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ABSTRACT 

The main object of this thesis is to study the Contraction 

Mapping Principle given by Banach. The principle states: 

Theorem. Let f be a self mapping of a complete metric space X. 

If there exists a real number A E (0, 1) such that the condition 

d(f(x), f(y)) < Ad(x, y) 

holds for every pair of points x, y ~ X, then f has a unique fixed 

point. 

This theorem has been used extensively in proving existence 

and uniqueness theorems of differential and integral equations. Some 

examples have been given to illustrate its applications. 

Several generalizations of Banach's contraction principle 

have been given in recent years. We have tried to give some further 

generalizations in Chapter II. 

We have also studied Contractive mappings and Eventually 

contractive mappings. A few new results have been investigated 
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related to these mappings. 

The converse statements of Banach's contraction principle 

have been given by a few mathematicians. We have also obtained a 

few new results on the converse of the Banach contraction principle. 

A few simple but interesting results related to commuting 

functions and common fixed points have been given. Some new results 

on commuting polynomials and common fixed points have been obtained. 

- .-. . -
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INTRODUCTION 

In Chapter I of this thesis we present a survey of known 

results concerning fixed-point theorems. In addition we include a 

few new results. 

In Chapter II we are concerned with the classical fixed point 

theorem of Banach, commonly known as the contraction mapping principle, 

which states: 

Theorem (A) Let T be a mapping of a complete metric space X 

into itself. If for every pair of points x, y :·: X and some 

fixed 

Then T 

· {Tn(x)} 

a., 0 <a.< 1, 

(1) d(T(x), T(y)) 2a.d(x, y). 

has a unique fixed point, and the sequence of iterates 

for each x . .:~ X converges to this unique fixed point. 

A mapping satisfying (1) is called a contraction mapping and 

a. is called the contractive constant for T with respect to d. 

Theorem (A) has been used extensively in proving the existence and 
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uniqueness of solutions to various functional equations, particularly 

integral and differential equations (Kolmogorov and Fomin [47], 

Nemizki [57] and Zarantonello [76]). It has been applied to prove 

the convergence of successive approximations of solutions to ordinary 

differential equations (Luxemburg [SO]) and integral equations to 

L -spaces (Willet [74]), to prove the Frobenius-Perron theorem on p 

positive matrices (Birkhoff [8], and Samuelson [61]), and to develop 

many otherwise difficult existence and uniqueness theorems in various 

function spaces (Mathews [52], and Thompson [72]). 

Because of its widespread applicability there has been a 

search for gener.iizations of the Banach's contraction principle. Here 

we have the work of Edelstein ([31], [32], [33], (34], [35]) Rakotch 

([58], [59]) Chu and Diaz ([25], [26]) Janos [42], Naimpally [56] 

and Browder [20]. Generalizations due to Edelstein's have been 

applied by Edwards [36]. 

The major contribution to the subject in Banach and Hilbert 

spaces is due to Browder, Petryshyn and Kirk. Further, the notion 

of contraction has been extended to more general spaces (mostly 

in uniform spaces) and the corresponding fixed point theorems have 

been given by Knill [46], Davis [28], Mathews and Curtis [52], 
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Edelstein [34], and Kammerer and Kasriel [45]. The first attempt 

to generalize the contraction principle in uniform spaces was due 

to Brown and Comfort [21]. 

Luxemburg [50]~Diaz and Margolis [30], Margolis [51], Manna 

[55] and also Edel&ein [35] have given the contraction principle 

in generalized metric spaces, in which the concept differs from the 

usual concept of a complete metric space by the fact that not every 

two points in X have necessarily a finite distance. 

The contraction mapping principle has also been widely used 

by numerical analysts in the study of convergence and error estimates 

(Schroder [62]). In each section of this chapter we have tried to 

give some new results, Section 2.6 contains the results of one 

paper which has been accepted for publication. 

In Chapter III we discuss the results related to commuting 

functions and common fixed points. We also present some new results 

on commuting polynomials and common fixed points. In the end of this 

chapter we prove some theorems related to the conjecture which 

generalizes the result of DeMarr [29]. Two papers have been accepted 

for publication from this Chapter. 



CHAPTER I 

FIXED POINT THEOREMS 

1.1 FIXED POINTS. 

1.1.1 Definition. A point x is said to be a fixed point 

for the transfonnation T if T(x) = x. In other words, a point 

which remains invariant under a transformation is known as a fixed 

point. 

Examples. 

1. The mapping of the interval [0, 1] into itself defined 

by f(x) = m 
X ' where m is a positive integer different from one, 

has two fixed points, namely 0 and 1. 

2. The mapping of the open interval (0, 1) onto itself 

defined by f(x) m 
= X ' where 

from one, has no fixed point. 

m is a positive integer different 

3. The unit transformation f(x) = x fixes every point. 

4. The transfonnation 

namely -1 and l+i. 

w = l+i 
z-i 

1.1.2 Fixed Points of Linear Functions. 

has two fixed points, 

Theorem. The linear functions of the form f(x) - ax+b, 
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a! 1, have unique fixed points. 

Proof. Consider f(x) = ax + b, a ! 1, and suppose that 

f(x 0 ) = xo for some real number x0 . Hence xo = f(xo) = ax0 + b, 

\oJhich implies x0 (1-a) = b0 , since a ! 1 implies 

fore we have shown that there is a unique fixed point 

1-a ! 0. 

b 
1-a· 

tuting for b 
1-a in relation f(xo) = ax0 + b we have 

There-

Substi-

f(__£_) = 
1-a 

b 
1-a Hence b 

1-a is a fixed point and therefore is unique. 

We knm.,r that the linear function f(x) = x fixes all points. 

From the above facts it follows that these are only linear 

functions with fixed points. 

Remark. The only linear functions which have no fixed points 

are of the form f(x) = x + b, b ! 0. 

1.1.3 Fixed Points of a Linear Fraction. 

Theorem. Every linear fraction has two fixed points, which 

in certain cases coalesce into a single fixed point. 

Proof. (1) Let f(z) = az + b 
cz + d' ad - be ! 0, 

fraction. Then we have the following cases: 

be a linear 



::.~· 

6 

Case I. Suppose that c = 0. Then (1) reduces to 

f(z) az + b a b = = dz + d = a.z + s d ................. (2) ' 

where a s b a. = d' = d. 

It is clear from the equation (2) that f(oo) = oo, and there 

:is a fixed point at infinity. 

If a. # 1, then there exists another fixed point determined 

by z = a.z + S, which implies t3 
z = 1-a. hence the point S is 

1-a. 

a fixed point. But if a. = 1, B f 0, there is no finite fixed 

point. 

If a. f 1, B f 0, the finite fixed point _s_ approaches 
1-CL 

oo as a. tends to 1. Therefore, in the case of the transformation 

f(z) = z + S (S # O) 

the point at infinity can be regarded as two fixed points which 

coincide. 

Case II. Let c f 0 . Then 

f(z) = 
az + b 
cz + d' ad - be f 0, gives f(oo) = ~ #= co 

c 

Therefore the point at infinity is not a fixed point. Similarly, 
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the ]Dle 8 = d 
c of the transformation is not a fixed point, since 

f(8) :; 00 f 8. 

Assuming that z f. oo and z f 8, we solve the equation 

or 

obtaining 

z = 

az + b z = -----;cz + d 

cz2 - (a-d)z - b = 0, 

a-d ±l(a-d)2 + 4bc 
2c 

If (a-d) 2 + 4bc f 0, we obtain two different finite fixed 

points; if (a-d)2 + 4bc = 0, these two fixed points coalesce to 

form a single finite fixed point a-d 
2c. 

1.1.4 On the Fixed Points of 
az + b 

f( z) = --- ad - b c f 0. cz + d' 

We know tht the number of fixed points of 

(1) f(z) = az + b 
cz + d' ad - be f:. 0 is 1 or 2, except 

in the case of the identity transformation, which fixes all points. 

These are no longer true in the case of 

(2) 
az + b 

f(z) = cz + d' ad - be f 0. 
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In transformation (2) the following cases will arise:-

(i) no fixed point (example:- f(z) ·- -1/Z); 

(ii) one fixed point (example:- f(z) = z + 1' the point 

at infinity); 

(iii) two fixed points (example:- f(z) = 2z; z = 0 and 

z = 00 ); 

(iv) an infinite number of fixed points (example:- f(z) = z, 

all the points on the real axis). 

The transformation (2) may be factored into f(z) = z, and 

fez) = az + b d b 4 0 
d' a - c r . cz + 

Hence generalized circles li. e. Euclidean 

circles and straight lines) will be transformed into generalized 

circles, and the angles will be preserved in magnitude but reversed 

in sense. 

In this section we prove the following result, v1hich is more 

general in notion and form. 

1.1.5 Theorem. Let Tn (n is a positive integer) be a function 

defined on a non-empty set X into itself, a"'ld let K be another 

function, also defined on X into itself, such that K possesses 

a right inverse K-I (that is, a function K-1 such that KK- 1 
= I, 
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where I is the identity mapping of X). Then the function Tn 

has a fixed point if and only if the composite function K-lTnK has 

a fixed point . 

Then 

Proof. Suppose that ~ is a fixed point of Tn. Then 

Therefore K- 1 ~ is a fixed point for K- 1TnK. 

Conversely, suppose that n is a fixed point of K- 1TnK. 

or 

or 

Therefore Kn 

Corollary . 

K- 1TnKn = n 

KK- 1TnKn = Kn 

n T Kn = Kn. 

n is a fixed point of T . 

In particular case , when n = 1, we get a 

well - known result due to Chu and Diaz ~5]. 

In this section we prove a similar result to that of Chu and 

Diaz ~5] by considering left inverse. 

1.1.6 Theorem. Let T and K be two funct ions defined on a 
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non-e:rrpty set X into itself, such that K possesses a left inverse 

(i.e., 2 frmction K- 1 such that K- 1K =I, where I is the identity 

mapping of X). Then the function T has a fixed point if and only if 

KTK- 1 has a fixed point. 

Proof. Let x be a fixed point of T. Then Tx = x, 

implies that T(K- 1 K)x = x; 

or KT(K- 1K)x = Kx 

or (KTK- 1) (Kx) = Kx. 

i.e., ~x is a fixed point of KTK- 1
• 

Conversely, let us assmne that y is a fixed point of KTK- 1
. 

Then 

i.e. , 

-1 KTK y = y 

or K- 1 KTK- 1y = K- 1y 

or 
-1 = K y 

-1 K y is a fixed point of T. 

Thus the proof. 

1.2 CO~IINUOUS FL~CTIONS AND FIXED POINTS. 

1. 2. 1 rneorem. Let f be a continuous function from the closed 

interval [-1, 1] into itself. Then there must exist a point xo 

in [-1, 1] such that f(xo) = xo. 
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Pr oof. We prove this fact by taking a function 

F(x) = f(x) - x. We note that F(- 1) > 0 and F(l) .2. 0. There

f ore, by Weierstrass intermediate value theorem we find that there 

exists a point x0 in [-1 , l J such that F(x0) = 0. This implies 

f (x0) = xa. 

We prove the following result by using Weierstrass inter

mediate value theorem . 

1.2 . 2 Theorem . Let I be the closed unit interval on the real 

line. Let f and g be two continuous functions from I into 

itself, where f is onto. Then there always exi sts a point p 

in I for which f(p) = g(p). 

Proof. Let h(x) = f(x) - g(x) for all x in I. 

Then h(x) is continuous in I. The following cases will arise. 

(1) Let h(x) = 0 for all X in I. 

In this case, obviously f(p) = g(p) for all p i n I. 

(2) Let h(x) > 0 for all X in I. 

i.e. f(x) > g(x) for all X in I. 

The function f(x) is onto , and therefore i t takes value 

0 and consequently g(x) < 0' contradicting the f act that g (x) 
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lies in I. Therefore h(x) cannot be positive for all x in I. 

Let there be a point x 1 for which h(x) < 0. 

(3) Let h(x) < 0 for all x in I. 

i.e. f(x) < g(x) for all x in I. 

Taking f(x) = 1 we again get a contradiction, and thus 

h(x) cannot be negative for all x in I. Let there be a point 

x2 for which h(x) > 0. 

Thus the continuous function h(x) takes negative and positive 

values in I. 
' 

and therefore by Weierstrass intermediate value 

theorem h(p) = 0 where x2 < p < x1 , and hence f(p) = g(p). 

Remark. Let I be the closed interval of real numbers. 

Let f and g be two continuous functions from In= Ixi xix ... xi 

into itself, where f E onto. Then for n > 1 there need not 

exist a point p such that f(p) = g(p) , as will bE> seen from the 

following example [ 1 ] . 

It suffices to show this for n = 2; the same situation holds 

for n > 2. Let 
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\ 

(2x,y), 1 1 1 ' ' 0 <X <- or -<X<-- -6 3- -2 l 

11 
lx- !IJ), 1 1 

I 
I (2x,y[ TI + -<x<- \ 6- -3 

f(x,y) = ' 
I 

\ \ (2-2x,y), 1 2 5 
1 -<X<- or -<X< 2- -3 6-

I 11 
lx- !IJ 1 

lx- !IL \ (2-2x,y[ TI + +--

' 
12 

2/3 ~X~ 5/6 

= (£1 (x,y), £2 (x ,y)); 

g(x,y) = ; · 1 O~x~~ ) 1 f(x + Z' y)' 
) ( 
\ f(x 

1 y), 1 ( - 2' 2 .::_x.::_l 
\. 

= (gl(x,y), g2(x,y)). 

f and g both are continuous. 

If for some (x,y), f(x,y) = g(x,y) then either 

f(x,y) 1 1 = f(x + 2, y) or f(x,y) = f(x- 2, y~. We need to consider 

only one of these equations. 1 
Suppose f(x,y) = f(x + Z' y); 

2(x + i) = 2x implies x = i, 1 
and f( "4> y) = f(3/4 , y) 

then 

implies 2 -

11 
IzY 

11 1 h. h . . . bl = IzY + 12 w 1c 1s 1mposs1 e. Thus f and g never take the 

same value simultaneously. Moreover, both are onto and at most 2 to 1. 
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1.3 FIXED POINT SPACE. 

1.3.1 Definition. A topological space X is said to have a 

fixed point property if and only if each continuous function f of 

X into itself has at least one fixed point. Or, we say that a 

topological space X is a fixed point space if every continuous 

mapping f of X into itself has a fixed point. 

Examples. 

1. The Theorem 1.2.1 shows that [-1, 1] is a fixed 

point space. 

2. The closed disc {(x, y) :x2 + y2_2_ 1} in the 

· ,\ Euclidean plane R2 is also a fixed point space. 

1. 3. 2 Theorem. The fixed point property is topological 

invariant. 

Proof. Let h be a homeomorphism from a space X onto a 

space Y; let X have a fixed point property and f be a contin-

uous function from Y into Y. Since X has a fixed point property, 

therefore there exists a point x in X such that h- 1 (f(h(x))) = x. 

Hence h(h- 1 (f(h(x)))) = h(x), or f(h(x)) = h(x). Let h(x) = y. 

Then f(y) = y; hence f has a fixed point. 
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1.3.3 Both of the examples of section 1.3.1 are special cases of 

Brouwer's Fixed Point Theorem. The closed unit sphere 

S = {x: II x II .::_ 1} in Rn is a fixed point space. 

Brouwer's theorem itself is a special case of 

Schauder's Fixed Point Theorem. Every convex compact subspace 

of a Banach space is a fixed point space. 

The proofs of these theorems, together with a discussion of 

other related results, may be found in Bers [5pp. 86, and pp. 93-97]. 

Schauder's theorem was foreshadowed by the work of Birkhoff and 

Kellogg[9] on existence theorem in analysis. Shortly afterwards 

Tychonoff* extended Schauder's result from Banach spaces to 

arbitrary locally convex topological spaces. In both cases 

Brouwer's theorem was used as a starting point. 

Recently Browder [14] gave generalizations of Schauder and 

Tychonoff fixed point theorems. He also gave several generalizations 

to Schauder fixed point theorem ([15], [16], [17], [18], [19]) which 

center around the concept of asymptotic fixed point theorems and of 

deformation of non-compact mappings. 

