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ABSTRACT

The main object of this thesis is to study the Contraction

Mapping Principle given by Banach. The principle states:

Theorem. Let f be a self mapping of a complete metric space X.

If there exists a real number X < (0, 1) such that the condition

d(£(x), £(¥)) < Ad(x, y)

holds for every pair of points Xx, y € X, then £ has a unique fixed

point.

This theorem has been used extensively in proving existence
and uniqueness theorems of differential and integral equations. Some

examples have been given to illustrate its applications.

Several generalizations of Banach's contraction principle
have been given in recent years. We have tried to give some further

~generalizations in Chapter II.

We have also studied Contractive mappings and Eventually

contractive mappings. A few new results have been investigated



(ii)

related to these mappings.

The converse statements of Banach's contraction principle
have been given by a few mathematicians. We have also obtained a

few new results on the converse of the Banach contraction principle.

A few simple but interesting results related to commuting

functions and common fixed points have been given. Some new results

on commuting polynomials and common fixed points have been obtained.



(iii)

ACKNOWLEDGEMENTS

I would like to take this opportunity to
express my sincere thanks to my supervisor, Dr., S.P. Singh,
for his able guidance. I would also like to thank Professors
W.J. Blundon and A.E. Fekete for the inspiration and training
I received from them. Finally, my thanks go to Mrs. Janet

Buchanan for typing the entire manuscript.



INTRODUCTION

In Chapter I of this thesis we present a survey of known
results concerning fixed-point theorems. In addition we include a

few new results.

In Chapter II we are concerned with the classical fixed point
theorem of Banach, commonly known as the contraction mapping principle,

which states:

Theorem (A) Let T be a mapping of a complete metric space X
into itself. If for every pair of points x, y = X and some

fixed o, 0 <a <1,

(1)  d(T(x), T(Y)) < od(x, y).

Then T has a unique fixed point, and the sequence of iterates

'{Tn(x)} for each x < X converges to this unique fixed point.

A mapping satisfying (1) is called a contraction mapping and
a 1is called the contractive constant for T with respect to d.

Theorem (A) has been used extensively in proving the existence and



uniqueness of solutions to various functional equations, particularly
integral and differential equations (Kolmogorov and Fomin [47],
Nemizki [57] and Zarantonello [76]). It has been applied to prove
the convergence of successive approximations of solutions to ordinary
differential equations (Luxemburg [50]) and integral equations to
Lp—spaces (Willet [74]), to prove the Frobenius-Perron theorem on
pesitive matrices (Birkhoff [8], and Samuelson [61]), and to develop
many otherwise difficult existence and uniqueness theorems in various

function spaces (Mathews [52], and Thompson [72]).

Because of its widespread applicability there has been a
search for generdizations of the Banach's contraction principle., Here
we have the work of Edelstein ([31], [32], [33], [34], [35]) Rakotch
(158}, [59]) Chu and Diaz ([25}, [26]) Janos [42], Naimpally [56]
and Browder [20]. Generalizations due to Edelstein's have been

applied by Edwards [36].

The major contribution to the subject in Banach and Hilbert
spaces is due to Browder, Petryshyn and Kirk. Further, the notion
of contraction has been extended to more general spaces (mostly
in uniform spaces) and the corresponding fixed point theorems have

been given by Knill [46], Davis [28], Mathews and Curtis [52],



Edelstein [34], and Kammerer and Kasriel [45]. The first attempt
to generalize the contraction principle in uniform spaces was due

to Brown and Comfort [21].

Luxemburg [50],Diaz and Margolis [30], Margolis [51], Monna
[S5] and also Edelstein [35] have given the contraction principle
in generalized metric spaces, in which the concept differs from the
usual concept of a complete metric space by the fact that not every

two points in X have necessarily a finite distance.

The contraction mapping principle has also been widely used
by numerical analysts in the study of convergence and error estimates
(Schroder [62]). In each section of this chapter we have tried to
give some new results, Section 2.6 contains the results of one

paper which has been accepted for publication.

In Chapter III we discuss the results related to commuting
functions and common fixed points. We also present some new results
on commuting polynomials and common fixed points. In the end of this
chapter we prove some theorems related to the conjecture which
generalizes the result of DeMarr [29]. Two papers have been accepted

for publication from this Chapter.



CHAPTER I

FIXED POINT THEOQOREMS

1.1 FIXED POINTS.

1.1.1 Definition. A point x 1is said to be a fixed point
for the transformation T if T(x) = x. In other words, a point
which remains invariant under a transformation is known as a fixed

point.

Examples.
1. The mapping of the interval [0, 1] into itself defined
by f(x) = xm, where m 1is a positive integer different from one,

has two fixed points, namely 0 and 1.

2. The mapping of the open interval (0, 1) onto itself
defined by f(x) = xm, where m 1is a positive integer different

from one, has no fixed point.

3. The unit transformation £(x) = x fixes every point.
. 1+i . .
4. The transformation w = ——= has two fixed points,

namely -1 and 1+i.

1.1.2 Fixed Points of Linear Functions.

Theorem. The linear functions of the form f£(x) = ax+b,



a # 1, have unique fixed points.

Proof. Consider f(x) = ax + b, a # 1, and suppose that
f(xg) = X9 for some real number xy. Hence xg = f(Xg) = axg + b,

which implies xg(l1-a) = by, since a # 1 implies 1-a # 0. There-
fore we have shown that there is a unique fixed point ng. Substi-

tuting for xg, T%E' in relation f(xg3) = axgp + b we have

b, _ b . . . . .
f(TTE =12 ° Hence 1z isa fixed point and therefore is unique.

We know that the linear function f£(x) = x fixes all points.

From the above facts it follows that these are only linear

functions with fixed points.

Remark. The only linear functions which have no fixed points

are of the form f(x) = x+ b, b # 0.

1.1.3 Fixed Points of a Linear Fraction.

Theorem. Every linear fraction has two fixed points, which

in certain cases coalesce into a single fixed point.

az + b

Proof. (1) Let £(z) = o + d’

ad - bc # 0, be a linear

fraction. Then we have the following cases:



Case I. Suppose that ¢ = 0. Then (1) reduces to

£(z) =220 -2, .0 4548

a _b
where @ =7 B = T

It is clear from the equation (2) that f(»} = =, and there

is a fixed point at infinity.

If o # 1, then there exists another fixed point determined

B . .. B .
15’ hence the point s 1s

a fixed point. But if a = 1, B # 0, there is no finite fixed

by z = az + B, which implies 2z =
point.

If a#1, B # 0, the finite fixed point T%E- approaches

© as a«a tends to 1. Therefore, in the case of the transformation
f(z) =z + B B #0)

the point at infinity can be regarded as two fixed points which

coincide.
Case II. Let ¢ # 0. Then
az + b . _a -
£(z) alirr e O ad - bc # 0, gives f(m)___c.;é .

Therefore the point at infinity is not a fixed point. Similarly,



the mle § = - %

of the transformation is not a fixed point, since

£(8) = = #56.

Assuming that z # « and z # §, we solve the equation

_az +b
cz +d

or cz?2 - (a-d)z - b = 0,

obtaining

_ a-d #v/(a-d)2 + 4bc
- 2c )

If (a-d)2 + 4bc # 0, we obtain two different finite fixed

points; if (a-d)2 + 4bc = 0, these two fixed points coalesce to

form a single finite fixed point 3%% .

1.1.4 On the Fixed Pointsof £(z) = 33-1—2-, ad - be # 0.
cz +

We know tht the number of fixed points of

@) f(z) = %%—2—53 ad - bc#0 is 1 or 2, except

in the case of the identity transformation, which fixes all points.
These are no longer true in the case of

2  £(z) = Z*D a4 - be # 0.
cz + d



In transformation (2) the following cases will arise:-

(i) no fixed point (example:- f£f(z) = -1/Z);
(ii) one fixed point (example:- £(z) =z + 1, the point
at infinity);
(iii) two fixed points (example:- f£(z) = 22; 2z =0 and
z =)
(iv) an infinite number of fixed points (example:- £(z) = Z,

all the points on the real axis).

The transformation (2) may be factored into £(z) = Z, and
f(z) = %%{E%%, ad - bc # 0. Hence generalized circles (i.e. Euclidean
circles and straight lines) will be transformed into generalized

circles, and the angles will be preserved in magnitude but reversed

in sense.

In this section we prove the following result, which is more

general in notion and form.

1.1.5 Theorem. Let T" (n is a positive integer) be a function
defined on a non-empty set X into itself, and let K be another
function, also defined on X into itself, such that K possesses

a right inverse K ! (that is, a function K ! such that kK™l =1,



.;le?'

where I 1is the identity mapping of X). Then the function ™

has a fixed point if and only if the composite function K 'T"K  has

a fixed point.

Proof. Suppose that & is a fixed point of T". Then
T(8) = E.
Now Kz = kM%) = kMY ce) = KTUKRK fe).
Therefore K £ is a fixed point for K 1Tk,

Conversely, suppose that n is a fixed point of k™17,

Then
K™ 1T™%n = n
or KK™1T™n = Kn
or TnKn = Kn.

Therefore Kn 1is a fixed point of T".

Corollary. In particular case, when n =1, we get a

well-known result due to Chu and Diaz [25].

In this section we prove a similar result to that of Chu and

Diaz [25] by considering left inverse.

1.1.6 Theorem. Let T and K be two functions defined on a
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non-eapty set X into itself, such that K possesses a left inverse
(i.e., =2 fumction K ! such that K !K = I, where I is the identity
mapping of X). Then the function T has a fixed point if and only if

KTK™' has a fixed point.

Proof. Let x be a fixed point of T. Then Tx = x,
implies that T(K 'K)x = x;

or KT(K—IK)x = Kx

or (KTK™ 1) (Kx) = Kx.
i.e., Kx is a fixed point of KTK !,

Conversely, let us assume that y is a fixed point of KTK™ .

Then
-1
KTK "y =y
or K IkTk"ly = Ky
-1 -
or TK 'y = K 1y
i.e., K-ly is a fixed point of T.

Thus the proof.

1.2 CONTINUOUS FUNCTIONS AND FIXED POINTS.

1.2.1 Theorem. Let f be a continuous function from the closed
interval [-1, 1] into itself. Then there must exist a point X

in [-1, 1] such that f£(xg) = xp.



11

Proof. We prove this fact by taking a function
F(x) = £f(x) - x. We note that F(-1) > 0 and F(1) < 0. There-
fore, by Weierstrass intermediate value theorem we find that there
exists a point xp in [-1, 1] such that F(xqy) = 0. This implies

f(XO) = Xp-.

We prove the following result by using Weierstrass inter-

mediate value theorem.

1.2.2 Theorem. Let I be the closed unit interval on the real
line. Let f and g be two continuous functions from I into
itself, where f is onto. Then there always exists a point p

in T for which f£(p) = g(p).

Proof. Let h(x) = f(x) - g(x) for all x in TI.

Then h(x) 1is continuous in I. The following cases will arise.

(1) Let h(x) =0 for all x in 1.
In this case, obviously f£f(p) = g(p) for all p in I.
(2) Let h(x) > 0 for all x in TI.
i.e. f(x) > g(x) for all x in I.
The function £(x) 1is onto, and therefore it takes value

0 and consequently g(x) < 0, contradicting the fact that g(x)
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lies in I. Therefore h(x) cannot be positive for all x in I.

Let there be a point x; for which h(x) < 0.

(3) Let h(x) <0 for all x in 1I.

i.e. £(x) < g(x) for all x in 1I.

Taking f(x) = 1 we again get a contradiction, and thus
h(x) cannot be negative for all x in I. Let there be a point

X, for which h(x) > O.

Thus the continuous function h(x) takes negative and positive
values in I; and therefore by Weierstrass intermediate value

theorem h(p) = 0 where x, <p < x;, and hence f(p) = g(p).

Remark. Let 1 be the closed interval of real numbers.
Let £ and g be two continuous functions from I = IxIxIx...xI
into itself, where f & onto. Then for n > 1 there need not

exist a point p such that £(p) = g(p), as will be seen from the

following example [ 1].

It suffices to show this for n = 2; the same situation holds

for n > 2. Let
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4"4'(2X,Y)’ 0 _'ix i% or —::l,;i X i%— :
| /
l T = =5 - —
f(x,y) = ",
: 1 2 5
\(22)(,}'); 'é‘ix_i-g or 6_ix<1
|
! 1 1 1
Lyt e - Ml e e k- 3,
2/3 < x <5/6
= (fl(x’}’)’ fz(x,}'));
g(st) = p
Cees by oex<d )
} 2 -~ (
1 1
\f(x—'f’ Y), ‘2__<_Xi1 (

= (g x,y), g2(x,y)).

f and g both are continuous.

If for some (x,y), £(x,y) = g(x,y) then either

f(x,y) = f(x + —;—, y) or f(x,y) = f(x - -;—, y>. We need to consider

only one of these equations. Suppose f£(x,y) = f(x + %, y); then

2 - 2(x +32) = 2x implies x = %, and  £( -}T, y) = £(3/4, y) implies
11 11

=1yt —1—15- which is impossible. Thus f and g never take the

same value simultaneously. Moreover, both are onto and at most 2 to 1.



14

1.3 FIXED POINT SPACE.

1.3.1 Definition. A topological space X is said to have a
fixed point property if and only if each continuous function f of
X into itself has at least one fixed point. Or, we say that a
topological space X is a fixed point space if every continuous

mapping f of X into itself has a fixed point.

Examples.
1. The Theorem 1.2.1 shows that [-1, 1] is a fixed

point space.
2. The closed disc {(x, y):x? + y2 < 1} in the

Euclidean plane R2 is also a fixed point space.

1.3.2 Theorem. The fixed point property is topological

invariant.

Proof. Let h be a homeomorphism from a space X onto a
space Y; 1let X have a fixed point property and f be a contin-
uous function from Y into Y. Since X has a fixed point property,
therefore there exists a point x in X such that h'l(f(h(x))) = X.
Hence h(h—l(f(h(x)))) = h(x), or f£(h(x)) = h(x). Let h(x) = vy.

Then f£(y) = y; hence f has a fixed point.
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1.3.3 Both of the examples of section 1.3.1 are speckl cases of
Brouwer's Fixed Point Theorem. The closed unit sphere
S = {x:||x]|] <1} in R" is a fixed point space.

Brouwer's theorem itself is a special case of

Schauder's Fixed Point Theorem. Every convex compact subspace

of a Banach space is a fixed point space.

