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Abstract

In this thesis, we study the unit group U(ZS) of the integral sewigroup ring 4 of
a finite semigroup 5. Throughout, we assume that, Z§ has an identity, and. unless
mentioned otherwise, it is assumied that QS is a semisimple Artinian ring.

In the first part, we study large subgroups of U(ZS). VFirst, two types of units

are introduced: the Bass cyclic units and the bicyclic units. T are appropriate

generalizations of the analogous gronp ritg case. Tn the main theorem, it is shown

that, as in the case of integral group rings, both the Bass cyclic units and bicyelic
units generate a subgroup of finite index in U(ZS), for a large class of integral
semigroup rings. Because the proof ultimately relies on the celebrated congraence
theorems, one has to exclude some semigroups which have some specific Wedderburn
simple components of degree 1 or 2 over Q.

In chapter 3, we deal with some examples. We consider the class of semigroups

S that are monoid ions of el y B

An algorithn is given
Lo compute generators for the full unit group 4(ZS). The algorithm is then applied
to a specific example.

Finally, we classify the semigroups such that the wnit group U(Z9) is either finite

or has a free subgroup of finite index. The former extends Higman’s result. lo the

case of semigroup rings.
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Introduction

The unit group U(12) of w ring /2 is a fascinating object at the cross roads of

several mathematical topics, such as group theory, representation theory, number
theory and ring theory. Some of the important and best known cxamples for which

ated are the ring of algebraic integers Oy of a number

this group has been in
field K of finite degree and the integral group ring ZG' of a finite group G. The
unit group U(Ox) is described by the classical Dirichlet unit theorem. It is a direct
product of the finite group of roots of unity of O (the trivial units) and a free
abelian group of rank ry + 1y — 1, where vy and ry are such that dimq K = ry + 2ry
and K has vy real and 2, complex embeddings. 1t is still an open problem to
describe free generators of this free abelian group, even for cyclotomic fields. In the
latler case, however, the cyclotomic units generate a subgroup of finite index.

In case: (7 s a finite abelian group, Higman showed an analogue of the Dirichlet

unit. theorem: U(ZG) = £G x Fy where I is a frce abelian group of rank (/G| +

|+ 1y = 2¢), where ny is the number of cyclic subgroups of G of order 2 and ¢
is the number of cyclic subgroups of G. Again, in general, frce generators for /*
are unknown, but one can obtain a large subgroup of U(ZG). Bass and Milnor
constructed finitely many generators for a subgroup of finite index in U(ZG). These
units are called the Bass cyclic units and are closcly related Lo the cyclotomic units.
In case (7 is nonabelian much less is known on the structure of the unit group
U(ZC). Recently, Jespers and Leal have constructed, in terms of some non-central
idempotents, a finite set of generators of a subgroup of finite index of U(ZG) for
all groups satisfying some restrictions on the Wedderburn simple components of

degree | or 2 over Q of the rational group algebra QG. The restrictions are such



that the celebrated congruence theorems hold for the maximal orders in these simple
components. For many groups, such as nilpotent groups of odd order, it then turns
out that the Bass cyclic units together with the bicyclic units generate a subygronp
of finite index in U(ZG). The bicyclic units are all the units of the type 14 (1 - g)hif
and 1+ gh(1 — g), where g,h € G and § = 30, ¢, n the order of g, These vesults
are a continuation of the work started by Ritter and Sehgal. We refer the reader to
a recent survey on the topic by Schgal [37); note that, in the latter, only the nits
of the type 1 + (1 — g)hg arc called bicyclic units. Earlier surveys on the topic can
also be found in (18], [27] and [36].

The ring of algebraic integers in a number field of finite degree and the integral
group ring of a finite group both are Z-orders in a semisimple Artinian ring. [ this
thesis, we study the unit group of the integral semigroup ring 48 of a finite semi-
group S. Unless otherwise stated, we assume that 25 is a Z-order in a semisimple
Artinian ring, that is, we assume that ZS has an identity and QS is semisimple
Artinian. Munn showed that the latter is cquivalent with § having a principal so

ries with completely 0-simple factors such thal the respective sandwich matri

are

invertible over the group algebras of maximal subgroups.

In Chapter 1, we introduce the basic definitions and notations. We also re-
call some essential results from the theory of (semi-)groups, (semi-)group rings and
orders.

In chapter 2, we study subgroups of finite index of U nnit group U(ZS). First,

two Lypes of units are introduced: the Bass cyclic units and the bicyclic units. These

are of their analogues in the gronp ring case. 'To define

these units, it is sufficient to note that, essentially, all that is needed is a finite cyclic



subigroup in S, In the main theorem, it is then shown that, as in the group case,

under some restrictions, both the Bass cyclic units and the bicyclic units generate

a subgroup of finite index in U(ZS). Again, hecause of the celebrated congruence

ictions are such that certain Wedderburn simple components of

theorems, the rest
QS5 of degree | or 2 over Q have to be excluded. The main outline of the proof is
as follows. IMirst one shows that the group generated by the proposed units contains
a subgroup of finite index in the centre of U(ZS). In some sense, it will be shown
that the Bass cyclic units “exhaust” the centre. Sccond one shows that, for every
srburn component My(D) of QS, 2 < n, D a division ring, the group

simple Wi

genevated by the Bass cyclic units and the bicydic units contains a subgroup of
finite index in the special linear group SL(n, ©), where O is a maximal order in D.
To prove the former part is *hardest”; we will make use of the fact that the result is
known for integral group rings. The proof of the second part is, in some sense, casicr
than in the group ring case, because there are more idempotents in semigroups than
i groups, and thus there are many more bicylic units. Hence, making use of the
wiethods developed by Jespers and Leal, this proof will follow rather immediately.
In Ghapter 3, we investigate some examples. We consider the class of semigroups

are monoid extensions of elementary Rees semigroups. These are in some sense

the “easiest” serigroups not previously dealt with ing units. An algorithm

i given to compute generators for the unit group U(ZS) of such semigroups. The
algorithm is then applied Lo a special example,

Tn the last chapter we classify the semigroups such that the unit group U(ZS) is
cither finite or has a free subgroup of finite index. In particular, we extend Higman’s

result to the case of semigroup rings.



Chapter 1

Semigroups and Integral
Semigroup Rings

Our study of the unit group of the integral semigroup ring of a finite semigronp

is in the first place based on the structure theory of finite semigroups and on the

characterization of seisimple Artinian rational semigroup rings of inite semigronps.
A sccond important, though clementaty, fact is that to study large subgroups of
% — orders, one may often replace one Z — order by another.

In this first chapler, we therefore collect the basic definitions, notations, and e

structure theory for finite semi The characterization of le Artinian

integral semigroup rings is recalled. And finally we include some background on
unit groups of Z — orders.

We try to keep the same notations and terminologies as in (1], [23] and [29].

1.1 Basic semigroup definitions

A semigroup S is a non-empty set with an associative operation, We will denote

this cperation multiplicatively. If, morcover, § has an identity 1 then it is called a



monoid and U(S) = {s € S| sr =rs =1 for some r € S} is called the group of
invertible clements of S. A monoid § with S =U(S) is called a group.

IF S is a semigroup without an identity, we can adjoin one simply by adding a
new clement 1 and extending the multiplication by defining 1s = s1 = s for all
5 € SU{1}. We denote this new semigroup by S'. If S has an identity already,
then we agree that §1 = S.

An element. z of semigroup S is  zero of S if it is a loft and right zero, that s
28 = z= sz forall s € S. If § has a zero element, it will usually be denoted by ¢
or 0. A null semigroup is onc in which the product of any two elements is the zero
element 0 (so a null semigroup must have a zero). In a very similar way to adjoining

an identity, we can always adjoin a zero clement 0, and we write S° = S U {0} for

P -

zerocs often si

this new

A sub igroup of a semij Sisa pty subset which is closed under

multiplication. A subgroup G of § is a subsemigroup which is a group. Note that
the identity of G nced not be the identity of S (indeed S need not even have an
identity). We will denote the union of all subgroups of S by GR(S).

For a scmigroup S, the subset Z(S) = {z | zs = sz for all s € S} is called
the centre of S. It is a commutative subsemigroup of S, that is, any two elements
commute with cach other,

An clement e of semigroup S which satisfies ¢ = ¢? is called an idempotent.
We write [5(S) for the set of idempotent elements of a semigroup S. The set E(S)
can be partially ordered by e < fif and only if ef = fe = e. If e € E(S) , then
eSe = {ese | s € S} is a submonoid of S. Note that eSe = {s € § | es = se = s},

the set of clements of § for which ¢ is an identity clement. Let H, = U(eSe),



the group of units of the monoid eSe. Then M, is a subgroup of S and it is the
largest subgroup for which e is the identity clement. Such subgroups are called the

mazimal subgroups of S. Since ¢ is the unique idempotent element of I, there

isa t d: between i and maximal subg Note

that distinct maximal subgroups are disjoint.
For a non-cmpty subset A of a semigroup S, we write (A) for the subscmigronp

generated by A. If Ais finile, say A = {a), as,..., ay}, we often write (0, ay )

instead of (A). A semigroup S is cyclic if § =

s) for some s € S. An element, s of
a semigroup S is a periodic clernent if (s) is finite. A finite cyclic semigroup always
contains an idempotent.

A homomorphism of semigroups is a function [:§ — 7' from a semigroup S Lo
a semigroup T' such that f(st) = f(s)f(t) for all s,L€ S.

A non-empty subset / of S is said to be aleft (right) ideal of S il it is closed under
leJt (right) multiplication by elements of S. A non-empty subsct [ of § is said to e
an ideal of S if it is both a left and right ideal of S. If $' has a zero element 0, then
{0} is always an ideal of S. The ideal gencrated by a it

If I isan ideal of S, the Rees factor semigroup S// is the set (S'\ 1)U {0} subject

§'aS' = SaSUSaUaSU{e}.

to the multiplication “ o” defined by the formula

_fstitstgl
"’“{a irstel

1.2 Structure of finite semigroups

The basic building blocks of the structure theory of finite semigroups are the simple

and O-simple semigroups.



Let S he a semigroup. We say that S is a simple semigroup if it has no ideals

other than S itself. This definition is not very interesting if S has a zero clement 0,

for in that case {0} is always an ideal of S. So we say that a semigroup § with a

2r0 is a0 — simple semigroup if (i) 5 # {0} and (ii) {0} is the only proper ideal

o 8.
A scmigroup § is a completely 0 — simple semigroup if it is O-simple and it con-
tains a primitive idempolent, thal is, a minimal non-zero idempotent with respect

to the carlier defined partial ordering.

Proposition 1.2.1 {4, Lemma 2.26, p.67] Let S be a scmigroup with a zero 0 such
that {0} is the only proper ideal of S. Then cither S is O-simple or § is the null

semigroup of order 2.

Note that if S does not have a zero and § is simple, then S° is 0-simple. This
means that any results about O-simple scmigroups can be casily applied to sim-

emigroups.  For this reason, we will usually restrict our attention to 0-simple

ple
semigroups.

Let S be a semigroup with a zero. A strictly decreasing series
S=8D28D228D 8 ={0}

is a principal series if cach S; is an ideal of § and there are no ideals of S strictly

between i and Sigy, that is scach §;/Siyy is cither the null semigroup of order 2 or
a O-simple semigroup.
Note that our definition of principal series differs slightly from that of [4]. Our

series ends with the zero ideal rather than the empty set. Of course, this restricts



our definition to semigroups with zcrocs, so we will always adjoin a zero hefore

considering principal series.
Proposition 1.2.2 Finite semigroups always have principal scrics.

Note that the analoguc for semigroups of the Jordan Holder-Schreier Theoren

serts that the principal factors of any two principal seri

somorphic (in some
order).