* Tychonoff, A: Ein Fixpunktzatz, Math. Ann. 111 (1935) 767-776. 
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CHAPTER II 

THE CONTRACTION MAPPING THEOREM': 

2.1.1 Definition. A metric space is a pair consisting of a set 

X and a mapping (x, y) ----~d(x, y) of XxX into R having the 

following properties: 

(1) d(x, y) > 0 if x I y; 

(2) d(x, y) = 0 if and only if x = y; 

(3) 

(4) 

d(x, y) = d(y, x) (symmetry); 

d(x, y) < d(x, z) + d(z, y) (triangle inequality). 

The function d is called a metric and d(x, y) is called 

the distance between the points x, y. 

2.1.2 Definition. A sequence {xn} in a metric space X is said 

to converge to an element x of X if 

2.1.3 Definition. 

lim 
~ 

d(x , x) = 0. 
n 

A sequence {xn} of elements of a metric space X 

is called a Cauchy sequence if given £ > 0 there exists N such 

that for p, q ~ N, d(x , x ) < £ . 
p q 

2.1.4 Definition. A metric space X i s sai d to be complete if every 
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Cauchy sequence of points of X is convergent in X. 

2.1.5 Definition; Given a vectorspace E, a norm on E is a map 

x---+ I lxl I from E into the set R of positive real numbers 

which satisfies the following axioms: 

(1) I lxl I= 0 if and only if x = 0. 

(2) J I AX II = I A Ill x II for all A E K and x E:.' E, where K 

is either the field of real numbers or the field of complex numbers. 

( 3) II x+y II < II x II + II Y II (the triangle inequality). 

A vector space on which a norm is defined is called a normed 

· F vectorspace, or simply a normed space. 
··:::::: ... 

' ... ~ .. 2.1.6 Definition. A normed vectorspace E is called a Banach 

space if it is complete as a metric space. 

·.:.:.: :.:. 

2.1.7 Definition. A vectorspace E over K is called an inner 

product space if there is defined a map (x,y)----~ (xI y) from ExE 

into K which has the following properties: 

(i) Cxlx) > 0 for every X ~ E. 

(ii) Cxlx) = 0 if and only if X = o. 

(iii) Cxly) = CYI x) for every XG:,E, y <::E. 
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(iv) (A.x + J.iYiz) = A.Cxlz) + JJCY !z) for every A., J..l ~- K, 

x, y and z e::: E. 

The value Cxly) is called the inner product or scalar pro-

duct of the vectors x and y. 

2.1.8 Definition. Let E be an inner product space and I lxl I 
be the nonn defined by II x II = l(x I x). If E is compl:te for this 

norm (i.e. E is a Banach space), then E is said to be a Hilbert 

space. 

· .·· : 

2.1.9 Definition. Let X and X' be two metric spaces with the 

metrics d and d'. 
' 

let T:x --+- x' be a bijection of X to X'. 

Then T is called an isometry if for all x, y ~ X, 

d(x,y) = d'(x' ,y'). 

:· ::. : 

2.1.10 Definition. A mapping T of a metric space X into itself 

is said to satisfy a Lipschitz condition, with Lipschitz constant a, 

if 

(1) d(T(x), T(y)) 2 ad(x,y); (x , y fE X). 

·-~ 
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In case 0 ..::_ a < 11 then T is called a contraction mapping, 

Thus in the contraction mapping, the distance between the images of 

any two points is less than the distance between the points . . 

Example . 1. 
00 

If x = {x } 
1 

in 
n n= 

let T 

00 

X oo 
n = {-} • 
2 n=l 

Then T is contraction on For if y = {y } 
n n=l 

is any other 

point in then 

d(T(x), T(y)) = IIT(x)- T(ylll 2 =[n~l( 

= }11x-yjj
2 

1 = 2 d(x,y). 

Thus in this example, 1 
Cl. may be taken to be z· 

Yn 211/2 
y) 

' 

For this T 

it is obvious that there is one and only one sequence s ~ 12 such 

that T(s) = s, namely the sequence 0, 0, 0 .... 

Example 2. Let T be a function on Euclidean 2-space R2 , 

i.e. T:R2 --+- R2 defined by T(x) = x/2. Then T is a contraction 

for , 

d(T(x), T(y)) = IITCx) - T(y) II 

= II~ - ~ II 

= }llx-yll = ¥cx,y). 



20 

Example 3. Let T = T(x) be a real valued function of a real 

variable and suppose that for all x 1 and x2 in the domain of T 

\•li th 0 < a < 1. Then T is a contraction mapping in R 1 . 

2.1.11 Definition. A function T:R ----~R is continuous at a 
· .. •' 

point x0 if for every E > 0 there exists a o > 0 such that 

lx- xal < o implies ITCx) - T(x0) I <E. 

The function T is continuous on R if it is continuous at 

every point of R. 

2.1.12 Theorem. If T is a contraction mapping on a metric space 

X, 1hen T is continuous on X. 
··· .. · 

Proof. Let E > 0 be given and let x 1 be any point in X. 
· .. ~ . ·.r:: 

Then if a = 0 in (1) we have 

d(T(xl), T(y)) = 0 < E, 

for all y in X· 
' 

and T is continuous at Otherwise let 

o = E/a, and let y be any point in X such that d(xl, y) < o. Then 
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d(T(xl), T(y)) ~ od(xl, y) < a.s/a = s; 

and T is again continuous at x 1 . 

Remark. The converse of the above statement is not true, 

i.e. a continuous function need not be a contraction. For example, 

f(x) = 2x is continuous, but it is not a contraction. 

2.2 THE CONTRACTION MAPPING PRINCIPLE (CACCIOPOLI BANACH) 

The most elementary and by far the most fruitful method for proving 

theorems nn the existence and uniqueness of solutions is the principle 

formulated by Banach (4 in 192~1 and first applied to the proof cf 

an existence theorem 1¥ Cacciopoli (22 in 1930). 

2.2.1 Theorem. Every contraction mapping of a complete metric 

·· space X into itself has a unique fixed point (i.e. the equation 

· .; : .. 
. :;-...;..~ .. 

Tx = x has a unique solution). 

Proof. Let X<; be an arbitrary point. Set 

= T2x and in general let n We X2, = Tx1 X = T xo. 
0 n 

the sequence {xn} is a Cauchy sequence. In fact, 

X} = Tx0 , 

shall show that 
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+ d(x 1 , x ) 
m-n- m-n 

n 2 m-n-1 
~a d(xa, x1) {1 +a+ a + ... +a } 

Since a < 1 this quantity is arbitrarily small for sufficiently large 

n, thus the sequence is Cauchy. Since X is complete, lim x 
n n-+<x> 

exists. We set x = lim x . Then by virtue of the continuity of the 
n n-+oo 

mapping T 

Thus the existence of a fixed point is proved. 

We shall now prove the uniqueness. Let Tx = x, and Ty = y, 

x F y. Then d(x, y) = d(T(x), T(y)) ~ad(x, y). But a < 1, there-

fore d(x, y) = 0 i.e. x = y . 

Remarks 

(1) The construction of the sequence · {xn} and the study of 

its convergence are known as the method of successive approximations. 

(2) The error of approximation can be estimated as 

d(x, x ) < n 

n 
a 

-1- d(xl' xa). - a 
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(3) The proof of this theorem does not involve any 

topological machinery. 

(4) It guarantees the existence and uniqueness of a fixed 

point. However the requirement that T be contraction is a severe 

restriction. 

(5) If X is not a complete metric space, a contraction 

mapping of X into itself may have no fixed point; for example, the 

. ··· ·. mapping x x/2 of (0,1] into itself has no fixed point. 

2.2.2 The principle of contraction mapping can be applied to the proof 

of the existence and uniqueness of solution obtained by the method 
. .-· ... 

of successive approximations. We shall consider the following simple 

examples. 

2.2.3 Picard's Theorem. Consider the differential equation 
' ·: 

. .",:, -. 

~~ = T(x, y), where T(x, y) satisfies a Lipschitz condition 

Then on the interval lx-xol < d, 

. ·. · .·: 
. :_::·•· 

··i· 

there exists a unique solution y = ~(x) of the equation which satisfies 

the condition ~Cxo) = Yo· 

Proof. The given differential equation can be written in t he 

form of an integral equation as, 

f
x 

y = Yo + T(t, y)dt. 

xo 
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Consider the set of all continuous functions · {¢(x)} on the 

interval a~ x 0 ~ x ~b. This set is a complete metric space if the 

distance between two functions ¢1 and ¢2 is defined by 

We shall consider the right-hand side of the above integral 

equation as an operator 

. ··-

I
X 

A($) = Yo + T(t, ¢)dt, 

. ·:-

-·· :.."7': defined on · { <P (x)}. Since the operation of integration is a continuous 

function of the upper limit, this operator transforms points of {¢(x)} 

into the same space. Estimating d(A(¢ 1), A(¢2)), we have 

= max!AC ¢1) - A(¢2) I 

=max I [T(t, ~ - T(t, ¢z)dtl ixo 

~ M maxj¢1 - ¢zl lx-xul. 

If we take lx-xol < ~IM, where ~ < 1, then 

and hence a unique solution ~(x), of the equation A(¢) = ¢, exists. 

This solves the given differential equation. It follows from the same 

theorem, that this solution can be obtained by iterating the operator 



.. ...: :_,, 
·-·-· ·•:.•.:..--=. 

;. 
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A(~), starting with any continuous function. 

2.2.4 Cauchy's Theorem. Consider the differential equation 

dy -dx- T(x,y), where T(x,y) is an analytic function of x and y, 

that is T(x,y) = LaaSxayS in the domain lx-xol < E, IY-Yol <E. 

Then there exists a unique solution y = ~(x) which can be expanded 

in powers of x-xo in some neighbourhood of the point x0 , and which 

satisfies the condition ~(x0 ) = y0 . Here x can be either a real 

or a complex variable. 

To prove the theorem with analytic functions, we must recall 

the following propositions from the theory of power series . 

Proposition 1. Let the series 

inside some sphere (x-x0) 2 + (y-y0) 2 + 

a. a y 
La a•·· x y ... u converge a.., y 

... +(u-u0 ) 2 <d. If the 

variables x, y ... u are replaced by powerseries which converge in a 

sphere of radius d', the resulting power series converges in a sphere 

whose radius is the smaller of the numbers d and d'. 

Proposition 2. The limit of a uniformly conve.rgent sequence of 

analytic functions in any number of variables is analytic in any domain 

enterior to the domain of convergence of the members of this sequence 

(Weierstrass' theorem). 



. ,•" 
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Proof of 2.2.4. Let M =max~~~~ for lx-x0 1 ~ s' < s, 

IY-Yol ~ s' <e. Consider the set of analytic function {~(x)} 

which are holomorphic in the circle (x-x0 ) 2 + (y-y0 )2 < d 2 of 

radius d =min · {aiM, s'}, where a is some fixed number less 

than one . 

The differential equation may be transformed into an integral 

equation cy-

Y = Yo + ( T(t, y)dt = 

xo 

and consider the right-hand side of the equation as an operator A 

defined on the set {~(x)}. By proposition 1 and well-known theorem 

on the integration of power series, we conclude that the result of 

:_:;ff applying the operator A is a new function in the set {<j> (x)}. 

·-·--· .. ~- . 

.-::, 

In addition, if we take maxi<P1 - <P 2 1 for d(<J> 1 , <J> 2 ), then 

by the Weierstrass theorem [proposition 2], the set {<j>(x)} forms a 

complete metric space. 

Estimating d(A(<J>1), A(~ 2)), we have 
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X 

< I I maxl~!l· 1~1 - ~2ldxl 
xo 

Taking lx-xol less than aiM, we have 

Consequently Banach's theorem is applicable, and this proves 

Cauchy's theorem. 

In an analogous manner we can prove the following theorem of 

Poincar~. 

2.2.5 Poincar~'s Theorem. Suppose that in the equation 

~~ = T(x, y; A), the function T(x, y; A) can be expanded in a 

uower series x, y and A which converges in the 

region lxl < £, IYI < £, IAI < £. Then there exists a solution of 
~ .. ' 

the form 

Y = AU
1

(x) + A2u (x) + ••• + AnU (x) + .••• 
2 n 

Proof. Let M =max ~~~~, where M does not depend on x, 



... · . ·:·· 
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y and X. Now consider the set of functi0ns ~(x, A) = rca
8

xax8 , 

which are analytic in the domain lxl ~ min{aiM, E}, lxl ~{aiM, E}, 

where a < 1. This set is a complete metric space if the distance 

is taken as 

Consider the operator 

Because of propositions 1 and 2 we conclude that A(~) 

is also a function of the set. 

Estimating d(A(~I), A(~2)) as in Cauchy's theorem, we obtain 

which proves Poincar~'s theorem. 

We prove as a typical and last application illustrating the use 

of Banach's contraction principle a version of the classical implicit 

function theorem . 

2.2.6 Theorem. Let T(x, y) be a continuous r eal valued function 



: .. . ·;. 
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defined on the rectangle I a x Ib C R2 where Ia = · {xjjx-x0 I ..::_a} 

Assume that T(x0 , y0) = 0 and that 

there is a a < 1 such that jT(x, y) - T(x, y') I ..::_ ajy-y' I for all 

x cS I a, Y, y' <:: Ib. Then there exists a positive s < a and a 

unique continuous function h:Is--+Ib such that h(xo) = Yo and 

h(x) = y0 + T(x, h(x)) on I . s 

Before giving the proof of Theorem 2. 2. 6 we need the following 

definition and theorem. 

2.2.7 Definition. For any two spaces y' z 
y 

w:ZxY --+- Z the map 

defined by (f, y) ----+- f(y) is called the evaluation map of ~. 

2.2.8 Theorem. Let X be an arbitrary space, and Y be d-cornplete. 

Then C(X, Y; d) is + d -complete. Topology ~y Dugundji 

+ 
Proof. Let {T } be any 

n 
d -Cauchy sequence, so that 

+ n, rn > N(E):d (T, T) < E. - n m 

Since it follows that 

· {T (x)} is ad-Cauchy sequence in Y for each x, and therefore 
n 

converges to some element, which we denote by F(x). Furtherrnore:r 
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we have Tn(x) in B(Tm(x), E) for all x and n, m ~ N(E), 

consequently F(x) in B(Tm(x), E) for each x and all m,n~N(E), 

which shows that the sequence {Tn} converges to the function F 

uniformly on Y. Therefore F is continuous and F(C(X, Y; d); 

since T ----~F. This concludes the proof. n 

Proof of 2.2.6. For any fixed positive Y 2 a, consider 

the 

let 

is 

c 
y 

+ eery, Ib; de)' which is space d -complete e 

c 
y 

the 

is 

be the subspace . {<J>I<J>Cxu) = Yo}; c is y 
inverse image of Yo under the evaluation 

+ d -complete. 
e 

For <jl E C define 
y 

F(<j>) 

F(<j>(x)) = Yo + T(x, <J>(x)) on I . 
y' then always 

(By 2. 2 .8) ' and 

closed, since it 

map wx 0 , and so 

to be the function 

F(<J>)(xo) = Yu + 

·\· T(x0 , <j>(x0 )) = y0 , and the problem reduces to showing that in a 
··--~·:.;:z. .. .. , 

·.' 

suitable C , there is an h such that F(h) = h. To apply Banach's 
y 

contraction principle we must first determine a c 
y 

by F into itself; that is, for each <1> satisfying 

that is mapped 

!Yo - <J>(x) I < b on I , 
y 

F(<jl) satisfies the same conditions. Now, 

IY0- F(<j>(x)) I = IT(x, <J>(x)) I 

< IT(x, <jl(x)) - T(x, Yo) I 

+ IT(x, Yo) I 
2 ai<J>Cx) -Yo I + ITCx, Yo) I 

< ab + !rex, Yo) I· 
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Since T(xo, Yo) = 0 and T is continuous, by choosing 

Y = s so small that IT(x, y0)1 2 b(l- a) for all x in Is' 

we shall indeed have that F maps Cs into itself. Next, for 

cp, ~ ~ C , we have s 

IF(cp(x)) - F(~(x)) I = ITCx, cfJ(x)) - T(x, ~(x)) I 

< alcp(x) ~ ~(x) I, 

so that d+(Fcp, F~) < ad+(cp, ~); since a< 1, F:C 
e - e s 

--+C 
s 

. : .~.cl is contraction and has a unique fixed point h . 