The proofs of these theorems, together with a discussion of
other related results, may be found in Bers [5pp. 86, and pp. 93-97].
Schauder's theorem was foreshadowed by the work of Birkhoff and
Kellogg[ 9 ] on existence theorem in analysis. Shortly afterwards
Tychono ff * extended Schauder's result from Banach spaces to
arbitrary locally convex topological spaces. In both cases

Brouwer's theorem was used as a starting point.

Recently Browder [14] gave generalizations of Schauder and
Tychonoff fixed point theorems. He also gave several generalizations
to Schauder fixed point theorem ([15], [16], [17], [18], [19]) which
center around the concept of asymptotic fixed point theorems and of

deformation of non-compact mappings.

* Tychonoff, A: Ein Fixpunktzatz, Math. Ann. 111 (1935) 767-776.



CHAPTER 1II

THE CONTRACTION MAPPING THEOREM':

2.1.1 Definition. A metric space is a pair consisting of a set

X and a mapping (x, y) —d(x, y) of XxX into R having the

following properties:

(1) d(x, y) >0 if x #y;
(2) d(x, y) = 0 if and only if x = y;
(3) d(x, y) = d(y, x) (symmetry) ;

(4 d(x, y) < d(x, z) + d(z, y) (triangle inequality).
The function d is called a metric and d(x, y) is called

the distance between the points x, y.

2.1.2 Definition. A sequence '{xn} in a metric space X 1is said

to converge to an element x of X if

lim d(x_, x) = 0.
>

2.1.3 Definition. A sequence '{xn} of elements of a metric space X
is called a Cauchy sequence if given ¢ > 0 there exists N such

that for p, q > N, d(xp, xq) < g,

2.1.4 Definition. A metric space X is said to be complete if every
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Cauchy sequence of points of X is convergent in X.

2.1.5 Definition: Given a vectorspace E, a normon E is a map
x —— ||x|| from E into the set R of positive real numbers

which satisfies the following axioms:

(1) |[lx||]= 0 if and only if x = 0.
(2) Jlax]| = |alllx]] for all A e X and x € E, where K

is either the field of real numbers or the field of complex numbers.
(3 |lx#y|] < |Ix{] + [Iyll  (the triangle inequality).

A vector space on which a norm is defined is called a normed

vectorspace, or simply a normed space.

2.1.6 Definition. A normed vectorspace E is called a Banach

space if it is complete as a metric space.

2.1.7 Definition. A vectorspace E over K 1is called an inner
product space if there is defined a map (x,y)—— (X|Y) from ExE

into K which has the following properties:

(1) (x|x) > 0 for every x < E.
(ii) (x|x) = 0 if and only if x = 0.

(iii) (x]y) = (/]x) for every xc E, y e E.

»
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(iv) (x + uy|z) = A(x|2z) + p(ylz) for every A, ne K,

X, y and 2z« E.

The value (x[y) is called the inner product or Scalar pro-

duct of the vectors x and vy.

2.1.8 Definition. Let E be an inner product space and ||x||
be the norm defined by |[x]|] = /(x[x). If E is compkte for this

norm (i.e. E 1is a Banach space), then E is said to be a Hilbert

space.

2.1.9 Definition. Let X and X' be two metric spaces with the

metrics d and d'; let T:x ——x' be a bijection of X to X'.

Then T 1is called an isometry if for all x, y € X,

d(x,y) = d'(x',y").

2.1.10 Definition. A mapping T of a metric space X into itself
is said to satisfy a Lipschitz condition, with Lipschitz constant «,

if

(1) d(T(x), T(y)) < ad(x,y); x, yeX).
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In case 0 <o <1, then T is called a contraction mapping,
Thus in the contraction mapping, the distance between the images of

any two points is less than the distance between the points.

= ® g 2 = .
Example. 1. If x {xn}n=1 in 12, let T = { 2}n=1

Then T is contraction on 12, For if vy ='{yn} is any other
n=1

point in 12, then

© X 1/2
d(T(x), TM) = ||Tx) - T ], =[n§1( _211__ 3'2_2)21
= 3yl
= %d(x,y).

Thus in this example, o may be taken to be %u For this T
it is obvious that there is one and only one sequence s & 12 such

that T(s) = s, namely the sequence 0, 0, O ...

Example 2. Let T be a function on Euclidean 2-space RZ,

j.e. T:R2 —— R2 defined by T(x) = x/2. Then T 1is a contraction

for

>

HTx) - T |

-5 - L

d(T(x), T(y))

1 1
7[ |x—)’|l = Ed(x’}')-

|
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Example 3. Let T = T(x) be a real valued function of a real

variable and suppose that for all x; and x5, in the domain of T
IT(x2) - T(x)| < alxg - xp]

with 0 <o <1. Then T is a contraction mapping in RI.

2.1.11 Definition. A function T:R —— R 1is continuous at a
point x3 1if for every e > 0 there exists a § > 0 such that
|x - xg| <6 dimplies |T(x) - T(xg)| < e.

The function T 1s continuous on R if it is continuous at

every point of R.

2.1.12 Theorem. If T 1is a contraction mapping on a metric space

X, fhen T 1is continuous on X.

Proof. Let € > C be given and let x; be any point in X.

Then if o = 0 in (1) we have

d(T(x1), T(¥)) = 0 < ¢,

for a1l y in X; and T is continuous at xj;. Otherwise let

§ = ¢/a, and let y be any point in X such that d(x;, y) < 8. Then
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d(T(x1), T(¥)) < ad(x;, ¥) < a.e/a = €;

and T 1is again continuous at x,.

Remark. The converse of the above statement is not true,
i.e. a continuous function need not be a contraction. For example,

f(x) = 2x is continuous, but it is not a contraction.

2.2 THE CONTRACTION MAPPING PRINCIPLE (CACCIOPOLI BANACH)

The most elementary and by far the most fruitful method for proving
theorems nn the existence and uniqueness of solutions is the principle
formulated by Banach (4 in 1922) and first applied to the proof &

an existence theoremty Cacciopoli [22 in 1930).

2.2.1 Theoren. Every contraction mapping of a complete metric
space X into itself has a unique fixed point (i.e. the equation

Tx = x has a unique solution).

Proof. Let x, be an arbitrary point. Set x; = Txg,
xp = Tx; = T?x , and in general let X, = Tnxo. We shall show that
0
the sequence '{xn} is a Cauchy sequence. In fact,

n m ‘n
d(xn, xm) = d(T xq, T xo) < ad(xg, xm—n)
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< a™d(xp, x1) + d(x1, X2) + .

X )

* d(Xm-n-l’ m-n

< od(xg, x1) {1+ o+ a2+ ... + St

n
< = d(xg, x;).

l-a
Since o < 1 this quantity is arbitrarily small for sufficiently large
n, thus the sequence is Cauchy. Since X is complete, 1lim X

n->co

exists, We set x = lim X Then by virtue of the continuity of the
nre

mapping T

Thus the existence of a fixed point is proved.

We shall now prove the uniqueness. Let Tx =X, and Ty =y,
X #y. Then d(x, y) = d(T(x), T(¥)) <ad(x, y). But @ < 1, there-

fore d(x, y) =0 i.e. x =y.

Remarks

(1) The construction of the sequence '{xn} and the study of
its convergence are known as the method of successive approximations.

(2) The error of approximation can be estimated as

n
Q.
d(x, xn) 2 1S d(xy, xg)-

Wi
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(3) The proof of this theorem does not involve any
topological machinery.

(4) It guarantees the existence and uniqueness of a fixed
point. However the requirement that T be contraction is a severe
restriction.

(5) If X 1is not a complete metric space, a contraction
mapping of X into itself may have no fixed point; for example, the

mapping x — x/2 of (0,1] into itself has no fixed point.

2.2.2 The principle of contraction mapping can be applied to the proof
of the existence and uniqueness of solution obtained by the method
of successive approximations. We shall consider the following simple

examples.

2.2.3 Picard's Theoren. Consider the differential equation

%% = T(x, y), where T(x, y) satisfies a Lipschitz condition

IT(x, w - T, y2) | :_Mlyl - y,|. Then on the interval |x-xq| < d,
there exists a unique solution y = $(x) of the equation which satisfies

the condition J(xg) = yg.

Proof. The given differential equation can be written in the

form of an integral equation as,

<
1

X
Yo * f T(t, y)dt.
P

0
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Consider the set of all continuous functions {¢(x)} on the
interval a < Xy <X <b. This set is a complete metric space if the

distance between two functions ¢, and ¢, is defined by
ﬂm,%)=m§ix£bN1-ML

We shall consider the right-hand side of the above integral

equation as an operator
X
A($) = yo + f T(t, ¢)dt,
X0

defined on {¢(x)}. Since the operation of integration is a continuous
function of the upper limit, this operator transforms points of {¢(x)}

into the same space. Estimating d(A(¢;), A(45)), we have

max|A(¢1) - A(d2)]

X
max l i [T(t’ q’D - T(t’ ¢z)dt|
0

d(A(¢,), A($2))

it

I A

M max|¢y - ¢y] |x-x0].

If we take |x-xp| < a|M, where a < 1, then

d(A($1), A(92)) < ad(dy, 92),

and hence a unique solution ¢(x), of the equation A(¢) = ¢, exists.
This solves the given differential equation. It follows from the same

theorem, that this solution can be obtained by iterating the operator
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A(¢), starting with any continuous function.

2.2.4 Cauchy's Theorenm. Consider the differential equation

%§-= T(x,y), where T(x,y) 1is an analytic function of x and vy,

that is T(x,y) = ZaasxayB in the domain |x-xq| < e, |y-yo| < e.
Then there exists a unique solution y = ¢(x) which can be expanded
in powers of x-Xg 1in some neighbourhood of the point x5, and which
satisfies the condition ¢(xy) = y,. Here x can be either a real

or a complex variable,

To prove the theorem with analytic functions, we must recall

the following propositions from the theory of power series.

Proposition 1. Let the series I aaB"'y xaya...uY converge

inside some sphere (x-xp)2 + (y-yg)2 + ... +(u-up)? < d. If the
variables x, y...u are replaced by powerseries which converge in a
sphere of radius d', the resulting power series converges in a sphere

whose radius is the smaller of the numbers d and d'.

Proposition 2. The limit of a uniformly convergent sequence of

analytic functions in any number of variables is analytic in any domain
enterior to the domain of convergence of the members of this sequence

(Weierstrass' theorem).
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N

X
|y-yol < €' < e. Consider the set of analytic function {¢(x)}

Proof of 2.2.4. Let M = max for |x-xq] <e!' <eg,

which are holomorphic in the circle (x-xp)2 + (y-yg)2 <d 2 of
radius d = min {a|M, €'}, where o is some fixed number less

than one.

The differential equation may be transformed into an integral

equationly

X X

Yo +J T(t, y)dt = yg +J za
X

0 Xy

tadet

<
1]

af

and consider the right-hand side of the equation as an operator A
defined on the set {¢(x)}. By proposition 1 and well-known theorem

on the integration of power series, we conclude that the result of

applying the operator A is a new function in the set {¢(x)}.

In addition, if we take max|¢1 - ¢2| for d(¢1, ¢2), then

et by the Weierstrass theorem [proposition 2], the set {¢(x)} forms a

 % complete metric space.
Estimating d(A(¢;), A(4,)), we have

X
d(A($;), A(4,)) = max] ] [T(x, ¢;) - T(x, $,)] dx|

Xy
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X

T
j_l f maxl%a-.]¢1 - ¢2ldxl

X9

< M max|¢; - ¢,].|x-%xq].

Taking |x-xo| less than o|M, we have

d(A(91), A(9,)) < ad(d1, ¢2).

Consequently Banach's theorem is applicable, and this proves

Cauchy's theorem.

In an analogous manner we can prove the following theorem of

Poincaré€.
2.2.5 Poincaré's Theorem. Suppose that in the equation
dy

ax ° T(x, y; A), the function T(x, y; A) can be expanded in a

vower series ZaasyxaysxY in x, y and XA which converges in the
region |x| < e, |y| <e, |A] <e. Then there exists a solution of

the form

y = A (x) + A2u2(x) R Anun(x) oo

Proof. Let M = max I%;I, where M does not depend on X,
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y and X. Now consider the set of functions ¢(x, 1) = =c Bxaxﬁ,
o

which are analytic in the domain [x| < min{a|M, e}, |A] < {a]M, €},

where a < 1. This set is a complete metric space if the distance

is taken as
max|¢y (X, A) - d,(x, A)].
Consider the operator

X
A(d) = l Zaasyxa¢exydx.

Because of propositions 1 and 2 we conclude that A(¢)

is also a function of the set.

Estimating d(A(¢7), A(d2)) as in Cauchy's theorem, we obtain

d(A(¢1), A(¢2)) < (!d(d)l, 4)2)’

which proves Poincaré's theorem.

We prove as a typical and last application illustrating the use
of Banach's contraction principle a version of the classical implicit

function theorem.

2.2.6 Theorem. Let T(x, y) be a continuous real valued function
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defined on the rectangle Iox I C RZ where I = {x|]x-x¢| < a}
and I, = {y|ly-y,| <b}. Assume that T(Xys ¥o) = 0 and that
there is a o <1 such that |[T(x, y) - T(x, y")| < aly-y'| for all
X E‘Ia’ Yy, y' ¢ Ib. Then there exists a positive s < a and a
unique continuous function h:Is—>-Ib such that h(xg) = yp and

h(x) = v, * T(x, h(x)) on Is.

Before giving the proof of Theorem 2.2.6 we need the following

definition and theorem.

y
2.2.7 Definition. For any two spaces Y, Z the map w:ZxY — Z

defined by (f, y) ——— f(y) is called the evaluation map of %.

2.2.8 Theoren. Let X be an arbitrary space, and Y be d-complete.

Then C(X, Y; d) is d+-comp1ete. Topology by Dugundji
Proof. Let '{Tn} be any d+-Cauchy sequence, so that
X e>0 3 N(e) Y n, miN(a):d+(Tn, Tm) < g.

+ .
i th
Since d(Tn(x), Tm(x)) 5 d (Tn, Tm), it follows that
'{Tn(x)} is a d-Cauchy sequence in Y for each x, and therefore

converges to some element, which we denote by F(x). Furthermores
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we have Tn(x) in B(Tm(x), €) for all x and n, m > N(e),
consequently F(x) in §TT;T§T?—23 for each x and all m,n>N(e),
which shows that the sequence '{Tn} converges to the function F
uniformly on Y. Therefore F is continuous and FeC(X, Y; d);

since Tn————+-F. This concludes the proof.

