AN ANALYSIS OF THE SUBJECT MATTER PREPARATION OF

 MATHEMATICS TEACHERS IN THE HIGH SCHOOLS OF NEWFOUNDLAND AND LABRADOR
TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

FREDERICK NELSON DENTY
$362 \approx 91$

AN ANALY:SIS OF THE SUBJECT MATTER PREPARATION OF MATHEMATICS TEACHERS IN THE HIGB SCHOOLS OF NEWFOUNDLAND AND LABRADOR

A: Thesis
Presented to
The Committee on Graduate Studies
Memorial University of Newfoundland $)$

by
Frederick k Nelson Denty
September 1973

ABSTRACT

The study was concerned with determining the W. current status of the preparation of senior high sclioo, 1 mathematics teachers in the province of Newfoundland and Labrador; and utilizing the information obtained to formulate appropriate in-service measures, for these teachers.

Questionnaires were used to gathet data on 335 teachers who were teaching at least one mathematics course in Grades X or $X I$ during the fall term of the 1972-1973 school year. The questionnaires were used to gather informatión in three general areas: -academic qualifications of teachers, interests and attitudes toward mathematics, and in-service activities. There ,were 271 useeable questionnaires returned which represented a response rate of 80.9 per cent.

The respondents were classified according to the enrollment of the school in which they taught and, depending on their mathematics course, background, as " Type A, Type B,or Type C teachers. Since most of the data involved either the nominal or ordinal scales of measurement, the chi-square test was used frequently in testing hypotheses throughout the study.

> It was found that 39 per cent of the teachers
were Type A (teachers with more than 24 semester hours of coursework recommended by CUPM for Level III), 17 per eent. werc. Type \tilde{B}^{\prime} teachers (13 , to 24 semester hours) , and 44 it per cent were Type C teachers Gless than 13 semestere hours). Only 40 per cent of the respondents had earned.n a major in mathematics, and 42 teachers had not earned.áa single semester hour of coursework in mathematics. Reasonable strengths in course background were indicateed. in the areas of "algebra and analysis while serious gaps a were found in the areas of geometry, probability and statistics, and computer mathematics...! The fact. that 71 per cent of the teachers had earned no credit in geometry. was very alarming since geometry was á course taught by most teachers. The above findings serve as an indication: of the critical shortage of well prepared mathematics teachérs at the high school level in this province:

An analysis of teachíng assigñents revealed that mañy teachers have been misassigned. Only 27 per cent of the respondents were teaching exclusively high. school mathematics courses, and many of the otherswere teaching one or more courses in totally unrelated areas:

The majprity of the respondents indicated that.. they enjoyed teaching mathematics above all other subjects and did not consider that their lack of preparation was a handicap. However, the respondents showed tittle interest in membership in professional
organizations, reading of, relevant professional publications, and taking additional courses. .

In-service opportunities for high school mathemat,ics teachers were limited to university sponsored on-campus courses. Sixty-three per cent of the teachers had taken at least qne such course since they first began teaching; 'and 40 per cent of the 271 respondents had taken four or more courses. The respondents indicated that they considered university mathematics courses the mose desirable type of in-service training, and felt that there was a need for more of these courses to be offered at the off-campus centers.

The major recommendations of the study include the - following:

1. Since an essential ingredient of any program of . in-service training is a realization of the need for such a program, it was recommended that' all concerned be made aware of the great need for in-sérvice training.
2. A Mathematics Consultant should be included as part of the staff of the provincial Department of Education, and whenever possible; school \therefore boărds, should also hire a Mathematics Consultant as partiof their supervisory staff:
3. The provincial university should re-examine its course requirements for mathematics teachers and;
if possible, bring them in-1ine with the CUPM reçommendations.
4. Teacher certification requirements and procedures should be re-examined with a view to improving them to insure that teachers will teach only subjects for which they are academically prepared.
5. In-service programs, especially in geometry, should be instituted as soon as possible. This could possibly be done as part of the off-campus program of Memorial University, and by making use of a group of well prepared teachers who teach mathematics at the high school level.
6. Personnel responsible for'hiring and assigning mathematics teachers should try to ensure that (a) all new teachers hired have at least a major $\ddagger n$ mathematics and
(b) that the best prepared teachers are used to maximum potential in teaching high school mathematics.

ACKNOWLEDGMENTS

The writer wishes to express his grateful appreciation to the many people who have contributed to the successful completion of -this study. He is especially indebted to the high school mathematics teachers in Newfoundland for their cooperation in completing the questionnaires, and to his supervisor, Dr. G. K. Wool ${ }^{\prime \prime}$ ridge, whose guidance, constructive criticism, and encouragement were paramount in bringing the study to completion.

The writer also wishes to thank the officials of the Department of Education for their assistance in obtaining necessary data; and Ms. Rene Daggett of Technical Typing for her efforts in the preparation of the final draft of the manuscript.

Fịnally, the researcher wishes to express his $\ddot{\dot{b}}$. sincere appreciation to his wife, Phyllis, for her patience and encouragement during the development of the study.

TABLE OF CONTENTS

PAGE
ACKNONLEDGMENTS, vi
LIST OF TABLES xi
CHAPTER
I. INTRODUCTION '1
STATEMENT OF THE PROBLEM 2
SIGNIFICANCE OF THE STUDY 4
LIMITATIONS 8
II. RELATED LITERATURE 10
CHANGES IN THE MATHEMATICS CURRICULUM 10
The Curriculum Up to 1945 10
Factors Leading.to Change 11
Contemporary Mathematics 14
Tomorrow's Mathematics 16
Conclusion 18
SUBJECT MATTER PREPARATION OF MATHEMAT ICS TEACHERS - RECOMMENDATIONS AND GUIDELINES 18
The Need for Subject Matter Preparation 18
Recommendations and Guidelines 21.
CUPM recommendations 23
Impact of the CUPM. recommendations 25.
Other recommendations 27
Conclusion 29
CHAPTER PÁGE29
Need for In-service Training 29
National Council of Techers of Mathematics 32
National Science Foundation 34
Other In-Service Activities 37
Conclusion 39
SUMMARY OF RELATED LITERATURE 39
'III' PROCEDURE 41
STATEMENT OF THE PROBLEM 41
DEFINITION OF TERMS 41
STUDY POPULATION 43
HYPOTHESES AND OBJECTIVES 43
DATA NEEDED 46
METHOD OF SECURING DATA $\stackrel{4}{7}$
DISTRIBUTION AND RETURN OF QUESTIONNAIRES. 48.
ANALẎSIS OF DATA 49
IV. FINDINGS OF THE STUDY 51
SCHOOL ENVIRONMENT AND TEACHER DISTRIBUTION 51
Patterns of Organization 52
School Size 83
PREPÁARATION OF SENIOR HIGH SCHOOL MATHEMATICS TEACHERS 54
Undergraduate Majors and Minors 54
Degrees Earned. 5,8
Period of Completion of Last. Degree 61
Classification by CUPM Recommendations 62
Recency of university Credits in Mathematics 66
Certificate Standing of Mathematics Teachers 68
Age of Respondents 72
Mathematics Teaching Experience 74
INTERESTS AND ATTITUDES TOWARD MATHE MATICS 75
Plans for Future Coursework 76
Method of Assignment to Teach Mathematics 78
\rightarrow Enjoyment in Teaching Mathematics 80
Membership in NCTM 81
Membership in NTA Mathematics Council 83
Mathematics Clubs 84
Professional Publications 84
IN-SERVICE TRAINING OF SENIOR HITGH SCHOOL MATHEMATICS TEACHERS 88
Mathematics Courses: Taken While . Teaching 88
Other In-Service Activity 91
Teaching Assignments 91
Strengths and Weaknessesiof Mathematics Background 97
Preferred Types of In-Service Training 102
NONRESPONDENTS 103
CHAPTER PAGE
SUMMARY 105
V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 106
SUMMARY 106
CONCLUSIONS 120
RECOMMENDATIONS 123
Suggestiqns for Further Research 130
Concluding Remarks 131
BIBL I OGRÁPHY 133
APPENDICES
A , CUPM Level III Recommendations 137
B Questionnaire 138
C. Letter of Transmittal 143
D Follow-Up Letter 144
Lo

TABLE PAGE

1. Distribution of Teachers by School Type 52
2. Distribution of Teachers by School Size 53
3. Undergraduate Majors of Mathematics55
4. .. Distribution of Mathematics and Non- Mathematics Majors in the Different Size Schools. 56
5. Undergraduate Minors of Mathematics Teachers 57.
6. Distribution of Non-Education Bachelor's Degrees Held by Mathematics Teachers 58
7. Distribution of Non-Bachelor's Degrees Earned by Mathematics Teachers in the Different Size: Schools 59
8. Number of Degree and Non-Degree Mathematics. Teachers in the Different Size Schools 61
9. Period of Completion of Last Degree by High School Mathematics Teachers 62
10. Number of Type A, Type B, and Type C Mathematics Teachers 64
11. Distribution of "Type A, Type B, and Type C Teachers in the Different Size Schools 65
12. Distribution of Mathematics Teachers According : - to Recency of Completion of Last University Mathematics Course 67
13. Period of Completion of Last University - Mathematics Course by Type A, Type B, and Type C Teachers 68
14: Certificate Standing of Type A, Type B, and Type C Teachers 7.0

TABLE

15.: Certificate Standing of Mathematics TeachersIn the Different Size Schools.7116... Classification of Type A, Type Re, and Type C Teachers by Age 73
17'.. . Years of Mathematics'Teaching Experience of 'Type. A, Type B, and. Type C Teachers 75
18. Plans of Type A, Type B, Type C Teachers to.Take More \cdot Mathematics Courses'in the Next. ${ }^{\circ}$Two Years7.7
19. Responses of Type A, Type B, and Type CTeachers to Question 20 (At Whose RequestAre You Currently Tcaching Mathematics?)79
. 20. : Responses of Type A; Type B, and Type CfTeachers to Question 21 (Do You EnjoyTeaching Mathematics?82
Number of Type A, Type B, and Type C TeachersWho Are Members of the NCTM83
22. Professional. Publications Subscribed to andRead by Mathematics Teachers85
23.2425: Responses of Type A, Typé B, and Type C•Teachers to Question 16 (Áre You NowTeaching Any Subjects Other Than Grade.Ten or Eleven Mathematics?)93$26^{\prime} \because$ Distribution of Teachers in the Diffofent SizeSchools According.to the Time: Spent TeachingHigh School Maṭhematics95
27. Distribution of Type A. Type B, and Type CTeachers According to the Time Spent96Teaching High School Nathematics
87
Númber of Mathematics Courses Taken by Type A, Type B, and Type C Teachers Since Teaching Career Began 89 Type C Teachers With Respect to The Mathematics Teacher 87 995
28. Comparison of Mean Number of Semester Hours Earned in Algebra, Analysis, Geometry, Probability and Statistics, and Computer Mathematics With the CUPM Recommendations
\qquad
Distribution of Total Semester Hours in Algebra, Analýsis; Geometry, Probability and Statistics, Computer Mathematics,

30. Mathematics Teachers" Preference of Type of In-Service Training .0. 103

CHAPTER I

INTRODUCTION.

The state of preparedness of teachers to teach a given curriculum has always been an important concern for educators. For mathematics educators it took on added. significance during the late fifties and sixties when it was. realized that the mathematics being taught was not meetíng the needs of a technological society. This awareness led to many major reforms designed to update the mathematics curriculum and. Bring it in line with the steadily increasing amount of available mathematical ${ }^{\circ}$ knowledgé: Few areas have been left unchanged in the quest to improve mathematics programs. Courses of study have been revised, much hew content has been added, textbooks have been improved, and much research has been done in mathematics education. However, the importance of the teacher must always be kept in mind. ${ }^{1}$ New mathematics curricula are only as good as the teachers who try to teach the new ideas, concepts, theories and structures.

The sudden changes in the curriculum were the impetus for creation of guidelines and standards for the

[^0]pre-service training of mathematics teachers. Efforts to implement new mathematics programs also made educators aware of the vast numbers of poorly prepared in-service teachers. Thus, much time and money was expended in the pre-sërvice and in-service training of mathematics teachers. These measures produced varying degrees of success in the sixties. However, that is not enough. The growth of mathematics and its variety and depth of applications in our society has set a trend that is certain to cofifinue, and "it is inevitable and proper that these changes will be reflected in the content of school mathematics. . ."2 One of the criteria of success in coping with inevitable. mathematics reform in the seventies will be how well prepared teachers are to handle these changes. ${ }^{3}$

This study was designed to investigate the degree of preparation of mathematics teachers in the senior high schools of Newfoundland and Labrador to teach present day mathematics and cope with inevitable changes in this decade.

