + km-n-1] 

--:>0 as n -+ "" since 0 < k < 1. 

Hence {x } is a Cauchy sequence . 
n 

Since X is complete, t herefore 

We set l im x = x. n 
n-+<» 

lim 
n+<» 

Then by the continuity of T we get, 

X exists. n 

Tx = T lim x 
n 

= lim Txn = lim xn+l = x . 
n-+<» n-+<» n -roo 
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Thus the existence of a fixed point is proved. 

We now show that this fixed point is unique. Let x and y be two 

distinct fixed point~ of T, 

i.e., Tx = x and Ty = y. (x f y). 

Then d(Tx, Ty) = d(x,y). 

But d(Tx, Ty) < kd(x,y). 

Hence d(x,y) ~ kd(x,y). 

i.e., 1 ~ k, which is a contradiction to the fact that k < 1. 

This contradiction implies that x = y. 

This proves that the fixed point is unique. 

Remark 1.1.13. Besides showing that an equation of the form Tx = x has 

a unique solution, the above theorem also gives a practical method for 

finding the solution, i.e., calculation of the "successive approximations" 

(1). In fact, as shown in the proof, the approximations (1) actually 

converge , to the solution of the equation Tx = x. For this reason, this 

fixed point theorem is often called the method of successive approximations. 

Remark 1.1.14. Both conditions of the above theorem are necessary: 

(a) The mapping T : (0,1] ~ (0,1] defined by X Tx = 2 is a contraction 

but has no fixed point. We note that the condition of completeness 

of the space is violated in this case. 

(b) The mapping T : 1i\ ~ JR , where 1R denotes the set of real 

numbers, defined by Tx = x + 1 is not a contraction and has no 

fixed point although ~ is a complete metric space. 

The following two worth mentioning theorems have been given by Chu and Diaz 

[10]. 
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Theorem 1.1.15. If T maps a complete metric space X into itself and if 

Tn (n is a positive integer) is a contraction mapping in X, then T 

has a unique fixed point . 

Theorem 1.1.16. Let E be any nonempty set of elements and T be a map 

of E into itself. If for some positive integer n, T11 has a unique 

fixed point, then T also has a unique fixed point. 

The above theorem has been improved, under different conditions, by 

Chu and Diaz [11] as follows: 

Theorem 1.1.17. Let T be a mapping defined on a nonempty set E into 

itself, K be another function defined on X mapping it into itself such 

that KK-l = I, where I is the identity function of X. Then T has a 

unique fixed point if and only if K-1TK has a unique fixed point. 

The following is an immediate corollary to the above theorem: 

Corollary 1.1.18. Let X be a complete metric space, T : X~ X and 

K : X~ X be such that KK-l = I, the identity function. If K- 1TK is a 

contraction in X, then T has a unique fixed point. 

The proof of this corollary follows directly from the Theorem 1.1.17 . 

and Banach's fixed point theorem. 

Definition 1.1.19. A mapping T of a metric space X into itself is said 

to be contractive if d(Tx, Ty) < d(x,y) for every x,y EX, x f y. 

Clearly a contractive map is continuous and if such a mapping has a 

fixed point, then this fixed point is unique. However, a contractive mapping 

of a complete metric space into itself need not have a fixed point, which 

can be seen from the following example : 
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Let T :/R -+1R be defined by 11" Tx = x + 2 - arc tan x. Since 

arc tan x < ~ for every x, the mapping T has no fixed point although 

it is a contractive map, for T'x = 1 - 1 ~ x2 < 1. 

The following theorem due to Edelstein [16] states the sufficient 

conditions for the existence of a fixed point for a contr~ctive mapping. 

Theorem 1.1.20. Let T be a contractive mapping of a metric space X into 

itself and x
0 

€ X be such that the sequence {~(x0)} has a subsequence 
n. 

{T 1 (x
0

)} converging to a point z e X, then z is a unique fixed point 

of T. 

A simple proof of the above theorem based on the same lines as due to 

Cheney & Goldstein [ 9] L~ given here. 

Proof. Since T is contractive, hence continuous and we may write 

< d(x
0

, Tx
0
). 

Thus, {d (Tnx , Tn+ 1x ) } · d · f 1 b b d d 1s a ecreas1ng sequence o rea num ers oun e 
0 0 

below by zero, and therefore has a l i mit. 

Since 
n.+l 

{T 1 (x ) } 
0 

Now if 

n. 
{T 1

(x
0

)} converges to z t X, therefore, the sequence 
n.+2 

converges to T~ and {T 1 (x )} converges to T2 z . 
0 

z f Tz, d(z, Tz) 
nk 

= lim d (T (x ) , 
k-+oo 0 

nk 
= l i m d(T (x

0
), 

k+oo 

n +1 
T k (x ) ) 

0 

By the continuity of T, we have 
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d(z, Tz) 

= d (Tz, T2z), 

n +2 
T k {x ) ) 

0 

n 
T k(x )) 

0 

a contradiction to the fact that T is contractive. 

Hence Tz = z. 

For uniqueness of z, let y f z be another fixed point of T. Then 

d(y,z) = d(Ty, Tz) < d(y,z), a contradiction. 

Hence z is a unique fixed point of T. 

The following corollary is due to Edelstein [16]. 

10· 

Corollary 1.1.21. If T is a contractive mapping of a metric space X into 

a compact metric space Y CX, then T has a unique fixed point. 

Definition 1.1.22. A mapping T of a metric space X into itself is said 

to be nonexpansive if d(Tx, Ty) ~ d(x,y) for every x,y ~X. 

Cheney and Goldstein [9 ] proved the following theorem. 

Theorem 1.1.23. Let T be a mapping of a metric space X into itself such 

that 

(i) d (Tx, Ty) ~ d (x,y) 

(ii) if x f Tx, then d(Tx, T2x) < d(x, Tx) 

(iii) for each x, the sequence {Tn(x)} has a cluster point. 

Then for each x, the sequence {Tn(x)} converges to a fixed point of T. 

K.L. Singh [49] proved the above theorem by relaxing conditions (ii) 

and (iii) and obtained a unique fixed point. We give this theorem below. 
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Theorem 1.1.24. Let T be a mapping of a compact metric space X into 

itself such that d(Tx, Ty) < d(x,y), equality holds only when x = y. 

Then T has a unique fixed point. 

Proof. The compactness of X and the condition d(Tx, Ty) ~ d(x,y) imply 

that each x in XT generates an isometric sequence (Edelstein [17], 

Theorem 1'). Therefore, by the definition of isometric sequence, 

d(x, Tx) = d(Tx, T2x); but from the given condition we have 

d(Tx, T2x) ~ d(x, Tx). This shows d(x, Tx) = 0, which implies 

x = Tx, i.e., x is a fixed point of T. 

To prove the uniqueness, let us assume that y is another pc:i.nt such 

that y f x and y = Ty. Then d(Tx, Ty) = d(x,y) contradicting the 

condition d(Tx, Ty) ~ d(x,y) unless x = y. Thus x is a unique fixed 

point. 

1.2. Linear Spaces 

Definition 1.2.1. Let X be a nanempty set, K a field (of real or 

complex numbers). A structure of vector space (or linear space) on X is 

defined by two maps: 

(1) a map (x,y) ~ x + y from X x X into X, called addition, 

(2) a map (a ,x) ~ ax from K x X into X, called scalar multipU c-

ation. 

These maps must satisfy the following axioms for every x,y,z ~X and 

for every a,e e K: 

(i) (x + y) + z = x + (y + z) (commutativity) 
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(ii) X + y = y + X (associativity) 

(iii) There exists an element 0 ~ X, called zero element, such that 

X + 0 = X 

(iv) For each X € X there exists -x, called opposite of x, such 

that X + ( -x) = 0 . 

(v) a(x + y) = ax + aY 

(vi) (a + S)x = ax + ex 

(vii) a(Sx) = {a13)x 

(viii) lx = x. 

Remark 1.2.2. The elements of X are called 'points' or 'vectors' while 

the numbers a, 13, are often called 'scalars'. 

Definition 1.2.3. A set X is said to be a topological vector space if 

(i) X is a vector space over field K 

(ii) X is a topological space 

(iii) the map (x,y) ""+x + y from X x X into X is continuous 

(iv) the map (a ,x) 1-+ ax from K X X into X is continuous. 

Definition 1.2.4. Given a vector space X, a serninorrn on X is a map 

p : x ~ p(x) from X into ~ which satisfies the following axioms 

(i) p(x) > 0 for every x E X. 

(ii) p(x + y) ~ p(x) + p(y) for every x,y eX (subadditivity). 

(iii) p(ax) = jajp(x) for every a € 1R arid for every x E X. 

Definition 1.2.5. A set K in a vector space X is convex if for every 

x,y E K and 0 <·a< 1 we have ax+ (1- a)y € K. In other words, K is 

convex if for a ~ 0, 13 ~ 0, a + 13 = 1 we have ax + 13Y £ K for every 

x,y E K. 

. t 
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It can be easily seen that if K is convex in a vector space X 

then K + x(x E X) and aK are also convex. 

Definition 1.2.6. A topological vector space X is said to be locally 

convex if every neighbourhood of 0 includes a convex neighbourhood of 0. 

By this we mean a topological vector space in which every open set 

containing 0 contains a convex open set containing 0. 

Remark 1.2.7. The notion of seminorm is of fundamental importance in 

discussing linear topological spaces. In fact, the seminorm of a vector 

in a linear space gives a kind of length for the vector. To introduce a 

topology in a linear space of infinite dimension suitable for application 

to classical and modern analysis, it is sometimes necessary to make use of 

a system of an infinite number of seminorms. It is one of the merits of 

the Bourbaki group that they stressed the importance, in fanctional analysis 

of locally convex topological vector spaces which are defined through a 

system of seminorms satisfying the axiom of separation. If the system 

reduces to a single seminorm, the corresponding linear space is called a 

normed linear space. 

Remark 1. 2. 8. It can be seen that the topology of a local ly convex topolog-

ical vector space is given by a set of semi norms as follows: 

Let u be a convex open set containing 0. Then v 

a convex open set containing 0. It is 

there exists an a € 1R such that X E 

Let p(x) = sup{alx ~ aV, a > 0} 

p(O) = 0. 

easy to see that 

aV. Moreover, 

if X f 0 

= u () ( - U) 

for every 

x E aV <=> 

is also 

xE X 

-x E av. 
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It is now a routine matter to verify that p is a seminorm and the 

sets 

U = {xi p (x) < r} for every p and for every r > 0 p,r 

obtained in this way, form a base for the topology in X at 0. 

Thus, in a locally convex topological vector space, the topology is 

given by a system p. of seminorms. 
]. 

The requirement that for every x f 0 

there is an open set K CX such that 0 € K and x + K is translated into 

the requirement that for every x f 0 we have pi(x) f 0. 

Definition 1.2.9. A topological space X is said to be Hausdorff if for 

every two points x,y(x f y) of X there exists neighbourhoods U and 

V respectively such that U n V = $ 

Remark 1.2.10. A locally convex topological vector space with the topology 

described in Remark 1.2.8 is not in general Hausdorff. 

Definition 1.2.11. In the Definition 1.2.4 if the condition (i) is replaced 

by 

(i*) p(x) ~ 0 for every x € X where p(x) = 0 <=> x = 0 then 

p is called a norm on X. 

Definition 1.2.12. A linear space X, equipped with the norm p(x) = I lxl 1. 
is called a normed linear space. In this case we have 

(i 0) II X II ~0 for every X EX where llxll = 0 <=> X = 0 

(iio) llx + Yll ~ llxll + IIYII for every x,y €. X (triangle inequality) 

(iii 0 ) llaxll = lal II xll for every X~ X and for every CL • 

It can be easily seen that every normed linear space X becomes a 

metric space if we set d(x,y) = I lx - Yl I · 
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Definition 1.2.13. A complete normed linear space is called a Banach 

space. 

Definition 1.2.14. A mapping f of a vector space X into ~ is called 

a linear functional on X if 

(i) f(x + y) = f(x) + f(y) 

(ii) f (ax) = af (x) 

(x,y ~ X) 

(x € X, a E fR) 

Definition 1.2.15. A functional f is said to be continuous if for any 

E > 0 there exists o > 0 such that lfCx1 ) - f(x2 )! < E whenever 

Continuity and boundedness are equivalent. 

Definition 1.2.16. A subset K of a normed space X is said to be 

bounded if there exists a constant M such that I lxl I ~ M(x ~ K). 

Definition 1.2.17. A linear operator f mapping a Banach space X into 

itself is said to be completely continuous if 

(i) f is continuous, and 

(ii) it maps every bounded set into a relatively compact set. 

Remark 1.2.18. If X is finite-dimensional then every linear operator is 

completely continuous, while in an infinite-dimensional space, complete 

continuity of an operator is a stronger requirement than merely being 

continuous (i.e., bounded). 

We now state the celebrated fixed point theorem of Brouwer the proof 

of which may be found in Dunford & Schwartz [15]. 
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Theorem 1.2.19. (Brouwer's Fixed Point Theorem). A continuous map of a 

ball in En into itself has at least one fixed point . 

16 . 

. . _<:;: Remark 1. 2. 20. The Brouwer fixed point theorem in the form stated above does 

·. =: 

not hold in infinite dimensional spaces as the following example shows: 

Consider the space t2 of sequences x = (x1 ,x2, .... ) 

with Define T as a map of the closed solid sphere into 

itself as follows: For x = (x1 ,x2 , .... ) let Tx = (11- jxj2 , x1 ,x2, ... ). 

jTxj
2 = 1. 

Suppose x is a fixed point. Then jxj = jTxj = 1. But then x1 = 0 

and one sees in turn that x2 = 0, x3 = 0, .... ,and hence x = 0. There­

fore, T has no fixed point. This is due to S. Kakutani [35]. 

Schauder [46] extended Brouwer's theorem to infinite-dimensional spaces 

in the following way: 

Theorem 1.2.21. (Schauder's Fixed Point Theorem- 1st. form). A continuous 

map of a compact convex set K in a normed linear space X into itself 

has at least one fixed point. 

Theorem 1.2.22. (Schauder's Fixed Point Theorem- 2nd. form). A completely 

continuous map of closed convex set K in a complete normed linear space 

X into itself has at least one fixed point. 

The proofs of the above two theorems may be found in Nirenberg [35]. 

It has been shown by Tychonoff that the 1st. form of Schauder's fixed 

point theorem holds if X is a locally convex topological vector space. 
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Theorem 1.2.23. (Schauder-Tychonoff Fixed Point Theorem). Let K be a 

non-empty compact convex subset of a Hausdorff locally convex topological 

vector space X, and let T be a continuous mapping of K into itself . 

. ·., Then T has a fixed point in K. 

The proof of the above theorem may be found in Bonsall [3 ]. 

Definition 1.2.24. A Banach space X is called uniformly convex if for 

any e: > 0 there is a o > 0 such that if llxll = IIYII = 1 and 

II x - Y II ~ e: then II x ; Y II ~ 1 - o. 

Definition 1.2.25. A Banach space X is called strictly convex if for 

any x • Y <:. X • II x + Y II = II x II + II Y II => x = >-Y • A > 0. 

Remark 1.2.26. Every uniformly convex Banach space is strictly convex. But 

the converse is not true. 

Definition 1.2.27. Let X be a Banach space and X* denote its first 

dual space. For any fixed vector x € X, the mapping of X* into 1R 

which assigns to every u £ X* the value (u,x) of u at x is a 

linear continuous functional in the space X* • i . e., an element of X**. 

Moreover the norm of this functional is equal to I lxl I· Also the canonical 

mapping of X into X* defined by this correspondence between elements 

of X and linear continuous functional on X* is linear and one to one. 

Therefore, it is an isometrical imbedding of X into X**. 

Now, a Banach space is called reflexive if X = X**, i.e., the 

canonical mapping of X into X** is onto. 
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Remark 1.2.28. Every uniformly convex Banach space is reflexive. 

Definition 1.2.29. A point x € K c X is a diametral point of K if 

o (K) = sup{ II x - y II I Y € K} 

where o(K) denotes the diameter of K. 

Definition 1.2.30. A convex set KC X is said to have a normal structure 

if for each bounded convex subset H of K which contains more than one 

point, there is some point x € H which is not a diametral p~int of H. 

Remark 1.2.31. Every uniformly convex space X has a normal structure. 

Definition 1.2.32. Let X be a vector space over K (real or complex). 

A mapping of X x X into K which takes ordered pair {x,y} E X x X 

into the number (x,y) E K is called an inner product in X if 

(i) (x,y) = (y ,x) 

(ii) (x + y, z) = (x, z) + (y, z) 

(iii) (ax,y) = a (x,y) 

(iv) (x,x) > 0 if x =f 0. 

A vector space X, together with an inner product in X, is called 

an inner product space or pre-Hilbert space. 

Definition 1.2.33. A Hilbert space is a pre-Hilbert space which is 

complete w.r.t. the norm derived from the inner product. In this case the 
!,: 

norm and the inner product are related by I lxl I = (x,x) 2
• 

Remark 1.2.34. Every Hilbert space is relfexive. 
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We now state without proof the following fixed point theorem due to 

Browder [ 5]: 

·. ·.·:· 
Theorem 1.2.35. Let X be a uniformly convex Banach space, T a non-

:<- expansive mapping of the botmded closed convex subset K of X to itself. 

· · Then T has a f.i.xed point in K. 

·' • ·' 

Remark 1.2.36. (i) If K is compact or T is con~letely continuous, it 

becomes a particular case of the Schauder fixed point theorem. 

(ii) If T is contraction, then the result follows from 

the Banach contraction principle. 

(iii) The following example shows that the result cannot be 

extended to the general Banach spaces. 

Let X = C o' the space of sequences converging to 0, C the unit 

ball in the maximum norm, e 1 the unit vector given by e1 = (1,0,0,0, ... ), 

Then the mapping Tx = e1 + s(x) maps C into itself, is non-expansive, 

and has no fixed point in C. 

Kirk [27] gave the following generalization of the above theorem: 

Theorem 1.2.37. Let X be a reflexive Banach space and K a nonempty 

bounded closed convex subset of X. Furthermore, suppose that K has normal 

structure. Then a non- expansive mapping T of K into itself has a 

fixed point. 

In the following examples it has been shown that the restrictions on 

K are necessary. 
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Example 1. (Boundedness of K). A translation in a Banach space is an 

isometry and obviously has no fixed points. 