Proof of 2.2.6. For any fixed positive Y < a, consider

the space C(L, I,; d.), which is d;-complete (By 2.2.8), and
let CY be the subspace {¢|¢(xy) = yol}; CY is closed, since it
is the inverse image of yg under the evaluation map wxy, and so
CY is d;-complete. For ¢ ¢ CY define F(¢) to be the function
F(¢(x)) = yg + T(x, ¢(x)) on IY; then always F(¢)(xqg) = yy +

T(xg, ¢(xg)) = yy, and the problem reduces to showing that in a

suitable CY’ there is an h such that F(h) = h. To apply Banach's

contraction principle we must first determine a CY that is mapped
by F 1into itself; that is, for each ¢ satisfying

lyo - ¢G)| <b om I, F(¢) satisfies the same conditions. Now,

lyg- F(e(x))] = |T(x, ¢(x))]
< |T(x, (X)) - T(x, yp)l
+ |T(x, yo)l
< alo(x) - yol + |T(x, yo)l

iA

ab + |T(x, yo) |-
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Since T(xp, yp) =0 and T 1is continuous, by choosing
Y = s so small that |T(x, y0)| <b(l - o) for all x in Is’
we shall indeed have that F maps CS into itself. Next, for

¢, Y & CS, we have

[F(e(x)) = FQu(x))| = |T(x, (X)) - T(x, ¢(x))]

I A

alo(x) ~ v(x)],

so that d;(F¢, Fy) f_ad;(¢, Y); since d <1, F:Cs —_— CS

is contraction and has a unique fixed point h.
2.3 EXTENSIONS OF BANACH'S CONTRACTION PRINCIPLE.

The contraction theorem of Banach remains the most fruitful
means for proving and analysing the convergence of iterative processes.

For this reason extensions of the theorem are of continuing interest.

The following extension of Banach's contraction principle is

given in [12], [37] and [47].

2,3.1 Theozrenm. If T is a continuous mapping of a complete metric
space X into itself and if, for some positive integer n, the

iterate T is a contraction, then T has a unique fixed point.
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Proof. If we take an arbitrary point x € X and consider the

sequence Tknx (k =0, 1, 2, ...), a repetition of the arguments

introduced in the proof of Banach's contraction principle yields the

k

. . n
convergence of this sequence. Let Xy = 1lim T "'x . Then Txg = Xg.

k>0

In fact Txgp = lim TknTx. Since the mapping ™ is contraction we
ke

have

(k-1)n

AT, ")) < adr® Dy, 1

| A

(x))

< KT, ).

}A
A

Consequently

1im (T (x), TNM)) = 0

koo

i.e. Txy = Xg.

Remark The proof of theorem 2.3.1 may be simplified some-
what, as folliows: Since T" is a contraction, it possesses by
Banach's contraction principle, a unique fixed point, say Xo, such

that Tnxo = xp. It will now be shown that Txp = Xg. Since

n n
d(Txq, Xg) = d(TTnxU, Tnxo) = d(T Txg, T Xg)

|1\

ad(Txg, Xq),

and a <1, one has d(Txg, xg) = 0 i.e. Txy = Xq.
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Thus the argument just given shows that the assumption that
T itself is continuous made in the hypothesis of theorem 2.3.1 is
superfluous. However, it should be noticed that the proof of theorem

2.3.1, nevertheless, does make use of the continuity of T.

Specifically, when it is asserted that since Xy = lim Tknx, one
ko>
has
Txp = T(lim T%) = 1lim T<"Ix.
ke koo
Therefore the following theorem is an extension of theorem
2.3.1.

2.3.2 Theorem. If T 1is a (single valued) function defined on a
complete metric space X into itself, such that the function T
is a contraction for some (positive integer) n, then T has a

unique fixed point.

Remark. The conclusion that T has a fixed point can be
reached in an even more direct manner, still without assuming that
T itself is continuous. Since T 4is a contraction, it follows
from Banach's contraction principle that T" has a unique fixed

. n
point x;, such that T xo = Xg. Hence,

n,
Txg = TTnxo = T T(Xg),
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which means that Txg is also a fixed point of ™. But T has a
unique fixed point, and therefore Txy = xy. Thus, x, 1is a fixed
point of T. The uniqueness of the fixed point of T 1is obvious,

since each fixed point of T 1is also a fixed point of .

Remark. An examination of the preceeding argument shows that
there is no need to assume that T' is a contraction and defined on
a complete metric space. All that is used in obtaining the conclusion
of theorem 2.3.2 is that T has exactly one fixed point. Hence one

has

2.3.3 Theoren. Let S be any non empty set of elements (called
"points'") and T be a single valued function defined on S. Suppose
that for some positive integer n, the function ™ has a unique

fixed point xg. Then T also has a unique fixed point, namely xgq.

Proof. T" has a unique fixed point; therefore

Tn(XO) = Xg.
But Tn+1 = T.T" = T?T;

therefore TnT(xo) = T(Tn(xn)) = T(xq).

Hence T(xg) 1is a fixed point of T". The uniqueness of this

e point shows that T(Xo) = xg; in otherwords, xp is also a fixed

@
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point of T. The uniqueness of the fixed point of T is obvious,

since each fixed point of T 1is also a fixed point of T".

(When S is a complete metric space X, and T a single
valued function on X to X, such that Tn, for some positive

integer n, 1is a contraction then 2.3.3 reduces to 2.3.2).

In order to illustrate Theorem 2.3.2 we take the following

examples:

Example 1. Let T:[0, 2] —— [0, 2] be defined by

0 x ¢ [0, 1]
T(x) =
1 x ¢, 2].

Then T2(x) = 0 for all x & [0, 2]; hence T2 is a con-

traction on [0, 2], although T 1is not continuous.

:w; Example 2. Let T map [0, 1] into itself according to the

formula

1/2 X rational

0 x irrational

Then T2 is a contraction, although T 1is not continuous.
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Example 3. The metric space R is taken to be the Banach
space of all real valued continuous functions C([0, 1]), on the closed
interval 0 < x < 1, with the norm of the function f(t) being the
maximum of If(x)] for x in this interval. Consider the linearly
independent elements (i.e. such that any finite subset is linearly

independent) of C({0, 1]):

and extend this linearly independent set to a Hamel basis H
(i.e. maximal linearly independent set;). The transformation

T 1is defined, for elements of H, as follows:

T(ex) = %ul, and T({) = %nex.

While T(h) = %h for any element of H which is different

n

1
from 1 or e (notice that, therefore, T(xn) =5 X for

n=1,2,...). Since H is a basis for C([0, 1]), the definition
of T may be extended, from H to all of C([0, 1]), merely by

n n - - -
defining T(y) = iil aiT(hi) whenever y = iil aihi (with n positive
integer, real numbers oy #0 for i=1,2,..., n, and hi in H

1
for i =1,2,...,n); further, let T(0) = 0. Then T2 = 7L where 1

is the identity mapping. Thus, T2 is a contraction. But T is not

- X .
continuous at e"; that is,

. n 1
lim T( £ T

1
Xy # T = 3
n>» k=0
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because
n 1 n
im [T(1+ Z 3 xk)] = lim [%ex + %—z kﬁ xk]
n->e k=1 ' Nn-><e k:l
= % eX + — (eX - 1)
e
5

Example 4. It is of interest to notice that an example of
a discontinuous transformation T, with T2 a contraction, can be
given even when the metric space R is the set of real numbers.
Let the numbers 1 and 1T be contained in a Hamel basis H for the
real numbers (ie, a set H of rationally independent real numbers
such that every non zero real number may be uniquely written as a

n
finite sum, y = I a.h., where n 1is a positive integer, the a i

. ii
i=1
are non zero rational numbers, and the hi are numbers of H;

= [G-Hamel [39]]. The transformation T will be defined, for elements
m

i

=

= of H, as follows:

T(1) = 7/2, and T(m) = -12--1,

while T(h) = %-h for any number of H which is different from 1 or

m. The definition of T may be extended, from H to all the real

numbers, by defining T(y) = . T(h.) for any non zero
e T

[ =

i=1

13 EFE AN S
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real number y =

. aihi; and by putting T(0) = 0. The trans-
i

[l e

1
formation T satisfies T(T(y)) = %-y for every real y; hence
T2 1is a contraction. But T cannot be continuous, For, from the

way it was defined, T satisfies the Cauchy functional equation

T(x) + T(y) = T(x + y).

If the function T were continuous, then it would have to

be linear; that is,
T(y) = Cy,

for some real number C, and any real y. Since
C = T(1) = 7/2, one would then have that T(w) = C.7w = 12/2, con-

tradicting the original definition of T which states that T(7) = %n

2.3.4 Considering the simplicity and usefulness @3-52 for example
[47]) of Banach's contraction principle, it is surprising that only
recently have there been attempts to generalize it. Probably the most

natural generalization that one can make is to localize condition (1),

~given by Edelstein [31].

In the local version of Banach's contraction principle the

following definitions were jntroduced by Edelstein [31].
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2.3.5 Definition. A mapping T of X into itself is said to be
locally contractive if for every x in X, there exist € and A

(e >0, 0<x < 1); which may depend on x, such that

(2) P, @ in S(x, €) = {yld(x, y) < e} implies

d(T(p), T(q)) < Ad(p, q), P # q.

2.3.6 Definition. A mapping T of X into itself is said to be
(e, A)-uniformly locally contractive if it is locally contractive and

both ¢ and XA do not depend on x.

Remark 1. A globally contractive (contraction) mapping can

be regarded as a (=, A) - uniformly locally contractive mapping.

Remark 2. For some special spaces every locally contractive

mapping is globally contractive. For example:

2.3.7 If X is convex, complete metric space, then every mapping

T of X into itself which is (e, A)-uniformly contractive is also

globally contractive with the same A.

To show that the condition(l) of 2.1.10 and 2.3.6 are

vquivalent we need the following definition, which is due to Bing [7].

[ U

A3
.

LI O N

Bt I

r wa.
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Definition. A metric space X 1is said to be convex provided
x and y in X 1imply there exists z in X such that

d(x, 2) = d(z, ) = Pd(x, ).

Proof of 2.3.7. A theorem by Menger [11 p.41] states that

a convex and complete metric space contains, together with x and vy,
a metric segment whose extremities are x and y; that is, a subset

isometric to an interval of length d(x, y).

Using this fact we see that if x, y ¢ X, then there are points

X = Xg, Xyp eees X =Y such that

n

n
d(x, y) = I d(x;_;, x;) and d(x;

X.) < €.
i=1 1

-1

n
Hence d(T(x), T(y)) < .21 d(T(x;_; )» T(x))
i=

A
>
n Mg

) d(xi_l, xi) = Ad(x, ¥).
i=1

Hence the theorem.

Remark. It is quite easy to exhibit spaces which almit locally
contractive, or even uniformly locally contractive mappings which are

not globally contractive. The following is a simple example:

-

4 R e Bem om
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Consider the circular arc described in the complex z-plane

Y. = {exp(it):0 <t < 3n/2},

and let (X, d) consist of X with the metric induced by that of

the Euclidean plane. The map T:X ——— X given by

T(exp(it)) = exp(it/2),

is not globally contractive, since

lexp(i3n/2) - exp(0)| < |exp(i3n/4) - exp(0/2)];

but it is easily shown to be uniformly locally contractive.

2.3.8 Definition. A metric space X will be said to be
n-chainable if for every a, b ¢ X there exists an n-chain; that
is, a finite set of points a = Xgs Xy eves X = b (n may depend

on both a and b) such that d(xi_l, xi) <n (i=1, 2, ..., n).

The concept of n-chainability is apparently due to Fréchet
[38]. Fréchet and his contemporaries, and later Whyburn [73], made
use of this concept in its role as a generalization of connectedness

in the context of a metric space. It has also been found useful in

P A sk mer e me e
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several papers (see [31] - [32]) on various extensions of Banach's

contraction mapping theorem.

Before stating and proving the main result connected with the
extension of Banach's contraction principle we would like to give
here some results related to well-chained metric spaces given in

Choquet [24].

2.3.9 Theorem. Every connected metric space X 1is well-linked.
Proof. Let a = X and let X(a, ¢) be the set of points

x of X which can be joined to a by a chain of steps at most equal
to e. This set is not empty, as it contains a; it is open, since
if x € X(a, €), the same is true for every y such that d(x,y)<e;
it is closed, since if x is an accumulation point of X(a, ¢),

there exist points y of X(a, €) such that d(x,y)<e.

Since X 1is connected we have X(a, €) = X; 1in other words,

every point b of X can be joined to a by chain of steps at most

equal to €. Thus X 1is well-linked.

Remark. A well-linked metric space need not be connected. For

example, the set Q of rationals is well-linked but not connected.
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However, this converse holds if X is compact.

2.3.10 Theorem. For a compact metric space, the properties of being

connected and being well-linked are equivalent.

Proof. We have to show only one half of this equivalence.
Thus let X be a compact metric space. If it is not connected,
there exists a partition of X into two non empty closed sets X;
and X,. Since X; and X, are compact the distance between them
is non zero. A point of X; cannot be joined to a point of X, by
a chain of steps less than 6/2, for if (aj, az, ..., an) is such

a chain, let i be the smallest index such that a, & X;; then

a S X1 . and d(ai-l’ ai) < 8/2, 1in contradiction with d(X;, X,) =§.

i-1
In other words, if X 1is well-linked, it is also connected.

Edelstein [31] has given the following theorem:

Let X be a complete c-chainable metric space and T be a
mapping of X into itself which is (e, A)-uniformly locally con-

tractive. Then there exists a unique point & in X such that

T(g) = &.

OU

e L

N
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the sequence '{an} is a Cauchy. In fact,

d(ag, ay) = d(g"(a), g () < "d(a, a_ )

<AMd(a, a,) + d(a;, a,) + ... + d(ay - 1.a

).
< \"d(a, a,) {1+2+ A2+ ... o+ Am-n-l}

)\n
1-2 d(a, al)

A

A
<3 d(a, g(a)
< =—— ke from (1).

Since A < 1, this quantity is arbitrarily small for the

sufficiently large n. Thus '{an} is a Cauchy sequence. Since X

is complete, 1lim a exists. We set a = lim a . Then, by
e n->o
virtue of continuity of g, g(ao) = g lim a = lim ga_ =
' ' n>® e 1
1im a .1 = a,. Thus g has a fixed point a, i.e. g(ao) = ag.

In order to complete the proof we have to show that a, =

1im a is a unique fixed point satisfying g(ap) = ag. Let ag

and b, be two different fixed points i.e., g(ag) = ag and

g(bg) = by. Then ay # by implies d(ag, bg) > 0.
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T(g(a,)) = T(ay);
but ™ < 1(g) = g(m.

Therefore g(T(ao)) = T(ao).

Hence T(ao) is a fixed point for g. The uniqueness of

this point shows that T(ao) = a in other words, a, is also a

0’ 0
fixed point for T. The uniqueness of the fixed point of T follows from

1 7 the fact that every point of T is a fixed point for TP.