. '· ... ·~; -

-~ ·-- -~ .,:; 

. -~-.:~~; 
.- ::·~·: .. ~: ~:-

.. _ .. _, 

2.3 EXTENSIONS OF BANACH'S CONTRACTION PRINCIPLE. 

The contraction theorem of Banach remains the most fruitful 

means for proving and analysing the convergence of iterative processes. 

For this reason extensions of the theorem are of continuing interest. 

The following extension~ Banach's contraction principle is 

given in [12], [37] and [47] . 

2.3.1 Theorem. If T is a continuous mapping of a complete metric 

space X into itself and if, for some positive integer n, the 

iterate Tn is a contraction, then T has a unique fixed point. 
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Proof. If we take an arbitrary point x ~ X and consider the 

sequence Tknx (k = 0, 1, 2, ... ), a repetition of the arguments 

introduced in the proof of Banach's contraction principle yields the 

convergence of this sequence. Let x0 = limk+oo Tknx Then Tx0 = x0 . 

In fact Tx0 = lim TknTx. Since the mapping Tn is contraction we 

have 
k+oo 

< 
k 

~a d(T(x), (x)). 

Consequently 

lim d(Tkn(Tx), Tkn(x)) = 0 
k+oo 

i. e. Tx0 = x0 • 

Remark The proof of theorem 2.3.1 may be simplified some-

what, as follows: Since Tn is a contraction, it possesses by 

Banach's contraction principle, a unique fixed point, say xo, such 

that n 
T x0 = x 0 • It will now be shown that Txo = Xo· Since 

d(Tx
0

, x 0) = d(TTnx0 , Tnx0) = d(TnTx0 , Tnxo) 

< ad(Tx0 , xo), 

and a < 1~ one has d(Txo~ xo) = 0 i . e . Txu = xo. 
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Thus the argument just given shows that the assumption that 

T itself is continuous made in the hypothesis of theorem 2.3.1 is 

superfluous. However, it should be noticed that the proof of theorem 

- ~ 2.3.1, nevertheless, does make use of the continuity of T. 

·-~::~·~t_: 
...... -. 

-·---~ 

Specifically, when it is asserted that since xu = lim Tknx, 
k-+a:> 

has 

Tx0 = T(lim Tknx) = 
k-+a:> 

one 

Therefore the following theorem is an extension of theorem 

2. 3.1. 

2.3.2 Theorem. If T is a (single valued) function defined on a 

complete metric space X into itself, such that the function Tn 

is a contraction for some (positive integer) n, then T has a 

unique fixed point. 

Remark. The conclusion that T has a fixed poi nt can be 

·.;;:~ 
.. '::} reached in an even more direct manner, still \'t'ithout assuming t hat 

-- -:~ ...... _...,. 
: . •. =-t· ._. ,_:.· 

-· ::;:~ 
. · .. · .. 
·.:.:.{.: 
.·.• : 

T itself is continuous. Since Tn is a contracti on, it follows 

from Banach's contraction pTinci ple that Tn has a uni que fixed 

point such that n 
T x 0 = x 0 • Hence , 

n n = TT x0 = T T(x0), 
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which means that Tx 0 is also a fixed point of Tn. But Tn has a 

unique fixed point, and therefore Tx0 = x 0 . Thus, x0 is a fixed 

point of T. The uniqueness of the fixed point of T is obvious, 

since each fixed point of T is also a fixed point of Tn. 

Remark. An examination of the preceeding Cl:rgument shows that 

there is no need to assume that Tn is a contraction and defined on 

a complete metric space. All that is used in obtaining the conclusion 

of theorem 2.3.2 is that Tn has exactly one fixed point. Hence one 

has 

2.3.3 Theorem. Let S be any non empty set of elements (called 

"points") and T be a single valued function defined on S. Suppose 

that for some positive integer n, the function Tn has a unique 

fixed point x0 . Then T also has a unique fixed point, namely xo. 

Proof. Tn has a unique fixed point; therefore 

Tn(x 0 ) = xo. 

But Tn+l = T.Tn = T~; 

therefore T~(x0 ) = T(Tn(xo)) = T(x0). 

Hence T(xo) is a fixed point of Tn. The uniqueness of this 

···-- point shows that T(xu) = x0; in otherwords, xo is also a fixed 

-~ 
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point of T. The uniqueness of the fixed point of T is obvious, 

since each fixed point of T is also a fixed point of Tn. 

(When s is a complete metric space X, and T a single 

valued function on X to X, such that Tn , for some positive 

integer n, is a contraction then 2.3.3 reduces to 2. 3. 2). 

In order to illustrate Theorem 2.3.2 we take the following 

examples: 

Example 1. Let T: [0, 2] [0, 2] be defined by 

{: 
X E: (0, I] 

T(x) = 
x c; (1, 2] 

Then T2(x) = 0 for all X c." (0, 2] ; hence T2 is a con-

traction on [0' 2], although T is not continuous. 

Example 2. Let T map [0, I] into itself according to the 

· formula 
. .... .. 

_. ··. x rational 
T(x) = 

x irrational 

Then T2 is a contraction, although T is not continuous. 
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Example 3. The metric space R is taken to be the Banach 

space of all real valued continuous functions C([O, 1]), on the closed 

interval 0 < x < 1, with the norm of the function f(t) being the 

maximum of lf(x) I fbr x in this interval. Consider the linearly 

independent elements (i.e. such that any finite subset is linearly 

ex, 1, x, x2, ......•.... , 

and extend this linearly independent set to a Hamel basis H 

(i.e. maximal linearly independent set;). The transformati on 

T is defined, for elements of H, as follows: 

and T(i) 

While T(h) =k 2 
for any element 

from X (notice that, therefore, 1 or e 

n = 1,2, ... ). Since H is a basis for 

of T may be extended, from H to all 

1 X = 2.e . 

of H 

T(xn) 

which is different 

1 
=2x 

n for 

c ( [0, 1])' the definition 

of c ([0, 1]), merely by 

n n 
a.h. (with positive defining T(y) = l: a. T (h.) whenever y = l: n 
1 1 

i=l 1 1 i=l 

integer, real numbers a. 1 # 0 for i = 1,2, ... , n, 

for i = 1 , 2, ... ,n); further , let T(O) = o. Then T2 

is the identity mapping. Thus T2 1·s a contraction. 
' 

continuous at 
X e . , that is, 

T( ¥ 1 xk) ~ T(ex) = 1 k! .,. 2 ' lim 
fi-t<X> k=O 

and h. i n H 1 
1 

= 4 I' where I 

But T is not 

-~ 



: . :_:~. 
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because 

lim [T(l + 
n-+oo 

n 1 r k! k=l 

1 
= 2e 

X 
= e 
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xk)] 

X 
+ 

1 
- 2" 

1 
2 

1 X 1 n 1 k 
= lim [~ + 2r kTx] 

n-+oo k=l . 

X (e - 1) 

Example 4. It is of interest to notice that an example of 

a discontinuous transformat i on T, with T2 a contraction, can be 

given even when the metric space R is the set of real numbers. 

Let t he numbers 1 and IT be contained in a Hamel basis H for the 

real numbers (ie, a set H of rationally independent real numbers 

such that every non zero real number may be uniquely written as a 
n 

fini t e sum, y = r a.h., where n is a positive integer, the a 
i=l 1 1 

are non zero rational numbers, and the h. are numbers of H· 
1 ' 

[G-Hamel [ 39}] . The transformation T will be defined, for elements 

of H, as follows: 

T(l) = 1T/ 2, 
1 = -·1 2 ' and T (1l) 

while 1 
T(h) = 2 h for any number of H which is different from 1 

1T. The definition of T may be extended, from H to all the real 

i 

or 

numbers, by defining T(y) 
n 

= r 
i=l 

a. T(h.) 
1 1 

for any non zero 

.. 
J 

' -' 
"\ 
,J 

·~ 

-3 



. .' · .. ;~ 

.. . -. 

.:,\ 

•) .. ::~:::-:£.; 
. ::-.·~·.·~~~-

.. :.:~~~'f!~ . 

.. ~~·r:~~~: 

· .: ·:--

·.;~:: 

38 

real number 
n 

y = l: 
i=l 

a.. h. ; 
1 1 

and by putting T(O) = 0. The trans-

formation T satisfies 1 
T(T(y)) = Lf y for every real y; hence 

T2 is a contraction. But T cannot be continuous, For, from the 

way it was defined, T satisfies the Cauchy functional equation 

T(x) + T(y) = T(x + y). 

If the function T were continuous, then it would have to 

be linear; that is, 

T(y) = Cy, 

for some real number C, and any real y. Since 

C = T(l) = n/2, one would then have that T(n) = C. TI = n2/2, con-

tradicting the original definition of T which states that 
1 T(n) = 2 . 

2. 3. 4 Considering the simplicity and usefulness @-3-52 for example 

[47]) of Banach's contraction principle, it is surprising that only 

recently have there been attempts to generalize it. Probably the most 

natural generalization that one can make is to localize condition (1), 

given by Edelstein [31]. 

In the local version of Banach's contraction principle the 

following definitions were introduced by Edelstein [31]. 
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2.3.5 Definition. A mapping T of X into itself is said to be 

locally contractive if for every x in X, there exist € and A 

(€ > 0, 0 <A< 1); which may depend on x, such that 

(2) p, q in S(x, €) = · {yldCx, y) < £} implies 

d(T(p), T(q)) < Ad(p, q), p # q. 

2.3.6 Definition. A mapping T of X into itself is said to be 

(€, A)-uniformly locally contractive if it is locally contractive and 

both € and A do not depend on x. 

Remark 1. A globally contractive (contraction) mapping can 

be regarded as a (oo, A) -uniformly locally contractive mapping. 

Remark 2. For some special spaces every locally contractive 

mapping is globally contractive. For example: 

2.3.7 If X is convex, complete metric space, then every mapping 

T of X into itself which is (£, A)-uniformly contractive is also 

globally contractive with the same A. 

To show that the condition(~ of 2.1.10 and 2.3.6 are 

tJquivalent we need the following definition, w·hich is due to Bing [ 7] . 

' 

' 

) 

~ 
'i 
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Definition. A metric space X is said to be convex provided 

X and y in X imply there exists z in X such that 

1 
d(x, z) = d(z, y) = (2) d (x, y). 

Proof of 2.3. 7. A theorem by Menger [ 11 p .41] states that 

a convex and complete metric space contains, together with x and y, 

a metric segment whose extremities are x and y; that is, a subset 

)}~?' isometric to an interval of length d(x, y) . 

• • - :.:: ~:.·!.:.!~ 
' ..... _";;:; 

Using this met we see that if x, y ~ X, then there are points 

x = x 0 , x 1, ... , xn = y such that 

Hence 

d(x, y) = 
n 
L d(x. l, X.) 

i=l 1- 1 

n 

and d(x. 
1

, x.) < E:. 
1- 1 

d(T(x), T(y)) < i~l d(T(xi-l ), T(xi)) 

n 
<A L d(x. 

1
, x.) = Ad(x, y). 

i=l 1- 1 

Hence the theorem. 

Remark. It is quite easy to exhibit spaces whichromit locally 

contractive, or even uniformly locally contractive mappings which are 

not globally contractive. The following is a simple example: 



.: .. 

·--~ .. \•'•'"'·- -.. . ,; ;.,~·1"J'_, 

:I 
·:.-::7;.-f::.' 

:'f.\!::;? .. ;;-jj_;, 

·.:--~ ~:}~:-
··· ·:·.~~~;· 
.. :.i:.~gjjjf .. ....:.·~ ·-

.. ;.::~·~~ 

.· .. ·· 

41 

Consider the circular arc described in the complex z-plane 

by 

X= {exp(it):O < t < 3n/2}, 

and let (X, d) consist of X with the metric induced by that of 

the Euclidean plane. The map T:X -------rX given by 

T(exp(it)) = exp(it/2), 

is not globally contractive, since 

lexp(i3n/2) - exp(O) I < lexp(i3n/4) - exp(0/2) I; 

but it is easily shown to be uniformly locally contractive. 

2.3.8 Definition. A metric space X will be said to be 

n-chainable if for every a, b ~ X there exists an n-chain; that 

is, a finite set of points 

on both a and b) such that d(x. 1 , x.) < n 
1- 1 

= b (n may depend 

(i = 1, 2, ... , n). 

The concept of n- chainability is apparently due to Fr~chet 

[38]. Fr~chet and his contemporaries, and later Whyburn [ 73] , made 

._,,,, use of this concept in its role as a generalization of connectedness 

in the context of a metric space . It has also been found useful in 

·-~ 
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several papers (see [31] - [32]) on various extensions of Banach's 

contraction mapping theorem. 

Before stating and proving the main result connected with the 
.: -.·.-: 

extension of Banach's contraction principle we would like to give 

here some results related to well-chained metric spaces given in 

Choquet [24]. 

2.3.9 Theorem. Every connected metric space X is well-linked. 

Proof. Let a ~ X and let X(a, E) be the set of points 

X of X which can be joined to a by a chain of steps at most equal 

to E. This set is not empty, as it contains a· 
' 

it is open, since 

if X ~ X(a, E)' the same is true for every y such that d(x,y) <E; 

it is closed, since if X is an accumulation point of X(a, E)' 

there exist points y of X(a, E) such that d(x,y)<E. 

Since X is connected we have X(a, E) = X; in other words, 

every point b of X can be joined to a by chain of steps at most 
: '; ::.. ~-~ 
: ~ ;,{v•, equal to E . Thus X is well-linked. 

Remark. A w.ell-linked metric space need not be connected. For 

example, the set Q of rationals is well-linked but not connected. 
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However, this converse holds if X is compact. 

2.3.10 Theorem. For a compact metric space, the properties of being 

connected and being well-linked are equivalent. 

Proof. We have to show only one half of this equivalence. 

Thus let X be a compact metric space. If it is not connected, 

there exists a partition of X into two non empty closed sets x1 

and X2 . Since X1 and X2 are compact the distance between them 

is non zero. A point of x1 cannot be joined to a point of X2 by 

a chain of steps less than o/2, for if Ca1, a2, ... ,an) is such 

a chain, let i be the smallest index such that then 

d(a. 1' a.)< o/2, 
J.- ]. 

in contradiction with d(X1, X2) =o. 

In other words, if X is well-linked, it is also connected. 

Edelstein [31] has given the following theorem: 

Let X be a complete s-chainable metric space and T be a 

·~;t}i mapping of X into itself which is ( s, /..)-uniformly locally con-
.:=· 

tractive. Then there exists a unique point ~ in X such that 

.... T( ~) = ~ • 

) 
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In case T does not satisfy the above condition but a suitable 

. >· 
power of T does, then we have the following: 

2. 3. 11 Theorem. Let T be a mapping of a complete E-chainable 

metric space X into itself atld suppose that Tp is (E, A)-uniformly 
.: .. ~·~~· 

. }1ij locally contractive; then there exists a unique point a 0 in X such 

. ·.·,· ... · 
····- .. :.. .. 

.. . >:?~~ 

. . ... ;;:··~"" 

... ,. 
-,.·.:·: . 
. ·:-:... 

.. · -- ~.1.!-

Proof. We set Tp = g. 

Let x be an arbitrary point of X. Consider the E -chain 

By the triangle inequality 
k 

d(x, g(x)) < L d(x . 1 , x.) 
i=l 1- 1 

< k E .•..•.... , , , (1) . 

For a pair of consecutive points of the E-chain the condit ion 

p, q in s(x, E) = {y ldCx , E) < E} implies that 

d(g(p), g(q)) < Ad(p, q), p ~ q, is satisfied . 

Let a be an ar bitrary point in X. Set a 1 = ga, a2 = 

ga
1 

= g2a and i n general let 
n 

a· = ga 1 = g a. n n-
We shall show t hat 
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{a } is a Cauchy. 
n I n fact, 

n 
<A {d(a, a1) + d(a1, a 2) + ..• + d(a 

1
,a ). 

m-n- m-n 

An 
< l-A d(a, g(a)) 

from (1). 