Example 2. (Closedness of K). Let X = fR be a Hilbert space. Let C 

·• be the interior of the unit ball, i.e., C =· {xl llxll < 1}. Consider T 

the mapping of C into itself defined by 

·· x a 
Tx = 2 + 2 

where a E ~ is a vector of unit norm. In this case T has no fixed 

point in C. 

Example 3. (Convexity of K). Let X= m be a Hilbert space. Let C 

be a set containing just two distinct points a and b. Define T : C ~ C 

as Ta = b and Tb = a. Clearly T is an isometry and has no fixed point. 

The following example indicates that one cannot expect existence of 

fixed points for non-expansive mappings in the most general class of 

Banach spaces. 

Example 4. Let C[O, ! ] be a Banach space with 

llfll = max·lf(x) I 
xE.[O,l] 

It is known that C[O,l] is not a reflexive Banach space. 

Let C = {f E C(O,l]l f(O) = 0, f(l) = 1, 0 ~ f(x) ~ 1}. 

Then C i s bounded, closed and convex. 

Let T be a mapping defined as follows: 

T : C ~ C 

f(x) ~ xf(x), i.e. Tf(x) = xf(x) 

and T is non-expansive. 
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It is easy to verify that T(C) C C and T has no fixed point. 

Example 5. (Normal structure of K). The mapping T 

by 

T : (c1 ,c2 , •••• ) -+ (1 ,c1 ,c2 , •••• ) 

C -+ C defined 
0 0 

maps the unit ball c
0 

into itself but does not have any fixed point, 
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since (c 1 ,c2 , •••• ) = (l,c1 , ••• ) would simply mean that c 1 = c2 , ••• , = 1 

and this is impossible. 

Browder & Petryshyn [ 7] and Kachurovskii [25] independently proved 

the following fixed point theorem in Hilbert spaces: 

Theorem 1.2.38. Let K be a closed bounded convex subset of a Hilbert space 

X and T : K -+ K a non-expansive mapping. Then T has at least one fixed 

point in K. 

Remark 1.2.39. It may be noted that the proofs of Theorem 1.2.35 and 

Theorem 1.2.37 are based on a transfinite argument due to Brodsky & Milman 

[ 4] while in the case of Hilbert spaces, i.e., in Theorem 1. 2 . 38 the pr oof 

is given by using a connection with monotone operators . 

Definition 1.2.40. Let X be a metric space and A be a bounded subset 

of X. Then we define measure of non-compactness of A, denoted by a(A), 

as 

a(A) = { E > oj A can be covered by a finite number of subsets of 

di ameter < E} 

The above concept was introduced by Kuratowski ~ [32 ]. This measure of 

non-compactness a satisfies the following pr operties: 
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(i) 0 ~ a(A) ~ o(A), where o is the diameter of A. 

(ii) a(A) = 0 <=> A is totally bounded. 

(iii) a(AA) = IAiaCA), where A is a real number. 

(iv) a(A VB) = max{a(A), a(B)}. 

(v) a (A + B) ~ a (A) + a (B). 

(vi) If A C B, then a(A) ~ a(B). 

(vii) If A. is the closure of A, then a(A) = a(A). 

(viii) a(N (A)) < a(A) + 2r, where Nr(A) = {x E Xld(x,A) r -

neighbourhood of A . 

< r} 

(ix) a (co(A)) = a (A), where coCA) denotes the convex closure 
.. 

(x) a(B) = a(S) = 2, where B = {x € XI llxll ~ 1} and 

22. 

is a 

of A. 

S = { x E. X I II x II = 1} in an infinite-dimensional Banach space X. 

These properties are discussed in details by Darbo [13], Nussbaum [36] 

and Sadovskii [45]. Closely associated with the measure of non-compactness 

is k-set~contraction mapping introduced by Darbo [13]. 

Definition 1.2.41. Let A be a subset of a metric space X and T : A+ X 

be continuous. Then T is said to be a k-set-contraction mapping if given 

any bounded subset D of A we have 

a (T (D) ) ~ ka (D) 

for some k > 0. 

It may be noted that every contraction mapping is k-set-contraction 

with k < 1. 

The following result is due to Darbo [1~. 

/ 
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Theorem 1.2.42. Let K be a non-empty closed convex bounded subset of a 

Banach space X and T : K -+ K be a k-set-cm~traction mapping with k < 1. 

Then T has a fixed point in K. 

A slightly extended result of the above theorem was given by Nussbaum [36] 

as follows: 

Theorem 1.2.43. Let X and K be as in Theorem 1.2.42 and T : K-+ K be 

continuous. Further let (i) K1= coT(K), (ii) K = coT (K 
1

) , n > 1 and 
n n-

(iii) a(K ) -+ 0 as n -+ oo. Then T has a fixed point. 
n 

Definition 1.2.44. In the definition of k-set-contraction if k = 1, i.e., 

if a(T(D)) ~ a(D) for every bounded subset D of A, then we call this 

mapping to be !-set-contraction. 

Remark 1.2.45. Clearly, a nonexpansive mapping is !-set-contraction, but the 

converse is not true. The difference between these two types of mappings 

may well be illustrated by comparing Theorem 1.2.38 with the following 

conjecture. 

Conjecture: Let K be a non-empty closed convex bounded subset of a Hilbert 

space X and T : K -+ K be a !-set-contraction mapping. Then T has no 

fixed point. 

To see this let us consider the following example: 

Consider the £ 2-space and a mappi ng f : c -+ c, where c is the unit 

ball in £2-space, be defined by 

f (x) = ell - II X 11
2 

Clearly, f is continuous. Suppose n0\'1 that f has a fixed point. Then, 

/ 
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Let us take the elementary case: 

i.e., f(O) = o = (O,o, ... ) = c/1 
2 

0,0, .... ) 

i.e., (0,0, .... ) = (1,0,0, .... ), which is impossible. 

Hence f has no fixed point. 

The following useful theorem was given by Nussbaum [36]: 

Theorem 1.2.46. Let B = {x £ Xj jjxjj 2. 1} be a ball in a Banach space X 

and let R : X+ B be a radial projection (also called, radial retraction), 

i.e., 

~=r~:~~ for llxll > 1 

for II xll < 1. 

then R is a !~set-contraction. 

Definition 1.2.47. Let T : X + X be a continuous mapping of a metric 

.. ·r,,: space X into itself. If for 
·;.( 

any bounded set ACX with <X(A) > 0 we 
··~··:: 

have a (T(A)) < a(A) then the mapping T is said to be densifying. 

This definition was introduced by Furi & Vignoli [21]. Sadovskii [45] 

called this as condensing map. 

It may be noted that contraction mappings and completely continucu5 

mappings are densifying. Also sums of contraction and completely continuous 

mappings defined on Banach spaces are densifying. 
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The following theorem was given by Furi & Vignoli [22]. 

Theorem 1.2.48. Let T : K + K be a densifying mapping from a non-empty 

·.': ? closed convex bounded subset of a Banach space X into itself. Then T 

has at least one fixed point. 

The above important fixed point principle for densifying operators was 
: :_:.~ ; 

generalized to topological vector spaces by Swaminathan & Thompson [51] as 

· .··;". · ..... follows: 

Theorem 1.2.49. Let K be a complete, convex bounded subset of a locally 

convex topological vector space X and T : K + K be densifying. Then 

--·~-~ T has a fixed point in K. 

The following theorem was given by Petryshyn [37]. 

.- Theorem 1.2.50. Let B be an open ball about the origin in a Banach space 

··.' X. If T : B + X is a densifying mapping which satisfies the boundary 

condition 

(*) If Tx = ax for some x in as, then a ~ 1, 

then T has a f i xed point. 

Proof. We define first a radi al retraction mapping R X + 8, by 

( X if llxll < r 
Rx = 

rx if llxll > r . 
IJxj j 

Then by Theorem 1. 2.46, R is a !-set-contracti on. 



We now define a mapping T1 on B by T1 (x) = RT(x), for every 

x € B. Then T1 map~ B into itself which is also densifying, for 

a(T 1B) = a(RTB) ~ a(TB) < a(B). Therefore by Theorem 1.2.48, Tl has 

a fixed point in B, say X o' i.e.' T IX = X • We claim that Tx = 
0 0 0 

Indeed, if X € B, then Rx = X and T1x = RTx = X therefore 
0 0 0 0 0 o' 

Tx = x. And, if X E as, then 
0 0 0 

26. 

X 
0 

Rx = 
rx

0 and T Ixo = RTx
0 = X therefore, r 

Tx
0 = X i.e.' 0 o' o' 

IIXd I IITxo II 

Tx = x IITxo II o o~-...:. 
i.e.' i.e., > 1, a= 

r r 

which is a contradiction to (*)· Hence the proof. 

The followingthreecorollaries were given by Petryshyn [37]. 

Corollary 1.2.51. Suppose T B ~ X is densifying such that 

(i) T (B) C B or 

(ii) rcas) c B , or 
2 2 

(iii) llrx - x II ~ llrx II for all x E a B , or 

(iv) (Tx, Jx) < (x, Jx) for all x t as, where J is a duality 

, mapping of X into its dual X* (or rather into the set X* 
2 

of all subsets of X*) such that 

2 
(Jx, x) = llx II and IIJx II = llx II for all x t. X. 

Then T has a fixed point. 

Corollary 1 .2 .52. Let T : B ~ H be any mapping and T 
0 

densifying (H is the Hilbert space), such that 
2 

( i) (Tx, x) ~ II x II 
(ii) IITx - T 

0
x II ~ llx - Tx II for all x E a B. 

Then T has a fixed point. 

B ~ H be 

··· - - -- J- ···- / 
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Corollary 1.2.53. Let T = S + C be a map from B to X such that 

S is contraction on B and C is compact on B. Suppose also that 

T satisfies condition (*) of Theorem 1.2.50 on aB. Then T has a 

fixed point. 

Tlv~ following theorem was also given by Petryshyn [37]. 

Theorem 1.2.54. Let C be a bounded open subset of a Banach space X 

and T : C -+ X be a 1-set-contraction mapping satisfying either of the 

following two conditions: 

(a) there exists an x
0 

E c such that if Tx - X = a (x - x ) 
0 0 

holds for some xf ac, then a < 1. 

(b) c is convex and T(aC) C c. 

Then T has a fixed point if (I - T) c is closed. 

Proof. Define Q = C - x
0 

= {x - x
0

lx t C} . 

Then it follows that Q is bounded, open, 0 E Q, aQ = cC - x0 

and Q = C - x
0

. Furthermore, Q is convex if C is convex. 

by 

Now define the map T' (y) 

T' (y) = Tx - x 
0 

Then T' 

for y in Q 

maps into 

and y = {x - x lx t C} 
0 

X and T' is 1-set-con-

traction and T' satisfies condition (*) of Theorem 1.2.50 on aQ. 

Furthermore, (I - T' )Q· is closed since (I - T' )Q = (I - T)C. Thus 

T' and Q satisfy all the conditions of Theorem 7 of Petryshyn [37]. 

Hence there exists a y in Q such that T'(y) = y, i.e., 

X - X 
0 

with X E. C or Tx = x. 

Next we show that (b) implies (a). Suppose (b) is given and let 

27. 
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X f C 
0 

be any fixed element. Then Q = c 

T' (aQ) s; Q since T' (aQ) = T(ac) - x
0 
~ c 

- X 
0 

is convex, 0 ~ Q, and 

x
0 

= Q and C is convex. 
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Hence T' satisfies boundary condition on ~Q. i.e., condition (a) of 

this theorem is satisfied. 

Hence the proof. 
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CHAPTER II 

Some Fixed Point Theorems for Quasibounded Mappings 

2.1. Quasibounded Mappings & Fixed Point Theorems 

Definition 2.1.1. Let X be a Banach space and T X~ X be continuous. 

If ITI = 

ITI 

lim {sup ll!1!lll} is finite then T 
p-+<» ·II X II~ Ifill 

is called quasibounded 

and is called quasinorm of T. 

Example 2.1.2. Any bounded linear mapping is quasibounded and its norm 

coincides with its quasinorm. 

Remark 2.1.3. The notion of quasibounded mappings was first introduced by 

Granas [24]. The same mapping was termed as linearly upper bounded by 

Kolomy [28] & Srinivasacharyulu [SO]. It is easy to see that T is quasi-

bounded if and only if there exist ex, f3 > 0 such that IITx II ~ ell x II 

for II x II ~ ex 

The following known result is due to Granas [24]. 

Theorem 2.1.4. Let T : X~ X be a quasibounded completely continuous 

mapping of a Banach space X into itself. If ITI < 1 then the equation 

y = x - Tx has a solution for every y ~ X. 

Proof. Let y* € X be arbitrary. We define a mapping f by 

Tx = y* + Tx for every X E. X. 

Clearly f is completely continuous. 

Since ITI < 1, therefore it follows that JITx II 
< 0 < 1 holds for 

JlxiJ 
every X with JlxJI ~ rl ' 

where 0 and rl are some constants. 

.... / 
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Let e: > 0 be such that e:+o<l anc.i let r2 = II y* II 
e: 

.. ·.•; 
; -

··.·:. 

Now, for every X with II xll ~ r2 we have llr*ll < 
llxll - e: 

Let r = r 1 + r2 K = {x €. X I llxll ~ r} and s = {X € XI llxll = r}. r r 
Also, let x~S. r Then llxll ~ rl llxll .::_ r 2 at.d hence 

+ <t:+o<L 

It then follows that T(S ) C K • r r 

Now by a fixed point theorem of Rothe [ 44], t has a fixed point in 

K • r say x*. Therefore, Tx* = x* = y* + Tx*, i.e. • y* = x* - Tx*. 
·"" ._. 

The theorem is now proved. 

The following corollary is due to Granas [24]. 

Corollary 2.1.5. Let T : X~ X be a quasibounded completely continuous 

mapping. If I!Txll = OC!Ixll) (as llxll ~+co) then the equation 

y = x - ATX with the real parameter A has a solution for every y E X 

and for every A . 

Proof. Clearly, for every A, the mapping AT is completely continuous and 

quasibounded; also the quasinorm IATI is equal to 0. Hence the corollary 
:-: 

.. ·.· follows from the last theorem . 

The following theorem due to Nashed and Wong [34], may be treated as a 

perturbation theorem where completely continuous quasibounded mappings are 

perturbed by contraction mappings. 

Theorem 2.1.6. Let S : X ~ X be a contracti on mapping and T : X ~ X be 

completely continuous and quasibounded. If ITI < 1 - v, where v is the 

contraction constant, then the equation y = x - Sx - Tx has a solution 
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for every y € X. 

Proof. For any fixed element z € X, we define an operator S by 

Sx = Sx + Tz + y* • (1) 

where y* ~X is arbitrary. A simple computation shows that S is 

·--;r:· again a contraction mapping. So we may define a mapping G which 
·}+? 

associates to each z ~ X the unique fixed point of S. 

In other words, from (1), we have, 

Gz = SGz = SGz + Tz + y* .....•..... (2) 

Now for any u,v t X, we obtain from (2), the following estimate: 

II Gu - Gv II .5_ 1 = v I!Tu - Tv II . . . . . . . . . (3) 

It clearly follows from (3) that G is completely continuous. 

In order to establish that G has a fixed point, we need to show that 

G maps a certain closed ball into itself. Denote by 

Sn(y) = {x € XI llx- Yll .5_n} where n is a positive integer. We claim 

that there exists a positive integer N > 0 such that G(SN(y)) ~ SN(y). 

Assume the contrary, then there must exist for each n > 0, u L': s (y) 
n c n 

such that I jGun - yj I > n. Since G is completely continuous, we must 

then have llun II + co as n + co • From (2), we may estimate !!Gun - y II 

as follows: 

. . . . (4) 

For each £ > 0, choose n
0 

such that for n > n
0

, we have 

· ~· 



... . ·•········ . .. ... .. ....... ··. / 

which is possible by the choice of 

substitute these estimates for 

{u }. n Dividing (4) by 

in (4), we obtain 

(1 - \1) [ 1 - 3 (1 £ \1 )J < 
2£ 
3 + ITI 

or. (1 - v) < e: + IT I 

Since e: is arbitrary, we conclude that ITI ~ (1 - v), which is a 

contradiction to our hypothesis that ITI < 1 - v. 
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and 

Thus G : S (y) ~ S (y) is a completely continuous operator. Hence n n 

by Schauder's [46] fixed point theorem, G has a fixed point in Sn(y). 

say x*. 

Therefore, Gx* = x* = Sx* + Tx* + y* 

i.e., y* = x* - Sx* - Tx* . 

·.·.· 

.... 
·. 

;-::;A' Hence the proof is complete . 
. . -. ~:;·:. 

: ... .. 
·. ·~-: 
. :--~:-

. ~~ . Corollary 2.1.7. We obtain Theorem 2.1.4 of Granas [24] when S = 0 in 

Theorem 2. 1. 6. 

The following result was given by Nashed & Wong [34]: 

Theorem 2.1.8. Let S be a bounded linear operator on X such that Sq 

is a contraction mapping (with contraction constant v • 0 < v < 1) for 

some q > 1, and T be quasibounded and completely conti nuous on X. 

If IT I < 1 - \1 then the equation y = x - Sx - Tx has a solution for 

every y t. X. 

Proof. Pr oceeding in the same manner as that of Theorem 2.1.6 , we def ine 

for each z E X the operator S by (1). Again we may show by the 
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linearity of s that sq is a contraction, hence we may define a mapping 

G which maps z to the unique fixed point of S in such a way that 

(2) of Theorem 2.1.6 holds. Note that instead of (3) we have from 

q·-1 
Gu - Gv = sq (Gu - Gv) + I sj (Tu - Tv) , 

j=O 

the following estimate 

IIGu _ Gv II ~ IITu Tv II 
1 - \) 

which establishes the complete continuity of G. A similar argument as 
q-1 

that of Theorem 2.1.6 applied to the balls S (u) 
n 

where u = L Sjy 
j=O 

completes the proof. 

Remarks 2.1.9. (i) Theorems 2.1.6 and 2.1.8 may be considered as variants 

of a fixed point theorem of Krasnoselskii [29]. 

(ii) The utility of Theorems 2.1.6 and 2.1.8 result from the 

fact that, unlike the standard form of Schauder Theorem, 

they do not require a priori that a certain ~losed 

bounded convex set is mapped into itself by the completely 

continuous operator. 