To describe the structure of completely 0-simpl~ semigroups, we need Lo fntro-
duce more notations.

Let G be a group, ny and n, positive integers, and leb P be any X 1y makrix with
entries from G°. For g € G°,i € {1,2,...,m}, and j € {1,2,...,ma}, write (g);j

for the 1y x ny matrix with (i, j)-eniry g and all other entries equal to 0 = o

MO(G my,n; P) be the set whose elements are all such (g)i;, with all (0);; identified,

and define a multiplication on this set by

AB=AoPoB,

where A, B € M®(G;ny,ny; P) and * o’ denotes ordinary multiplication of matrices.
So, ()i;(h)u = (ypseh)a, where py; is the (i, j)-cntry of the matrix 2 = (p;). Theset
MO(G;ny,na; P) endowed with this operation is a semigroup, called a ftecs matrix
semigroup. Its zero clement will also be denoted simply by 0. The matrix I is called
the sandwich matrix. Also, P is called regular if it has at least one non-zero entry

in every row and column. A Rees matrix semigroup of the form MY({1}; 7y, nz; 1),

where {1} is the trivial group, is called an cl y Rees malris semigroup.

Clearly these semigroups have only Lrivial subgroups.



Theorem 1.2.1 [}, Theorem 3.5, p.94] A finile semigroup is completely 0-simple if
and only if i is isomorphic with a fiees malriz semigroup MOG; 1, ng; P), where
P is a regular sanduich mnalriz and G is a finile group,

The following is now casily verified (see for example (23, p.1])

Lemma 1.2.1 If § = MO(G;ny,miP) is a complelely O-simple semigroup with

sundwich malriz P = (p;;), then

(i) {;')i € S | pji # 0} is the scl of non-zero idempotents of S;

(ii) for anyi, j, if pii # O, then

SL’)’ =G ()i — apji
is an isomorphism, where
S8 =ll9)s€S1g €6

(iii) the mazimal subgroups of S are all Gij= S\ {0}, with pjs #0.

1.3 Semigroup rings and Munn Algebras

Definition 1.3.1 Lel 2 be an associative ring with an identily and lel S be o
(semi-)group. Then the scl RS consisting of all formal sums of the form
a= Za,s
s
vith only finitely many nonzro cocficients a, € R, is called the (semi-)group ring of

fhe (semi-Jgroup S over the ring R when it is cquipped with the following addition,



0

iplication and scalar multipli (only nevded when defirving a (semi-) group
algebm):
a+f= (Zn.s) + (Z b,a) =D (at by)s
S€S JES 2€S
and
B=y ,.q) (Zb.l) =Y abust=)"cs
S tes ales ESN
. (z) Pl
€S €8

wherea =3 . 0,5,0=3,csbl € RS, and r€ R,

e = [ S i) #0
=00 ifAz)=0

and Az) = {(s,t) € §x 5 | st=2z}.

In particular, QS and ZS are the rational and integral (semi-) group rings, where
Q and Z denote the rational field and the ring of integers respectively.

Similar to the centre of a semigroup; we denote by Z(R) the centre of ring 1y
thatis, z € Z(R) if andonly ifzr = rzfor allr€ R.

Let S be a semigroup with zero 0. By the contracied semigroup algebra §
over R, denoted by 1S, we mean the factor algebra RS/RO. Thus, S may be
identified with the set of finitesums Y a,s witha, € R, s€ S\ {0}, subject Lo the

componentwisc addition and multiplication given by the mle

_ [ itst#0
’°’—{o ifsl=0

defined on the basis $\ {0}. If $§ has no zero clement, then we put /2,5 = I2S.
From the definition it follows directly that, for any semigroup §, we have /245" %

RS°[RO = RS. We will often use the following extension of this fact.



Proposition 1.3.1 23, Lemma 7, p.38] Let | le an idel of a sermigroup S. Then
IRo(S/1) 2 RSIRT.

Proposition 1.3.2 (2, Conllary 9, p.98] Assunc that S has a zero clement. Then
128 = RO QRS(1 —0)= ROO RoS = R® RoS.

This and the fact that, for any S, RS"= R@R.S° 2R RS , will allow us to
swilch from one of the algebras RS, RS to the other whenever convenient. Also,
it isclear thal RS is semisimple if and only if RS is semisimple.

Now, we describe an important. class of (contracted) semigroup algebras, called

Munn algebms, arising from completely 0-simple semigroups. The construction of

a Munn algebra is rather similar to that of a Rees matrix sermigroup. Again ny and
724 are positive integers, but instead of a group G, we now consider a. K —algebra A,
where A is a commutative ring. Let P be an nyx 7y matrix with entries in A, The
Munn algebra R = M(A; ny,na; P) is the set of all n; xnp-rmatrices with entries in
A. Mdition and scalar multiplication by elements of K arc defined component-wise.
Matrices mulliply by insertion of the sandwich matrix P;that is, if X and Y aretwo

clements of R, then the product of X and Y is
XY=XoPoY,

where ‘o” again denotes the ordinary matrix multiplication. In case ny = n, and P
is the identity matrix 1, then R = M(A;nq,m;1) is the classical matrix ring over
A. We denote this ring by My, (A). So matrix rings are examples of contracted

semigroup algebras,

Note that if § = M%G;m,m; P) is a completely 0-simple semigroup, then we



will often consider S in a uatural way as a subsemigroup of the Munn algebra
M(RG;m,m; P), lor any commutative ring R. In particular, under this identifica-
tion, thezero 0 € S is identified with the zero element 0 € M(RC5 mym; 1),

The Lemma below([4, p.162-163]) is very important for our insestigations in
chapter 2. The notation M =% N indicates that the algebras M and N are iso-

morphic under the isormorphism iso.

Lemma 1.3.1 lel m andl be two natural numbers. Let T'= MO(Gim, 5 P) be a
finite completely O-simple scmigrowp. Then QT is semisimple Avtinian if and only
ifm =1and P is inverlible in Mn(QG). As a conscquence, if Q' is semisimple:

Artinian, then
(i) Qul' =" M(QG; m,m; P), where 7 is the nalural mapping;

(ii) the mapping [p : M(QG;mm; P) - Mu(QG) : A = Aol is « ring
isomorphism; in parlicular, P~ is the identity of M(QE;rr,m; P);

(iii) if P € M(ZG;m,m; P), thin
Tp(MEG; mymi P)) = My (Z0).

Often in this thesis, we skip the matrix multiplication symbol *o’, This will not
create confusion as it will be clear from the context which product has to be taken.

Gencrally, we have that (see for example 4, Corollary 5.34,p.174] or 23, Theorern
2, p. 173])

Theorem 1.3.1 Let

S% =82 5128 D+ 8n D Supr =1{0s}
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be @ principal serics of o finite semigroup S = SU{0}. Then QS is semisimple
Artinian if and only if $/Siey 2% MO(Giymiymis P), Gy a group, i=0,1,...,n,

and cach P is inverlible in My, (QC). Furlher, if QS is semisimple Artinian, then

Q5" 2 P Qo(Si/Sim1) P Q0s = D MQG;mi,mi; P)© Q0s
i=l i=0

geam, (B M,,(QG:) ©Qls,
i=0

where cach n, [ is defined as in Lemma 1.9.1, and is the natural isomorphism.

Note that if ZS has an identity 1 and QS is semisimple Artinian, then the identity
1is “known™: it is determined by the inverses of the matrices P/s. In general,

determining when ZS' has an identity for any arbitrary semigroup S is difficult.

1.4 Orders and reduced norms

In this section, we recall some elementary facts about orders, norms and reduced
norms.

Let A be a finite dimensional Q-algebra with identity 1. A subring O of A,
1 € O,issaid tobe a (Z)~orderin A ifitis a finitely generated Z — module such
that QO = A. Further, an order O'in A issaid to be mazimal if it is not properly
contained in a bigger order. Every order in A is contained in a maximal order (see
for example, [37, Lemma (4.4), p.18]).

Clearly, the ring Oy of algebraic integers of an algebraic number field £ is an
order in K and the integral group ring ZG of a finite group G is an order in QG.
Similarly, ZS is an order in QS il S is a finite scmigroup such that ZS has an

identity,



It is casily verificd that the intersection Oy N0y of two ovders Oy and Oy in A
is again an order in A Also if O is an (maximl) order in A then M,(0) is an
(maximal) order in My(A) (sce for example, (37, Lemuma (1.2), p.17] and [20, (8.7)

Theorem, p.110]).

Lemma 1.4.1 (97, Lemma (4.5), p.18] Let A be a senisimple finite dimnsionl

Q-algebra with Wedderburn decomposition
A= @oA =04
into simple dgebras A; where ¢; are the primitive centrl idempolents. A; is a full

malriz ring My, (D;) over the division ring D;.

(i) Let A be o mazimal orderin A, Then A=OAi, A= e, Moreows, A isa

mazimal order of A;.

(ii) Any mazimal onder in A; contains O;, where O is the. ring of integers of the

algebraic number field Z;, lhe cenlre of D;.

The following proposition shows that the unil groups of orders are in some sense

closely related. Because this fact is crucial to our investigation, we inelude a.proof.

Lemma 1.42 [87, lenma (4.6), p. 19] Suppose thal O, C Oy are Lwo onders in A,
Then

(a) the indez of their unit groups [U(Os) : U(Oy)] is finile;

(6) ifu € O, is invertible in Oy, then u™ € Oy,

Proof. (a) Since @y and Oy are two & ~ orders, they have the same: rank as % -

maodules. Thus the index of additive groups [0y : O] = [ < co. Consequently,
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0, € O, Suppose wehave 2,y € U(O;) such that 2410, =y + 10, Then
5=y -1 € 10, C Oy. li follows that z7'y € O, Similarly, y='z € 0. It follows
that, [U(O) :U(01)] £ (04 : 10)) < oo

(h) Wes observe that the index of additive groups

[0 : w0\ = [0, : w®)] £ [O; : O)),

which implies that w0, = O, as required. a

Lel K beafield, and A a finite dimensional K-algebra. Each a € A determines
a W = lincar transformation aj,on A, by left multiplication. Define char.pol. pra =
char.pol.i cp,, where char.pol.gay, indicates the characteristic polynomial of aj,.
Then, it is known that [7, p.366]
charpol.ca = det (X1 - (a;;))
= X" = (Tywe) X" 4 -k (=1)" Ny,

where we suppose that 4 = @, K, and

n
ouj = Z i, a5 € A, 1< G <m.

We all 740 the truce map, and N a/ka the norm map, The trace and norm have

the following properties:
T +3f) = ¥1(@) +<7(8) , NaB) = N@)N(), N(ra)=r™N(a),

for s € KNyo,f € A
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Now assume A is a contral simple & — algebra, that is, A is 0 simple & —
algebra with centre K, such that (4 : K is finite. For a € A, define its s-educed

characteristic polynomial as in [20, p.112-113]
redchar.pol.axa = dhar.polh(l & a),

where h is the isomorphism £ @ A= M,(E), (A: K) = and Kis a spliting

field extension field of K. Further, if
red.chanpol. ajga = X* = (@) X" 4 ook (—1)ur(a), e € A.

Then w call Lr(a) the reduced trace of a,and nr(a) the reduced norm of a.
For a (maximal) order 0, we will write (L (1m,0) for the unit. group of M,(©O)
and S L(m, ) for the subgroup in GL(m,0) that consists of all cloments having

reduced norm one.



