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ABSTRACT

Chapter I contains some necessary preliminaries which may be found
in most functional analysis texts. Also some fixed point theorems
including those of Schauder [46]}, Furi § Vignoli [22], Swaminathan §
Thompson [51], Nussbaum [36] and Petryshyn [37] are given in this

chapter.

Chapter II deals with the study of quasibounded mappings and their
fixed points. A systematic and up to date summary of known results is

given in this chapter. Also some of the known results have been extended.

In Chapter III some applications of the fixed point theorems are

illustrated by taking suitable examples.
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INTRODUCTION

Existence theorems in analysis first appeared in the ninteenth
century and since then have received much attention. These theorems
were considered for some time by mathematicians such as Cauchy, Picard,
Birkoff and Kellogg. Then in 1922, S. Banach [ 2] formulated his
classical theorem, commonly called the Banach Contraction Principle,

5 which is based on a geometric interpretation of Picard's method of

successive approximations, it reads as follows:

"A contraction mapping of a complete metric space into itself has

a unqiue fixed point'".

Because of its usefulness, the contraction mapping principle has
motivated a great deal of research in the existence and uniqueness
theorems of differential equations, partial differential equations,

integral equations, random differential equations, etc.

In Chapter I, we have given a brief survey of the fixed point theorems
proven for contraction, contractive and nonexpansive mappings in metric
spaces. In the later portion of the chapter we have given some fixed
point theorems for k-set-contraction, densifying and l-set-contraction
mappings. Some of these results are necessary in many proofs of the

thesis.

In Chapter IX, we have studied quasibounded mappings and their fixed
points. This mapping was first introduced by Granas [24] and we have

tried to give here a systematic and up to date summary of known results.




First section of this chapter is devoted to the existence of solutions of
nonlinear equations while some results for p-quasibounded mappings, intro-
duced by Cain & Nashed [8 ] are given in the second section. In the

same section we have also obtained solutions of equations for p-quasi-

bounded mappings which generalize the results due to Granas [24], Vignoli
[52] and Nashed & Wong [34]. Some intersection theorems for quasibounded
mappings have been given in the third section while in the fourth section

we have added some further results for these mappings.

In Chapter III, we have given some selected applications of fixed

point theorems established in the previous two chapters.




CHAPTER I

Preliminaries on Some Fixed Point Theorems

Our purpose in this chapter is to discuss some preliminary definitions

and some of the well-known fixed point theorems in metric and linear spaces.

1.1. Metric Spaces

Definition 1.1.1. Let X be a set and d be a function from X x X into

R+ such that for every x,y,z€ X we have:

(i) d(x,y) > 0,
(ii) d(x,y)
(iii) d(x,y)

(iv) d(x,y)

0 <=>x =y,

d(y,x) (symmetry),

| A

d(x,z) + d(z,y) (triangle inequality).

Then d 1is called a metric (or distance function) for X, and the pair

(X,d) 1is called a metric space.

When no confusion seems possible, we will refer to X as a metric space.

Definition 1.1.2. A sequence {xn} of points of a metric space X is said

to converge to a point X, if given ¢ > 0 there exists a natural number
N(e) such that d(xn, xo) < ¢ whenever n > N(e), or lim d(xn, xo) = 0.

N>
We denote this by X > X,

It can be easily verified that if x -+ x and X -+ y_ then x =y,
n o n 0 o o

i.e., a convergent sequence has a unique limit in a metric space.

Definition 1.1.3. A sequence {xn} of points of a metric space X 1is said

to be a Cauchy sequence, if for arbitrary e > 0 there exists a natural

number N(e) such that d(xn, xm) < ¢ for every n,m > N(e).




It follows directly from the triangle inequality that every convergent

sequence is Cauchy.

Definition 1.1.4, A metric space X 1is said to be complete if every Cauchy

sequence in X converges to a point in X.

Definition 1.1.5. Let T : X+ Y be a mapping of a metric space X into

a metric space Y. Then T is said to be continuous at a point xoé X
if given any ¢ > 0 there exists &6 > 0 such that d'(Tx, Txo) < ¢ when-
ever d(x, xo) < 8§, where d and d' are metrics in X and Y respect-

ively.

The mapping T is said to be continuous on X if it is continuous at

every point x & X.

Definition 1.1.6. Let A be a subset of a metric space X. Then A is

said to be bounded if there exists a positive number M such that

d(x,y) <M for every x,y € A.
If A 1is bounded, we define the diameter of A as
diam. (A) = sup{d(x,y)|x,y € A}
If A 1is not bounded, we write

diam. (A) = = .

Definition 1.1.7. A subset A of a metric space X 1is said to be totally

bounded if given e > 0 there exists a finite number of subsets A,, A,, ..., An
n

of X such that diam. (Ai) <g (i=1,2, ...,n) and A < A; .
i=1

Clearly, if a subset A of a metric space X is totally bounded then

it is bounded but the converse is not true. However, in ZR , bounded and




: ai-;’iy

totally bounded sets are equivalent.

An important and useful property of totally bounded sets is the

following. (e.g. see Goldberg [23]).

Theorem 1.1.8. A subset A of a metric space X 1is totally bounded if and

only if every sequence of points of A contains a Cauchy subsequence.

Definition 1.1.9. A metric space X 1is said to be compact if every open

covering of X has a finite subcovering.

Definition 1.1.10. Let T be a mapping of a set X into itself. A point

x€&€ X 1is called a fixed point of T if Tx = x, i.e., the fixed point is

a point that remains invariant under a mapping.

Definition 1.1.11. A mapping T of a metric space X into itself is said

to satisfy Lipschitz condition if there exists a real number k such that

d(Tx, Ty) < kd(x,y) for every x,y € X.
In particular, if 0 <k <1, T 1is said to be a contraction mapping.
A contraction mapping is always continuous.

Now we give the well-known '‘Principle of Contraction Mappings' formulated
by a famous Polish Mathematician S. Banach (1892-1945)[2 ] which is perhaps

the most elementary and by far the most fruitful method for mapping theorems

on existence and uniqueness of solutions of equations of various types.

Theorem 1.1.12. (Banach Contraction Principle): Every contraction mapping

T defined on a complete metric space X into itself has a unique fixed

point.




Proof. Let xoe X be an arbitrary point and let

X; = Tx0
= = T2
Xo = Txy =T X,
(1)
x = Tx = .= T
n n-1 o

We shall show that the sequence {xn} is a Cauchy sequence. From the

definition of a contraction mapping, we have

d(Tx, Ty) < kd(x,y) for every x,y€ X and 0 < k < 1.

Therefore, d(xn, xm) dCTxn_l, Txm_l)

| A

kd(xn—l’ xm—l)

2
<k d(xn-Z’ xm—Z)

<k ,x ), m>n
= o’ “m-n
ikn[d(xo’ xl) + d(x-l, X2) ..o # d(xm—n—l’

< KM, )L+ k + k2 + L4 -1y

* 1
< Kdlxg, x) (7=

>0 as n-»> « , since 0 < k < 1.

Hence {xn} is a Cauchy sequence.

Since X is complete, therefore 1lim X, exists.
N>

We set lim xn = X.
Nn->o

Then by the continuity of T we get,

Tx =T lim x = 1lim Tx_ = lim Xx = X.
n n n+l
n-o>o n+® nroe

X
m-n

)]




Thus the existence of a fixed point is proved.

We now show that this fixed point is unique. Let x and y be two
distinct fixed points of T,
i.e., Tx=x and Ty =y. (x §fy).
d(x,y).

kd (x,y).

Then d(Tx, Ty)

But d(Tx, Ty)

| A

Hence d(x,y) < kd(x,y).
i.e., 1 <k, which is a contradiction to the fact that k < 1.
This contradiction implies that x =y,

This proves that the fixed point is umique.

Remark 1.1.13. Besides showing that an equation of the form Tx = x has

a unique solution, the above theorem also gives a practical method for
finding the solution, i.e., calculation of the "successive approximations'"
(1). In fact, as shown in the proof, the approximations (1) actually
converge.to the solution of the equation Tx = x. For this reason, this

fixed point theorem is often called the method of successive approximations.

Remark 1.1.14. Both conditions of the above theorem are necessary:

(a) The mapping T : (0,1] - (0,1] defined by Tx = %- is a contraction
but has no fixed point. We note that the condition of completeness

of the space is violated in this case.

(b) The mapping T : ﬁ{ > ﬁ?, where ’ﬁ? denotes the set of real
numbers, defined by Tx = x + 1 is not a contraction and has no
fixed point although R is a complete metric space.

The following two worth mentioning theorems have been given by Chu and Diaz

[10].




Theorem 1.1.15. If T maps a complete metric space X into itself and if

n

T (n 1is a positive integer) is a contraction mapping in X, then T

has a unique fixed point.

Theorem 1.1.16. Let E be any nonempty set of elements and T be a map

of E into itself. If for some positive integer n, ™ has a unique

fixed point, then T also has a unique fixed point.

The above theorem has been improved, under different conditions, by

Chu and Diaz [11] as follows:

Theorem 1.1.17. Let T be a mapping defined on a nonempty set E into

itself, K be another function defined on X mapping it into itself such

that l(l("1 = I, where I is the identity function of X. Then T has a
unique fixed point if and only if K-lTK has a unique fixed point.

The following is an immediate corollary to the above theorem:

Corollary 1.1.18. Let X be a complete metric space, T : X =+ X and

K: X> X be such that KK = I, the identity function. If K 'TK is a

contraction in X, then T has a unique fixed point.

The proof of this corollary follows directly from the Theorem 1.1.17.

and Banach's fixed point theorem.

Definition 1.1.19. A mapping T of a metric space X into itself is said

to be contractive if d(Tx, Ty) < d(x,y) for every x,y € X, Xx + y.

Clearly a contractive map is continuous and if such a mapping has a
fixed point, then this fixed point is unique. However, a contractive mapping
of a complete metric space into itself need not have a fixed point, which

can be seen from the following example:




Let T :/R +JK be defined by Tx = x + -g- - arc tan x. Since
arc tan x < % for every x, the mapping T has no fixed point although

it is a contractive map, for T'x =1 - l_i—iz' < 1.

The following theorem due to Edelstein [16] states the sufficient

conditions for the existence of a fixed point for a contrzctive mapping.

Theorem 1.1.20. Let T be a contractive mapping of a metric space X into

itself and X € X be such that the sequence {Tn(xo)} has a subsequence
n,
{T 1(xo)} converging to a point z € X, then 2z is a unique fixed point

of T.

A simple proof of the above theorem based on the same lines as due to

Cheney & Goldstein [ 9] is given here.

Proof. Since T is contractive, hence continuous and we may write
+1 _ -1 n
d(Tnxo, ™ x,) = d(T ™ x5 T+ T'x.)

<d(M™x, Tx )

< d(xo, Txo).

Thus, {d(Tnxo, Tn+lxo)} is a decreasing sequence of real numbers bounded

below by zero, and therefore has a limit.

n,
Since (T 1(x0)} converges to z € X, therefore, the sequence
ni+1 ni+2
{T (xo)} converges to Tz and (T (xo)} converges to T2z.

n n, +1
Lim d(T “(x), T k

k-)-oo

]

Now if z ¢ Tz, d(z, Tz) (xo))

n
lim d(T k(xo), T T ()

k-Nn

By the continuity of T, we have
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n, +1 n, +2
limd(T ¥ (x), T ©

ko

d(z, Tz)

(x,))
"k M
= 1im d(T - T "(x), T2 - T “(x.))
k_)_m 0o [o]
= d(Tz, T2z),
a contradiction to the fact that T is contractive.

Hence Tz = z.

For uniqueness of z, let y ¢ z be another fixed point of T. Then

d(y,z) = d(Ty, Tz) < d(y,z), a contradiction.
Hence 2z 1is a unique fixed point of T.

The following corollary is due to Edelstein [16].

Corollary 1.1.21. If T is a contractive mapping of a metric space X into

a compact metric space Y € X, then T has a unique fixed point.

Definition 1.1.22, A mapping T of a metric space X into itself is said

to be nonexpansive if d(Tx, Ty) < d(x,y) for every x,y €X.

Cheney and Goldstein [9 ] proved the following theorem.

Theorem 1.1.23. Let T be a mapping of a metric space X into itself such

that
(1) d(Tx, Ty) <d(x,y)
(ii) if x $ Tx, then d(Tx, T2x) < d(x, Tx)
(iii) for each x, the sequence {Tn(x)} has a cluster point,

Then for each x, the sequence {Tn(x)} converges to a fixed point of T.

K.L. Singh [49] proved the above theorem by relaxing conditions (ii)

and (iii) and obtained a unique fixed point. We give this theorem below.
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Theorem 1.1.24. Let T be a mapping of a compact metric space X into

itself such that d(Tx, Ty) < d(x,y), equality holds only when x =y.

Then T has a unique fixed point.

Proof. The compactness of X and the condition d(Tx, Ty) < d(x,y) imply
that each x 1in XT generates an isometric sequence (Edelstein [17],
Theorem 1'). Therefore, by the definition of isometric sequence,

d(x, Tx) = d(Tx, T2x); but from the given condition we have

d(Tx, T2x) < d(x, Tx). This shows d(x, Tk) = 0, which implies

x =Tx, i.e., x 1is a fixed point of T.

To prove the uniqueness, let us assume that y is another pecint such
that y # x and y = Ty. Then d(Tx, Ty) = d(x,y) contradicting the
condition d(Tx, Ty) < d(x,y) wunless x =y. Thus X is a unique fixed

point.

1.2. Linear Spaces

Definition 1.2.1. Let X be a nonempty set, K a field (of real or

complex numbers). A structure of vector space (or linear space) on X is

defined by two maps:

(1) amap (x,y) » x+y from X x X into X, called addition,
(2) amap (a,x) » ax from K x X into X, called scalar multiplic-

ation,

These maps must satisfy the following axioms for every x,y,z €X and

for every o,8 € K:

(1) (x+y)+z=x+ (y + 2) {commutativity)
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(ii) x+y=y +x (associativity)
(iii) There exists an element O € X, called zero element, such that
X+ 0=x
(iv) For each x € X there exists -x, called opposite of x, such
that x + (-x) = 0.
(v) alx +y) =ax + ay

(vi) (@ + B)x

ax + Bx
(vii) oa(Bx) = (@B)x

(viii) 1x = x.

Remark 1.2.2. The elements of X are called 'points' or 'vectors' while

the numbers o, B, ... are often called 'scalars’.

Definition 1.2.3. A set X is said to be a topological vector space if

(i) X 1is a vector space over field K
(ii) X 1is a topological space
(iii) the map (x,y) = x +y from X x X into X is continuous

(iv) the map (a,x) = ax from K x X into X 1is continuous.

Definition 1.2.4. Given a vector space X, a seminormon X is a map

P: x %+~ p(x) from X into R which satisfies the following axioms

(i) p(x) > 0 for every x € X.
(ii) p(x +y) < p(x) + p(y) for every x,y &€ X (subadditivity).

(iii) p(ox) = |a|p(x) for every o € /R and for every x € X.

Definition 1.2.5. A set K 1in a vector space X 1is convex if for every

x,y €K and 0 <.« <1 we have ax + (1 - o)y € K. In other words, K 1is

convex if for a >0, 8> 0, o + B =1 we have ax + By € K for every

X,y € K.
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It can be easily seen that if K is convex in a vector space X

then K + x(x € X) and oK are also convex.

Definition 1.2.6. A topological vector space X is said to be locally

convex if every neighbourhood of 0 includes a convex neighbourhood of 0.

By this we mean a topological vector space in which every open set

containing 0 contains a convex open set containing 0.

Remark 1.2.7. The notion of seminorm is of fundamental importance in

discussing linear topological spaces. In fact, the seminorm of a vector
in a linear space gives a kind of length for the vector. To introduce a
topology in a linear spaée of infinite dimension suitable for application
to classical and modern analysis, it is sometimes necessary to make use of
a system of an infinite number of seminorms. It is one of the merits of
the Bourbaki group that they stressed the importance, in functional analysis
of locally convex topological vector spaces which are defined through a
system of seminorms satisfying the axiom of separation. If the system
reduces to a single seminorm, the corresponding linear space is called a

normed linear space.