(iii) The hypotheses of Theorems 2.1.6 and 2.1.8 guarantee the 

existence of some closed ball which is mapped into it-

self by a certain completely continuous operator G 

whose fixed point coincide with the fixed point of the 

operator Sx = Sx + Tx + y* . 

Theorem 2.1.4 was extended for densifying mappings by Vignoli [52] as 

follows: 

. - ·· - . / 
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Theorem 2.1.10. Let T : X~ X be a quasibounded densifying mapping of 

a Banach space X into itself. If ITl < 1 then the equation 

y = x - Tx has a solution for every y E X. 

Proof. Let y* E X be arbitrary. We define Gx = y* + Tx for every 

x E X. Clearly G is densifying. We consider now the following family 

of balls with center y*: 

Q(k) = {xE XI IJx- y*ll :5._ k} , k = 1,2, .... 

We want to show that for some integer q > 0, the mapping G maps Q(q) 

into itself. Assume the contrary. Then for any positive integer k 

there exists an element xk such that 

IIGxk - y* II > k. 

But 

IIGxk - Y* II = II Txk II 

Hence, IIT~II k 

II xk II > nx;ll 

On the other hand, 

II ~ II < II y* II + k 

Then it follows that 

1 > JTI = lim sup 
II X II~(X) 

which is a contradiction. 

> lim 
k~(X) 

> lim 
k~ 

k 

IIY* I I + k 
= 1, 

Thi s contradiction shows that for some q > 0, G : Q(q) + Q(q) is a 

densi fyi ng mapping. Then, by Theorem 1. 2 .48 of Furi & Vignoli [22], G 

has a fixed point in Q(q), say x*. 

··- -- . ...... / 

.. ' 
' ·:-·. 

;. 
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Therefore Gx* = x* = y* + Tx* 

i.e., y* = x*- Tx* 

Hence the proof is complete. 

The following four corollaries are due to Vignoli [52]: 

Corollary 2.1.11. Let T : X+ X be a quasibounded densifying mapping 

from a Banach space X into itself. Let IAI ITI < 1 where A is a 

real number such that IAI < 1. Then the equation y = x- >.Tx has a 

solution for every y e X. 
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Corollary 2.1.12. Let T : X+ X be a densifying mapping from a Banach 

space X into itself. Let IITxll = OCIIxlj) as llxll + ""· Let >. be 

a real number such that IAI < 1. Then the equation y = x - ATX has at 

least one solution for each y E X. 

Remark 2 .1.13. (i) In the above two corollaries, the condition I A I 2_1 

is required in order that AT is densifying. 

(ii) If the mapping T is assumed to be completely continuous 

then both the above corollaries can be proved without 

the assumption IAI ~ 1 (see Granas [24] for Corollary 

2.1.11 and Dubrovskii [14] for Corollary 2.1.12). 

Corollary 2.1.14. Let S : X + X be a quasibounded densifying mapping from 

a Banach space X into itself with quasinorm lSI ~a, 0 < a < 1, and let 

T : X + X be completP.ly continuous with quasinorm jTj < 1 - a . Then the 

equation y = x - Sx - Tx has a solution for every y E X. 

- / 

..... 

. >: 

... · .. 

,•.; . 
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Remark 2.1.15. In Corollary 2.1.14, if in particular S is assumed to be 

a contraction mapping with constant a < 1 then S is densifying and 

satisfies the condition jsj < a. Indeed, 

. . -· - ·- ·. · / 

llsx-s(o)ll 
< 

jjxjj 
+ < a ·+ liSCO) II 

IIX II 
for every x ~ X 

and hence jsj ~a. 

Corollary 2.1.16. Let S : X~ X be a quasibounded densifying mapping from 

a Banach space X into itself with quasinorm jsj ~a, 0 ~a < 1, and 

let T : X~ X be quasibounded and completely continuous. Let A be a 

real number such that IAI jTj < 1 - a. Then the equation y = x- Sx - ATx 

has a solution for every y ~ X. 

The following theorem due to Petryshyn [38] is the generalization of 

the results of Granas [24] for quasibounded compact maps and of Vignoli 

[52] for quasibounded densifying mappings. 

Theorem 2.1.17. Suppose T : X~ X is quasibounded !-set-contraction 

such that (I- T)(B(O,r)) is closed for each r > 0 and jTj < 1. Then 

(I - T) is surjective. 

Definition 2.1.18. Let X,Y be two Banach spaces, f be a mapping of 

an open subset v of X into y and let xo E. V; if there exists a 

bounded linear operator s : X~ X such that 

lim f(x + tx) - f(x
0

) 
0 S(x) = 

t~o t 

for every x ~ X, we say that f has the Gateaux derivati ve S at X • 
0 

The following result is due to Srinivasacharyulu ~o]: 

.·_.;; 

·:·.': 
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Theorem 2.1.19. Let f : X+ X be a mapping of a uniformly convex Banach 

space X into itself such that it has the Gateaux derivative f'(x) for 

every x ~ X. Let T : X + X be a linear mapping of X onto X having 

an inverse and let F = I - Tf, where I is the identity mapping of X. 

Assume further that sup I IF' (x)l I < 1. If IFI < 1, then the equation 
x~x 

f(x) = y has at least one solution for each y in X. 

Proof. By definition, F(x) = x - Tf(x) and F(x) has the Gateaux 

derivative F'(x) given by F'(x) =I- Tf'(x); since 

II Fx - Fyll .s_ II F' (z) II II x - Yll for some z on the segment [x,y] and 

sup I IF' (x)l I < 1, we see that F is a non-expansive mapping. Let y* 
x€X 
be an arbitrary point of X and let T(y*) = z*; the equation f(x) = y* 

is equivalent to x F(x) = z*. 

We prove that f(x) = y* has a solution x* in X· 
' 

to prove this, 

we define a mapping F : X+ X by F(x) = F(x) + z*, x E X. 

Since IFI < 1, we have IIFxll < e: < 1 for all X with 
II XII 

= II z* I I 
llxll ~ a1· Let 0 > 0 be such that e: + 0 < 1 and let a2 0 

put a = Cll + (12 B = {X(£ XI llxll .S. Cl} Clearly, B is bounded, 

_:·:~---- closed, and convex and 

. : 

for x E. B. 

II Fx II < II Fx II + II z * II 
< (e: + 0) II X II 

< llxll , 

Moreover, 1 1Fx1 - Fx2 1 I .s_ I lx1 - x2 1 I for every x1,x2 £ B; hence F 

has at least one fixed point x* E B by Theorem 1.2.35 of Browder [5 ]. 

::-

·.;. . .-

.... 

. · ::.:. 

.. , 
. •! 



•• •• • .:.:._ •• •• - • • •• • • - •• •• :~- _. _ _ _ _ - - -- ....:._ _.:.__~--- ·· ·· :...· - - • - ·· • __ : _ _____ (!~ .. ~---~ / 

38. 

Therefore Fx* = x* or equivalently f(x*) -1 = T (z*) = y*. Thus the 

theorem. 

We next give an existence theorem for nonlinear problem due to Kolomy 

[28]. 

We shall say that a linear continuous mapping A : X + X of Hilbert 

space X is normal if AA* = A*A, where A* denotes the mapping adjoint 

to A. 

Theorem 2.1.20. Let F : X+ X be a mapping of a Hilbert space X into 

itself such that, for every x~ X it has the Gateaux derivative F1 (x). 

Let PF 1 (x) be a normal mapping for every x ~ X such that 

(PF 1 (x)h,h) > 0 for every x ~X, h ~X, where P is a linear mapping 

of X onto X having an inverse P-l, II PII ~(sup IIF 1 (x) II\ -l . 
xtX / 

If II PFI < 1, where I is the identity mapping of X, then the 

equation F(x) = y has at least one solution for every y E X. 

Proof. For every x t X the mapping G(x) = x - PF(x) has the Gateaux 

derivative G1 (x) and G1 (x) =I- PF 1 (x). Because G1 (x) is a normal 

mapping for every x ~ X, then 

IIG 1 (x) II = SUJ? I (G' (x)h,h) I 
llhil=l 

= 

= 

su~ I (h -. PF 1 (x)h,h) I 
llhil=l 
su~ [1 - (PF 1 (x)h,h)] 

II hi I =1 

~ 1, 

since 0 ~ (PF 1 (x)h ,h) ~ II P II (sup II F 1 (x) II) < 1 for every x ~ X and 
x£X 

hE:X with llhii = L Because 11Gx-Gyii~IIG 1 (x)llllx-yll, where 

x is an element which lies on the line-segment connecting the points 

x,y EX and sup I jGI (x)l I ~ 1, we conclude that G :X + X is Lipschitzian 
xEX 

. ·:· 
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mapping with constant one. 

Now let y* be an arbitrary point in X and set z* = P(y*). The 

equation F(x) = y* is equivalent to x- G(x) = z*. l'le shall show that 

there exists an element x*€ X such that F(x*) = y*. 

Define a mapping G : X+ X by G(x) = G(x) + z* for every x EX. 

Since IGI < 1, it follows that the inequality I IGCx)l 1 1 lxl 1-l < € < 1 

holds for all x with norm llxll ~Pi, where are some constants. 

Now choose a positive number v such that € + v < 1 and let 

P2=llz*llv-1
. Put r=P 1 +P2, D=. {xEXIIIxll.s_r} 

s = {x ~ XI I lxl I = r}. Let X € s, then 

II G (x) II .S.. II z *II + II G (x) II .S.. (€ + v) II x II < II x II· 

Thus II G (x) II < II x II for every x E S. Also, · II Gx1 - Gx2 11 .s_ II x1 - x2 ll 

·_ ,:;/:~;' '. for every x1 ,x2 ~ D. Hence G is Lipschitzian with constant one on D, 
~~.-~~:l·~:·· 

G : D + X and G(S) CD. Since all the assumptions of Browder's theorem 

. :· [ 6] are fulfilled, there exists at least one x*€. D such that 

G(x*) = x*. Hence x* = G(x*) + z* and therefore F(x*) = P-1 (z*). 

Because -1 
p (z*) = y*, there is F(x*) = y*, which completes the proof. 

Remark 2.1.21. The condition II - PFI < 1 is equivalent to the following 

assumption: there exist numbers a,v > 0, v < 1 such that 

II x - PF (x) II .s_ vII x II whenever II x II ~ a 

The following corollary is also due to Kolomy ~8]; 

Corollary 2.1.22. Let ~ : X+ X be a mapping of a Hilbert space X into 

X such that, for every x €. X it has the Gateaux derivative ~ '(x). Let 

¢' (x) be a normal mapping for every x EX such that 

:··. 
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2 
j(Acj>'(x)h,h)j ~ llhll for every x~ X, h ~X. If the mappings Acj> 

is linearly upper bounded (i.e. quasiboundedl with a constant v < 1 

(A is a real parameter), then the equation x- Acj>(x) = y has at least 

one solution for every y € X. 

2.2. p-Quasibounded Mappings & Fixed Point Theorems 

Throughout this section, X will denote a Hausdorff locally convex 

topological vector space and P the family of seminorms that generates 

the topology of X. 

Definition 2.2.1. Let DC X and p€ P. A mapping T: D + D is said 

to be a p-contraction if there is a \) ' 0 < \) < 1 p - p ' such that for all 

x,y E D, p(Tx - Ty) 2. "p p(x - y). 

The above definition is due to Cain & Nashed [8 ]. They also mentioned 

the following: 

Let U be the neighbourhood system of the origin obtained from P, 
~· .. 

. ? the system of seminorms. Then for any given U € U there exist a finite 

number of seminorms in P, 

such that 

n 
U = nr.V(p.), 

1 1 1 

and r. > 0, i = 1 , 2, ... , n 
1 

where V(p) = {xjp(x) < 1} . 

The following theorem due to Cain & Nashed [ 8] generalizes Banach's 

fixed point theor em to Hausdorff locally convex topological vector spaces: 

Theorem 2. 2 .2. Suppose D is a s equentially complet e subs et of X and 

the mapping T : D + D is a p-contraction for every p ~ P. Then T has 

... ·.- --·-·-·---- - / 

.-=· 

·.: ... 

. .:.:.:. 

. . ~-;-



a unique 

Proof. 

we have 

fixed point X 

Let X ~ D and 

k p. (T y 
1 

in 

u = 

. -· . . . . . .. . ·. .. . . . . . - ·- .... ·~ . . 

D, and Tnx ~ X for every X E D. 

n 
(\ r. V(p.) 

1 1 1 
be given. For y €. D 

Choose N so that for m ~ N, 

Thus 

m 
\). (1 

1 

(T
m+k 

p. X 
1 

-1 
v.) p . (Tx-x)<r., i=l, .... ,n. 

1 1 - 1 

-1 _m+l m 
< (1- v.) p.(T x- T x) 

1 1 

m 
< v. (1 
- 1 

< r .. 
1 

-1 
v.) p.(Tx-x) 

1 1 

41. 

and k ~ 1, 

Hence {Tkx} is a Cauchy sequence in D and therefore converges to 

a point x in D. Clearly, Tx = x, and the uniqueness of the fixed 

point follows as usual since X is Hausdorff. Therefore, the theorem is 

proved. 

The following definitions are also due to Cain & Nashed [ 8 ] . 

Definition 2.2.3. For p ~ P and r > 0, the set {x E Xlp(x ~ x ) < r} 
0 -

is denoted by S (x ,r). 
p 0 

The closure of this set is denoted by S (x ,r), 
p 0 

and its boundary by as (x , r). 
p 0 

A continuous mapping T : X + X is said to be p-completely continuous 

for p E p if the closure of T [S (6 ,n)] 
p 

is compact for each positive 

integer n, where 6 is the zero element of X. 

Definition 2.2 .4. For an operator T, a point x C:.. X 0 , and a real number 

r > 0 we define for each p ~ P, 

. · '·-"-- ····"'--- / 

. · ~ 
• •• 1 

' .. .' .--.~· 

.. '.•: 

I , 

: .· 

.·-.·· 
·.· 
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-1 = r sup{p(Tx- Tx )lp(x- x) _< r} 
0 0 

and 0 (x ,T,a) = {riR (x ,T,r) < a} . 
1' 0 p 0 

Now consider as a subset (possibly empty) of 

the one-point compactification of [O,oo), and let 

the closure of Q (x ,T,a) relative to [O,oo]. p 0 

We define 

S (x ,T) = inf{aloo ~ 0 (x ,T,a)} 
p 0 1' 0 

We shall say that T is p-quasibounded at X 
0 

if 

is called quasibounded at x
0 

if it is p-quasibounded at 

p € P. 

X 
0 

42. 

[O,oo], 

denote 

exists. T 

for each 

It may be noted that this notion of quasiboundedness generalizes that 

of Granas [24] . 

In order to prove the following theorem of Loc ~3] we require the 

following two lemmas, also due to Loc [33]: 

Lemma 2.2.5. Let S : X+ X be p-completely continuous and T be a self-

map of X. Then the composite mapping T o S : X + X is p-completely 

continuous. 

Lemma 2.2.6. Let x1 and X2 be closed subsets of a topological space Z 

and let T1 and T2 be mappings of X1 and X2 into a topological space 

Y such that T1x = T2x on X1 rt X2 . Then 

C'x for x <:: x1 
Tx = 

T2x for x E: x2 

is a mapping of x1 U X2 into Y. 

} 
. - ~ :·: 

. ...... : 

··f 

. .. ·.· 

· .. 
: · .. 
...... 

, . . 

. ·=:·.: 
·:··. 
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Theorem 2.2.7. Let T: X+ X be a p-completely continuous mapping. If 

T maps asp(xo,r) into Sp(xo,r), then T has a fixed point in 

S (x ,r). 
p 0 

Proof. We define a mapping s X+ X by 

if p (x - x ) 
0 

> r 

= Tx if x c x1 
Sx = 

+ r Tx - X = X 0 
0 p(Tx - X ) 

0 

where xl = {xlp (Tx x ) < r} () S (x ,r) 
0 - p 0 

Xz = {x IP (Tx X ) > r} n S (X , r) . 
0 - p 0 

Then by the continuity of T, the sets X1 and X2 are closed subsets of 

Sp(x
0
,r). Furthermore, for X f X1 n Xz T1x = T2x. Hence by Lemma 

2.2.6, Sx is continuous on S (x ,r). p 0 
Moreover on as (x ,r), p 0 

we 

have T1x = T2x = Tx and then another application of Lemma 2.2.6 shows 

that s is continuous on X. 

Since X : {xlpCx- x) > r}US (x ,r), 
0 - p 0 

and T is p-completely 

continuous, it follows from Lemma 2.2 . 5 that S is also p-completely 

continuous. 

But p(x - x ) < r implies that p(x) < p(x ) + r. Hence there exists 
0 - 0 

a positive integer n such that p(x) < p(x ) + r < n. 
- 0 -

This means 

S (x ,r) c nU, where U is a closed convex balanced neighbourhood of 0. 
p 0 

Therefore S[S (x ,r)] C: S(nU) i s compact. Hence S maps the closed 
p 0 

convex set s (x ,r) into a compact subset of itself. 
p 0 

,: 

i . ·: ·.,-~ 

..... 

;.· -::-

·:.' . -·~· 
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Then by Schauder-Tychonoff fixed point theorem, S has a fixed 

point in say x* , 

Sx* = T2x*, we get 

i.e. Sx* = x*. 

rTx* - x
0 

p(Tx* - X ) 
0 

Supposing 

Therefore, p(x* - x
0

) = r, i.e. x* E S (x ,r). p 0 

Since T(aS (x ,r))CS (x ,r), it follows that p(Tx*- x) <r, and 
p 0 p 0 0 -

44. 

then by the definition of Sx we have x* = Sx* = Tx*. Hence the proof. 

We now prove a theorem that gener~lizes Theorems 2.1.4 and 2.1.10. 

Theorem 2.2.8. Let T : X+ X be densifying. If X is complete and if 

there exist a x
0 

E: X and a p € P such that T is p-quasibounded at x
0 

and B (T) < 1 then the equation y = x - Tx has a solution for every 
p 

y G X. 

Proof. Let y* be an arbitrary element of X and let us define an operator 

:_H;}~:· G on X by 
;·::·-~.:. 

' ::• .f~;.'' 
;;.· Gx = y* + Tx 

for every x E X. 

It is then clear that G is also densifying. 

Since T is p- quasibounded at and B (T) < 1, 
p 

definition of p-quas i boundedness , we choose a E Sp 

oo € ~(x0,T,a). 