Chapter 2

Large subgroups of unit groups of
Integral Semigroup Rings

2.1 Introduction

The ultimate aim in studying the unit group U(ZS) of the integral semigroup ring
ZS of a finite semigroup S is of course Lo obtain a full algebraic description of this
group, in particular, to obtain a presentation for this group. But, as explained in the
introduction of this thesis, that is, in general, an extremely hard problem. Even for
commutative groups, this is unsolved. So, as a compromise, we look for generators
of a subgroup of finite index. In the case of integral group rings ZG, many nice

results have beon achicved in the last decade (sec for example [3),31], [32], and so

on). ‘The main result of this development has recently been improved by Jespers
and Leal ([11]) and ([12]), for many groups G. To be more precise, generators for a
subgroup of finite index of U(ZG) are given for all finite groups G which are such
that every non-abelian homomorphic image is not fixed point free , and furthermore,

the rational group algebra QG has no simple components of the following types

(i) & 2 x 2-matrix ring over the rationals;

17



(ii) 2 x 2-matrix ring over a quadratic imaginary extension of the rationals;

a 2 x 2-matrix ring over a noncommutative division algebra.

Recall that a group G is said to be fixed point free (sce for example [32]) if it las
a complex irreducible representation p such that for every nonidentity element g of
G, p(g) has all eigenvalues different from one. These groups were characterised in
a fundamental paper [39] and are well known. Also see [8, p.78] and [26, p.96 and
204). V

The reason we exclude these types of simple rings is that the congrucnee subgroup
theorems for 2 x 2-matrix rings over maximal orders in the respective division rings
fail.

To prove the above mentioned results, it is essential that Z(/ is a Z-order in the

semisimple Artinian ring QG. A natural question thercfore is o investigate if the

results on group rings can be exiended Lo other Z-orders in semisimple Artinian
rings. In this chapter, we consider this question for the integral semigroup ring ZS
(with identity) of a finite semigroup S such that QS is a semisimple Artinian ring

(Theorem 1.3.1), that is, S° has a principal series
§°=8,38 252D 8 D Sup = {0sh

where, for i = 0,1,...,n, cach principal factor MG, mg 1) s

completely 0-simple Rees matrix semigroup with regular sandwich matrix £ (here,
G is a group, and m; is a positive integer), and morcover, the matrix P is invertible

in the classical matrix ring M, (QG;). In the first part of the chapter, we will

therefore mainly deal with the ring of a letely O-simpl igroup. In
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the second part, we then consider the general case. However, for the same reasons as

in the group ring case, we need to exclude the exi f certain simple
of QS.
We hegin this chapter by introducing two types of the Bass-cycli

units and bicyclic units. They are the obvious generalizations of the group ring

noti The hardest part of this chapter is to prove that the Bass cyclic units

“exhaust” the central units. The second type of units is needed to generate sub-
groups of finite index in certain special linear groups. Since completely 0-simple
semigroups oflen contain many idempotents, the latter will be “casy” by making

use of the methods developed by Jespers and Leal in [11].
2.2 Constructing Units

Phroughout the chapter, S is & finite semigroup such that ita integral semigroup
ting S has an identity. Its unit group is denoted by U(ZS).

To introduce the first type of units, we need some notations. Recall that GR(S)
denotes the union of all subgroups of §. For a € S, note that (a) is a cyclic group
if a € GR(S). In the latter case, we write @ = 7, o/, where n is the order of a,

i.c. the order of {a). Note that n~'a is an idempotent in QS.

Definition 2.2.1 Lel ZS be a semigroup ring with identity 1. A Bass cyclic unit
of S is an clement of the form

(1+ Zu’)‘“"’ +—

lw(n)

where a € GR(S), n is the order of (a), ¢ is the Euler function; 1 < i < n, and

(iyn)
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By Bs we denole the sct of all Bass cyclic units of ZS. Further, if § has a zero
element, then the natural image of Bs in the contructed semigroup algebra QoS is

denoted by BY.

Let us first show that such an clement u is indeed a unit of ZS. This can casily
be done using the group ring results and the Wedderburn decomposition of Z({a)).
However, we will give an clementary proof by describing explicitly the inverse of a
Bass cyclic unit. Since (i,n) = 1, there exist two integers, say A and [, such that
ik + In = 1. Further, we can assume that | < k < n. Indeed, write & = nn' 4 &'
for some integers n’ and &’ with 0 < &' < n, then &' # 0 since ik +In = I, and
ik +n(l+in’) =1 with 1 S K <n. As 1 <i <n it follows casily that | < &',
hence showing the claim. It is obvious that then [ < 0. Let
v=(1+a 44 a4 '_'—f‘“a

Then wo =X +Y 4+ W +T, where

X

((+a+-+a™) 1 +a 4o 4 )

[

(L+a+a®+-+a™ +a +a* oo p o g
= (1+(a+a®+ - +a"' +a") +a"(a+a’ +-- +a")

4ot a™0a 4 a? 400 a”))H
= (1-la)*™,

and

ko)
i

Y = (4atatssatypol

((l+a+a7+
n

+ gty ) _ o)



Similarly,

Finally,

S0,

and

Consequently

and

‘Therefore, uv = 1. Since u and v commute, we have shown u is a unit.

= (L4 oo a0 )y

& 4ia
. 7_l1¢l )(1 — k),

1~«U

a
8pdtm) (1 — 4y,
n ( ! )

e (R (LS

| =it | — gt
=

Y4W+T=(1- (ki)“"))g,
wv = (1 —1a)y*™ 4 (1 - (/ci)""))%.

LT (“) 60) = oo —q 8
= (1-la~ +1 Y = (1 — )"_1 :

i

é ? 4(n) — (ki)$m) '_i.
w )+ (1 = (ki) )n

= (= )+ (1= (ki)
- %((‘ —nl)#) 41— (ki)

%((,-k)a..) 1 (ik)#)

i
=
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Important in the construction of the Bass cyclic units is that a € R ,where R is

a ving with identity 1, and that a generates a finite subgroup (possibly with identity
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different from 1). Hence, in this way one can define a Bass eyclic unit in any ving I
with identity 1. It is convenient for further computations to introduce the following
notation. Let z € R be an clement for which the subsemigroup (#) gonerated by

is a finite group. Let n be the order or( )y (i,n) =1, and 1 <i <n, Write

e ,w(v-l

un(®,i) = (1+ Zz’)"("] P

=1

where = Y7, 2/ € R. So, in particular, a Bass cyclic unit in ZS can be denoted by
uzs(a,i). It is clear that if f is a ring isomorphism from R to R then [ (up(e,i)) =
up (@), ).

We now introduce the second type of units.
Definition 2.2.2 A bicyclic unit of ZS is an clement of the form u = 14 (1-a)sd,
oru=1+as(1—a), vhere s €S, and a € GR(S).

Note that these elements are indeed units as they are of the form 1+ o with
a? = 0. We decided to call both units of the latter type bicyclic units. In the case
of group rings, only the elements of the former type were called so in [30] and [37);
however, this will not create any confusion.

For the remainder of this chapter, we always assume that QS is semisimple
Attinian, and it is now devoled to showing that the Bass cyclic units and the bicyclic

units generate a subgroup of finite index, for many semigroups .

2.3 Semigroup Rings of Completely 0-Simple Semi-
groups

Throughout this section, T denotes a finite completely 0-simple semigroup of the

type T = MO(G;m,m; P), where G is a group with identity ¢ and the sandwich



23

matrix I is regular. Further, we assume that m > 1, and that P is invertible in
Mo (QG).
Since P is regular, for any i = 1,2,...,m, we fix a j; € {1,2,...,m} such
that pii # Op. As before, let Gy = T3 \ {0r}. Then GR(T) = Up,,20,Giy and
i Jo(Gi) S [p(GR(T)) = Up,0/p(Gij) = Up,0qGii P (here we refer the
reader to Lemma 1.3.1 for the definition of fp).
In the first part of this scction we investigate what a Bass cyclic unit looks like
in a matrix format. To do so, we first nced the following Lemmas. Further, for

o € %G, A = (ai) € My (ZG), we denote by ad = (aay).

Lemma 2.3.1 Let [ be the identity of Mn(ZG), that is
¢ 0 - 0
0c - 0
¥ i 0
00 )
Lel A = (a,c) € Miu(ZG) be @ matriz with all entries zero excepl possibly those in

the ith row. Then, for any posilive integer n, A" = a3 A, and
(I+Ar=1+8

where
n-1
B=Y (e+a)'A
h=0
Proof. We prove the first part by induction on n; the case n = 1 being clear.

Assume A" = a}7'A. Then A" = A”A = o}~'A*. But, A? = a;A. Hence,

laiiA = alA. We also prove the second part. by induction. It s clear for

A = g

2= 1. Now assume that, for n larger than or cqual to 1,



(14 A)" = I +5A, where s = Y0 (e + ai)t.

Then
U+ A = (I+ A +A)
= (I+sA)I +4)
= I+ A+sA+sA*
= T4 (e+8)A+ 504
= I+ (e+s+sai)A
But

c+s+saq = e+ s(etay)

n-l
= e Y (eag)
h=0

e+ Y (etan)
h=1
(m+1)-1
= Z (e +ai)*.
h=0

Hence the result follows. O

Corollary 2.3.1 Given pj; # Og, then G, P is a subgroup of M.,(Z(;) with identily
(P51 P; the orders of (g)y;, € Gus,y A= (9)ii, P € G, and gp;,; € G are the same.
Furthermore, for any positive integer n

(I+A"=1+8,

where

a-1
B=Y (c+gpii)A.
=
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Proof. That Gy, is & subgroup with identity (p!)i; P of the multiplicative
semigroup M,,(Z() and that (g)i;, and (g)i;, P have the same order follow from
0l

Lemma 1.5.1. By Lemma 2.3.1, for any natural number n, A® = (gpy;)"~! A. Since

5, P is the identity of group Gy, P, it is casily verified that A" = (pj}

Pif

(#;
and only if (gp;)" = ¢, the identity of G.

‘I'he second part follows at once from Lemma 2.3.1. O

In the following Lemma we describe the matrix representation, under the map-

ping [, of the Bass cyclic units defined via the clements of the group G,

Lemma 2.3.2 Lel (g)y;, € G, be of order |, and let d be an integer with | < d < I,

and (d,) = 1. Then
Tr(uzer((9)is2 ) = umtn(ze)([p((9)is,), 4)

= tun(za)((9)i P d) =1+ B

where B = (= ¢)(p;})ii, P and u = uza(gpii, ).

Proof. Let A = ()i, P = (ai) and let A" = (a},) be the matrix 142} A" By
Lemma 23,1, A' = T478(gp;)* A, and thus af, = $4=(9p;.i)*aix, and ), = 0 for
4 # i. So, again by Lemma 2.3.1, (I+ A0 = [4B, where B = Y80 (caf)b A’ =
(bye). Thus

#()=1

bie = ) (et

=0

= (d%‘ ("+ :Z;:i(ypj,‘)kﬂs) h) (f(m.f)*u.,)

k=0

n)



B(1)~1 d-2 W =2
> (C + E(W’j.i)"ﬂﬁ) ) ((»(; + (c + Z(!II'_;..)*(M;)) ﬂ,’,'u,«)
h=0 k=0 k=0

é()-1 d-2 KEe #()-1 d-2 X
= Z <c+2(gp,.f)“n;.) ai'tic — Z («'+Z(!W,..)"u..> azta,
h=0 k=0 h=0 k=0

d-2 ()
= ((e+ Z(.‘”’j.i)kﬂi,> 74.‘) ag'aic
k=0
d-1 @l
= ((Z(m,;)") - u) PidPicr
k=0

and pei= 1 forig 5 Therefore
X “0
(I+APO =1+ (Z(ﬂm.i)") - ") 5)is -
=
Now, by Corollary 2.3.1, A has order [, and thus

-1
A= P+ A
=

-2
= ()a P+ Y (ama)*A
=

=2
B, P+ 3 omia) @), P
=

[

-2
W7D P+ Y (omia) omia) (05, )ii P
=

1-1
Z(.’lﬁj.i) "5, P

h=0

[}

Hence by the previous and Corollary 2.3.1 again

d=1
urn@a)((9)i Pd) = l+(((2(!ﬂu.:)")°"’—
=t

= 1+ (uzalgpiid) = ¢)(

_ i
) ! '[ Z(v/ﬂ,,-))(l',,.)u.

k=0
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Remark: Recall that

uzgr ((9)isd) ™" = vzgr (((ﬂ)v‘j.)dx’l) )

where | < q <1, (q,) = 1, and dq + kl = 1. Hence we obtain that

I (uzor (9 )™

= umnze) (((9)) Pd)™!
Uhin(26) (((a)u.f’ ) »'l)
= UMn(20) (((.r])s;. e, q)

I+c¢

n

where € = (v = ¢)(p71)i, P, and v = uza((gp;a),q) = u™", with u as in the

Lemma 2.