STATEMENT OF THE PROBLEM

The purpose of the study was two-fold: (1) to

[^1]determine the present state of preparedness of mathematics teachers in the senior high schools of Newfoundland and Labrador, and; (2) to utilize information obtained to make recommendations for the pre-service training of. teachers, and to formulate appropriate in-service measures to upgrade the mathematics background of teachers who are considered deficient.

Specifically, the purpose of the first part of the study was to determine:
(1) teacher preparation as evidenced by
(a) the number of university level mathematics courses successfully completed,
(b) the areas of mathematics covered by these courses,
(c) the recency of these courses,
(d) the undergraduate major (s) and minor (s),
(e) the degree (s) held, and the year granted,
(f) the field of graduate work,
(g). the number of years teaching mathematics at the senior high level,
(h) the Certificate or Licence held,
(i) the number of mathematics courses completed since first began teaching;
(2) teacher attitude and interest toward mathematics as reflected in
(a) membership in professional organizations,
(b) reading of relevant professional journals and públications,
(c) method of assignment to teach mathematics,
(d) satisfaction in teaching mathematics, and
(e) plans to take more mathematics courses in the future.

In the second part of the study specific aims. were:
(1) to determine specific course deficiencies in the preparation of mathematics teachers,
(2) to determine the suitability of placement of mathematics teachers,
(3) to determine possible and most desirable types of in-service training, and
(4)' to utilize, the information gained in both parts of the study in the formulation of specific proposals on in-service education for mathematics teachers.

SIGNIFICANCE OF THE STUDY

During the last decade the mathematics curriculum in the secondary schools of Newfoundland and Labrador probably expérienced more change and controversy than in any comparable period of time in the past. These changes were inspired by events that were happening elsewhere on the North American continent in the late fífties and
early sixties. Such highly-funded groups as the School Mathematics Study Group, the University of Illinois Committee on School Mathematics, the University of Maryland Mathematics Project, the Baill State Teachers College Experimental Mathematics Program and others, through the curriculum material's they produced, had a profound influence on the revision of mathematics programs by commercial publishers. ${ }^{4}$, This influence is evident in textbooks used in the province's schools today.

- Committees such as the Committee on the Undergraduate Program in Mathematics (CUPM) of the Mathematical Association of America, the. Secondary School Curriculum Committee" of the National Council of Teachers of Mathematics and others have made recommendations concerning the quantity and quality of coursework considered essential for teachers of mathematics in the secondary schools. ${ }^{5,6}$ All groups have stressed the need for specific preservice training and continuous in-service training.

This province has undergone the curriculum changes,
${ }^{4}$ C. K. Bradshaw, "Mathematics Teaching in the Public Secondary Schools of the State of Nevada" (unpublished Doctoral dissertation, University of California, Berkeley, 1968), pp. 2-3.
${ }^{5}$ Committee on the Undergraduate Program in Mathematics, Recommendations for the Training of Teachers of Mathematics (Berkeley, Califarnia: Mathematical Association. of America, 1961, 1966., 1971):
${ }^{6}$ Secondary School Curriculum Committee, "The Secondary School Mathematics Curriculum," The Mathematics Teachere, 52: 414-15, May, 1959.
but has it kept pace in preparing pre-service and inservice teachers according to guidelines deemed essential by such groups as the CUPM? This study is significant in that an attempt has been made to determine the current status of preparation of the province's mathematics teachers: A comparison of this information with the CUPM recommendations aided the researcher in assessing the perceived deficiencies in the preparation of mathematics teachers, and was useful in the formulation of plans to upgrade the background of these teachers.

A major problem in this province until recent years was that of securing enough teachers to staff the schools. Because there was such a problem of teacher. supply, the quality of their preparation sometimes had to be ignored: Little or no consideration of background was, or could be, made in many instances. Many of the teachers hired during this time may still be teaching mathematics, and although it is possible that some of these teachers have since improved, their background by appropriate inservice measures, it is probably unlikely that they have improved to a levei deemed essential to handle today's curriculum. . In viè of the increasing supply of qualified mathematics teachers; it would seem desirable to identify such teacher', and if po'ssible, to suggest ways of upgrading them to acceptable standards.

Mathematics programs are not static. They are
constantly being revised, rewritten and subjected"to experimentation. Many proposals, have been made; of which one of the most controversial is the Cambridge Report. In reference to their proposed curricula, the authors of the Cambridge Report made the following observation:

It is characterized by a complete impatience with the present capacities of the educational system. It is not only that most teachers will. be incapable of teaching most of the mathematics set forth in the curricula proposed here; most teachers would be hard put to comprehend it. . : Even the first grade curriculum embodies notions with which the average teacher is totally , unfamiliar.?

The proposal ; of an equally ambitious group--the Secondary School Mathematics Curriculum Improvement Study (SSMCIS)--calls for a total reconstruction of the entire curriculum in order to present mathematics as an integrated body of knowledge. Such a curriculum would introduce into the school program topics such as matrices, differential equations; theory of probability and statistics and elementary numerical analysis;" This material is now considered university level mathematics. The present goal is to gain one to one-and-a-half years advance in the study of mathematics in high school. ${ }^{\text {B }}$

[^2]If the Cambridge Report, SSMCIS or similar
proposals have any influence on the mathematics curricula of this province in the future, the necessity, of having teachers with a solid background in mathematics will become even more urgent. The proposers of such changes stress'that the preparation of the teachers is the key factor, since it is the teacher who is the central figure in the implementation of curriculum change. The present study is considered to be significant' to the extent that it assesses the capability of today's teachers to teach the present curricula, and to cope with future revisions that appear inevitable. This information can then be used for the planning of preservice and in-service programs for the mathematics teachers of the province.

LIMITATIONS

Although the problem of adequate teacher preparation exists at all levels of education, this study was limited to an investigation of the preparation of Grade X and XI : (Senior High) mathematics teachers in the province of Newfoundland and Labrador. This limitation enabled the researcher to investigate the problem more thoroughly than would have been possible with a larger population.

The study was limited to an analysis of the academic preparation, in mathematics. . No consideration was. given to training in methods, psychology of learning, etc.; that.
the teachers may have had. This kind of preparation was not omitted because it wa's regarded as unimportant, but rather because it was considered outsị̆ de the scope of this particular study.

CHAPTER II

RELATÉD LITERATURE

The full significance of a study concerning the preparation of mathematics teachers cannot be appreciated without an overview of the vast amount of literature available on the development of contemporary mathematics and its impact on the preservice and in-service trainky of mathematics teachers. This chapter attempts to do this by c̣lassifying the literature into three main categories:
(1) Changes in the Mathematics, Curriculum
(2) Subject Matter Preparation of Mathematics

Teachers - Recommendations and Guidelines
(3) In-service Education of Mathematics Teachers.

CHANGES IN THE MATHEMATICS CURRICULUM

The Curriculum Up to. 1945
Before the turn of the century, the Committee of Ten in 1894, and the "Committee on College Entrance Requirements in 1899 had influenced the establishment of a basic curriculum. This basic pattern that persisted for half a century had algebra and plane geomet'ry (and some trigonometry in grade eleven) as the mathematics to be
situdied in high school. ${ }^{1}$
One variation in this pattern-the creation of a general course in grade nine for the non-college bound--led to "concern among educators. Establishment of such a course in' grade nine eventually ied to a removal of most of the algebra and geometry from the seventh and eighth grade curriculum, and a downward adjustment of the level of mathematics in subsequent coutses. . In addition to the weakening of the content in the 1930 's, the mathematics educators had to contend with the general belief that mathematics beyond the general: mathematics course was needed by very few people. Both these factors led to a decline in the number of people taking mathematics in colleges and universities, and there was a general deterioration of mathematiks education. Calls for reorganization, and recommendations from the mathematics community went unheeded in the thirties and forties. ${ }^{2}$

Factors Leading to Change

There are many factors that contributed to the phenomenal changes in the past two decades. Bradshaw/sees as the most prominent of, these factors
${ }^{1}$ C. K. Bradshaw, "Mathematics Teaching in the Public Secondary Schools of the State of Nevadaí. (unpublished Doctoral dissertation, University of California, Berkeley, 1968), pp. 11-12.
${ }^{2} \underline{I b i d}$, pp. 12-14.
the gradual recognition by the citizenry in general and by educators in particular that the mathematical literacy of the high school graduate was inadequate for living in this age of science and technology. ${ }^{3}$

People were finally beginning to listen to the opinions of the mathematics community on the direction mathematics: should be taking̈: These opinions were many, and they all stressed one thing-the content of school mathematics was not right for a quicklygrowing, techtological society. The following comment by Saunders Maclane was typical of the discontent felt toward the content of mathematics courses:

My subject is vacuous; the lively modern development df mathematics has had no impact on the content or on the presentation of secondary school mathematics. Algebra and geometry, as covered in schools, consist exclusively of ideas already well known two hundred, years ago--many of them two thousand years ago. No matter how much better the : teaching of these particular ideas to more and. more pupils, their presentation leaves school mathematics in á state far morep antiquarian
than any other part of the curriculum. ${ }^{4}$
The Secondary School Cuxriculum Comitetee of the National Council of Teachers of Mathenatics a\&knowledged the need for change to keep pace with expanding knowledge in the following statement:
${ }^{3}$ Ibid., p: í4.

${ }^{4}$ Saunders Maclane, "The Impact of Modern Mathematics on Secondary Schools, "' The Mathematics-Teacher, 49: 66, February, 1956 .

One of the distinct and important factors. contributing to the great explosion of knowledge which has taken place during our life-span is the overall revolutionary advances in the uses of mathematics'. . . 'The astonishing developments in the physical sciences are continually creating demands for new interpgetation and.uses of mathematics. Of possibly even greater significance in this revolution are the demands which are coming from new users of mathematics. ${ }^{5-}$

The Commission on Mathematics of the College
Entrance Examination Board, 'whose "responsibility it was $\neq 0$ reorganize the curriculum to meet the needs of the second haif of the twentieth century," lobbied for revision this
way:
Mathematics is a dynamic subject, characterized in recent years by such impressive growth and such extensive new applications that these have far outrun the curriculum. Moreover, the traditional curriculum fails to reflect adequately the spirit of contemporary mathematics, which seeks to study all possible patterns recognizable by the mind, and by so striving has tremendously increased the power of mathematics as a tool, lof modern life. Nor does the traditional curriculum give proper emphasis to the fact that the developments and applications of mathematics have always been not only important but'indispensable to human progress.

In order that the school and college.curricula meet the needs of mathematics itself and of its applications, there mus't be a change. A new program, oriented to the needs of the second half. of the bwentieth century and based on'a dynamic conception of mathematics, is required. The national need for mathematical manpower, and a general feeling fof dissatisfaction with the present state of ${ }^{\text {affaire, }}$ support the early
${ }^{5}$ Secondary School Curriculum Committee, "The Secondary. School Mathematics Curriculum," The Mathematics Teacher, 52: 392, May, 1959.
vintroduction of such a new curriculum. ${ }^{6}$
Contemporary Mathematics
The strong demands for a new curriculum led to such a flurry of activity in the mathematics community during the sixties that it is commonly referred to as the "revolution in school mathematics." ${ }^{7}$

One pioneer in the field of experimentation with curriculum materials was the University of Illinois Committee on School Mathematics which began its work in 1951. From that time onward the pace of experimentation picked up, and major contributions towards building a new curriculum were made by the University of Maryland Project, the Boston College Mathematics Institute, the School Mathematics Study Group, the Greater Cleveland Mathematics Program, the Secondary School Mathematics Curriculum Improvement Study, the Comprehensive School Mathematics Project, the Madison Project, and a host of lesser known groups. ${ }^{8}$ Dubish notes that out of all of these groups,
${ }^{6}$ Commis ${ }^{5}$ ion on Mathematics, ${ }^{\text {Prográm for College }}$ Preparatory Mathematics. (New York: College Entrance Examination Boafd, 1959), p. 9.
${ }^{7}$ G. -B 1 ley-Price, "Progress in Mathematics and its Implications for the Schools," The Revolution in School Mathematics (Washington, D.C.: The National Council of Teachers of Mathematics, 1961), p. 1.
${ }^{a}$ Eugene D. Nichols, The Continuing Revolution in Mathematics (Washingtón, D.C.: The National Council of. Teaghers of Mathematics, 1968), pp. 16- 77 .
it is the School Mathematics Study Group (SMSG) that has been the dominant influence in curriculum reform in mathematics, and has had the greatest influence on commercial publishers of new materials.9 The researcher notes that the materials used. in the Secondary Schools of this province were inspined by the work of the SMSG.