Let 

Then, 

or 

u = (I - T)x and choose c such ~hat 
0 0 

and 

R (x , T ,c) < a 
p 0 

c > 

p (y* - u ) 
0 

1 - a 

-1 c sup{p(Tx - Tx
0

) } < a 

therefore by the 

such that a < 1 and 

·,· 
. -~ 

.... ·.·· 

. " 
; .7~·;: 

; . . t 

·::.: 

·. ; 

. .. ~·.'. 

. ..~ •. 
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or 

or 

sup{p(Tx - Tx )} < ca 
0 

p(Tx Tx ) < ca. 
0 
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We define a ball D with center and radius as follows: 

Clearly then D is closed and convex; also D being a closed subset of 

the complete topological vector space X is complete. 

is bounded. 

Let 

i.e., 

We now show that G maps D into itself. 

X € D. Then, 

p(Gx - X ) = p (y* + Tx - u - Tx ) 
0 0 0 

< p(y* - u ) + p(Tx - Tx ) 
- 0 0 

< c (1 - a) + ca 

p(Gx - X ) < c. 
0 

Furthermore, D 

Thus, G : D + D is a densifying mapping which maps the complete, convex, 

bounded subset D of a locally convex topological vector space X into 

itself. 

Now, by Theorem 1. 2 . 49 of S\\faminathan & Thompson [51], G has a fixed 

point in D, say x*. 

Therefore Gx* = x* = y* + Tx* 

i.e. y* = x* Tx*. 

Hence the proof is complete. 

Corollary 2.2.9. If X is a Banach space, T : X+ X is densifying and 

quasibounded and ITI < 1 then we obtain Theorem 2.1.10 due to Vignoli ~2]. 

'• .. · 

t-~-
i< 
r •.· 
!. ' ,. 
;. · 
I ' r: 
,; 
t· ,. 
~­, .. 

i .. 
j " ,. 

:--· 
i 
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Corollary 2.2.10. If X is a Banach space, T : X~ X is completely 

continuous and quasibounded and ITI < 1 then we obtain Theorem 2.1.4 

due to C.ranas [24]. 

Corollary 2.2.11. Let (X,P) be a Hausdorff locally convex topological 

vector space and T X ~ X be densifying. If X is complete and if 

there exist a x
0 
~ X and a p <= p such that T is p-quasibounded at X 

0 

and IAISP(T) < 1, where A is a real number with IA I ~ 1 then 

y = x - ATX has a solution for every y ~ X. 

Proof. Since A ~ 1, therefore AT is densifying; also AT is p-quasi-

bounded at x and it is given that IAIS (T) < 1. 
0 p 

Therefore the corollary foJlows from the Theorem 2.2.8. 

Corollary 2.2.12. Let (X,P) be a Hausdorff locally convex topological 

vector space, S X ~ X be densifying and T : X ~ X be completely 

continuous. If X is complete and if there exist a 

such that both s and T are p-quasibounded at 

X €. X 
0 

6 (S) 
p 

and a pG.P 

< a, 0 < (l < 1 

and s (T) < l - a then the equation y = x - Sx - Tx has a solution for 
p 

every y E:: X . 

Proof. Since every completely continuous mapping is also densifying, there-

fore S + T is densifying. 

Therefore the corollary now follows from Theorem 2.2.8. 

Exactly in the same lines as in the proof of Theorem 2 . 2 .8, one can 

prove the following theorem using Theorem 2. 2. 7 of Loc ~3]: 

. 
iii 
1. ·. 

: .. . 

' i-' ". .. 
' 
!.·, 
! . 



Theorem 2.2.13. Let T : X+ X be p-completely continuous. If X is 

complete and if there exist a X f. X 
0 

p-quasibounded at x
0 

and 

has a solution for every 

a (T) < 1 
p 

y t X. 

and a pt. P such that T is 

then the equation y = X - Tx 

47. 

The following result due to Cain & Nashe~]generalizes a fixed point 

theorem of Krasnoselskii [29] to locally convex spaces. 

Theorem 2.2.14. Let D be a convex and complete subset of X, and S,T 

be operators on D into X such that Sx + Ty ~ D for all x,y ~ D. 

Suppose S is a p-contraction for every p £ P, and T is continuous 

and T(D) is contained in a compact set. Then there is a point x* in 

D such that Sx* + Tx* = x*. 

Proof. For every y t D, the mapping S defined by Sx = Sx + Ty is 

a p-contraction for every p E P and maps D into D. So by Theorem 

2.2.2, it has a fixed point, say Ly . In other words, 

Ly = SLy = SLy + Ty. 

Thus for every u,v G D, 

Lu - Lv = SLu - SLv + Tu - Tv. 

So for every p G P, we have 

p(Lu Lv) < v p(Lu - Lv) + p(Tu -
p 

Tv) (v 
p 

is p- contraction constant). 

i.e.' p (Lu - Lv) 
-1 

< (1 - v ) p(Tu - Tv) 
p 

It is clear from (1) that the operator L is continuous. 

To see that L(D) is contained in a compact set, let 

(1) 

be a 

net in L(D). Then {Txa} has a convergent subset { Tx'a}, since T(D) 

is contained in a compact set. Thus {Tx 'a} is a Cauchy net, and by 

. :. , . 
. ,! 

·:~ 

~ . ~ .. 

; :;,; . 

~ .. ,~ ·~ 
:·: · . . 

.... 
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(1), so also is {Lx' } . 
a Hence L(D) 

48. 

is contained in a compact set. 

Then, by Schauder-Tychonoff fixed point theorem, L has a fixed point 

in D, say x*. 

Therefore, Lx* = x* = SLx* + Tx* = Sx* + Tx*. 

Hence the proof. 

Corollary 2.2.15. If X is a Banach space, S is contraction, T is 

completely continuous and Sx + Ty€ D, then we obtain the result of 

Krasnoselskii [29]. 

The following theorem given by Cain and Nashed ~ ] generalizes 

Theorem 2 . I. 6. 

Theorem 2.2.16. Suppose S : X + X be a p-contraction mapping for every 

p € P, with p-contraction constant v , and suppose the mapping 
p 

T : X + X is continuous and T(X) is compact. If X is complete and 

if there is a x G X and a p ~ P sucn that T is p-quasibounded at 
0 

x and v + e (T) < 1 then y = x - Sx - Tx always has a solution for 
0 p p 

every y t:: X . 

Proof. Choose a so that vp +a < 1 and oo E QpCx
0

,T,a). 

Let y* EX be arbitrary, u = (I - s - T)x 
0 

c E Q (x ,T,a) and 
p (y* u ) 

c > 0 
p 0 

1 - (v + a) p 

Then R (x ,T,a) < a. Now we define the set 
p 0 

0 

D = {x € Xjp(x - x
0

) ~ c} 

and choose c such that 

. ';··.,: 
:i> 

' ·. :·~~· 

. ,• 



If then follows that for x,y G D, Sx + Ty + y* ED : 

p(Sx + Ty + y* - x ) = p(Sx + Ty + y* - u - Sx 
0 0 0 

i.e., 

< v c + ca + c[l - (v + a)] p p 

p(Sx + Ty + y* - x ) < c. 
0 

Tx ) 
0 

49. 

It now follows from Theorem 2.2.14 of Cain & Nashed [8 ] that there is 

an x* in D such that 

Sx* + Tx* + y* = x* 

i.e., y* = x* - Sx* - Tx*. 

Hence the proof. 

Theorem 2.2.17. Let S : X+ X be p-contraction and T : X ~x be 

p-completely continuous. 

and a pEP such that T 

If X is complete and if there exist a 

is p-quasibounded at X and S (T) 
0 p < 

x EX 
0 

1 - v.P, 

where v is the p-contraction constant, 0 < \) < 1 then the equation 
p - p 

y = X - Sx - Tx has a solution for every y E. X. 

Proof. Let y* ~ X be arbitrary. We define an operator 

Sx = Sx + Tz + y* 

for every x E X and for any fixed z E X. 

Clearly, S is a p-contraction mapping and hence by the Theore~ 2. 2 .2 

of Cain & Nashed [8 ], S has a unique fixed point, say Gz. In other 

words, we define a mapping G which associates to each z € X, the 

unique fixed point of S. 

..;. 

. ~-

; ·, 



Thus, Gz = SGz = SGz + Tz + y*. 

Now, for every u,v t X, 

p(Gu - Gv) = p(SGu + Tu + y* - SGv - Tv - y*) 

or, 

~ p(SGu SGv) + p(Tu - Tv) 

< v p(Gu - Gv) + p(Tu - Tv) 
p 

p (Gu - Gv) ~ (1 

which shows that G is p-cornpletely continuous. 

Since T is p-quasibounded at X 
0 

therefore we choose a E f3 (T) such that p 
a < 1 - v and 00 E. ~(x0 ,T,a). p 

Let u = (I s - T)x and choose 
0 0 

p(y* -

and 

c such 

u ) 
0 c E ~ (x

0
, T ,a) and c > 

1 - (v + a) p 

that 

Then, as in Theorem 2.2.8, we have p(Tx - Tx ) < ca. 
0 

We define now a ball D and its boundary aD with 

radius c as follows: 

D = {x E. XlpCx xo) < c} ·. 

and aD = {x € XlpCx - X ) 
0 

= c} 

We then show that G(aD)C.D. Let xE: aD. ThEm, 

p (Gx - X ) = p(SGx + Tx + y* - u - Sx - Tx ) 
0 0 0 0 

~ p(SGx - Sx
0

) + p(Tx - Tx ) 
0 

+ p (y* 

center 

- u ) 
0 

< v p(Gx - x ) + p(Tx - Tx ) + p(y* - u ) 
p 0 0 0 

or, p(Gx - x
0

) < (1 - vp) - 1 [p(Tx - Tx
0

) + p(y* - u
0
)] 

-1 ] < (1 - v ) [ ca + c (1 - ( v + a)) 
p p 

so. 

X 
0 

and 

.·. 

·' ·'· ! ;: 
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i.e. • p(Gx - X ) < c. 
0 
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Thus, G is a p-completely continuous mapping which maps an into 

D. Hence, by Theorem 2.2.7 of Loc [33], G has a fixed point in D, 

say x*. 

Therefore, Gx* = x* = SGx* + Tx* + y* 

= Sx* + Tx* + y* 

i.e. • y* = x* - Sx* - Tx*. 

The proof is complete. 

Corollary 2.2.18. Theorem 2.2.13 follows from Theorem 2.2.17 when S = 0. 

Corollary 2.2.19. If X is a Banach space·.; S : X-+ X is contraction, 

T : X-+ X is completely continuous and quasibounded and ltl < 1 - v , 

where v is the contraction constant, 0 ~ v < 1, then we obtain Theorem 

2.1.6 of Nashed and Wong [34]. 

Corollary 2.2.20. Let (X,P) be a Hausdorff locally convex topological 

vector space, s x-+x p-contraction with p-contraction constant vp' 

0 < v < 1 and - p T X -+ X be p-completely continuous. If X is complete 

and if there exist a x ~ X and a p E P such that 
0 

T is p· =tuasibounded:·. 

at x and IAIS (T) < 1 - v , where A is a real number with 
0 p p 

then y = x - Sx - ATx has a solution for every y E X. 

Proof. Since A < 1 therefore AT is p-completely continuous and also 

AT is p-quasibounded at x. 
0 

It is also given that 

Thus the corollary follows immediately from the Theorem 2. 2.17. 

~~: 
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Theorem 2. 2. 21. · Let a convex function f : X + X be such that f has 

Gateaux derivative f' (x) for every x € X, and let F = I - f, where 

I is the identity mapping of X. If X is complete and if there exist 

X € X, pEp such that F is p-quasibounded at xo. t3 (F) < 1 and 
0 p 

p(F'(x)) 1 for every xE X then the equation y = f (x) has a unique <--2 

solution for every yE X. 

Proof. By definition, for every x ~X, the mapping 

F(x) = x - f(x) 

has the Gateaux derivative F' (x) which is given by 

F' (x) = I - f' (x). 

Since f is differentiable and f is also convex, therefore by a well-

known characterization of convexity, 

f' (x)(y- x) ~ f(y) - f(x) 

= y - F(y) - x + F(x) 

= (y - x) + (F(x) - F(y)) 

for every x,y ~ X. 

Thus f' (x) < 

and therefore 

(y - x) + (F(x) - F(y)) 
y - X 

F' (x) > I 
(y - x) + (F (x) - F (y)) 

y - X 

i.e., F' (x) (y - x) ~ F(y) F (x). 

By hypothesis, since 
1 

p(F' (x)) ~ 2 
for every x E X, therefore, 

p(F(y) - F(x)) ~ t p(y - x) which shows that F is p-contraction. 

Let y* E X be arbitrary and define a mapping G : X -+ X by 

G(x) = y* + F(x) for every xE X. Clearly, G is a lsop-contraction . 
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Since 8 (F) < 1, choose a ~ S (F) such that a < p p 
CX) E ~(x0 ,F,a). 

c€ ~(x0 ,F,a) 

Therefore, 

Let u = (I - F)x and choose c such 
0 0 

and c ~ p(y* uo) 

1 - a 

R (x ,F,c) <a. 
p 0 

Then p(Fx - Fx ) < ca. 
0 

ball D with center x and radius c as fo!lows: 
0 

pEP. 
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1 and 

that 

Now, define a 

Clearly, D is closed. Further, D being a closed subset of a complete 

topological space X is also complete. 

We claim that G(D) C D. Let x E. D. Then 

p(Gx - x
0

) = p(y* + F(x) - u - F(x )) 
0 0 

< c(l - a) + ca 

i.e., p(Gx 

Thus, G is a p-contraction mapping that maps a complete subset D 

of a Hausdorff locally convex topological vector space X into itself. 

Hence by Theorem 2.2.2 of Cain & Nashed [ 8], G has a unique fixed point 

in D, say x*. Therefore, 

G(x*) = x* = y* + r(x*) = y* + x* - f(x* ) 

i.e., y* = f(x*). 

. 
f._' 

!-

~ ·. 

I . 
, .. 
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2.3. Intersection Theorems for Quasibounded Mappings 

Let a Banach space X = A ~ B be a direct sum of two subspaces 

A and B of X, i.e. each element x of X can be uniquely represented 

in the form 

x = a + b where a ~ A and b f:. B. 

Let PA denote projection of X onto A and PB projection of 

X onto B, i.e., for each x = a + b E X, PA(x) = a and P
8

(x) = b. 

Clearly, the mappings PA : X -+A and PB : X -+ B are linear and hence 

we have 

IIPA(x)ll < IIPAii llxll and IIP8 (x)ll < IIP8 II llxll, 
for each x € X •.••••• (1) 

where liP A II and liP 
8 

II are norms of P A and P 8 respectively. 

The following result is due to Granas [24]. 

Theorem 2. 3 .1. Let X = A G) B and let the mappings f A -+ X, 

g : B -+ X be completely continuous such that 

f(a) = a - F(a) and g(b) = b - G(b) . . . . . (2) 

.. /~.: If the mappings F A -+ X and G : B -+ X are quasibounded and 

. ~ ·: . IFI IIPAII + IGI IIP8 II < 1 ............... (3) 

/ . then f (A) n g (B) =j= ~ • 

Proof. Each element x EX can be uniquely represented in the form 

x = a - b a f. A and b t. B. 

Let us put H1(x) = F(a), H2(x) = -G(b), and H(x) = H1(x) + H2(x) 

for x E. X. 

r~ t 
I 
; .. · 
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' ,. 
Clearly, H : X~ X is completely continuous. Let us define a completely 

continuous mapping h : X ~ X by 

h(x) = x - H(x) = a - b - F(a) + G(b) . . . . . . . . ( 4) 

We shall prove that H is quasibounded mapping and !HI < 1. 

By (3) , there is a positive e: such that ~-:. 

There are such constants r1 and r 2 that the inequalities 

II F (a) II < 1 F 1 + e: 
llall -

and IIG(b)ll < IGI II b II - + e: • • • • • • • • c6 J 

hold whenever !!al l ~r1 and llbll ~r2. 

For every x E X we have 

IIFCa)ll + IIG(b)ll 
= l lx l l llxll 

From this taking into account (1) we obtain that the inequality 

lfTfflU I IF(a)ll . llilL + II G (b) II llbll 
< 

lib I I II XII II - 11a11 llxll 

< I IFCa)j j • l iP A II + 
II G (b) I I 

• II P8 ll 
- l lal l lib I I 

holds for X EX such that a f 0 and b + 0. 

From this, taking into account (5) and (6) we conclude that the inequality 

< 1 . . . . . . . . . . . . . 

holds f or all x G M , wher e M = {x E XI II all ~ r 1 , l lb ll ~ r 2} · 
0 0 

Let us put 

M1 = {x E X I I I a I I < r1 , II b II ~ 0} 

and M2 = { x E X I I I a I I > 0 , II b II < r 2} · 

. (7) 

1"". 

: ·. 
' 
l· 

; .. 
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Since F is completely continuous on A we conclude that the 

values of H1(x) are bounded for all x E M1. Similarly, since G is 

completely continuous on B, the values of H2(x) are bounded for all 

X E M2. 

56. 

From this we infer that for sufficiently large positive numbers r * 1 

and r 2* the inequality (7) holds 

for all 

and also for all 

x E M1 * = {x E. M1l l ib II ~ r2 *} 

x f: M2 * = { x E M21 II a II > r 1 *}. 

Putting M = (M1 M1*) l) (M2 - M2*) one can observe that the set M 

is bounded and M = X (M U M1 * U M2*). 
0 

Thus the inequality (7) holds for all points x E X which do not 

belong to the bounded set M; hence H is quasibounded mapping and 

IHj < 1. 

By Theorem 2.1.4, h(x) = x - H(x) has a solution. Hence there 

exists an element x =a- b such that h(x) = 0. By (4), we have 

i.e., 

0 = a - b - F(a) + G(b) 

f(a) = g (b) 

which completes the proof. 

Granas [24] proved the following: 

Theorem 2.3.2. Let X= A Q B and let f: A -+ X, g: B -+ X be 

compact mappings. Then the image f(A) of A under f i nter sects t he 

image g(B) of B under g, i. e . , f (A) n g (B) f ~ · 

. -;.::.-. 
; t·. 

; , • 

·-· ';'··· 

· -· -: 
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Proof. This follows from the preceding Theorem 2.3.1 because the quasi-

norm of a compact mapping is equal to zero. 