We now give a series of three lemmas to show that the projection on a simple

component of the group generated by the Bass cyclic units and bicyclic units contains

st of diagonal matrices.

Lemma 2.3.3 Lel G be a finile group and let n be a positive integer. There exisls

a posilive number v such that for any u € U(ZG) and any posilive integer v :

where w and 0 denole the images of w and 0 under the natural map from ZG lo

Z,G. We denote the smallest such number v by b(G,n).
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Proof. Let u € U(ZG) and let v be a positive integer. Since [U(Z, ()] = d < oo

we obtain that @ = 1. Thus

nvd-1 = d=1 d=1
3 =Yl at e k) = Y won =0,
= = =

Taking r = nd, the result follows. O

Lemma 2.3.4 Let Py = {I + gPsP(I - gP) | 8,9 € Tyg* = g}. Then the group

< Pp > gencrated by Py conlains the following clements:
{I +gPa(l = gP) | o € [p(n(ZT))},
where n(ZT) = M(ZG;m,m; P).
Proof. Note that (gP)? = gP. Hence, for any k,l € Z;s,5' € T,
(I+gPsP(1 = gP)!(I +gPs'P(I = gP))'
= (I +9PksP(I = gP))(I + gPls' P(] = gP))
= I+ gP(ks + Is')P(I = gP).
Hence the result follows. O

Throughout we denote by fij;,1 < i,j < m, the classical matrix units of

M,n(ZG).

Lemma 2.3.5 Let (g)i;; € Gij, be an clement of order 1, and let d be: an inleger wilh
L<d <t (d1)= 1 Let V= fo(uzgr((a)iind)), v = vac(api, d)y and L= (55

Then, for any positive inleger , V™ has a decomposilion V™ = D" I*, wilh

D= 14 (" = 6B,
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and

F=1+tPu™ ~e)ly(l —LP).
Furthermore, if v is a mulliple of b(G,m(P)), where m(P) is a positive integer such
that m(P)P~' € M (ZG) (such an element always ezists), then I €< Pp >, where

Py is as defined in Lemma 2.9.4.
Proof. By Lemma 2.3.2, V = I + B, where

B = (bye) = (u = e)(pi)ia P
Note that b; = (1~ ¢). So by Lemma 2.3.1,

Vr=(I+B) = I+i‘(e+(u— e))'B
h=0

= I+§u"B = l+§u"(u —e)lP =1+ (u —e)tP.
Let D" and F be dcli:;?l asinthe st:t‘::nent of the theorem. Note that if r is a multi-
ple of b(G, m( P)) then cach integral coefficient of (u="—e) = (u=!~e)((u™!)~"+...+
w="4+¢) is a multiple of m(P) by Lemma 2.3.3. Hence § = (u™"—¢) Ej;P~! is a matrix
with entries in ZG, and thus (u™"—e) By = 8P with B € n(ZoT) = M(ZG;m,m; P).
“Therefore, I € (Pr) by Lemma 2.3.4.

Finally, we check that D 7 is really a decomposition of V" as claimed. Since
Fo= [+ 1P = ¢)By(l — tP)
= |+ UPE(u~" = €)(By — LP)
= I+ Bi(u™ = ¢)(Bi ~ LP)

= 4 (u" —e)(Ei~tP).
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We obtain indecd that
DF = I+ = e)Bi+ (0 = e)(Fig = 1P) + (0 = ) ™" = e)( i = 117)
= I+ [(w ~e)+ @ =e)+ " —c)(u™" =)ty
[ =)+ (" = )T — )P

= I+ —eP=V"
This finishes the proof. o

Lemma 2.3.6 With notations as in Lemma 2.9.5, lel r be a multiple of (¢, m(1”)),
where m(P) is such that m(P)P~" € M(ZG). Then the group generated by fr(BY)
and < Pp > contains the subsel
&
D(P) = {3 wilBit | wis € Bayi = 1,2,...,m},
i=1
where Bg is the sct of Buss cyclic units of ZG and 13 the sel of the natural images

in ZoT of the Bass cyclic unils of ZT.

Proof. Let r be as in the statement of the Lemma and let V € fi( 1), Be
of Lemma 2.35, D" = V" F=! €< [p(B), Pr > . Hence, as Y0, uf; i (with each

u; € Bg) is a product of m such D™s, the result follows. O

In the remainder of this scction, we show that the group generated by /3 and
the images in ZeT of bicyclic units of Z7" is a subgroup of finite index in the: unit
group of the ring ZoT + 2, where [ is the identity of Qu7"

First we need to i some more i Since QG is semisi write

.
Q¢ =P Qle;,

=
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where cach ¢; is a primitive central idempotent of QG, j = 1,2,---,t. Let QGe, =

M., (D;), D; is a division ring, j =1,2,...,L. Then
. .
Mo(QG) = @ Mun, (D) = @D Ma(QG) [,
i=l i=1
where f; = ¢,1,, is a primitive central idempotent of M(QG), M, (QG)S; =

My (D), 5= 1,2, L. Furthermore, let

where A, is a maximal Z-order in M,,(QG)J; containing M,(2G)f;. Let O; be
some maximal Z-order in Dy, j = 1,2,...,L. Then My, (O;) is a sccond maximal
order in Ma(QG)f;. We will write GL; for GL(mnj,0;), its group of units, and
SL, for SL{mn;,O;). We will several times abuse notations by identifying in the

natural way SL; with a subgroup of U(@; Mus, (05)).
Proposition 2.3.1 The centre Z(U(ZG)) of U(ZG) is finitely generated.

Proof. Let K be the centre of D; which is an algebraic number field whose ring
of integers we denote by Oj. Then Oj is an order in K, and [; O; is an order in
I K
Since 2(Q0) = [T, 2(QGe;) = [T, Z(M,(D3)) 2 TI, K, [U(Z(26)) : U((TT, 00
Z(Z(3))] < oo and [U(]]; 0;) : U((T]; O;) N Z(ZG))} < oo from Lemma 1.4.2. By

irst by [18, Proposition 1.10, p.14], the centre Z(ZG) is an order in Z(QG).

the Dirichlet’s unit theorem (sce for cxample [18, Proposition 2.1, p.5]), U(TT; 0;)
is finitely generated, and thus Y(([T; O;) N Z(ZG)) is a finitely generated Abelian
group. It follows that U(Z(ZG)) = ZWU(ZG)) s finitely gencrated. O
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Lemma 2.3.7 Let J be a subgroup oft (M,,(ZG)) which contains a subgroup [T\, |

.
=t s
where Jj is a subgroup of finile index in Sky, j = 1,2, +t. Then the group

(fp(BY),J, Pr) conlains a subgroup of finite index in the centre of U (M, (ZG3)).

Proof. Let r be a multiple of b(G,m(P)), aud let w desote the natural map from
U(ZG) to Ky(ZG)[2). Further, denote by m; the projection of QG onto QCir; =
Moy (D;), 5= 1,2,...,L. Ttis well known that the group generated by w( ) is of
finite index in K,(2G) [2).

Clearly
Z =7 (U (Ma(ZG))) = U(Z (Ma(ZG))) = {255 | 2 € Z (U(B))}.
i=l

Write 2 = Y7, 25 = 2l € Z. Since [U(ZG) : UZG N ] M (O;)] = { < o0
from Lemma 1.4.2, 2! € U(ZG N T M, (0;)), for all = € ZU(Z()). So there
exists a positive integer k (K is independent of z, for example, choosing the index of
w((Bg)) in K\(ZG) ) such that w(z¥) = w(b) € w((Be)), where by € (Be;), that,

is w(z'kb;!

. This means that a suitable matrix

2tkpz!
|

1
is 2 commutator. Therefore, 7;(2*b") € My, (0;) and m;(z%b7") as well as
(5585 s Bave roncnt normyones So; by Uhe ssumibions; ere exiafinnafnral

number v (independent on ) such that. m;(™b™) 1, € Jj, j = 1,2,...,L Note

that since I, (ZG) is abclian, we may assume that b7 is a product of ru-th powers
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of Bass cyclic units. Because of Lemma 2.8.6 5. = 4" I, € (fp(BY), Pr). Hence

t ]
Frikop T = Z ("), € H‘IJ cJ

=1 i=1
Therefore 27 € ([p(133), Pr,J). Then the result follows since rlkv is a constant

and 7 is finitely generated. O

Lemma 2.3.8 Under lhe assumplions of Lemma 2.9.7
(fr(B), Pr, J)

is of finite indes in U(Mn(ZG)).

Proof. Since I = X f;, A = @ Ay, and Mo (ZG)f; C Aj,

M(ZG) S Y Ma(ZG)f; € Y A

“Then by Lemma 1.4.2, [4(A) : U (M(ZG))] < oo. It is easy to check
Z(UN) N U (M (ZG)) = Z (U (Mn(2G))) .
Hence
1% (U(N) : Z (U (Mn(ZG)))) < oo.

Lemma 2.3.7 yiclds that (fp(B%), Pr,J) contains a subgroup V such that
(4 U (M (ZG))) : V] < 00. So[Z (U(A)): V] < oo. Furthermore, since Z (U(A)) =
T1 % (U(A)), we obtain (£ (U(A;)) : VRZU(A;))] < 00. Now V 2 [IVNZU(A;)),
s0 it follows that (fp(B}), Pr,J) contains a subgroup K = ] K, where cach K; =
V N ZU(A;)) 0 Z(GL;) is of finite index in Z(GL;).
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Clearly, KjJ;is of fnite index in GL; and thus (fp(BY), £r,J) contains a sub-

group of finite index in the unit group of the order I Mun, (0;). Hence it also

contains a subgroup of finite index in Z(A). Since (f( BY), Pr, J) S UM (ZG)) €
U(A) the result follows. O

Next, we construct a finite sol of gencrators for a group J with the propertics ax

in Lemma 2.3.7.

Lemma 2.3.9 Let ¢ be @ nonzero idempolent inI' (vecall that 1 < m). Then LI f;

is a non-centrl idempolent of Ma(QG)f; = Mu(QGe;), for 5 =1,2,...,1.

Proof. For the sake of simpliciiy and convenicnee, we may assume that I = (¢)y
(see for example [4, Corollary 3.12, page 106]). Now Z(M(QGe;) = {Et, el |
¢ € 2(QGe;). Tt follows Ut () Pfy = el Xy miei B = Sisy muesEy =
ce;Bu+ ST apues B # 0, and ()1 Py ¢ Z(Ma(QC) siticem > 1. Hen

result follows. O

the

Lemma 2.3.10 Assume thaim > 2 and let t be @ nonzero idempotent in'l's Ll

Jup € My (ZG) be the group generated by the clements:

T+ PsPI — 1)

14 (1=1P)sPIP,

where s € T Then Jip contains @ subgroup of finite indes in §ky = S L(mn;, O;),

F=d2pele
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Proof. By Lemma2.3.9, P f; is anon-central idempotent of M, (QG) ;. Thercfore
the result is proved as in Proposition 3.2 in [11]. O

Note that the assumption i > 2 ensures that the assumptions of Proposition 3.2 in

[11] are satisfied; in particular, one can make use of the congruence theorems.