Remark 1.2.8. It can be seen that the topology of a locally convex topolog-

ical vector space is given by a set of seminorms as follows:

Let U be a convex open set containing O. Then V = U N (-U) 1is also
a convex open set containing O. It is easy to see that for every xE€ X

there exists an a € ﬂ? such that x € aV. Moreover, X &€ aV <=> -x € aV.

Let p(x)

p(0)

sup{a|x ¢ aV, a>0} , if x % 0

0.

1
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It is now a routine matter to verify that p is a seminorm and the

sets

Up r = {x|p(x) < r} for every p and for every r > 0
H

obtained in this way, form a base for the topology in X at O.

Thus, in a locally convex topological vector space, the topology is
given by a system P; of seminorms. The requirement that for every x f 0
there is an open set K €CX such that 0 €K and x <,£. K 1is translated into

the requirement that for every x $# 0 we have p; (x) £ 0.

Definition 1.2.9. A topological space X is said to be Hausdorff if for

every two points x,y(x * y) of X there exists neighbourhoods U and

V respectively such that UNV = ¢ .

Remark 1.2.10. A locally convex topological vector space with the topology

described in Remark 1.2.8 is not in general Hausdorff.

Definition 1.2.11., In the Definition 1.2.4 if the condition (i) is replaced

by
(i*) p(x) > 0 for every x € X where p(x) = 0 <=> x =0 then
p is called a norm on X.
Definition 1.2.12. A linear space X, equipped with the norm p(x) = ||x]||,

is called a normed linear space. In this case we have

(i°) |] x || >0 for every x € X where ||x|]| =0 <= x =0
@i% |]x + yl] < [Ix|| + |lyl] for every x,y € X (triangle inequality)
(1ii®) ||ex|] = |a] ||x|| for every x € X and for every o .

It can be easily seen that every normed linear space X becomes a

metric space if we set d(x,y) = ||x - y|] .
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Definition 1.2.13. A coﬁplete normed linear space is called a Banach

space.

Definition 1.2.14. A mapping f of a vector space X into ﬂ? is called

a linear functional on X if

(1) fx+y) =£(x)+ £() (x,y € X)

(ii) £(ax) = af(x) (x€X, o€/

Definition 1.2.15. A functional f 1is said to be continuous if for any

e > 0 there exists & > 0 such that lf(xl) - f(xz)! < ¢ whenever

[1x1 - xp]] <6 -

Continuity and boundedness are equivalent.

Definition 1.2.16. A subset K of a normed space X 1is said to be

bounded if there exists a2 constant M such that |[x|] < M(x € K).

Definition 1.2,17. A linear operator f mapping a Banach space X into

itself is said to be completely continuous if

(i) f is continuous, and

(ii) it maps every bounded set into a relatively compact set.

Remark 1.2.18. If X 1is finite-dimensional then every linear operator is

completely continuous, while in an infinite-dimensional space, complete
continuity of an operator is a stronger requirement than merely being

continuous (i.e., bounded).

We now state the celebrated fixed point theorem of Brouwer the proof

of which may be found in Dunford § Schwartz [15].
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Theorem 1.2.19. (Brouwer's Fixed Point Theorem). A continuous map of a

ball in E" into itself has at least one fixed point.

Remark 1.2.20. The Brouwer fixed point theorem in the form stated above does

not hold in infinite dimensional spaces as the following example shows:

Consider the space 22 of sequences X = (X3,Xp, +¢+ )

with z|xi|2 < » . Define T as a map of the closed solid sphere into

itself as follows: For x = (X;,Xp, ....) let Tx = (V1 - [X]2 5 X15Xg, o)
ITxl2 = 1,

Suppose x is a fixed point. Then |x| = |[Tx| = 1. But then x; =0

and one sees in turn that x, = 0, x3 = 0, ...., and hence x = 0. There-

fore, T has no fixed point. This is due to S. Kakutani [35].

Schauder [46] extended Brouwer's theorem to infinite-dimensional spaces

in the following way:

Theorem 1.2.21. (Schauder's Fixed Point Theorem - 1st. form). A continuous

map of a compact convex set K in a normed linear space X into itself

has at least one fixed point.

Theorem 1.2.22. (Schauder's Fixed Point Theorem - 2nd. form). A completely

continuous map of closed convex set K in a complete normed linear space

X into itself has at least one fixed point.
The proofs of the above two theorems may be found in Nirenberg [35].

It has been shown by Tychonoff that the 1st. form of Schauder's fixed

point theorem holds if X is a locally convex topological vector space.




17. J

Theorem 1.2.23. (Schauder-Tychonoff Fixed Point Theorem). Let K be a

non-empty compact convex subset of a Hausdorff locally convex topological
vector space X, and let T be a continuous mapping of K into itself.

Then T has a fixed point in K.

The proof of the above theorem may be found in Bonsall [3 ].

Definition 1,2.24. A Banach space X is called uniformly convek if for

any ¢ > 0 there is a § > 0 such that if ||x|] = ||y|] =1 and

Hx -yl e then |[232 0] <1

Definition 1.2.25. A Banach space X 1is called strictly convex if for

any x,ye X, |[|x+vy]|=]|x]| * |ly]| = x=2y, a>o0.

Remark 1.2.26. Every uniformly convex Banach space is strictly convex. But

the converse is not true.

Definition 1.2.27. Let X be a Banach space and X* denote its first

dual space. For any fixed vector x € X, the mapping of X* into R
which assigns to every u € X* the value (u,k) of u at x is a

linear continuous functional in the space X*, 1i.e., an element of X*¥*,
Moreover the norm of this functional is equal to ||x||. Also the canonical
mapping of X into X* defined by this correspondence between elements

of X and linear continuous functional on X* is linear and one to one.

Therefore, it is an isometrical imbedding of X into X**.

Now, a Banach space is called reflexive if X = X**, i.e., the

canonical mapping of X into X** is onto.
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Remark 1.2.28. Every uniformly convex Banach space is reflexive.

Definition 1.2.29. A point X € KX is a diametral point of K if

§(K) = sup{||x - y|| |y e K}

where §(K) denotes the diameter of K.

Definition 1.2.30. A convex set K€ X 1is said to have a normal structure

if for each bounded convex subset H of K which contains more than one

point, there is some point x € H which is not a diametral point of H.

Remark 1.2.31. Every uniformly convek space X has a normal structure.

Definition 1.2.32. Let X be a vector space over K (real or complex).

A mapping of X x X into K which takes ordered pair {x,y} &€ X x X

into the number (x,y) € K is called an inner product in X if
1) x,y) = (v,x)
(1) (x+ vy, 2) = (x,2) + (¥,2)
(1i1)  (ex,y) = alx,y)

iv) (x,x) > 0 if x # 0.

A vector space X, together with an inner product in X, is called

an inner product space or pre-Hilbert space.

Definition 1.2.33. A Hilbert space is a pre-Hilbert space which is

complete w.r.t. the norm derived from the inner product. In this case the

i
norm and the inner product are related by ||x|]| = (x,x)™.

Remark 1.2.34. Every Hilbert space is relfexive.
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We now state without proof the following fixed point theorem due to

Browder [ 5]:

Theorem 1.2.35. Let X be a uniformly convex Banach space, T a non-

expansive mapping of the bounded closed convex subset K of X to itself.

Then T has a fixed point in K.

Remark 1.2.36. (i) If K 1is compact or T is completely continuous, it

becomes a particular case of the Schauder fixed point theorem.

(ii) If T 1is contraction, then the result follows from

the Banach contraction principle.

(iii) The following eﬁample shows that the result cannot be

extended to the general Banach spaces.

Let X = Co’ the space of sequences converging to 0, C the unit
ball in the maximum norm, e; the unit vector given by e, = (1,0,0,0, ...),

S(X) = (0,X],Xps +++)-

Then the mapping Tx = e; + s(x) maps C into itself, is non-expansive,

and has no fixed point in C.

Kirk [27] gave the following generalization of the above theorem:

Theorem 1.2.37. Let X be a reflexive Banach space and K a nonempty

bounded closed convex subset of X. Furthermore, suppose that K has normal
structure. Then a non-expansive mapping T of K into itself has a

fixed point.

In the following examples it has been shown that the restrictions on

K are necessary.




Example 1. (Boundedness of K). A translation in a Banach space is an

isometry and obviously has no fiied points.

Example 2. (Closedness of K). Let X ==ﬂ? be a Hilbert space. Let C

be the interior of the unit ball, i.e., C = {x| ||x|| < 1}. Consider T

the mapping of C into itself defined by
= X a
Tx = > + >
where a é‘ﬂ? is a vector of unit norm. In this case T has no fixed

point in C.

Example 3. (Convexity of K). Let X = ﬂR be a Hilbert space. Let C

be a set containing just two distinct points a and b. Define T : C-=>C

as Ta=b and Tb = a. Clearly T 1is an isometry and has no fixed point.

The following example indicates that one cannot expect existence of
fixed points for non-expansive mappings in the most general class of

Banach spaces.

Example 4. Let C[0,?] be a Banach space with
llf[l = max+|£(x) |
x€[0,1

It is known that C[0,1] is not a reflexive Banach space.

Let C = {f €C[0,1]] £(0) =0, £(1) =1, 0 < f(x) < 1}.

Then C is bounded, closed and convex.
Let T be a mapping defined as follows:

T:C~»C
f(x) » xf(x), 1i.e. Tf(x) = xf(x)

and T is non-expansive.
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It is easy to verify that T(C) € C and T has no fixed point.

Example 5. (Normal structure of K). The mapping T : Co > Co defined

by
T : CCI,CZ, ...-)')' (1,CI,C2, -...)

maps the unit ball <, into itself but does not have any fixed point,
since (¢;,c5, ....) = (l,¢7, ...) would simply mean that ¢, =¢, , ...,

and this is impossible.

Browder & Petryshyn [ 7] and Kachurovskii [25] independently proved

the following fixed point theorem in Hilbert spaces:

Theorem 1.2,38. Let K be a closed bounded convex subset of a Hilbert space

X and T : K+ K a non-expansive mapping. Then T has at least one fixed

point in K.

Remark 1.2.39. It may be noted that the proofs of Theorem 1.2.35 and

Theorem 1.2.37 are based on a transfinite argument due to Brodsky & Milman
[ 4] while in the case of Hilbert spaces, i.e., in Theorem 1.2.38 the proof

is given by using a connection with monotone operators.

Definition 1.2.40. Let X be a metric space and A be a bounded subset

of X. Then we define measure of non-compactness of A, denoted by a(A),
as
alA) = {e > 0| A can be covered by a finite number of subsets of

diameter < ¢}

The above concept was introduced by Kuratowski.[32]. This measure of

non-compactness o« satisfies the following properties:
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£(X) = X = (X1,Xp, ....) = (/1 - HXHZ s XysXps eeee)

Let us take the elementary case,

i.e., f(0)=0-= (0,0, ...) = @1 - ||0|| » 0,0, ....)
i.e., (0,0, ....) = (1,0,0, ....), which is impossible.

Hence f has no fixed point.

The following useful theorem was given by Nussbaum [36]:

Theorem 1.2.46. Let B = {x € X]| ||x]] < 1} be a ball in a Banach space X

and let R : X +~ B be a radial projection (also called, radial retraction),

i.e.,
X
Rx = | —— for X > 1
A Il =
X for ||x]|]| < 1.

then R is a l-set-contraction.

Definition 1.2.47. Let T : X+ X be a continuous mapping of a metric

space X into itself. If for any bounded set AC X with (A) > 0 we

have o(T(A)) < a(A) then the mapping T 1is said to be densifying.

This definition was introduced by Furi § Vignoli [21]. Sadovskii [45]

called this as condensing map.

It may be noted that contraction mappings and completely continucus
mappings are densifying. Also sums of contraction and completely continuous

mappings defined on Banach spaces are densifying.
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The following theorem was given by Furi § Vignoli [22].

Theorem 1.2.48. Let T : K+ K be a densifying mapping from a non-empty

closed convex bounded subset of a Banach space X into itself. Then T

has at least one fixed point.

The above important fixed point principle for densifying operators was
generalized to topological vector spaces by Swaminathan § Thompson [51] as

follows:

Theorem 1.2.49. Let K be a complete, convex bounded subset of a locally

convex topological vector space X and T : K-+ K be densifying. Then

T has a fixed point in K.

The following theorem was given by Petryshyn [37].

Theorem 1.2.50. Let B be an open ball about the origin in a Banach space

X. If T : B+ X is a densifying mapping which satisfies the boundary

condition
(*) If Tx = ax for some x in 3B, then a <1,

then T has a fixed point.

Proof. We define first a radial retraction mapping R : X - B, by

x if ||x]| <~
Rx =
X .
if X > T,
= x>

Then by Theorem 1.2.46, R 1is a l-set-contraction.
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We now define a mapping T; on B by Ti(x) = RT(*), for every
x€ B. Then T, maps B into itself which is also densifying, for

a(T1B) = a(RTB) < o(TB) < a(B). Therefore by Theorem 1.2.48, T; has

a fixed point in B, say x_, i.e., Tix = x_. We claim that Tx_ = x .
(o} o o o o

Indeed, if x € B, themn Rx =x and T;x = RTx_ = x_, therefore
[o] [o] [o] [o] [o} [o]

Txo = x . And, if xoé 9B, then

o}
Rxo = % and Tlxo = RTx0 = X3 therefore, r Txo =X, 1i.e.,
x4 TN
Tx°= X, ”T:OH , 1.e., &x0= X, “T:o” , i.e., a= HTon > 1,
T

which is a contradiction to («). Hence the proof.
The following three corollaries were given by Petryshyn [37].

Corollary 1.2.51. Suppose T : B +X is densifying such that

(i) TBYC B, or
(ii) T@B)C B, or
2 2 2
(ii)  frx - x> Ix|l - ||l for a11 x €3B, or
(iv) (Tx, Jx) < (x, Jx) for all x €93B, where J 1is a duality
*
mapping of X into its dual X* (or rather into the set ZX

of all subsets of X*) such that

2
Ix, x) = |lx]| and |Jx|] = ]lx]| for all x & X.

Then T has a fixed point.

Corollary 1.2.52. Let T : B~ H be any mapping and To : B+H be

densifying (H is the Hilbert space), such that
2
1) (Tx, x) < |[x]]
(i) [|tx - T x}| < ||x - Tx|| for all x € aB.

Then T has a fixed point.

e S
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Corollary 1.2.53. Let T =S+ C be amap from B to X such that

S is contraction on B and C is compact on B. Suppose also that
T satisfies condition (%) of Theorem 1.2.50 on 3B. Then T has a

fixed point.

The following theorem was also given by Petryshyn [37].

Theorem 1.2.54. Let C be a bounded open subset of a Banach space X

and T : C > X be a l-set-contraction mapping satisfying either of the
following two conditions:
(a) there exists an X, € C such that if Tx - X, = a(x - xo)

holds for some x & 3, then a < 1.
(b) C is convex and T(aC)C C.

Then T has a fixed point if (I - T) C is closed.

Proof. Define Q =C - x = {x - x_ |x & C} .

Then it follows that Q is bounded, open, 0 € Q, 3Q = 3C - x,

and Q =C - Xy Furthermore, Q is convex if C 1is convex.

Now define the map T'(y) for y in Q and y = {x - xolx € C}
by T'(y) = Tx - X, Then T' maps Q@ into X and T' is l-set-con-
traction and T' satisfies condition (*) of Theorem 1.2.50 on .
Furthermore, (I - T')Q is closed since (I - T')Q = (I - T)C. Thus
T' and Q satisfy all the conditions of Theorem 7 of Petryshyn [37].
Hence there exists a y in Q such that T'(y) =y, i.e.,

Tx - x, = X - X with x€ C or Tx = x.

Next we show that (b) implies (a). Suppose (b) is given and let
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CHAPTER II

Some Fixed Point Theorems for Quasibounded Mappings

2.1. Quasibounded Mappings § Fixed Point Theorems

Definition 2.1.1. Let X be a Banach space and T : X + X be continuous.

If |T| = lim {sup TiX)ll} is finite then T is called quasibounded
pre | |x|[2p [1X]]
and |T| is called quasinorm of T.

Example 2.1.2. Any bounded linear mapping is quasibounded and its norm

coincides with its quasinorm.

Remark 2.1.3. The notion of quasibounded mappings was first introduced by

Granag [24]. The same mapping was termed as linearly upper bounded by
Kolomy [28] § Srinivasacharyulu [50]. It is easy to see that T is quasi-
bounded if and only if there exist o,8 > 0 such that ||Tx]|] 5_3[]1]]

for ||x]] > « .