Definition 2.3.3. A continuous mapping T : X+ X from a metric space X 

into itself is said to be a-Lipschitz with constant L, if for any 

bounded set A ~ X we have 

a(T(A)) ~ La(A) O<L<+oo, 

Clearly any completely continuous mapping is a-Lipschitz with constant 

L = 0. 

The above was -.givennin: Kuratowskii (see' [32f. ~ . The following result 

due to Vignoli ~3] is a generalization of the Theorem 2.3.1. 

Theorem 2.3.4. Let X= A 0 B and let f A+ X and g B +X be 

such that 

f(a) = a + F(a) for every a £ A, 

g(b) = b + G(b) for every b f. B, 

where the mappings F and G are a-Lipschitz with constants L and L' 

respectively which satisfy 

If the mappings F and G are also quasibounded with quasinorms 

satisfying 

then f(A) A g(B) f cf> • 

l 
t r· ,. ,. 
' ' .. 
'· ( 

,. 
i 

f: 

.. 
t: 
;· 
;.·· 
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Proof: Since X = A G> B, any element x e X can be represented as 

x = a - b a € A and bE B. 

Let T = T1 + T2 , where T1 = F o PA and T2 = -G o P8 . 

Clearly the mapping T : X ~ X is densifying. Indeed, for any 

bounded subset D of X with a(D) > 0, we have 

< a (D). 
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Now using the same argument as that in Theorem 2.3.1, it can be proved 

that T is also quasibounded with ITI < 1. 

Hence by Theorem 2.1.10, there exist at least one element x* ~ X 

such that 

x* + Tx* = 0 

i.e., 0 =a*- b* + F(a*)- G(b*) 

i.e., f(a*) = g(b*) . 

This proves the theorem.· 

Remark 2.3.5. The above theorem contains as a particular case the Theorem 

2.3.1 of Granas [24] for F and G completely continuous. In this case 

the condition Li IPAI I + L' I IP8 1 I < 1 is trivially satisfied since 

L = L' = 0. 

The following corollaries are due to Vignoli [53]. 
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Corollary 2.3.6. Let X = A (£} B and let f A -r X, g B -r X be 

such that 

59. 

f(a) =a+ F(a) + M(a), 

g(b) = b + G(b) + N(b), 

for each 

for each 
a <= A} . . . . . . (l) 
bc;.B 

where the mappings ~f and N are completely continuous and the mappings 

F and G are a-Lipschitz with constants L and L' respectively such 

that 

Let the mappings F and G be also quasibounded with quasinorms 

satisfying 

0 ~ f3 < 1, 

and let the mappings M and N be quasibounded with quasinorms such that 

IMI IIPAII + INI IIP8 11 < 1 - f3 • 

Then f(A) ~ g(B) f ~ 

! · 

i 
i 
' 

t ,. 
r 
i 
' ;-

' · 
i 
; 

t· 
i , 

Proof. Let T = T1 + T2 , where T1 = F o PA + M o PA' T2 = -Go P8 ~No P8 • 

Clearly then T is densifying. Indeed 

~ La(PA(D)) + L'a(P8 (D)) 

< a(D). 

Also the mapping T is quasibounded and IT! < 1. 

Hence by Theorem 2.3.4, we get the result. 

R k 2 3 7 In Corollary 2.3.6, instead of (1) we could consider the emar . . . 

following mappings: 

I 
~ 



· -··:;:; 
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f(~;a) = a + F(a) + ~M(a) } 

g(~;b) = b + G(b) + ~N(b) 
. • . • . . . . . . . . . . . . (1 *) 

where the mappings F,G satisfy the same hypothesis of the Corollary 

2.3.6 and the quasinorms of M, N and the real number ~ are such that 

0<13<1. 

Then f(~ ;A) f) g (~;B) f 4> • (Evidently for ~ = 1 we obtain Corollary 

2.3.6.). 

Corollary 2.3.8. Let X = A ~ B and let f A+ X, g B + X be 

such that 

f(A;a) = a + }.F(a) for every a ~ A, 

g(}.;b) = b + }.G(b) for every bE B, 

where }. is a real number such that 1}.1 ~ 1 arid the mappings F,G are 

a-Lipschitz with constants L, L' respectively, satisfying 

If the mappings F,G are also quasibounded with quasinorms satisfying 

. . . . . . . . . . . (I) 

then f(}.;A) n g(}.;B) f 4> 

Corollary 2.3.9. Let X,f,g and l be as in Corollary 2.3.8. I f i nstead 

of the condition (I) in Corollary 2.3.8 the mappings. F,G satisfy 

II F (x) II = 0 (II x II ) 

II G (x) II = 0 C II x II ) 
llxll + <» \. ........ . . (I*) 

llxll + <» J 
as 

as 

.... ,, 
·:I~ then f(f. ;A) n g (A ;B) +" 4> 
. · .·:: 

· ....... - \ 

. t 

I ·:· ·' : . ;~~.;:~· 

~ .. :. 

i. ' I·. 
; 

l· 
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Remarks 2. 3. 10. (i) The condition I 1 A ~ 1 in Corollaries 2.3.8 and 

2.3.9 is required in order that AT is densifying. 

(ii) In Corollary 2.3.9, a p~rticular case for A = 1 

and F,G completely continuous was proved by Granas [24]. 

The following result is due to Nashed and Wong [34]. 

Theorem 2.3.11. If we have 

and 

r; = 1~1 CviiPAII + v' IIP8 11) < 1 

IFzl IIPAII + IGzl IIP8 11 < 1 - P 

(1) 

(2) 
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J-1... --\..UCU f , .. ' """' - , .... ) 
]J \/'\) f I ~]J l:.,;· where for each ]J + 0' f : A+ X, 

]J 
B +X 

be such that 

f (a) 
]J 

g (b) = ]Jb + 
1.1 

for every a E. A, 

for every b E. B, 

with F1 ,G 1 Lipschitzian operator, ~~ v' Lipschitz norms of F1 , G1 

respectively and F2 ,G2 quasibounded completely continHous operators 

from A,B into X respectively. 

Proof. Define an operator T on X by 

It is easy to show that f (A) () g (B) 
]J ).1 

t 4> if and only if the equation 

Tx = ).IX has a solution in X. Let 

1 
M =; {Gl(-P8) - Fl(PA)} 

and 1 
N =; {G2 (-P8) Fz (PA)}. 

It is then readily verified that (1) and (2) imply r-1 is contraction and 

INI < 1 - p • Hence the existence of solution of Tx = ).IX follows as an 
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immediate consequence of Theorem 2.1.6 of Nashed & Wong [34]. 

Remark 2.3.12. Theorem 2.3.11 reduces to Theorem 23.1 of Granas [24] by 

taking v = v' = 0 and . ~ = 1. 

Another interesting intersection theorem has been obtained by Petry-

shyn [40] where he extended Theorem 2.3.1 of Granas [24] to the following: 

(a) either F or G is P-compact 

and (b) condition (3) of Theorem 2.3.1 is replaced by a much weaker 

condition. 

We first give the following preliminaries and definition: 

Let X be a real Banach space with the property that there exists a 

sequence {X } of finite dimensional subspaces X of X, a sequence 
n n 

of linear projections {P } defined on X, 
n 

and a constant K > 0 such 

that 

p 
n 

00 

X = X xnc xn+l, n = 1,2,3, . . . ' u X = X . 
n n=l n 

liP n II < K - , n = 1,2,3, ... 

Let B denote the closed ball in X of radius r > 0 about 
r 

(I) 

(II) 

the origin and let S denote the boundary of B . Let the symbol "-+" r r 

denote the strong convergence in X. 

Definition 2.3.13. A nonlinear operator T mapping X into itself is 

called projectionally-compact (P-compact) if p T 
n 

is continuous in X 
n 

for 

all sufficiently large n and if for any constant p > 0 and any bounded 

sequence {xn} with 

{gn} = {PnTxn - pxn} 

x ~ X the strong convergence of the sequence 
n n 

imply the existence of a strongly convergent subsequence 

:·.:.: 

r ··~ . 

j:.'.· 
i ::· 
. :· .. .... 
~ · .. 

r· ... 
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{x } n. 
1 

and an element x in X such that x + x and n. 
1 

P Tx + Tx. n. n. 
1 1 
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This definition is due to Petryshyn ~0]. We now state some results 

without proof on which our next intersection theorem is essentially based. 

Theorem 2.3.14. Suppose that T is P-compact. Suppose further that for 

given r > 0 and ~ > 0 the operator T satisfies both the following 

conditions: 

(A): There exists a number c (r) > 0 such that if, for any 

holds for x in Sr with A > 0, then t. ~ c(r). 

n, P Tx "' AX n 

(IT ):If for some X in S the equation 
~ r 

Tx = ax holds, then a < ~· 

Then there exis~at least one element u in (B - S ) such that r r 

Tu - ~u = 0. 

The above result is due to Petryshyn [40]. 
Remarks 2.3.15. The assertion of Theorem 2.3.14 remains valid if condition 

(A) is replaced, for example, by any one of the following stronger conditions 

whose degree of generality increases in the given order: 

(i) T is bounded, i.e., T maps bounded sets in X into bounded sets. 

(ii) For any given r > 0 the set T(S ) is bounded. 
r 

(iii) X i s a Hilbert space and, for any given r > 0, 

(Tx, x) < c - llxll
2 

for ever y x€. s r and some c > o. 

The following result i s due to Petryshyn [39]. 

Theorem 2.3.16. The class of P-compact operators with p < 0 contains, 

among others, the followi ng operator s: 

l. 

' . 

i 

i' 



(a) closed precompact operators (and, in particular, completely 

continuous and strongly continuous operators) in X. 

(b) Quasicompact operators in X. 

(c) Continuous, demicontinuous, and weakly continuous monotone 

increasing operators in X, when X is a Hilbert space. 

Now we give the intersection theorem due to Petryshyn [40]. 
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Theorem 2.3.17. Let G : B ~X be a nonlinear mapping such that G(-PB) 

is P-compact and such that to a given r > 0 there corresponds a number 

c(r) > 0 with the property that for all x in Sr 

IIGC-PBx) II .5_ c(r). . (1) 

Let F :A~x be a completely continuous mapping and f :A ~ X, 
}.1 

gll : B ~X be defined by f (a) = 
}.1 

lla + F (a), g (b) = 
}.1 

}.lb + G(b) 

respectively for every a € A and bE. B. If for given r > 0 and 

}.1 > 0 the operators F and G satisfy the condition: 

(IT) If Fa + aa = Gb + ab for some a in A and b in B with 

II a b II = r, then a < ll , 

then f (A) n g (B) f ~ )J )J 

Proof. Let us define a nonlinear mapping T : X ~ X by 

Tx = G(b)- F(a) with b =-PBX and a= PAx, for every x € X .... (2) 

and observe that fll (A) {\ gll (B) f ~ i f and only if the equation 

Tx = )JX ....... (3) 

has a solution in X. Indeed, i f x i s a soluti on of (3), then x has a 

unique representation x = PAx + PBX = a - b and, i n vi ew of (2), (3) 

i mpl ies that G(b) - F(a) = ll(a - b) or that }.lb + G (b) = )Ja + F (a), 

i.e. , f (A) () g (B) f ~ On the other hand, if aG:A and b E B are . 
)J }.1 
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t\\'O elements such that f (a) = g (b), then J.J(a- b) = G(b) - F(a). 
).J ).J 

Hence if we put x = a - b, then (2) implies that x is a solution 

of (3). 

Thus, to prove Theorem 2.3.17 it is sufficient, in view of the above 

observation and Theorem 2.3.14, to show that the operator T defined by 

(2) is P-compact and satisfies conditions (A) and (TI ) of Theorem 2.3.14. 
).J 

Let us first show that T is P-~ompact. Now, by our conditions on 

G and F, PnT is certainly continuous in Xn for all sufficiently 

large n. Further, let {xn} be a bounded sequence so that for any p > 0 

for every x f. X ••• (4) n n 

Since {v } = {PAx } is bounded and F is completely continuous, there 
n n 

exists a subsequence, which we again denote by {xn} such that 

F(vn) = F(P x ) ~ v and P F(v ) ~ v where v G X. This and (4) imply 
An n n 

that 

g :: P G( -P x ) - px = g + P F (PAx ) ~ g + v, (n ~ oo). 
n n Bn n n n n 

Since G(-P
8

) is P-compact, therefore there exists a subsequence again 

denoted by {x } ' n 

This and the continuity of F imply that 

P Tx 
n n 

i.e., T is P-compact. 

Suppose now that Tx "' ax for some x in s . 
r 

Tx. 

Th~s then means that 

G(b) + ab = F(a) + ab with I Ia - bl I = I I PAx + PBxl I = r. Hence our 

condition (IT) implies that a< J.J; i.e., T satisfies condition (IT ) . 
).J 

Finally we see that for any x in S condition (1) and the complete 
r 

continuity of F imply the inequality 
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IITxll 2_ IIGC-P8x) II + IIFCPAx) II 2_ c(r) + c, 

where c > 0 is such that for all x in S 
r 

Thus the 

set T(Sr) is bounded and therefore, by Remark 2.3.15 (ii), T satisfies 

condition (A). Hence, by Theorem 2.3.14, equation (3) has at least one 

solution in Br orr equivalently, the intersection f (A) n g (B) f cf>. 
~ ~ 

The proof is complete now. 

Petryshyn [40] gave the following two corollaries. 

Corollary 2.3.18. Suppose that F and G satisfy all conditions of 

Theorem 2.3.17 except that condition (IT) is replaced by the condition 

. . (5) 

for a € A, b E B with !Ia- bll = r. Then f (A) ng (B) f cf>· 
11 )l 

Proof. We may assume, without loss of generality, that there is no elements 

a in A and b E B with II a - b II = r such that f (a) = g (b). 
~ ~ 

Suppose 

no\>l that for some x in S or equivalently for some a in A and b ·in B 
r 

with II a - b II = r we have Fa + a a = Gb + .ab. Then 

II Gb 

and II Gb 

Fa- ~(a- b)ll
2 

= llaCa- b)- ~(a- b)jl
2 

=(a - . ~) 2 lla- bll
2

, 

Fa 11
2 

- ~ 2 11 a - b 11
2 = (a 2 - ~ 2 ) II a b 11

2 
• 

Since ~ > 0, our 

assumption then implies that a < ~ and, consequently, (4) implies the 

condition (IT). Corollary 2.3.18 then follows from Theorem 2.3.17. 

Remark 2.3.19. In case X is a Hilbert space, condition (5) is equivalent 

to the requirement 

X t S , 
r 

. . . . . . . . . . . (6) 
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Corollary 2.3.20. Suppose that F and G are completely continuous 

and quasibounded, i.e., there exists four constants M1 > o, M2 > o, 

rl > 0 and r 2 > 0 such that 
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IIFall ~ M1llall for every a in A with norm II all .::_ r 1 . (7) 

11Gb II ~ M2llb II for every b in B with norm lib II .::_ r 2 . (8) 

Suppose further that M1 and M2 satisfy the inequality 

. . • . . . • • . . . (9) 

Proof. Let us first remark that, as was shown by Granas [24], the condit­

ions of Corollary 2.3.20 imply the existence of a constant r > 0 such 

that 

IIGC-P8x) - F(PAx) II ~ llxll for every x in X with llxll > r. 

i.e., the operator T(x) = G(-P8x)- F(PAx) is quasibounded. Assuming 

without loss of generality, that there are no elements a in A and b 

. (10) 

in B with !Ia- bll = r such that f1(a) = g1(b)1 it is easy to see that 

whenever Fa+aa=Gb+ab forsome a€A and btB with lla-bll =r, 

then (10) implies that a < 1. Hence ~ondition (IT) of Theorem 2.3.17 holds 

for ~ = 1. Furthermore, since G is completely continuous, (1) of 

Theorem 2.3.17 is clearly satisfied and, by Theorem 2.3.16, G(-PW) is 

P-cornpact. Consequently, Corollary 2.3.20 follows from Theorem 2.3.17. 

Remark 2.3. 21. For the sake of completeness let us sho\v that the conditions 

of Corollary 2.3.20 imply the validity of (10) for some r > 0. First let 

r
0 

= max{r1,r2} and let c > 0 be a constant such that 
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II Fall < c for all a G A with II all < r 
- 0 

and II Gb II < c for all b € B with lib II < r - 0 

Taking r = max~r0 1 ~ Mo} where M = max{M1II P A II • M2ll P B II } < 1, 0 

we obtain (10). Indeed, (10) follows trivially from (7), (8), (9) if 

for x = a - b with II x II ~ r we have II a I ! ~ r 
0 

and II b II ~ r 
0

• 

On the other hand, if for II xll ~ r one of the conditions II a II ~ r
0 

or llbll ~ r 0 is not satisfied (e.g. llbll i r
0
), then by our 

definition of c and M
0 

we get the desired inequality . 

II G (-p B X) - F (PAX) ) II ~ II G (b) II + II F (b) II 

~ c + Mollxll 

< (1- M
0
)llx!l + M

0
llx!l 

= llxll · 

We now give an intersection theorem in Hilbert spaces by Kolomy [ 28]. 

Let X be a Hilbert space, Y,Z non-trivial subspaces of X such 

that X is their direct sum, i.e., X = Y {£) Z. Denote by Py,Pz the 

linear projection of X onto Y,Z respectively. Set f(x) = x+ AF(x), 

g(x) = x + AG(x), where A : X~ X is a linear continuous mapping of 

X into X and F,G are non-linear mappings of Y,Z into X 

respectively. 

Theorem 2. 3. 22. Let X = Y G) Z and let f : Y ~ X, g : Z -+ X be 

defined as above, where F : Y -+ X, G : Z ~ X are Lipschitzian mappings 

wi th constants a 1 ,a2 respectively. Furthermore, let F,G linearly 

upper bounded (i.e., quasibounded) with bounds e1 ,e2 respectively such 
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that e: = IIAIICeliiP~II + e211Pzll) ..s_l. If CadiPvl l + a2/IPziPI IAII..s_l, 

then the intersection f(Y) n f(Z) is non-void. 

Proof. Put 41 (x) = A (G ( -P 2x) - F (Pyx)) for every x E X. Then for all 

II cp(xl) - cp(x2)11 < I lA/I CII GC-P2x 1) - G(-P2x 2) II + IIFCPyx2) - F(Pyx1) I/) 

2. //A/I Ca2IIPzx1 - Pzx2l/ + a1/IPyx2 - Pyx1ll) 

2. IIAI/Cal/IPvll + a2IIP2 I!)IIx1- x2ll 

2. II xl - x2ll · 

Thus the mapping cp : X ~ X is Lipschitzian with constant one. Under our 

assumptions, F,G are linearly upper bounded with a 1.a2 respectively. 