Proposition 2.3.2 Assume thatm > 2. Then the group generated by B and
{415/ =0, f+(T= st |5, €T, and =t # 01}

is of finile indez in the unit growp of the ring ZoT +Z.f, where f is the identity of

Qo7

Proof. [rom Lemma 2.3.8 and lemma 2.3.10, it follows that the group generated

by fp(B}) and the units [+t PsP(I—tP)and I +(I—tP)sPtP, t ={* # 0r, s€ T,

is a subgroup of finite index in the unit group of M,(ZG), and hencein 35, .q ZsP +

Z1,,. So the result follows from Lemma 1.3.1. O

2.4 The Main Theorem

We arc niow in a position to prove our main result. Recall that S is a finite semigroup

such that QS is a semisimple ring and such that ZS contains an identity 1.
Belore the proof of the main theorem, we need the following fact in group theory.

Lemma 2.4.1 Lel A;, | < i <n, be groups with identitics i, and¥;, 1 <i<n be

subgroups of the product A = [, A; such that, for each i, (%) is o finite indez

subgroup of A; and mi(U) = ¢ for j < i, where n; is the natural projection of A

onto Ai. Then, the group generaled by |J;U; is a finite indez subgroup of A.
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Proof. We prove the Lemma by induction on n. 1t is clear for n = 1, Now assume

that the Lemma is true for n (1 <n). Thus if A =[] Aj, then A = ([T

i=1

A) x

Ang1 = C X Ay with € = [T, A Leb g @ A = C be the natural projection.
The group generated by mc({Jp, ) is a finitc index subgroup of € because we can
apply the induction hypothesis to the groups mc(U;), 1 < i < n. Therefore, it is
sufficient to prove the Lemma in case n = 2. So let A = A; x Ay, and write A =
Ugmi(U)arg and Ay = Upma(Ua)as, each a disjoint union of finitely many cosets,
Then we claim that A = Ug (¥, Ua)(aigyaze), where (&i,Us) denotes the group
generaled by Uy and Uy, Indeced, for any (a;,a;) € A, wrile ay = m(uy)ay,a; =
ma(uz)az, for some u; € Uy, u € Up. By assumption m,(2) = 1. llence (ag, @) =
(my (uaty g, ma(uatyuy age) = gty (arg, ma(uy " Yage). But my(uyYug € Ay, s it

can be written as my(u)ay for some ) € Uy, Thus
(a1,02) = s (ma(w)arg, mali)asy ) = wptestfing, ).
This shows the claim, and hence the result follows. O
Theorem 2.4.1 Assume that if $° has a principal factor
Si/ Sipr = MG miymi; )

with m; = | then G; does not have a non-abelian homomorphic image which is ficed
point free. Further suppose QS does nol have simple components of the following

type:

(i) a non-commutative division algebra other than a Lolully definite quaternion

algebra;



(ii) @ 2 x2 matriz ring over the miionals;

(ifi) @ 2 x 2 matriz ring over a quadratic imaginary cztension of the rationals;

(i) a2 x2 malriz ring over a non-commulative division algebra.
Then the group generated by the following clements is of finile indez in U(ZS) :

(i) the Bass cyclic units Bs of ZS;

(ii) the bicyelic units {1 +§s(L - g),1 +(1—g)sg|s € S,9€ GR(S)}.
Proof. Note that if S does not have a zero element, then ZS° 2 7S & Z0s (a
direct product of rings). Hence to prove the result we may assume that $ has a zero
clement Og.

We know that
QS 2¥ Bl Qo(Si/5i41) © Qs
Further let m; denote the projection of the latter ring onto the i-th sunmand. Let
Ji be the identity of Qo(Si/Si+1)- Then
P(2Z5) C (DoZo(Si/Sist) + 21:) ® Z0s.

Lot ¢; be the subgroup of U(ZS') generated by Bs, and {1 +gs(1 —g),1+(1-g)sg |
3 € S;,9 € GR(S;)}. Then, in casem; > 3, from Proposition 2.3.2 it follows that
(L) is of Rinite index in U (Zo(Si/Sipr) + Zf:) . In case m; = 1, the same holds
becase of the results in [11] (note that m($(ZS)) is a group ring). Finally note
that for cach i and u; € U, m;(%(w;)) = f; for j < i. By Lemma 24.1, the group
gencrated by (U, ) is of finite index in 4 (@:(Zo(Si/Ss1) + Z.f;) © Z0s) . Hence

the result follows. 0
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It is worth mentioning that recently Jespers and Leal in [12] described precisely
when a simple component of the rational group algebra QG of a finite nilpotent
group is of the exceptional type mentioned in Theorem 24.1. As an immediate
consequence one can also classify when an exceptional simple component oceurs in
semisimple Artinian rational semigroup algebras of finite nilpotent semigroups.

Recall that a semigroup S issaid to be nilpolent of class 1, a wotion introduced
by Malcev [20] (see also [17]), il S satisfies the identity X, = Y, and 7 is the least
positive integer with this property. Here we say the identity X, = Y, is salisfied in
S ilz,=yu forall z,y € S and wy,wy,... € § with the lllowing definitions of x,
and y.:

To =%, Yo=U
and, for 0 <n,
Tot1l = InWniilny Ynit = YnWniidn:

By [17, Lemma 2.1, p.986], S = MYG;m,m;P) is nilpotent if and only if € is
nilpotent and S is an inverse semigroup. Furthermore, if § is a nilpotent semigroup
(not necessarily completely 0-simple), then any subsernigroup of S ilself isa ilpotent
semigroup.

Before we state our result, we need some notations of [12].
Qun = (g, | g™ = L* = g™ hgh™ = g~'), m > 2,2|m, the quatemion group
of order 2m,
H(F), the quaternion algebra over a [icld I,
&, aprimilive n — th root of unity,

C.=(g|g"=1), cyclic groupof order n,
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Dyu=(g,h |9 = 1,1 = 1,hgh=" =47'), m>2, thedihedral group of order 2m,
Syt = (g, h| g™ = 1,42 = Lhgh=1 = g=142"") 3 <m,

D =(u,bye 5

1,0c = ca,be = cb,ba = c?ab),

Dt ={a,byefa® = 1, = 1,¢'= 1, ac=ca, cb = be, ba = ca®b),

Dfy= (a,b]a* = 62 = 1,ba =),

Dy = Sis,

G Y I, the central product. of groups G'and H with sore central subgroups identified
(cf. [38, 4.16)), but it will be clear from the conlext which central groups ihese are.

Now, corresponding to Theorerns 2.2 and 2.3 of [12], we have

“Theoremn 2.4.2 Lel S be a finile nilpolent semigroup such that QS is a semisimple

Atlinian ving. Purther, let
§'=80 28D 80+ D8 D Spp={0s}

be a principd series of SO = SU{O}, and S; /St = MGy iy mis Pi), Gi o group,
P e My, (QG), i=0,1,... 0,

n
Qs = P Mn, (QG) © QUs.
=0
Finally, lel ¢ be @ primitive central idempotent of @S

(i) If QSc is @ noncommulalive division ring, then there ezisls some m; =1, and
there erists a primitive central idempolent ¢; in QG such that if Gie; is a
D-group, Gi/Git = Qyy 3 < n, and QSe™ QGie; ¥ H(Q(bpn—r +E512)); If
Gies is ol a 2goup, GifGie; ® Qs X Cy 1 odd, QSe = QGie; ¥ H(Q(E,),

and the order of 2 modulo n is odd.



(i)

(iii)

A0

If QSe™ My(F), and dimq(F) <2, F afield, then there exists some m; = 1,
or m; =2, and lhere exisls a primitive central idempotent ¢; in QG; such that
if my=1 and Gie; is a 2-group, then one of the following siluations oceurs:
(a) QGic; 2 F = Q and Gi/Giei = Dy;

= Q(v2) and Gi/G,
"= Q(v2) and Gi/Gie; 2 Diy;

= Q(i) and Gi/Gic; = D}, D, or D*;

(b) QGie; =
(¢) QGic;
(d) QGiei

= Dyg;

If m; =1 and Gie; is nol 2-group, then QGie; =

= Q(&) and (i) Chier
Dy % Cy, or Qyx Ca; Finally, if m; = 2, then QCie; = Q(E,,) and (i

10

where ;= 1,2,3,4 or 6.

If QSe ™ My(D), with D a noncommulative division ring, then there caists

somem; = 1 orm; =2, and lhere czisls a primitive central idempolent o;

R

in QG; such that if m; = 1, and Gie; is @ Z-group, then QGye;

H(Q(&r-1 +&L)) and one of the following siluations occurs:

(2) GifGie; 2Dg Y Qi
(6) GfCrec ® T U Hg where Il is a narmal subgroup of indez 2 in (/G
such thal I contains a non-lrivial normal subgroup N with NNgNg™ =

{1} and I[N = Qu;

If mi =1 and Gie; is not a S-group, then QCie; = D = H(Q(£,)) and
Gi/Gici = S xCay n an odd number such that the order of 2 modulo n is odd,

and 8 is one of the following groups:
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(1) Dy Y Qu;

(b) (Qs x QACa, the semidirect product;

(c) (&, bye,g | @ = 1" = 1,0b = ba,¢* = & cac™ = a™', che™! = bl g7 =
1,gag™ = b,gby™" = a,gc = eg);

(d) {a,bye,g | at = B = 1,ab = ba,@ = a2 gag™' = b, ghg™! = a~},g% =
)

(¢) (e, bye,9 | @* = 1?,a* = 1,ba = a®h,c* = 1,ca = ac,cb = be,g* = 1,90 =
ag, gbg™" = cab,geg™" = a’c);

(1) (a,byeyg | @ = 8%,0" = 1,be = a®,c® = 1,ca = ac,cb = be,g* =

a,gby™ = Be,geg™" = c);

() {aybyerg | @ = Bat = 1,ba = @3¢ = l,ca = acych = be,g?

]

a,by™ = gb*,geg™" = bc)

Finally, if m; = 2 and Gye; is a 2-group, G;/Gie; = Qan, 3 <n, and QSe
My(QGic;) 2 Ma(H(Q(Exn-1 + €511))); If mi = 2 and Gie; is not a 2-group,
Gifiies = Qy x Cuy 1 odd, QSe = My(QGici) = My(EI(Q(£,))), and the

order of 2 modulo n is odd.

Proof: The results are very clear from Theorems 2.2 and 2.3 of [12] except the last
part of (i) with respect to the possibilities of g;. Now if QGe; = I is a field, then
the subgroup Ge; of I is a cyclic group, say gencrated by ge; and say of order g;.

lence QGe; is

a cyclotomic extension of order g; of Q. Since F is of dimension at
most 2 over Q, g(g:) = 1 or 2 (sco for cxample [7, Proposition 8.3, p.299]). It is

casy to sce that ¢(q;) = 1 implies g; = 1 or 2 and that ¢(g:) = 2 implies ¢ = 4 or
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6. Indeed, let g = pi'p3” ...pf", where p;, 1 < j < I, are different. prime numbers
withp < pp<...<p, and 75,1 < j < 1, are non-negative integers. Then basic
properties of the & tell us that 6(g¢) = [T 975?) = [yl — #™"). Cleatly
&(q) = 1or2implies I <3 If L =1,q; =pi", then d(q;) = | implies &y =0
(e = 1) or py = 2,7y = | (ivc, g = 2); $(qs) = 2 implies oy < & 16 ppy =2
then z; =2 50 g =1, whileif py =3, thenz, = |, 80 g = 3. Similarly, one
can check that if [ =2, q = pi*p2, then glg) = 2implies py = 2, pp = B and
a =y
and 2, % 0,27 # 0,20 # O then ¢(q;) > 2. Therelore, the possibilitios of ¢ are 1,2,
3,4,0r6. 0

xy =a2 = l,ic., g =6. Finally, onealso could check that il I =



Chapter 3

Full Unit Groups: A Class of
Examples

In the previous chapter, finitely many gencrators are constructed for a subgroup
of finite index of U(Z:S) for a large class of finite semigroups with QS semisimple
Artinian, The problern to describe the full unit groups remains open. However we
are able to describe these unit groups for concrete examples of finite semigroups $. In
case Z S is the direct product of the contracted integral semigroup rings Zo(.Si/Sis1)
of the principal factors §;/Siy1 2 M(Gy;m;,my; P) (that s the sandwich matrices
P are invertible in Mo, (2G:)), then U(2ZS) & T] Gl(m:, ZG;). Hence the problem
is reduced Lo malrices over group rings. Now recently (sec for example [10), [13],
(1], [15], [16], [26]) the uit group U(ZG) has been described for several classes
of finite groups . With the same methods one can also describe GL(n, ZG) for
several concrete examples of groups G. More examples of full unit groups can be
found in 1], (6], [18], [19], [21], [24], [28], [30], [33], [34].