Despite the diverse goals and varying emphases of the many groups, there are many common elements present in the materials they developed. Such common elements are the result of the philosophy that

Contemporary mathematics is characterized by:
(1) a tremendous development quantitatively;
(2) the introduction of new content; (3) the
reorganization and extension of older content;
and (4) renewed, increased, and conscious emphasis upon the view that mathematics is concerned with abstract pattorns of thought: ${ }^{10}$

Adherence to this philosophy has resilted in programs that stress abstraction, logic, and sigor rather than problem solving. ${ }^{11}$ The unifying, themes in such programs are

- . sets, operations, properties of number systems, functions, logical deduction, inductive reasoning, generalization and measurement.

${ }^{9}$ Roy Dubish, "Teacher Education," Mathematics.Education: The. Sixty-ninth Yearbook of the National Society	
for the Study of Education, Part I Chicago: University of	
	${ }^{0}$ Commission on Mathematics, op. cit.; p. 3.
	${ }^{1} 1$ Morris Kline, "A Proposal for the High School
Mathema	ics Curriculum," The Mathematics Teacher, 59: 322
330, Ap	

Central to the new programs is the study of the structure of mathematics, that is; the study of the basic principles or properties common to all systems of mathematics. ${ }^{12}$

In the new programs courses are more compact than before. This has made room for the introduction of many new courses or topics in the senior high school. Bradshaw ${ }^{13}$ reports a 1965 study which revealed that courses such as analytic geometry, calculus, probability and statistics, finite mathematics and linear algebra were not uncommon in the high schools of the twenty states surveyed.

Tomorrow's Mathematics
Robert B. Dävis declared in 1967 that
The 'new mathematics' revolution has not taken place, but--considering the pressures that are building up--it probably will, possibly within the next ten years. . . ${ }^{4}$

It appears that there is still change to come; and that the mathematics curriculum of the seventies and eighties will be greatly different from today's. The Cambridge Report outlines what is considered by many educators a realistic set of proposals for the future. The proposals call for the introduction of new subject matter into the
${ }^{12} \mathrm{C}$. K. Bradshaw, op. cit: , p. 20 .
${ }^{13}$ Ibid.., p. 21.
${ }^{14}$ Robert 'B. Davis, The Changing Curiniculum: Mathematics (Washington, D.C.: Association for Super* Vision and Curriculum Development of the National Education Association, 1967), p. 1.
school curriculum so that at the end of high school, a student will have
. . a level of training comparable to three years of top-level college training today; that is we shall expect him to have the equivalent of two years of calculus, and one semester each of modern algebra and probability theory. ${ }^{15}$

The report goes on to point out that these proposals, are long range; and in that context they cannot be considered unrealistic. Several possible course outlines are also suggested for attaining these goals.
'Similar...proposals ${ }^{16}$ have been' put" forth by the "
Secondary School Mathematics Curriculum Improvement Study. In fact, some of the proposed courses have become a. reality at the experimental stage in various locations in the United States.

Educators in this province cannot ignore such proposals. There is"no doubt that what happens in the United States in the field of mathematics will influence what happens in Canada becausé, as Jones says, "As far back as the report of the Committee of Ten, Canadian educators have been influenced by detelopments in the

[^3]
United States. ${ }^{17}$

Conclusion
It is obvious that the contemporary philosophy of the nature of mathematics, the new content of today's curriculum, and the inevitable changes in the near future all have serious implications for the preparation of teachers of senior high school mathematics. 'The next section will consider some of theserimplicatioṇ's.

SUBJECT MATTER PREPARATION OF MATHEMATICS
TEACHERS - RECOMMENDATIONS
AND GUIDELINES

The Need for Subject Matter Preparation

As experimentation with the new curricula was completed, and more and more of the new materials became a part of the school mathematics curriculum, attention turned to the state of preparedness of the teachers to properly implement the new mathematic̀s curriculum. All : . the various groups and individual involved with the; development of the new curricula emphasized that the objectives of the new programs could only be reachedr if

[^4]the teachers were adequątely prepared in mathematics.
The Secondary School Curriculum Committee in making its recommendations stated that

The most important single factor contributing to the effectiyeness of any program of instruction is the teacher: As in any true profession, the competent teacher . is characterized by scholarship in relevant know, ledge. . . ${ }^{18}$

The Commission on Mathematics expressed its concern
for having well-prepared teachers this way:
More than any other single factor, the successful carrying out of the Commission!s program depends on the teatcher of Chigh school mathematics. Schools must have teachers who are t'rained to teach the subject matter in the spirit of the twentieth century mathematics. ${ }^{19}$

Here the Commission stressed the kind of preparation it desired that teachers have:

The teacher's greatest need, in order to be prepared to teach the new curriculum, is not methodology but' subject matter. \therefore there is no substitute for a solid knowledye of the elements of the new mathematics. ${ }^{2}$
Fehr, the internationally known mathematics el ucator and director of the Secondary School Mathematics Curriculpum Improvement Study, made the following comments concerning the subject matter preparation of teachers of mathematics: A broad knowledge of mathematics in the teacher p. 414.
${ }^{18}$ Secondary School Curriculum Committee, op. cit., ${ }^{19}$ Commission on Mathematics, op. cit., p. 50 . ${ }^{20}$ Ibid.
is essential if he is to plan his teaching so that his students will see how various aspects of mathematics are conncited, so that the students can experience how mathematics grows from a cooperation between intuition and systemitic reasoning, and how cuentually mathematics becomes a set of general structures.

A broad knowledge is also essential from the point of view that in the future there. will. always be a continuous revision of teaching. methods and subject-matter content; and if the. teachers have a narrow, closed orientation to the subject, a circumstance that has occurred in recent years in many countries, there will be a serious obstacle to the evolution of mathematics education. The day has passed when a teacher. . . can cease to study his subject. Teachers, throughout the whole of their professional carecr, must be actively congaged in the study of their subject.

A lack of adequate preparation in academic subject matter is a handicap to a teacher. It makes his situation very difficult because he must struggle to learn the content as he tries to teach it to his students. ${ }^{22}$ This type of teacher is described by McAulay: *

They must exert extra energy and time to prepare lessons in subjects in which their background is weak. The frustration thus generated is quickly passed on to their classes. The chief result is that little interest is created. . . and certainly !', little ability is determined among the students. in. these subject areas when the teacher himself
${ }^{21}$ Howard F. Fē̄r, "Mathematics Education for a Scientifíc, Technólogical and Industrial Society," The Mathematics Teacher, 61: 670, November, 1968.
${ }^{2}{ }^{2}$ Donald: 0 . Nelson, " Λ Survey of Selected Characteristics of Alberta Mathematics Teachers" (unpublished Master's thesis,. University of Calgary, Calgary, 1969), p. 13.
has little ability in their content. ${ }^{23}$
The whole issue of the need for subject matter preparation is perhaps best summed up by Diennes, who says that a teachertyust be

- first and fóremost, a pedagogue. But he, will not be able to be a pedagoguc if he does not have a thorough grasp, of the subject matter he is trying to pass on. . . ${ }^{24}$.

Rccommendations and Guidelines

'It has been illustrated in the preceding sections of thi's chapter that the period since 1960 was a time of change as. Łar as the content of school mathematics was concerned. This period has also been characterized by many recommendations and guidelines Ker the improvement of.teacher education. These recommendations have evolved from the discussions of committees and groups who were well informed about the problems associated with the téaching of mathematics, the training of teachers, and "the characteristics of the mathematics programs in the schools. ${ }^{25}$
${ }^{23} \mathrm{~J}:$ D. McAulay, "Training and Retraining, of Mathematics and Science Teachers," Education Digest, 30:.. 29, Septémber, 1965.
${ }^{24}$ Zoltan P. Dienes; "Comments on Some Problems. of Teacher Education in Mathematics," The Arithmetic Teacher, 17: 263, March, 1970.
${ }^{25} \mathrm{P}$. S. Jones and A. F. Coxford, "Academic and Professional Preparation of Secondary School Mathematics Teachers,." Review of Educational Research, 34: 322, June, 1964.

The Commission on Mathematics was one of the earliest groups to make specific course recommendations for prospective teachers of high school mathematics.

The Comimission's decision was that
A sound teacher-education program can be developed around a major of 24 semester hours beyond the calculus. The Commission recommend that the major be earned by selecting from the following courses: differential equations, probability and statistics; modern algebra, geometry (other than Euclidean), advanced calculus, $\log _{2}{ }_{6} \mathrm{c}$, history of mathematics, and theory of numbers. ${ }^{26}$.

Similar recommendations were made-by the Secondary School
Curriculum Committee of the NCTM:

> In view of current curriculum demands, teachers of mathematics in grades seven through twelve will need to have competence in (1) analysistrigonometry, plane and solid analytic geometry, and calculus; (2) foundations of mathematics theory of sets, mathematical or symbolic logic, postulational ssystems, real and complex numer systems; (3) algebra, matrices and determinants, theory of numbers, theory of equations, and structure of algebra; (4) geometry Euccidean and noneuclidean, metric and projective, synthetic and analytic; (5) statistics probabiíity and statistical inference;
> (6) applications - mechanics, theory of games linear programming, and operations research. ${ }^{2}$

A noticeable absence in these earliest recommendations is mention of courses in computer mathematics. This is perhaps due in 'part to the fact that computers hadn't gained the place of prominence that they have in today's
${ }^{26}$ Commission on Mathematics, op. cit., p. 57.
${ }^{27}$ Secondary School Curriculum Committee, op. cit., pp. 414-415.
society.

CUPM Recommendations. The recommendations that.
have emerged as one standard for the training of mathe-mat-ics teachers are those of the Committee on the Undergraduate. Program in Mathematics (CUPM) of the Mathematical Association of America. The influence of the ,CUPM has paralleled that of the SMSG according to Dubish:

Just as. SMSG has been the dominant influence in curricula reform in mathematics, so has the CUPM been the dominant influence on the improvement of teacher preparation. Its recommendations for Levels I-III training have been widely endorsed. . . . ${ }^{28}$

In the original report pubiished in 1961, and revised 'in 1964 and 1966 , the CUPM made recommendations for the training of teachers at five specific levels: Level I (teachers of elementary school mathematics) to Level V (teachers of college mathematics). For teachers of 'high school mathematics (Level III), CUPM recommended the following courses: three courses in analysis, two courses in abstract algebra, two courses in geometry, beyond analytic geometry, two courses in probability and statistics, a courṣe in computer sçience, and two upper level electives. ${ }^{29}$ A more complete description of the
${ }^{28}$ Dubish, op, cit., p, 289.
${ }^{29}$ CUPM, Recommendations for the Training of Teachers of Mathematics (Berkeley, California: Mathematical Association of America, 1966), pp: 9-10.

Level. III recommendations', and the nature of, the courses recommended is found in Appendix \dot{A}.

The members of the CUPM stress that, their proposals are only minimum standards which are applicable to teachers of all mathematics: In the introduction of the original report (1961) and in the revised reports (1964 and 1966), the Committee stresses that

The recommendations are to be considered minimal for teachers in any educational program.

Ideally, a person preparing for teaching should meet, in addition to the minimal requirements set forth here, as many of the requirements for the next level as his college program permits.