Therefore, 

II Fy II 2. e 1 II y II for every y € Y with II y I I ~ p 1 

IIGzll 2_ e2 11zll for every z ~ Z with liz II ~ p2 

• (1) 

. (2) 

for some p
1

,p
2 

> 0. Put p = max(p
1

,p
2
); then (I), (2) are fulfilled 

for every y E Y with II y II ~ p and every z E.. Z with I I z II ~ p . 

Put KP = {y E Y I II y I I ..s_ p} and n P = { z c=: Z I I I z I I 2_ p} . Since F, G 

are Lipschitzians on Y,Z respectively, then there exist positive numbers 

respectively (cf. [28]). 

N = max(a 1 11AI/ 1/Py/1• a2 11AI/ I/P 211L p
0 

= max(2p, IIA I IK/(l- N)), 

K = {x E XI I I x l l < P } , S = {x E. XI I I x l l = P0 } • 
p - 0 p 

0 0 

If for x = Pyx + P
2

x ~X with llxll ~ p
0 

there is also 

II Pyx II ~ p , II P 2x II ~ p , then 



ll<t>Cx) II ~ IIAJJ C)IFCPyx) II + IIGC-P
2

x) II) 

~ e: llxll 

~ llxll· 

If for 

is not fulfilled (for instance the first), then 

ll<t>Cx)IJ < IJA)IK + N l!xJI 

< II xl!. 

Hence for every x ~ S 
Po 

there is ll<t>Cx) II ~ P0 • Therefore, 

<j> (S ) C K • 
Po Po 

According to Browder's theorem, the mapping 

has at least one point x* G K such that <j> (x*) = x*. 
0 

and f(Pyx*) = g(-P2x*). 

This concludes the proof. 

2.4. Some Further Results for Quasibounded Mappings 
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In this section we give some mapping theorems for quasibounded mappings 

by means of topological argument. 

Recall that a nonlinear mapping T from a Banach space X into itself 

is quasibounded if there exist two constants M > 0 and q > 0 
0 

such that 

II Tx II ~ M II x II for all x in X with II x I I ?_ q
0

• (Peti'yshyn [40]) . 

We state without proof the following result, due to Petryshyn [40]. 

Theorem 2.4.1. Suppose that T is P-compact. Suppose further that there 

exist a sequence of spheres 

sequences of positive numbers 

{Sr } with 
p 

c = c (r ) 
p p 

r + oo as p + oo , and two p , 

and k = k(r ) with k + oo , p p p 



as 

(A f) 

(II ) 
p 

r ~ .., p , such that the following conditions hold: 

: \'lhenever for any given f in Bk and any n the equation 

P Tx - AX = p f holds for X in s with A > 0 then n n r p 
" < c . - p 

II Tx - nx II > kp for any n ~ ~ > 0 and any x in s 
r 
p 

Then for every f in X there exists an element u in X such that 

Tu - ~u = f. 

The following result is due to Petryshyn [40]. 

Theorem 2.4.2. Suppose that T is P-compact and quasibounded mapping 

of X into itself. If ~ > M, then (T - ~I) is onto. 

Proof. Let {rp} be a sequence of real numbers such that r > q p- 0 
for 
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all p and such that r ~ ..,, as p ~ '"'· 
p 

Then, in view of our conditions, 

for all x in S and n ~ ~. 
r 
p 

II Tx - nx II ~ n II x II - II Tx II 
~ ~llxll Mllxll 
= ( ~ - M) II X II 

Thus condition (JIP) of Theorem 2.4 .1 is satisfied with kp = (~ - M)rp. 

Now suppose that for any f in Bk and any n the equation 
p 

P T f h ld f · s w1"th >. > 0. Then by (Il) before X - AX = P o S or X ln 
n n r p 

the Definition 2.3.13 and the quasiboundness of T, the latter equation 

implies that 
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!.r = A llxll = liP n (Tx f) I I p 

< KjiTx- £11 -
< K{ I!Txll + !If II} -
< K{Mr + k } - p p 

Hence, A~ ~K, i.e., condition (Af) of Theorem 2.4.1 is satisfied with 

cp = ~K for each p. Consequently, Theorem 2.4.2 follows from Theorem 2.4.1. 

Remark 2.4.3. It is not hard to see that Theorem 2.4.2 remains valid if 

instead of assuming that ~ > M we assume that ~ > IT!. 

Petryshyn [40] also gave the following corollary: 

Corollary 2.4.4. Suppose that T is quasibounded and P-compact with 

p < 0. If ~ > M, then (~I + T) maps X onto itself. 

Proof. The conditions of Corollary 2.4.4 imply that T = -T is quasi­

bounded and P-compact with p = -p > 0. Hence, by Theorem 2.4.2, 

(T - ~I) or equivalently the operator (~I + T) is onto. 

Remark 2.4.5. When T is completely continuous and ~ = l, then the 

Coro 11 ary 2. 4. 4 was proved by Gran as [24 ] • 

The following surjectivity result due to Vignoli ~4] will be useful 

in our next theorem: 

The 2 4 6 Let X be a Banach space, T : X + X be a-contractive orem ... 

with constant k (0 ~ k < 1) and let there exist a sequence 

{aB(O,e )} (aB(O,S ) = {x E. xj llxll = en}) of spheres and a sequence 
n n 

{v } of positive real numbers v + ~ as n + ~ such that for any 
n n 

A > ~ (where ~ satisfies 0 < k < 1 - jl - ~j) and any x E aB(O, Sn) 
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II Tx - Axil > \) 
- n 

Then the mapping (T - ~I) is surjective. 

The following theorem is due to Vignoli (54]: 

Theorem 2.4.7. Let T X+ X be quasibounded and a-contractive with 

constant k, (0 ~ k < 1). If ~ satisfies 

(i) 0 < k < 1- ll- ~1, 

(ii) ~ > M, 

then the mapping T - ~I is surjective. 
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(1) 

Proof. Let {an} be a sequence of real numbers such that a > c for all 
n-

n, and 

II Tx - Ax II ~ A II x II - II Tx II 
> ~llxll - Mllxll 

= c~ 

= c~ 

M) II xll 

M)a • n 

and any A > ~ 

hence by putting v = (~ - M)a condition (i) of Theorem 2.4.6 is 
n n 

satisfied. Therefore Theorem 2.4.7 now follows from Theorem 2.4.6. 

Remark 2.4.8. In this case when T is P-compact mapping and X satisfies 

some special conditions, then Theorem 2.4. 7 was proved by Petryshyn [40]. 

The following result was given by Fucik [20] : 

Theorem 2.4.9. Let X be a real Banach space, h : X + X be a mapping 

such that for every x £X i s hx = x + Hx and 0 < k < 1. The followi ng 



hypotheses are fulfilled: 

(I) For every y
0 

~ X and R > 0 with the property (y 
0 

- H) (SR) C KR 

llxll = R or (SR or KR denote the sets of all x such that 

I lxl I ~ R respectively) there exists such that 

Hx = y x y
0

,R o - y
0

,R · 

(II) H is the quasibounded operator with the constant K. 

Then h is a surjective operator. 

Proof. Let y € X, 
0 

£ > 0 be such that k + £ < 1, p 
1 

= and 
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(p is from the definition of quasiboundedness of H given 
0 

by Granas [ ], i.e. 

For every x € X, 

IHI = inf 
O<p <oo 
-o 

- lff*x } t sup I ) . 
llxll~ x 

0 

! IY0 11 
we have I lXII 

< 
< e: 

For x t S , we obtain from the triangle inequality and the hypothesis 
p2 

(II), 

IIY
0 

- Hxll 

II XII 

i. e · II Y 
0 

- Hx II ~ II x II 

+ 

and by hypothesis (I), there exists 

, i.e., 

< e: + k < 1 

Remark 2.4.10. If H = -I (1 denotes the identity mapping) we see that 

if k = 1, the Theorem 2.4.9 is not valid. 

The following two theorems due to Fucik [2~ are the consequences of 

Theorem 2.4.9: 



Theorem 2.4.11. Let X be a real Banach space and h : X+ X be a 

mapping such that for every x ~ X is hx = x + Hx, where H is 

completely continuous. Let the hypothesis (II) of Theorem 2.4.9 with 

0 < k < 1 be fulfilled. Then H is a surjective operator. 
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Theorem 2.4.12 . Let X be a uniformly convex Banach space and H be a 

nonexpansive mapping on X satisfying the hypothesis (II) of Theorem 2.4.9 

with 0 < k < 1. Then hx = x + Hx is surjective. 

Definition 2.4.13. Let H be a real Hilbert space. We call a mapping 

T : H + H coercive if for all x € H, (Tx,x) ~ cCllxl j) l lxll, where 

c is a real-valued continuous function defined on /R + and such that 

c(t) + oo as t + oo 

We now state without proof the following result and its corollary 

due to Edmunds & Webb [18] which will be used in the proof of the next 

mapping theorem. 

Theorem 2.4.14. Let T : H + H be densifying ~~d suppose I - T is 

coercive, where I is the identity map. Then I - T is surjective, 

i.e., given any y E: H there exist x in H such that x - Tx = Y· 

·;~ 

~ 'l Corollary 2.4.15. Let T be a !-set- contracti on such that (I - T) 
F 

is coercive and maps closed balls into closed sets. Then I is 

surjective. 

The following result is due to Edmunds & Webb [18] · 

Theorem 2.4.16. Let 
d 1 t 1, : H + H be 

H be a r eal Hilbert space an e 

h ITI < 1. Then I - T i s a densifying quas i bounded operator wit 

surjective. 



Proof. Let o > 0 be such that ITI + ~ 1 Th · u < • en s1nce 

((I - T)x,x) (1 - ITI - 6) llxll 
IIXII > 

for large enough I lxl I , I - T is coercive. The result now follows 

immediately from Theorem 2.4.14. 

Edmunds & Webb [18] gave the following corollary: 

Corollary 2.4.17. If T is a !-set-contraction such that I - T maps 

closed balls into closed sets and ITI < 1, then I - T is surjective. 

Proof. This follows easily from the Corollary 2.4.15. 

Remarks 2.4.18. (i) Various special cases of Theorem 2.4.16 are known 

apart from the classical result with T linear and I ITI I < 1; for 

example, the situation for T completely continuous was dealt by 

Granas [24] while Nashed & Wong [34] and Fucik [20] dealt with sums of 

completely continuous and contraction maps. 

(ii) Theorem 2.4.16 is also true fork-set contractions 

1 (k < 
1

.) in Banach spaces. Obviously, when X is a uniformly convex 

space, it is enough to assume in these results that T is a k-set-

contraction with 
1 

k < 2 - 26 . 
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CHAPTER Ill 

Some Applications of Fixed Point Theorems 

In this chapter we shall be discussing a few applications of some 

of the fixed point theorems established in the last two chapters. 

The following illustration due to Shrinbot [48] will give us some 

intuitive idea of how fixed point theorems can be applied to various 

everyday situations: 

Feasibility of an orbit by which a satellite would revolve around 

earth and moon is the type of question to which mathematicians apply 

fixed point theorems for infinite-dimensional surfaces. The element of 
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time in any equation for the orbit makes the problem infinite-dimensional, 

reducing such simple theorems as Brouwer's theorem inapplicable. 

3.1. Application of Contraction Mapping Theorem 

Here we apply the principle of contraction mapping to prove the 

existence and uniqueness of solutions obtained by the method of successive 

approximations. 



78. 

Example 3.1.1. Given dy -dx - f(x,y) . . . . ( *) y(x ) = Y 
0 0 

where f(x,y) is continuous in a plane region G containing (x y ) 
o' o 

and satisfies a Lipschitz condition with respect to y as follows: 

We shall show, by means of the principle of contraction maps, that on some 

closed interval lx- x
0

l < d there exists a unique solution y = ~(x) 

of equation (*) satisfying the initial condition. 

This important statement is in fact known as Picard's theorem. 

Equation (*) is equivalent to the integral equation 

I
X 

~(x) = y
0 

+ f(t,.(t))dt. 
xo 

Since f(x,y) is continuous, we have jf(x,y)j < k in some region 

G' £ G and which contains the point (x
0

,y
0
). Select a d > 0 such 

that 

(i) (x,y) E G' if lx - x I ~ d, 
0 

IY - Y
0

1 < kd 

(ii) Md < 1. 

Let ~ be the space of continuous functions •*(x) which are defined on 

lx - x I < d and are such that 
0 -

l~*(x) - y
0

1 < kd. Use the metric d(~ 1 .~ 2 ) = supj~l(x) - • 2 (x)j on C*. 
X 

C* is a complete space since it is a closed subspace of the complete space 

of continuous functions on a closed interval with the sup. metric. 

Now consider the map w = F~ defined by 

w(x) =Yo+ IX f(t.~(t))dt where lx- xol ~d. 
xo 

We claim: F is a contraction map of the complete metric space C* into 

itself. 



Let cf> E C* and I x - x I < d . TI1en 
0 -r f(t,cp.(t))dtl < kd. 

X 
0 

Thus, tjJ (x) E: C* or F(C*)c.C*. 

Moreover, ltjJ 1 (x)- tjJ 2 (x)l .::_ Jx lf(t,cf>t(t))- f(t,cp 2 (t))ldt 
xo 

.::. Md sup lct> 1 (x) - cp 2 (x)l 
X 

and so sup ltjJ 1 (x) - tjJ2 (x)l.::. Md sup lcp 1 (x) - cp 2 (x)l 
X X 

where a = Md < 1. 

79. 

Hence, F is a contraction mapping and thus there exists a unique cf> ~ C* 

such that Fcp = cf> , or the integral equation has a unique solution, or 

the differential equation (*) has a unique solution satisfying the given 

initial condition. 

Example 3.1.2. By a Fredholm equation (of the second kind) is meant an 

integral equation of the form 

f(x) =A Jb K(x,y)f(y)dy + cp(x) 
a 

........... . (1) 

involving two given functions K and cf> , an unknown function f and 

~ an arbitrary parameter A • The function K is called the kernel of the 

f equation, and the equation is said to be homogeneous if cf> = 0 (but 

f otherwise non-homogeneous). 
' l" • 
f Suppose K(x,y) and cp(x) are continuous on the square a .::. ~ ~ b, 

a < y.::. b, so that in particular 

·. 



IKCx,y)! ~ M(a ~ x ~ b, a~ y ~b). 

Consider the mapping g = Tf of the complete metric spa e C 
c [a,b] 

itself given by 

Clearly, 

g(x) =A Jb K(x,y)f(y)dy + $(x). 
a 

if g 1 = Tf1 , g2 = Tf2 , then 

d(gl,g2) =max lgl(x) - g2(x)! 
X 

X 

so that T is a contraction mapping if 

into 

< 
1 

M(b - a) . . . . . . . . • . . . . . . . (2) 
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It follows from Theorem 1.1.12 that the integral equation (1) has a unique 

solution for any value of A satisfying (2). The successive approximations 

f ,f1 , . •• , f, ... to this solution are given by 
o n 

f (x) = A Jb K(x,y)f 1 (y)dy + $(x) (n = 1,2, ... ) , 
n n -

a 

where any function continuous on [a,b] can be chosen as £
0

• Note that 

the method of successive approximations can be applied to the equation (1) 

only for sufficiently small !AI . 

Example 3.1.3. Next consider the Volterra equation 

f(x) =A Jx K(x,y)f(y)dy + $ (x), ..... · . .. (3) 
a 

which differs from the Fredholm equation (1), by having the variable x 

rather than the fixed number b as the upper limit of integration. It 

is easy to see that the method of successive approximations can be appl i ed 



81. 

to the Volterra equation (3) for arbitrary A , not just for sufficiently 

small 1~1 as in the case of the Fredholm equation (1). 

In fact, let T be the mapping of C[a,b] into itself defined by 

Tf(x) = A Jx K(x,y)f(y)dy + ~(x), 
a 

and let fl>f2 E: c[a,b]. Then 

1Tf1 (x)- Tf2(x)l =A Jx K(x,y)[f1 (y)- f 2(y)]dy 
a 

where M =max IKCx,y)l 
x,y 

It follows that 

and in general 

which implies 

~ AM(x- a) max lf1 (x)- f 2(x) l , 
X 

~ ~2M2max lf1 (x)- f 2(x)l Jxcx- a)dx 
x a 

= A2M2 (x; a)
2 

max lf1 (x) - f2(x) l , 
X 

nMn < A 

n 
(x - a) 

n! 

n 
(b - a) 

n! 

max I f 1 (x) 
X 

max lf1 (x) - f 2(x) I , 
X 

But given any 1 h Ose n large enough to make A , we can a ways c o 

n 
(b - a) < 1 , 

n! 

i.e., ~ is a contraction mapping for sufficiently large n. It f ollows 

from Theorem 1.1.15 that the i ntegral equation (3) has a uni que solution 

for arbitrary A • 



I 

Remark 3.1.4. Equation (3) can be regarded formally as a special case 

of (1) by extending the definition of the kernel, i.e., by setting 

K(x,y) = 0 if y > x. 
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Example 3.1.5. In this example, we apply the Corollary 1.1.18 to show the 

existence of a unique solution to the scalar differential equation 

dx(t) 
dt = f(x(t).t) x(a) = c , t e. [a,b] . . . . . . (4) 

where f(u,t) is continuous in t for any u E 1R and it satisfies <:he 

Lipschitz condition 

and b is any finite number bigger than a. The mapping z = Fx defined 

by 

z(t) = c + Jt f(x(s),s)ds 
a 

. . . . . . . . . . . . . . (6) 

maps C(a,b) into itself. The mapping z = Kx defi ned by 

z(t) = elk(t-a)x(t) A > 1, t E [a,b] , ... · . · · · · (7) 

also maps C(a,b) into itself and has an inverse defined by the function 

e-Ak(t-a). To show that K-1FK i s a contraction, let Y1.Y2 t C(a,b) 

and then 

I 
-Ak(t -a) = max e 

tE[a,b] 

Jt[f(elk(s-a)Yl(s), s 
a 

- f (elk(s- a)yz(s),s)]ds i 

< max e-lk(t-a) Jtkelk(s -a)I YI(s ) - Yz (s) Jds 
-tE[a,L] a 



< max fl (1 - e ->.k(t-a)) //YI - y2· // 
- t6,[a,b] 

< >.-
1 //Y1- Y2// . . . . . . . . . . (8) 

Since >. > 1, K-
1

FK is a contraction. 