Corollary. Let X be a convex complete metric space and T
an (e, A)-uniformly locally contractive mapping of X into itself.

Then T has a unique fixed point.

Proof. By 2.3.7. T becomes a globally contractive mapping of a
complete metric space X into itself. Hence, by Banach's contraction

principle T has a unique fixed point.

From - . Theorem 2.3.11, there follows a corollary regarding

expansive mappings. These mappings can be defined in a natural way.

2.3.12 Definition. A mapping T of X into itself is said to

be locally expansive if for every x ¢ X there exist e and A

(e >0, A >1), which may depend on x, such that

I ITITIN S-S -
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P, q in S(x, €) = {y|d(x, y) < e} implies

2.3.13 Definition. A mapping T .of X into itself is said to
be (e, A)-uniformly locally expansive if both ¢ and A do not

depend on x.

2.3.14 Corollary. If T 1is a one to one (e, A)-uniformly locally
expansive mapping of a metric space Y onto an e-chainable complete

metric space XD Y, then there exists a unique & such that

T(g) = .

Proof. This assertion is an immediate consequence of the
fact that for the inverse mapping T (x) all the assumptions of

the Theorem are satisfied.

Remark. It is obvious that a connected metric space is e-
chainable for every e > 0 (as proved in Theorem 2.3.9). Now suppose that
X 1is a connected and complete metric space. It is natural to ask
whether there exists a fixed point if the condition of (e, A)-

uniformly contractivity is replaced by the following one.

V)
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for every xp in X there exists a sphere

Sp = S(xg, e(xg)) such that
d(T(x), T(y)) =< ad(x, y),

for every x, y in Sy, where o < 1. Such a mapping will

be said to be a-locally contractive.

The counter example given in [58] shows that this is not
the case. In the same paper it is also proven that some special
assumption is necessary in order to guarantee the existence of a

fixed point. The required condition is the following:

2.3.15 Theoren. Let T be an a-locally contractive mapping of

a complete metric space into itself such that

(1) For some Xxp in X the point Xxp and Txg are
connected by an arc C < X of finite length. Then there exists a

fixed point.

Remark. If assumption (1) is dropped, or if C is not of

finite length, then a fixed point may fail to exist. The counter

example may be found in [58].
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2.4 CONTRACTIVE MAPPING AND FIXED POINTS.

2.4.1 Definition. A mapping T of a metric space X into itself
is said to be contractive if for every two distinct points x, y

in X,

1) d(T(x), T(y)) < d(x, ¥).

A contractive mapping is clearly continuous; and if such a
mapping has a fixed point, then this fixed point is unique. Con-
traction (i.e., |T(x) - T(Y)|' <« ix-y|" for all x, y in X

and some fixed a, 0 <a < 1) is an example of contractive mapping.

Remark. It is interesting to observe that the condition (1)
is not sufficient for the existence of a fixed point, as will be seen

in the following examples.

Example 1. Let X be the set of real numbers with the usual

definition of distance. Let

T(x) = x + %—- arctan Xx.

for every x, the operator T has no

(T

Since arc tan x <

TN S N

e d R






52

i.e. T 1is a contractive mapping, and it is easy to see that T

has no fixed point,

Example 3. Let X = {x|x > 1} with usual distance
d(x, y) = |x - yl. Let T:X ————X be given by T(x) = X +~%.

Then T is contractive, but it has no fixed point.

Whether directly influenced by Banach's result or not

several authors have examined mappings which satisfy condition (1).

Some of these are listed in the bibiliography ([32], [33], [34], and

[23]). The most recent result concerning mappings satisfying

condition (1) is that of Edelstein [33], given below.

2.4.2 Theorem. If T takes R" into itself, if T satisfies
(1), and if there is an Xx.¢ R" such that the subsequence of

‘{Tn(x)} converges, then there exists a fixed point under T.

We note that in both conditions (1,2.1.10),(2,2.3.5) A 1is
independent of x and y. This suggests that one might generalize
these conditimns by letting A vary with x and y. Cheney and

Goldstein [23] as well as Edelstein [32] did this in the follow-

ing manner. They required that the mapping T satisfy

Pty
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(2) 0 < d(x, y) implies d(T(x), T(y)) < d(x, y).

Note that this is equivalent to requiring that for d(x, y)
greater than 0, d(T(x), T(y)) < A(x, y) d(x, y) where A(3x, y) <1
for all x and y in X. 1In both [23] and [32] we find the

following theorem.

2.4.3 Theorem. Suppose T satisfies (2) and there exists x in
X such that some subsequence of '{Tn(x)} converges. Then there

exists a unique z in X such that T(z) = z.

In [32] Edelstein also considered mappings satisfying the

following localized version of (2).

(3) There exists e > 0 such that 0 < d(x, y) < ¢

implies d(T(x), T(Y)) < d(x, y).
He obtained the following two results, among others.
2.4.4. Theorem. If T satisfies (3) and there exists x in X

n.
such that {T *(x})} ——— z in X, then there exists at least

one periodic point under T.

PO ST N e Y L T

P 2N
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2.4.5. Theorem. If X is compact and e-chainable and if T

satisfies (3), then there exists a unique fixed point under T.

Here we [69] would like to give direct, rather simple proofs
of the above theorems. For that purpose we need the following

definitions introduced by Edelstein [33].

2.4.6. Definition. A mapping T:X ——— X of a metric space
X into itself is said to be nonexpansive (e-non expansive) if the

condition

LR . % -

a s

(4) d(T(p), T(q)) < d(p, Q) ]

holds for all p, q « X (for all p, q with d(p, q) <¢).
Isometry (i.e. |T(X) - T, = |x-y| for all x,y eX)

is a simple example of non expansive mapping.

Mappings as above satisfying (4) with the strict inequality
sign for all p, q in X, p #q (for all p, q with

0 < d(p, q) < €) are called contractive (e-contractive).

2.4.7 Definition. A point y e YC X 1is said to belong to T-
closure of Y, y & YT, if T(Y) Y and there is a point e Y

and a sequence '{ni} of positive integers, (n3 <mny < ...< N, <...),

W |
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n: -
so that lim T LN} =Y.

2.4.8. Definition. A sequence { x;} <X 1is said to be an

isometric (e-isometric) sequence if the condition

d(xm’ xn) = d(Xm+k’ xn+k)

holds for all k, m,n=1, 2, ...; (for all k, m, n=1, 2,
with d(xm, xn) < e). Apoint x in X is said to generate an
isometric (e-isometric) sequence under T, if '{Tn(x)}

is such a sequence.

Example. 1In R? the sequence {cos n ¢, sin n¢|n = 0, 1, 2,
..} 1is a simple example of an isometric sequence. When n-1¢ is
rational, the range of '{xi} is the set of vertices of a regular
polygon, otherwise it is a dense subset of the unit circle. We may,

then, think of an isometric sequence as a generalization of a regular

polygon.
The following results are due to Edelstein [33].

2.4.9. Theorem, If T:X — X is g-nonexpansive and x in

XT, then a sequence '{mJ}, (my <my < ...), of positive integers

m . . T.T T
exists so that 1lim T J(x) = x. [Hence, in particular, (X') = X.]
Jo
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2.4.10 Theorem. If T:X ——- X is an e-nonexpansive mapping
of X dinto itself, then each x in XT generates an e-isometric

sequence.

T

]

2.4.11 Theorem. If T:X ——- X 1is a nonexpansive and x <& X

then x generates an isometric sequence.

Here we would like to remark that one could prove more than
i that given by Edelstein [ ], i.e. it can be proved that even in

this case the following holds:

T

H

2.4.12 Theorem. If T:X —— X 1is nonexpansive and x in X
then x generates an isometric sequence, and T has a unique fixed

point, equality holds when x =y, x, ye X.

Proof. By Theorem 2.4.11 T generates an isometric sequencg;
therefore d(x, T(x)) = d(T(x), T2(x)), but T is nonexpansive, so

that d(T(x), T2(x)) < d(x, T(x)). This shows that d(x, T(x)) = 0,

so that x = T(x). Also, if y in X and y = T(y) then
d(T(x), T(y)) = d(x, y), contradicting the fact that T is non-

expansive unless x = y. Thus x is unique fixed point for T.

Corollary. If T:X ——= X 1is an e-nonexpansive mapping of
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X into itself, then each x in XT. generates an e-isometric

sequence, and T has a periodic fixed point i.e., there exists a

positive integer k such that Tk(x) = X.

Remark. It is natural to ask whether Theorem 2.4.4 would

remain true if ( 2) is substituted by a localized version such as

Pp#9q; P, qin S(x, e(x)) implies d4(T(p), T(q)) < d(p, q) where

S(x, e(x)) = {z|d(z, x) < e(x)}.

The following example serves to show that this is not the case.

Example.

X ='{(%, i)|n = 24, 2i+1, ...,}UXy UY,

i}

x0='{(%, 0fn=1,2, ...}, Yo =" {(0, 1)]i =0, 1,2,...}.

-

f(L., i +1) ifn# 2

>

(1,0) ifn=2i

~

T(O’ i)=(031+1); i=0’ 1) 2J

X is taken in the metric of the euclidean plane. Here condition

2D LT E TN .

—
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(2) and (5) are satisfied, and although Tn(l, 0) contains a sub-

sequence which converges to (0, 0) this last point is not periodic.

|
I !
| |

|
(0,3) b \ o
(0,2) o . 0 o o \0\ 0
\ AN ™~
-0 o]
(—,0)
(0,1) o % ° “L. \ ‘
“o
\ . I X0
O— — — o] o] 8 o 1
1 1 (7:0)
0,0 "8",0) ('6—,0)

PEE O L VY
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In [23] Cheney and Goldstein have proved the following theorem.

Let T be a map of a metric space X 1into itself such that

(G) a(Tx), T()) < dlx, ¥);
(ii) if x # T(x), then d(T(x), TZ(x)) < d(x, T(x));
(iii) for each x, the sequence Tn(x) has a cluster point.

Then for each x the sequence Tn(x) converges to a fixed point of

T.

RN EY

Here we would like to remark that by relaxing conditions (ii) y
and (iii) we get a unique fixed point. Although the theorem has .
already been given by Edelstein [32], we prefer the direct rather

simple proof here.

2.4.13 Theorem. Let T be a map of compact metric space X into
itself such that

(1) d(T(x), T(y)) < d(x, y), equality holds when x = y.

Then T has a unique fixed point.

Proof. The compactness of X and the condition (i) imply
that each x in XT generates an isometric sequence,

[ 33 Theorem 1']. Therefore, by the definition of isometric sequence,
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d(x, T(x)) = d(T(x), T2(x)); but from condition (i) we have
d(T(x), T?(x)) < d(x, T(x)). This shows that d(x, T(x)) = 0, which
implies x = T(x) i.e., x 1is a fixed point for T. To prove the
uniqueness, let us assume that y 1is another point such that y # x
and T(y) = y. Then d(T(x), T(y)) = d(x, y) contradicting the

condition (i) unless x =y. Thus x 1is a unique fixed point for T.

In the same vein Rakotch [59] allowed XA to vary in the re-

stricted way and was able to obtain a fixed point theorem on complete

metric spaces. The exact conditions Rakotch imposed on X are

following:

R L e

2.4.14 Definition. Denote by F the family of functions M(x, y)

satisfying the following conditions: !

(1) A(x, y) = a(d(x, y)), i.e., A 1is dependent on the

distance between x and y only.
(ii) 0 <a(d) <1 for every d > 0.

(iii) A(d) 1is monotonically decreasing function of d.

We give here the localized form of Rakotch's theorem.

2.4.15 Theorem. If T is a contractive mapping of a complete




61

e-chainable metric space X into itself satisfying
0<d(x,y)<e == d(T(x), T(¥)) < A(x, y)d(x, y)

for every x, y in X and A[x, Y) € F, then T has a unique

fixed point.

Proof. Since (X, d) 1is ¢-chainable we define, for every
X, Yy in X
n

de(x, y) = inf £ d(x
i=

i-1° Xi)’

1 .

’
3
v
3
.
i

where the infimum is taken over all e-chains x., x,, x R
0’ 1’ 2’ 3 n
joining x = x5 and y = X . Then d is a distance function on

X satisfying

(1) dlx, y) 2d_(x, )

(i1) d(x, y) = d_(x, y) for d(x, y) <.

From (ii) it follows that a sequence '{xn} in X 1is a Cauchy sequence
with respect to d if and only if it is a Cauchy sequence with
€

respect to d and is convergent with respect to dE if and only if

it converges with respect to d. Hence since (X, d) 1is complete,
(X, dE) is also a complete metric space. Moreover T 1is a con-

tractive mapping with respect to de. Given x, y in X, and any
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g-chai i =
chain x,, x,;, ..., X with X, = X, and X =Yy, we have

d(xi_l, xi) < g i=1,2,...,n)),

so that

d(T(xi—l) ,T(xi)) _i )\(xi_ls xi) d(xi-l’ xi)

=>\(d(xi_1, xi))d(xi‘l’ xi)

< A(e).c i=1,2,...,n.
Hence Txg, TXy, «0u,y Txn is an e-chain joining Tx and Ty, and
n

~c wg-

d_(T(x), T < 33, d(T(x; ), T(x;))

A
[ =]
a o

Ad(x;_qs %5)) dix;_ 5 %5,

i=1

since Xgs Xps aees X is an arbitrary e-chain, we have

d_(T(x), T(y)) = A(ds(x, y)) d_(x, ¥).

Therefore, by corollary to Theorem 2 [59], T has a unique

fixed point.

The following definitions and theorems related to Banach's ¢ontraction

principle are due to Janos [47].
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2.4.16 Definition. Let X be a completely regular space. By
D ='{fi]if2 F} we always understand a family of pseudometrics on
X inducing the given topology on X. Let T:X ——X. It is
natural to say that T is contractive under D if and only if

YieF 3 a; in (0, 1), Vx, y<X, d, (T(x), T(y) < 0;d (%, ¥).

2.4.17 Definition. Let X be a metrizable topological space,

m the set of all metrics on X inducing the given topology, and
T:X — X a continuous mapping. If a € X 1is a fixed point of

T, we will say a is of contractive character, if, for some

Te(0, 1), there exists a neighbourhood N(a) of an invariant under
T and a metric d in m such that d(T(k), TY)) < od(x, y)

for all x, y < N(a).

2.4.18 Theoren. Let X be a complete regular and T;X —— X.
Let D be a family of pseudometrics on X with respect to which X
is complete and under which T is contractive. Then T has a unique

fixed point on X.