Since A < 1, this quantity is arbitrarily small for the 

sufficiently large n. Thus {an} is a Cauchy sequence. Since 

is complete , lim a exists . We set ao = n 
n~ 

virtue of continuity of g, g(ao) = g lim 

lim 
n-+<><> 

a n+l Thus 

n~ 

g has a fixed point 

In order to complete the proof we have 

lim a is a unique fixed point satisfying 
n 

n~ 

and bu be two different fixed points i . e., 

g(bo) = bo . Then au -f bo implies d (a0 , bo) 

lim a . Then, by n 
n~ 

a = lim ga = n n 
n~ 

i.e . 

to show that ao ;= 

g(ao) = ao . Let ao 

g(ao) = ao and 

> 0. 

X 
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Now lim d(g(a ), g(b )) n n 

A.n 
= l-A. d(a0 , g(b0 )) ...... ...... (2) 

Let a be an arbitrary point of X. Consider the chain 

Then, by the triangle inequality, d(a0 , _ g(b 0 )) 

k-1 
< E d(x., X. 

1
) < kE .....••••.•... (3). 

- i=l 1 1+ 

Therefore by (3),(2) reduces to 

0 as n --+ OJ 

Thus d(ao, ho) = o, wrnch is impossible unless ao = h o· 

Therefore a 0 is a unique fixed point for g. 

Now a
0 

is the unique fixed point of . g. The relation 
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T(g(a0 )) = T(a0); 

but P+l 
T = T(g) = g(T) . 

Therefore g(T(a0)) = T(a0). 

Hence T(a0) is a fixed point for g. The uniqueness of 

this point shows that T(a0) = a 0 ; in other words, a0 is also a 

fixed point for T. The uniqueness of the fixed point of T follows t'rom 

1 ,r the fact that every point of T is a fixed point for rP. 

Corollary. Let X be a convex complete metric space and T 

an (e:, :\)-unifonnly locally contractive mapping of X into itself. 

Then T has a unique fixed point. 

Proof. By 2.3.7 . T becomes a globally contractive mapping of a 

complete metric space X into itself. Hence, by Banach's contraction 

principle T has a unique fixed point . 

From ·. , Theorem 2.3.11, there follows a corollary regarding 

expansive mappings. These mappings can be defined in a natural way. 

2.3 .12 Definition. A mapping T of X into itself is said to 

be locally expansive if for every x E X there exist e: and :\ 

( E > 0, A > 1)' which may depend on x, such that 
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p, q in S(x, E) = {yjd(x, y) < E} implies 

d(T(p), T(q)) > Ad(p, q), p # q. 

2.3.13 Definition. A mapping T .of X into itself is said to 

: be (E, A) -uniformly locally expansive if both E and A do not 

,· ... . 

· . .;; . 
:· .;.:'+=. :~ ... : 

:·. : .. : . :~ .. 

. ·-~~:·;·;~1~;. 

· ... ~-~~:;~:l)~ 

.. : .. ·:·,':.. 
. ,. · .. ~ ;. 

depend on x. 

2.3.14 Corollary. If T is a one to one (E, A)-uniformly locally 

expansive mapping of a metric space Y onto an E-chainable complete 

metric space X J Y, then there exists a unique ~ such that 

T(O = ~· 

Proof. This assertion is an immediate consequence of the 

fact that for the inverse mapping T-1(x) all the assumptions of 

the Theorem are satisfied . 

Remark. It is obvious that a connected metric space is E-

chainable for every E > 0 (as proved in Theorem 2.3.9). Now suppose that 

·'·:·:"} X is a connected and complete metric space. It is natural to ask 
· :-. ,··. 

::.. whether there exists a fixed point if the condition of (E, A)-

uniformly contractivity is replaced by the following one. 

- .- . 
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for every xo in X there exists a sphere 

So = S (x 0 , e:(x0 )) such that 

d(T(x), T(y)) ~ ad(x, y), 

for every x, y in So, where a < 1. Such a mapping will 

be said to be a-locally contractive. 

The counter example given 1n [58] shows that this is not 

}~i~D~· the case. In the same paper it is also proven that some special 

assmnption is necessary in order to guarantee the existence of a 

fixed point. The required condition is the following: 

2.3.15 Theorem. Let T be an a-locally contractive mapping of 

a complete metric space into itself such that 

(1) For some x0 in X the point x0 and Tx0 are 

connected by an arc C c X of finite length. Then there exists a 

.. . ~ .. fixed point . 

Remark. If assumption (1) is dropped, or if C is not of 

finite length, then a fixed point may fail to exist. The counter 

example may be found in [58]. 



,' .. . ,:;\': 
. ·;,~:J: 

.. ... 

,;I 
.· ~~~:~1m~. 
, - :.it~ .. 

. ; ... '!'~": · 

· .. ·::-:~:~ 

·._321 
.. =~-

. !. ~ 

so 

2.4 CONTRACTIVE MAPPING AND FIXED POINTS. 

2.4.1 Definition. A mapping T of a metric space X into itself 

is said to be contractive if for every two distinct points x, y 

1n X, 

(1) d(T(x), T(y)) < d(x, y). 

A ·contractive mapping is clearly continuous; and if such a 

mapping has a fixed point, then this fixed point is unique. Con-

traction (i.e., ' jT(x) - T(y) I ' ~ex : lx-yj ' for all x, y in X 

"' 
and some fixed ex, 0 < ex < 1) is an example of contractive mapping. .) 

Remark. It is interesting to observe that the condition (1) 

is not sufficient for the existence of a fixed point, as will be seen 

in the following examples. 

Example 1. Let X be the set of real numbers with the usual 

definition of distance. Let 

T(x) 
7T = x + 2 - arctan x. 

Since arc tan x < ; for every x, the operator T has no 

'~ 
I' , 
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fixed point. At the same time, if x < y, then 

T(y) - T(x) = y- x (arctan y- arctan x), 

and by Lagrange' s formula, 

T(y) - T(x) 

If we had 

y - X = y - x - 1 + z2 

jT(y) - T(x)j > IY- xj, 

then this would mean that 

(x < z < y). 

but this inequality is not satisfied for any z. Therefore 

we always have 

jT(y) - T(x)j < IY- xj · 

Example 2. Let X be the space of all real numbers, and 

define the function 

T(x) 
X 

= log (1 + e ) . 

Differentiating we obtain 

X 
e 

T' (x) = --- < 1, 
X 

1 + e 
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i.e. T is a contractive mapping, and it is easy to see that T 

has no fixed point. 

ExamEle 3. Let X = {xjx .:_ 1} with usual distance 

d(x. y) = jx - yj. Let T:X X be given by T(x) 1 = X + -
X 

Then T is contractive, but it has no fixed point. 

Whether directly influenced by Banach's result or not 

several authors have examined mappings which satisfy condition (1) . 

Some of these are listed in the bibiliography ([32], [33], [34], and 

[23]). The most recent result concerning mappings satisfying 

condition (1) is that of Edelstein [33], given below. 

2.4.2 Theorem. If T takes Rn into itself, if T satisfies 

(1), and if there is an n 
X.G R such that the subsequence of 

· {Tn(x)} converges, then there exists a fixed point under T. 

We note that in both conditions (1,2.1~10),(2,2.3.5) ~ is 

independent of x and y. This suggests that one might generalize 

these conditions by letting A vary with x and y. Cheney and 

Goldstejn [23] as well as Edelstein [32] did this in the follow-

ing manner. They required that the mapping T satisfy 

-~ 
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(2) 0 < d(x, y) implies d(T(x), T(y)) < d(x, y). 

Note that this is equivalent to requiring that for d(x, y) 

greater than 0, d(T(x), T(y)) ~ :\(x, y) d(x, y) where :\(~, y) < 1 

for all x and y in X. In both (23] and [32] we find the 

following theorem. 

2.4.3 Theorem. Suppose T satisfies (2) and there exists x in 

X such that some subsequence of · {Tn(x)} converges. Then there 

exists a unique z in X such that T(z) = z. 

In [32] Edelstein also considered mappings satisfying the 

following localized version of (2). 

(3) There exists £ > 0 such that 0 < d(x, y) < £ 

implies d(T(x), T(y)) < d(x, y). 

He obtained the following two results, among others . 

2.4.4. Theorem. If T satisfies (3) and there exists x in X 
n. 

such that {T 1 (x)} z in X, then there exists at least 

one periodic point under T. 

'~ · ~ 
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2.4.5. Theorem. If X is compact and E-chainable and if T 

satisfies (3), then there exists a unique fixed point under T. 

Here we [69] \oJould like to give direct, rather simple proofs 

of the above theorems. For that purpose we need the following 

definitions introduced by Edelstein [33] . 

2.4.6. Definition. A mapping T:X ----+-X of a metric space 

X into itself is said to be nonexpansive (E-non expansive) if the 

condition 

(4) d(T(p), T(q)) 2 d(p, q) 

Jt.~' holds for all p, q r-~ X (for all p, q with d(p, q) < E ) . 
.. :.+;t.::1:S-

~~& Isometry (i.e. ' ITCx) - T(y)j : = lx- yj · for all x, Y ~X) 

-<~~~~ \:!~? is a simple example of non expansive mapping . 
. --~:-2:~; .. 
_ _.:-:~ 

··_ ~-~·~t}g 
• •••• ':!.~:.':.":.. 

. ; :::;,. 

··· -· 

Mappings as above satisfying (4) with the strict inequality 

sign for all p, q in X, p f q (for all p, q with 

o < d(p, q) <E) are called contractive (£-contractive). 

2. 4. 7 Definition. A point y G: Y C X is said to belong to T-

closure of Y, y E. YT, if T(Y) c Y and ther e is a point 1'\ E. Y 

and a sequence · {n.} of positive integer s , Cn1 < n2 < ••• < ni < ••• ) , 
l. 

t 
I . 
. 
J 
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n· 
so that lim T i{n} = y. 

2. 4. 8. Definition. A sequence· { x.} c X is said to be an 
]. 

., isometric (e:-isometric) sequence if the condition 
· ···. : 

·. \ , 

holds for all k, m, n = 1, 2, ... ' (for all k, m, n = 1, 2, ... ' 
····''' with d(x , x ) < e:). A point x in X is said to generate an 

·:\(~i. m n 

. :_-·_.:.~:::::::;: 

.. ,_ ,:· 
•' .. : ~~:; 

. . . . ·- -~·. 
·-···:"(j 
. :.:~.: ·.-.. 
. :.: 

isometric (e:-isometric) sequence under T, if · {Tn(x)} 

is such a sequence. 

Example. In R2 the sequence {cos n ~' sin n~ln = 0, 1, 2, 

... } is a simple example of an isometric sequence. When -1 
1T <P 

rational, the range of {x.} 
1 

is the set of vertices of a regular 

is 

polygon, otherwise it is a dense subset of the unit circle. We may, 

then, think of an isometric sequence as a generalization of a regular 

polygon. 

The following results are due to Edelstein [33] . 

2.4.9. Theorem. If T:X ---+X is c: -nonexpansive and x in 

XT, then a sequence {m
3

}, (m 1 < m2 < ..• ) , of positive integers 

exists so that lim Tm3 (x) = x. [Hence, in particular, (XT)T = XT.] 
J-t<X> 
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2.4.10 Theorem. If T:X ----+X is an E-nonexpansive mapping 

of X into itself, then each x in XT generates an €-isometric 

sequence. 

2.4.11 Theorem. If T:X ---+X is a nonexpansive and T 
X <E. X, 

then x generates an isometric sequence. 

Here we would like to remark that one could prov~ more than 

that given by Edelstein [ ], i.e. it can be proved that even in 

this case the following holds: 

2.4.12 Theorem. If T:X ----+-X is nonexpansive and X in 

then x generates an isometric sequence, and T has a unique fixed 

point, equality holds when x = y, x, y ~ X. 

Proof. By Theorem 2.4.11 T generates an isometric sequenc~ ; 

therefore d(x, T(x)) = d(T(x), T2(x)), but T is nonexpansi ve, so 

that d(T(x), T2(x)) ~ d(x, T(x)). This shows that d(x , T(x)) = 0, 

so that x = T(x). Also, if y in X and y = T(y) then 

d(T(x), T(y)) = d(x, y), contradicting the fact that T is non-

expansive unless x = y. Thus x is unique fixed poi nt for T. 

Corollary. If T:X ~~-+X is an E-nonexpans i ve mapping of 
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X into itself, then each x in XT generates an E-isometric 

sequence, and T has a periodic fixed point i.e., there exists a 

positive integer k such that k T (x) = x. 

Remark . It is natural to ask whether Theorem 2.4.4 would 
. . : ·. 

remain true if ( 2) is substituted by a localized version such as 

p ~ q; p, q in S(x, E(x)) implies d(T(p), T(q)) < d(p, q) where 

S(x, E(x)) = {z!d(z, x) < E(x)}. 

-.. < .. :~f' 
__ · _;~.:..::..;;.. 

The following example serves to show that this is not the case. 

Example. 

· 1 I X= {(n' i)ln = 2i, 2i+l, ... ,} U X0 L Y0 

-~~~;f 
Xo=· {(~, O)ln = 1, 2, ... }, Y0 =· {(0, i)li = o, 1,2, ... }. 

-.!~~!\~: 

-~:;.:.!4 

. ....... :.:. 
,·,:::-· 
·' - -, : 

(' 

' ( 1 i + I) if n # 2i 
1 

1 n+l 
T( 

n' i) = l d , 0) if n = 2i 

T(O, i) = (0, i + 1); i = O, 1, 2, ... · 

X is taken 1n the metric ofme euclidean plane . Her e condition 

-~ 
I 
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(2) and (5) are satisfied, and although Tn(l, 0) contains a sub-

sequence which converges to (0, 0) this last point is not periodic. 

(O, 3) b 

(O, 2) o 

(0' 1) L __ 
0,0 

0 

(1,0) 
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In [23] Cheney and Goldstein have proved the followi.ng theorem. 

Let T be a map of a metric space X into itself such that 

(j) d(T(x), T(y)) ~ d(x, y); 

(ii) if xI T(x), then d(T(x), T2(x)) < d(x, T(x)); 

(iii) f h th Tn(x) or eac x, e sequence has a cluster point. 

Then for each x the sequence Tn(x) converges to a fixed point of 

··, .:_};;~ T • 

.. ~:·ilL 

: · -:·':!:~;C 
. L.::~;I 

Here h'e would like to remark that by relaxing conditions (ii) 

and (iii) we get a unique fixed point. Although the theore~ has 

already been given by Edelstein [32], we prefer the direct rather 

simple proof here. 

2.4.13 Theorem. Let T be a map of compact metric space X into 

itself such that 

(i) d(T(x), T(y)) ~ d(x, y), equality holds when x = y. 

Then T has a unique fixed point. 

Proof. The compactness of X and the condition (i) imply 

that each x in XT generates an isometric sequence, 

[ 33 Theorem 1']. Therefore, by the definition of isometric sequence, 
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d(x, T(x)) = d(T(x), T2(x)); but from condition (i) we have 

d(T(x), T2(x)) ~ d(x, T(x)). This shows that d(x, T(x)) = 0, which 

implies x = T(x) i.e., x is a fixed point for T. To prove the 

.\;.;. uniqueness, let us assume that y is another point such that y i x 

and T(y) = y. Then d(T(x), T(y)) = d(x, y) contradicting the 

condition (i) unless x = y. Thus x is a unique fixed point for T. 

In the same vein Rakotch ~9] allowed A to vary in the re-
·~~ ..... :t 

-:;;~ stricted way and was able to obtain a fixed point theorem on complete 
.... ~ 

·;}~ metric spaces. The exact conditions Rakotch imposed on A are 

following: 

2.4.14 Definition. Denote by F the family of functions A(X, y) 

satisfying the following conditions: 

(i) A(x, y) = A(d(x, y)), i.e., A is dependent on the 

distance between x and y only. 

(ii) 0 < A(d) < 1 for every d > 0. 

(iii) A(d) is monotonically decreasing function of d. 

We give here the localized form of Rakotch's theorem. 

2.4.15 Theorem. If T is a contractive mapping of a complete 
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E:-chainable metric space X into itself satisfying 

O<d(x,y)<E: >d(T(x), T(y)) ~ A(X, y)d(x, y) 

:''.-· for every x, y in X and A (x, y) cz F, then T has a unique 
,···,· .. 