This report is meant as a guide for the preparation of pcople who will be teaching any mathematics whatsoever. The suggestions apply, within any level, to all people who teach any mathematics.. , The teacher who is assigned classes scheduled primarily for students of low aptitude is included in. the recommendations: ${ }^{30}$

New recommendations ${ }^{31}$ (.which for levelitill are relativcly 'unchanged) pub1ished in 1971, also stress the minimum nature and applicability of CUPM recommendations:
'The recommendations. . . are not motivated by a desire to meet the domands of.any special program of mathematics educationor the goals'

[^5]of aný particular planning organization. We - consider our recommendations to be appropriate for any teachers of school mathematics, including teachers of low achievers. ${ }^{32}$

Impact of the CUPM recommendations. The CUPM
-recommendations have stimulated a great deal of interest in the preparation of teachers, and many studies and.
surveys" have been done on the effect of theser recommendations on the preparation of teachers of mathematics., In a 1966 study. Fisher found an appreciable increase in the required amount of coursework, especially in abstract algebra and analysis, from 1960 to 1965. Courses in probability and statisticswere the least implemented of those recommended by the CUPM. 埌isher's conclusion was that much had to be done before complete implementation of the Level III recommèndations would be accomplished. ${ }^{3}$

Fisher's findings agree with those of a CUPM study conducted about the same time. The CUPM, in a survey of colleges and universities, found that the number of semester hours of mathematics required by all the institutions had increased up to the year 1966. The study also reveraled that colleges were almost unanimous in attributing the significant changes in their teacher-
${ }^{32}$ Ibid: P. P. 9.
${ }^{33}$ J. J. Fisher; "A Súrvey to Determine the Extent of Implementation of CUPM Recommendations," Dissertation Abstracts, 28: 1324-25, 1966.
.
training programs to the influence of the CUPM recommendations. ${ }^{3} 4$

Many reports of more localized studies are to be found in the literature on the CUPM recommendations. Easterday reported that only. twenty-five per cent of Alabama's senior high school teachers had the training : recominiended by ${ }^{\circ} \mathrm{CUPM}$: 35 Smith found that approximately one-half of the high school mathematics teachers in Illinois had, the recommended preparation by 1966 . 36 Bradshaw, in a 1968 survey of Nevada's teachers of mathematics, determined that fifty per cent satisfied, the Level III recommendations. Many teachers, he found, failed to meet the recommendations for geometry, computer mathematics and probability and statistics. ${ }^{3 x}$ study by Haigh found that only thirty-six per cent af South Dakota's senior high school mathematics 8 teachers met, or exceeded, the CUPM Level III récommendations. The same course deficiencies as in Nevada were: also noted

[^6]by Haigh. ${ }^{38}$. In a 1969 survey; Ne1son found that only σ twenty per ccent of Alberta's high. school', teachers had the minimum course work recommended by the CUPM. Even more alarming, he noted, was the fact that approximately fifteen per cent of the teachers of high school mathematics had no background in university mathematics. ${ }^{3,9}$

Other recommendations. The American A'ssociation for the Advancement of Science (AAAS) offers two general guidelines for the preparation of teachers of high schoql mathematics: ${ }_{-1}$ The AAS recommends that the undergraduate . program for secondary school mathematics'teachers should include
(1) a major in mathematics of sufficient depth to make possible further study of mathematics at the graduate level in areas - appropriate for teachers
(2) a substantial experience with the field of computing as it relates to mathematics and to the teaching of mathematics. 4.0
The AAAS believes that the objectives of guideline (1) can be accomplished by adhering to the CUPM Level III
${ }^{36}$ William E. Haigh, "Preparation of Yenior High School Mathematics Teachers. in South Dakota (unpublished Doctoral dissertation, Indiana University, 1"970) 3 p. 117.'

昜Nelson, op. cit., p. 80°.
${ }^{0}$ AAAS Commission on Science Education, and the National Association of State Directors of Teacher Education and Certification, Guidelines and Standards for the Education of Secondary School Teachers of Science and Mathematics (Wa'shington, Die.: AAAS, 1972), Pp: 21, $26 .{ }^{\circ}$
recommendations. ${ }^{41}$
The recommendations of the CUPM and others did not consider the teacher who teaches fathematics as a second subject. . The AAAS did give some consideration to such teacher as second subject (their major being in another area), the AAAS recommends four courses in analysis, a course in algebra, a course in geometry, and the other courses from supporting areas (sciences, symbolic logic, philosophy, psychology). The AAAS was quick to point out that itrdid not encourage the teaching of mathematics as second subject and would rather see teachers in this category of limited training upgrade themselves as quickly as possiblef ${ }^{42}$

Other recommendations have come from the American Association of Colleges for Teacher Education, the Joint Commission on the Education of Teachers of Science, and Mathematics, and the National Association of State Directors of Teacher Education and Certification. However, since there is general agreement of their recommendations with those of the CUPM, ${ }^{43}$ there is little need to discuss
${ }^{48}$ Ibid., pp. 21-27.
${ }^{42}$ American Association for the Advancement of Science, "Preparation for High School Science Teachers," Science, 131: 1028, April, 1960.

[^7]them here.

Conclusion

There is a great need for subject matter preparation of teachers of high school mathematics. There have been significant improvements made in teacher education in the past decade, and the CUPM has contributed in large part to such gains. However, it must not be allowed to stop there. Most writers agree that a lot sill has to be done before *it can be said that all of our mathematics teachers satisfy the minimum standards set by the CUPM.

IN-SERVICE TRAINING FOR MATHEMATICS TEACHERS . s.

Need For In-Service Training
The -introduction and implementation of new and modern programs of mathematics in the high schools, and the recommendations for the preparation of teachers, made inservice teachers aware of one thing: the nature of their pre-service training and teaching experience had left them with insufficient knowledge of contemporary mathematics, and consequently they couldn't function as effectively, as they should with the new materials. ${ }^{44}$ As'a result of this awareness, in-service training (or retraining) of mather. matics teachers became a vital concern for educators and

[^8]administrators. Representative of the importance attached to continuous in-service education is the following statement issued jointly by fourileading'professional organizations:

Planning for a changing mathematics curiciculum should provide for continuous in-service education of teachers in mathematics content. . . . The mathematics program not only has changed but will continue to change. The changing nature of the program results in a need for continuous inservice education:- Teachers are increasingly recognizing that change is in the nature of current curriculum development, and that their tasks as teachers will constantly change in the years ghead. ${ }^{45}$

The vital need for in-service training of mathematics teachers is well documented in the literature. Jones \int and Coxford stress that

In-service education is a continuing need for all mathematics teachers who are faced with increasing pressure to use new methods and materials. This need is particularly striking for those teachers whose preservice training was inadequate for their jobs: . . . ${ }^{46}$

With regard to the fact that there are large numbers of unprepared iṇ-servicé teachers, Gager made the following comments:

[^9]Of course, no teacher can teach what he does not know. Thus, for the in-service teacher it is the responsibility of all liberal arts colleges and teacher, training institutions to make avail-, able to these teachers suitable planned mathematics courses. . \because. All such offerings should emphașize the concepts and principles of mathematics and demonstraṭe their mathematical structure and relationships. J̇ntil teachers are trained to the point where they are very much aware of the. fact that mathematics is a structure built from concepts, principles, and their relationships, the hope of secondary mathematics teachers using these essential components to establish understanding and insight into the powers of mathematics is almost nil: a^{47}.

Even fór adequately prepared'in-service teachers, there is a need for continuous training if teachers are to deepen their educ'ation. They must remain in contact with colleges and universities, and supplement 'the training received while they were students. ${ }^{48^{\prime}}$ A teacher must be continuously a student of his field; Smith goes so far as
to suggest that
No one can enjoy 'a full success in teaching a subject unless he, himself, is a student of that subject. The most vibrant teacher is often the most determined student. ${ }^{49}$

There is"unanimous agreement among educators, writers, and developers of curriculum materials that

[^10]continuous in-service training for mathematics teachers at all levels is vitally important. However, the little evaluative research that has been done in the area has been concentrated at the eiementary school level. Because of this lack of empirical data, there is little to guide consultants and planners in organizing in-service programs for high school mathematićs teachers. Many possibilities exist, but final decisions have to be made on what seems most feasible and expedient, and not on what empirical evidence says. ${ }^{50}$

The remaining literature concerning in-service education of ${ }^{7}$ high school mathematics teachers consists mainly of two types: (1) surveys of programs that have beèn or are being tried, and (2) suggestions' of various groups ${ }^{\text {nnd }}$ individuals concerning the composition of a successful in-service program.: The remainder of this section is devoted to a brief overview of some of this literature.
\rightarrow National Council of Teachers of Mathematics
The National Council of Teachers of Mathematics (NCTM), more than any other single group, has assumed a leadership role.in trying to keep in-service teachers

$$
{ }^{50} \text { Bradshaw; op. cit., p. } 30 .
$$

1.

up to date with new developments in mathematics, ${ }^{\text {f1, 52,53 }}$ The periodicals; The Mathematics Teacher and The Arithmetic

Teacher are the principal media through which the NCTM works. ln addition, periodic publication of materials which describe the nature of new programs, reports which aid teachers in the evaluation, and sclection of texts, yearbooks which focus on methodology and content, journals on research in. mathematics, and reports of national and local conferences hake made the NCTM a major force in continuous insérvice work.

The NCTM is also a useful instrument for overcoming "the inertia of teaching". as Adler calls it. In his view,

There is an inertia of teaching that is difficult to overcome. Teachers tend to like their old textbooks and their old lesson plans the way some of us like our old.shoes. Old shoes are so cozy and comfortable compared to new ones that haven't been broken. in. . . . ${ }^{54}$
This situation is not confincd to teachers who are poarly prepared, but to even the best prepared secondary school teachers of mathematics. Commenting on the role.of the; NCTM in overcoming this problem, and the importance of -getting more of the teachers into the NCTM, Adler says
${ }^{51}$ Ibid., p. 31.
52 Adler, op. cit., p. 38.
${ }^{5}{ }^{3} J u l i u s$ H. Hlavaty, "Towards the Golden Jubilee Year 1970," The Mathematics Teacher, 61: 622, November, 1968., ${ }^{54}$.Adler, op. cit. , p. 38.

- . the most powerful instrument we have for stirring teachers up professionally, for arousing their interest in professional improvement, and for provi'ding the means for this improvement is the National Council of Teachers of Mathematics.

The greatest single. contribution that we can make to improve the preparation of high school teachers of mathematics during the next decade is to bring them all into the NCTM. ${ }^{5}$

National Science Foundation

One of the best examples of success in the field - of in-service training of mathematics teachers is afforded by the work of the National Science Foundation (NSF) in the United States: The NSF is an agency of the Federal Government established in 1950 to advance scientific progres's. This is accomplished by sponsoring research; supporting improvements in education and fostering scientific information exchange. ${ }^{56}$

The National Science Foundation offers grants that provide supplemental mathematics instruction for teachers through institutes that meet after, school hours or on Saturdays. \hat{A}-typical in-service institute meets once, a week for periods of two to fbur hours for a full academic year. Institutes", however," are not restricted to this type alone. Some" are held in vacation periods or'

irregularly, and are not. restricted to a particular, schedule format. 'These institutes enable mathematics teachers to obtain additional knowledge of subject matter and at the', same time become familiar with changes in.mathematics course content. ${ }^{57}$ Since its conception in 1957, this' program of institutes had grown until 14,000 to 15,000 teachers, and supervisors were participating annually by the year 1968. ${ }^{58}$.

The results of research studies indicate that the NSF institutes have been instrumental in the training of many high school mathematics teachers in the years since 1957. Easterday ${ }^{59}$ reported that approximately 40 per cent of Alabama's high school mäthematics teachers' had attended an NSF institute by 1966. According to Bradshaw ${ }^{60}$ over 70 per cent of the secondary school mathematics teachers in the state of Nevada had taken at least one course at an NSF institute. Haigh ${ }^{6!}$ determined that 40 per cent of South' Dakota's high school mathematics teachers had taken advantage of the NSF programs to upgrade their mathematics
${ }^{57}$ Ibid., p. 45 :
${ }^{58} \mathrm{Haigh}$, op. cit., p. 40.
${ }^{59}$ Eastérday, op. cit., p. 39.
${ }^{60}$ Bradshaw, op- cit., p. 209.
${ }^{61}$ Haigh; op: cit., p. 96.
background in the sixties..Alspaugh ${ }^{\mathbf{6}}$ found that over 60 per cent of Missourti's mathematics teachers had attended an institute sponsored by NSF. Bertram ${ }^{63}$ determined that the improved subject matter competence of 60 per cent of Indiana's secondary school mathematics teaehers was a resul't of their participation in NSF programs.

Besearchers also report a more indirect benefit that comes from the NSF institutes. Teachers who are trained at these institutes are excellent potential sources of instruction for in-service programs in their local area. The use of these people as instructors helps lift .the pressure placed on college and university staffs to supply instructors for in-service classes in mathematics. ${ }^{64}$ Such use of these well-qualified secondary school teachers as instructors for in-service classes in mathematics met with approval and success among the teachers in Georgia ${ }^{65}$ and Nevada. 6.6

Other In-Service Activities

There is general agreement that the NSF institutes have been the main source of in-service training for mathematics teachers: However, many other smaller and lesser known projects, using a variety of techniques, are also reported. In addition to the NSF and other institutes, techniques used include faculty meetings, workshops, use of consultants, departmental or grade-level meetings, university and college courses, classroom visitations, action research, conferences and conventions, and provision of appropriate professional resources in the schools. 67

The particular technique used varies from school system tọ school system depending on the local conditions. There are obviously" many advantages and disadvantages to each technique, but as stated earlier in this section, research evidence on the merits of any particular technique is almost non-existent. What the research has shown is that the most common in-service measure for the training of'mathematics'teachers has been university sponsored programs consisting mainly of on-campus and off-campus courses. ${ }^{68}$

Memorial University of Newfoundland
Memorial, University, the only university in the

province, has been the major source of in-service training for Newfoundland teachers. . Memorial's program has grown, and now it consists of a wide variety of summer and evening courses on-campus in St. John's, summer courses at Grand Falls and Corner Brook, and off-campus evening courses in twenty-eight centers throughout the province. ${ }^{69 \text {. The over- }}$ all expansion in the Summer Program-has resulted in a large increase in the number of mathematics courses offered for credit. In 1964, only two mathematics courses, a first. year course and an introductory calculus course, were offered to students attending the. Summer Session, while in the 1973 Summer Session, six mathematics courses were being offered. The number of mathematics: courses offered as part of the regular year Evening Courses Program has increased as well, bút off campus, CUPM type mathematics courses are almosit non-existent.