The following known result is due to Granas [24].

Theorem 2.1.4. Let T : X+ X be a quasibounded completely continuous

mapping of a Banach space X into itself. If |T| <1 then the equation

y = x - Tx has a solution for every yé€ X.

Proof. Let y* € X be arbitrary. We define a mapping T by
Tx = y* + Tx for every x € X.

Clearly T is completely continuous.

Since |T| < 1, therefore it follows that }}iT} < 6 <1 holds for

every x with |[|x|] > r; , where & and r; are some constants.
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Let ¢ > 0 be such that ¢ + § <1 and let T, = ll%:LL
Now, for every x with ||x|| > r, we have %—%I—i-j_e .
Let r=r;+1; , K ={xe&X| [|x|]|] <r} and S. = {x €Xx| [|x|| = r}.
Also, let x € S_. Then [1x]| > ry , ||x|] > r, a.d hence
el Al Ll s,
X = 11X =[]

It then follows that T(sr)cz K.
Now by a fixed point theorem of Rothe [44], T has a fixed point in

K., say x*. Therefore, Tx* = x* = y* + Tx*, i.e., y* = x* - Tx*.

The theorem is now proved.

The following corollary is due to Granas [24].

Corollary 2.1.5. Let T : X » X be a quasibounded completely continuous

mapping. If ||Tx|] = 0(||x||)(as ||x|| » +=) then the equation
y = x - ATx with the real parameter A has a solution for every y € X

and for every A

Proof. Clearly, for every i, the mapping AT 1is completely continuous and

quasibounded; also the quasinorm |AT| is equal to 0. Hence the corollary

follows from the last theoren.

The following theorem due to Nashed and Wong [34], may be treated as a
perturbation theorem where completely continuous quasibounded mappings are

perturbed by contraction mappings.

Theorem 2.1.6. Let S : X+ X be a contraction mapping and T : X » X be

completely continuous and quasibounded. If |T| <1 - v, where v is the

contraction constant, then the equation y = x - Sx - Tx has a solution
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for every y € X.

Proof. For any fixed element 2z € X, we define an operator S by
Sx=Sx+Tz+y* . . .. ... ......1)

where y* € X is arbitrary. A simple computation shows that § is
again a contraction mapping. So we may define a mapping G which

associates to each z € X the unique fixed point of 8.
In other words, from (1), we have,
Gz =86z =86z +Tz+y* . ... .......2

Now for any u,v € X, we obtain from (2), the following estimate:

] Gu - 6v]| < [[Tu =Tv]] . . . . . o o v . (3)

1
1 -y
It clearly follows from (3) that G 1is completely continuous.

In order to establish that G has a fixed point, we need to show that

G maps a certain closed ball into itself. Denote by
Sn(y) = {x € X| ||x - y|]| <n} where n is a positive integer. We claim
that there exists a positive integer N > O such that G(SN(y))g; SN(y).
Assume the contrary, then there must exist for each n > 0, u, e'Sn(y)
such that ]]Gun -y||] >n. Since G is completely continuous, we must
then have [|u || >« as n >« . From (2), we may estimate |1Gu - ¥|]

as follows:

Heu - yl| < [ISGu, = syl| « [ISy|] « [[Tu ] - . ... .(4

For each ¢ > 0, choose n, such that for n >n, we have
Htu |1 < ATh+ Il s TSY]] < elluyll/3

and ||Gun -yl > - 5ffgj'gqulun|l )
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which is possible by the choice of {u }. Dividing (4) by ]Iunll, and

substitute these estimates for n >, in (4), we obtain

a-v) [I'E(TE_\;)]‘ §_€+ | T|

or, (1-v)<e=+ [T

Since e is arbitrary, we conclude that |T[ > (1 - v), which is a

contradiction to our hypothesis that |T| < 1 - v.

Thus G : Sn(y) - Sn(y) is a completely continuous operator. Hence
by Schauder's [46] fixed point theorem, G has a fixed point in Sn(y),

say Xx*,
Therefore, Gx* = x* = Sx* + Tx* + y*
i.e., y* = x* - Sx* - Tx* .

Hence the proof is complete.

Corollary 2.1.7. We obtain Theorem 2.1.4 of Granas [24] when S =0 in

Theorem 2.1.6.

The following result was given by Nashed § Wong [34]:

Theorem 2.1.8. Let S be a bounded linear operator on X such that s

is a contraction mapping (with contraction constant v , 0 <v < 1) for
some q > 1, and T be quasibounded and completely continuous on X.
If |T| <1 - v then the equation y = x - Sx - Tx has a solution for

every y € X.

Proof. Proceeding in the same manner as that of Theorem 2.1.6, we define

for each z € X the operator S by (1). Again we may show by the
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linearity of S that §9 is a contraction, hence we may define a mapping
G which maps z to the unique fixed point of § in such a way that

(2) of Theorem 2.1.6 holds. Note that instead of (3) we have from

q-1 .
Gu - Gv =8%0Gu-6v) + J si(u-1v,
3=0
the following estimate

lou - ovl] < LB =TIl %7 sy
y

>

which establishes the complete continuity of G. A similar argument as
q-1 .
that of Theorem 2.1.6 applied to the balls Sn(u) where u = Z SJy

j=0
completes the proof.

Remarks 2.1.9. (i) Theorems 2.1.6 and 2.1.8 may be considered as variants

of a fixed point theorem of Krasnoselskii [29].

(ii) The utility of Theorems 2.1.6 and 2.1.8 result from the
fact that, unlike the standard form of Schauder Theorem,
they do not require a priori that a certain closed
bounded convex set is mapped into itself by the completely

continuous operator.

(iii) The hypotheses of Theorems 2.1.6 and 2.1.8 guarantee the
existence of some closed ball which is mapped into it-
self by a certain completely continuous operator G
whose fixed point coincide with the fixed point of the

operator Sx = Sx + Tx + y*.

Theorem 2.1.4 was extended for densifying mappings by Vignoli [52] as

follows:
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Theorem 2.1.10. Let T : X » X be a quasibounded densifying mapping of

a Banach space X into itself. If |T! <1 then the equation

y = x - Tx has a solution for every y € X.

Proof. Let y* €& X be arbitrary. We define Gx = y* + Tx for every
x € X. Clearly G 1is densifying. We consider now the following family

of balls with center y*:

Qk) = {x€ X| ||x-y*|] <k} , k=1,2,....

We want to show that for some integer q > 0, the mapping G maps Q(q)
into itself. Assume the contrary. Then for any positive integer k

there exists an element Xy such that

[16x, - y*[] > k.

But
[16x = y*|1 = lITx ||
Hence, 'lTxkl| S k .
IEXIRIEY)

On the other hand,

[x D < Tly*[] + &

Then it follows that

[T || s K K

> 1lim

. R, =1,
|]x| |- X TT = oe X T ksw Y]] * K

which is a contradiction.

This contradiction shows that for some q > 0, G : Q(q) ~ Q(q) is a
densifying mapping. Then, by Theorem 1.2.48 of Furi § Vignoli [22], G

has a fixed point in Q(q), say x*.
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Remark 2.1.15. In Corollary 2.1.14, if in particular S is assumed to be

a contraction mapping with constant o <1 then S 1is densifying and

satisfies the condition |S| < ¢. Indeed,

[Isx|| . Hsx-sll , Hsoll __, ls@[] . ex
T[T =" 11T IR TN TR

and hence S| < a.

Corollary 2.1.16. Let S : X » X be a quasibounded densifying mapping from

a Banach space X into itself with quasinorm |[S| <a, 0 <a < 1, and
let T : X » X be quasibounded and completely continuous. Let ) be a
real number such that |A||T| < 1 - q. Then the equation y = x - Sx - ATx

has a solution for every y e X.

The following theorem due to Petryshyn [38] is the generalization of
the results of Granas [24] for quasibounded compact maps and of Vignoli

[52] for quasibounded densifying mappings.

Theorem 2.1.17. Suppose T : X + X is quasibounded 1-set-contraction

such that (I - T)(B(0,r)) is closed for each r > 0 and |T| < 1. Then

(I - T) 4is surjective.

Definition 2,1.18. Let X,Y be two Banach spaces, f be a mapping of

an open subset V of X into Y and let Xy € V; if there exists a
bounded linear operator S : X > X such that

1im f(xo + tx) - f(xo)
t-+0 t

= S(x)
for every x € X, we say that f has the Gateaux derivative S at x .

The following result is due to Srinivasacharyulu [50]:
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Theorem 2.1.19. Let f : X+ X be a mapping of a uniformly convex Banach

space X into itself such that it has the Gateaux derivative f'(x) for
every x &X. Let T : X+ X be a linear mapping of X onto X having
an inverse and let F = I - Tf, where I is the identity mapping of X. vli
Assume further that sup ||F'(i)|] < 1. If |F| <1, then the equation “
f(x) =y has at leas:ezne solution for each y in X.

Proof. By definition, F(x) = x - Tf(x) and F(x) has the Gateaux
derivative F'(x) given by F'(x) = I - Tf'(x); since

|[|Fx - Fy|| < [|F'(2)]]| ||x - y|| for some 2z on the segment [i,y] and
su§ [|[F*(x)|| < 1, we see that F is a non-expansive mapping. Let y*
x€

be an arbitrary point of X and let T(y*) = z*; the equation f(x) = y*

is equivalent to x - F(x) = z*.

We prove that f£(x) = y* has a solution x* in X; to prove this,

we define a mapping F : X+ X by F(x) = F(x) + z*, x € X.

Since |F| < 1, we have l%%ﬁ%% <e < 1 for all x with
||x|| > a;. Let & > 0 be such that ¢ + 6 <1 and let a) = lli%li ;

put o« =a; +a, , B={xe&X| ||x|] <a} . Clearly, B is bounded,

closed, and convex and

|1Ex|| < [[Fx|[] + |]z*]]
< (e +8) |x[]
< x|
for x € B.
Moreover, ||Fx; - Fxp|| < ||x; - xp|| for every xj,x; € B; hence F

has at least one fixed point x* € B by Theorem 1.2.35 of Browder [5 ].




Therefore Fx* = x* or equivalently f£(x*) = T_l(z*) = y*. Thus the

theorem.

We next give an existence theorem for nonlinear problem due to Kolomy

[28].

We shall say that a linear continuous mapping A : X + X of Hilbert

space X 1is normal if AA* = A*A, where A* denotes the mapping adjoint

to A.

Theorem 2.1.20. Let F : X+ X be a mapping of a Hilbert space X into

itself such that, for every x & X it has the Gateaux derivative F'(x).
Let PF'(x) be a normal mapping for every x € X such that
(PF' (x)h,h) > 0 for every x € X, h e X, where P is a linear mapping
of X onto X having an inverse P, [P ] :_(Tszﬁ ]lF'(x)lL) -

x

If |I - PF| < 1, where I is the identity mapping of X, then the

equation F(x) = y has at least one solution for every y € X.

Proof. For every x & X the mapping G(x) = x - PF(x) has the Gateaux
derivative G'(x) and G'(x) = I - PF'(x). Because G'(x) 1is a normal

mapping for every x € X, then

l6rx)|| = su | (G' (x)h,h) ] su | (h = PF' (x)h,h)|
[T} =1 e

su [1 - (PF'(x)h,h)]
[Tn [=1

<1,

since 0 < (PF'(x)h,h) < |]P||(sup [|IF*(x)]|) <1 for every x € X and
h € X with ||h|] = 1. Because ]IGx -6yll < |16 )| |lx - yl|, where

X is an element which lies on the line-segment connecting the points

X,y € X and sup ||G'(x)|| < 1, we conclude that G : X » X is Lipschitzian
x€X




mapping with constant one.

Now let y* be an arbitrary point in X and set z* = P(y*). The
equation F(x) = y* is equivalent to x - G(k) = z*., We shall show that

there exists an element x* € X such that F(x*) = y*,

Define a mapping G : X » X by G(x) = G(x) + z* for every x € X.
Since |G| < 1, it follows that the inequality [16x) || ||x]|-1 <eg<l1
holds for all x with norm |[[x|| > pj , where e,p, are some constants.
Now choose a positive number v such that ¢ + vy <1 and let
o2 = z*|[v. Put v =p; +p,, D=txex| [[x]]| <1},

S={xeX| ||x]] =r}). Let x &S, then

G| < [z*[1 + et || < & + v Ix|] < [|x]].

Thus ||G(x)|| < ||x]| for every x& S. Also, "||Gx; - Gx,|| < ||x; - x,]]|
for every x;,x, € D. Hence G is Lipschitzian with constant one on D,
G:D~+X and G(S)C D. Since all the assumptions of Browder's theorem

[ 6] are fulfilled, there exists at least one x*¢& D such that

- -1 (z*).

G(x*) = x*. Hence x* = G(x*) + z* and therefore F(x*) =P

Because P-l (z*) = y*, there is F(x*) = y*, which completes the proof.

Remark 2.1.21. The condition |I - PF| <1 is equivalent to the following

assumption: there exist numbers a,v > 0, v < 1 such that

|[x - PE(x)|| < v||x|]| whenever [|x|] > a .

The following corollary is also due to Kolomy [28]:

Corollary 2.1.22. Let ¢ : X > X be a mapping of a Hilbert space X into

X such that, for every x € X it has the Gateaux derivative ¢' (x). Let

¢'(x) be a normal mapping for every x € X such that
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[(A¢' (x)h,h)| < ||h}|  for every x e X, h € X. If the mappings ¢
is linearly upper bounded (i.e. quasibounded) with a constant y < 1
(A 1is a real parameter), then the equation x - A¢(#) =y has at least

one solution for every y € X.

2.2. p-Quasibounded Mappings §& Fixed Point Theorems

Throughout this section, X will denote a Hausdorff locally convex
topological vector space and P the family of seminorms that generates

the topology of X.

Definition 2.2.1. Let D< X and p€ P. Amapping T : D> D is said

to be a p-contraction if there is a vp, 0 < \’p < 1, such that for all
x,y € D, p(Tx - Ty) ivp p(x - y).
The above definition is due to Cain § Nashed [8]. They also mentioned

the following:

Let U be the neighbourhood system of the origin obtained from P,
the system of seminorms. Then for any given U€ U there exist a finite
number of seminorms in P, Say pPisP2s ¢ss-s P, and Ty >0,i=1,2, ...,n

such that

n
U= /r;V(p;), where V(p) = {x|p(x) < 1} .
1

The following theorem due to Cain § Nashed [ 8] generalizes Banach's

fixed point theorem to Hausdorff locally convex topological vector spaces:

Theorem 2.2.2. Suppose D is a sequentially complete subset of X and

the mapping T : D > D is a p-contraction for every p € P. Then T has
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a unique fixed point x in D, and ™x +» x for every x &€ D.

n
Proof. Let x&€D and U = {”\riV(pi) be given. For y € D and k > 1,
frootr ) 2

we have
P, (Ty - y) < (1 - v 'p, (Ty - y)
i - i pi y yJ.
Choose N so that for m > N,
wma - v ) Tk - x) <., i=1 n
i i) P; ST, [ I

Thus pi(Tm+kx -T) < A - vi)-lpi(Tm+1x - )

| A

m -1
vy (1 - vi) pi(Tx - x)

Ia

< T..
- 1

Hence {Tkx} is a Cauchy sequence in D and therefore converges to
a point x in D. Clearly, Tx = x, and the uniqueness of the fixed

point follows as usual since X is Hausdorff. Therefore, the theorem is

proved.

The following definitions are also due to Cain § Nashed [ 8].

Definition 2.2.3. For p& P and r > 0, the set {x & X]p(x - xo) <r}
is denoted by Sp(xo,r). The closure of this set is denoted by §p(xo,r),

and its boundary by 3Sp(x°,r).

A continuous mapping T : X > X is said to be p-completely continuous
for p € P if the closure of T[Sp(e,n)] is compact for each positive

integer n, where 8 1is the zero element of X.

Definition 2.2.4. For an operator T, a point X, € X, and a real number

r > 0 we define for each p &€ P,

O —
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or sup{p(Tx - Txo)} < ca
or p(Tx - Txo) < ca.
We define a ball D with center X, and radius e as follows:
D={x€ X|p(x - xo) <c}

Clearly then D is closed and convex; also D being a closed subset of

the complete topological vector space X 1is complete.  Furthermore, D

is bounded.
We now show that G maps D into itself.
Let x € D. Then,
p(Gx - x ) =ply* + Tx - u, - Tx,)
<ply* - uo) + p(Tx - Txo)
<c(l -a) +ca
i.e., p(Gx - xo) < c.
Thus, G : D> D is a densifying mapping which maps the complete, convex,
bounded subset D of a locally convex topological vector space X into

itself.