2.4.19 Theorem. Let X be a compact Hausdorff, T:X — X, and

D={f.]i @ F} such that Yi<F and Yx, ¥y eX, 4 (T(X), T(y)) =
1

d;(x, y). Then T has a unique fixed point en X. Moreover, if X

is metrizable, then for each o < (0, 1) there exists a metric d on
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X, inducing the given topology such that X, y in X:

d(T(x), T(y)) < od(x, y).

2.4.20 Theorem. Let X be compact and connected and let
T:X ————— X be such that for some d in m and some e > 0

the following condition holds:

0 <d(x, y) < e === d(T(x), T(y)) < d(x, y).

Then T has a unique fixed point a, a is of contractive

character and Tn(x) -—~a for all x ¢ X.

Recently Sims [66] has given the following generalization

of Banach's contraction principle:

If T 1is a contraction on a bounded and complete pseudometric

space (X, d), then T has a unique fixed point.

In the end of this section we give a generalization of the

following theorem of Bers [ 5]. For that we need the following:

- 2.4.21 Definition. Let K be a subset of a normed vectorspace.

A mapping T of K into itself is called a contracting mapping if,
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for all x, y < K,

HT(X)—T(}’)HEGHX-}’H where 0 < q < 1.

2.4.22 Definition. A mapping T of a subset K of a normed
vectorspace into itself is called a nonexpanding mapping if, for

all x, y¢c K,
Hred - tonll < 1x - yil.

Bers [ 5 p.81] has given the following theorem:

Theorem. Let K ='{x'||x|I < 1} be a subset of a Banach
contractive
space, and let T be a continuous/mapping of K into itself. Then

T has one and only one fixed point.

Here we would like to remark that the above theorem may be
put in even a general set as follows. At the same time the condition

of continuity is superfluous.

Theorem. Let K be a closed subset of a Banach space and
let T be a contracting mapping of K into itself. Then T has

one and only one fixed point.

P
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Proof. Let xg be an arbitrary point in K and consider

the sequence '{xn}. Set x31 = T(Xp), X3 = T(x1), ... .

Now [Ixn+1 - anl = |IT(Xn) - T(Xn_1)||
= al[xn - xn—l”’
and len - xn—lll = ||T(xn_1) - T(xn_z)ll
<aflxy g - x LIl
Hence ||Xn+1_- anl.i “'“llxn-l - xn-2Il

-~ 2] ]+ -
- a 'l“n—l xn--ZH’

Therefore by continuing this process we have

Txpy = %11 < ek = xgl| = ™, where W =[x, - xol.

n+1

Using this inequality we will show that the sequence {xn}

is a Cauchy sequence.

llxn+p - -nll i llxn+p = xn+P_1l' + llxn+p_1 - xn+P"2H
Fooaeen + len+1 xn||
< MaMPL o MPTE L + Mo
p-1
_<_ Ma {]_ + g + (12 F+ i e + }
n
o3
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n
]

Since ao < 1, Ta M tends to zero as n tends to o

and hence {xn} is a Cauchy sequence.

Since K is closed subset of a Banach space, K 1is complete.

Hence x ~ converges to some point x. in K. Set x-~ =T lim x_.
n
N>

Then by the virtue of continuity of T, Tx- = lim Txn =

n->
lim X 41 = Xre Thus the existence of a fixed point is proved.
>
Uniqueness. Assume that x and y are two fixed points

of T, i.e., T(x) =x and T(y) y. Then since T 1is a contract- i

ing mapping we have

[x = yll = HTe) - 0] < effx - ¥[]

A

ie. (1-a)llx-yll =0, whence [[x-v|| =0,

so that x coincides with y . The theorem is proved.
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2.5 EVENTUALLY CONTRACTIVE MAPPINGS

In [ 2] Bailey considered continuous mappings obeying the
following generalization of conditions (2) and (3) of 2.4. Throughout
this section X will denote a compact metric space and T will

denote the mapping of X into X.

2.5.1 Definition. A continuous mapping T 1is eventually
contractive if for every distinct pair x, y e X there exists

n(x, y), a member of It (the positive integers), such that

(1) AT, TN <d(x, ¥).

2.5.2 Definition. A continuous mapping T is e-eventually
contractive (locally contractive) if there exists e > 0 such
that if x and y are distinct and d(x, y) < ¢ then there is

n(x, y), a member of I+, such that

(2)  ax), ™)) < d(x, y), whenever d(x, y) < e.

2.5.3 Definition. x is proximal to y wunder T if for each
+

o > 0 there exits n, a member of I, such that

d(Tn(x), Tn(y)) <ga. If x and y are not proximal under T

they are said to be distal under T. If for each o > 0, there exists
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- +
n in I such that d(Tm(x), Tm(y)) <a for all m > n, then x
and y are said to be asymptotic under T. Note that we need not

require X # y.
Bailey [3] obtained the following results among others:

2.5.4 Theorem. Suppose T satisfies condition (1). Then every

pair of points in X 1is proximal under T.

2.5.5 Theorem. If T satisfies (2) then d(x, y) < ¢ implies

x and y are proximal under T.

2.5.6 Theorem. Suppose T satisfies (2) and 0 <8 <& < €.
Then there exists N(8, §) in ™ such that 6 < d(x, y) < §
. k+J
and 4, VD)) < d(x, y) imply ATV @), TV ) < dix, )

for some J such that 0 <J < N(e, 6).

2.5.8 Theoren. If T satisfies (2) and X is convex then T

satisfies (1).

2.5.9 Theoren. If T satifies [ 3,2.4] and X 1is g-chainable,

then T satisfies(1).

We prove the following theorems:
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complete
2.5.10 Thecren. Let X be a convex, e-chainable/metric space,

and T be a mapping of X into itself which is (g, A)-uniformly

locally contractive. Then T 1is also eventually contractive.

Proof. A theorem by Menger [11 p. 41] states that a convex
and complete metric space contains, together with a and b, a
metric segment whose extremities are a and b » that is, a subset

isometric to an interval of length d(a, b).

Using this fact we see that if p, q £ X then there are points

o3

P =X, Xp, ..., X_=q such that d(p, q) = ‘

d(x. ,, x.) and
n i=1 i-1 i

dlx; ;s %;) <. Hence dA(T(P), T(@) < I d(TCxy_;, T(x;))

i-1 i=1

n
<A Tod(xy g, X;) = Md(p, q) .

By definition it is clear that every globally contractive
mapping is a contractive mapping i.e., the mapping
d(T(p), T(q)) < Ad(p, q), (0 <1 < 1) may be regarded as
0 < d(p, @ = d(T(p), T(Q)) < d(p, q). Alsoby definition
every contractive mapping in the convex compact metric space may be

regarded as an e-contractive mapping.
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As X 1is g-chainable, therefore for distinct points p
and q there exists p = P1, P2, <.+, P, =4 such that
d(pi, Pi+1) <g¢ for i=0,1, 2, ..., n-1. By Corollary 1 to
Theorem 2 [ 2] p; 1is asymptotic to Psu1 under T for

i=0,1, 2, ..., n-1. Hence there exists m & I+ such that

d(Tm(pi), Tm(pi+1)) < QLR;—QL for 1 =0,1, ...., n~1l. Therefore
m n-1 m m nd
d™p), TN@) < £ AT (py), TPy, ) <5 (@ @ = d@, .
i=0

2.5.11 Theorem. Let X be an e-chainable metric space and T

be an e-contractive mapping

i.e., 0 < d(x, )’) < g = d(T(X), T(Y)) < d(x:}’)'

Then every pair of points is asymptotic under T.

Proof. Since X 1is e-chainable, we define for p, q< X

n
d(p, q) = inf _Z d(xi_l, xi),
C(P) q) i=1

where C(p, q) denotes the collection of all e-chains

P = XQ, Xy5 +-+5 X = Qs (n arbitrary), d(xi_l, xi) < g, holds.

Indeed, T is e-contractive. We have
d(T(xi_l), T(Xi)) < d(xi_l, xi) provided

d(xi_l, xi) < e.
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Hence,
n
d(T(p), T(q)) < inf 2 d(Tlx; 43, T(x,))
Clp,q) i=1 - '
n
< inf .E d(x._l, xi) = d(p, q)
C(p,q) i=1

Hr all p, q. Thus the mapping is contractive.

Now since X 1is compact and T 1is a contractive mapping of
Aan
X into itself, therefore by Theorem 2.4.13 T comtasas a unique fixed
point x. Also the property of compactness implies that each sequence

’{Tn(x)} converges to x. Therefore it follows that every pair of

points is asymptotic under T.

2.5.12 Theorem. If T satisfies (1), and K 1is a homeomorphism

of X onto X, then KTK-1 satisfies (1). In addition T has a

unique fixed point,

Proof. By Theorem 1.3 [ 3] K l(x) and K l(y) are proxi-
mal. Also since K is a homeomorphism, therefore K and K™l both
are continuous. Since K ! is continuous and X is compact, there
exists 6 > 0 such that d(w, z) < & implies ak Iy, K'1(2)) <

d(x, y). Now K'l(x) and K'!(y) are proximal under T; therefore
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for each & » 0 there exists n a member of I+ such that
n, - n,. - - -
d(T (K +(x)), T(K'1(y)) <6. Hence dXTK™H™(x), (KTK 1)7(y))

= d(KT'K™ ! (x), KT"K"1(y)) < d(x, y).

Again, by Theorem 1.3 [3] x and KTK !(x) are proximal

under T. Now choose {n.}c I" such that n. < n, and
i° = i i+l

Nn. .
kT P, k) My <L

n.
By the compactness of X, we may assume that {(KTK™!) X))y — ¢

n.
and  (KTK™4) 1+1()’)} —n, for some ¢ and n in X. Clearly

L

E = n. Alsothe continuity of KTK implies KTK-In = n, so that

n is a fixed point of KTK™'. That this point is unique is immediate.

Since KTK™! has a unique fixed point n, KTK n= n, or

K *KTK"Y(n) = K'In, or TK 'n =K 'n. Thus K 'n is a unique fixed

point of T.

Remark. A similar result for K 'TK has been given by Bailey

in the following form:

2.5.13 Theorem. If T satisfies (1), and K is a homeomorphism of

X onto X, then K 'TK satisfies (1).

Sehgal [63] has given the following definition and generalization
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of Banach's contraction principle.

2.5.14 Definitien. A continuous self mapping is called an eventual
global contraction if for each x ¢ X = (X, d) and for some integer
n = n(x)

dry), ThX) < Ad(x, y)

for every y & X and some A & [0, 1).

2.5.15 Theorem. An eventual gobal contraction of a complete
metric space has a unique fixed point 6, and for every x e X,

T™(x) — ob.

As an application of the foregoing material we state and

prove the following theorem concerning holomorphic mappings.

Theoxrem. Let T be a holomorphic mapping of a compact,

convex subset M of the plane into itself such that given z in

M there exists n(z) in I such that |DT"(z)| < 1, then there

exists a unique fixed point in M.

Proof. Note that since DT(z) exists for all z in M

and DT 1is continuous in M, pT"® is continuous on M for all n

+
in 1°. Given z in M, let n(z) be the smallest member of I
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such that |DTn(z)(z)[ <1. Also for z in M 1let 0(z) be an open
sphere about z such that w in 0(z) implies ]DTn(Z)(w)I < 1.

Now since M 1is compact a finite number of these 0(z) cover M,

say 0(z,;), 0(zp), ..., 0(zn). Now let e be the Lebesgue covering
number of the above covering. |s - t| < e implies s and t are

in 0(zi) for some 1 :_1 < n which implies the line segment L
joining s and t is in O(Zi). Thus if z 1is on L,

IDTn(Zi%z)l < 1. Therefore

t
. 7 n(z.: rt
) gy - ") ) 2 I o1 (2) ag < IpT"(2) | | dz]
S S
< Is - tl. Hence T satisfies (2), and since M 1is convex Theorem

1.18 [ 3] implies that T satisfies (1). Therefore by Theorem 2.5.12

there exists a unique fixed point in M.
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2.6 SOME FURTHER EXTENSIONS QF BANACH'S CONTRACTION PRIMCIPLE

In [67] we proved the following theorems by taking T as a
mapping of a metric space X into itself such that there exists a
mapping K of X into itself which has a right inverse and which
makes K ITK a contraction. Corollary to Theorem 1.1.5 has been
used in the proof of these theorems. One can also prove these
theorems easily for KTK ! (where K ! is left inverse of K

such that K 1K = I) by applying Theorem 1.1.6.

2.6.1 Theorem. Let X be a complete e- chainable metric space;
let T be a self-mapping of X into itself such that there exists
a mapping K of X into itsel¥, which has the right inverse k1
and which makes the mapping K"'TK an (e, A)-uniformly contractive

[i.e., there exists a real number A with 0 < <1 such that
0 < d(x, y) < e —= d(KITK(x), K-I1TK(¥))
<M, ), x, ye X x#yl

Then T has a unique fixed point.

Proof. Since (X, d) is e-chainable, we define for X,y < X,

n
dg(x’ y) = inf iild(xi_l, xi)
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where the infimum is taken over all e-chains Xgs X35 Xy5 eue, X
n

joining X, = X and X, =Y. Then d is a distance function on

X satisfying

(1) dlx, y) < d_(x,y)

(2) d(x, y) = d (x, ) for d(x,y) <e.

From (2) it follows that a sequence '{xn}, x <X is a Cauchy
sequence with respect to d€ if and only if it is a Cauchy sequence
with respect to d and is convergentwith respect to de if and
only if it is convergent with respect to d. Since (X, d) is
complete, therefore (X, de) is also complete metric space. Given
X, y &€ X and any e-chain X3, X1, Xp, ..., X with xg = x and

X =Yy we have

d(xi_l, xi) <e¢ (1=12,...,n);

so that
d(K’lTK(xi_l), KTATK(x,)) < Ad(x; g5 X;)

< Ae (i=1,2,...,m).

Since A < 1 therefore

a(k TR, ), KTUTK(x))) < e
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Hence K™ lTk <Lk -1 i
(xy), K TK(x1), ...., K TK(xn) is an e-chain

joining K!TK(x) and K™'TK(y) and,

=l =1 n - -
d_(K7'TK(x), K"K (y)) < T d(K lTK(xi_l), K ITK(xi))

i=1
n
<X r d(x, ., x.)
i=1 i-1 i
Xgs X1, X3, «.., X, being an arbitrary e-chain, we have

de (KTITK (), K 'TKO)) < Ad_(x, ¥).

Thus K 'K is a contraction with respect to (x, d).
€
Therefore K !TK has a unique fixed point & < X. Hence by

Corollary to Theorem [1.15] T has a unique fixed point.