. . -~· .. ~':'!!: 

fixed point. 

Proof. Since (X, d) is E-chainable we define, for every 

x, y in X 

n 
d (x , y) = inf E d(x. 

1
, X.)' e: i=l 1- 1 

where the infimum is taken over all e:-chains 

joining x = x0 and y = x . 
n Then d is a distance function on 

X satisfying 

(i) 

(ii) 

d(x, y) < d (x, y) - e: 

d(x, y) = d (x, y) E: for d(x, y) < E:. 

From (ii) it follows that a sequence {x } 
n in X is a Cauchy sequence 

with respect to d 
E: 

if and only if it is a Cauchy sequence with 

respect to d and is convergent with respect to d E: if and only if 

it converges with respect to d. Hence since (X, d) is complete, 

(X, d ) is also a complete metric space. Moreover T is a con
E 

tractive mapping with respect to Given x, y in X, and any d . E: 
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... ' X n 

d(x. 
1

, x.) < e: 
1- 1 
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with x 0 = x, and x = y, we have n 

(i = 1,2, ... ,n), 

=>.(d(x. 
1

, x.))d(x. 
1

, x.) 
1- 1 1- 1 

<A(E).E i = 1,2, ... ,n. 

Hence Tx 0 , Tx 1 , ... , Txn is an e:-chain joining Tx and Ty, and 

n 
dE(T(x), T(y)) _2 ih d(T(xi-l), T(xi)) 

n 
< E >.(d(x. 1 , x.)) d(x. 

1
, x.), 

i=l 1- 1 1- 1 

since is an arbitrary e:-chain, we have 

d (T(x), T(y)) < >.(d (x, y)) d (x, y). 
E - E E 

Therefore, by corollary to Theorem 2 [59 J , T has a unique 

The following definitions and theorems related to Banach's contraction 

principle are due to Janos [ 42]. 
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2.4.16 Definition. Let X be a completely regular space. By 

D = {fi I i E F} we always understand a family of pseudometrics on 

X inducing the given topology on X. Let T:X ----~X. It is 

natural to say that T is contractive under D if and only if 

'\! i c F :1 a. in (0 1) u x y =- X 
-.:::...:I]. ' ' v, <:...., d. (T(x), T(y)) < a.d. (x, y). 

]. - ].]. 

2.4.17 Definition. Let X be a metrizable topol_ogical space, 

m the set of all metrics on X inducing the given topology, and 

T:X --~X a continuous mapping. If a <:: X is a fixed point of 

T, we will say a is of contractive character, if, for some 

Tc(O, 1), there exists a neighbourhood N(a) of an invariant under 

T and a metric d in m such that d(T(x), T(y)) < ad(x, y) 

for all x, y ~ N(a). 

2.4.18 Theorem. Let X be a complete regular and T;X ---~x. 

Let D be a family of pseudometrics on X with respect to which X 

is complete and under which T is contractive. Then T has a unique 

; ;~j:· 

:i~ fixed point on X. 
=.:· .;~} 

.... ;;; · 

. · .. ; 
2.4.19 Theorem . Let X be a compact Hausdorff, T:X ----~ X, and 

D =· {f. li E F} such that 
]. 

\{ i r;;: F and 'Y X, Y E X, d.(T(x), T(y)) < 
]. -

di(x, y). Then T has a unique fixed point ~n X. Moreover, if X 

· · bl th f h (O 1) there exists a metric d on J.S metr1za e, en or eac a E ; 
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X, inducing the given topology such that .,, x, y in X: 

d(T(x), T(y)) < ad(x, y) . 

2.4.20 Theorem. Let X be compact and connected and let 

T:X ------+X be such that for some d 1n m and some E > o 

0 < d(x, y) < E ==> d(T(x), T(y)) <d(x, y). 

Then T has a unique fixed point a, a is of contractive 

character and Tn(x) -- ··-+a for all x <=:. X. 

Recently Sims [66] has given the following generalization 

of Banach's contraction principle: 

If T is a contraction on a bounded and complete pseudometric 

space (X, d), then T has a unique fixed point . 

In the end of this section we give a generali zation of the 

following theorem of Bers [ 5]. For that we need the following: 

2.4.21 Definition. Let K be a subset of a normed vectorspace. 

A mapping T of K into itself is called a cont:-acting mapping if, 

.. .. 
• 
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for all x , y ..;:: K, 

IIT(x) -T(y)ll <allx-yll where 0 < a < 1. 

2.4.22 Definition. A mapping T of a subset K of a normed 

vectorspace into itself is call ed a nonexpanding mapping if, for 

all x, y ~ K, 

IITCx)- T(y)li < llx- Yll· 

Bers [ 5 p.81] has given the following theorem: 

Theorem. Let K =· {x j 11 x II S.. 1} be a subset of a Banach 
contractive 

space, and let T be a continuous/mapping of K into itself. Then 

T has one and only one fixed point. 

Here we \'/ould like t o remark that the above theorem may be 

::~it} put in even a general set as follows. At the same time the condition 
-··'-~ ..... 
::~;o~~t 

.. ;ii~~. of continuity is superfluous . 
;::~ . 

. ··tr:~. 

Theorem . Let K be a closed subset of a Banach space and 
. ·' · 

let T be a contracting mapping of K into itself. Then T has 

~' ,.~;;·i. one and only one fixed point. 

-. 
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Proof. Let xo be an arbitrary point in K and consider 

the sequence 

Now 

and 

Hence 

{x } • 
n 

II xn+ 1 - xn II 

II xn - xn-111 

II xn+ 1·- xn II 

= IITCxn) - T(xn-1) II 

..:5_ allxn xn-111, 

= IITCxn_1) - T(xn_ 2) II 

..:5. allxn-1 xn-211· 

..:5_ a·allxn-l - xn_2 11 

=a21lx 1-x 211' n- n-

Therefore by continuing this process we have 

llx 1 - x II< anllx1- xoll =an M, where M = llx1- xoll· n+ n -

Using this inequality we will show that the sequence 

is a Cauchy sequence. 

+ . . . • . + II xn+ 1- xn II 

n+p-1 M n+p-2 + < Ma + a 
n 

+ Ma 

n 2 ..,.P-1} < Ma {1 +a+ a + ..... + ~ 

n 
< M ...2_ 
- 1-a 

{x } 
n 
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n 
Since ct < 1, ct ~ ·t d --- 1• ten s to zero as 1-ct 

and hence {x } is a Cauchy sequence. 
n 

n tends to 00 

' 

Since K is closed subset of a Banach space, K is complet e. 

Hence converges to some point x. ~n K. 

Then by the virtue of continuity of T, 

Set X ., = T lim 
n~ 

Tx- = lim Tx = 
n 

n~ 

X 
n 

:. , .. : 
:·} lim xn+l = X r . Thus the existence of a fixed point is proved. 

:·::F n~ 
;,>, 

· ( t 

·- -~ 
;-:::"' .. , ~: 

. __ ·,:;~·.:. . 

.::::~· 

... · . . ;,· 

Uniqueness. Assume that x and y are two fixed points 

of T, i.e., T(x) = x and T(y) = y. Then since T is a contract-

ing mapping we have 

llx - Yll = IITCx) - T(y) II ~ all x - Yl l 

i.e. ( 1 - a) II x - y I I = 0, whence I I x - Y II = 0, 

so that x coincides with y . The theorem is proved . 
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2.5 EVENTUALLY CONTRACTIVE MAPPINGS 

In [ 2] Bailey considered continuous mappings obeying the 

following generalization of conditions (2) and (3) of 2.4. Thr~ughout 

this section X l'lill denote a compact metric space and T will 

;' denote the mapping of X into X • 
. :· 
· ' 

.-.. 

.. ~. 

2.5.1 Definition. A continuous mapping T is eventually 

contractive if for every distinct pair x, y ~- X there exists 

n(x, y), a member of I+ (the positive integers), such that 

(1) n n ( d (T (X) , T ( y) ) < d X, y) . 

2.5.2 Definition. A continuous mapping T is e::-eventually 

contractive (locally contractive) if there exists e:: > 0 such 

N! that if x and y are distinct and d(x, y) < e:: then there is 

n(x, y), a member of such that 

(2) d(Tn(x), Tn(y)) < d(x, y), whenever d(x, y) < e::. 

·: , ;. 

2.5.3 Definition. X is proximal to y under T if for each 

a. > 0 there ex:i!:ts n, a member of I+ 
' 

such that 

n n d (T (x), T (y)) < a.. If X and y are not proximal under T 

they are said to be distal under T. If for each a. > 0, there exists 

·~ 
. - ---··"~ 
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n in I+ such that d(Tm(x), Tm(y)) <a for all m ~ n, then x 

and y are said to be asymptotic under T. Note that we need not 

require x f y. 

Bailey [ 3 ] obtained the following results among others: 

2.5.4 Theorem. Suppose T satisfies condition (1). Then every 

pair of points in X is proximal under 'T' 
~ . 

2.5.5 Theorem. If T satisfies (2) then d(x, y) < e: implies 

x and y are proximal under T. 

2.5.6 Theorem. Suppose T satisfies (2) and 0 < e < o < e:. 

Then there exists N(s, o) in 
+ I such that 8 < d(x, y) < 0 

and d(Tk(x), Tk(y)) < d(x, y) imply d(Tk+J(x), Tk+J(y)) < d(x, y) 

for some J such that 0 < J < N(8 , c). -

2.5.8 Theorem. If T satisfies (2) and X is convex then T 

satisfies (1). 

2.5.9 Theorem. If T satiiies [ 3,2.4] and X is e:-chainable , 

then T satisfies(!). 

We prove the following theorems: 



:-~ 
·. 

70 

2.5.10 Thecrem. Let X be a convex, 
complete 

e-chainable/metric space~ 

and T be a mapping of X into itself which is (e, A)-uniformly 

locally contractive. Then T is also eventually contractive. 

Proof. A theorem by Menger [ 11 p. 41] states that a convex 

and complete metric space contains, together with a and b, a 

metric segment whose extremities are a and b ~ that is, a subset 

isometric to an interval of length d(a, b). 

Using this fact we see that if p, q ~- X then there are points 
n 

such that d(p, q) = E d(x. 
1

, x.) 
. 1 1- 1 

d(x. 
1

, x.) < E. 
1- 1 

n 

Hence d(T (p), T(q)) < 

<A ~ d(x. 
1

, x . ) = Ad(p, q). 
i=l 1 - 1 

1= 

n 
E d(T(x. l' T(x.)) 

i=l 1- 1 

and 

By definition it is clear that every globally contractive 

mapping is a contractive mapping i.e., the mapping 

d(T(p), T(q)) < Ad(p~ q), (O ..::_A < 1) may be regarded as 

0 < d (p' q) d(T(p), T(q)) < d(p, q). Alsoby definition 

every contractive mapping in the convex compact metric space may be 

regarded as an e-contractivP- mapping. 
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As X is s-chainable, therefore for distinct points p 

and q there exists p = Plz P2• . . . , pn = q such that 

d(pi, Pi+l) < £ for 1 = 0, 1, 2, ... , n- 1. By Corollary 1 to 

Theorem 2 [ 2] P· 1 
is asymptotic to p. under T for 

1+1 

i = 0, 1, 2, ... , n-1. Hence there ex~s + 
mE I such that 

d(Tm(p.) ~(p. )) < d(p, q) for i = 0, 1, .... , n-1. Therefore 
1 ' 1+l n 

n-1 
L d(Tm(p.), Tm(p. 1)) < nd (p, q) = 

i=O 1 1+ n 
d(p, q). 

2.5.11 Theorem. Let X be an £-chainable metric space and T 

be an £-contractive mapping 

i.e., 0 < d(x, y) < £ d(T(x), T(y)) < d(x,y). 

Then every pair of points is asymptotic under T. 

Proof. Since X is £-chainable, we define for p, q ~ X 

where C(p, q) 

P = xa, xl, ... ' 
Indeed, T is 

d(x. 
1

, x.J < £, 
1- 1 

n 

d(p' q) = inf L d(x. 1, x.), 
1- 1 

C(p, q) i=l 

denotes the collection of all s-chains 

X = q, (n arbitrary), d (x. 1 , x.) < £, holds. 
n 1- 1 

£-contractive. We have 



Hence, 

72 

n 
d(T(p), T(q)) < inf I d(T(x. 

1
), T(x.)) 

C(p,q) i=l 1
-

1 

n 
< inf I d(x. 

1
, 

C(p,q) i=l 1
-

x.) = d(p, q) 
1 

fur all p, q. Thus the mapping is contractive. 

X 

Now since X is compact and T is a contractive mapping of 
.-h. a./) 

i nto its e 1 f, therefore by Theorem 2. 4. 13 T con~s a unique fixed 

point x. Also the property of compactness implies that each sequence 
. n 

{T (x)} converges to x. Therefore it follows that every pair of 

points is asymptotic under T. 

2.5.12 Theorem. If T satisfies (1), and K is a homeomorphism 

of X onto X, then KTK- 1 satisfies (1). In addition T has a 

unique fixed point. 

Proof. By Theorem 1. 3 [ 3] K- 1 (x) and K- 1 (y) are proxi-

mal. Also since K is a homeomorphism, therefore K and K-
1 

both 

are continuous. Since K- 1 is continuous and X i s compact , there 

exists o > 0 such that d(w, z) < o implies d(K- 1(w), K-
1

(z)) < 

d( ) N K-1(. ) d K-l(y) are proximal under T,· therefore X, y . OW X an 
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for each 0 .,. 0 there exists n + a member of I such that 

d(Tn(K- 1(x)), Tn(K- 1 (y)) < o. Hence d(KTK-l)n(x), (KTK-l)n(y)) 

= d(KTnK- 1(x), KTnK-l(y)) < d(x, y). 

Again, by Theorem 1.3 [3] x and KTK- 1 (x) are proximal 

+ under T. Now choose {n.} C I 
1 -

n. n 
d((KTK- 1) 1 (x), (KTK-1) i+l(y)) 

such that 

1 
<~ 

1 

n. < n. 
1 1 1+ and 

n. 
By the compactness of X, we may assume that · { (KTK- 1) 1 (x)} - ~ 

and (KTK- 1 )ni+l(y)} ~ n, for some ~ and n in X. Clearly 

~ = n. Alsofue continuity of KTK- 1 implies KTK- 1n = n, so that 

n is a fixed point of KTK- 1 . That this point is unique is immediate. 

Since has a unique fixed point 

Thus 

point of T. 

-1 n, KTK n= n, or 

-1 K n is a unique fixed 

Remark. A similar result for K- 1TK has been given by Bailey 

in the following form: 

2.5.13 Theorem. If T t . f' (1) and K 1·s a homeomorphism of sa J.S 1es , 

X onto X, then K- 1TK satisfies (1). 

Sehgal [63] has given the following definition and generali zation 
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of Banach's contraction principle. 

2.5.14 Definitisn. A continuous self mapping is called an eventual 

global contraction if for each x ~ X = (X, d) and for some integer 

n = n(x) 

n n 
d(T (y), T (x) ~ Ad(x, y) 

for every y c X and some A~ [0, 1). 

2.5.15 Theorem. An eventual gobal contraction of a complete 

metric space has a unique fixed point e, and for every x eX, 

Tn(x) - e. 

As an application of the foregoing material we state and 

prove the following theorem concerning holomorphic mappings. 

Theorem. Let T be a holomorphic mapping of a compact, 

convex subset M of the plane into itself such that given z in 

M there exists n(z) in I+ such that jDTn(z) I < 1, then there 

exists a unique fixed point in M. 

Proof. Note that since DT(z) exists for all z in M 

and DT is continuous in M, DTn is continuous on M for all n 

in I+. Given z in M, let n(z) be the smallest member of I+ 
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such that IDTn(z)(z) I < 1. Also for z in M 

sphere about z such that \'1 in 0 (z) implies 

let O(z) be an open 

I DTn(z) (w) I < 1. 