Now, by Theorem 1.2.49 of Swaminathan § Thompson [51], G has a fixed

point in D, say x*.

Therefore Gx* = x* = y* + Tx*
i.e. y* = x* - Tx*.

Hence the proof is complete.

Corollary 2.2.9. If X is a Banach space, T : X > X is densifying and

quasibounded and |T| <1 then we obtain Theorem 2.1.10 due to Vignoli G21].
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Corollary 2.2.10. If X is a Banach space, T : X =+ X 1is completely

continuous and quasibounded and ]Tl < 1 then we obtain Theorem 2.1.4

due to Granas [24].

Corollary 2.2.11. Let (X,P) be a Hausdorff locally convex topological

vector space and T : X ~ X be densifying. If X is complete and if
there exist a X, € X and a p €& P such that T is p-quasibounded at X,
and IAIBP(T) <1, where ) is a real number with |A| <1 then

Yy = x - ATx has a solution for every y ¢ X.

Proof. Since A <1, therefore AT is densifying; also AT is p-quasi-

bounded at x, and it is given that |x|3p(T) < 1.

Therefore the corollary follows from the Theorem 2.2.8.

Corollary 2.2.12. Let (X,P) be a Hausdorff locally convex topological

vector space, S : X+ X be densifying and T : X - X be completely

continuous. If X is complete and if there exist a Xy € X and a pe?P
such that both S and T are p-quasibounded at Xy BP(S) <o, 0<ax<l
and BP(T) <1 - g then the equation y = x - Sx - Tx has a solution for

every y € X.
Proof. Since every completely continuous mapping is also densifying, there-
fore S + T is densifying.
Also S) + g_(T) < 1.
Bp( )+ By )
Therefore the corollary now follows from Theorem 2.2.8.

Exactly in the same lines as in the proof of Theorem 2.2.8, one can

prove the following theorem using Theorem 2.2.7 of Loc [33]:
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Theorem 2.2.13. Let T : X » X be p-completely continuous. If X is

complete and if there exist a X, € X and a p &€ P such that T is
p-quasibounded at X, and BP(T) < 1 then the equation y = x - Tx

has a solution for every y e X.

The following result due to Cain §& Nashegslgeneralizes a fixed point Hf

theorem of Krasnoselskii [29] to locally convex spaces.

Theorem 2.2.14. Let D be a convex and complete subset of X, and S,T

wwm -

be operators on D into X such that Sx + Ty € D for all x,y €D,
Suppose S is a p-contraction for every p € P, and T is continuous
and T(D) is contained in a compact set. Then there is a point x* in

D such that Sx* + Tx* = x*.

Proof. For every y € D, the mapping S defined by Sx = Sx + Ty is
a p-contraction for every p € P and maps D into D. So by Theorem
2.2.2, it has a fixed point, say Ly . In other woxrds,

Ly = SLy = SLy + Ty.

Thus for every u,v € D,

Lu - Lv = SLu - SLv + Tu - Tv.

So for every p € P, we have

p(Lu - Lv)

I

v_ p(Lu - Lv) + p(Tu - Tv) (vP is p-contraction constant).
P

-1
i.e., p(Lu - Lv) < (1 - vp) p(Tu - Tv) R )

It is clear from (1) that the operator L is continuous.

To see that L(D) is contained in a compact set, let an be a
net in L(D). Then {Txa} has a convergent subset { Tx'a}, since T(D)

is contained in a compact set. Thus ({Tx' } 1is a Cauchy net, and by
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If then follows that for x,y €D, Sx + Ty + y*€ D

p(Sx + Ty + y* - xo) = p(Sx + Ty + y* - u - Sxo - Txo)
2 p(Sx - Sx ) + p(Ty - Tx)) + pOy* - u)
SV P - xg) + p(Ty - Tx) + pOY* - u)
< Vo c +ca+c[l - (vp + a)]

i.e., P(Sx + Ty + y* - xo) < c.

It now follows from Theorem 2.2.14 of Cain § Nashed [8 ] that there is

an x* in D such that
Sx* + Tx* + y* = x*
i.e., y* = x* - Sx* - Tx*.

Hence the proof.

Theorem 2.2.17. Let S : X+ X be p-contraction and T : X 2 X be

p-completely continuous. If X is complete and if there exist a X, € X
and a p € P such that T is p-quasibounded at X, and BPCT) <1- Vp?

where vp is the p-contraction constant, O E.Vp < 1 then the equation

y = x - Sx - Tx has a solution for every y € X.

Proof. Let y* & X be arbitrary. We define an operator

Sx = Sx + Tz + y*
for every x€ X and for any fixed 2z € X.

Clearly, S is a p-contraction mapping and hence by the Theorem 2.2.2
of Cain § Nashed [8 ], S has a unique fixed point, say Gz. In other

words, we define a mapping G which associates to each z € X, the

unique fixed point of S.

P

23
v
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Thus, Gz = SGz = SGz + Tz + y*.

Now, for every u,v € X,

P(Gu - Gv) = p(SGu + Tu + y* - SGv - Tv - y*)

|A

p(SGu - SGv) + p(Tu - Tv)
< vp p(Gu - Gv) + p(Tu - Tv)
or, p(Gu - Gv) < (1 - vp)-l p(Tu - Tv),
which shows that G is p-completely continuous.

Since T 1is p-quasibounded at X, and BP(T) <1l- vp ,
therefore we choose aé€ BP(T) such that
a<1l- vp and « € Qp(xo,T,a).

Let u, = (I -5 - T)x0 and choose ¢ such that

Ply* - uj
1 - (\)p + a)

cC € Qp(xo,'l',a) and c¢ >

Then, as in Theorem 2.2.8, we have p(Tx - Txo) < ca.

We define now a ball D and its boundary 3D with center X, and
radius ¢ as follows:

D cl.

{x € X|p(x - x,)

fA

and 9D = {x & X|p(x - xo) c}

We then show that G(aD) € D. Let x & 3D. Then,

p(Gx - xo) = p(SGx + Tx + y* - u, - Sx0 - Txo)
< p(SGx - Sx) + p(Tx - Tx)) + p(y* - u)
2 v p(Gx - x ) + p(Tx - Tx ) + pOy* - u)
-1
or, P(Gx - x)) < (1 - vp) [p(Tx - Tx ) + p(y* - u))l

< (- vp)‘l[ca el - (v, + )]

S
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i.e., p(Gx - xo) <c.

Thus, G 1is a p-completely continuous mapping which maps aD into
D. Hence, by Theorem 2.2.7 of Loc [33], G has a fixed point in D,

say x*.

Therefore, Gx* = x*

SGx* + Tx* + y*

Sx* + Tx* + y*

i.e., y* = x* - Sx* - Tx*.

The proof is complete.

Corollary 2.2.18. Theorem 2,.2.13 follows from Theorem 2.2.17 when S = 0.

Corollary 2.2.19. If X is a Banach space, S : X * X 1is contraction,

T : X* X 1is completely continuous and quasibounded and ITI <1l-wv,
where Vv 1is the contraction constant, 0 < y < 1, then we obtain Theorem

2.1.6 of Nashed and Wong [34].

Corollary 2.2.20. Let (X,P) be a Hausdorff locally convex topological

vector space, S : X * X p-contraction with p-contraction constant Vp?
0 f_vp <1 and T : X * X be p-completely continuous. If X is complete
and if there exist a X, € X and a p €P such that T 1is p-juasibounded-

at x_ = and IKIBP(T) <1 - Vp? where A is a real number with {A| <1

then y = x - Sx - ATx has a solution for every y € X.

Proof. Since A < 1 therefore AT is p-completely continuous and also

AT is p-quasibounded at x_ . It is also given that ]AIBP(T) <1 - vp

Thus the corollary follows immediately from the Theorem 2.2.17.

e
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Theorem 2.2.21. - Let a convex function f : X > X be such that f has

Gateaux derivative f'(x) for every x € X, and let F =1 - f, where
I is the identity mapping of X. If X 1is complete and if there exist
Xy € X, p€ P such that F is p-quasibounded at Xys BP(F) <1 and

p(F'(x)) :_%— for every x € X then the equation y = f(x) has a unique

solution for every y¢& X.

Proof. By definition, for every x € X, the mapping

F(x) = x - £(x)
has the Gateaux derivative F'(x) which is given by
F'x) =1 - f'(x).

Since f is differentiable and f is also convex, therefore by a well-

known characterization of convexity,
£(y) - £(x)

y - F(y) - x + F(x)

(y - x) + (F(x) - F(y))

fr(x)y - x)

n§A

for every x,y € X.

(y - x) + (F(x) - F(¥))
y - X

(y - x) + (F(x) - F(y))
Y - X

Thus f'(x) =<

and therefore F'(x) > I -

i.e., F'(X)( -x) > F(y) - F(x).

1
By hypothesis, since p(F' (x)) <7 for every x € X, therefore,

P(F{y) - F(x)) :.%-p(y - x) which shows that F is p-contraction.

Let y*€ X be arbitrary and define a mapping G : X+ X by

G(x) = y* + F(x) for every x€ X. Clearly, G is also p-contraction.

R




Since BP(F) < 1, choose a ¢ BP(F) such that a <1 and
o € Qp(xo,F,a). Let u, = (1 - F)xo and choose ¢ such that

c€E Qp(xo,F,a) and ¢ x PO* - u)

l -a

Therefore, Rp(xo,F,c) < a. Then p(Fx - Fxo) < ca. Now, define a

ball D with center x° and radius c¢ as follows:
D={xéx|p(x-xo)§_c} , peP.

Clearly, D 1is closed. Further, D being a closed subset of a complete

topological space X 1is also complete.
We claim that G(D)C D. Let x &D. Then
p(Gx - x) = ply* + F(x) - u, - F(x))
PO - u) + p(F(x) - F(x,))
<c(l -3) +ca
i.e., p(Gx - xo) < C.
Thus, G is a p-contraction mapping that maps a complete subset D
of a Hausdorff locally conveﬁ( topological vector space X into itself.
Hence by Theorem 2.2.2 of Cain § Nashed [ 8], G has a unique fixed point

in D, say x*. Therefore,

G(x*) = x* = y* + F(x*) = y* + x* - £(x¥)

i.e., y* = f(x*).

e e
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2.3. Intersection Theorems for Quasibounded Mappings

Let a Banach space X = A () B be a direct sum of two subspaces

54.

A and B of X, i.e. each element x of X can be uniquely represented

in the form

x=a+b s where a € A and b € B.

Let PA denote projection of X onto A and PB projection of

X onto B, i.e., for each x=a + b €X, PA(x) = a and PB(x) = b.

Clearly, the mappings PA : X +A and PB : X > B are linear and hence
we have
[Pyl < Tyl Hxl] and [Iegea I} < [egll 1Ix1],
for each x&€ X ......
where |[P,|] and |]PB|] are norms of P, and P, respectively.

The following result is due to Granas [24].

Theorem 2.3.1. Let X =A (&) B and let the mappings f : A » X,

g : B+ X be completely continuous such that
f(a) =a - F(a) and g®) =b-G®d) . ... ...
If the mappings F : A>X and G : B+ X are quasibounded and
IF]||PAH+|G|]|PB||<1
then f(A) Ng(B) F¢ -
Proof. Each element X € X can be uniquely represented in the form
x=a-»>b , a€A and bé&B.

Let us put Hi(x) = F(a), Ha(x) = -G(b), and H(x) = Hy(x) + Hz(x)
for x € X.

. (2)

. (3)
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Since F is completely continuous on A we conclude that the
values of H;(x) are bounded for all x € M,. Similarly, since G is

completely continuous on B, the values of H,(x) are bounded for all

x & Mz.

From this we infer that for sufficiently large positive numbers T*

and r,* the inequality (7) holds

for all X € M* = {x &M |[b]| > r,*}

and also for all  x €& My* = {x€ My| ||a]|]| > r;*}.

Putting M= (M; - My*) (J (M, - Mp*) one can observe that the set M

is bounded and M = X - (MOU My* (JMy*).

Thus the inequality (7) holds for all points x &€ X which do not
belong to the bounded set M; hence H 1is quasibounded mapping and

[H] < 1.
By Theorem 2.1.4, h(x) = x - H(x) has a solution. Hence there
exists an element x = a - b such that h(x) = 0. By (4), we have
0=a-b -~ F(a) + G(b)

i.e., f(a) = g(b)

which completes the proof.

Granas [24] proved the following:

Theorem 2.3.2. Let X=A ® B and let f : A>X, g :B~X be

compact mappings. Then the image f(A) of A under f intersects the

image g(B) of B under g, i.e., £(A) Ng(B) § ¢.
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Proof. This follows from the preceding Theorem 2.3.1 because the quasi-

norm of a compact mapping is equal to zero.

Definition 2.3.3. A continuous mapping T : X + X from a metric space X

into itself is said to be a-Lipschitz with constant L, if for any

bounded set A &€ X we have
a(T(A)) < La(A) s 0 <L <+ o,

Clearly any completely continuous mapping is a-Lipschitz with constant

The above was- given:in: Kuratowskii (see [32]... The following result

due to Vignoli [53] is a generalization of the Theorem 2.3.1.

Theorem 2.3.4. Let X=A ¢®) B and let £ : A>X and g : B+ X be

such that

f(a)

a+ F(a) , for every a €A,

g) = b+ G(b) , for every b £ B,

where the mappings F and G are a-Lipschitz with constants L and L'

respectively which satisfy
Li[P,l] + L' [ [Pl < 1.
If the mappings F and G are also quasibounded with quasinorms

satisfying

B 11,11+ l6] [lpgl] < 1,

then £(A) Ng(B) § ¢ .

b
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Corollary 2.3.6. Let X=A (® B andlet £f:A>X, g:B~+X be

such that
f(a)

g(b)

a + F(a) + M(a), for each a c A
} W

b + G(b) + N(b), for each be B

where the mappings M and N are completely continuous and the mappings

F and G are a-Lipschitz with constants L and L' respectively such

that

Ll[p, 1] + Ll [pgl] < 1.

o~ e s e

Let the mappings F and G be also quasibounded with quasinorms
satisfying

[El [1P5l] + |G| [[Pgll <8 » 0 <8 <1,

4 m s g amne e

and let the mappings M and N be quasibounded with quasinorms such that

M| [[Pyl] + IN| [[Pgl] <1 -8 .

Then f£(A) Ng(B) % ¢ -

Proof. Let T=T; + T, , where T; =Fo PA + Mo PA, T, =-Go PB - No PB'

Clearly then T is densifying. Indeed ;

a(T(D)) < alF o P,(D)) + a(M o P,(D)) + a(G o Py(D)) + o(N o Py(D))

< La(P, (D)) + L'a(Py(D))

< a(D).

Also the mapping T is quasibounded and |T] < 1.

Hence by Theorem 2.3.4, we get the result.

Remark 2.3.7. In Corollary 2.3.6, instead of (1) we could consider the

following mappings:




60.

f(u;a)

g(u;b)

a + F(a) + uM(a) an
..

b + G(b) + uN(b)

where the mappings F,G satisfy the same hypothesis of the Corollary

2.3.6 and the quasinorms of M, N and the real number i are such that

lul (M| [Ppl] + IN] JIPgI) <1 -8, 0<B<I.

-

Then f£(u;A) N g;B) # ¢ . (Evidently for u =1 we obtain Corollary
2.3.6.).

Corollary 2.3.8. Let X = A (:) B and let f : A> X, g : B> X be

such that

f(a;a)

g(x;b)

a + AF(a) , for every a € A,

b + AG(b) , for every bE B,

where A is a real number such that |iA] < 1 and the mappings F,G are

a-Lipschitz with constants L, L' respectively, satisfying

LI|P,|| + L'[[Pg]] < 1.

al
If the mappings F,G are also quasibounded with quasinorms satisfying

Ix[C(|F] [[PAl] + |G pglh) <1, oo e oo (DD
then Ff(;A)N) g(;B) § ¢ .