2.6.2 Theorem. Let X be a complete eg-chainable metric space.
Let T be a mapping of X into itself such that there exists a
mapping K of X into itself which has a right inverse K™! and
which for some positive integer n makes the mapping K—lTnK(e,A)—
uniformly locally contractive (where T is taken as the nth
iterateof T). Them T has a unique fixed point.

Proof. By Theorem 2.6.1 T has a unique fixed point £
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in X such that Tn(g) = E.

Now the relation Tn(s) = £ gives

TCTT(E)) = TCE) wuvverennnrnnnnns (1)

but 1! (T

T7(T)

therefore Tn+1(g) = T(Tn(g)) = Tn(T(E))

which by (1) reduces to

TUT(E)) = T(E).

Thus T(g) 1is a fixed point for ™. But T" has a unique
fixed point &. Therefore T(E) = & i.e., & is a fixed point of
T. The uniqueness of the fixed point of T is obvious, because each
fixed point of T is also a fixed point of .
Corollary. If K 'TK is a one to one (e, X)-uniformly
locally expansive mapping of a metric space Y onto an e-chainable

complete metric space X 2 Y. Then there exists a unique fixed point

£ @ X such that T(&) = &.

Proof. This assertion is a direct consequence of the fact

that for the inverse mapping K"'T7IK(x) all the assumptionsof the above

-1.-1 . . .
theorem are satisfied. Therefore K T 'K has a unlique fixed point
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g, such that K T I1K(g) = ¢, and by Corollary to Theorem 1.1.5

it follows that & is a unique fixed point for T.

2.6.3 Theorem. Let X be a metric space. Let T be a self
mapping of X into itself such that there exists a mapping K of
X into itself

which has the right inverse K ! and which makes the mapping K !TK

contractive, that is
d(KTK(x), KTITK(y)) < d(x, ¥), (x, y €X, x £ ),

such that there exists a point x ¢ X whose sequence of iterstes
{(K-lTK)n(x)} contains a convergent subsequence '{(K—ITK)n_(x)};
i
then £ = lim (K‘ITK)n (x) is a unique fixed point for T.
i i
Proof. Suppose (K'ITK)(g) # £, and consider the sequence

- < s 71
(X 1TK)n (x) which easily can be verified to converge to (K "TK)(£).
i

The mapping r(p, q) of Y=XxX-4 (A denotes the

y} into the real line defined by

diagonal {(x, y)|x

dC(K™ TR (p) , (KTMTK) (@)
r(p, q) = i, D

. - i
is clearly continuous. Hence there exists a neighbourhood U of
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-1
{g, (K 'TKY(E)} €Y, such that p, qe U implies

0 <7(p, qQ) <R<1 .. i iiuuiuuiii. (3)

Let Sy = Sy(&, p) and S, = S,((X'TK)(E), p) be
open discs with centres ¢ and (K‘ITK)(g) respectively and

radius o > 0 such that

0 <% (€, (KITKI(E))  veevennennnn., (4)

Since K™!TK has a convergent subsequence therefors there
exists a positive integer N such that i > N implies

(K_ITK)n (x) € S; and therefore by definition of contractive
i
mapping (K‘ITK)H_ (x) e S,.
i

Thus, by (4)
d( (K™K, (x), ®O, ) e, GPN .. ()

1+1

On the otherhand, for each i, it follows from (2) and (3)

that

acwiTo, G, (@, )
1t +

< Rd((K'lTK)n. (x)), (K 'Tn, |,
1
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Repeating (6) for % > J > N we have

AT ), (KK (0))
L 2 +1

2 AR +1(x)), ((K=1TK) - +2(x)))
9’-1 2-1

SRACKTTR, ), KR +1(0))
2-1 2-1

= < RO (0), KR 1))
J "

~——— 0 a5 § —— =
which is incompatible with (6). Hence

(K"ITK) () = €.

To prove the uniqueness we assume further, that there exists

another point n such that

(K'ITK)(n) = n, whenever n # E.

Therefore d(K 1TK(z), K 'TK(n)) = d(Z, n) which contradicts
. . A -1
the definition of contractive mappings. This proves unicity and K "TK
has a unique point &, therefore by Corollary to Theorem 1.1.5 T

possesses a unique fixed point.
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2.6.4 Theorem. Let X be a metric space. Let T be a self
mapping of X into itself such that there exists a mapping K of
X into itself which has the right inverse K ! and which makes the
mapping K™K contractive, further assume that there exists a sub-

set MCX and a point x, ~ M such that

(7) d(x, xg) - d(K™'TK) (x ), (K™TK) (xo))

< 2d(xq, K 'TK(xg))

and K lTK maps M into a compact subset of X, then there exists

a unique fixed point.

Proof. Assume K'ITKc@) # xo and let

(8) x . = (K“lTK)(xn) n=0,1, 2,

n+l

K"1TK maps M into a compact subset of X by assumption,
therefore to obtain the theorem as a direct consequence of Theorem

2.6.3 it suffices to show that X, & M for every n.

Since K !TK is a contractive mapping, the sequence
-1 .
d(x_, x ) is by (8) non increasing and by K TK{(xq) # Xxo it
n’ “n+l

follows that

(9 d(xn, Xn+1) < d(xq, x1) n=1, 2, ...
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By the triangle inequality

(10) d(xg, Xn).i d(xg, x71) + d(xy, xn+1) + d(xn, xn+1).
By the help of (9) we can write (10) as
d(xgq, xn) < d(xqg, x;) + d(xi, xn+1) + d(xo X, 2)
or d(xy, X)) < 2d(xq, x1) + d(x,, X 1)
or d(xg, xn) - d(xy, xn+1) < 2d(xq, x,)
which by virtue of (8) becomes
d(xg, x;) - d((KT'TK) (xg), (K™'TK) (x ))

< 2d(xq, K 'TK(xq))

and by (7) it follows that x, € M for every n hence the theorem

follows.

Corollary. Let X be a metric space. Let T be a self-
mapping of X into itself such that there exists a mapping K of
X into itself which has the right inverse K™! and which makes the

mapping K" 1TK contractive such that there exists a point xpe X

satisfying

(11) dKITK(x), K7ITK(xp)) < A(X, Xg)d(X, Xg)
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for every x ¢ X where A(x, y) = A(d(x, y))& F, and QR maps
S(xy, t) with

- 2d(xg, (K7'TK) (x0))
1-A[2d(xq, (K™ 1TK) (xq) ]

into a compact subset of X, then there exists a unique fixed point

of T.

Proof. Taking in Theorem 2.6.4 M = S(xg, r); then by (11)
the monotonicity of A(d) and r > 2d(xg, K_ITK(xo)) it follows
that if d(x, x¢) > r then

d(x, xg) - AC(KITK) (x ), (KT TK) (x)) > d(x, xg)

- )\(d(x, XO))d(x, XO)

= [1 - A(d(x, x0))1d(x, xq)

> [1 - x(x)]r.

> [1 - A(2d(xg, K 'TK(xg))]r

= 2d(xg, (K-ITK)(Xo)) for every x¢ X - M,

i.e. (7) holds.

2.6.5 Theorem. Let X be a complete metric space. Let T be a

selfmapping of X suchthat there exists a mapping K of X imto
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itself, which has the right inverse K™' and which makes the mapping
K“lTK contractive such that there exists a subset M of X and a
point Xxp « M, satisfying the following

(12) d(x, xg) - d((X'TK) (x), (K™'TK) (x0))

< 2d(xy, K-lTK(xo))
for every x &M,

(13) dCK™ITRY (x), (K7ITK) () < A(x, yM(x, y) for

every x, y&€ M,

where A(x, ¥y) = Ald(x, )] € F.

Then T has a unique fixed point.
Proof. Assume (K 'TK)(x¢) # Xo and let

(8" X .1 = (K™ 1TK) (x) n=0,1, 2,

Since K MTK is a contractive mapping, the sequence
d(x_, x_ ,) 1is by (8') non increasing and by K"ITK(xU) # Xo
n’ “n+l :

it follows that

9" d(xn, xn+1) < d(xg, X1) n=1,2,...

By the triangle inequality

(10") d(xy, xn) < d(xg, x3) *+ d(x,, xn+1) + d(xn, xn+1)
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By the help of (9') we can write (10') as

d(xy, xn) < d(xg, x1) + d(xg, x;) + d(x7, xn+1)

or d(xo, xn) < 2d(xq, x,) + d(x1, xn+l)

or d(xp, xn) -~ d(xq, xn+1) < 2d(xg, x,)

which by virtue of (8') becomes

d(xo, %) = d((KTK) (xg), (K™'TK(x)) < 2d(xg, K ‘TK(x())

%% and by (12) it follows that X,z M.

Now we have to prove that the sequence {xn} is bounded.
By equation (13) and definition of ‘{xn},

(14) d(x1, x

o) = AOEKTITR) (xg), (KTMTR) ()

| A

M(d(xg, x))d(xy, X))

3
Saa
B
3
e
e
a7
o

and by the triangle inequality
d(xgq, xn) f_d(xo, x1) + d(x1, xn+1) + d(xn+l’ x ).

n

Hence by (9') and (14)

[1 - A(d(xg, x )] dlxg, x;) < 2d(xg, X1).
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Now if d(xg, xn) > dp for a given dyp > 0, then by the
monotonicity of A(d) it follows that A(d(xg, x)) < A(dy) and
n ——

therefore

d(XO, Xn) < Zd(XO, Xl) < Zd(Xo, X]_) C.
1-A(d0xesx ) ~ 1-A(dp)

Hence

(15) d(xg, xn) <R n=1,2,...,

where R = max (dg, C) i.e., the sequence '{xn} is bounded, Now

for J > 0 where J is any positive integer by (13) we have,
A(Xge1s Xager) Mg Xgog) 40, X 40

Therefore taking the product from 2 = 0 to & = n-1 and

dividing both sides by the same terms we obtain

n-1

d(x, x_ 1) < d(xq, Xy) 220 A(xg s X, 5)

which by (15) reduces to

n-1

(16) d(xn, xn+J) <R zgo A(xl, x£+J).

Now it remains to prove that '{xn} is a Cauchy sequence for

that purpose we have to show that for every ¢ > 0 there exists a




number N depending on ¢ only (not on J) such that for every
I . .

0 there is d(xN, XN+J) < € (since the sequence d(xn, X . J)
is non decreasing.

If d(xl, x2+J).1 e for ¢ =0,1,2,...,n-1, then by (13)
the monocity of A(d) we have A(xl, x2+J) = A(d(xl, XZ+J))-5 x(e)

and by (16) it follows that

d(x, x_, ;) <RI

But A(e) <1 and [A(e)]" —+0 as n ———w. There-
fore there exists a positive integer N independent of J such that
d(xN, xN+J) < ¢ for every J > 0 which proves that {xn} is a
Cauchy sequence. By the completion of X it follows that there
exists & = lim xn and by the continuity of K_ITK, £ is a fixed

>0

point for K—lTK, and by the Corollary to Theorem 1.15 & 1is a

fixed point for T. The uniqueness is obvious.

Corollary. Putting M = X we have, if
(XK 'TK(x), K" MTK(y)) < A(x, y)d(x, y) for every x, y € X (X

complete) where A(x, y) - F, then there exists a unique fixed point.
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2.7 CONVERSE OF BANACH'S CONTRACTION PRINCIPLE

The natural converse statement of the Banach's contraction
principle is the following. 'Let X be a complete metric space,
and let T be a mapping of X into itself such that for x ¢ X,
the sequence of iterates '{Tn(x)} converges to a unique fixed
point w & X. Then there exists a complete metric on X in which
T is a contraction'". This is in fact, true even in stronger

sense. The following converse of Theorem 2.21was due to Bessaga [6 ].

2.7.1 Theorem. Let X be an abstract set and T be a mapping of

X into itself such that for each positive integer k > 0 the equation
Tk(x) = x holds for some x in X implies x = Tx, the unique
fixed point of T. Then for each A, 0 <X <1, there exists a
complete metric on X such that a(T(x), T(y)) < Ad(x, y) for all

x, ¥y in X.

A weaker form of Theorem 2.7.1 in case X is compact metrizable

space was also given by Janos [43].

2.7.2 Theorem. Let X be a metrizable compact space and T be a

o]

~ on . _
continuous mapping of X 1into itself such that b T (x) 1is a one
n=

point set. Then for every A ¢ (0, 1) there exists 2 metric d(x, y)
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such that

d(T(x), T(y)) < Ad(x, y).

The following generalization of Theorem 2.71 is due to Wong [751.

2.7.3 Theorenm. Let X be an abstract set with n mutually com-
muting mappings T;, Tp, ..., Tn defined on X into itself such
that each iterate lel, T2k2, vens Tnkn (where k3, kp, ..., kn

are non-negative integers not all equal to zero) possesses a unique
fixed point which is common to every choice of ki, kp,..., kn.
Then for each A< (0, 1) there exists a complete metric d on X

such that d(Ti(x), Ti(y)) < Ad(x, y) for i <i<n, and for all

x, y €X.

Probably the most natural generalizatinn to the converse of
Banach's contraction principle that one can make is due to Meyers [54]

given below:

2.7.4 Theorem. If T is an (e-))-uniform local contraction on
a complete e-chainable metric space (X, d) then there exits a

metric d* topologically equivalent to d such that T 1s a con-

traction on (X, d*) and the Banach contraction theorem can be applied.

Corollary. If T is a local contraction and X is compact,
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then the conclusion of Theorem 2.7.4 Tholds.

2.7.5 Theoren. If T is an e-uniform local contraction, and if
there exists x ¢ X such that T(x) = x, then the conclusion of

Theorem 2.7.4 holds.

2.7.6 Theorem. Let X be a topological space admitting a metric
(complete metric), and T:X ——- X a continuous map with a fixed

point xo obeying the purely topological conditions:

(1) Tn(x) ——x, for all x in X.
0

(i) TW) C U, Tn(LD >'{x0} for some neighbourhood

of XU.

Then X admits a metric (complete metric) for which T 1is

contraction.

2.7.7 Theorem. If T 1is a continuous self mapping of (X, d) and
if T 4is a contraction on (X, d}, then there is a metric d*

under which T and Tn are contractions.

2.7.8 Theorem. If T, t > 0 is a family of continuous maps of a

. isfyi . =T and if 1lim T_=T
metric space satisfying ttl th t1+t2 t->0 t t0
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i.e., 1lim sup d(Tt(x), Tt (x)) = 0, then a necessary and
t->t0 xc X v

sufficient condition for each Tt to be a contraction (with respect

to some metric dt equivalent to d) 1is that some one Tt be a

contraction,

We also present here a generalization of the converse of

Banach's contraction principle.