In this chapler, we compute U(ZS) for some cxamples of finite semigroups S.

We do this for the “casiest” class of semigroups that does not fall in the above
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mentioned classes of examples. More specially, we consider the class of semigroups

that are monoid ions of cl 'y Rees matrix i MOy, 1)

and we are interested in the case P is not. invertible in M, (Z).

3.1 General Method

Let S = MO({1};n,n; P) be an clementary Reos matrix semigroup and assume that

sandwich matrix P is invertible in M, (Q). Put 7

1 Clearly, Z77 has an identity
and, because of Lemma 1.3.1, QS is sernisimple Artinian.
Write

Qr=QronQr(1 - k) ®Qr(r -10),
and note that

ZICZTOOZT(1 - E) D ZT(1l ~0)

where E is the identity of QS. We denote Z7', Z10, Z'1(1 - I2), Z1'(1 — 0) by
R, Ry, R, Ry, respectively, and denote the sum of Ry, Ry, Iy by . Solt C
R® Ry@Ra = I Since Rand R are Z—orders of QT', we know, from Lemma 1.4.2,
ifla € Rand a € U(R), then a € U(R). In particular, o € U(R) il and only if
afl € U(R), ol — E) € U(Ry), a(ls — 0) € U(Iy). For an clement ov of 1, we

have a close look at its decomposition in /. Write
a=I1+m0+Y n(l)i,
7]
l,m,ny; € B, iyj=1,2,+,n. Then,

a=al+a(l - E)+alli-0),



where

al = (l+m+zﬂu)ﬂ;
a(l-F) = a-al N
= a=lE-m0 = n;(1);
= (1-E), b
and

a(ll=0) = UE - 0)+ Y nij(1);(E - 0).
]
Further, we know that
QS = QIO QS(E-0), h(QS(E-0))= QS

and
QoS =" M(Q;n,m; P) =7 My (Q),

where b is the natural homomorphism from QS to QoS. Thus,

Jr(n(h(a(li=0))) = [p (v ('1(1(’5 -0+ Z“ii(”ii(E . ”))))

Tr (n(W((E = 0))) + Jp (n (h(z"ii(‘)ij(E = 0))))
i

= Lrn(h(E = 0) +fp (n ("(Z w55 (1B = 0))))

= U+fp (q (n(z nij(1)i5)h(E - 0)))

i+ fp (n ("‘Z n.,(1>.,->)) I (n(h(E - 0)))



= U+fp (71 (h(z "-‘i(‘)ij)))
i +2n.,(1).,l’
= U+ (n,,)l’ =l+AP

where I is the identity of the full matrix ring My(Z), and A = (n;) € M (Z). It
follows that U(Ry) = {£0}, U(Ry) = {#(1— E)}, and o € U(R) if and only if I =
£1, bmt T ny = £, and £14AP € W, where W = (£14M, (2) P)0CL,(Z).

In particular, W is an image of the group U(I2), and thus W itself is a group.

Let V = (I + Ma(Z)P) N GLa(Z), and Vy = (I + M(Z)P) N S Ly(Z). 1t is clear
that V and V. are groups since W is a group. Put dp = det P, the detesminant of
P. Then W = £V, and Yy 2 Tdp) = {u = I + dpMn(Z) | del u = 1} hecause
I+ dpMy(Z) = I+ dpMa(Z)(P7'P) = | + Mo(Z)(dpP~")P C 1 + M(Z) 1. So

oty © a8 & SLn(Z4,) (22, Theorem VILG, p.109], where Zy, = 7.

We first show the following.

Lemma 3.1.1 Let Uy(R) = U({1+m0 + 3, ;ni;(1)is | myni € Z,1 < iyj < m)).

Then
UR) .
{1,1-20}y ~ v
Proof: From the above, we know that the map

G (R) =V i14m0+ Y nis(1)i; = 1+ ()P
i
is a group homomorphism. If / + (n;)P € V, then with m = =%, iny, o =
14m0+ T mi;(1)i; € Uh(R), d(e) = I + (ni;)P. Thus ¢ is onto. We claim that
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ker ¢ = {1,120}, Indeed, let ¢ n, and thus

o =1+ m0. Further, a € Uy(R) implies that m=#1—1=00r —2. 0

Note that since I(dp) C Vs, the group V; is of finite index in SL,(Z). Let

{y1,"**,r} be a Lransversal for Vy in SL,(Z).

We need the follo.ving two theorems to carry on our discussion. A proof for the first

one can be found in (22, Theorem VIL7, p.24].

Theorem 8.1.1 If R is a Buclidean ring which is not of characteristic 2, then

SLa(R) is gencrated by

and

. cococo

1
where uw € R. In particular, SL,(Z) is generated by 21,3, = z5(1).

‘I'he next theorem is well known. Since it is essential for our further calculations,

we include a proof (taken from (27, Lemma 1.7, p.117]).

Theorem 3.1.2 Lel G be a group generated by 71, 7s, .., 31, and let H be a subgroup

of finite indez with vight transversal {yy,yzs -+ +rym} in G. Then H is gcnerated by
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the elements h.j, 1 < j <m, | <i<t, which are such that yza; = hiyyy, for some

i'e{l2,...,m).

Proof. Tor fixed i, right multiplication by z; permutes the right cosets of } , and
we have Hy;z; = Hyj for some j' € {1,2,...,m} depending on 7,7. Hence there
exists hy; € H with gz = hijyp. Let Il = (hij | = 1,2,.0,myi = 1,2,...,0).
We show that H = Hy.
Set C = UJ* Hoy;. Then for cach fixed i
Cz; = U Hoyjzi = UY Hohisyy = U Hoy

because hi; € Hp. Thus Cz; = C, because for fixed i, the map j — j' is a
permutation of the subscripts. Now G = (21,2, ..., 2,) yiclds CG = (!, and hence
because C # 0, we have C = G. Suppose, finally, that y; is the unique coset
representative contained in H. Then H is disjoint from all Hy; for j # 1 and

H C G = U} Hyy; so that H C Hoy. This yields I = Ify. o

We now apply the previous theorem to the subgroup Vy of SLa(Z). It follows
that Vy = (u;

Ji=1,2j=1,2,,r), where uy € Vy is such that yjz; = uijyy,
for some j' € {1,2,+++,7},fori=1,2j=1,2,--+,r.

Since [GLa(Z) : SLa(Z)] = 2, [V : Vi] € 2. Let & = {V4,2V3}, where
z is the identity of V if [V : V4] = I; otherwise, choose z € V, and z ¢ V.
Then V = (uiyz | i = 1,25 = 1,2,-,7). Write z = [ + (u))P, and u;; =
I+ ()P, ice (n) = (wy— NP, i= 1,2 § = 1,2, 7. Let

my == 1=y nf, m=%l-1-Y nf,
kI Kt



and let

Uy =1+m0+ Z (e
Kt
Zo=1+me0+ 3 nd(1u,
ki
Zi=1-2.

It is clear that Z; belongs Lo the centre of U(R), and $(Us;) = uij, ¢(Zo) = 2 (where

% is the homomorphism stated in the proof of Lemma 3.1.1).
Proposition 3.1.1

U(ZT) = £U(ZT) = +(Usi, 2 | i = 1,2 § = 1,2, ,wik =0,1).
Proof: lor any a € U(R), @ = af + a(1 — E) + o(E - 0), and

W) = Jp(n(h(a(E ~0)) €V = (wj,z |i= 1,25 =1,2-+,7).

So, a(li — 0) € (Uys(E - 0),Z6(E = 0) | i = 1,2ij = 1,2,+-,7), and thus , by
Lemma 8.1.1, a € (Uij, Z0,Z1 |i=1,2j = 1,2,...,7). O

3.2 A Specific Example

Note that the gencrators constructed in the previous section depend on the matrix
P. We now apply the explained general method to compute U(ZT) for a very

concrete semigroup T

Let
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Let S = M°({1};3,3; P), and T = S". Then, 7' 2 § 2 {0} is a principal series of
T.

Clearly dp = det P =2 and

-
Pl=c 1 1 -1
2l a1

Therefore, V = (I + Ma(Z)P) N GLa(Z) 2 (I + Ma(Z)P) N SLa(B) = V4 2 (1 +
2My(Z)) N SLy(Z) = T(2). Purther, W = (£ + My(Z)P) N Gly(Z) = V since
[+ My(Z)P = [=21+ My(Z)P = [=2P=' P+ My(Z)P = I4(=2P~" 4 My(Z)) P C
I+ My(Z)P. Also, S22 = §1,y(25), where Z; = {0, 1}, and

| SLa(Z3) |= (2* = 1)(2* - 2)(2* — 2°) = 168 ([35, p.156 — 157]).

In order to calculate V, since
Vi/U(2) = Vi = {I + AP € SLa(Z2) | A € Ma(Zy)},
we first calculate Vy.
Let Xo = I + (zij) = I + X € SLs(Z,). Assume that Xo has a decomposition
of the form: Xo = I + AP, for some I + AP € V., with A = (a;;) € My(Z), A =
(di;) € Ms(Z,), where “-" indicates the natural map from $Ly(Z) to SLy(Z,) and

also from Z to Z,. We here denote both the identity of §Ly(Z,) and the identity of

SLs(Z) by I without causing any confusion. We should then have (a;)P = (z;;).
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So, the «

;8 are a solution of the following lincar system:

@i + ai = zn
LTI P = Tiy
4y + = T3
az + an
Gy + an
Gy + ag
] + s
@y + asy

an + @n = T3
Adding the first, three equations together gives 0 on the left hand side, and similarly
with equations 4-6 and 7-9. We conclude that each non zero row of X has exactly
two non zero entrics, There are 64 matrices of this type. Hence there are at most
64 possibilities for Xo. If we further restrict Xo € SLy(Z,), then there are only 24
possibilities of such Xgs. It is then casily verified that | ?‘?ﬂ |=24.

It follows that

vy [SLs(Z):T(2) _ 168 _
[sna(Z).w];—[w:m)l =5 =T

Furthermore, it is casily verified that
SLy(Z) = Ul 3iVs,

where

11 001 101
=01 1|, m=|110, s=|100
101 0 011
010 011 -1 =10
m=111], 00 1|, w=|-10 -1/,
110 100 st =f =4

yr=1,yi € SLy(Z),i = 1,2,...,7.