Corollary 2.3.9. Let X,f,g and A be as in Corollary 2.3.8. If instead

of the condition (I) in Corollary 2.3.8 the mappings. F,G satisfy

o (|Ix|]) as [[x]] *”}. R ¢ £
0 (llxll) as llxll - @

| 1F) ]|
[6(x)]]

1

then f(;A) N g(A;B) # ¢
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Remarks 2.3.10. (i) The condition [A] <1 in Corollaries 2.3.8 and

2.3.9 is required in order that AT is densifying.

(ii) In Corollary 2.3.9, a particular case for ) = 1

and F,G completely continuous was proved by Granas [24].

The following result is due to Nashed and Wong [34].

Theorem 2.3.11. If we have

;= -ﬁfr lPyl] + L I L B S €8
and [E2| [[P4]] + 1G] [IPgl] <1-o .. o000 (@)

then £ (A; D gu(S) t ¢, where for each u 4 0, fu : A+ X, g, ° B> X

be such that

ua + Fy(a) + F,(a), for every a€ A,

£,(@)

gu(b)

ub + G; (b) + G,(b), for every be& B,
with F;,G; Lipschitzian operator, v, v' Lipschitz norms of F;, G,
respectively and F,,G, quasibounded completely continuous operators
from A,B into X respectively.
Proof. Define an operator T on X by

Tx = G (Pg(-x)) + Ga(Py(-x)) - Fi(Py(x)) = F3(Py(x)).

It is easy to show that fu(A)4q gu(B) $ ¢ if and only if the equation

Tx = yx has a solution in X. Let
M= {Gl(-PB) - Fl(PA)}

and N =

T e

{Gz (_PB) - FZ (PA)} .

It is then readily verified that (%) and (2) imply M is contraction and

|N| <1 -p . Hence the existence of solution of Tx = ux follows as an
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immediate consequence of Theorem 2.1.6 of Nashed § Wong [34].

Remark 2.3.12. Theorem 2.3.11 reduces to Theorem 23.1 of Granas [24] by

taking v=v' =0 and u =1,

Another interesting intersection theorem has been obtained by Petry-

shyn [40] where he extended Theorem 2.3.1 of Granas [24] to the following:

(a) either F or G is P-compact

and (b) condition (3) of Theorem 2.3.1 is replaced by a much weaker

condition.
We first give the following preliminaries and definition:

Let X be a real Banach space with the property that there exists a
sequence {Xn} of finite dimensional subspaces Xn of X, a sequence
of linear projections {Pn} defined on X, and a constant K > 0 such

that

———

=

PX=X , XCX. ,, n=123 .., k:) X =X.. ... (D

[P |l <X, n=1.23 ... e e ... (ID)

Let Br denote the closed ball in X of radius r > 0 about
the origin and let Sr denote the boundary of Br' Let the symbol " "

denote the strong convergence in X.

Definition 2.3.13. A nonlinear operator T mapping X into itself is

called projectionally-compact (P-compact) if PnT is continuous in Xn for
all sufficiently large n and if for any constant p > 0 and any bounded
sequence {xn} with xne.)(.n the strong convergence of the sequence

{gn} = {PnTxn - pxn} imply the existence of a strongly convergent subsequence

i
-
-
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TR

{xn.} and an element x in X such that X > X and Pn Txn +> Tx.
i i i i

o e ——

This definition is due to Petryshyn [40]. We now state some results

without proof on which our next intersection theorem is essentially based.

Theorem 2.3.14. Suppose that T is P-compact. Suppose further that for

given v > 0 and u > 0 the operator T satisfies both the following

conditions:

B LAY

(A): There exists a number c(r) > 0 such that if, for any n, P Tx = Ax
holds for x in 8. with A > 0, then 1 < c(r). ﬁ

P

(Hu):If for some x in Sr the equation Tx = ex holds, then a < y. {

Then there existsat least one element u in (Br - Sr) such that

Tu - pu = 0.
The above result is due to Petryshyn [40]. ‘
Remarks 2.3.15. The assertion of Theorem 2.3.14 remains valid if condition é?

(A) is replaced, for example, by any one of the following stronger conditions

whose degree of generality increases in the given order: i

(i) T is bounded, i.e., T maps bounded sets in X into bounded sets. ;
(ii) For any given r > 0 the set T(Sr) is bounded. &
(iii) X is a Hilbert space and, for any given Tt > 0, :

. 2
(Tx, x) < c ||x]| for every x € S, and some ¢ > O.

The following result is due to Petryshyn [39].

Theorem 2.3.16. The class of P-compact operators with p <0 contains,

among others, the following operators:
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(a) closed precompact operators (and, in particular, completely
continuous and strongly continuous operators) in X.

(b) Quasicompact operators in X.
(¢) Continuous, demicontinuous, and weakly continuous monotone

increasing operators in X, when X 1is a Hilbert space.

Now we give the intersection theorem due to Petryshyn [40].

Theorem 2.3.17. Let G : B - X be a nonlinear mapping such that G(-PB)

is P-compact and such that to a given r > 0 there corresponds a number

c(r) > 0 with the property that for all x in Sr

||G(~PBx)|| <ce(m)e v e e e e e e e (D)

Let F : A > X be a completely continuous mapping and fu : A X,
gu : B+ X be defined by fu(a) = pa + F(a), gu(b) = ub + G(b)
respectively for every a € A and b€ B. If for given r > 0 and

p > 0 the operators F and G satisfy the condition:

() : If Fa + aca = Gb + ob for some a in A and b in B with
||]a - b|| = T, then o <y,

then £ (A) N g, (B) o .

Proof. Let us define a nonlinear mapping T : X = X by
Tx = G(b) - F(a) with b = -PBx and a = PAx, for every x €X . . . .(2)

and observe that fu(A){\ g, (B) 4 ¢ if and only if the equation

TX 2% UX  « o o o o o o o s s o o (3)
has a solution in X. Indeed, if x is a solution of (3), then x has a
unique representation Xx = P,x + PBx =a -b and, in view of (2), (3)
implies that G(b) - F(a) = u(a - b) or that ub + G(b) = na + F(a),

i.e., £ AN E (B)+¢ . On the other hand, if ac A and b&E B are
u u
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two elements such that fu(a) = gu(b), then u(a - b) = G(b) - F(a).
Hence if we put x = a - b, then (2) implies that x is a solution

of (3).

Thus, to prove Theorem 2.3.17 it is sufficient, in view of the above
observation and Theorem 2.3.14, to show that the operator T defined by

(2) is P-compact and satisfies conditions (A) and (nu) of Theorem 2.3.14.

Let us first show that T 1is P-compact. Now, by our conditions on
G and F, PnT is certainly continuous in Xn for all sufficiently

large n., Further, let {xn} be a bounded sequence so that for any p > 0
g, = PnTxn - px, = PnG(-Pan) - px - PnF(PAxn) +~ g, for every X e Xn...(4)
Since {vn} = {PAxn} is bounded and F 1is completely continuous, there
exists a subsequence, which we again denote by {xn} such that

Flv)) = F(PAxn) +v and P F(v) > v where v € X. This and (4) imply

that

v - - -3 Y
g =P G(-Ppx)-px =g +PFPx)>g+v, (n>o)

Since G(-PB) is P-compact, therefore there exists a subsequence again

denoted by {xn}, such that x > X and PnG(-Pan) > G(—PAx).

This and the continuity of F imply that
= P_G(- - - F(P,x) = Tx.
PnTxn = PnG( Pan) PnF(PAxn) -> G(PBx) ( A )
i.e., T 1is P-compact.

Suppose now that Tx = ax for some X in Sr' This then means that

G(b) + ab = F(a) + ob with |[|a - b}| ||PAx + PBx]| = r. Hence our

condition () implies that o < p; i.e., T satisfies condition (Hu)-

Finally we see that for any x in Sr condition (1) and the complete

continuity of F imply the inequality

b
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[T=(] < |16CPp || + [[F®|] et +e, xes,

where ¢ > 0 is such that [IF(PAx)[|

IA

¢ for all x in Sr' Thus the
set T(Sr) is bounded and therefore, by Remark 2.3.15 (ii), T satisfies
condition (A). Hence, by Theorem 2.3.14, equation (3) has at least one
solution in Br or, equivalently, the intersection fu(A)(w gu(B) % ¢-

The proof is complete now.

Petryshyn [40] gave the following two corollaries.

Corollary 2.3.18. Suppose that F and G satisfy all conditions of

Theorem 2.3.17 except that condition () is replaced by the condition
2 2
||ub + G(b) - (ua + F(@))||° > ||Fa - Gb||® - w®|fa - B||®> . .. (5)

for a€ A, b€ B with ||a - b|| = r. Then fu(A) f\gu(B) + 4.

Proof. We may assume, without loss of generality, that there is no elements
a in A and b€ B with ||a - b|| = r such that fu(a) = gu(b). Suppose
now that for some x in Sr or equivalently for some a in A and b din B

with |]a - b]] = r we have Fa + aa = Gb + ob. Then

|Gb - Fa - w(a - 0] ]2 = |Jata - B) - w@a - ©]1% = (@ - w7 ]a - b]|?,
and ||Gb - Fa|? - w2[]a - b]|? = @2 - u)|]a - b]]”.
Hence, by (5), (o - u)? > a2 - u2 or 2u?2 > 2ua . Since yu > 0, our
assumption then implies that o < u and, consequently, (4) implies the

condition (). Corollary 2.3.18 then follows from Theorem 2.3.17.

Remark 2.3.19. 1In case X is a Hilbert space, condition (5) is equivalent

to the requirement

(G(-Ppx) - F(P,X), x)<ul|X[[2, XESp  aeo e (8
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Corollary 2.3.20. Suppose that F and G are completely continuous

and quasibounded, i.e., there exists four constants My >0, M, >0,

ry >0 and r, > 0 such that

||Fa|| < M[|a]| for every a in A withnorm |[|a|| >z, ... .(7)

||Gb]| < My]|b|] for every b in B with norm |[|b]]| >ty . . . .(8)

Suppose further that M, and M, satisfy the inequality

Myl[P ]+ Mo PRl <1 o oo oo oo oo (9)

Then £,(A) ng,(B) $ ¢ .

Proof. Let us first remark that, as was shown by Granas [24], the condit-
ions of Corollary 2.3.20 imply the existence of a constant r > 0 such
that

[16(-Ppx) - F(Px) || < ||x]|| for every x in X with [[x[[>=. .. .(10)

i.e., the operator T(x) = G(—PBx) - F(PAx) is quasibounded. Assuming
without loss of generality, that there are no elements a in A and b

in B with ||a - b]] = v such that f;(a) = g;(b), it is easy to see that
whenever Fa + aa = Gb + ab for some a¢ A and b € B with |[|a - b|]| = r,
then (10) implies that o < 1. Hence condition (II) of Theorem 2.3.17 holds
for py = 1. Furthermore, since G 1is completely continuous, (1) of

Theorem 2.3.17 is clearly satisfied and, by Theorem 2.3.16, G(-Pw) is

P-compact. Consequently, Corollary 2.3.20 follows from Theorem 2.3.17.

Remark 2.3.21. For the sake of completeness let us show that the conditions

of Corollary 2.3.20 imply the validity of (10) for some T > 0. First let

r, = max{r,,rp} and let c > 0 be a constant such that
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| [Fa]|

1S

c for all ae€ A with [|a][ <r
Z %

and ||[Gb]|

(S

c for all b € B with [|b]] < T
=%

Taki = <
aking r max{?ro s 1 Mo

we obtain (10). Indeed, (10) follows trivially from (7), (8), (9) if

}-where M, = max{MIIIPAll, MzIIPBII} <1,

for x=a-b with ||x|| > r we have ||a]l >r, and ||b]| > T,
On the other hand, if for ||x|] > r one of the conditions ||a| > T,
or ||b]]| > r, is not satisfied (e.g. ||b|| i.ro), then by our

definition of ¢ and Mo we get the desired inequality.
|16¢-2y0) - F@p)|| < [le®) || + |[F) ||
s e+ M|]x]]
= (= MOT[x]] + M| ]x]]
= [Ix[[ -
We now give an intersection theorem in Hilbert spaces by Kolomy [ 28].

Let X be a Hilbert space, Y,Z non-trivial subspaces of X such

that X is their direct sum, i.e., X =Y (® Z. Denote by Py,P, the
linear projection of X onto Y,Z respectively. Set f£(x) = x+ AF(x),
g(x) = x + AG(x), where A : X+ X is a linear continuous mapping of

X into X and F,G are non-linear mappings of Y,Z into X

respectively.

Theorem 2.3.22. Let X=Y & Z and let £ :Y~>X, g :2Z~+X be

Z + X are Lipschitzian mappings

defined as above, where F : Y »> X, G :

with constants oj,x, Trespectively. Furthermore, let F,G linearly

upper bounded (i.e., quasibounded) with bounds 8,8, respectively such
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that e = [|A[[(8y]|Py|] * BalIP,1 1) < 1. If (oy|[Py]] + aal [P, D []A]] <1,

then the intersection f£(Y) /) f£(Z) 1is non-void.

Proof. Put ¢4(x) = A(G(-sz) - F(PYx)) for every x& X. Then for all

X;,X, &€ X we have

[TeGa1) ~ oD || < [AL[([16(-Pyx1) = G(-Pyx) || + |[F(Pyxy) - F(Pyx;) ||

A

< Al Gaal[Pyxy = Pyxp|| + oy [Pyx; - Pyxy |1

| A

LAl Cag [ [Py] + ag] [Py D[ 1% - x|}

NESURIECYNE

iA

Thus the mapping ¢ : X + X 1is Lipschitzian with constant one. Under our

assumptions, F,G are linearly upper bounded with g,,8, respectively.

Therefore,
|[Fy|| < 811]y|] for every y €Y with [[|y[| >p, . .. ... (1)
|16z|| < B,||z|| for every 2z & Z with ||z]| 2P, e (2)

for some P10, > 0. Put o = max(pl,pz); then (1), (2) are fulfilled
for every y € Y with ||y]] > o and every z€ Z with ||z]|]| > p.

Put K = (ye Y| |ly|l <o} and e = {z€ Z| ||z|| <o} . Since F,G
are Lipschitzians on Y,2 respectively, then there eitist positive numbers

K;,K, such that ||Fy|| < K, ||Gz]| < K, for all yG:Kp s ze.Qp

respectively (cf. [28]). Set K = max(K;,K,),
N = maxeq| [A]] [[Pyl]s 82l 1AI] [1P51125 og = max(2o,|[A][K/CL - W),
Kpo={X€X|HX”f_po}, Spo={x€xlllx||=po}.
If for x = Pyx + P,x € x with ||x|] > Po there is also

”Pyx”ip, ||PZX||_>_9 , then




70.

How < A AIF®y[] + [16¢-p,x0|])
e |1x]]
=1

If for ||x|| 2 P, ome of the inequalities |[P x|| > p, [[Px]| > o

{A

IA

is not fulfilled (for instance the first), then

HeGoll < [1Al[k + N ||x]]
< [x[].
Hence for every x & Sp there is ||¢(x)]] < p,- Therefore,
0
$(S ) C K . According to Browder's theorem, the mapping ¢ : K -+ X
o o Po
has at least one point x* € K such that ¢(x*) = x*.
o
Hence, PYx* + sz* = A(G(-sz*) - F(PYx*))

and f(PYx*) = g(-sz*).

This concludes the proof,

2.4. Some Further Results for Quasibounded Mappings

In this section we give some mapping theorems for quasibounded mappings

by means of topological argument.

Recall that a nonlinear mapping T from a Banach space X into itself
is quasibounded if there exist two constants M > 0 and qo > 0 such that

[|Tx]] < M||x|| for all x in X with |[x]| > q,. (Petryshyn [40]).

We state without proof the following result, due to Petryshyn [40].

Theorem 2.4.1. Suppose that T is P-compact. Suppose further that there

exist a sequence of spheres {Sr } with rp +®, as p-+ o , and two

sequences of positive numbers Cp = c(rp) and kp = k(rp) with kp +> o,
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as rP + o, such that the following conditions hold:

(Af) : Whenever for any given f in Bk and any n the equation

PnTx - AX = Pnf holds for x in Sr with A > 0 then
P

A< cC .

- P

(HP) : | Tx - nx|| Z.kp for any n > py>0 and any x in S, -

P

Then for every f in X there exists an element u in X such that
Tu - yu = £,

The following result is due to Petryshyn [40].