Example 3.1.6. Let us consider the integra-differential equations, with 

the following form in the simplest case: 
00 

x(t) = I K(t,s,x(t - s))ds ' 
0 

or in the integral form: 

. . . . . . . . . . . . 

x(t) = r dt j K(t,s,x(t - s))ds 

t 
0 

0 

(**) 
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with the initial conditions x(t - s) = ~(t - s) for t s < t , where 
- 0 

the continuous function ~ can differ from zero only on a finite segment. 

oo If in equation (**) the functions 

J K(t,s,O)ds converges uniformly for 
0 

f and K are continuous, 

t < t < t + h1 where h1 > 0, 
0- - 0 

and K satisfies a Lipschitz condition in the third argument, then there 

exists a unique continuous solution of (**) for t < t < t + h, 
0 - 0 

where 

h is sufficiently small, and this solution may be found by the method 

of successive approximations. 

Contraction mapping principle is used in the proof of the above which 

can be found in Elsgole [19]. 

Next, we shall apply the contraction mapping theorem to the calcula­

tion of the inverse of a bounded linear operator. In this connection it 

may be noted that if X is a Banach space then the space of bounded 

linear operators B(X,X) is also a Banach space. 



Theorem 3.1.7. Let L be a map in B(X,X) that has a bounded linear 

inverse in B(X,X). Then for every M f. B(X,X) such that 

II L - M II ~ 1/ 11 L -111 , M has a bounded linear inverse M-l in B (X, X), 

and IIL-
1 

- M-
1

11 ~ CIIL- Mil IIL-1
11

2
)/(1 - IlL- Mil IIL-11 j). 

Proof. Then N = L-l + B is an inverse for M <=> 
Put A= M.,. L. 

MN = NM = I. We can write the equation MN = I as 
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( -1 -1 -1 L + A)(L +B) =I, or LL + LB + AL + AB =I, -1 or LB = -AB - AL , 

or B = -L-
1
AB- L-lAL-1. If we put f(B) = -L-lAB- L-1AL-l, this 

equation has the form B = f(B). Since llf(B)- f(B')II =II -L-1A(B- B')l 1 

< II L -
1

11 II A II II B - B' II , and II L -lll II A II = II L - 111 II L - M I I < 1, 

f is a contraction on B(X,X). It has a unique fixed point B. Then 

(L + A)(L-
1 

+B)= MN =I. Similarly, the equation N'M =I can be 

1 -1 -1 -1 expressed as B' = -B'AL- - L AL if we put N' = L + B'. By the 

same argument, it has a solution as well. Now N' = N'I = N'(MN) = 

(N'M)N = IN = N. Therefore N = N' is the unique inverse of M. More-

over, the contraction mapping theorem tells us that 

= fl L -l AL -lll 
1- IIAII IIL-

1
11 

< 

3. 2 Application of Schauder' s Theorem and 

Monotonically Decomposible Operators 

It may be noted that for applying Brouwer's Theorem (Theorem 1.2.19) 

and Schauder's Theorem (Theorem 1.2.21, and 1.2.22), no information is 

needed concerning the norms, distances, Lipschitz constants, etc. The~e 



theorems have been used very often, perhaps the Schauder theorem is one 

of the most important theorems for the numerical treatment of equations 

occuring in analysis. 
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Examples are given for finite systems of linear algebraicequations (Schroder 

[4 7]), for nonlinear vibrations (Reissig [43]), etc. Let us give a 

simple example. 

Example 3.2.1. Consider the vector-differential equation 

x' (t) = A(t)x(t) + g(t,x) . . . . . . . . . . . . . . . (9) 

with a given matrix A(t) and a function g satisfying 

jg(t,x) - g(t,O)j ~ s(t)q(jxj) , 

where s(t) is a continuous function of period p and q(x) is a 

continuous, monotone, non-decreasing, bounded function with q(O) = 0. 

Then the Brouwer's fixed point theorem for a sufficiently large 

sphere gives the existence of a periodic solution of (9) (Reissig [43]). 

3.2.2. Monotonically decomposible operators: The operator T mapping 

the domain D of a partially ordered space R1 into a partially ordered 

space R2 is called syntone, if v < w for all v ,w € D implies 

Tv < Tw and is called anti tone, if from v ~ w, it follm'ls that Tv > Tw 

for all v,w € D. 

The following theorem is due to Collatz [12]: 

Theorem 3.2.3. In the equation 

u = Tu + r = Tu . . . . . . . . (10) 

· h R we suppose, that T has the form 1n a partially ordered Banac space 



T1 + T2 where T1 is syntone and T2 is antitone, and that r
1
,r

2 
are 

rontinuous and defined in a convex doma1·n o of R. Let the iteration 
procedure 

v = T 1v + T2w + r n+l n n 

w n+l = T1w + T2v + r n n 

(n = 0,1,2, .... ) 

start with elements v , w E D with 
0 0 

v < v 1 < w1 < w 
0- - - 0 

If T maps the interval M = [v ,w ] 
n n n 

. . . . . . . . . . . (11) 

. . • • . • • . . • • • (12) 

for some n > 0 into a 

relatively compact set, then there exists at least one element u f M 
n 

with u = Tu. 

It is quite elementary that T maps M 
n 

the set of all elements z with v < z < w ) 
n n· 

M :JM 1 ::>TM n n+ n 

(n = 0, 1 , 2 , .... ) 

into itself; (M 
n 

is 

one has 

. . . . . . . . . . (13) 
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The existence Qf a fixpoint is given by Schauder's theorem. The condi tion 

of compactness i s often satisfied for integral operators . 

Example3.2.4. (BasicExample): Let A= (ajk) (j,k=l, ... ,n) be a 

matrix with real elements In the case a.k > 0 is 
J -

A syntone, for 

a .k < 0 is A antitone; but every real matrix A is monotonically 
J -

decompos ible: A = A1 + A2 with A1 syntone , A2 antitone. Let 

be the matrix of the absolute modules of el ement s aj k ' 

one can choose 2A1 = A + A , 2A2 = A - A. 

then 



In the same ~ay, every real kernel K(x,t) can be written as 

K(x,t) = K1(x,t) + Kz(x,t) with K1 ~ 0, K2 ~ 0. Then the operator 

Tju = JKj(x,t)u(t)dt 

B 
is syntone for j = 1 and antitone for j = 2. 

Every Hammerstein-operator of the form 

f(x) + J K(x,t)~(u(t))dt 
B 

(14) 

(15) 

with real K and a function ~ of bounded variation is monotonically 

decomposible. ~(z) can be written as ~(z) = ~ 1 (z) +~2 (z) with 

monotone, non-decreasing ~ 1 and monotone, non-increasing ~ 2 . 

Then the operator 

Tu = J K(x,t)~(u(t))dt = T1u +Tzu 

B 

with T1u = J [K 1 ~ 1 (u) + K2~ 2 (u)]dt 
B 

and T2u = J [K 1~2 (u) + K2$ 1 (u)]dt 
B 

is monotonically decomposible. 

(16) 

Example 3.2.5. (Numerical Example): Consider the problem of solving the 

Hammerstein-Equation 

u(x) = 1 + rlx- tl [u(t) -} u2 (t)]dt . . . . . . . . . (17) 
0 
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In the range u(x) ~ 0, 

Tlv = f1
1x- tlv(t)dt is syntone, and 

0 

T2v =-; f
1

lx- tlv2(t)dt is antitone. 
0 

Here v = o. w = 2 give 
0 0 

1 

2 

1 

with (11). VI = 1 - J lx -
1 

tl2. 4dt = 2(x- x2), 
0 

Fig. 1 

wl = 2 (I - x + x2) 

and (12) is satisfied, see Fig. 1, and a solution u(x) exists with 

v1 ~ u ~ w1 . 

Example 3.2.6. The following example shows the direct applicability of 

Schauder's theorem. In the determination of the stationary temperature 

distribution in the presence of chemical reactions, we are faced with 

the boundary value problem (r2 = x2 + y2 ) 

B (r < 1) 

u = 1 on the boundary aB of B(r = 1) 

We consider first functions u 
0 

The trial solution 

yields 

u
1 

= 1 + b(l - r2) + c(l - r4) 

a exp(u ) = 4b + (16c - l)r2 
0 

which satisfy 

(18) 

The condition u = 1 
0 

for r = 1 requires that c = i6 (1 + ae) - j b 
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. · 

It turns out that (this was done by computer) 

u (r; · 0. 64) = w 
0 . 0 u 1 (r;. 0.64) .- w1 

satisfy the condition (12), see Fig; 2. Thus the ~n?lusion v1 ~ u ~ w1 

holds; the greatest deviation between v1 and w1 occurs at the origin 

where we find 

v 1 = 1.552,446 ~ u ~ w1 = 1.627,446. 

Cases where the contraction theorem fails. The ap~lication of Banach 

contraction principle is sometimes met with difficulties, since a suitable 

Lipschitz constant has to be found; there are also cases where suitable 

starting elements of Schauder's theorem are difficult to find. Examples 

are easily given where the contraction principle theorem does not apply 

at all, but Schauder's theorem does; for example, the boundary value 

problem 

y" = f(x,y) y(O) = Yo y(l) = Y1 . . . . . . . . . (19) 

can be written in the form y = Ty by introducing. a Green's function 

G (x,s) 
\ 

0.1 ~z o.J 0.4 as ao 
x -

Fig. 2. 

', 

·' 
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1 

Tz(x) = g(x) + J G(x,s)f(s,z(s))ds . . • • • . . . . • • . • • (20) 

0 

where g(x) is a given function. If f(x,z) for fixed x, is monotone 

in z, but of/az is unbounded, then there is no finite Lipschitz 

constant and the contraction theorem is not applicable whereas Schauder's 

theorem may be. A simple example for this case is the following problem: 

-y" = X + .;y y(O) = 0 y (1) = 1 (21) 

It is easy to find functions v
0

,v1 ,w
0

,w 1 which satisfy condition (12) 

and all of which satisfy the boundary condithms and 

-v" 1 = x + rv 
0 

-w" 1 = x+IW"" 
0 

(the positive square root not to be taken); for example, 

w = (2/X - x)
2 

• 
0 

Since all the assumptions of Schauder's theorem are satisfied by these 

fwtctions, the following inequality holds for some solution of (21): 

3.3. Application of Densifying Mappings 

In this section we study the question of the existence of the 

solutions of the following equation of neutral type: 

x' (t) = f[t, x(t), x(t- h1(t)), x'(t- h2 (t))]. . . (22) 

If the function f(t,x,y,z) satisfies a Lipschitz condition in the 

variables x,y and z, with constants kx' ky and kz ' respectively, 

with k < 1, then, under minor additional assumptions, the question of 
z 

the existence of the solution is easily reduced to the contraction mapping 

principle. 



Here we shall dispense with the Lipschitz condition in the variable x 

and y. To prove the existence theorem in this case we shall apply 

the fixed point principle for densifying operators due to Furi & 

Vignoli [22] (see Theorem 1.2.48). 

We shall consider (22) in conjunction with the initial condition 
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x(t) = x
0

(t) (-h < t ~0) • (2 3) 

where x
0

(t) is a fixed function defined on the (finite or infinite) 

semi-interval (-h,O]. By a solution of the problem (22)-(23) we shall 

mean a function x(t) (-h < t ~ H] that satisfies the initial condition 

(23) and the following three r~quirements: 

(a) x(t) is continuous on (-h,H]; 

(b) x' (t) exists almost everywhere on (-h,H] 
th and is p-- power integrable, 

p ~ 1; 

(c) almost everywhere on [O,H] 

x' (t) = f[t, x(t), x(t- h1 (t)), x'(t- h2 (t))]. 

We shall denote by E(O,H) the set of continuous functions on [O,H] 

having a derivative that is ~power integrable; this set becomes a 

Banach space with the natural linear operations if we put 

II x II E = II x II c + II X' II a (see [ 1 ]) · For any 
p 

f · ( ) r x (0 H) here X is a Banach space, we put unct1.on x t ~::. , , w 

"' (xo (t) 
x(t) = l x(t) 

-h < t < 0 

0 < t < H. 

Problem (22) -(23) we consider the followi ng operator Together with the 

equation in the space E(O,H): 
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y = Iy , . . . . . . . . . . . . . . . . (24) 

where the operator I is defined by the formula 

Iy(t) = x
0 

+ Jt f[s,y(s) , y(s- h 1(s)) , y'(s- h 2 (s))]ds 

0 

(x
0 

= x
0 

(0)) . 

It is not difficult to verify that if the function x
0

(t) is continuous 

d . t d . . . th . an 1 s er1vat1ve 1s p-- power 1ntegrable, then the equation (24) is 

equivalent to the problem (22)-(23) in the following sense: if x(t) 

is a solution of the problem (22)-(23) then its restriction y(t) to 

the segment [O,H] is a solution of the equation (24) and, conversely 

if y(t) 
'\, 

is a solution of the equation (24) then the function x(t) = y(t) 

is a solution of the problem (22)-(23). 

The following lemma due to Badoev & Sadovskii [1 ] gives some 

properties of the operator I. 

Lemma 3 . 3 . 1. Let E be the set of functions in E(O,H) that satisfy 
0 

the condition x(O) = x
0

. Suppose that the functions x0 (t), h1(t) 

and f(t,x,y,z) satisfy the following requirements: 

(I) X (t) 
0 

is continuous and bounded and 

rable on (-H,O]; 

X 1 (t) 
0 

th is p-- power integ-

(II) -H + t < h. (t) < h + t (i = 1,2 ; 0 ~ t ~H); 
- 1 

(III) h1 (t) and h2 (t) are measurable on [O,H]: 

(IV) the function q(t) = t - h2 (t) is such that 

(a) the inverse image of every set of measure zero is measurable, 

\ , ... 
.. ~. ~·.:J 
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(b) for any .measurable subset Me [O,H] satisfy the condition 

q (M) C. [0, H], we have the inequality llM 2. rllq (M) (where 

the number r does not depend on M); 

(V) f(t,x,y,z) is defined for 0 < t < H and all real x,y and z; 

(VI) f(t,x,y,z) is measurable in t for any fixed x,y and z; 

(VII) f(t,x,y,z) is measurable in the pair x,y for fixed t and z; 

(VIII) f(t,x,y,z) satisfies a Lipschitz condition in z : 

(IX) for any R > 0 we can find a function mR(T) E Lp(O,H) such that 

Then the operator I is continuous from E0 into E0 

Our next task is the construction of the set K that appears in 

Theorem 1.2.48. We fix R > 0 (so that, when -h < t 2_ 0, we have the 

inequality jx
0

(t) - x
0

1 2. R) and let K1 denote the set of functions 

in E
0 

that satisfy the inequality llx- x
0

IIE 2_R. We choose H > 0 

to be so small that the following inequality holds: 

Then IK1 ~ K1 Indeed, 

II Ix 

H 
2. J jf[s,x(s), ~(s- h 1 (s)), ~· (s- h2 (s))] ds 

0 

2. R. 

\ ; :'; 
'""" _:>· 



The set K1 is convex closed and bounded, but the operator I is not 

densifying on this set, in general. We put K IK h =co l• were co 

denotes the convex closure. It is not difficult to see that the set K 

is also convex, closed and bounded, with IK ~ K. 

The following lemma is due to Badoev & Sadovskii [ 1]: 

Lemma 3.3.2. Suppose that the conditions of Lemma 3.3.1 are satisfied. 

Suppose in addition that the following condition is satisfied: 

1 

r~· 
if p > 1' 

(*) . . . . krP < 

2' if p = 1. 
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Then the operator I is densifying on K, if H is sufficiently small. 

From Lemma 3.3.1 and 3.3.2 and Theorem 1.2.48 we obtain the following 

result due to Badoev & Sadovskii [ 1] on the solvability of the problem 

(22)- (23) . 

Theorem 3.3.3. Let the functions x
0

(t), h1(t), hz(t) and f(t,x,y,z) 

satisfy the conditions (I)-(IX) and (*). Then the problem (22)-(23) has 

a solution x(t) that is defined on some semi-interval (-h,H] (H > 0). 

3.4. Application of Quasibounded Mappings 

We consider nonlinear integral equation of the form 

x(t) = w(t) +" rF(t,s,x(s))ds +A tG(t,s,x(s))ds · • · · • · • (25) 
a a 

where A and ~ are real parameters , a and b are finite numbers, and 

the functions F,G and w satisfy certain conditions to be specified 



later. Clearly, the usual nonlinear Volterra equation and the Urysohn 

equation are special cases of (25). Integral equations of the form (25) 

arise in a number of problems in ordinary differential equations, in 

particular, certain classes of singular perturbation problems. One can 

consider equation (25) in the operator form x = Tx. However, it turns 

out that the applicability of the method of successive approximations 

directly to (25) as well as general existence theorems for fixed points 

of T is rather limited. See Willet [55] for an example and further 

discussions of this point. 
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The purpose of this section is to obtain some existence theorems for 

integral equations of the Volterra-Hammerstein and the Volterra-Urysohn 

type in the function spaces L2[a,b] and c[a,b] using the fixed point 

theorems established in Section 2.1. Similar results can be obtained in 

other function spaces, e.g. Lp, imposing appropriate conditions which 

ensure the complete continuity, quasiboundedness and other properties 

of the operators under consideration. For the sake of simplicity, we 

confine ourselves to conditions which seem useful in practice and do not 

attempt to impose the weakest possible ones. The extension of our results 

to system of equations, to integral operators where the integration is over 

some measurable subset in f?. n, as well as to the case when x is a 

function of t with values in some Banach space requires minor modific-

at ion. 

3.4.1. An Existence Theorem for the Volterra-Hammt:l·stein 

Equation in L2[a,b]. 

We consider here a special case of (25) in the following form: 

\ . 
' >c 



x(t) = w(t) + p Jtv(t,s)x(s)ds + A Jbk(t,s)g(s,x(s))ds 

a a 

where we assume the following conditions on V, k and g: 

(Al) k(t,s) is measurable in both t and s and satisfies 

I lkl 1
2 = Jb Jbk2 (t,s)dtds < ~ 

a a 

(A2) g(s,u) is continuous in u, measurable in s, and satisfies 

lg(s,u) - ul 

for and 

n 1-B. 
2. I g. cs l I u I 1 

• g cs l 
i=l 1 0 

-~ < u < oo , whet·e g E:. L2 and 
0 

0 2, Bi < 1, for i = 1, 2, ... , n . 

g. E L2 / , 
1 e. 