The fact that 1800 students registered for offcampus courses in the past two years and 2863 students registered for summer courses is an indication of the large part played by Memorial University in|providing, in-service. opportunities for all teachers of the aprovince. ${ }^{70}$

[^11]${ }^{70}$ Ibid.

Conclusion

The previous sections of this chapter cited several research studies which indicated that a large number of mathematics teachers have inadequate preservice training in terms of the CUPM recommendations. For this reason, continuous in-service education is vitally important. In-service training isfalso important if the better prepared teachers are to keep up with the inevitable changes in the field of mathematics. The work of the NCTM and organizations like the NSF should be-given careful consideration when planning and organizing in-service programs for mathematics teachers because these organizations have been very effective in the area of in-service education for mathematics teachers.

SUMMARY O OV RLATED LITERATURE

The review of literature in this chapter has centered on three main'themes: (1) the changing mathé matics curriculum, "(2) the need for subject matter . preparation and recommendations on what this preparation should be, and (3) the implications for in-service training in the attempt to ensure that all teachers have the recommended preparation.

It was shown that the recent changes in the mathematics curriculum require that teachers of mathematics have sound subject matter preparation. As a result, a.
great deal of interest has been created in the training of teachers, and many groups have made recommendations and offered guidelines for the training of mathematics teachers:- Studies have shown that the recommendations of the CUPM have emerged as $\not x$ standard that has received widespread approva1. Studies have also shown that many teachers lack the preparation recommended by the CúpM and this has, led to the realization that if such teachers are to be trained to the minimum standard recommended by the CUPM, thére is a vital need for continuous in-service education. Con'tinubus in-service training is also necessary if the better prepared teachers are to keep. current with happenings in the field of mathematics. The type of in-service training that has received greatest approval and contrịbuted móst to the up-grading of mathematics teachers is university or institute sponsored mathematics courses:

PROCEDURE

STATEMENT OF́ THE © PROBLEM

The purpose of the study was two-fold: (1) to determine the current status of the preparation of mathematics teachers in the senior high schools of the province of Newfoundland and Labrador, and (2) to utilize information obtained to (a) make recommendations for the preservice training of mathematics teachers, and (b) formulate appropriate in-alervice measures to improve the background of the oprovince s mathematics teachers.

Some of the terms used in this study may be subject to various inferpretations. The following terms are defined. as they will de interpreted in this study: Mathematics. Teacher. Any teacher listed in the records of the Department of Education as having taught at least one mathefatićc class in Grade lof or 11 during the 1972-1973 school yeate.

Preservice Teacher Training. The training a teacher receives from a recognized institution before being employed as a teacher.

In-Scrvice feacher Training. The training or retraining of a teacher which is going on or continuing while the teacher -is employed. This training may take place after schooì hours, on weekends; during the summer, or during times when the teacher is on leave.

Level III Recommendations: The recommendations' of the Committee on the Undergraduate Program in Mathematics (CUPM) for the minimal training prográm for senior high school mathematics teachers.

Mathematics Course: Any university-level course cárrying a mathematics label, and requiring a semester to complete*. Senester llour. One hour of coursework per weck for one semester.

Type A Teachers. Mathematics teachers who have more than 24 semester hours of the coursework recommended by CUPM - for secondary school mathematics teachers. Type'B Teachers. Mathematics. teachers who have 13 to 24 \therefore semester hours of the coursework recommended by the CUPM. Type C Teachers. Mathematics teachers who have less than 13 semester hours of the coursework recommended by CUPM. Senior High School. Any school in which Grades 10 and 11 are taught. On the basis of total enrollment, each school wäs classificd as small (fess than 199 students), medium (200-499 stuḍents), or large (more than 500 studeñts) .

STUDY POPULATION

The study population was limited to those teachers who were determined to be teaching at least one class in grade 10 or 11 mathematics at the beginning of the 197.2-73 acádemic year. Since no list of the teachers fitting these descriptions was available to the researcher, the only way to determine the names of the teachers in the study population was to go through the "Day of Opening Notice" forms which teachers complete for the Department of Education. This form is completed on the first day of school, and at that time teachers are required to indicate as accurately as it is possible, how their teaching time is spent. A search of these records enabled the researcher to compile a list of 344 names of teachers meeting the above qualifications. Thus the tentative study population was 344 .

HYPOTHESES AND OBJECTIVES

The first part of the study was involved with ${ }^{\text {j }}$ determining the current status of the preparation of senior high school mathematics teachers. Major hypotheses tested incilude:

1. Based on CUPM Level. III recommendations, the preparation of mathematics teachers of large senior high schools exceeds the preparation of
mathematics teachers of small and medium senior high schools.
2. A majority of senior high school mathematics teachers in the province have had no university courses in one or more of the following areas of mathematics: analysis, abstract algebra, probability and statistics, geometry, and computer science.
3. A majority of the mathematics teachers have not had any mathematics training in the past four years.
4. A larger dercentage of Type A than Type B or Type C teachers have completed courses since they began teaching.
5. A larger percentage of Type A than Type B or Type C teachers are members of the National - Council of Teachers of Mathematics:
6. The majority of senior high school mathematics teachers do not subscribe to, or regularly read any professional mathematics publications.
7. Type A teachers express more enjoyment in teaching mathematics than do either Type B or Type C teachers.
8. The majority of mathematics teachers do not teach only mathematics.
9. A larger percentage of Type A than Type B or

Type C.teachers teach only mathematics.
10. Based on CUPM Level III recòmmendations, older .teachers are better prepared than younger teachers.
ll. Type A teachers show a greater interest in future. training in mathematics than do Type B or Type C teachers.

- 12. The majority of graduate work being done by mathematics teachers is not being done in mathematics.
The purpose of the second part of the study fas to utilize the information obtained in the first part of the study to make recommendations, regarding preservice programs and to formulate in-service measures to upgrade the mathematics background of mathematics teachers. Principal objectives in this part of the study were:

1. To determine specific courses where deficiencics in teacher preparation lie,
2. to determine the suitability of placement of mathematics teachers,
3. to determine possiblc and most desirable sources of in-service training, for mathematics teachers, and
4. to utidize information gained from two parts of the study. in the formulation of specific proposals on preservice and in-șervice education for mathematics teachers.

T

DATA NEEDED

Since very little information on the tolachers in the study population was available to the researcher from other $\begin{aligned} \text { e } \\ \text { sources, } \\ \text { it was necessary to solicit all information }\end{aligned}$ directly from the teachers. Data of the following type were collećted:

1. The number of courses completed in the various arcas of mathematics covered by the tevel III. recommendations.
2. The recency of completion of university mathematicis courses and the number of courses completed since teaching carcèr began.
3. The majors, minors, degrees and field of graduate work of the mathematics teachers.
4. The size and type of school in which the feachers teach.
5. The subject's currently being taught, the total amount of time spent teaching mathematics and the number of years of mathematics teaching experience.
6. Indication of the teachers' attitude toward future coursework, the teaching of mathematics, types of in-scrivice, membership in professional organizations and reading of relevant professional materials.

ME'TIOD OF. SECURING DATA

The size of the study population and the travel. distances involved precluded the possibility of obtainíng the needed information by personal-contact: Thus, the rescarcher chose to colloct the nceessary data by using, a questionnaire.

The questionnajre, used was a modificd form of one uscd by llaigh. in" a "similar study, in south Dakota. To cosure that the modifications had mot causod any ambiguity of questions or confusion in the instructions, the questionnaire' was submitted to a pilot group composed or graduate -students. They were asked to comment on the time required for completion, the clarity of instructions, the wording of items, etc. It"was found that the time requiréd for completion ranged from tèn to fifteen minutes', and this was $^{\prime}$ considered reasonablé Several suggestions for clarity"of wording and improvement of, forimat were received fromi,the, pilot group.

The questionnaire was then revised incorporating the minor changes suggested by the jixlot group. Ás'a final chéck the questionnaire, was reviewed by faculty

members of the" mathematics education department at Memorial University: Some minor changes were 'suggested and the questionnaire was revised accordingly. This final draft was accepted and printed for distribution to the study - population.

DISTRIBUTION AND RETURN OF QUESTIONNAIRES

On November 20, 1972 the 344 questionnaires and accompanying letters of transmittal ${ }^{3}$ were sent to the school addresses of the tentative study population. A stamped, self-addressed return envelope was enclosed with each questionnaire. Teachers were told that ho names, were necessary on the returned questionnaires since the researcher was only interested in the composite data on high school mathematics, teachers. It was hoped that keeping it anonymous would "contribute to a larger return.

At the end of two weeks, the number of returns had reached 208 or approximately 60 per cent of the original 344 mailed. Due to the rapidly approaching Christmas vacation, it was felt that a follow-up letter was necessary at this time. It was hoped that this follow-up letter would facilitate the quick return of the remaining questionnaires before the December break. The follow-up letter ${ }^{4}$ was sent

[^12]to the llead of the mathematics department in the school, pr if there was no mathematics department, to the schooi principal.: Those people were asked to remind the mathematics teacher"s in their schools (a list was supplied) to try and complete the questionnaire if they had hot already done so.

On January 15, 1973, the researcher decided to proceed witl the other phases of the study on the basis of questionnaires received up to that time. A total of 280 repligs had been received at the close-off date. Four of the questionnaires lad been returned undelivered and five were returned from teachers who were no longer teaching senior high school mathematics when they received. the questionnairc. Thus, these mine teachers ${ }^{2} \mathrm{e}$ e deleted from the study population. Hence the final study population was fixed at 335. The 271 useable returns from the study population represented a return rate of 80.9 per cent. It was decided that this rate was sufficient for the purposes of the study.

ANALYSIS OF DATA

This study lies in the domain of descriptive research, and according to Borg, ${ }^{5}$ the major purpose of

[^13]this type of research in education is to tell "what is." For this reason; much of the data produced do little more than indicate the frequency of occurrence of some condition: However, a large part of the analysis of data was concerned with an examination of the interrelation-. ships among certain conditions or events: Specifically, the major part of the analysis of data was concerned with (1) qualitative and quantitative comparisons between the courses taken by the mathematics teachers. in the study pópulation and the courses recommended by the CUPM for Levei 111, (2) differentiation in background of the teachers in the different size schools, and.(3) differentiation in background of Type A, Type B. ${ }^{\circ}$ and Type C teachers. The chi-square tést was used in testing all hypotbeses involving these comparisons, and the level of significance was set at . 05 .

CHAPTER IV

FINDINGS OF THE STUDY
The purpose of this chapter is to present the findings resulting from the data collected by means of the questionnaire: This information will be presented in four main parts. Part one will be concerned with the school environment; part two will deal with the preparation of mathematics teachers; part three will be concerned with the interests and attitude toward mathematics teaching as expressed by the respondents; and part four will concentrate on in-service training of mathematics teachers'.

SCHOOL ENVI RONMENT AND TEACHER

DISTRIBUTION

To better ounderstand some of the information about mathematics teachers that will be presented in the next. sections of this chapter, it is necessary to know some things about the schools in which; they teach. In particular, knowledge of organizational patterns, enrollment, and distribution of teachers in the different size and type schools should give depth to a study of the preparation of these teachers.

Patterns of Organization
There are two main organizational patterns of secondary schools in the province: (1) the five year central liggh schopl (Grades 7-11); and (2): the three year junior high school (G̣rades 7-9) followed by a two year senior high school (Grades 10, 1l). This two year senior high school is usually referred to as.áregional high school. A third, but rapidly disappearing pattern, is the all-grade school $(k-11)$.

Question three on the questionnaire asked teachers: to indicate the type of school in which they taught. It was found that 164 , or about 61 per cent, taught in central high schools, and only 36 per cent taught in s.chools where only.grades 10 and 11 are taught. Table, 1 shows the complete distribution of teachers in the different type school.s.