Theorem 2.4.2, Suppose that T is P-compact and quasibounded mapping

of X into itself. If p > M, then (T - yl) 1is onto.

Proof. Let {rp} be a sequence of real numbers such that rp >q, for
all p and such that rP + », as p~+ o. Then, in view of our conditions,

for all x in S, and n > u,

P
[ITx - nx[]| 2 n|[x]] - ||Tx]]
>ullx|] - M{]x]]
= - M||x|]
= (u - Mer .

Thus condition (np) of Theorem 2.4.1 is satisfied with gp = (u - M)rp.

Now suppose that for any f in Bk and any n the equation
P
P Tx - Aax = P_f holds for x in Sr with A > 0. Then by (ID before
n n
the Definition 2.3.13 and the quasiboundness of T, the latter equation

implies that




o= Alx[] = [P (Tx - £)]]

|A

K||Tx - £]|

[A

KE[IT=f] + [1£]13

| A

K{M k
{rp+ P}

Hence, A < uK, 1i.e., condition (Af) of Theorem 2.4,1 is satisfied with

cp = uK for each p. Consequently, Theorem 2.4.2 follows from Theorem 2.4.1.

Remark 2.4.3. It is not hard to see that Theorem 2.4.2 remains valid if

instead of assuming that u > M we assume that u > |T|.

Petryshyn [40] also gave the following corollary:

Corollary 2.4.4. Suppose that T 1is quasibounded and P-compact with

p<0. If py>M, then (ul + T) maps X onto itself.

Proof. The conditions of Corollary 2.4.4 imply that T = -T is quasi-
bounded and P-compact with p = -p > 0. Hence, by Theorem 2.4.2,

(T - yI) or equivalently the operator (ul + T) is onto.

Remark 2.4.5. When T is completely continuous and u =1, then the

Corollary 2.4.4 was proved by Granas [24].

The following surjectivity result due to Vignoli [54] will be useful

in our next theorem:

Theorem 2.4.6. Let X be a Banach space, T : X = X be a-contractive

with constant k (0 < k < 1) and let there exist a sequence

= ' 8 }) of spheres and a sequence
(3B(0,8)} (3B(0,8,) = {xe& X[ [|x]] =8,

an
{vn} of positive real numbers v, > = &S n » » such that for any

A >y (where u satisfies 0 <k <1 - |1 - ul[) and any x€ aB(0,8,)
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Tx -
| |Tx Atz_vn..................(1)
Then the mapping (T - ulI) 1is surjective.

The following theorem is due to Vignoli [54}:

Theorem 2.4.7. Let T : X + X be quasibounded and o-contractive with

constant k, (0 <k <1). If satisfies

(1) 0<k<l-|1-ny,

(ii) u > M,

then the mapping T - ul is surjective.

Proof. Let {Bn} be a sequence of real numbers such that B, > ¢ for all

n, and 8 —+ > as n- ©.Then for allX € BB(O,Bn) and any A >

[Tx - ax]] 2 allx|] - HTx]]
> ullx]| - M]|x}]
= - Ml
= - M8,

. - . s . 2.4.6 i
hence by putting v, (v - MR condition (i) of Theorem 6 is

satisfied. Therefore Theorem 2.4.7 now follows from Theorem 2.4.6.

Remark 2.4.8. In this case when T is P-compact mapping and X satisfies

some special conditions, then Theorem 2.4.7 was proved by Petryshyn [40]-

The following result was given by Fucik lz0]:

Theorem 2.4.9. Let X be a real Banach space, h : X+ X bea mapping

such that for every x € X is hx =X+ Hx and 0 <k < L. The following
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hypotheses are fulfilled:

(I) For every Yo € X and R > 0 with the property (yo - H) (SR) C KR

(SR or KR denote the sets of all x such that ||x|]| =R or

I[xll < R respectively) there exists xy Re X such that
0’
Hx R = yo - X

b4 Y sR°

o’ 0

(IT) H is the quasibounded operator with the constant K,

Then h is a surjective operator.

1IBAl
Proof. Let yoé' X, e >0 be such that k + ¢ < 1, p1=—9—— and

€

Py =Py * Py (po is from the definition of quasiboundedness of H given
by Granas [ ], i.e. |[H| = inf { suﬁ J—I—T%H&).
0sp <= |Ix|]2p
Hyoll o 1yl
For every x€ X, |[x|]| > p, we have W - T, L
1

For x€ S , we obtain from the triangle inequality and the hypothesis
P

2
(I,
%] ] = [1*]1 1%
ice. ||y, - Hx|| < [[x]]
and by hypothesis (I), there exists xyo’pzé X such that
= - , i.e., hx =Yy
HXYO’DZ )’o x)’o,pz yospz o

Remark 2.4.10. If H = -I (1 denotes the identity mapping) we see that

if k = 1, the Theorem 2.4.9 is not valid.
The following two theorems due to Fucik [20] are the consequences of

Theorem 2.4.9:




Theorem 2.4.11. Let X be a real Banach space and h : X > X be a

mapping such that for every x € X is hx = x + Hx, where H is
completely continuous. Let the hypothesis (I1) of Theorem 2.4.9 with

0 <k <1 be fulfilled. Then H is a surjective operator.

Theorem 2.4.12 . Let X be a uniformly convex Banach space and H be a

nonexpansive mapping on X satisfying the hypothesis (II) of Theorem 2.4.9

with 0 < k < 1. Then hx = x + Hx 1is surjective.

Definition 2.4.13. Let H be a real Hilbert space. We call a mapping

T:H>H coercive if for all x € H, (Tx,x) > c(||x|])|]|x]], where
¢ is a real-valued continuous function defined on /R + and such that
c(t) = as t -+ = .

We now state without proof the following result and its corollary
due to Edmunds § Webb [18] which will be used in the proof of the next

mapping theorem.

Theorem 2.4.14. Let T : H- H be densifying and suppose I - T is

coercive, where I is the identity map. Then I - T 1is surjective,

i.e., given any y € H there exist x in H such that x - Tx = y.

Corollary 2.4.15. Let T be a l-set-contraction such that (I - T)

§ is coercive and maps closed balls into closed sets. Then I . 1s

surjective.

The following result is due to Edmunds & Webb [18].

Theorem 2.4.16. Let H be a real Hilbert space and let T : H->H be

. I -T is
a densifying quasibounded operator with ITI < 1. Then

surjective.
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Proof. Let & > 0 be such that |T] + § < 1. Then since

((I - T)x,x)

[1%]]

for large enough ||x|| , I - T is coercive. The result now follows

2 Q- T] - &) |Ix]]

immediately from Theorem 2.4.14.

Edmunds & Webb [18] gave the following corollary:

Corollary 2.4.17. If T is a l-set-contraction such that I - T maps

closed balls into closed sets and |T| <1, then I - T is surjective.

Proof. This follows easily from the Corollary 2.4.15.

Remarks 2.4.18. (i) Various special cases of Theorem 2.4.16 are known

apart from the classical result with T linear and ||T|| < 1; for
example, the situation for T completely continuous was dealt by
Granas [24] while Nashed § Wong [34] and Fucik [20] dealt with sums of

completely continuous and contraction maps.

(ii) Theorem 2.4.16 is also true for k-set contractions
k < %J in Banach spaces. Obviously, when X is a uniformly convex

space, it is enough to assume in these results that T is a k-set-

i ith k < S
contraction wit 528 °
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CHAPTER III

Some Applications of Fixed Point Theorems

In this chapter we shall be discussing a few applications of some

of the fixed point theorems established in the last two chapters.

The following illustration due to Shrinbot [48] will give us some

intuitive idea of how fixed point theorems can be applied to various

everyday situations:

pal SOl

Feasibility of an orbit by which a satellite would revolve around
earth and moon is the type of question to which mathematicians apply
fixed point theorems for infinite-dimensional surfaces. The element of
time in any equation for the orbit makes the problem infinite-dimensional,

reducing such simple theorems as Brouwer's theorem inapplicable.

3.1. Application of Contraction Mapping Theorem

Here we apply the principle of contraction mapping to prove the

existence and uniqueness of solutions obtained by the method of successive

approximations.

-y
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. dy
Example 3.1.1. Given ix - £f(x,y) s y(xo) i A (*)

where f£(x,y) 1is continuous in a plane region G containing (xo,yo)

and satisfies a Lipschitz condition with respect to y as follows:
|f(X,Y1) - f(X:Y2)| §_MIY1 - Yzl

We shall show, by means of the principle of contraction maps, that on some
closed interval |x - xo| < d there exists a unique solution y = ¢(x)

of equation (*) satisfying the initial condition.

This important statement is in fact known as Picard's theorem.

Equation (*) is equivalent to the integral equation

X

$(x) =y, + j f(t,e(t))dt.
X

0
Since f(x,y) is continuous, we have [f(x,y)| < k in some region
G' C G and which contains the point (xn,yo). Select a d > ¢ such
that
(i) (x,y) € 6! if |x - xol <d, |y -y| <kd
(ii) Md < 1.
Let C* be the space of continuous functions ¢*(x) which are defined on

|x - x ] <d and are such that

lo* (x) - yol < kd. Use the metric d(¢1,92) = s§p|¢1(x) - ¢,(x)| on C*.

C* is a complete space since it is a closed subspace of the complete space

of continuous functions on a closed interval with the sup. metric.
Now consider the map ¢ = F¢ defined by

X
v(x) = Yo * j f(t,4(t))dt where |x - xo] < d.
x
)

We claim: F is a contraction map of the complete metric space C* into

itself.
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Let ¢ €C* and |x - x| <d. Then

X
[vex) -y | = | J £(t,¢(t))dt| < kd.

X
0

Thus, y¢(x)e C* or F(C*)c C*.

X
J [£(t,0,()) - £(t,4,(t))]|dt

%o

Moreover, [y (x) - y,(x)|

IA

< Md sup [¢y(x) - ¢5(x)]
X

and so sup |y (X) - P, (x)| < Md sup |¢,(x) - ¢, ()|
x x

i.e., d(F¢1»F¢2) <a- d(¢1:¢2):

where o = Md < 1.

Hence, F 1is a contraction mapping and thus there exists a unique ¢ ¢ C*

such that F¢ = ¢ , or the integral equation has a unique solution, or
the differential equation (x) has a unique solution satisfying the given

initial condition.,

Example 3.1.2. By a Fredholm equation (of the second kind) is meant an

integral equation of the form
b
f(x) =2 J KOLYEXdy +6(X) « 0 o 0 o v o o v o v o (1)
a

involving two given functions K and ¢ , an unknown function f and
an arbitrary parameter A . The function K is called the kernel of the
equation, and the equation is said to be homogeneous if ¢ = 0 (but

otherwise non-homogeneous).

Suppose K(x,y) and ¢(x) are continuous on the square a < X < b,

a<y<b, so that in particular
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[K(x,y)] < M(a <x<b, ac<y<hb).

Consider the mapping g = Tf of the complete metric space C[a b] into

itself given by
b
gx) =1 J K(x,y)E(y)dy + ¢ (x).
a

Clearly, if g; =Tf; , g, = Tf, , then

d(g;,82) = max |gy(x) = go(x)]
X

< M - a) max [£f1(x) - £,(x)]
x

= [x] M - a)d(f,,£,),

so that T is a contraction mapping if

1

lxl<m .........--.....(2)

It follows from Theorem 1.1.12 that the integral equation (1) has a unique
solution for any value of ) satisfying (2). The successive approximations
fo,fl, ceny fn’ ... to this solution are given by

b

fx) =2 J Kx,y)f_,(¥)dy + ¢(x) (0 = 1,2, eee)s

a
where any function continuous on [a,b] can be chosen as fo. Note that
the method of successive approximations can be applied to the equation (1)

only for sufficiently small |i|

Example 3.1.3. Next consider the Volterra equation

X
f(x) = A j K(x,y)f(y)dy + ¢(x), P &)
a

which differs from the Fredholm equation (1), by having the variable Xx

rather than the fixed number b as the upper limit of integration. It

is easy to see that the method of successive approximations can be applied
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to the Volterra equation (3) for arbitrary A , not just for sufficiently

small |[A] as in the case of the Fredhclm equation (1).
In fact, let T be the mapping of C[a b] into itself defined by
’

X
TE(X) = A J K(x,y)f(y)dy + ¢(x),
a

and let f£,,f, € C[a Then

»b]’

X
IT6, () - TER(x)] = A [ KG,y) [£,() - £,0)]dy
a

< AM(x - a) max |f,(x) - £,(0)] ,
X

where M = max |K(x,y)| .
> 9% 4

It follows that

X
|T2£, (x) - T2f,(x)| < A2MZmax |f,(x) - £,(x)] J (x - a)dx
X a

2
= azme =8 max [£,00 - £,
X

and in general

Ty (x) - T E2(x)]

I A

n
A" Q—;—,a—)— max |£,(x) - £2(x)|
: X

n
ot L2 nax |0 - £200]
: b

which implies
(- a)"
n -
d(T"E,, T£,) < A Mt 2 AL fl)-
But given any A , we can always choose n large enough to make

n
- a
b = ) <1,

i.e.. T is a contraction mapping for sufficiently large n. It follows

from Theorem 1.1.15 that the integral equation (3) has a unique solution

for arbitrary A .
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Remark 3.1.4. Equation (3) can be regarded formally as a special case
of (1) by extending the definition of the kernel, i.e., by setting

K(x,y) =0 if y > x.

Example 3.1.5. In this example, we apply the Corollary 1.1.18 to show the

existence of a unique solution to the scalar differential equation

dx (t)

T - f(x(t),t) , x(@)=c, t€ [a,b] ... .. . (4)

where f(u,t) is continuous in t for any u €/R and it satisfies the

Lipschitz condition
If(UI,t) - f(uZ,t)l iklul - U2| 3 ul,uZ GR ’ te [a,b] . s e (5)
and b is any finite number bigger than a. The mapping 1z = Fx defined

by
t
z(t) = c + J f(x(s),s)ds . . « « o o o o . . . - . . (6)

a

maps C(a,b) into itself. The mapping z = Kx defined by
z(t) = ekk(t’a)x(t) , A>1, t€(fa,b] , ... - .. . (7N

also maps C(a,b) into itself and has an inverse defined by the function

e Mk(t-3) 15 show that k" YFK is a contraction, let y;,y2 € C(a,b)

and then
t
L ) [ e 2y ), 5

a

FKyp|| = max

-1 -
K leky, - K
[ Y1 ]

_ £y, (s),5)]1ds |

t
e Mk (t-2) J ke By (s) - ya(s)lds
a

< max
t€fa,u]
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-1 -xk(t-a)
< max AT(1 - -
cetab] (1-e vy - vl
-1
iAHyl-yzH............(8)

. -1 .
Since A > 1, K "FK 1is a contraction,

Example 3.1.6. Let us consider the integro-differential equations, with

the following form in the simplest case:

o0

x(t) = j K(t,s,x(t -s))ds , . . .. ... ... ... (**)
)

or in the integral form:

t
x(t) = ¢(to) + J dt j K(t,s,x(t - s))ds
)

%

with the initial conditions x(t - s) = ¢(t -s) for t - s 2t where

the continuous function ¢ can differ from zero only on a finite segment.

If in equation (**) the functions f and K are continuous,

=}

J K(t,s,0)ds converges uniformly for t, <t f-to + h; where h; > 0,
0

and K satisfies a Lipschitz condition in the third argument, then there

exists a unique continuous solution of (**) for t, sttt + h, where

h is sufficiently small, and this solution may be found by the method
of successive approximations.

Contraction mapping principle is used in the proof of the above which
can be found in ElSgole [19].

Next, we shall apply the contraction mapping theorem to the calcula-

tion of the inverse of a bounded linear operator. In this connection it

may be noted that if X is a Banach space then the space of bounded

linear operators B(X,X) is also a Banach space.
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Theorem 3.1.7. Let L be a map in B(X,X) that has a bounded linear

inverse in B(X,X). Then for every M & B(X,X) such that

[IlL - M]| f_l/llL—lll, M has a bounded linear inverse M1 ip B(X,X),
-1 -1 -1,,2 -

and LM A= B a - - g ey p.