1 

(A3) V(t,s) is measurable in both t and s, and satisfies 

2 Jb Jt IIVII = V2 (t,s)dsdt < "" . . . . . . . . . . . . 
a a 

The following result is due to Nashed & Wong (34] : 
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(26) 

(27) 

Theorem 3.4.2. Under the assumption (Al)-(A3), the integral equation (26) 

has a solution x E L2 [a,b] for each wE L2 and each pair of real 

numbers p and A with I A I < II~ II 

Proof. Define the operators V,H,T in the space w2 [a,b] as follows: 

Vx = Jtv(t,s)x(s)ds , 
a 

Hx = Jbk(t,s)g(s,x(s))ds , 
a 

Tx = w + JJVX. 
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It is well known -- · under assumption (A3) that for each 

~. the Volterra equation x = ~Vx has only the trivi~l solution. 

Using this fact and the Fredholm theory, it may then be shown that the 

Neumann series fir the inhomogeneous Volterra equation x = w + ~Vx is 

convergent in the mean for any ~ and for each w ( L2 if and only if 

the kernel V(t,x) satisfies assumption (A3). Since V is bounded, it 

follows from the theory of resolvents that ~)e-~adius of 

the Neumann series is equal to ~~: I IVnl I~ . Thus, 

convergence of 

in this case 

we have 

. . . . . . . . . . . . . . (28). 
J}-+00 

and Ku(t) = Jbk(t,s)u(s)ds ; 
a 

Denote Nu(t) = g(t,u(t)) 

thus H = KN. Under assumptions (Al) and (A2), it is known that N is 

continuous and bounded and K is completely continuous on Lz, from 

which it follows that H is completely continuous. 

here II II denotes the Lz norm unless otherwise specified. Thus the 

operator H is quas i bounded with quas i nor m . )HI = I IKI I· For given A 

wi th h n So l arge in (28) such that , we may c oose 
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Now that the assumptions of Theorem 2.1.8 are all realized, the conclusion 

follows immediately. 

Remark 3. 4 . 3. Consider (25) with G(t,s,x(s)) = 0 and F(t,s,x(s)) 

satisfies the following condition: 

jF(t,s,x(s)) - F(t,s,y(s))j ~ V(t,x)jx(s) - y(s)j 

for all t,s and x in their respective domains of definition. If we 

assume that the Lipschitz constant V(t,s) satisfies instead of (27) 

the following stronger condition: 

then a simple induction yields 

llvnu - v"vll ~ lulnM" ((b ~~ a)n )"'11u - vii , 

where V is the operator defined by the right-hand side of (25). Conse­

quently, the operator Vn for sufficiently large n becomes a contraction 

and the existence of a unique solution of (25) in this case follows from 

the classical contraction mapping principle. 

3.4.4. An Existence Theorem for the Volterra-Urysohn Equation in the 

Space c[a,b]. 

Here we consider the existence of solution of the nonlinear Volterra-

Urysohn equation (25) under the following assumptions: 

(Bl) F(t,s,x(s)) satisfies the Lipschitz condition: 

jF(t,s,x(s))- F(t,s,y(s))j ~a(s)jx(s)- y(s)j ...... (29) 

for some integrable function a on [a,b]. 



(B2) G(t,s,x(s)) is such that the Urysohn operator U defined by 

Ux(t) = JbG(t,s,x(s))ds, 
a 

maps the space C[a,b] into itself, is completely continuous and quasi-

bounded (see Remark 3.4.6). 

The following theorem is due to Nashed & Wong [34]: 
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Theorem 3.4.5. Under the assumptions (Bl) and (B2), if for some positive 

number n > 1~1 , 

hl (30) 
n 

then equation (25) has a solution in C[a,b]. 

Proof. Define a new norm on C [a,b] by 

(31) 

where n is a positive number, n > 1~1 and satisfies (30). Clearly the 

norm N(x) is equivalent to the sup norm llxll = sup lx(t) I 
a<t<b 

Let Tx = w + ~ JtF(t,s,x(s))ds. Using the defini tion of T, (29) and 
a 

(31) we obtain the following estimate: 

ITx(t) - Ty(t)l 2. 1~1 fna(s) (!x(s)- y(s)lexp 
a 

G nJ:a(<) J d<) exp 

f J: a ( T) d <] ds 

~ hl N(x -
- n 

y) ( exp [n J:a(<)d•J - 1} , 
from which we have 

·' ,.j ):;' 



N(Tx- Ty) ~ 1;1 N(x- y), 

i.e., T is a contraction with respect to the new norm N(x). We 

complete the proof by applying Theorem 2.1.6 to the space C[a,b] with 

the norm N(x). From (31) and Definition 2.1.1, we have 

= inf 
O<p<co 

sup 
llxll~ 

Since A,~.n satisfy (30), so 

follows immediately. 

N(Ux) 
N(x) 

IAUI < 1 - hl N n and the theorem 
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Remark 3.4.6. Conditions guaranteeing complete continuity of the Urysohn 

and Harnmerstein operators in L2 and C[a,b] may be found in Krasnoselskii 

[30], [31]. 

Remark 3.4.7. Theorems 2.2.13 and 2.2.17 can be applied to obtain 

existence theorems for mixed nonlinear integral equations of Urysohn-

Volterra and Hamrnerstein-Volterra types in locally convex topological 

vector spaces in the similar way as done in this section. 

3.5. Application to Stability of Fixed Points 

and Solutions of Nonlinear Operator Equations 

In this section we study the stability of fixed poi nts and solutions 

where we apply some fixed point theorems already proved in Section 2.2. 

All throughout this section X denotes a Hausdorff locally convex topological 

vector space and P be a family of seminorms that definesthe topology of X. 
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Let K be a collection of continuous maps on X whose domains are 

such that if A €. K, x
0 
~ domain of Ao' then sp (xo ,r) c domain of 0 

A for r sufficiently small. Let T be a topology on K. Suppose 0 

A €. K, y E: X and A X = y • 0 0 0 0 0 

Definition 3.5.1. The solution xo of Au 
0 = Yo is called p-stable with 

respect to (K, 1) if for each r > 0 there exist d > 0 and a neighbour-

hood n of A such that for all y t. s (y ,d) and Al:..n • there exists 0 p 0 

an such that Ax = y. The solution x 
0 

is said to be a 

stable solution with respect to (K, 1) if it is p-stable solution for 

every p €. P. 

For A E K, (x
0

,A,r) will be called a p-admissible triple if 

S (x ,r) is contained in the domain of A. p 0 

Let K be the class of all continuous maps B from open subsets of 
p 

X into X which are such that I - B is p- completely continuous. If 

(x ,B ~) is a p-admissible triple and 
o o' 

b > 0, then nU(x ,B ,r,p,b) 
0 0 

will denote the collection of all 

p-admissible triple and P (Bx - B x) < b 
0 -

such that (x ,B,r) 
0 

for all x E. S (x , r). 
p 0 

is a 

Let 

T be the topology on K generated by taking the collection of all 
p p 

such nu as a subbase. 

Now define 

and 

~ (x ,T,r) = r-1sup{p(Tx- Tx
0
)jp(x- x

0
) = r} 

p 0 

n (x , T) 
p 0 

= inf{rj~ (x ,T,r) < 1}. p 0 

h 1 K Can be reduced to consideration Note that stability for t e c ass 

of equations of the form A X = 
0 

8. 



The above definitions are due to Cain & Nashed [8 ]. The following 

result is also due to Cain & Nashed [8 ]. 
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Theorem 3.5.2. Let B0 € Kp and suppose B0 x0 = 6 . If n (x ,I - B ) = o, 
p 0 0 

then is a p-stable solution of B
0

x = 6 with respect to (K , T ) • 
p p 

Proof. Let e > 0 be given. There is an r, 0 < r < e, such that 

R = ~ (x ,I - B r) < 1. 
p o o' Let a and d be positive numbers such that 

a + d < (1 - R)r. Let and 

the mapping F on Sp(x
0
,r) defined by Fx = x - Bx + y. 

Clearly F is p-completely continuous since B € K • 
p 

Consider 

If F maps 

aSP(xo,r) into Sp(xo,r), then by Theorem 2.2. 7 it has a fixed point 

x ~ Sp(x
0
,r). 

the theorem. 

Then Bx = y, with x E S (x , r) C. S (x ,e), which proves p 0 p 0 

indeed maps as (x ,r) into s (x ,r): p 0 p 0 
Now we show that F 

and p(x - B x - x ) < ~ (x ,I 
0 0 - p 0 

B ,r)r = Rr. 
0 

Hence p(Fx - x ) < Rr + a+ d < Rr + r - Rr = r. 
0 -

If KC is the class of all continuous operators B from open subsets 

of X into X which are such that (I - B) is completely continuous, and 

if TC is the topology of KC generated by taking as a subbase the sets 

~U(x ,B ,r,p,b) for all p € P, then we have the following result due 
0 0 

to Cain & Nashed [8]: 

for every p E P, is a stable solution of B X = 6 
0 

with respect 



We next turn our attention to the question of stability of sums of 

operators. 
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If X
0 

£ X, A
0 

is a continuous operator, and U e U, then we shall 

say (x ,A ,U) 
0 0 

is an admissible triple if x
0 

+ Oc domain A
0

. (Recall 

th~ : U is the neighbourhood system of the origin obtained from P). Let 

C1 be the collection of all continuous operators A which are such that 

(I - A) is a p-contraction for every p € P. (Hereafter called simply 

a contraction). For A in c1 , p ~ P, a and b real numbers, and 
0 

(x
0

,A
0

,U) an admissible triple, we define n1 (x
0

,A
0

,U,p,a,b) to be the 

collection of all A in c1 such that 

(i) (x
0

,A,U) is an admissible triple, 

(ii) p({A - A
0

)x - (A - A
0

)x
0

) ~ bp(x - x
0

) for all x E x
0 

+ 0, 

(iii) p(Ax - A x ) < a. 
0 0 0 -

We define T1 to be the topology on C1 obtained by taking all such nl 

as a subbase. 

Let c
2 

be the collection of all continuous operators B which are 

such that (I - B) 

r a real number, 

contained has its rangeA1n a compact set. For B ~ C2 , p e P, 
0 

(x ,B ,U) an admissible triple , we define 
0 0 

n ( B u ) to be the collection of all B € C2 such that .. 2 x , , ,p,r 
0 0 

(i) (x
0

,B,U) is an admi ssible triple, and 

(ii) p(Bx - Bx ) < r for all X E x
0 

+ 0. 
0 

We define Tz to be the topology on Cz wi th all s uch nz as a subbase . 

Next let C = c1 x c2 be the cartesian product of C1 and Cz 

d t 1 T T X T Suppose K
0 

is an endowed with the pro uct opo ogy = 1 2 · 
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operator such that I - K = S + T for 
0 0 0 

Our next definition is also due to Cain & Nashed [8 ]. 

Definition 3.5.4. The solution of K u = y 
0 0 is called stabl e with 

respect to (C, T) if for each U t U, there is a neighbourhood n of 

(I s o' I - T ) 
0 

and a WE U such that for all y E. y
0 

+ W and 

(I - s, I - T) E n, there exists an x Ex + U so that Kx = y, where 
0 

I - K = s + T. 

Recall the definition of R (x ,T T) 
p 0 OT 

and 

ion 2.2.4. For p E P define 

a (x , T ) = inf {a I 0 E Q (x , T .a)} p 0 0 p 0 ~ 

The following result is also due to Cain & Nashed[8 ]: 

from Definit-

Theorem 3.5.5. Let X be complete. Suppose K x = Yo' 0 0 
where 

I - K = s + T for (I - s o' I - T ) in c. If ~p + a < 1 for every 
0 0 0 0 p 

P E P, then X 
0 

is a stable solution with respect to (C' T). ( vp is p-

contraction constant of s and 
0 

a - a (x , T ) ) . p p 0 0 

Proof. Once again we shall, without loss of generality, take Y = e . 
0 

Let 
n 

U = n r. V (p. ) G U 
1 1 1 

be given. (ref . the obser vation made after the Definiti on 

2.2.1). For each 

and 

i = 1,2, ... , n, 

0 ~ Q. (x ,T , r;; .), 
1 0 0 1 

there is a r;;. > 0 
1 

where v. denotes 
1 

such that 

etc. Choose 

th t R ( T S ) < r Now choose positive constants a1., s . < r. so a . x , , . ., .. 
1 1 1 0 0 1 1 

b. ,c. ,d., for each i = 1,2, ... , n, so that 
1 1 1 

b.s. + a. + 2c . + d. < (1 - r;; . - v.)s
1 
. . 

1 1 1 1 1 1 1 

, 
' . •. '>< 



Let 

and 

Also let 

n 
B =I-T €. n n2 (x

0
,I- T ,U,p.,c.), 

1 0 ~ ~ 

n 
s ~n n1 (x

0
,I- s ,u,p.,a.,b .) . 

1 0 ~ ~ ~ 
A = I 

n 
w = n di v (pi). 

1 

Suppose y € w and consider Sx + Tz + y for all 
n 

X and z in 

xo + U*, where U* = n s. v (p.). 
~ l 

We shall show that Sx + Tz +y€ 
1 

Sx + Tz + y - X = Sx + 
0 

Tz + y S X - T X 
0 0 0 0 

= (Sx - S x ) + (Tz - T X ) + y 
0 0 0 0 

= (A - A )x - (A - A )x + S x - S x + (A - A )x 
0 0 0 0 0 0 0 0 

+ (Tz - T z) + (T x - Tx ) + (T z - T X ) + y 
0 00 0 0 00 

where A
0 

=I- S
0

• Now for each i = 1,2, ... , n, we have 

p
1
. (Sx + Tz + y - x ) < p. ((A - A )x - (A - A )x ) + p1. (S0 x - S0 x0 ) 

0 - l 0 0 0 

So, for every x, 

by Theorem 2. 2 .14, 

sx + Tx + Y = -
X or 

< b. p. (x - x ) + v. p. (x - x ) + a; + c1. + c1. - ll 0 ll 0 ... 

.::. ( 1 

+ R. (x ,T ,s.)s. + p
1
. (y) 

l 0 0 l l 

l;. - \). ) s. + ( \), + l;. ) s. = s .. 
l l l l ~ 1 l 

Z €. X + U*, we have Sx + Tz + y ~ X + U*; 
0 

0 

there is a point xE. X + U* so that 
0 

Kx = Y, where I - K = s + T. 

thus 
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X 
0 

+ U*: 

-' . . :~ 
'~ 



Remark 3. 5 .6. If we take T
0 

= 0 in Theorem 3.5.5, we get a stability 

theorem for the fi: :ed point of a contraction mapping on a complete 
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locally convex Hausdorff topological vector space X. We note, however, 

that it is possible to formulate other notions of "contraction'J for which 

the fixed point is not necessarily stable. Let W
0 

be an open neighbour­

hood of e EX, x
0 

€ X and W = x
0 

+ W
0

• Let F W +X. We say that 

F is a weak contraction if there exists a convex, closed and bounded 

V C W
0 

such that x,y € W and y - x E "AV imply F(y) - F(x) € "A ·a V 

for some 0 < a < 1. Let F be a weak contraction on W into X, and 

F(x
0

) - x
0 

€ (1 - a)V. Then there exists a unique fixed point x of F, 

x E x
0 

+ V. However, this fixed point is obvi~u~ly not necessarily stable. 

We now obtain as an application of Theorem 2.2.14, a sufficient 

condition for a mapping to be open, which generalizes conditions given in 

Reichback [41], [42], Kasriel & Nashed [26]. 

Recall that a mapping F X+Y is open at a point y E F (x) 
0 

if 

y
0 

is an interior point of F(X); that is; if there is a neighbourhood 

N of such that N C F (X). It follows easily from Definition 3.5.4 

that if Ku = y has a stable solution with respect to (C,T), then K 
0 

is open at y . 
0 

we can, however, find much weaker conditions which insure 

that K is open at y • 
0 

To this end, define 

~ (x ,T) = inf {aiQ (x ,T,a) f ~} 
p 0 p 0 

and suppose K is as defined earlier in this section, 

for (I - S, I - T) in C. 

i.e. 

The following result is given by Cain & Nashed [8 ]: 

I-K=S+T 



Theorem 3.5.7. Assume X is complete. If Kx o = Yo and for some 
p ~ p it is true that \) + 4>p < 1, then K is open at y . p 0 

Proof. We may without loss of generality, take y = 6 Choose 
0 

. l; so 

~ (x
0

,T ,t;) =f 4> 

d < (1 - t; - v )s. 
p 

that and v p + z:; < 1 . Let 

We shall now show that 

s € Qp(x
0

,T,z:;) and choose 

Sp(e,d) is contained in the 

range of K. 

and consider p(Sx + Ty + u - x ) 
0 

p(Sx + Ty + u - x ) = p(Sx + Ty + u - Sx - Tx ) 
0 0 0 

< v s + z:;s + d < s . 
- p 

for x and y 

Thus, by Theorem 2.2.14, there is an i ~ Sp(x
0

,s) such that 

Sx + Tx + u = x, which proves the theorem. 

An immediate application of this result is the following theorem due 

to Cain & Nashed [ 8] giving sufficient conditions for certain operators 

to be onto maps. 

Theorem 3.5.8. Let 8 : X ~ X be a continuous operator such that T(X) 
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is contained in a compact set, where T = I - B. Suppose for each x ~ X, 

there is a p € P such that 4>p(x,T) < 1. Then the range of B is X. 

Proof. B is open at each point of B(X) from the previous theorem, so 

B(X) is an open subset of X. We shall show that B(X) is also a closed 

subset of X, and hence B(X) must be all of the connected space X. 

\ . 
'-,;. 



To show B(X) is closed. let x be an accumulation point of B(X) 

and let be a net in B(X) such that -y -+ x. 
a Let xa be such 

108. 

that Bxa = Ya· Then {Txa} has a convergent subset, say {Tx'a}. Since 

Bx' = x' - Tx' a a a' and {Bx'a} and {Tx'a} converge, we then know that 

{x' } converges. But Bx' ~ x, so x€ B(X). Thus B(X) is closed, 
a a 

and the theorem is proved. 

-~ . ·' 
-~ 
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