Let (X, d) be a complete metric space and T a contractive
mapping of X into itself, i.e., d4(T(x),T(y)) < Ad(x,y)d(x,y),

where x, y = X, Ad(x, y) ¢ F.

Then it follows from a theorem due to Rakotch [59] that the
iterated images T'(x) of X shrink to the point & of X. This

can be witten in the form

1}

N TN = {E).

n=1

Since this formula does not involve the metric and has a

topological character, it is natural to ask the following question:

Let X be a compact metrizable topological space and T a




94

continuous mapping of X into itself which has the property that
CTh(X) = {g}. Is it possible to find a metric d(x, y) generat-
ing the given Topology on X such that the mapping T 1is contractive

with respect to d?

The answer is yes. We now construct such a metric and denote

it by d*.

2.7.9 Definition. Let X = Ay, T(X) = Ay, .., T'(X) = A, and

introduce the functions n(x) and n(x, y) as follows:

n(x) = max {n; x& A}
n(x, y) = min {n(x), n(y)}.

2.7.10 Theorem. For X(d(x, y))c F there exists a distance function

d* such that

A+ (T(x), T()) < Ad(x, ¥)) d5(x, ¥).

Proof. By Theorem 1 of Janos [43] there exists a metric

d(x, y) with respect to which the mapping T is non expansive.

Let
x, y) = D, PEa, n.

A" = TH(X)




95

™1 = T ().

Hence x e:An implies T(x) < An+1.

Let i = max subscript for x. Then i + 1 = max subscript
for T(x).

Let J = max subscript for y. Then J + 1 = max subscript
of T(y).

Thus n(T(x), T(y)) = min {i + 1, J + 1}

min {i, J} + 1

n(x, y) + 1.

w1, T4 < Ddx, yN 1T TN a0, o).
Now T is contractive; thus

d(T(x), T()) <d(x, y)-

+1
Hence o (T(X), T(¥)) < BAd(x, yN1" acx, )

D, yNIPE e, 1 dx, )

A(d(x, ¥)) alx, ¥).

| A

. . ived
The function o(x, y) 1s not in general a metric. However, a derive

metric d*(x, y) can be defined as
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d*(x, y) = inf

([ e =]

x5 X5 4],

i=1

where the infimum is taken over all possible finite system of
elements X;, Xy, X3, «.., X & X such that x;= x , and

xn+1 =7

From the definition of d*(x, y) it is clear that
d*(x, y) < a(x, y) < d(x, y). The same method as used by Janos

in [43] shows that d*(x, y) 1is a metric.

Now we have only to prove that

d*(T(x), T(Y)) < A(d(x, Y))d*(x, ¥).

Let ¢ > 0 be given. From the definition of d*(x, y)
there exists a representative of d*(x, y) in the form

1)'

n
d*(x, y) = inf I a(x;, Xs_
i=1 !

n
Thus d*(T(x), T(y)) < inf _21 a(T(x,) 5 T(x;_4))
1=
n
f_inf .Z A(d(xi, xi_l)a(xi, xi+1)
i=

I =) =

1 i=1

n
d(x, x;_q) inf I alxg, X5

1
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= A(d(x, y)) d*(x, y).

Corollary, When A "is constant with 0 <X < 1, we get

the result of Janos [43].




CHAPTER 1I1II
COMMUTING FUNCTIONS AND FIXED POINTS

3.1 COMMUTING POLYNOMIALS AND COMMON FIXED POINTS

Let f = f(x) and g = g(x) be two continuous and commuting
functions (under substitution), each mapping the closed interval
[a, b] into itself. Isbell [41] has conjectured that f and g
must have a common fixed point, or equivalently, that f and the
composite function h = fg = f(g(x)) must have a common fixed point.

Except in the special cases the conjecture has not been verified.

One interesting special case of the conjecture was investigated

a number of years ago by Ritt [60]. He proved that if f and g are
polynomials which do not belong to a certain class (f and g do not
come from the multiplication theorem of e and cos z, c.f.[60]

for definition), then neglecting a linear transformation they are

both jterates of a third polynomial p. Thus they would have as

common fixed points the fixed points of p. Also in this case, f and
g would be a member of a semi-group of commuting functions formed

from the iterates of p.

Among the commuting polynomials excluded from the Ritt theorem

are the Tchebysheff'spolynomials defined by Tn(x) = cos (n arc cos X)

for -1 < x < 1. It appears that even in this case the polynomials

N
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could be embeded in a one parameter semi-group of commuting functions

defined by
(0 ft(x) = Tu(x) = cos(a arc cos x), o = exp(t).

This suggests that one method for attacking the Isbell conjecture
is to try to embed the commuting functions in a semi-group and there-

by hope to prove the existence of the common fixed point.
Block and Thielman [10] have given the following theorem-

If h,(x) = ax?2 + Bx + v and hg(x) commute,

then A(h,) = 28, or 28 + 8, where A(hy) = 82 - 4ov.
We prove the following theorem on commuting polynomials.
3.1.1 Theorem. If ho(x) = ax? + Bx + Y, and hy(x) =

Cox3 + C3x2 + Cpx + C3 are two polynomials, thenthey commute if and

only if the following conditions hold:

(i) Cg = o?
(i) Cy = -;— o8
(iii) Cp =—§1 (282 + 28 - 1)
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B
16a

(iV) C3

(282 + 68 - 8 - 3p)

and (v) A

28, or 2B + 8, where A = A(hy)

i

B2 - 4qY.

Proof. Let hp(x) = ox2 + 8x + v, and hz(x) =

Cox3 + C1x2 + Cyx + C3 commute, i.e., hyha(x) = h3hy(x).

Then a(Cox3 + Cyx2 + Cpx + C3)2 + B(Cox3 + C1x2 + Cpx +
C3) + Y = Cplax2 + Bx + ¥)3 + Cy(ox2 + Bx + Y)2 + Cy(ax? + Bx + Y) + Cj.

Comparing coefficients of like powers we get

aCq? = a3Cyp.

2aCCq 3a28Cy.

aC? + 2aCoCy (3a2y + 3082)Cy + a?Cy.

(A) 2aC(C3+2aC1C,+BCy (B3+6aBY) Cy+20BCy .

(382Y+3aY2) Co+(B2+2aY)Cy+aC,,.

i

] aCZ+2aC;C3+8Cy

3Y2Cy+28YC  +8C;.

( 2(1C2C 3+ BC2

2
aC2+BC3+Y Y3Cg+ YC, +YCy+C3.

The first four equations give

Co =

QR

Ci =

N
Q
®

.1
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Q
N
n

% (282 + 28 - &)

= B (g2
Cy = 160 (282 + 68 ~ 8 = 3A)

Each of the three remaining equations gives

A2 - 48A - 8A + 4BZ + 168 = O

or (A -28)(a -2~-8)=0

28 or 2B + 8.

or A
Assuming that the given conditions hold, we have to prove
that h,(x) and hj3(x) commute,
i.e., h2h3(X) = h3h2(X).

ho[h3(x)] = hy[Cyx3 + C;x2 + Cpx + C3].

Here hyhy(x)

a[Cox3 + Cyx?% + Cux + C3]?

+

B[Cox3 + Cyx2 + Cpx + Cy] + V.

aC3x® + 2aCoC1x> + (aCZ + aCyCp)x™

+ (20C,C3 + 20C1C, + BCQIx3 +
(aC3 + 2aC;C3+ 8Cy)x?

+ (2aC,Cg+ BCy)X + aC3 + BC3+Y.

which by (A) reduces to
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a3Cyx® + 3028Cox5 + {(3a2Y + 3082)Cy + aZCqIxt
+ {(B3 + 6aBY)Cy + 2aBCy}x3 + (382Y + 3av2)C,
+ (B2 + 20¥)C; + aCy}x% + (3BY2Cy + 2BYCy + BC,)x

2
+ Y3C, +Y C; + YC, + Cg = hghy,(x).

Corresponding to two different values of A, we take two

examples to illustrate the theorem.

Example 1. Let hy(x) = x* + 6x + 4, and

ha(x) = x3 + 9x2 + 24x + 15. Then h,h3(x)

ho[x3 + 9x2 + 24x + 151 = [x3 + 9x2 + 24x + 15]2

6[x3 + 9x2 + 24x + 15] + 4 = x5 + 18x> + 129x"

+

468x3 + 800x2 + 864x + 319, and hgzhy(x)

+

ha[x2 + 6x + 4] = [x2 + 6x + 413 + 9[x2 + 6x + 4]2

24[x2 + 6x + 4] + 15 = x6 + 18x5 + 129x%

+

+

468x3 + 800x2 + 864x + 319. Thus hyh3(x)

hgh,(x) i.e., hy and hy commute.

Example 2. Let hp(x) = x2 + 6x + 6, and
hy(x) = x3 + 9x2 + 27x + 24. Then hyh3(x) =

hghp(x) = x® + 18x° + 135x" + 540x3 + 1215x2 + 1458x + 726.

Therefore h,(x) and h3(x) commute.
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3.1.2 Theoren. Let ho(x) = ax? + Bx + Y, and ha(x) =

3
Cyx3 + Cyx2 + Cyx + C3 be two polynomials. If they commute, then

they have a common fixed point.

Proof. We know that if hy(x), and h3(x) commute then

A= 28 or 28 + 8.

Q_a_s_e_l. A = 2B.
8 2
h,(x) = a(x + 7—(;) - B/2a.
3
: = o2 B4y L
hS(x) o (x + 2(! ) ZC! .
hz(x) = x implies oX + -%- g=0 or -l.
h3(x) = x implies ox + -;— g=0 or 1, or -l.
ho(x) = x = hz(x) implies ox + % g=0 or -1,
so that the common fixed points are
.8 Z8
20 ° 20
Case II. A= 2B + 8.
8.2 B4
hz(X) = a(x + -2—6') - TS
3 28
= o2 Byl - =
ha(x) = o“(x + 20‘) 3x 5
. 1
ho(x) = X implies ax + 3 g =2 or -l
ha(x) = x implies oax * %—. g=2 or -2, or O.

N 1, _
Hence, hp(x) =x = hg(x) dimplies oX * 3 g = 2, so that the

common fixed point is > -
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Example 1. (Case I), Let hy(x) = x4 + 6x + 6,
and  h3(x) = x3 + 9x2 + 27x + 24 be two polynomials. Then h, (x)

and h3(x) commute and have -2 and -3 as common fixed points.

Example 2. (Case II). Let h,(x) = x2 + 6x + 4, and
hy(x) = x3 + 9x2 + 24x + 15 be two polynomials. Then h,(x) and

h3(x) commute and have -1 as a common fixed point.
An alternate proof of Theorem 3.1.2 is the following.

Proof. Case 1. A = 28,
Now hp(x) = ax2 + Bx + Y.
Hence h,(x) = x implies x = ax? + Bx + Y

or ax?2 + (B - 1)x +Y= 0;

-(B - 1) +V/(B ~ 1)¢ - day
20.

hence x =

-8 - 1) + /g2 - 28 + 1 - 4aY.
or X = 2a

Here we have B% - 4aY = 28.

S @-D =1
20,

Hence X

2- -8
or X '?ﬁ%’ or 53
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We would like to show that x = %9 is also a fixed point
o

of ha(X) .

i.e., h3(x) = x implies x = Cox3 + C;x2 + Cpx + Cs.

After substituting x = %%- we have

=B~ =B3 -8,2 -B
7a = Cul5p) o+ GG + Cz(jaﬂ + Cy.

Substituting the values of Cy, C;, C, and Cs

from Theorem 3.1.1, and 2B for A we get

- -R. 3 ~-R. 2 3 - .
= e 3 D 3 )+ £ - 9.
8 -g3 383 383 83 g -
@ - == + - -—_—— == 2
2a 8o, 8a 80 8a 20 2a
Thus %5 is a fixed point for hj3(x), Similarly we can easily
show that :%:2- is also a fixed point for hgz(x). Therefore h;(x)
a
_ +2 . .
and hy(x) have ‘é%i and"J%?r as common fixed points.
Case II, A= 28 + 8.

Now hy(x) = ax2 + Bx + y.
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*Hence h,(x) = x implies x = ax2 + Bx + Y,

or ax? + (B - 1)x + Y = 0.
Hence x = —B-1) * V(g - T2 - dav
20
or Xx = -8 -1) /8% - 28 +1 - 4ay
2a
Here we have B2 - 4aY = 28 + 8.
Hence X = £§_:_ll_i_§
20
- 48 -8-2
or X = S s or 5 .

We would 1like to show that x = i%% is also a fixed point

of hy(x).

i.e., hg(x) = x implies x = Cox* + Cix? + Cox + Cy.

After substimting Xx = A%%— we have

48 ooty LR s o
2o = Gyl 20 )+ Gl 20\ + Cal 2(1) + Cs
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Having in mind that A = 28 + 8 and substituting the values

of Cp, C;, C, and C3 from Theorem 3.1.1 we have,

4-8 _ 2.4-8,3 3 .4-g2 3 _ ,
e - ¢ ) e g (2858
4-8 8 2
Za) * 165 (28% - 32
_ 8 68 382 B3 68 382 383
T o * 20 53'+ o o * 8a
38 3% 6,38, 85 28
20 8¢ a 20 8o a
-2 _ B8 _48
o 20 2o
Thus i;—é- is a fixed point for hg(x). Similarly we can
a
show that S—;g- is not a fixed point for hz(x). Thus hy (x)
a
and h,(x) have only %—2 as a common fixed point.
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3.2 COMMUTING FUNCTIONS AND COMMON FIXED POINTS

3.2.1 Definiton. Let f:R ——— R and g:R ———— R. Then

we define the composite of f and g (denoted by gof) by,

~gof(x) = g[f(x)], x&R.

For example, if

f(x) =1 + sin x (-2 < x < =),
g(x) = x2 (0 <x <=,
then gof(x) = 1 + 2sin x + sinZx (- < x < ®),
3.2.2 Definition. The functions f and g are said to be

commutative if fog(x) = gof(x) for all x eR.

Remark. In general the binary operation is not commutative.
For example, if f£(x) = x2 +1 and g(x) = 2 - x. Then
gof(x) = g{f(x)] =2 - (x2 +1) =1-x% and fog(x) = flg(x)] =

(2 -x)2+1=5- 4x + x2, Therefore gof # fog.

3.2.3 Definition. A point x; is said to be a common fixed point

for the functions f and g if £(xg) = xo = g(xy) for all Xxp <R.
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Under what conditions then, if any, is it true that
fog = gof - that is, f[g(x)] = g[f(x)] for all x < R? This is,
in general, a very difficult question. Therefore we specialize and
consider only linear functions on R - that is a function of the
form f(x) = ax +b where a and b are real constants. The
following easy theorem is often given as an exercise at this point.