Now since M is compact a finite number of these O(z) cover M, 

say O(z 1), O(z 2), •.• , O(z ). 
n 

Now let E be the Lebesgue covering 

number of the above covering. Is - tl < E implies s and t are 

in 0 (z.) 
1 

for some 1 < 1 < n which implies the line segment L 

joining s and t is in O(z.). Thus if z is on L, 
1 

IDTnczqz) I < 1. Therefore 

n ( z ) n ( z ) It n ( z . ) rt n I 
IT i (s)- T i (t)l =I DT 1 (z) dzl .::_ J IDT (z)l ldz 

s s 

<Is- tl. Hence T satisfies (2), and since M is convex Theorem 

1.18 ( 3] implies that T satisfies (1). Therefore by Theorem 2.5.12 

there exists a unique fixed point in M. 
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2 • 6 SOME FURTHER EXTENSIONS Q·t; BANACH'S CONTRACTION PRINCIPLE 

In [67] we proved the following theorems by taking T as a 

mapping of a metric space X into itself such that there exists a 

mapping K of X into itself which has a right inverse and which 

makes K- 1TK a contraction. Corollary to Theorem 1.1.5 has been 

used in the proof of these theorems. One can also prove these 

theorems easily for KTK- 1 (where K- 1 is left inverse of K 

such that K- 1K = I) by applying Theorem 1.1.6. 

2. 6. 1 Theorem. Let X be a complete E- chainable metric space; 

let T be a self-mapping of X into itself such that there exists 

a mapping K of X into itself, which has the right inverse K-
1 

and which makes the mapping K- 1TK an (E, A)-uniformly contractive 

[i.e., there exists a real number A with 0 <A< 1 such that 

0 < d(x, y) < E ~ d(K- 1TK(x), K- 1TK(y)) 

< Ad(x, y), (x, y~ X, X f y)]. 

Then T has a unique fixed point. 

Proof. SincE' (X, d) is E-chainable, we define for X, y E: X, 

n 
d (x, y) = inf l: d(x. 1, X. ) 

E . 1 ~- ]. 

~= 
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where the inf:imwn is taken over all e-chains 

joining x = x and 
0 

X = y. n Then d is a distance function on 

X satisfying 

d(x, y) < d (x,y) 
- E 

(1) 

(2) d(x, y) = d (x, y) 
E 

for d(x, y) < e. 

From (2) it foliO\<~S that a sequence {x } , 
n 

x ~ X is a Cauchy 
n 

sequence with respect to d 
E 

if and only if it is a Cauchy sequence 

with respect to d and is convergent with respect to d 
E 

if and 

only if it is convergent with respect to d. Since (X, d) is 

complete, therefore (X, d ) 
E 

is also complete metric space. Given 

x, y E-." X and any E-chain 

x = y we have n 

so that 

d(x. 
1

, x.) < E (i = 1,2, ... ,n); 
1- 1 

with Xo = X 

<AE (i=l,2, ... ,n). 

Since :\ < 1 therefore 

d(K-lTKt · ) K- 1TK(x.)) < E. 
xi-1 ' 1 

and 



Hence K- 1TK(xu), 

joining K- 1TK(x) and 
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is an 

n 
< A E d (x. l, x.) 

i=l 1- 1 

Xo, x1, x2, ... , xn being an arbitrary E:-chain, we have 

E:-chain 

Thus K- 1TK is a contraction with respect to (X, d ) . 
E: 

Therefore K- 1TK has a unique fixed point ~ ~ X. Hence by 

Corollary to Theorem [1 ~ 5] T has a unique fixed point. 

2.6.2 Theorem. Let X be a complete £-chainable metric space. 

Let T be a mapping of X into itself such that there exists a 

mapping K of X into itself which has a right inverse K- 1 and 

which for some positive integer n makes the mapping K-lTnK(£,:\)

uniformly locally contractive (where Tn is taken as the nth 

iterateof T). Then T has a unique fixed point. 

Proof. By Theorem 2.6.1 Tn has a unique fixed point ~ 
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in X such that Tn(~) = ~. 

Now the relation Tn(~) = ~ gives 

T(Tn(O) = T(~) ................. (1) 

which by (1) reduces to 

Thus T(~) is a fixed point for Tn. But n T has a unique 

fixed point ~. Therefore T(~) = ~ i.e., ~is a fixed point of 

T. The uniqueness of the fixed point of T is obvious, because each 

fixed point of T is also a fixed point of Tn. 

Corollary. If K- 1TK is a one to one (s, A)-uniformly 

locally expansive mapping of a metric space Y onto an s-chainable 

complete metric space X~ Y. Then there exists a unique fixed point 

~ ~ X such that T(~) = ~. 

Proof. This assertion is a direct consequence of the fact 

that for the inverse mapping K-lT- 1K(x) all the assumption>of the above 

theorem are satisfied. Therefore K-lT- 1K has a unique fixed point 
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~' such that K- 1T- 1 K(~) = ~' and by Corollary to Theorem 1.1.5 

it follows that ~ is a unique fixed point for T. 

2.6.3 Theorem. Let X be a metric space. Let T be a self 

mapping of X into itself such that there exists a mapping K of 

X into itself 

which has the right inverse K- 1 and which makes the mapping K- 1TK 

contractive, that is 

d(K-lrK(x), K- 1TK(y)) < d(x, y), (x, y <2 X, x I y), 

such that there exists a point x ~ X whose sequence of iterates 

{ (K- 1TK) (x)} contains a convergent subsequence · { (K- 1TK) (x)}; n n. 
1 

then ~ = lim (K- 1TK) (x) is a unique fixed point for T. . n. 
1-+<x> 1 

Proof. Suppose (K- 1TK)(~) I~' and consider the sequence 

(K- 1TK) (x) which easily can be verified to converge to (I( 1TK) (~). 
n. 

1 

The mapping r(p, q) of Y = X x X - t,. (!:,. denotes the 

diagonal · {(x, y)lx = y} into the real line defined by 

r(p, q) = 

is clearly continuous. 

d((K- 1TK)(p), (K- 1TK)(q)) 
d(p, g) 

(2) 

Hence there exists a neighbourhood U of 
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{~. (K-
1
TK) (s)} <Z Y, such that p, q 12 L.' implies 

0 ~ r(p, q) < R < 1 ................... (3) 

Let sl =SICs. p) and 52= S2((K- 1TK)(s), p) be 

open discs with centres s and (K- 1TK)(s) respectively and 

radius p > 0 such that 

(4) 

Since K- 1TK has a convergent subsequence therefor~ there 

exists a positive integer N such that i > N implies 

(K-
1TK) (x) E s1 and therefore by definition of contractive n. 

1 

mapping (K- 1TK) (x) E: S2. n. 
1 

Thus, by (4) 

d ( (K- 1TK)n. (x), (K- 1TK) (x)) > p, (i > N) . · · (5) 
1 ni+l 

On the otherhand, for each i, it follows from (2) and (3) 

that 

< Rd((K- 1TK) (x)) , ((K- 1TK)n . J (x))) , .. . ... (6) 
n . 1 + 

1. 
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Repeating (6) for ~ > J > N we have 

d((K- 1TK)n (x)), ((K- 1TK)n (x))) 
~ Q, +1 

5_ d([K- 1TK)n +l(x)), ((K: 1 TK) +2(x))) 
Q,-1 nQ,-1 

-------------------------------------------

0 as~ ---~oo 

which is incompatible with (6). Hence 

To prove the uniqueness we assume further, that there exists 

another point n such that 

(K- 1TK)(n) = n, whenever n is· 

Therefore d(K- 1TK(s), K- 1TK(n)) = d(s , n) which contradicts 

the definition of contractive mappi ngs. This proves unicity and K- 1TK 

has a unique point ~ . therefore by Corollary to Theorem 1. 1.5 T 

possesses a unique fixed point. 
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2.6.4 Theorem. Let X be a metric space. Let T be a self 

mapping of X into itself such that there exists a mapping K of 

X into itself which has the right inverse -1 K and which makes the 

mapping K- 1TK contractive, further assume that there exists a sub-

set M c X and a point x .:..· M such that 
0 

(7) 

and maps M into a compact subset of X, then there exists 

a unique fixed point. 

Proof. and let 

(8) x = (K- 1TK)(x) 
n+l n 

n = 0, 1, 2, ... 

K- 1TK maps M into a compact subset of X by assumption, 

therefore to obtain the theorem as a direct consequence of Theorem 

2.6.3 it suffices to show that Xn ·~ M for every n. 

Since K- 1TK is a contractive mapping, the sequence 

d(x , x 
1

) is by (8) non increasing and by K-
1
TK(xo) ' Xo it 

n n+ 

follows that 

(9) d(x , x 1) < d(xo, x1) n n+ 
n = 1, 2 , .... 
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By the triangle inequality 

(10) 

By the help of (9) we can write (10) as 

or 

or 

which by virtue of (8) becomes 

-1 
< 2d(x0 , K TK(x0)) 

and by (7) it follows that xn I? M for every n hence the theorem 

follows. 

Corollary. Let X be a metric space. Let T be a self-

mapping of X into itself such that there exists a mapping K of 

X into itself which has the right inverse K- 1 and which makes the 

mapping K- 1TK contractive such that there exists a poi nt xo E. X 

satisfying 
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for every x E.." X where ).(x, y) = ).(d(x, y)) c; F, and K- 1TK maps 

S(xu, r) with 

r = 
-1 2d(x0, (K TK)(x0)) 

l-A[2d(x 0,(K- 1TK)(x0)] 

into a compact subset of X, then there exists a unique fixed point 

of T. 

Proof. Taking in Theorem 2.6.4 M = S(x0 , r); then by (11) 

the monotonicity of ).(d) and r ~ 2d(x0 , K- 1TK(x0)) it follows 

that if d(x, x0) > r then 

- ).(d(x, x0))d(x, xo) 

= [1 ).(d(x, x0))]d(x, xo) 

> [1 - ).(r)]r. 

-1 
~ [1 - ).(2d(x0 , K TK(xo))]r 

2d(x (K- lTK) (x )) for every x r · X - M, = 0• 0 ' 

i.e. (7) holds. 

2.6 . 5 Theorem . Let X be a complet e metric space . Let T be a 

lfm · f X such 1hat there exists a mappi_ng K of X into se app1ng o 
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itself, which has the right inverse K- 1 and which makes the mapping 

K- 1TK contractive such that there exists a subset M of X and a 

point x0 E M, satisfying the following 

(12) d(x, x0) - d ( (K- 1TK) (x), (K- 1TK) (x0)) 

-1 
< 2d(x 0 , K TK(x0)) 

for every x ~ M, 

(13) d ( (K- 1TK) (x) , (K- 1TK) (y)) ~ X (x , y):I(x, y) for 

every x, y ~ M, 

where X(x, y) = X[d(x, y)] ~F. 

Then T has a unique fixed point. 

Proof. Assume (K- 1TK)(x0) F x0 and let 

(8') X = n+l 
n = 0, 1, 2, .... 

Since K- 1TK is a contractive mapping, t he s equence 

d(xn' xn+l) is by (8') non increasing and by K-
1
TK(x0 ) f xo 

it follows that 

(9') 
n = 1, 2 , .. . . 

By the t r i angle i nequality 

(10') 
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By the help of (9 1 ) we can \'lri te (10 1 ) as 

d(xo, x ) < 2d(xo, x 1 ) + d(xl, x 
1
) 

n n+ 
or 

or 

which by virtue of (8 1
) becomes 

and by (12) it follm'ls that X ·= M. n-

Now we have to prove that the sequence {x } 
n 

By equation (13) and definition of {xn}, 

(14) 

and by the triangle inequality 

Hence by (9 1 ) and (14) 

is bounded. 
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Now if d(xo, xn) ~do for a given do > 0, then by the 

monotonici ty of A (d) it follm"s that A (d(x 0 , xn)) _.::. A (do) and 

therefore 

Hence 

(15) d(x0 , x) < R 
n -

where R = max (d0 , C) i.e., 

< 2d(x0 , x1) 

1-A(do) 
= c. 

n = 1,2, ... , 

the sequence · {x } is bounded . 
n 

for J > 0 where J is any positive integer by (13) we have, 

Therefore taking the product from £ = 0 to £ = n-1 and 

dividing both sides by the same terms we obtain 

n-1 
d(x , x J) < d(xo, xJ) IT A(X 0 , x~+J) 

n n+ - ~=O N 

which by (15) reduces to 

Now 

Now it remains to prove that {x } is a Cauchy sequence for 
n 

that purpose we have to show that for every e > 0 there exists a 
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number N depending on ~ only (not on J) h h f ~ sue t at or every 

J > 0 there is (since the sequence d(x , x J) n n + 

is non decreasing. 

for t = 0,1,2, ... ,n-l, then by (13) 

the monocity of A.(d) \'le have ).(xi, xt+J) = ).(d(xt' xt+J)) .:::_ :\(s) 

and by (16) it follows that 

But ).(£) < 1 and [).(s)]n--+- 0 as n ---+-co There-

fore there exists a positive integer N independent of J such that 

for every J > 0 which proves that {x } 
n 

is a 

Cauchy sequence. By the completion of X it follows that there 

exists ~ = lim x 
n n4-<X> 

. t f K- 1TK po1n .or , 

and by the continuity of K- 1TK, ~ 

and by the Corollary to Theorem 1. 1.5 ~ 

fixed point for T. The uniqueness is obvious. 

Corollary. Putting M = X we have, if 

is a fixed 

is a 

d(K- 1TK(x), K- 1TK(y)) < ).(x, y)d(x, y) for every x, y ~ X (X 

complete) where ).(x, y) .,.: F, then there exists a unique fixed point. 
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2.7 CONVERSE OF BANACH'S CONTRACTION PRINCIPLE 

The natural converse statement of the Banach's contraction 

principle is the following. "Let X be a complete metric space, 

and let T be a mapping of X into itself such that for x ~ X, 

the sequence of iterates · {Tn(x)} converges to a unique fixed 

point w ~ X. Then there exists a complete metric on X in which 

T is a contraction". This is in fact, true even in stronger 

sense. The following converse of Theorem 2.2.1 was due to Bessaga [ 6 ] . 

2.7.1 Theorem. Let X be an abstract set and T be a mapping of 

X into itself such that for each positive integer k > 0 the equation 

= X holds for some X in X implies x = Tx, the unique 

fixed point of T. Then for each A, 0 <A < 1, there exists a 

complete metric on X such that d(T(x), T(y)) ~ Ad(x, y) for all 

x, y in X. 

A weaker form of Theorem 2. 7.1 in case X is compact metrizable 

space was also given by Janos [43]. 

2.7.2 Theorem. Let X be a metrizable compact space and T be a 

continuous mapping of X 

00 

into itself such that (:. Tn(x) 
n=O 

is a one-

point set. Then for every A E (0, 1) there exists a metric d(x, y) 
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such that 

d(T(x), T(y)) ~ Ad(x, y). 

The following generalization of Theorem 2 .7.1 is due to Wong [75]. 

2.7.3 Theorem. Let X be an abstract set with n mutually corn-

muting mappings T1 , T2, 

that each iterate T1ki, 

... , T defined on X n 

T k2 kn 2 , ... , T (where 
n 

into itself such 

are non-negative integers not all equal to zero) possesses a unique 

fixed point which is common to every choice of k1, k2, ... , k. 
n 

Then for each A~ (0, 1) there exists a complete metric d on X 

such that d(T.(x), T.(y)) < Ad(x, y) for i < i _< n, and for all 
1 1 -

x, y E:: X. 

Probably the most natural generalization to the converse of 

Banach's contraction principle that one can make is due to Meyers [54] 

given below: 

2.7.4 Theorem. If T is an (£-A)-uniform local contraction on 

a complete £-chainable metric space (X, d) then there ex~s a 

metric d* topologically equivalent to d such that T is a con

traction on (X, d*) and the Banach contraction theorem can be applied. 

Corollarr. If T is a local contraction and X is compact, 

.r 
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then the conclusion of Theorem 2.7.4 holds. 

2.7.5 Theorem. If T is an e-uniform local contraction, and if 

there exists x c: X such that T(x) = x, then the conclusion of 

Theorem 2 .7.4 holds. 

2.7.6 Theorem. Let X be a topological space admitting a metric 

(complete metric), and T:X --------~X a continuous map with a fixed 

point x0 obeying the purely topological conditions : 

---~ x0 for all x in X. 