From the previous section,
V= (uii=1,2% j=1,2,34,56,7),
where u;; is an element of V., such that, for given y;, #;, there exists /' € {1,2,3,4,5,6,7},
YT = Wiy e (2)

Note that j' is uniquely determined by j and i.
Equivalently
ug €Vy e (3)

or

for some X;j € Ma(Z5), and I + X;;P € V. One can verify that

110
Xn=|[111 Jit = o
1o
110
Xip= |0 1 11, gp=ys
010
100
Xz = 01! i =12
00
010
Xu=[100], gy=um;
101
11t
Xi5=|000 Uy = Ui
100
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Hence, we obtain that

=pnyg' =

uyy

-1

00
0 -1
-1 0

|



ua =yt

= a1y

o=
-
oo~

—co

—_—o -

T

.

a

iy = Y121y,
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01 -1 010
00 L [=]001].
10 0 oo

Finally, we describe a finite set of gencrators of Uy(R) = U(ZT). From above,

uay = gy = [

sincez=—l€V,z ¢ Vy, [V:Vi=2 HenceV = (uy—l |i=1,2%j=
1,2,3,4,5,6,7). So, from Proposition 3.1.1, we are left with the problem of writing

the generators w,;,

~1I as semigroup ring clements Uy, Z. Clearly = = —1 =
1—21=1—=2P~'P, and thus (nd)) = —2P~". Further note that

0 0 =1 1 0
(nll) = (uy=1)P"' = {—1 -1 1 ]; (n,',?):(u.,—l)l'-'z[ [ I ];
00 1

) [ |
0 1 -1 -1 2 -
M) =@s=NP'=|-1 0 1 [; (,.;:)=(.,,_,_/)p-'=[ e =1 L3
2 -1 -1 o =l
00 0 2 0
(ni) = (ms = 1)P~' = [u 00 ]; (u,',',‘):(um-l)l"'=[ 0 -l n];
01 -1 0 -1 0
0 1 -l 1 =10
(i) =(ue=DP'=| -1 0 1]; (nd} =(u1,—-l)l""=|:(l 0 0f;
1 -1 0 1 =10
-110 01—l
() =(a-DP=| 1 0 0 |; @)=(u-nr'=|-1 0 1 |[;
10 -1 2 -1 -l
-1 2 -1 000
(n{f):(u,.—l)l?":[—l 20 ]; (y.g;‘):(.,,,,—/)/'-':[n 0 0f;
0 3 -2 0 -1 1

(n2) = (uae= )P =
=1 0

-101 01 =l
-1 0 1]; ) =(up=1)P~"'= [ =1 0 1 ]
1
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Consequently, Ui; = 14+ mi0 + Ty nii(Diy Zo = 1 +mol + 3y n(1)u, and
7 £l = 1= Tynfl, mo= £l 1+, nY(Du,
1,2 j = 1,2,3,4,5,6,7. I follows that, from Proposition 3.1.1

20, where

U(ZT) = U (ZT) = U(ZT) = (Uij, Ze | i = 1,25 = 1,2,3,4,5,6,7; k=0,1).



Chapter 4

Semigroups with U(ZS) finite or
having a free subgroup of finite
index

4.1 Finite Unit Group U(ZS)

We first study the conditions under which the unit group U(ZS) is finite. Here we

will only assume that S is a finite semigroup such that Z\S contains an identity 1.

In order to state the first theorem, we recall some

rminology. A group (7 is s
to be a Hamiltonian group if G is non-Abeclian and all its subgroups are normal. Lis
well known (see M. Hall [5]) that a Ilamiltonian group can be writlen as A x 12 x Ky,
where Ky is the quaternion group of order 8, A is Abelian with every element of odd

order, and [ is an clementary Abelian 2-group.

Theorem 4.1.1 Let S be a finite semigroup such that ZS conluins an identily.

Then the order of unit group U(ZS) is finile if and only if § is an inverse semigroup
which is a union of disjoinl groups which arc cither abelian of ezponent I, 2, 3, 4

or 6 or Hamillonian 2-groups.

58
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Proof. First, assume the order |U(ZS) |< oo. Then it is casy (and well known) to

show that QS, and thus also ZS have no non-zero nilpotent clements. Indeed, let

& € ZS, and assume n > 2 s such that y = 2" # 0,2" = 0. Since y? = 0
(1-zy)(1+2y)=1,

for any = € Z. Hence we have an infinite set {1 + zy | z € Z} of units, a contra-

diction. This proves the claim and hence QS is a semisimple Artinian ring . Thus

Theorem 131 implies that 5% lias a principal series
§"=5 D858 D D5 Sup = {0s},

where cach principal factor Si/Sip1 % GO, cach Gy a group, 1 < i < m. The

isomorphisms used in Theorem 1.3.1 yield that

25° = (D 2Gi 0 20s.

i=0

Thus from U(ZS°) = Tl U(ZG:) x U(Z) we obtain that each | U(ZG;) |< oo.

Consequently by [36, p.59, Corollary 5.4], cach G; is cither abelian of exponent 1,
2,8, 4 or 6 or (7 is a Hamiltonian 2-group.

Conversely, assume S is an inverse semigroup which is a union of such groups.

By using the same method as above, we obtain Z5° = @B, ZG; @ Z0s. Hence

U(ZS") = [[ 1y U(ZC,) x U(Z;. The result then follows again by using [36, page

57, Theorem 4.1]. O
4.2 U(ZS) having a free subgroup of finite index

For finite groups, . Jespers has proved that there are only four groups G such that

U(ZE) has a nonabelian free subgroup of finite index:
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Theorem 4.2.1 [9] Let G be a finile group. Then G has a non-Abelian free sub-
group of finite indez in U(ZG) if and only if G is isomorphic wih cither Sy, Dy, T', P,

where

() So=(a,b|a" = 1,1 = 1,ba = a='8), lhe symmelric group of degree

(i) Dy=(a,b|a’ = 1,1 = 1,ba = a='b), the diledral group of order of ;

(iii) T=(a,b = 1,0 = a® ba =

%), the dicyclic group of order 12;
(iv) P=(a,b|a’=1,b' = 1,aba~'6~! = a), a growp of onder I6.

In this section, we study the analogous problem for the integral semigronp ring

S

of a finite semigroup. Again we assume that QS is semisimple Artinian and
that ZS contains an idenlity. So, $° has a principal series
§'=528 D D8 D Sup = {05}

and

(i) SifSigr 2" MO(Giimiy i P),i = 0,1,y

(i) QS® =0/nm O, M., (QGH) Qs (*7)
where cach G; is a finite group, m; is a positive integer, and cach sandwich matrix I’
is invertible in M, (QG), i = 0,1,++,n. We prove two theorems in this Chapter,
one of which is as follows.
Theorem 4.2.2 Under the above assumptions, U(ZS) has e non-trivial free sub-
group of finile indez if and only if there ezisls O < iy < n such that, for i # ig,m; =
1, and G is either an Abelian group with G = {e;} or C/% = {ez}, or a Hamiltonian

2-group and, furlthermore, one of the following threc condilions is sulisficd:
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(i) mig = 2,04 = {ei};
(ii) mi, = 1, and G, is one of Sy, Dg, T'0rP;

iii) my, = |, and (Y, is cyclic of order 5, 8 or 12.
o o Y

Recall that for a finite Abelian group A of order n, U(ZA) = +A x I, where
Fis a free Abelian group of rank r = 3(n + 1 + ny — 2¢), ¢ the number of cyclic
subgroups of A and ny the number of elements of order 2 in A. It follows then casily
that ZA has only trivial units, i.c., r = 0, if and only if A has exponent 1, 2, 3,4 or
G, i.e., A* = {e} or A® = {e}. This shows the first fact of the well known Higman

Theorem @

Proposition 4.2.1 (scc for czample [36, Theorem 4.1, p.57]) Suppose G is a finite
group. Then U(ZG) = £G if and only if G is cither

(i) an Abelian group with G* = {1}; or
(ii) an Abelian group with G® = {1}; or
(iii) « Hamiltonian 2-group.

In order to prove Theorem 4.2.2, we need to show that r = 1 in the above if and

only il A is cyclic of order 5, 8 or 12. In fact, we show more generally that:

Theorem 4.2.3 Lel G be a finile group. Then U(ZG) has a rank onc free subgroup
of finile indez if and only if G is cyclic of order 5, 8, or 12.

T the remainder of this section, we prove Theorems 4.2.2 and 4.2.3. We begin

with the following lemma, which is proved in [9] for group rings. We oftu make use
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of the fact that if U(ZS) has frec subgroup of finite index then it does not, contain
a free Abelian subgroup of rank two. Indeed, suppose the contrary, there exists a

free Abclian subgronp I of rank two in U(ZS) with a free subgroup N of finite

index, say  and y are the generators of I, ‘Then, there will exist a positive integer
m such that the subgroup (x™,y™) gencrated by =™ and y™ containg in N, and
thus (z™,y™) is a frce and Abelian group. Thercfore, it is a cyclic infinite order
group and there must exist a positive integer 1 such that & = y™. This is a

contradiction,

Lemma 4.2.1 If U(ZS) has a frec subgroup of finite indes, then QS has al mos!
one simple Wedderbum component which is nol a division ving. Purthermore, if
such a component M caists, then il is isomorphic lo My(Q), « Lwo-by-tuo matriz

ring over Q.

Proof: Let M be a simple component of @S. We first show that if M & M, (D),

D a division ring and 2 < n, then n =2, I 3 < n, let £, 1 < 4,5 < n heaset of
classical matrix units of M (so, Ei; is a matrix which has 1 at the (i,j)-entry and

zeroes elsewhere). Since ;5 € QS, there exists a positive integer g such that

il € ZS. As furthermore, (migB)? = (myak,)? = 0, it follows casily that
14 muzErz and 1+ mys iy, gencrate a free abelian group of rank two contained in
5, a contradiction. Thus n =2.

Next, we show that QS has at most one simple Wedderburn component, which
is not a division ring; i.c., which s isomorphic to My(D), for some division ring 1.
Suppose that, there are two components My and My which are not division rings.

As above, in cach M; NZT there exists o; # 0 with of =0,

= 1,2 1t aguin follows
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that, 1 4 ay and | + @y gencrate a free abelian group of rank two, a contradiction,
“Third, we show that if M 22 My(D), D a division ring, is a simple component of

QS, then ) = Q. Ifnot, let d € D,d ¢ Q, then with the above notation, let m be a

positive integer such thal m s, mdBy, € ZS. The units 1+ mByy, and 1+ mdEy,

generate a free abelian group of rank two, again yielding a contradiction. O

Lemma 4.2.2 Let H be o group and I a subgroup of finite index such that F is a

Jree group of rank one. Then every non-trivial free subgroup of H has rank one.

Proof: ‘The assumption implics that for any two non-periodic elements z,y € H,
there exist positive integers k, [ such that z¥,y' € I since F is of finite index in .

“Then there must be another two positive integers m,n such that z*™ = y' since

Iis a free group of rank onc. It follows that H can not contain any free subgroup

with rank more than one. O

Lemma 4.2.3 [[U(ZS) has a free subgroup of finile indes, (hen any clement of
subgroup of S, which is isomorphic lo a subgroup of U(ZS), has order 1, 2, 3, 4, 5,

6, 8, or 12,

Proof: Let G bea subgroup of S, which is isomorphic to a subgroup of #(ZS), and
et g € G. Since U(Z(g)) does nol contain any free Abelian subgroup of rank two,
it follows from ligiman’s result that the rank r of the free Abelian complement of

the trivial units in U(2Z(g)) is
r= %(u-f—l Fnp~2¢)=00r 1,

where 1 is the order of g, ¢ is the number of cyclic subgroups of (g) and ny is the

wumber of clements of order 2 in (g). The case r = 0 yields n=1, 2, 3, 4, or 6.
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Assume now r=1, i.c.,
ntmy—2—1=0. (%)
Let p be a prime number with p* | n and 1 < a. If p # 2,3, then the order of g/
is not 2, 3, 4, and 6, and the above applied to the clement. g™ yields
P -2a+1)-1=0
and thus p” = 2a + 3. Writing p as 1 + (p — 1), it. follows that.
T+ap=1+-+(p-1)"=2a+3

alp=1)+ -+ (p=1)" =20+2
Since 4 < p~ 1, we have 4o < 2a + 2, and therefore o < 1. Thus o = |, and it

follows that p = p* = 5.