(For example, Levi [49] Chapter I, Exercise 13).

3.2.4 Theorem. Let f and g be linear functions on R. Then

fog = gof if and only if fog(0) = gof(0).

Proof. Let f(x) =ax +b and g(x) = cx +d. By
definition fog = gof if and only if f(g(x)) = g(£(x)). But
flg(x)) = f(lex + d) = d(cx + d) + b = acx + ad +b and gf(x) =
g(ax + b) = c(ax +b) + d = acx + bc + d. Therefore fog(x) =
gof(x) if and only if acx + ad +b=acx + bc +d, or ad+b =
bc + d, Now (fog)(0) = £(g(0)) = £(d) = ad + b and (gof)(0) =
g{£f(0)) = g(b) = ¢cb + d. Hence fog = gof if and only if fog(0)

= gof(0), which proves the theorem.

This theorem states that, for linear functions f and g,

the function fog and gof take on the same value at each x if
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and only if they take on the same value at 0. The following Corollary,
while not as formally elegant as the theorem, states the condition

fog(0) = gof(0) in an equivalent form which will be more useful in

applications.

Corollary. If f(x) =ax +b and g(x) = cx + d, then

fog = gof if and only if £(d) = g(b).

Proof. This follows immediately from the Theorem 3.2.4, since
(fog) (0) = £(d) and gof(0)} = g(b); actually these equations have

already appeared in the second last sentence in the proof above.

The following results for analytic functins have been given by

Shields [65], Edelstein [3 ], and Singh [ 711, respectively.

Before stating the above results we would like to give the
following lemma related to analytic functions which is due to Shields [65].

We also add a theorem related to linear fractions by Singh [71].

Lemma. Let f be a linear map of D onto itself, Then three

cases are possible
(i) £ = z;

(ii) f has exactly omne fixed point in the closed disc;
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(1ii) £ has two distinct points on the boundary of

D and the iterates of f converge to one of these points.

Theorem. Let #£(z) = %—‘Z——:—%, ad - bc # 0 and g(z) = 3—2‘:—56',

a8 - By # 0 be two linear fractions. Then f and g have a common

fixed point, provided they commute and (a - d)2 + 4bc = 0.

3.2.5 Theorem. If £ and g map the closed unit disc |z] <1

in the complex plane into itself in a continuous manner, if they are
analytic in the open disc and if they commute, then they have a common
fixed point f(zg) = zy = g(zp). In general any commuting family of

such functions has a common fixed point.

3.2.6 Theorem. Let f£(z) be an analytic function in a domain D
of the complex z-plane; let £(z) map a compact and connected
subset C of D into itself. If in addition |[f'(z)| <1 for

all z ¢ C, then the equation £(z) = z has a unique solution.

3.2.7 Theoren. If f and g are two analytic functions in a
domain D of the complex z-plane that map a compact and connected

subset C of D into itself and if f and g commute then they
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have a common fixed point provided that |[f'(z)| <1 for all z in

C.

We [70] proved the following theorems related to complex

valued functions.

3.2.8 Theoren. If £ and g are two mappings of theclosed unit
disc of the complex z-plane into itself, such that fg(z) = gf(z)

for all z in the closed unit disc, [f(z,) - £(z)] j‘“lzl - z5| and
lg(z1) - g(z;)| < B|zy - 25| where B is any positive real number

and 0 <o <1; then f and g have a common fixed point.

Proof. Since a closed subset of a complete metric space is
complete, a closed unit disc is a complete metric space in the z-
plane. The condition [f(z}) - £(z5)] < alzy - 2| for all z1, 29
in the closed unit disc, where 0 <a <1, implies that f is a
contraction mapping. Thus f is a contraction mapping of a complete
metric space into itself. Therefore by Banach's contraction principle f has
a unique fixed point in the closed unit disc, i.e., there eiists

a unique point 2zg in the closed unit disc such that f(zy) = 2p.

It is given that

.fg(z) = gf(z) for all z.
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Therefore fg(zp) = gf(zp) = glf(zg)] = g(zp).
i.e., flg(zo)] = g(zq).
. Thus g(zp) 4is a fixed point for f£. But f has a unique

fixed point, say 2p. Therefore g(zy) = zy, and thus zgp 1is a

fixed point for g.

Example. Let f£(z2) = %—— %-, and g(z) z be two functions.

z
2 >

1 4 1 z 1 .
gl£(2)] = g[ 5 - 5-] =5 - % - They have z =3 as a common fixed

Then f£(z) and g(z) commute, because flg(2)] f[z] =-% -

point.

3.2.9 Theoren. If £ and g are two continuous functions from
a closed unit disc into itself such that fg(z) = gf(z) for all :
in the closed unit disc, If(zl)<- f(zz)' > a|21 - Zzl is a one to
one mapping of a subset of a closed unit disc onto the closed unit

disc, and |g(z;) - g(z2)| < 8|z, - z5|, where B is any positive
real number with o« > 1. Then f and g have a common fixed point.
Proof. Since a closed subset of a complete metric space is

complete, a closed unit disc is complete metric space 1n the z-plane.

The mapping | £(z1) - f(zz)l > alzy - zzl, where o > 1 1is an
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expansive mapping of a subset of the closed unit disc onto the closed
unit disc. Since f is one to one and onto, therefore the inverse
function exists. Thus all the assumptions of Banach's contraction
principle for f—l(x) are satisfied. Therefore there exists a unique
fixed point £ in the closed unit disc such that £le) = £, or

£ = £f(£). Thus f has a unique fixed point g. It is given that
fg(z) = gf(z) for all z.
Therefore fg(&) = gf(g) = g[f(&)] = g(&).

Thus g(&) is also a fixed point for £. But f has a unique
fixed point, say ¢£.
Therefore g(g) = &; and thus £ is a fixed point for g.

Thus the theorem.

3.2.10 Theorem. Let f£(z) =az +b, a#1, and g(z) be any

continuous function. If f and g commute, then they have a common

fixed point.

Proof. If f and g commute then
fg(z) = gf(z) for all =z.

Consider f(z) = az +b, a # 1, and suppose that £(zg) = Zo
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for some zp. Hence 1z = f(zp) = azy, + b which implies zy(l-a) = b,
since a # 1, implies 1 - a # 0. Therefore w e have shown there

is a unique fixed point T?;. Substituting for z,, T%E in relation
f(zg) = azg + b we have

£ 1) = T -

b . . . . .
Hence T-z 1S 2 fixed point and therefore is unique.

Thus the function f£(z) =az +b, a # 1, has a unique Fixed

. b
point, say zp =y .

i.e., f(zp) = z¢g and 2z 1is unique.

Using the method of the previous theorem we can easily see

that z 1is also a fixed point for g. Thus the theorem.

We take the following examples to illustrate the Theorem

3.2.10.

Example 1. If f(z) = 3z + 6
fog(z) = £lg(2)] = flg(z)] = £[2z + 3] = 3[2z + 3] + 6 = 62 + 15,

and g(z) = 2z + 3. Then
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and gof(z) = g[f(z)] = g3z + 6] = 2[3z + 6] + 3 = 6z + 15. Thus
fg(z) = gf(z). The functions f and g commute and have-3 as a

common fixed point.

Example 2. Let f£(z) = 2z + 5, and g(z) z. Since the
identity function commutes with every function, f and g commute
and have =5 as a common fixed point.

3.2.11 Theorem Let f(z) = %%—;—33 ad - bc # 0, be a linear

fraction and g(z) be any analytic function. Then f and g have

a common fixed point, provided they commute and (a - d)2 + 4bc = 0.

Proof. The linear fraction f£(z) = i; : 2 ,ad - bc #0
has a unique fixed point say 2zg = 2 ;cd , under the condition

(a - d)z + 4bc = 0 (Theorem 1.1.3). The remaining part of the

proof follows on the same line as given in the above theorem.

In order to illustrate the Theorem 3.2.11 we take the follow-

ing example.

Let f(z) = f: : ; be a linear fraction and

Example.

g(z) = z be an analytic function. Then £(z) and g(z) commute

and have a common fixed point, say 2p = -2.
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Corollary. Let the Mobius trandformation f(z) = eia f -2
- oz

(Izl < 1) map the closed unit disc Iz} <1 onto itself, and let
g(z) be any analytic function which commutes with f(z). Then f£(z)

and g(z) have a common fixed point, provided [a| = (Sin A/2).

On examining the basis of the proof of Theorem 2.3.3 reveals
that the essential property (besides uniqueness of the fixed point
for T employed is that T" and T commute with each other.

This suggests immediately the following:

3.2.12 Theoren. Let S be any non empty set of elements and K

be a single valued function defined on S and with values in S.

Suppose further that K possesses a unique fixed point xg3. Then,

if T is a single valued function on S to S which commutes

with K, that is such that KT = TK, then T also has Xxp as

a fixed point (not necessarily unique; however, if K happens to
n

be an iterate of T, that is K =T, with n positive integer,

then it is unique.

Proof. The proof is immediate, starting from the equation
Kxg = Xg, upon noticing that

TXO = TKXO = KTXO.
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This means that Txp is a fixed point of K, but K has only

Xp as a fixed point by hypothesis.

Remark. Theorems2.3.1, 2.3.2 and 2.3.3 are particular

cases of Theorem 3.2.12.

Before closing this section we would like to give a simple
and interesting result of Seguin [64], related to commuting linear

functions and common fixed points.

3.2.14 Theorem. Let £(x) =ax +b, a#1. Then g(x) = cx +d

commute with f if and only if f and g have a common fixed point.

32222' Suppose first of all that fog = gof, and let k be
the unique fixed point of f that is, f(k) = k. Now fog = gof
implies that (fog)(k) = (gof) (k). But fog(k) = flg(k)] and
(gof) (k) = g[f(K)] = g(k). Therefore, f[g(k)] = g(k). Hence
g(k) is a fixed point of f. But since k is also a fixed point
and the fixed point is unique, we must have g{(k) = k, which means

that k is also a fixed point of g. Therefore f and g have k

as a common fixed point.
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Conversely, suppose that f(k) = k and g(k) = k; that is,

f and g have a common fixed point. From Theorem 3.2.10 we

know that the unique fixed point of £ 1is L . Therefore

1-a
b

k=1 -

Since k = g(k) ck + d, we have d = T%E-(l - c),
which implies that ad + b = cb + d. But ad + b = £(d) and
cb + d = g(b) so that £(d) = g(b). Therefore, by the Corollary

to Theorem 3.2.4 fog = gof.
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3.3 SOME FIXED POINTS RELATED TO A CONJECTURE

3.3.1  The well-known conjecture that if f and g are two con-
tinuous functions which map a closed interval of real line into it-
self and if they commute then they have a common fixed point, has
been given by Eldon Dyer in 1954, by Allen Shields in 1955 and Lester
Dubins in 1956 independently. The partial proofs of the conjecture
have been given by Cohen [ 27], Jungck [44] DeMarr [29] and others.
The conjecture has been disproved very recently by Boyce [13] and
Huneke [40] independently. In the present section the following

theorems related to this conjecture have been given.

3.3.2 Theorem. Let £ and g be two continuous functions which
map the closed unit interval into itself such that fg(x) = gf(x)
for all x in I. Then they have a common fixed point provided

f(x) is differentiable in the open interval (0, 1) and [£1 ()] < 1.

Proof. Since f is continuous in the closed interval

I =100, 11 and

£ has derivative in the open interval (0, 1),
therefore by mean value theorem there exists a point £ & (0, 1)

such that
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£(x) - £(y) = £'(8)(x-y) for x, ye I.
ie. J£(x) - £ = [£'(8) (x - y) ]
or [£(x) - £FM] = £ () ]]x - y]
or [£(x) - £ < a]x - y].

Because |f'(£)|‘5 a < 1,

Therefore f is a contraction operator.

Since I being a closed subset of a complete metric space
R is itself complete and f is a contraction mapping of I into
itself. Therefore, by Banach contraction principle f has a unique
fixed point in I, i.e. there exists a point xp < I such that

f(XO) = Xp-

Given that f and g commute, therefore

fg(x) = gf(x) for all x in I.

Now fg(xy) = gf(xq) = gf(xp) = g(xq) .

Thus g(xy) is a fixed point for £. But f has a unique
fixed point say Xxg. Therefore g(xg) = Xo and thus xp 1is a

fixed point for g.
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3.3.3 Theoren. If £ and g are mappings of I = [0, 1] into
itself such that £(g(x)) = g(£f(x)) for all x ¢ I, and

|£(x) -~ £)] < alx - y| and |gx) - giy)| < Blx - y| for all

X, ycI, where 8 1is any positive real number and 0 <a<l, then

there exists a common fixed point for both f and g.

Proof. Since I is complete with respect to usual metric,
the condition |[f(x) - £(y)| < a|x - y| for all x, y < I, where
0 <a <1 implies that f is a contraction mapping. Thus f is
a contraction mapping of a complete metric space I into itself.

Therefore by Banach's contraction principle f has a unique fixed

point in I. i.e. there exists a unique point xp &« I such that

f(XO) = Xp-

Using the method of previous theorem we can easily see that

xg is also a fixed point for g. Thus the theorem.

Let f(x) = %-— %3 and g(x) = x be two functions

Examgle.
1 X
then f£(x) and g(x) commute; because f£flg(x)] = £(x) = L

, and they have %— as a common

(N1

and g[£(0] = gl - 51 =7 -

fixed point.
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3.3.4 Theoren. If f and g are two continuous functions from
I = [0, 1] into itself such that fg(x) = gf(x) for all xe I
and [£(x) - £(y)]| > a|x - y| is a one to one mapping of a subset
of T onto I and |g(x) - g(y)| < 8lx - yl, where B is any
positive real number, and o > 1. Then f and g have a common

fixed point.

Proof. We know that [0, 1] 1is weil~linked or e-chainable
complete metric space. The mapping [£(x) - £(Y)] > a|x - y| where
@ > 1 1is an expansive mapping of a subset I onto I. Since the
mapping f 1is one to one and onto, the inverse f'l(x) exists.
Thus the mapping £ l(x) satisfies a1l the conditions of Banach's
contraction principle and therefore by Banach's contraction principle

there exists a unique fixed point x5« I such that f£(xp) = xq.

The remaining part of the proof follows on the same line as

given in the above theorem.

Remark. In Theorem 3.3.3 and Theorem 3.3.4 the Lipschitz
condition on g can be dropped altogether. Moreover, it suffices,
apart from the commuting property, merely to assume that f has a

unique fixed point.
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