Proof. Put A =M. L, Then N=1p1"! + R is an inverse for M <=>
MN = NM = I. We can write the equation MN = I as

YoM =1, or LB= -ap- ALl

@+ AL e B) =1, or Ll R e AL
or B=-L7'AB - LML) 1f we put £(B) = -17laB - L7aLl,  this
fquation has the form B = £(8). Since |[£(8) - £(8')]] =||-L7\ags - B1)|]
S HSTHTIAIL 1B = 8001, and (LY ] AT} = J8)) pe - w)) < o,

f is a contraction on B(X,X). It has a unique fixed point B. Then

MN = I. Similarly, the equation N'M = I can be

-BAL”h - LAY ifwe put N = L7l 4w BY. By the

L+ Ayt n

expressed as B'
Same argument, it has a solution as well. Now N' = N'I = N'(MN) =

(N'M)N = IN = N. Therefore N = N' is the unique inverse of M. More-

over, the contraction mapping theorem tells us that

-1 -1y e ST - : < 1 £00) -
L A R T A TR T TR T ou_l_”M,Hleu 0) - o]
_ Al ) HUHQEHI
- Al et T - al) et

3.2 Application of Schauder's Theorem and

Monotonically Decomposible Operators

It may be noted that for applying Brouwer's Theorem (Theorem 1.2.19)

and Schauder's Theorem (Theorem 1.2.21, and 1.2.22), no information 1s

. : ; . se
needed concerning the norms, distances, Lipschitz constants, etc. The
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theorems have been used very often, perhaps the Schauder theorem is one
of the most important theorems for the numerical treatment of equations

occuring in analysis.

Examples are given for finite systems of linear algebraic equations (Schroder
[47]), for nonlinear vibrations (Reissig [43]), etc. Let us give a

simple example,

Example 3.2.1. Consider the vector-differential equation

X'(t) = AE)X(E) + g(t,X) v v v v e e e e e e e 9
with a given matrix A(t) and a function g satisfying
[g(t,x) - g(t,0)] < s(t)a(|x]) ,

where s(t) is a continuous function of period p and q(x) is a

continuous, monotone, non-decreasing, bounded function with q(0) = 0.

Then the Brouwer's fixed point theorem for a sufficiently large

sphere gives the existence of a periodic solution of (9) (Reissig [43]).

3.2.2. Monotonically decomposible operators: The operator T mapping

the domain D of a partially ordered space R; into a partially ordered

space R, is called syntone, if v <w for all v,we D implies

Tv < Tw and is called antitone, if from v < w, it follows that Tv > Tw

for all v,w € D.

The following theorem is due to Collatz [12]:

Theorem 3.2.3. 1In the equation

7 10
u=sTu+r="Tu. (10

he form
in a partially ordered Banach space R we suppose, that T has t
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T, + T, where T, is syntone and T, 1is antitone, and that T,,T, are
continuous and defined in a convex domain D of R. Let the iteration

procedure

Vn+1 = Tlvn + Tzwn + 7

el = len + T2vn +r N ¢ Y|

(n =0,1,2, ....)
start with elements Vs woé D with
V. <V <W] <W N V)

If T maps the interval M = [v,w] for some n>0 intoa
relatively compact set, then there exists at least one element u € Mn
with u = Tu.

It is quite elementary that T maps M into itself; (M is

the set of all elements 2z with v.o<2 5-wn) one has

MnDMmleMn, B ¢ &3

The existence of a fixpoint is given by Schauder's theorem. The condition

of compactness is often satisfied for integral operators.

Example 3.2.4. (Basic Example): Let A = (ajk) G, k=1, ..., n) be a

matrix with real elements ajk' In the case ajk >0 is A syntone, for

a.p < 0 is A antitone; but every real matrix A is monotonically
J —

decomposible: A = A; + A, with A; syntone, Aj antitone. Let

A= (lajkl) be the matrix of the absolute modules of elements ajk’ then

one can choose 2A; = A+ A, 2A; = A - A.
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In the same wyay, every real kernel K(x,t) can be written as

K(x,t) = Kj(x,t) + Kp(x,t) with Ky > 0, K <0. Then the operator

Tju = JKj(x,t)u(t)dt e e e e e e e e e e .. (18

B
is syntone for j = 1 and antitone for j = 2,

Every Hammerstein-operator of the form

f(x) + I K(x,t)o(u(t))dt . . . . . . . . . . . .. (15)
B

with real K and a function ¢ of bounded variation is monotonically
decomposible. ¢(z) can be written as ¢(z) = ¢,(z) +¢,(z) with

monotone, non-decreasing ¢, and monotone, non-increasing ¢,.

Then the operator

Tu = J K(x,t)p(u(t))dt = Tyu + Tou . . . . . O ¢ 1))
B
with Tlu = J [K1¢1(LI) + K2¢2(u)]dt
B
and Tou = J [K1¢2(U) + K2¢1(u)]dt

B

is monotonically decomposible.

Example 3.2.5. (Numerical Example): Consider the problem of solving the

Hammerstein-Equation

1
u(x) =1+ J [x - t|[u(t) - %—uz(t)]dt . (17)

0




N
W
2 0
In the range u(x) >0, W1
1
T\v = j |x - t|v(t)dt is syntone, and 1
0
1 (! -
T,V = - E-J |x - t]v2(t)dt is antitone.
0
b
0 v, 4
Here v = o, L 2 give '
Fig. 1

1
with (11), v; =1 - J [x - tlé-- 4dt = 2(x - x2), w; =2(1 - x + x2)
0
and (12) is satisfied, see Fig. 1, and a solution u(x) exists with

V1<U<W1.

Example 3.2.6. The following example shows the direct applicability of

Schauder's theorem. In the determination of the stationary temperature

distribution in the presence of chemical reactions, we are faced with

the boundary value problem (r2 = x2 + y2 )

2 + ae© on B(r <1) N ¢ 1))

- v2y
u=1 on the boundary 3B of B(r = 1)

We consider first functions u, and u; which satisfy

-v2u; =12 + a exp(x,) on B, uj =wu = 1 on 3B.
The trial solution

uy =1+bQ - r2) + c(l - ")

yields
a exp(uo) = 4b + (16c - 1)r2 .

"

o S
[e))

1}

The condition u, = 1 for r =1 requires that c¢

(1 + ae) - %-b .

88.
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It turns out that (this was done by computer)

u (r; 0.54) = Vo s uy(r; 0.54) = v, , uo(r;'0.64) =Wy > u(r; 0.64) = w,

satisfy the condition (12), see Fig! 2. Thus the inclusion V) SU < W,
holds; the greatest deviation between vy and w; occurs at the origin

where we find

v, = 1.552,446 < u < w, = 1.627,446.

Cases where the contraction theorem fails. The application of Banach

contraction principle is sometimes met with difficulties, since a suitable
Lipschitz constant has to be found; there are also cases where suitable
starting elements of Schauder's theorem are difficult to find. Examples
are easily given where the contraction principle theorem does not apply
at all, but Schauder's fheorem does; for example, the boundary value

problem
y' = £(xy) L, ¥y =y, , y@) =y .. ... ... .. (19)
can be written in the form y = Ty by introducing a Green's function

G(x,s)

L0570z 0F 04 a3 06 07 04 09 0

T et

Fig. 2.
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1
Tz(x) = g(x) + J G(x,s)f(s,z(s))ds T 1)
0
where g(x) is a given function. If f£(x,z) for fixed x, is monotone

in z, but aflaz is unbounded, then there is no finite Lipschitz
constant and the contraction theorem is not applicable whereas Schauder's
theorem may be. A simple example for this case is the following problem:

y"=x+J , y0O =0 , y) =1 .. ... ..... (2D

It is easy to find functions Vo V1sW ¥ which satisfy condition (12)

and all of which satisfy the boundary conditions and
S A L B S (N

(the positive square root not to be taken); for example,

S

x3 _23 8 5/7 _ a2
v, = X2, vy =X - 3= , W} = §EX - ek A 2¥x - x)° .

(7]

Since all the assumptions of Schauder's theorem are satisfied by these

functions, the following inéquality holds for some solution of (21):

vy < y(x) < w; .

3.3. Application of Densifying Mappings

In this section we study the question of the existence of the
solutions of the following equation of neutral type:

x' (t) = f[t, X(t), x(t - hl(t)), x' (t - hz(t))]- (22)

If the function f£(t,x,y,z) satisfies a Lipschitz condition in the

i i d k respectively
variables x,y and 2z, with constants kx’ ky an 2? P s

with k_ < 1, then, under minor additional assumptions, the question of
Z

the existence of the solution is easily reduced to the contraction mapping

principle.
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Here we shall dispense with the Lipschitz condition in the variable x
and y. To prove the existence theorem in this case we shall apply
the fixed point principle for densifying operators due to Furi §

Vignoli [22] (see Theorem 1.2.48).
We shall consider (22) in conjunction with the initial condition
x(t) = xo(t) (-h <t <0) e V)

where xo(t) is a fixed function defined on the (finite or infinite)
semi-interval (-h,0]. By a solution of the problem (22)-(23) we shall
mean a function x(t) (-h < t < H] that satisfies the initial condition

(23) and the following three requirements:
(a) x(t) 1is continuous on (-h,H];
(b) x'(t) exists almost everywhere on (-h,H] and is pzh-power integrable,
p>1;
(c) almost everywhere on [O,H]
x'(t) = ft, x(t), x(t - hy(t)), x'(t - h,(t))].

We shall denote by E(0,H) the set of continuous functions on [0,H]
having a derivative that is pzh-power integrable; this set becomes a
Banach space with the natural linear operations if we put

F an
Hxllg = Tlxll¢ + ”"'”ap »  (see [11). or any
function x(t) € X(0,H), where X is a Banach space, we put
xo(t) , ~h<t<0
%(t) - x(t) , 0<t<H

Together with the problem (22)-(23) we consider the following operator

equation in the space E(0,H):
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y = Iy ] . L] » . . . . . - . . - . . . . (24)

where the operator I is defined by the formula

t
Iy(t) = x_ + J £[s,y(s) , ¥(s - hi(s)) , ¥' (s - hy(s))]ds
0

(xy = x,00)) .
It is not difficult to verify that if the function xo(t) is continuous
and its derivative is pEE-power integrable, then the equation (24) is
equivalent to the problem (22)-(23) in the following sense: if x(t)
is a solution of the problem (22)-(23) then its restriction y(t) to
the segment [0,H] is a solution of the equation (24) and, conversely
if y(t) is a solution of the equation (24) then the function x(t) = y(t)

is a solution of the problem (22)-(23).
The following lemma due to Badoev § Sadovskii [1 ] gives some

properties of the operator I.

Lemma 3.3.1. Let Eo be the set of functions in E(0,H) that satisfy

the condition x(0) = X, Suppose that the functions xo(t), hy (t)

and f£(t,x,y,z) satisfy the following requirements:

(I xo(t) is continuous and bounded and xé(t) is pE—-power integ-
rable on (-H,0];

(I1) -H + t 5-hi(t) <h+t ({A=1,2;0c<tc<H);

(III) hy(t) and h,(t) are measurable on [0,H]:

(IV)  the function q(t) =t - hy(t) is such that

(a) the inverse image of every set of measure zero 1S measurable,
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(b) for any measurable subset M< [0,H] satisfy the condition
qM) < [0,H]), we have the inequality uM < ruq(M) (where

the number r does not depend on M);
D) f(t,x,y,z) 1is defined for 0 <t <H and all real x,y and z;
(vI) f(t,x,y,z) 1is measurable in t for any fixed x,y and z;
(vi1) f(t,x,y,z) is measurable in the pair x,y for fixed t and z;
(VIII) f(t,x,y,z) satisfies a Lipschitz condition in 2z :
[£(t,x,y,21) - £(t,5,7,25)| <k|z1 - 2] ;
(IX) for any R > 0 we can find a function mp(T) € LP(O,H) such that
|£(t,x,y,2) | < mp(t)
(0<t<H; lx-xol , ]y-xolf_R;—°°< z < =),
Then the operator I is continuous from E into Ej .

Our next task is the construction of the set K that appears in
Theorem 1.2.48. We fix R > 0 (so that, when -h <t <0, we have the

inequality Ixo (t) - xol < R) and let K; denote the set of functions

in Eo that satisfy the inequality Ix - xol IE < R. We choose H>0
to be so small that the following inequality holds:

H
j no(©)dt + | Img()] [, <R.
0 p

Then IK; € K, . Indeed,

HIx-xOHE ||Ix—xo||C+ H(IX)'HLP

H
J |£[s,x(s), ¥(s - hy(s)), X' (s - hy(s))] ds

0

| A

Al

Ia
el
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The set K; 1is convex closed and bounded, but the operator I is not
densifying on this set, in general. We put KX = co IK;, where co
denotes the convex closure. It is not difficult to see that the set K

is also convex, closed and bounded, with IKC K.
The following lemma is due to Badoev § Sadovskii [ 1]:
Lemma 3.3.2. Suppose that the conditions of Lemma 3.3.1 are satisfied.
Suppose in addition that the following condition is satisfied:
1, if p>1,

1
*x) . ... krP < 1
5 if P = 1.

Then the operator I is densifying on K, if H 1is sufficiently small.

From Lemma 3.3.1 and 3.3.2 and Theorem 1.2.48 we obtain the following

result due to Badoev § Sadovskii [ 1] on the solvability of the problem

(22)-(23).

Theorem 3.3.3. Let the functions xo(t), hi(t), ha(t) and f£(t,x,y,2)

satisfy the conditions (I)-(IX) and (*). Then the problem (22)-(23) has

a solution x(t) that is defined on some semi-interval (-h,H] (H > 0).

3.4. Application of Quasibounded Mappings

We consider nonlinear integral equation of the form

t b
x(t) =w(t) +u J F(t,s,x(s))ds + A j G(t,s,x(s))ds
a a

(25)

ini mbers, and
where A and u are real parameters, 2 and b are finite nu s

the functions F,G and w satisfy certain conditions to be specified
b 4
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later. Clearly, the usual nonlinear Volterra equation and the Urysohn
equation are special cases of (25). Integral equations of the form (25)
arise in a number of problems in ordinary differential equations, in
particular, certain classes of singular perturbation problems. One can
consider equation (25) in the operator form x = Tx. However, it turns
out that the applicability of the method of successive approximations
directly to (25) as well as general existence theorems for fixed points
of T is rather limited. See Willet [55] for an example and further

discussions of this point.

The purpose of this section is to obtain some existence theorems for
integral equations of the Volterra-Hammerstein and the Volterra-Urysohn
type in the function spaces Lp[a,b] and c[a,b] using the fixed point
theorems established in Section 2.1. Similar results can be obtained in
other function spaces, e.g. Lp, imposing appropriate conditions which
ensure the complete continuity, quasiboundedness and other properties
of the operators under consideration. For the sake of simplicity, we

confine ourselves to conditions which seem useful in practice and do not

attempt to impose the weakest possible ones. The extension of our results

to system of equations, to integral operators where the integration is over

i n when x is a
some measurable subset in jR , as well as to the case

function of t with values in some Banach space requires minor modific-

ation.

3.4.1. An Existence Theorem for the Volterra-Hamwerstein

Equation in Ljy[a,b].

We consider here a special case of (25) in the following form:




96.

t b
x(t) = w(t) + u J V(t,s)x(s)ds + A J k(t,s)g(s,x(s))ds . .. . .. (26)

a a

where we assume the following conditions on V, k and g:
(Al) k(t,s) is measurable in both t and s and satisfies

lx]|” = J sz(t,s)dtds <w
a a

(A2) g(s,u) 1is continuous in u, measurable in s, and satisfies
n l-Bi
lgs,u) - ul < ] g;0s)ul + g,(s)
i=1
for a<s<b, and -=<u<=,b vhere g € Ly and g. € Lz/ai ,
0 f_Bi <1, for i =1,2, ..., n.

(A3) V(t,s) is measurable in both t and s, and satisfies

, (bt
V] =J Jvz(t,s)dsdt<m S ¢4

a a

The following result is due to Nashed & Wong (34]:

Theorem 3.4.2. Under the assumption (Al)-(A3), the integral equation (26)

has a solution x € Lp[a,b] for each w € L; and each pair of real

numbers u and A with |A] < KT

Proof. Define the operators V,H,T in the space w,[a,b] as follows:

Vx

t
J V(t,s)x(s)ds ,
a

Hx

]

b
J k(t,s)g(s,x(s))ds ,
a

Tx = w + uVx.
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It is well known . " under assumption (A3) that for each

u, the Volterra equation x = uVx has only the trivial solution.