Therefore, n = 5293, where 2 < 1, z are non-negative integers. Under the
condition (*), we show the possible values of cach ,y,z in the following . We
will repeatedly use the result that, for a finite cyclic group I, there is a one-to-one

or d between its sut ps and the divisors of the order of 11, Further, if

m is the order of /7, and m = pf'ps ... pit, where pi, | < i < (, are prime nombers,
then the number of divisors of m is (zy + 1)(z2 + 1)... (a2 +1). In particular, if m
is an odd number, then G does not contain any clement, of order 2, and if m is an

even number, then G has only one clement of order 2.

Case 1: Let z = 1,1 < y. Then, n=5x23%, ny = [, and = (1 +1)(y+1)(z-+1).

Thus, from condition (*), 5 x 293* + 1 21 + I)(y + 1)(z + 1) = | = 0; ie.,
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Ax 2¥3 = A(y+ 1)(z+1). However, it is casy to show that 4(y+1)(z+1) < 5 x 2432,
Thus case | is not possible.

2 etz = Ly =0,1<z, then 5x 37 +0—-2(1+1)(z+1)~ 1 = 0 from (*), i.er,

Cas

5% 3% = 1 +4(z+1). Againsince 5x3° > 5(z+1) = d(z+ 1) +24+1 > d(z+1)+1,

case 2 is ot possible.

Blete =03< y,1<z, thn 293% 41 -2y +1)(z +1) = 1 =0,i.c., 208 =

Ay + 1)(z+1),27'8 = (y+ 1)(z+1). Buty+1 <2 ' for<yandz+1<3

Case

for 1 <z Thus 3 is not possible.

Case 4: let 2 = 0,3 < y,2=0, then 2V + 1 -2(y +1)— 1 = 0,2~ =y + 1. Thus

7= 3 olherwise y+1 < 2\,

Case 5 Lot = 0,y = 2,1 < z, thenif 228741 ~2(241)(z+1)—1 = 0,i.e., 4 X3 =

2x3(2+1), 2% 3 1. Thus z = 1, otherwise it is not possible since z+1 < 3*1,
for 2 < z,and z+1 < 2 x#,

Case 6: leb x =0,y=1,1< 2, then 2 x ¥ +1 = 2(1+1)(2+1) =1 =0,i.e,3* =
4(z +1). It is not possible,

Case T et w = 0,y = 0,2 < z, then if 3 =2z + 1) =1 = 0,3(3*~! = 1) = 2z. It is

impossible since z < 351,

"Therefore, the possibilities of n arc only 1,2, 3, 4,5, 6, §or 12. O

Proposition 4.2.2 (96, Theorem 1.17, p.17] The rational group dlgebra QG of a

Jinite group G has no non-zero nilpolent clements if and only if one of the following
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is salisfied
(i) G is Abelian;

(ii) G is Hamiltonian of order 2*m, m odd, such that the multiplicative order of

2 mod m is odd.
We also recall the following fact.
Lemma 4.2.4 [22, p. 149] Let

)

Then the group (,5) = {ul - [Z"fzf‘ ,M‘L ] sk e z} hctiniis
de st

trivial freely gencrated and of finile index in SLy(Z).

Corollary 4.2.1 LetU(ZS) have a non-trivial frec subgroup I' of finite indez. Then

there cxisls 0 < iy < n such thal, fori # ig,m; = |, and G; is cither an Abelian

group with G = {e;} or G¥ = {ei}, or a Hamiltonian 2-group. Furthermor,

(i) If F' is non-Abelian, then all simple componenls of QS are division rings,

czcept one which is Ma(Q).

(ii) If ' is Abelian, then QS is a direct sum of division vings, (/i is Abelian and

U(ZGiy) = £Giy % Ty, where Fy is a free group of rank one.

Proof: First let [ be Abelian. Then the rank of / must be one. Thus e

free subgroup of U(Z:S) has rank one from Lemma From Lemma 4.2.1, Q9

cither has a unique simple component M which is isomorphic to My(Q) or is &
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direct, sum of division rings. Let us assume that QS has a simple component M
which is isomorphic to My(Q). According to Lemma 4.2.4, the group (z,3) is a
rank two free subgroup of G/L(2,2). If we identify M and My(Q), then we could
choose an order © of QS, which contains My(Z) up to isomorphism, and thus
(,y) CU(O). Since Z5 is another order of @S, it follows that [L4(O) : U(ONZS)] <
oo from Letnma 1.4.2. Therefore, there are two positive numbers k, ¢ such that
z*,y' € U(ZS), and thus there are another two positive numbers m,n such that

¥ =y € I, a contradiction. Therefore, QS is a direct sum of division rings.

Second assume ' is non-Abelian, We will prove that QS is not a sum of division

rings. Suppose the contrary. Then QS has no nilpotent elements. Hence all m; = 1,

QS’ = @1,QG: & Qls,

and each QG s a direct sum of division rings. In particular, S is an inverse

scmigroup which s a disjoint, union of the groups G; and {0s}. It follows that
Z5° = @1 2G; @ Z0s

and

U(zs"

n
TTua:) x uzos).

i=0

Since QG; has no non-zcro nilpotent clements, Proposition 4.2.2 implies that G; is

cither Abelian or Hamiltonian of order 2k;, k; odd such that the multiplicative

order of 2 modulo &; is odd, 2 =0,1,-+,n.

IF Gy is Abelian, then U(ZG) = G, - %, where F; is a finitely generated free

Abelian group. Since, by assumption, U(E , and thus (ZG;) do not contain a free
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Abclian subgroup of rank 2, the rank of F is ab most 1, and there exists al most

one such group Gi.

Now assume that G; is a llamiltonian group. Recall that i contains an cloment
of order pif pis a prime divisor of the order of Gi. Thus, we know that the possible
prime divisors of k; are only 3 or 5 from Lemma 4.2.3. Hence k = 3757 for some
non-negative integers @ and y. I k; # 1, then z # 0 or y # 0. So, Z/(35) 2 %/(3)
itz # 0 and Z/(3%5%) D Z/(5) il y # 0. However, ¢

e multip ive order of 2
modulo 3 or 5 is 2 or 4 respectively. Therefore, the multiplicative order of 2 modulo
ki is even in any case. This is a contradiction. Hence, & must be 1 and ¢ s a

Hamiltonian 2-group. Therelore Z(ZG;) is trivial by Proposition 4.2.1,

8o, we have shown that there is al most one 7 such that Z(Z(;) has non-trivial

unit group, and that it has a cyclic subgroup of finite index. 1t follows that 2/(%8) =

TIko U(ZG:) x U(Zhs) has a cyclic subgroup of finite index. This is in contrad

clion

with the assumption that U(%S) has a non-Abelian free subgroup of finite index.
Hence vur assumption that QS is a direct sum of division rings is false. Thercfore,
QS must have one simple component which is isomorphic to My(Q).

The other claims are clear from the proof. O

Applying Corollary 4.2.1 to the case when S is a group, it follows that.

Corollary 4.2.2 Lel G be a finite group. [[U(ZC) hus an infinite cyelic subgroup

of finite indez, then G must be an Abelian group.

In the following, we first show the proof of Theorem 4.2.3, and i the proof we

will use these examples:
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Example 1 Let 6 = (| ¢ = 1) x (d | & = 5).Then U(ZG) = £G x F, where the
rank of the free Abelian group Fis 7. In fuct, G has no clement of order 2 and 6

ayelic: subgroups. Thus r = 1(25 41+ 0-2x7) =6.

Example 2 Let G = {c| ¢ = 1) x (d | @ =1). Then G has 3 clements of order 2,
and 7 cyclic subgroups. Thus r = }(16 + 1+3 —2x8) =2,

Example 3 Let G = (c| c? = 1)x (d | # =1, or d® = 1), Then il & = 1, G has

3 elements of order 2 and 11 cyclic subgroups, thus r = 424+ 1 +3-2 x 11) = 3;

ifd* = 1, G has | clement of order 2 and 14 cyclic subgroups, thus r = 3(36+1 +

-2 x4)=5.

The Proof of Theorem 4.2.3

Assume U(ZG) has a rank one free subgroup of finite index. Then G is Abelian
from Corollary 4.2.2. From Lemma4.2.3, it follows that any element of G' has order
1,2,3,4,6,6,8, or 12, Further, if G contains an element z of order 5, then G can not
contain any element whose order is a multiple of 2 or 3, since otherwise G contains
an element of order 10 or 15. Furthermore, by Example 1, G does not contain any
subgroup which is a product of two cyclic groups of order 5. Hence G = (z) is of
order 5. Similarly, if G contains an clement y of order 8, then G' can not contain any
clement whose order is a multiple of 3 or 5. Thus G = (y) by Example 2 since there
can not exist a € Gya ¢ (y), such that the order of a is a multiple of 2. Finally, if
(i does not contain any clement of order § or 8, then any clement of G' has order

1,2,3,4,6, or 12. llence G = (2), = an element of order 12, by Example 3.
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Converscly, it is casily verified that the rank of the free Abelian complenent is

1 when G is a cyclic group of order 5, 8, or 12. O
Now we can give the proof of Theorem 4.2.2 as [ollows:

Proof: Assume that 2(2S5) has a non-trivial free subgroup P of finite index. From
Corollary 4.2.1, it follows that. there exists iy such that. for all i 5 ig, m; = | and
Giis either an Abelian group with Gf = {e;} or (F = {ei}, or a Hamiltonian 2-
group. Now recall that, for a non-rivial goup G, QC always has a proper idoal,
for example, the augmentation ideal of QG [36, p.2), and thus M(QC) can not he
asimple ring. Therefore, if  is non-Abelian, then cither my = 2, and (i = {ei,},

or m;, = |, and U(ZG;,) has a non-Abclian free subgroup of finite index. 1t then

follows from Theoren 4.2.1 that, Gy, is one of Sy, Dy, 7" or P. IF I is Abelian, then
again from Corollary 4.2.1, Gy, is Abelian with U(ZGig) = £Giy x Fy, where 1%,
is a free group of rank one. Further, from Theorem 4.2.3, Gy is a cyclic group of
order 5, 8or 12
Conversely, if (i) holds then (**) becomes
Q5" = @iy QG 0 Ma(Q) 0 QU.
I (i), or (i) holds then (**) becomes
Q5" QG 0 Q0.

Lot © = Gigi,2G; ® O, ® Z0, where O, = My(Z), or = ZC. Then, up to
isomorphism, O is an order of QY and [U(O) : U(ZS N O)) < oo, [U(ES") :



U(25° N 0)] < oo from Lemma 1.4.2. On the other hand,
u(0) =[] u@G:) xu(©;,) xu(26),
i#io

and under assumption (z), (ii), or (iii), (0) has a free subgroup Fp of finite index
from T'heorem 4.2.1, Proposition 4.2.1, Lemma 4.24, and Theorem 4.2.3. Since
any subgronp of a free group is also free (scc for example [35, Theoremn 11.23,
p-258]), U(ZS®) N Iy is frec and [U(ZS®) NU(O) : U(ZS®) N K] < co. Therclore
[U(Z5°) : U(ZS°) 1 ] < 0. So, UZS®) N Fo is a free subgroup of finite index
of U(ZSY). Finally, since U(ZS®) 2 +U(ZS), U(ZS) itself has a free subgroup of

finite index, O
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