Table 1

Distribution of Teachers by School Type

Type of School	Number of Teachers	Per Cent
Regional lligh (Grades 10, 11)	98	$5 \cdots 36$
Central lligh $\left.{ }^{\text {(Grades }} 7-11\right)$	164	61
Ali-'Grade (k-11)	9	3.
Totals	271	100

School Size

Ahigh degree of centralization of school services in this provincé in recent years has significantly reduced the number of small, all-grade schools, and produced. some fairly large high schools. However, about 70 per cent of the teachers indicated that they were teaching in schools where the total enrollment is still less than 500. Table 2 summarizes the distribution of mathematics téachers in the different size schools. in the province. Tables 1 and 2 indicate that the majority of the teachers were teaching iṇ̂elatively small, central high schools. This means that they are probably required to teach a variety of subjects and grades, some of which they have little or no academic preparation to teach.

A

Table 2
Distríbution of Teachers by School Size

A.thorough investigation into the relationships between the teachers', academic background in mathematics and the size
of the schools and the courses they teach will be made later in the study fonever; the data cited above give a preliminary idea of the problem

PRIPARATION OF SENIOR MIGG SCHOOL
MATIEMATICS, TEACIIERS.

Undergraduate, Majors and Minórs

Since.most, recommendations for"the preparation of higho sdnool mathematics, teachers stipulate that, ideally, such teachers should not have less than major in mathe -- matics, question ten asked respondents to specify their' C majors, and minors. "A variety of májors and minors were reporied, but for convenience of coding and analysis, they were grouped into eight catcgoriess.

It was very alarming to learn that only 40 per cent of the respondents, had a major in mathematics, and another 45 per cent had no.major at all or major in: a. totally unrelatéd field (e.g. spciăl studies, English). Table 3 summarizes the number of majors in the "different fields of study.

Table 3

Undergraduate Majors of Mathematics Teachers

In an attempt to see if there were significant differences between the percentage of teachers in the different size schools who had majors in mathematics, the respondents were classified as mathematics or nonmathematics majors by school size. Table 4 illustrates this breakdown. It shows that. 46 per cent of the teachers in the large schqols had mathematics majors, but only 36 per cent of the teachers in the small schools had
mathematics májors. The researcher assumed the nullhypothesis that there was no significant difference in the percentage of teachers in the different size schools on the basis of mathematics or non-mathomatics majors. The. use of the chi-square test of significance showed no significant differences and thus, there was no basis far rejecting the nulls hypothesis.

Table 4
Distribution of Mathematics and NonMathematics Majors in the Different Size Schools

Hence, the nưmber of mathematics majors as opposed to nonmathematics majors is not significantly higher in the larger high schools.
' The recommendation of the American Association for the Adfancement of Science (AAAS) is that secondary school mathematics teachers should have training in supporting.
areas. It was suggested by the AAAS that study in philosophy, logic, symbolic logic, psychology, and all areas of science would be support to the mathematics teacher's background. ${ }^{1}$

Table 5 illustrates the undergraduate minors of the mathematics teachers'responding to the questionnaire. Less than 25 per cent of the respondents had minors in supporting areas and 17 per cent indicated a minor in mathematics. Sixty-nine of the 271 teachers had no minor at all.

Table 5
Undergraduate Minors of Mathematics Teachers

Field of Minor	- Number of Teachers	Per Cent
Mathematics or math composite	45	17
Physical sciences	51	19
Biological sciences	5 '	2
Psychology	$8{ }^{\prime}$	3 \%
Social studies	22°	8
Engiish	29	10.
Other languages	8	3
Non-mathematics ${ }^{\text {a }}$ composite	30	11
Other	4	2
No minor	69	$=25$
Totals	271	100\%

$\mathrm{a}_{\text {Most }}$ of these non-mathematics composites were in the areas of social studies and languages.
${ }^{1}$ See page 28.

Degrees Earined

Questions: six, seven, and eight of the questionnaire asked the teachers to list the degrees "they had earned. Nearly 64^{\prime} per cent of the 271 respondents indicated that they held a Bachelor's'degree in'education. Most of these teachers also had another Bachelor's degree; the most common being the Bachelor of Arts held by 99 teachers and the Bachelor of Science held by 64 teachers. Table 6 reports the' 'distribution of non-education bachelor's degrees held by the respondents.

Table 6
Distribution of Non-Education Bachelor's Degrees Held by Mathematics Teachers

Degree Held	Number of Teachews	Per Cent
Bachelor of Arts	99	37.
- Bachelor of Science	64	24
Bachelor of Commerce	.. 3	1
Bachelor of Arts and Bachelor of Science	3	1
No Degree	102	37
\because Totals	271	100

The data from question eight showed that very few mathematics teachers held degrees higher than Bachelor's. Only 9 per cent indicated that they had earned, a Master's
degrec or a graduate diploma. The most common of these degrees was the Master of Education held by 10 teachers and the Master of Arts held by 8 teachers. The distribution 'of non-Bachelor's degrecs earned by mathematics teachers in the different size high schools is shown in耳abic 7 .

Table 7 .
Distribution of Non-Bachelor's Degrees
Earncd by Mathematics Teachers in the Different Size Schools

Degree Earned	Size of School			Totals
	Small	Medium	Large	
Master of Arts	2	3	3	8
Master of Education	1	3	6	10
Master of Science	0	1	0	1
Master of Science and Doctorate	- 0.	1	0	1
Graduate Diploma or Certificate	2	. 0	2	4
No Degree	68	- 108	71	247.
\therefore Totals	73	116	82°	27.1

A small increase in the number of teachers of mathematics holding Master's degrees can be expected in : the near future. Approximately 20 per cent of the. respondents replied.that they had completed; or arc
completing graduate work. llowever, only 4 teachers specified mathematics as their field of graduate study, so the acquisition of a master's degree by the other
teacherswillnot necessarily mean an improvem nt in the academic mathematiceremackground of the teaghers. The most common field of graduate work reported by the mathematics teachers was education. Twenty-nine teachers or approximatcly half of those.réporting their ficld of graduate work; specified areas in education (administration, curriculum development; educational psychologỳ as their field.

Some interesting results were obtained when mathematics teachers were classified as degree or non-degrec teachers. Any teacher having at least one degrec was clossified as a degree teacher, and áteaclier with no. degrec, a non-degree teacher. It was found that only 77 per cent of mathematics teacliers were degree teachers. FFurther classification by size of school revealed that of the 61 non-degree, teachers, only 13 per cent of them were teaching.in large schools, but 46 per cent of them were teaching in small schools. Table 8 gives a summary of the number of degree and non-degrec teachers in senior high schools in thís province.

Table 8
Nümer of Degree and Non-Dégree Mathematics
Teachers in the Different Size High Schools

Classification of Teacher	Size of School			Totals
	Small	Médium	- Large	
Degree	45	- 91	74	2.10
Non-degree	28.	25	8	61
Totals	7.3	$\cdot 116$		271
A chi-square, test-of the teachers ${ }^{\circ}$ in the different size				

Period of Completion of Last, Degree
Previous data indicated that very fow (9 per.cent) of the mathematic's teachers responding to the questionnaire had. completed ligher than a Bachelor's degpee. A study of the data in Table 9 helps explain the reason for this: Of the 271 respondents, 210 were teachers holding at least onc degrec. Fiftyone per cent of these mathematics teachers indicated that they had obtained their iast degree since 1970; and only 9 per cent had earned their
last degree before 1965. As the table slows, the majority of degrec holding teachers have only recently earned their last degree and consequently they have not had the time to pursue higher degrees.

Table 9
'Pcriod'ọf Cómpletion of Last Degree by Iligh School Mathematics Teachers

Classification by CUPM Recommendations

In 1966, the panel on teacher training of the Committee on the Undergraduate Program in Mathematics (CUPM) made reeommendations for the academic preparation of senior high school mathematics teachers. ${ }^{2}$. They recommended: a mininum of 12-seniester courses as follows: three courses in analysis, two courses in abstract

[^14]algebra,' two courses in geometry, two courses, in probability and statistics, a course in computer science, and, two courses in upper-level electives.. Thus, the total coursework recommended is 36 semester hours.

Question twelve of the questionnairéasked teachers to indicate the number of semester courses they had completed in the areas of mathematics mentioned above. The semester hours equivalent for these courses was computed, and on the basis of this; teachers were classified into three categories. Type A teachers were those having more than 24 semester hours of the coursework recommended by CUPM; those who had 13 to 24 semester hours of the recbomended coursework were classified as Type B teachers; and Type C teachers were those who had less than 13 semester hours of the recommended coursework. The results of this classifićation are shown in Table 10. It shows that almost half (44 per cent) of the mathematics teachers. who participated in the study have from 0 to 12 semester hours (4 or less semester coürses) of mathematics training. Thirty-nine per cent, of the 271 teachers had backgrounds that put them in. the Type A category.

Table 10
Number of Type A, Type B, and Type C Mathematics Teachers

Classificatipn	Number of Teachers	Per Cent
Type A	105	39
Type B	. 46	17
Type C	120	44
Totals	- 271	100

Of the 105 Type A teachers, approximately 47 per cent had more than the minimum 36 semester hours of coursework recommended by CUPM. A breakdown of the Type C teachers revealed that 37 of the 120 teachers in this group had none of the coursework recommended by CUPM. This means that of the 271 respondents, slightly more than 13 per cent of them have no mathematics courses beyond'an introductory first year course.

In an effort to see if the background of teachers in larger schools was significantly better than the background of teachers in smaller schools, the distribution of Type A, Type B, and Type C in the different size schools was investigated. Table 11 shows this distribution.

Table 11
Distribution of Type A, Type B, and Type C
Teachers in the Different Size High Schools
\Leftrightarrow

Teacher Classification	Size of School						Totals	
	Sma11		Medium		Large			
	No.	$\%$, No.	$\%$	No.	$\%$		
Type A	28	38		- 34	37	45	105	39
'Type B	12	17	. 18	16	16	20	46	17
Type C	33	45	58	50	$\checkmark 29$	35	120	44
Totals	73.	100	116	100	82	- 100	271	100

$\$$. The table shows that in large high schools, a higher percentage than in small high schools are Type A teachers. The percentages of Type A teachers in large and small high schools are 45 and 38 respectively, Similarly, a smaller percentage of the teachers in large high schools than in smaller high schools are Type C teachers. A chi-square test was used to see if these differences among teachers in the different size schools were significant. The null-hypothesis assymed that there was no significant difference in the course packground classification of teachers in the smaller schools and the course background classification of teachers in the larger schools. The value of chi-square was not
significant at the .05 level and there were no grounds for "rejecting the null-hypothesis. This suggests that the course background classification of teachers in larger schools was not significantly better, than the course background_classification of teachersp in the smaller high. schools.

Recency of University Credits in Mathematics

The many new developments and changes in the high. school mathematics curriculum in later years have made it clear that the recency of university credits in mathe.matics is a matter of great importance. Although it is possible for teachers to keep up-to-date through selfstudy, meetings, workshops and the like, it is unlikely that thịs happens very often. Thus, a necessary method of keeping current is by taking university level mathematics courses. ${ }^{3}$

In an attempt to determine the recency of such credits obtained by Newfoundland's mathematics teachers, the teachers were asked to indicate the period in which they Iast completed a university mathematics course'. Table $1 \dot{Z}$ illustrates the number of responses for each of the time periods included in question 13 of the questionnaire.

[^15]Table. 12
Distribution of Mathematics Teachers According to Recency of Completion of Last University Mathematics Cơurse

Time Period	Number, of Teachers	Per Cent
Before 1965	38	14
1965-1967	... 36	- -13
1968-1970	93	- 35
Since 1970 :	104	38
. Totals	2.71	$\bigcirc 100$

As Table $\overline{1} 2$ shows, approximately 38 per cent, of the respondents had completed a university course(s) since 1970; and another 35 per cent had completed course(s) during the period from 1968 to 1970 . Thus, 73 per cent of then 271 teachers who replied to the questionnaire have had mathematics training in the past four years.. Even more encouraging.is the fact that only 38 teachers had not completed any courses since 1965.

Table 13 reports the number of Type A, Type B, and Type C'teachers who completed a university mathematics course prior to 1968 as opposed to the number of teachers in these categories who had completed a course in the period 1968-1972.

Table '13

4
Period of Gompletion of Last University Mathematics Course for. Type A, Type B, and Type C Teachers

Period of Completion	Number of Type A Teachers	Number of Type B Teachers	Number of Teachers	Totals Teach
Prior to. 1968	13	12	49	.74

The percentages of the Type A, Type B, and Type C teachers who had completed courses during the period of 1968 to 1970 were 88 per cent, 74 per cent, and' 59 per cent respectively. A chi-square test of these three groups. on the basis of the two time periods described revealed signíficant differences.