Using this fact and the Fredholm theory, it may then be shown that the

Neumann series fir the inhomogeneous Volterra equation x = w + uVx is

convergent in the mean for any u and for each w¢€ L, if and only if

the kernel V(t,x) satisfies assumption (A3). Since V is bounded, it

follows from the theory of resolvents that the radius of convergence of
N

=\ -1
the Neumann series is equal to (jlim ||Vn||é) . Thus, in this case

we have

1
m (VT o= 0 ..o (28).
n>w b
Denote Nu(t) = g(t,u(t)) and Ku(t) = J k(t,s)u(s)ds ;
a

thus H = KN. Under assumptions (Al) and (A2), it is known that N is
continuous and bounded and K is completely continuous on Lz, from

which it follows that H is completely continuous.

b [ (b » %
U O K(t,s) (g(s ,x(s)) -x(s))ds) d'}

2
1-8, 1
J (Z g; ) |x(s)| +g (s)] ds
B. 1-8.
b 2 1 1
(J LTRSS
a

|l || denotes the L, norm unless otherwise specified. Thus the

From (A2), we obtain

|1Hx - K] |

| 1] |

IA

/“““\

Ilkll

|154:

Ia

here

operator H is quasibounded with quasinorm 1| = ||x||. For given A

with |A] <—T%q—-, we may choose n so large in (28) such that

[Vl < 2= Al 1.
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Now that the assumptions of Theorem 2.1.8 are all realized, the conclusion

follows immediately.

Remark 3.4.3. Consider (25) with G(t,s,x(s)) = 0 and F(t,s,x(s))

satisfies the following condition:

|F(t,s,x(s)) - F(t,s,y(s))] < V(t,x)[x(s) - y(s)|

for all t,s and x in their respective domains of definition. If we
assume that the Lipschitz constant V(t,s) satisfies instead of 27)
the following stronger condition:
t 2
sup j [V(t,s)]| ds = M2 < «
a<t<b ‘a

then a simple induction yields

%
[V - V] < ™ -(9‘—312) [u - v,

nl!
where V is the operator defined by the right-hand side of (25). Conse-
quently, the operator V' for sufficiently large n becomes a contraction
and the existence of a unique solution of (25) in this case follows from

the classical contraction mapping principle.

3.4.4. An Existence Theorem for the Volterra-Urysohn Equation in the

Space cla,b].

Here we consider the existence of solution of the nonlinear Volterra-

Urysohn equation (25) under the following assumptions:

(Bl) F(t,s,x(s)) satisfies the Lipschitz condition:

[F(t,s,x(s)) - F(t,s,y(s))]| < a(s)|x(s) - y(s)| - - . (29)

for some integrable function « on [a,b].
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(B2) G(t,s,x(s)) is such that the Urysohn operator U defined by

b
Ux(t) = J G(t,s,x(s))ds,
a

maps the space (C[a,b] into itself, is completely continuous and quasi-

bounded (see Remark 3.4.6).
The following theorem is due to Nashed § Wong [34]:

Theorem 3.4.5. Under the assumptions (Bl) and (B2), if for some positive

number n > |u| ,

b
[A] |U|exp[njm(s)ds]<1-lﬂ—I O (1))
a

then equation (25) has a solution in C[a,b].

Proof. Define a new norm on Cf[a,b] by

t
N(x) = sup {exp [- n Ja(s)ds] |x(t)|} J N <3 )
a<t<b a

where n is a positive number, n > |u] and satisfies (30). Clearly the
norm N(x) is equivalent to the sup norm [1x]] = sxt1pb x(t)| .
a<t<

t - . »
Let Tx =W + u J F(t,s,x(s))ds. Using the definition of T, (29) and
a

(31) we obtain the following estimate:
t S
|Tx(t) - Ty(t)] < | Jana(SJ (lx(s) - y(s)|exp [— nJoa(T);l dT) exp

n
s
E J a('r)d'r:( ds
o
t
< |—L-‘l N(x - ¥) {exp [n Ja(r)d‘r} -17,
I, a

from which we have
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N(Tx - Ty) :inL'N(x -y,

i.e., T is a contraction with respect to the new norm N(x). We
complete the proof by applying Theorem 2.1.6 to the space C[a,b] with

the norm N(x}. Fronm (31) and Definition 2.1.1, we have

inf sup N{Ux)
Ocpce [[x[[2p NV

b
lUl exp [n j a(s)ds]
a

Since ,u,n satisfy (30), so IAUIN <1 - lﬁl- s and the theorem

U]y

IA

follows immediately.

Remark 3.4.6. Conditions guaranteeing complete continuity of the Urysohn

and Hammerstein operators in L, and C[a,b] may be found in Krasnoselskii

(301, [31].

Remark 3.4.7. Theorems 2.2.13 and 2.2.17 can be applied to obtain

existence theorems for mixed nonlinear integral equations of Urysohn-
Volterra and Hammerstein-Volterra types in locally convex topological

vector spaces in the similar way as done in this section.

3.5. Application to Stability of Fixed Points

and Solutions of Nonlinear Operator Equations

In this section we study the stability of fixed points and solutions

where we apply some fixed point theorems already proved in Section 2.2.

All throughout this section X denotes a Hausdorff locally convex topological

vector space and P be a family of seminorms that definesthe topology of X.




101.

Let K be a collection of continuous maps on X whose domains are
such that if Ao€ K, x, € domain of Ao’ then Sp(xo,r) € domain of

Ao for r sufficiently small. Let T be a topology on K. Suppose

Aoe K, yoe X and ono = Yo

Definition 3.5.1. The solution x, of Aou =Y, is called p-stable with
respect to (K,T) if for each r > 0 there exist d > 0 and a neighbour-
hood Q of Ao such that for all y € Sp(yo,d) and A€ q , there eicists
an x & Sp(xo,r) such that Ax = y. The solution X, is said to be a
stable solution with respect to (K,T) if it is p-stable solution for

every pé& P.

For A€ K, (xo,A,r) will be called a p-admissible triple if

§p(xo,r) is contained in the domain of A.

Let Kp be the class of all continuous maps B from open subsets of
X into X which are such that I - B is p-completely continuous. If
(xo,Bo,r) is a p-admissible triple and b > 0, then QU(xO,Bo,r,p,b)
will denote the collection of all b & Kp such that (xo,B,r) is a
p-admissible triple and p(Bx - Box) <b for all «x €.§p(xo,r). Let

T be the topology on Kp generated by taking the collection of all
P

such QU as a subbase.

Now define

ﬁp(xo,T,r) = v lsupp(Tx - Tx_)[p(x - x)) = 1}

and  n, (x,,T) inf{rlﬁp(xo,T,r) < 1}.

Note that stability for the class K can be reduced to consideration

of equations of the form on = 8.
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The above definitions are due to Cain & Nashed [8 ]. The following

result is also due to Cain & Nashed [8].

T .5.2. = =
heorem 3.5,2 Let Bo (3 Kb and suppose Boxo =9 . If np(xo,I - Bo) =0,

then X, is a p-stable solution of Box = 6 with respect to (KP’Tb)'

Proof. Let e > 0 be given. There is an r, 0<rc«<e, such that
R = ﬁp(xo,I - Bo,r) <1l. Let a and d be positive numbers such that
a+d< (1 -R)r. Let B€E QU(xo,Bo,r,p,a) and y € Sp(e,d). Consider
the mapping F on §p(xo,r) defined by Fx = x - Bx + y.

Clearly F is p-completely continuous since B € Kp. If F maps
asp(xo,r) into §p(xo,r), then by Theorem 2.2.7 it has a fixed point
X € Sp(xo,r). Then Bx =y, with x € Sp(xo,li C:Sp(xo,e), which proves

the theorem. Now we show that F indeed maps BSp(xo,r) into §p(xo,r):
P(Fx - Fx ) < p(x - B)x - x) + p(Bx - Bx) + p(y)

and p(x - Box - xo) j_ﬁp(xo,l - Bo,r)r = Rr.

Hence p(Fx - xo) <Rr+a+d<Rr+r-Rr=r.

If KC is the class of all continuous operators B from open subsets

of X into X which are such that (I - B) 1is completely continuous, and
if 7& is the topology of KC generated by taking as a subbase the sets
QU(XO,Bo,r,p,b) for all p € P, then we have the following result due

to Cain § Nashed [8]:

Corollary 3.5.3. If Bo 3 KC and Boxo = 0 , and if np(xo,I - Bo) =0

for every p € P, then X, is a stable solution of Box = § with respect

- T]
to (KC,.C,.
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We next turn our attention to the question of stability of sums of

operators.

If xo € X, Ao is a continuous operator, and U € U, then we shall
say (xo,Ao,U) is an admissible triple if X, * U ¢ domain Ao. (Recall
th-:. U 1is the neighbourhood system of the origin obtained from P). Let
C; be the collection of all continuous operators A which are such that
(I - A) 1is a p-contraction for every p € P. (Hereafter called simply
a contraction). For AO in C; ,p€P, a and b real numbers, and
(xo,AO,U) an admissible triple, we define Ql(xo,Ao,U,p,a,b) to be the

collection of all A in C; such that

(i) (xo,A,U) is an admissible triple,
(ii) p(YA - Ao)x - (A - Ao)xo) < bp(x - xo) for all x € X, * U,
(iii) p(Ax° - ono) < a.
We define T; to be the topology on (; obtained by taking all such @,

as a subbase.

Let C, be the collection of all continuous operators B which are
. tained
such that (I - B) has its ranﬁgg}%lgecompact set. For R}é C,, pPE€P,
r a real number, (xO,BO,U) an admissible triple, we define

i € such that
Qz(xo,Bo,U,p,r) to be the collection of all B & G,

(1) (xo,B,U) is an admissible triple, and

(ii) p(Bx - on) <r for all x€x + U.

We define T, to be the topology on C, with all such g, as a subbase.

Next let C = C; x C; be the cartesian product of C; and GC;

endowed with the product topology T=T, xT, . Suppose K, 1s an

-
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operator such th - = .
P at I K, Sy * T, for (I - So’ I - T,) in C.

Our next definition is also due to Cain & Nashed [8 ].

Definition 3.5.4. The solution X, of Kou =Y, is called stable with
respect to (C,T) if for each U € U, there is a neighbourhood § of
(I - So’ I- To) and a W& U such that for all ye¢ Yo * W and

(I -8, 1-T)€Eagq, there exists an x € X, + U so that Kx =y, where

I -K=S8+T,.

Recall the definition of Rp(xo,To;) and Qp(xo,To,a) from Definit-

ion 2.2.4. For p € P define
ap(xo,To) = inf {a|0 € Qp(xo,po)}
The following result is also due to Cain § Nashed[8 ]:

Theorem 3.5.5. Let X be complete. Suppose Koxo = Yy» where

I - Ko = So + To for (I - So, I- To) in C. If vp + ap < 1 for every

p € P, then X, is a stable solution with respect to (C,T). (\b is p-

contraction constant of So and ap = ap(xo,To)).
Proof. Once again we shall, without loss of generality, take Yo =8 - Let

n
U= /I\riV(pi) € U be given. (ref. the observation made after the Definition

2.2.1). For each i =1,2, ..., n, there is a s > 0 such that

v etc. Choose
i

Now choose positive constants a,,

Ly * vy < 1 and 0 € Qi(xo,To,;i), where v; denotes

s; £ T; so that Ri(xo,To.Si) <g;-

b.,c.,d., for each i=1,2, ..., n, so that
1 1 1

bisi +a, 2ci + di < (1 - Ly - vi)si.
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n
Let B=I-TE [D Qz(xo,I - TO,U,pi,ci),

n
and A=1-5 €',:\ R)(xg,1 = S,,U,p;,2;,b.).
n
Also let W = /I\ d,V(p;)-

Suppose y € W and consider Sx + Tz + y for all x and z in
n
X, + U*, where U* = /I\ s;V(p;). We shall show that Sx + Tz + ye€ x, + U*:

Sx + Tz + y - X, = Sx + Tz + y - Soxo - Toxo

(Sx - Soxo) + (Tz - Toxo) +y

(A - Ao)x - (A-A )xo + Sox - SOx0 + (A - Ao)xo

o

+

(Tz - Toz) + (Toxo - Txo) + (Toz - Toxo) +y
where Ao =T - So' Now for each i = 1,2, ..., n, we have

Pi(Sx + Tz +y - xo) f.Pi((A - Ao)x - (A - Ao)xo) + pi(Sox - Soxo)

+

pi(A - Ao)xo) + pi(Tz - Toz) + pi(Tox° - Txo)

+ p; (T2 - Tox) + p; )

|A

bipi(x - xo) + vipi(x - x))ta; e+ cy
* Ri(xo’To’si)si * pi(Y)

(1 - gy - vp)sy + (vg * 5585 = 85

|A

x, z € x_+ U*, we have Sx + Tz + y € X * U*; thus

So, for every o
by Theorem 2.2.14, there is a point xe x +U* so that

Sx + Tx + y =x or Kx=y, where I - K=35+ T.
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Remark 3.5.6. If we take To = 0 1in Theorem 3.5.5, we get a stability
theorem for the fi::sd point of a contraction mapping on a complete

locally convex Hausdorff topological vector space X. We note, however,
that it is possible to formulate other notions of 'contraction" for which
the fixed point is not necessarily stable. Let w0 be an open neighbour-
hood of 6 € X, Xy € X and W= X, + Wo. Let F : W~ X. We say that

F is a weak contraction if there exists a convex, closed and bounded

vC Wo such that x,y€ W and y - x € AV imply F(y) - Fx) € AaV
for some 0 <o < 1. Let F be a weak contraction on W into X, and

F(x,) = x, € (1 - a)V. Then there exists a unique fixed point x of F,

x € X, + V. However, this fixed point is obviously not necessarily stable.

We now obtain as an application of Theorem 2.2.14, a sufficient

condition for a mapping to be open, which generalizes conditions given 1n

Reichback [41], [42], Kasriel & Nashed [26].

Recall that a mapping F : X > Y is open at a point y_ € F(x) if

is an interior point of F(X); that is, if there is a neighbourhood

Yy

o

N of y_ such that N& F(X). It follows easily from Definition 3.5.4
o

i i K
that if Ku =y, has a stable solution with respect to (C,T), then

i i ker conditions which insure
is open at vy . We can, however, find much wea

that K is open at Y . To this end, define

¢p(xo,T) = inf {aIQp(xo,T,a) $ ¢}

j.e. I - K=8+T

and suppose K 1is as defined earlier in this sectionm,

for (I -S,1-T) in C.

The following result is given by Cain & Nashed [8 1:
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Theorem 3.5.7. Assume X is complete., If Kxo =Y, and for some

p€ P it is true that vp + ¢P < 1, then K is open at Yo
Proof. We may without loss of generality, take Yo =6 . Choose ¢ so
that Qp(xo,T,g) $+ ¢ and vp + <1, Let se€ QP(xO,T,c) and choose

d<@1-¢- vp)s. We shall now show that Sp(e,d) is contained in the

range of K.

Let u e Sp(e,d) and consider p(Sx + Ty + u - xo) for x and y

in Sp(xo,s);

p(Sx + Ty + u - xo) p(Sx + Ty + u - Sx0 - Txo)
S P(Sx - Sx) + p(Ty - Tx) + p(w)
< Vs + s +d < s,
B
Thus, by Theorem 2.2.14, there is an x € §p(xo,s) such that
SX + Tx + u = x, which proves the theorem.
An immediate application of this result is the following theorem due

to Cain § Nashed [ 8] giving sufficient conditions for certain operators

to be onto maps.

Theorem 3.5.8. Let B : X - X be a continuous operator such that T(X)

is contained in a compact set, where T = I - B. Suppose for each x &€ X,

there is a p € P such that ¢p(x,T) < 1. Then the range of B is X.

Proof. B is open at each point of B(X) from the previous theorem, so

B(X) is an open subset of X. We shall show that B(X) is also a closed

subset of X, and hence B(X) must be all of the connected space X.
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To show B(X) is closed, let x be an accumulation point of B(X)
and let {ya} be a net in B(X) such that y_- x. Let x, be such
that Bx = y_. Then {’l‘xa} has a convergent subset, say {Tx'a}. Since

= w! ' v '

Bx' = x' - Tx',, and {Bx a} and {Tx a} converge, we then know that

{x'a} converges. But Bx‘a-‘ri, so x € B(X). Thus B(X) is closed,

and the theorem is proved.
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