(ii) for some nei ghbourhood 

of x 0 • 

Then X admits a metric (complete metric) for which T is 

contraction. 

2 7 7 Th r em If T 1. s a continuous self mappi.ng of (X , d) and . . eo . 

if Tn is a contraction on (X, d) , then there is a metric d* 

under whi ch T and Tn are contractions. 

2 .7.8 Theorem. f T 0 is a fami ly of continuous maps of a 
I t ' t .::._ 

metri c space s atisfying = Tt +t 
1 2 

and i f lim Tt 
t -+0 
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i.e., lim sup d(Tt(x), Tt (x)) = 0, then a necessary and 
t4-t X<;;' X u 

0 

sufficient condition for each Tt to be a contraction (with respect 

to some metric dt equivalent to d) is that some one Tt be a 

contraction. 

We also present here a generalization of the converse of 

Banach's contraction principle. 

Let (X, d) be a complete metric space and T a contractive 

mapping of X into itself, i.e., d(T(x),T(y)) ~ \d(x,y)d(x,y), 

where x, y ~ X, \d(x, y) r;: F. 

Then it follows from a theorem due to Rakotch ~9] that the 

· d · Tn(x) 1terate 1mages of X shrink to the point ~ of X. This 

can be written in the form 

00 

(( Tn(X) =· {~}. 
n=l 

Since this formula does not involve the metric and has a 

topological character, it is natural to ask the following question: 

Let X be a comract metrizable topological space and T a 
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continuous mapping of X into itself which has the property that 

1". Tn(X) = {~}. Is it possible to find a metric d(x, y) generat-

ing the given Topology on X such that the mapping T is contractive 

with respect to d? 

The answer is yes. We now construct such a metric and denote 

it by d*. 

n 
2.7.9 Definition. Let X= Au, T(X) = A1, ... , T (X)= 

introduce1he functions n(x) and n(x, y) as follows: 

n(x) = max {n; X 6 A } 
n 

n(x, y) =min· {n(x), n(y)}. 

A ' n 
and 

2 7 10 Th For >.(d(x, y)) .-:=- F there ex:ists a distance function . . eorem. -.::. 

d* such that 

d*(T(x), T(y)) 2 >.(d(x, y)) d*(x, y). 

Proof. By Theorem 1 of Janos [43] there exists a metric 

d(x, y) with respect to which the mapping T is non expansive. 

Let 

a(x, y) = {>.(d(x, y))}n(x)y)d(x, y). 



95 

n+1 n T (X)= T(T (X)). 

Hence x -2 A 
n 

implies T(x) ~ A 
n+l. 

Let i = max subscript for x. Then i + 1 = max subscript 

for T(x). 

Let J = max subscript for y. Th en J + 1 = max subscript 

of T(y). 

Thus n(T(x), T(y)) =min {i + 1, J + 1} 

= min {i, J} + 1 

= n(x, y) + 1. 

a(T(x), T(y)) ~ [A(d(x, y))]n(T(x),T(y))d(T(x), T(y)). 

Now T is contractive; thus 

d(T(x), T(y)) ~ d(x, y). 

Hence a(T(x), T(y)) < [A(d(x, y))]n(x,y)+ld(x, y) 

= [A(d(x, y))]n(x,y)[A(d(x, y))] d(x, y) 

< A(d(x, y)) a(x, y). 

The functinn a(x, y) is not in general a metric. However, a derived 

metric d*(x, y) can be defined as 
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n 
inf L: a(x. , x. 1)., 

i=l 1 1-

where the infimtnn is taken over all possible finite system of 

elements x 1 , x2 , x 3 , •.• , xn <:=: X such that x1 = x , and 

X = y. n+l 

From the definition of d*(x, y) it is clear that 

d*(x, y) 2 a(x, y) 2 d(x, y). The same method as used by Janos 

in [43] shows that d*(x, y) is a metric. 

Now we have only to prove that 

d*(T(x), T(y)) 2 A(d(x, y))d*(x, y). 

Let E > 0 be given. From the definition of d*(x, y) 

there exists a representative of d*(x, y) in the form 
n 

d*(x, y) = inf L: a(x., x. 1) . 
. 1 1 1-1= 

Thus d*(T(x), T(y)) < inf 

< inf 

n 
L: 

i=l 

n 
L: 

i =l 

n 
= >.. inf L: 

i=l 

a(T(x . ), 1 T(xi-1)) 

A(d(x., 1 xi-l)a(xi' xi+l) 

n 
d(x., x. 1) inf L: a(x., 

. 1 1 1 1- 1= 
x. 1) 
1-
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= A(d(x, y)) d*(x, y). 

Corollary. When A · is constant with 0 < A < 1, we get 

the result of Janos [ 43]. 



CHAPTER III 

COMMUTING FUNCTIONS AND FIXED POINTS 

3.1 COMMUTING POLYNOMIALS AND COMMON FIXED POINTS 

Let f = f(x) and g = g(x) be two continuous and commuting 

functions (und~r substitution), each mapping the closed interval 

[a, b] into itself. Isbell [41] has conjectured that f and g 

must have a common fixed point, or equivalently, that f and the 

composite function h = fg = f(g (x)) must have a common fixed point. 

Except in the special cases the conjecture has not been verified. 

One interesting special case of the conjecture was investigated 

a number of years ago by Ritt [6o]. He proved that if f and g are 

polynomials which do not belong to a certain class (f and g do not 

come from the multiplication theorem of ez and cos z, c.f.[60] 

for definition), then neglecting a linear transformation they are 

both iterates of a third polynomial p. Thus they would have as 

common fixed points the fixed points of p. Also in this case, f and 

g would be a member of a semi-group of commuting functions formed 

from the iterates of p. 

Among the commuting polynomials excluded from the Ritt theorem 

are the Tchebysheff'spolynomials defined by Tn(x) = cos (narc cos x) 

for -1 < x < 1. It appears that even in this case the polynomials 
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could be embeded in a one parameter semi-group of commuting functions 

defined by 

(1) T (x) = 
a 

cos(a arc cos x), a = exp(t). 

This suggests that one method for attacking the Isbell conjecture 

is to try to embed the commuting functions in a semi-group and there-

by hope to prove the existence of the common fixed point . 

Block and Thielman [10] have given the following theorem-

If h~(x) = ax2 + ex+ y and h 3(x) commute, 

then 6(h2) = 28, or 28 + 8, where 6(h£) = 82 - 4aY. 

We prove the following theorem on commuting polynomia ls. 

3. 1. 1 Theorem. 

c
0
x3 + c1x2 + c2x + c3 are two polynomials, thenthey commute if and 

only if the following conditions hold: 

(i) Co = a2 

3 
(ii) Ct = - a8 2 

(iii) c2 = ~ (213 2 + 213 - tl) 
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(iv) c3 = 
(3 

(2(3 2 + 6(3 - 8 - 311) 
16et 

and (v) 11 = 2(3, or 2(3 + 8, where 11 = 11 (h2 ) 

= B2 - 4etY. 

Proof. 

Cox3 + C1x2 + c.,x + C3 commute, 1' e h h (x) - h h (x) «- ' ., L. 3 - 3 2 • 

Then et(C0x3 + C1x2 + C2x + c 3) 2 + B(C0x3 + c 1x2 + C2x + 

C3) + y = Co(etx2 + (3X + y)3 + CI(etx2 + (3X + y)2 + C2(etx2 + (3X + Y) + c3. 

(A) 

Comparing coefficients of like powers we get 

etCi + 2etC0C2 

2etC0C3+2etC1Cz+BC0 

l nC~+2nC 1C,+SC! 

\

. 2etC2C3+ BC2 

etC~+BC3+Y 

The first four equations give 

Co = etL. 

3 
c1 = 2 etB 

= 3et2 BC 0 . 

= (3et2y + 3etB 2)C0 + et2C1. 

= (Bj+6etBY)Cu+2etBC1. 

= (3(32Y+3etY2)C0+(B2 +2etY)C1+etC2 . 

= 3BY2 C0+2BYC 1+BCz. 
2 = yjCo+ yC 1+YC2 +C 3. 
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3 
C2 = B (2S 2 + 2S - ~) 

c~ = __ s __ (2s2 + 6s - 8 - 3~) 16a 

Each of the three remaining equations gives 

4S~ - 8~ + 4S£ + 16S = 0 

c~ 2S) (6 - 2S 8) = 0 

~ = 2S or 2S + 8. 

Asstmling that the given conditions hold, we have to prove 

that h 2 (x) and h 3 (x) commute, 

i.e.' h2h 3(x) 

Here h2h~ (x) 

= h3h2(x). 

= h2 [h 3 (x)] = hz[Cux3 + C x2 
1 + c2x + C3]. 

= a[C0x3 + Clx2 + C£x + C3] 2 

+ s[c0x3 + Clx2 + C2x + C~] + Y. 

= aC~x6 + 2ac0c1x5 + (aCi + aC0Cz)x4 

+ (2aC0C3 + 2aClC£ + SC0)x3 + 

(ac2 + 2aC1C3+ SC1)x2 
2 

+ (2aC2C3+ SC2)x + ~c; + SC 3+Y. 

which by (A) reduces to 
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a 3C0x6 + 3a2BCox5 +. {(3a2Y + 3aB2)C0 + a2C 1}x4 

+ {(8 3 + 6aBY)Co + 2aBC1}x3 + (3S2Y + 3aY2)Co 

+ (B2 + 2aY)C 1 + aC2lx2 + (3SY2Cu + 2SyC1 + BC2)x 
2 

+ Y3C0 +Y c1 + YC2 + c3 = h 3h2 (x). 

Corresponding to two different values of 6., we take two 

examples to illustrate the theorem. 

Example 1. Let h2(x) = x2 + 6x + 4, and 

h 3(x) = x3 + 9x2 + 24x + 15. Then h2h3(x) 

= h2 [x3 + 9x2 + 24x + 15] = [x3 + 9x2 + 24x + 15]2 

+ 6[x3 + 9x2 + 24x + 15] + 4 = x6 + 18x5 + 129x4 

+ 468x3 + 800x2 + 864x + 319, and h3h2(x) 

= h3[x2 + 6x + 4] = [x2 + 6x + 4]3 + 9[x2 + 6x + 4]2 

+ 24[x2 + 6x + 4] + 15 = x6 + 18x5 + 129x4 

+ 468x~ + soox2 + 864x + 319. Thus h2h3(x) 

Example 2. Let h2(x) = x2 + 6x + 6, and 

h3 (x) = x3 + 9x2 + 27x + 24. Then hzh3(x) = 

h3h2(x) = xb + 18x5 + 135x4 + 540x3 + 1215x2 + 1458x + 726. 

Therefore h 2(x) and h3(x) commute. 
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3. 1. 2 Theorem. 

C0x 3 + C1x2 + C2x + c3 be two polynomials. If they commute, then 

they have a common fixed point. 

Proof. We know that if h2 (x), and h 3 (x) commute then 

common 

/}. = 28 

Case I. 

so that 

Case II. 

H.ence, 

or 28 + 8. 

/}. = 28. 

+.!..) 
2 

h£(x) = a(x - S/2a. 
2a 

a2(x+L) 
3 8 

h~(x) = - 2a 2a 

implies 
1 

h£(X) = X ax + - f3 = 2 

implies 
1 

h 3 (x) = X ax + - !3 = 2 

h 2(x) = x = h 3 (x) implies ax 

the common fixed points are 

h2 (x) 

h 3 (x) 

h 2 (x) 

h 3(x) 

h2 (x) 

s 2-8 
- 2a ' 2a 

/}. = 28 + 8. 

!3 2 
= a(x + 2a) 

8 = a2(x + -) 2a 

= X implies 

= X implies 

= x = h 3 (x) 

8+4 
2a 

3 2(3 
- 3x- -. a 

1 
ax + - 8 = 2 

1 
ax + -;::; 8 = 

Jt. 

implies ax 

fixed point is 
4-!3 

2a 

0 or -1. 

0 or 1, or -1. 

1 = 0 -1, +- 8 or 
2 

2 or -1. 

2 or -2, or 0. 

1 2, so that + - !3 = 2 
the 
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Example 1. (Case I). Let h2(x) = xz + 6x + 6, 

and h3(x) = x 3 
+ 9x2 + 27x + 24 be two polynomials. Then h 2 (x) 

and h3(x) commute and have -2 and -~ as common fixed points. 

Example 2. (Case II). Let h 2 (x) = x2 + 6x + 4, and 

h 3(x) = x3 + 9x2 + 24x + 15 be two polynomials. Then h2(x) and 

h 3(x) commute and have -1 as a common fixed point. 

An alternate proof of Theorem 3.1.2 is the following. 

Proof. Case 1. tJ. = 28. 

Now h 2(x) = ax2 + ex + Y. 

Hence h 2 (x) = X implies X = ax2 + Bx + Y 

or cxx2 + (8 - l)x + Y = 0; 

- (8 - 1) ±I(B- 1) 2 - 4cxY 
hence X = 2cx 

- cs - i) + V'e 2 

2a. 
28 + 1 - 4cxY. 

or X = 

Here we have 82 - 4a.Y = 28. 

Hence X = 

or X = 

- (8 - 1) ± l 
2a. 

2-8 
Ta"' 

- 8 
or 2cx' 
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We would like to show that -s X=-
2a is also a fixed point 

of h 3 Cx). 

After substituting x = ~ we have 2cx 

Substituting the values of Co, Cl, Cz 

from Theorem 3.1.1, and 28 for /). we get 

-s a 2 c.:!) 
3 3 -s 2 

+ l C28 2) c.:!) 2cx = +- cxSCzcx) 2cx 2 8 2cx 

- ~ = 
2cx 

-8 3 38::1 
--+ --8cx Sex 

and c3 

8 
+ 16cx C28 2 - 8). 

Thus ;! is a fixed point for h3 Cx). Similarly we can easily 

show that - 8+
2 is also a fixed point for h 3 Cx). Therefore h2 (x) 
~ 

have - _L d - ...6...:!1. 
2 a an 2 a as common fixed points. 

Case II. /::, = 2(3 + 8. 
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Hence hL(x) = x implies x = ax2 + Sx + Y, 

or ax2 + (13 - l)x + Y = 0. 

Hence x = -(13- 1) ± v'(B- 1)2- 4aY 
2a 

or X = - (13 - 1) ± I 13 2 - 2f3 + 1 - 4aY 
2a 

Here we have 13z - 4aY = 2(3 + 8. 

Hence - (13 - l) ± 3 
X = 2a 

or X 
4-13 or - 13-2 

= 2a ' ""20 

We would like to show that x = 4-S is also a fixed point 2a 

of h::$ (x). 

After subst:ltuting 
4-S X=--2a 

we have 

4-13 c (4-13 ) 
3 2 4-13 

= + c (4-13) + Cz( 2a) + c3. 
2a 0 2a 1 2<Y 
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Having in mind that (). = 2f3 + 8 and substituting the values 

of Co, C1, Cz and C3 from Theorem 3.1.1 we have, 

8 6S 3S 2 s3 6S 3132 3f33 -+----+----+--
a 2a 8a a a 8a = 

3S2 3S 3 6 3S 83 2S +-------+-+---2a 8a a 2a 8a a 

2 
=-- f3 4-S 

2a = 2a· 

Thus 4-S is a fixed point for h 3 (x). Similarly we can 
2a 

show that - S-2 is not a fixed point for h 3 (x). Thus h2 (x) 
2a 

and h 3(x) have only 4- f3 as a common fixed point. 
2a 
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3.2 COMMUTING FUNCTIONS AND COMMON FIXED POINTS 

3.2.1 Definition. Let f:R ---+- R and . g·.R ---+ R Th . en 

\ITe define the composite of f and g (denoted by gof) by, 

gof(x) = g[f(x)], X r;;- R. 

For example, if 

f(x) = 1 + sin x ( -c:o < X < c:o) ' 

g(x) = x2 (0 .::_X <co) : 

then gof(x) = 1 + 2sin x + sin2x 

3.2.2 Definition. The functions f and . g are said to be 

commutative if fog(x) = gof(x) for all x €. R. 

Remark. In general the binary operation is not commutative. 