Thus, the teachers with the higher CUPM course background ċlassifićation indicated more recent completion of univérsity-level mathematics courses than did those teachers with ${ }^{-1}$ ower. CUPM classification.

Certificalte Standing of Mathematics Teachers .
Every teacher who teaches in the public schools of "this province-must be certified undeg the Education (Teacher Training) Act, 1968. Upon approval of the Teachers' Certification' Committee, a teacher is awarded a certificate to teach designated as Certificate I,

Certificate II, $:$ or Certificate VII depending on the coursework and degree qualifications of the teacher. For example, a teacher who has completed (1) an approved Bachelor's degree and a specified number of courses in education or: (2) forty semester courses for an approved four-year teacher education program with two courses in Eng1ish and eight courses' in education, would be awarded a Certificate IV: Completion of two Bachelor!'s degrees qr one Bachelor's degree and another year of coursework would qualify a teacher for Certificate V provided the specified number of education courses were completed. :A Certificate VII, the highest, issued, is not awarded ${ }^{\text { }}$ until a teacher has completed at least one Master's degree or Doctor's degree in addition to ali other coursework and undergraduate degree requirements. ${ }^{4}$

The researcher regarded the Certificate standing of mathematics teachers as another indicator of the degree of preparation of thes teachers. It would be expected that the majority of the respondents would have Cèrtificate IV or higher since a previous finding indicated that 7.7 . per cent of the teachers had earned at least one degree which is thé basic requirement for Cèr tíficate IV.

[^16]Furthermore, it would be expected that the teacher's certificate would be related to the CUPM classification since higher CUPM classification means that teachers haye completed more courses. Table 14 reports the Certificate standing of Type A, Type B, and", Type C teachers. As expected a majority (83 per: cent) of the respondents had at least Certificate IV standing. The percentages of $^{\text {a }}$ Type A, Type B, and Type Co teachers with Certificate IV or higher were 97 per cent, 94 per cent, and 68 per cent respectively. A chi-square test of these groups on the basis of Certificate standing revealed significant differences. Thus, teachers with higher CUPM classification hold higher Certificates than do teachers with lower CUPM classification.

Table 14
Certificate Standing of Type A, Type B, and Type C.Teachers

Certificate	- Type A No. \%	Type B No.	$\begin{aligned} & \text { Type C } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Totals } \\ & \text { No. } \end{aligned}$
I	1.1	00	1-	2
II	2.	$2: 4$	14 12	18, 7
III	$0 \cdot 0$	$1 \therefore 2$	$24 \quad 20$	25.9
IV	1514	$15 \cdot 34$	21 18	零5x 19
V	44,42	13: 28	¢. 33 27	90. 33
	3735	13 - 28	21.18	71 26
VII	66	$2 . \quad 4$	6.	14.' 5
Totals	105, 100	46100	$120 \cdot 100$	271100

A classification of teachers by Certificate and size. of school, in which they teach is shown in Table 15. The percentages of teachers in small, medium, and large high schools with Certificate IV or higher were 70 per cent,' 84 per cent, and 96 per cent.respectivelỳ. A chisquare test revealed that these differences were signi-: ficant, and it was concluded that teachers in the larger schools have higher Certificates than do the teachers in the smaller schools.

Table 15
Certificate Standing of Mathematics Teachers in the Different Size. High Schools.

\therefore These findings indicate that most mathematics teachers have met a minimum standard (Certificate IV) as far, as certification is concecred: However, in the light of the findings that only 40 per cent of these teachers have majors in mathematics, and only 39 per cent are classifíed as Type A teachers, it appears that these certificates "ware awarded, on the basis of something other than their mathematics preparation. : Because higher Certificates mean higher pay, it is possible that teathers took any course(s) that wouid get them a higher Certificate, and paid no attention to whether these courses were considcred useful and necessary for mathematics teachers. Thús, the conclusion that a mathematics teacher with Certificate IV or higher is adequately prepared to teach mathematics, is not necessarily justified.

Age of Respondents
A classification forype Λ, Type B, and qype C, teachers by age is shown in Tabie 16. Thedata indicate that the 271 respondents are a relatively young group. Twenty-four per cent of the mathematics teachers, who repliod to the questionnaire were under 25 yearstof age and another 54 per cont were in the 25 to 34 age group. Only. 10 por cent indicated they wore over 44 years old. Assuming that the respondents continue to teach mathematics until retirement, this means that of per cent of
them will be teaching mathematics, far another 15 to 20 years at least. Thus, a study of their backgrounds to determine how adequately they are prepared to teach present mathematics courses and cope with inevitable changes in.: the years ahead assumes added:significance. ${ }^{5}$

Table 16
Classification of Type A., Type B, and
Type C Teachers by Age

Age Group	$\begin{aligned} & \text { - Type A' } \\ & \text { 'No. } \because \% \end{aligned}$		$\begin{aligned} & \text { Type B } \\ & \text { No. } \end{aligned}$		$\begin{gathered} \text { Type C } \\ \text { No. } \quad \% \end{gathered}$		Totals	
Under, 5	31	30	11	24	22.		64	24
25-34	65	61	22	48.			147	54
35-44	4	4	8	17		18	33	12
Over 44	.. 5	5	5	11	17	14	27	10
Totals	105	1.00	46	100.	120.	100	271	100

The percentages of Type A, Type B, and Type C.
teachers who were, less than 35 years old were 91 per cent, . 72 per cent, and 68 per cent respective $1 y^{\circ}$. A. chi-square test revealed that, these differences were significant, and it was concluded that the younger teachers have a higher
${ }^{5} \mathrm{C} . \mathrm{K}$. Bradshaw, "Mathematics Teaching.in the Public Secondary Schools of the State of Nevada" (unpublished Doctoral dissertation; University of California, 1968), p. 75.

CUPM course background classification than do. older teachers

Mathematics Teaching Experience

To support the contention that the population was a very young group, teachers werc chassified according to the number of years they had taght mathenatics at the high sćhool level. By allowing 4 to 7 ycars for coni= pletion of university training; and by assuming that teachers spent no time at other jobs, it is reasonable to predict that a teacher who reaches, age 35 will haye from ten to fiftecn years of experience. The data in Table 16 indicate that 22 per cent or the 27 f respondents were 35 ycars old or older, and the data in Table, il?: indicate that approximate 1 y 25 per cent of the respondentes have 10 or more years experienco : 3 This is further evidence that the mathematics teachers in this'province are ind"eed. a very young group.

A chi-square test of, these three groups on the : basis of years of mathematics, teaching experience: showed significant differences. As was expeçted, the younger, Type 1 teacherp liad sighiticantly less experience than did the older, "Type ${ }^{W}$ and 7 ype C. teachers.

Table 17.
Years of Mathematics Teaching Experience of Type A, Type B, and Type ${ }^{C}$ Teachers

Years of. Experience	Number of Teachers			Totals,	
	Type A	Type B	\therefore Type C	No.	$\%$
None ${ }^{\text {a }}$	22	11	$\cdots 11$	${ }^{\prime} 44$, 16
1-3	31.	${ }^{19} 6$	-. 29	66	24
$4-6$	24	- 10	27.	61	23
7-9	15	4	13	32	12
$10-12$	6.	6	$\because 15$!	27	10
13-15	2	$\bigcirc 3$	4	9	3
More than 15.	5	6	21	- 32	-12
Totals	105	46	$\cdots 120$	$\text { . . } 271^{\circ}$	100

${ }^{\mathrm{a}}$ First year of teaching mathematics.

INTERESTS AND ATTITUDÉS TOWARD MÄTHEMATICS

This part of the study attempted to assess the 'interest's'and attitudes of high school mathematics teachers toward mathematics and mathematics teaching. In this regard questinons were asked relating to plạns for future coursework, enjoyment of teaching mathematics; assignment to present teaching situation, membership ino proféssional organizations, pub1ications read; and sponsoring of high school mathematics ciubs.

Findings in the previous section on 'Teacher' Preparation" indicate that only 39 per cent of the high school mathematics, teachers who participated in this study could be classified as Type A teachers. This means that on1y $39^{\circ "}$ per cent of the teachers came close to having the 36 semester hours of coursework recommended by CUPM for high school mathematics teachers. Even the teachers who had degrees, and majors in mathematics fell short. of the recommended coursework in terms of the quality of courses completed: In another part of this study, the researcher will attempt. to formulate some 'realistic' and appropriate in-service measures to upgrade the course backgrounds of these teachers. However, in order to do this it is first necessary to get some indication of the interests and attitudes of these teachers toward mathematics.

Plans for Future Cóursework

The developments and changes that are taking place in the high school mathematics curriculum require mathematics teachers at this level to keep current with the happenings thein fiel for most teachers, one of the best methods of doitig this is by taking university levei mathematics coursís. ${ }^{6}$.

Question l's of the questionnaire attempted to.

$$
{ }^{6} \text { Haigh, op. cit., p. } 84 .
$$

determine the future plans of the study population for taking more mathematics courses. In response to the question, "Do you have definite plans to take more mathematics courses in the'ncxt two years?", 89 respondents indicated yes, 176 indicated no, and 6 made no response. Those figures indicate that only 33 per cent. of the respondents, intend to keep abreast of curreht and future happenings in mathematics by taking courṣcs. A completc. tabulation of thé responses given by Type Λ, Type B, and Type C 'teachers is shown in Table 18.

$$
\text { Table. } 18
$$

Takc. More Mathematics Courses in the Next Two Years

Response		$\begin{aligned} & \text { Type } B \\ & \text { No: } \end{aligned}$	$\begin{gathered} \text { Type C } \\ \text { No.. } \% \end{gathered}$		Totals No. $\%$	
Yos	34" 32	$13 \cdot 28$	42	35	89.	33
No.	69 '66	33×72	74	6.2	176	. 65
No Reply	22	00	4	3	6	3
Totals	105. 100	$46 \cdot 100$	120	.100	271	100

The data show thrt the percentages of Type A; Type B, and Type C teachers who answered "ycs" to the question were 32 per cont, 28 per'cent, and 35 per cent respectively. A chi-squarce test revealed no. significant differences'in
the answers of the three groups. It appears that interest in taking more courses in mathematics in the next two years is not related to the present course background of the teachers. A possible reason for this apparent lack of interest in taking additional courses is that almost 40 per cent of the teachers have completed' at least 'one course since 1970, and another 35 per cent have completed courses sincé 1968 . 'These teachers possibly feel no urgént need' to take further courses, in mathematičs.

Method of Assignment to Teach Mathematics

An indirect indicator of the degree of interest a teacher has in mathematics, and mathematics teaching is the method of assignment to the present teaching situation. In an effort to determine this, question 20 asked whose request are you currently teaching mathematics?". Possiblé responses were:
a. Mine. I was hired, to teach mathematics.
b. , Mine. I was teaching other subjects. and request'ed to teach one or more courses in mathematics.
c. My administrator's. I was teathing cor hired ito teach) other subjects and hé assigned one or more mathematics courses to me: \therefore
d: Other (specify) As iwas expected, the more qualified teachers
(Type A), were all hired to teach mathematics, or requested
to do so after teaching other subjects. Most of the Type B teachers were also teaching mathematics at their own request with only 20 per cent, indicating assignment by some other method. The finding that ${ }^{34}$ per cent of the les's qualified (Type C) teachers were not hired, or did not requeśt, to teach omathematics appears to be' an indication that these teachers are lacking interest in the subject as weil as adequate coursework preparation. On the other hand, the fact that 66 per cent of Type C teachers are teaching mathematics, at their. own request is possibly an indication that these teachers wish to continue teaching mathematics, and will become bettgr prepared to do so. However, in

Table 19
Responses of Type A, Type B, and Type C Teachers to Question 20. (At Whose. Request Are You Currently $* *^{\prime}$.

Response	Type A_{l}	Type B	Type C	Tơtals	
		No. . $\frac{9}{\square}$	${ }^{\circ}$ No. . ${ }^{\text {c }}$	No.	- 6
Mine (Hired)	94. 90	- 29.63	49 - ${ }^{\text {¢ }}$	172	64°
Mine (Requested)	11^{\prime} ' 10	$8 \quad 17$	30 25	49	18
Assigned by Admini:strator	0. 0	2.	23 : . 14	. 25	$\bigcirc 9$
Other ${ }^{\prime}$	0.0	7.16	18: 15	25	\therefore
- Total ${ }^{\text {s }}$	$105 \quad 100$	$46: 100$	$120 \div 100$	271	100

light of a p̄efious finding that on $1 y .35$ per cent of Type C. teachers plan on taking more mathematics courses in the next two years, it is unlikely that there will be significant improvement in the course background of these teachers in the near future.