For example, if f(x) = x2 + 1 and . g(x) = 2 - x. Then 

gof(x) = grf(x)] = 2 - (x2 + 1) = 1 - x2 and fog(x) = f[g(x)] = 

(2 - x)2 + 1 = 5 - 4x + x2. Therefore . gof I fog. 

3.2.3 Definition. A point x0 is said to be a common fixed point 

for the functions f and . g i f f (xo) = xo = g(xu) for all xo E. R. 

' ! 
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Under what conditions then, if any, is it true that 

fog = gof - that is, f[g(x)] = g[f(x)] f 11 R? Th" · or a x c . l.S l.S , 

in general, a very difficult question. Therefore we specialize and 

consider only linear functions on R - that is a function of the 

form f(x) = ax + b where a and b are real constants. The 

following easy theorem is often given as an exercise at this point. 

(For example, Levi [49] Chapter I, Exercise 13). 

3.2.4 Theorem. Let f and . g be linear functions on R. Then 

fog= gof if and only if fog(O) = gof(O). 

Proof. Let f(x) = ax + b and . g(x) = ex + d. By 

definition fog= gof if and only if f(g(x)) = g(f(x)). But 

f(g (x)) = f(cx + d) = d(cx + d) + b = acx + ad + b and gf(x) = 

g(ax + b) = c(ax + b) + d = a ex +be+ d. Therefore fog(x) = 

gof(x) if and only if a ex + ad + b = acx + be + d, or ad + b = 

be + d. Now (fog)(O) = f(g(O)) = f(d) = ad + b and (gof) (O) = 

g(f(O)) = g(b) = cb + d. Hence fog = gof if and only if fog(O) 

= gof(O), which proves the theorem. 

This theorem states that, for linear functions f and g, 

and gof take On the same value at each x if 
the function fog 
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and only if they take on the same value at 0. The following Corollary, 

while not as formal1y elegant as the theorem, states the condition 

fog(O) = gof(O) in an equivalent form which will be more useful in 

applications. 

Corollary. If f(x) = ax + b and g(x) = ex + d, then 

fog= gof if and only if f(d) = g(b). 

Proof. This follows immediately from the Theorem 3.2.4, since 

(fog)(O) = f(d) and gof(O) = g(b); actually these equations have 

already appeared in the second last sentence in the proof above. 

The following results for analytic functtns have been given by 

Shields [65], Edelstein [3 ] , and Singh [ 71], respectively. 

Before stating the above results we would like to give the 

following lemma related to analytic functions which is due to Shields [65]. 

We also add a theorem related to linear fractions by Singh [ 71] . 

Lenuna. Let f be a linear map of D onto itself. Then three 

cases are possible 

(i) f = z; 

(ii) f has exactly one fixed point in the closed disc; 
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(iii) f has two distinct points on the boundary of 

D and the iterates of f converge to one of these points. 

Theorem. Let f(z) = az + b ad - be ~ 0 
cz + d' and g(z) = az + S 

Yz + 8' 

ao - SY F 0 be two linear fractions. Then f and g have a common 

fixed point, provided they commute and (a - d)2 + 4bc = 0. 

3.2.5 Theorem. If f and g map the closed unit disc izl ~ 1 

in the complex plane into itself in a continuous manner, if they are 

analytic in the open disc and if they commute, then they have a common 

fixed point f(z 0) = z0 = g(z0). In general any commuting family of 

such functions has a common fixed point. 

3.2.6 Theorem. Let f(z) be an analytic function in a domain D 

of the complex z-plane; let f(z) map a compact and connected 

subset C of D into itself. If in addition lf'(z)l < 1 for 

all z ~ C, then the equation f(z) = z has a unique solution. 

3.2.7 Theorem. If f and g are two analytic functions in a 

domain o of the complex z-plane that map a compact and connected 

subset c of D into itself and if f and g commute then they 
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have a common fixed point provided that if'(z)j < 1 for all z in 

c. 

We [70] proved the following theorems related to complex 

valued functions. 

3.2.8 Theorem. If f and g are two mappings of the closed unit 

disc of the complex z-plane into itself, such that fg(z) = gf(z) 

for all z in the closed unit disc, lfCz 1) - f(z 2)1 ~ alz1 - z21 and 

lgCzl) - g(z2) I~ slzl- z21 where a is any positive real number 

and 0 < a < 1; then f and g have a common fixed point. 

Proof. Since a closed subset of a complete metric space is 

complete, a closed unit disc is a complete metric space in the z-

in the closed unit disc, where 0 ~ a < 1, implies that f is a 

contraction mapping. Thus f is a contraction mapping of a complete 

metric space into itself. Therefore by Banach's contraction principle f has 

a unique fixed point in the closed unit disc, i .e. , there exists 

a unique point z0 in the closed unit disc such that f(zu) = zo. 

It is given that 

fg (z) = gf( z) for all z. 

-~ 
I 
i 
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Therefore fg(z 0) = gf(z 0) = g[f(zo)] = g(z 0). 

i.e., f[g(zo)] = g(zo). 

Thus g(zo) is a fixed point for f. But f has a unique 

fixed point, say z Th f ( ) o· ere ore g z0 = z0 , and thus zo is a 

fixed point for g. 

Example. Let f(z) = .!. - ~ 2 2 , and g(z) = z be two functions. 

Then f(z) and g(z) t b f[ ( ) ] f[ J 1 z commu e, ecause g z = z = 2 - 2 , 

g [f(z)] = g [ ~ - ~ ] = ~ - ~ . They have 1 . z = 3 as a common f1xed 

point. 

3.2.9 Theorem. If f and g are two continuous functions from 

a closed unit disc into itself such that fg(z) = gf(z) for all z 

in the closed unit disc, I f(ZJ) - f(z 2 ) I > a I z1 - z2 1 is a one to 

one mapping of a subset of a closed unit disc onto the closed unit 

disc, and lgCz1) - g(z2 ) I ::_ (3 I z1 - z2 j, where (3 is any positive 

real number with a > 1. Then f and . g have a common fixed point. 

Proof. Since a closed subset of a complete metric space i s 

complete, a closed unit disc is complete metric space in the z-plane. 

The mapping I f( z1) - f( z2 ) I > a I Zl .... z2 l, where a > 1 is an 
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expansive mapping of a subset of the closed unit disc onto the closed 

unit disc. Since f is one to one and onto, therefore the inverse 

function exists. Thus all the assumptions of Banach's contraction 

principle for f- 1 (x) are satisfied. Therefore there exists a unique 

fixed point s in the closed unit disc such that f- 1 (s) = s, or 

s = f(s)· Thus f has a unique fixed point s· It is given that 

fg(z) = gf(z) for all z. 

Therefore fg (s) = gf(s) = g [f(s)] = g (t;) • 

Thus g(s) is also a fixed point for f. But f has a unique 

fixed point, say s· 

Therefore g ( t;) = t;; and thus s is a fixed point for . g. 

Thus the theorem. 

3.2.10 Theorem. Let f(z) = az + b, a F 1, and g(z) be any 

continuous function. If f and g commute, then they have a common 

fixed point. 

Proof. If f and g commute then 

fg( z) = gf(z) for all z. 

and S uppose that f(zo) = zo 
Consider f(z) = az + b, a f 1, 
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for some z 0 . Hence zo = f(zo) = az 0 + b which implies zo(l-a) = b, 

since a I 1, implies 1 - a~ 0. Therefore we have shown there 

is a unique fixed point Substituting for b . 1 . -1- 1n re at1on -a 
f(zo) = az 0 + b we have 

point, 

f( __£__) = b 
1-a 1-a 

Hence b 
1-a is a fixed point and therefore is unique. 

Thus the function f(z) = az + b, a ~ 1' has a unique 

say zo 
b 

= 1-a · 

i.e., f(z 0) = zo and zo is unique. 

fixed 

Using the method of the previous theorem we can easily see 

that z is also a fixed point for g. Thus the theorem. 

We take the following examples to illustrate the Theorem 

3.2.10. 

Example 1. If f(z) = 3z + 6 and g(z) = 2z + 3. Then 

fog(z) = f[g(z)] = f[g(z)] = f[2z + 3] = 3[2z + 3] + 6 = 6z + 15, 
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and gof(z) = g[f(z)] = g[3z + 6] = 2[3z + 6] + 3 = 6z + 15. Thus 

fg(z) = gf(z) . The functions f and g commute and have-3 as a 

common fixed point. 

Example 2. Let f(z) = 2z + 5, and g(z) = z. Since the 

identity function commutes with every function, f and g commute 

and have - 5 as a common fixed point. 

3. 2.11 Theorem Let f(z) = az + b 
cz + d' ad - be ~ 0, be a linear 

fraction and g(z) be any analytic function. Then f and g have 

a common fixed point, provided they commute and (a - d) 2 + 4bc = 0. 

ilroof. The linear fraction 

has a unique fixed point say zo = 

az + b 
f(z) = cz + d , ad - be ~ 0 

a - d 
2c 

under the condition 

(a - dt + 4bc = 0 (Theorem 1. 1. 3) . The remaining part of the 

proof follows on the same line as~ven in the above theorem. 

In order to illustrate the Theorem 3.2.11 we take the follow-

ing example. 

Let f(z) 
6z + 4 be a linear fraction and Example. = - z + 2 

g(z) be an analytic function. Then f(z) and g(z) commute 
= z 

and have a common fixed point, say zo = -2. 
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Corollary. Let the Mobius trandformation f(z) = iA e z - a 
1 - az 

Clzl < 1) map the closed unit disc lzl ~ 1 onto itself, and let 

g(z) be any analytic function which commutes with f(z). Then f(z) 

and g(z) have a common fixed point, provided lal = (Sin \/2). 

On examining the basis of the proof of Theorem 2.3.3 reveals 

that the essential property (besides uniqueness of the fixed point 

for Tn) employed is that Tn and T commute with each other. 

This suggests immediately the following: 

3.2.12 Theorem. Let S be any non empty set of elements and K 

be a single valued function defined on S and with values in S. 

Suppose further that K possesses a unique fixed point xo. Then, 

if T is a single valued function on S to S which commutes 

with K, that is such that KT = TK, then T also has x0 as 

a fixed point (not necessarily unique; however, if K happens to 

be an iterate of T, that is 

then it is unique. 

n 
K = T , with n positive integer, 

Proof. The proof is immediate, starting from the equation 

Kxo = xo, upon noticing that 

Tx0 = TKx 0 = KTx0 . 



118 

This means that Tx0 is a fixed point of K, but K has only 

xo as a fixed point by hypothesis. 

Remark. Theorems2.3.1, 2 3 2 and 2 3 3 · 1 . . . . are part1cu ar 

cases of Theorem 3.2.12. 

Before closing this section we would like to give a simple 

and interesting result of Seguin (64 J, related to commuting linear 

functions and common fixed points. 

3.2.14 Theorem. Let f(x) =ax+ b, a fl. Then g(x) =ex+ d 

commute with f if and only if f and g have a common fixed point. 

Proof. Suppose first of all that fog = gof, and let k be 

the unique fixed point of f that is, f(k) = k. Now fog = gof 

implies that Ct:og) (k) = (gof) (k). But fog(k) = f[g(k) J and 

(go f) (k) = g (f(k)] = g (k). Therefore, f[g(k) J = g (k). Hence 

g(k) is a fixed point of f. But since k is also a fixed point 

and the fixed point is unique, we must have . g (k) ,; k, which means 

that k is also a fixed point of . g. Therefore f and . g have k 

as a common fixed point. 
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Conversely, suppose that f(k) = k and g(k) = k; that is, 

f and g have a common fixed point. From Theorem 3.2.10 we 

know that the unique fixed point of f is b Therefore 1-a 
b Since k g(k) ck + d, we have b c), k =-. = = d =- (1 -1-a 1-a 

which implies that ad + b = cb + d. But ad + b = f(d) and 

cb + d = g(b) so that f(d) = g(b). Therefore, by the Corollary 

to Theorem 3.2.4 fog = gof. 
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3. 3 SO~ffi FIXED POINTS RELATED TO A CONJECTURE 

.).3.1 The well-known conjecture that if f and g are two con-

tinuous functions which map a closed interval of real line into it

self and if they commute then they have a common fixed point, has 

been given by Eldon Dyer in 1954, by Allen Shields in 1955 and Lester 

Dubins in 1956 independently. The partial proofs of the conjecture 

have been given by Cohen [ 27], Jungck [44] DeMarr [29] and others. 

The conjecture has been disproved very recently by Boyce [13] and 

Huneke [ 40] independently. In the present section the following 

theorems related to this conjecture have been given. 

3.3.2 Theorem. Let f and g be two continuous functions which 

map the closed unit interval into itself such that fg(x) = gf(x) 

for all x in I. Then they have a common fixed point provided 

f(x) is differentiable in the open interval (0, 1) and lf'(x)l < 1. 

Proof. Since f is continuous in the closed interval 

I = (0, 1] and 

f has derivative in the open interval (0, 1), 

therefore by mean value theorem there exists a point ~ ~ (0, 1) 

such that 
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f(x) - f(y) = f' (S) (x- y) for x, y ~ I. 

i.e. lf(x) f(y) I = If' (~)(x- y) I 

or I f(x) - f(y) I ::: If'(~) llx - Yl 

or lfCx) - f(y) I~ alx- Yl· 

Because If'(~) I ~a< 1. 

Therefore f is a contraction operator. 

Since I being a closed subset of a complete metric space 

R is itself complete and f is a contraction mapping of I into 

itself. Therefore, by Banach contraction principle f has a unique 

fixed point in I. i.e. there exists a point x0 E I such that 

f(x 0 ) = x0 • 

Given that f and . g commute, therefore 

fg(x) = gf(x) for all x in I. 

Now fg(x 0 ) = gf(x0 ) = gf(xo) = g (xo) · 

Thus g(xu) is a fixed point for f. But f has a uni que 

fixed point say x0 . Ther efore . g(xo) = xo and thus xo is a 

fixed point for . g. 



122 

3.3.3 Theorem. If f and g are mappings of I = [0, 1] into 

itself such that f(g (x)) = g(f(x)) for all x <::. I, and 

lfCx) - f(y) I < alx- Yl and lg(x) - g(y) I _::.six- Yl for all 

x, y <Z I, where S is any positive real mnnber and 0 _::. a < 1, then 

there exists a common fixed point for both f and . g. 

Proof. Since I is complete with respect to usual metric, 

the condition jf(x) - f(y) I _::. ajx - Yl for all x, y ~I, where 

0 < a < 1 implies that f is a contraction mapping. Thus f is 

a contraction mapping of a complete metric space I into itself. 

Therefore by Banach's contraction principle f has a unique fixed 

point in I. i.e. there exists a unique point x0 <::: I such that 

f(x 0) = x0 • 

Using the method of previous theorem we can easily see that 

x0 is also a fixed point for . g. Thus the theorem. 

Example. 

then f(x) and 

1 X Let f(x) = 2 - 2 , and . g(x) = x be two functions 

g(x) commute; because f[g(x)] 
1 X 

= f(x) = 2 - 2' 

and g [f(x)] 
1 X 1 X 

= g[ 2- 2] = 2- 2 ' 
1 

and they have 3 as a common 

fixed point. 
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3.3.4 Theorem. If f and g are two continuous functions from 

I = [ 0, l] into itself such that fg(x) = gf(x) for all xei 

and I f(x) f(y) I > alx- Yl is a one to one mapping of a subset 

of I onto I and I g(x) g Cy) I ~ sl x Yl, where 13 is any 

positive real number, and a> 1. Then f and g have a common 

fixed point. 

Proof. We know that [0, 1] is well-linked or e-chainable 

complete metric space. The mapping lf(x) - f(y)j > ajx- yj where 

a> 1 is an expansive mapping of a subset I onto I. Since the 

mapping f is one to one and onto, the inverse f- 1 (x) exists. 

Thus the mapping f- 1 (x) satisfies !ill the conditions of Banach 1 s 

contraction principle and therefore by Banach 1 s contraction principle 

there exists a unique fixed point x0 ~I such that f(xo) = xo. 

The remaining part of the proof follows on the same line as 

given in the above theorem. 

Remark. In Theorem 3.3.3 and Theorem 3.3.4 the Lipschitz 

condition on g can be dropped altogether. Moreover, it suffices, 

apart from the commuting property, merely to assume that f has a 

unique fixed point. 
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