Enjoyment in Teaching Mathematics

A more direct indication of the interest were the responses to Question 21 . This questien was stated on the questionnaire in the following way:

Do you enjoy teaching mathematics?
a. No. I would prefer not to $\begin{aligned} & \text { neach it. . }\end{aligned}$
\square b. I dislike jit somewhat but feel that with additional preparation in mathematics, Iwould éenjoy it.
\qquad c. I enjoy teaching it; but prefer teaching other subjects.
\therefore d. I enjoy it and prefer'teaching it above all other subjects.
\therefore e. Other (specify)
Of the 271 respondents, 214 indicated that they enjoyed teaching mathematics above all other subjeceres. This represents nearly 80 per cent of the teachers who replied, and is an impressive finding in view of the', fact that less than 40 per cent of these teachers have close to the 36 semester hours of coursework recommended by the

CUPM for high school mathematics teachers. It appears that lack of adequate, subject matter preparation did not determine the degrec of enjoyment of teaching niathematics for these teachers. Only 4 of the teachers, all. Type C teachers, indicated that they felt additional proparạtion in mathematics would help them enjoy teaching mathematics. Twentysix teachers answered-"other" to this question, 'and indicated that they could not make a choice because they cnjoyed teaching several subjects equally weil (twenty "teachers), or because they had not taught other subjects and had nothing with which to compare (six teachers). Table 20 illustrates the responses given to question 21 by Type A, Type 13 , and Type C teacherd \quad. chi-square test, revealed no significant differences between the groups.

Nembership in NCTM
The value of the National Council of Teachers of Mathematics as an instrument for the continuing pro-. fessional development of mathematics teachers has been discussed in Chapter II of the present study": Botcause 'the NCTM is a leading professional organization for high school mathematics teachers, it would be expected that a large number of the respondents would be members. lllowever, the information contained in Table'21 indicates that this is not the case. Of the 271 respondẹts; only 21 indicated membership in the NCTM. . The percentages of

Table 20
Responses of Type A, Type B, and Type C Teachers to Question 21 (Do You Enjoy Teaching Mathematics?)

Key, to 'response's: a: No.. I' would prefer not ot each it.
b. I I dislike it somewhat but feel that with artditional preparation 4 lathemetics I- would enjoy it.:
c. I enjoy teaching it, but prefer teaching other subjects.
d. I enjoy it and prefer teaching it above all other subjects.
a e. Other
${ }^{\text {a }}$ other responses consisted of "Enjoy mathematics : and other' subject (s) equally well" (20 teachers), and "Enjoy it, but haven'tataught other subjects to make comparisons" (6 teachers):

Type A, Type B, and Type C teachers who indicated that © they were members of the NCTM were 12 per cent, 7 per cent, and 4 per cent respectively. The use of the chi-square 6. test revealed that theṣe differences were signifịcant. Thus, a greater number of Type A than Type B or Type C teachers were members of the National Council of Teachers of Mathematics.

Table 21
Number of Type A, Type B, and Type C Teachers Who Are Members of the NCTM

Response	Type A		Type B		Type C		Totals	
			No.		No.	$\%$	No:	\%
Yes		12	3		5.	4	21	8
No		88	43	93	115	$96{ }^{\circ}$	250	92
Totals	105	100	46		7^{20}	100	271	100

Membership•in NTA Mathematics Council

In 1970 , representatives of Newfoundland's mathematics teachers, under the sponsorship of the Newfoundland Teachers' Association, formed a provincial Mathẹmatics Council that is now an affiliate of the National Council of Teachers of Mathematics. It was hoped that this Mathematics Council would be a vehicle for the improvement of mathematics education in this province,

Qucstion 23 asked teachers to indicate if they were mémbers of the NTA Mathematics Council: The. responses, of the 27.1 mathematics, teachers indicate that the membership of the Council does not include very many high school -fiathematics teachers: Only 54 teachers indicated they were members, and most of the other teachers did not appear to kniow very much about the Council, or regard it as being very cffective. It appears; that the Council has not been ${ }^{\circ}$ very effective in publicizing its existence, objectives and aćcomplishments.

Mathematics Clubs

Question 22 asked respondents to indicate if they were the sponsor of a mathematics club in their school. Since only 8 taachers, or approximately 3 per.cen't of the respondents, indicated sponsorship of a mathematics club, it can be, concluded that this is not an activity in which high school teachers in this province engage.

Profes) ional'publications

In question 25 of the questionnaire; teachers were asked to indicate the professional publications in mathematics which they read, and to specify whether they subscribed, read regularly, or 'reád occasionally'. The data from this question were regarded as another indicator of the interest mathematics teachers have in keeping up-todate with developments in their field. Three publications
were listed by title, and space was provided for teachers. to list other tịtles that they read. Publications lisfed were The Arithmetic Teacher, The Mathematics Teacher, and School Science and Mathematics because it was felt that these would be thē ones most likely to be read by mathematics teachers.

The reading habits of mathematics feachers with respect to.the three publications listed are shown in Table 22. Fifty-two per cent of the respondents indicated

Table 22
Professional Publications Subscribed to and Read by Mathematics sTeachers.

.	Publication					
	Mathematics Teacher No. $\quad \therefore \%$		Arithmetic Teacher No.		```School Science and Mathematics No'.```	
Subscribe	35		4	2.	2	1
Read regularly	12		4	± 2	5	2
Read occasionally	- 95	35	41	15	36	1
Do not read or no response	129	48	222	81	228	84
Totals	271	100	271	100	271	100

that thoy cither subscribed to The Mathematics Teacher or read it regularly or occasionally. This finding was anticipated since. The Mathematics, Teacher is published by the NCTM, and written specifically for secondary 'schoolmathematics toachers. The Arithmetic Teacher was read by 19 per cent of the respondents, and School Science and Mathematics by $1 a \cdot p e r$ cent of the teachers

- Teachers were asked to list any other publications of a nathematical nature that they read. llowever, only a handful of teachers responded in this section of question 25. The American Mathematicaldionthly, Scientific American, and the NCTM publication, Journal of Research in Mathematics Education were each mentioned twice..

Table 23 shows a classification of the reading habits of Type A, Type B, and Type, C teachors with regard to The Mathematics Teacher. The data reveal that the percentages of Type A, Type B, and Type C teachers who did. not read this publication were 38 per cent, 39 per cent, and 61 per cent respectively. A chi-square test of these groups on the basis of reading or non-reading of The Mathematics Teacher revealed significant differences. It: was concluded that the teachers with. the higher' CUPM classification indicated a significantly higher degree of interest in this publication than diḍ the teachers with lower CUPM, classification.
discussed in rélation to Table 22 were available in their schools. The responses ta this question provide a posible explanation of why such a small percentage of mathematics teachers read these publications: many teachers do not subscribe themselves, and 5 per cent of the respondents indicated that. none of them were availabie in their schools.

Table 23
The Reading Habits of Type A, Type B; and Type C Teachers with Respect to

The Mathematics Teacher

Responsen	Type A	$\begin{aligned} & \text { Type B } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Type C, } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Type }{ }^{\circ} \\ \text { No. } \end{gathered}$
Subscribe	$18: 17$	$8 \therefore 17$	$9^{\prime}{ }^{\prime}$	35.13
Read regularly	$5 \quad 5$	$\sim 3 \cdot 7$	4	12
Read occásionally	43. ${ }^{41}$	$17 \quad 37$	3529	95.35
Do not read or nio response	39.37	18-39	72.60	$129 \quad 48$
Totals	105 100	$46 \quad 100$	120, 100	-271\% 100

IN-SERVICE TRAINING OF SENIOR HIGH
 SCHOOL MATHEMATICS TEACHERS

The need for continuous in-service training is of paramount importance for mathematics teachers. ${ }_{2}$ Haig makes the case for in-service this way:

The extent to which innovations and exemplary practices make in-roads into high schools will depend on the kind and quality of in-service education programs that are provided. To continue to learn on the job is a professional necessity for mathematics teachers. Therefore, in-service education for these teachers must receive increased attention as a means to meet the demands being 'placed upon today's teachers:
\cdots This section attempts (1) to paralyse in-service activities that have contributed. to the improved preparation of mathematics teachers, (2) to determine any specific deficiencies in the academic preparation of mathematics teachers, and (3) to identify possible sources and methods \therefore of in-service training.

Mathematics Courses Taken While Teaching

One of the bexst.indicators of the degree to which mathematics 'teachers in this province have participated in in'service training is the number of university level mathermatics courses they have completed since they first began. teaching. This information was solicited from the teachers in question 14 which asked them to indicate the number of semester courses they had completed while teaching. A;

$$
{ }^{7} \text { Háigh, op: cite., p. gl. }
$$

summary of the number of courses taken by Type A, Type B, and Type C'teachers is shown in Table 24. An inspection of the data in this table will show the extremes that are characteristic of in-service activity for mathematićs teachers. ${ }^{\prime}$ On the one hand; over 40 per cent of, the respondents have taken only one course, or no courses at all, since they began Eeaching.: At the other extreme, it is.

Table 24°
Number of Mathematics Courses Taken by Type A, Type B, and Type C Teachers. Since $\quad \because$.

noted that approximazely 40 per cent of the respondents had taken 4 or, more courses, and 30 of the teachers in this group had taken 9 or more courses since they first began teaching.

Type A and Typer teachers were quite active in terms of number of courses taken. Twenty-eight per cent, of the 105 Type A teachers, and 27 per cent of the 46 Type B teachers had completed ${ }^{*} 7$ or more courses while in service. In terms of number of teachers taking cqurses, Type B and Type C teachers were the most active. The data in Table 24 indịcate. that 67 per cent of Type B and Type C teachers took some courses, but only 57 per tent of Type A.teachers took at least one cóurse. If the 271 respondents are taken as.a.group, then the data in Table 24 show that 63 per cent of that number took at least one mathematics course since they began teaching. Thus' it "is possible that many of these teachers have reached their present level of academic preparation in mathematics by taking courses while teaching.
. It is unlikely that the sole motivation for taking additional courses in mathematics was interest in the subject per se. Such factors as salary increments that go with gaining a higher Certificate by taking additional courses must be considereḍ. Nevertheless, the findings discussed in the previous paragraphs indicate that a real effort has been made in the upgrading of the mathematics
background of ofer 60 per cent of the respondents. "However, the fact that still only 39 per cent of the teachers (the Type A teachers) have backgrounds that approximate minimal CUPM recommendations, indicates the great need for the continuation of these efforts.

Other In-Service Activity

It appears from the answers given to question 27 , (Has the school board you are now teaching with sponsored any in-service training in senior high school mathëmatics in your ${ }^{\text {schoo'l }}$ district in the past two years?), that, very. little has been done at the school district level in the way of in-service training for mathematics teachers. Only twenty teachers indicated the occurrence of any in-service activity at the school district level, 182 teachers answered "no" or omitted the question, and 69 teachers indicated that they were not aware of what had happened in the past two :years. Ten of the teachers who answered "yes" specified workshops as the type of in-service training, seven teachers reported committee meetings and three teachers. did not specify.

Teaching Assignments
If in-service measures are to be effective in improving mathematics training, they must be related to the mathematics courses the teachers teach. Thus, it is necessary to know something about the courses that are
taught, and the teaching loads of the teachers responsible. for teaching these courses. This information was obtained "from the teachers through questions 16,17 , and 18 of the questionnaire.

Whe responses of the teachers to the question concerning the mathematics courses taught indicated that. thgmain courses taught in the high schols of Newfoundland: weta algebra, géometry, trigonometry; and general mathematics. One hundred fifty-three of the 271 respondents taught grade ten algebra, 154 taught geometry in grade ten, 59 teachers taught general mathematics'in grade ten, 144 taught grade eleven algebra, 125 taught a combined geometry-trigonometry course in grade eleven; 49 taught grade cleven gencral mathematics, and 10 teachers were involved inoteaching business oriented mathematics courses to grade ten and eleven students. These figures show two things: (1) most teachers teach ajgebra or geométry, and (2) many teachers teach more than one mathemat ics ${ }^{\prime}$ course. Thus, it would be hoped that these teachers would; have preparation in many areas of mathematics.
$\because T h e d a t a j u s t ~ c i t e d ~ i n d i c a t e: ~ t h a t ~ a ~ l a r g e ~ n u m b e r ~$ of teachers were involved in teaching a, single-course (154 taughtugeometry in grade ten, 153 taught algebra in grade. ten): The data in Table 25 indicate that the majar reason for this was that 27 per cent of the respondents were teaching only high school mathemátics; the other 73 per
cent of the teachers taught other subjects in addition to, high school mathematics. Thus, more teachers were required because only one teacher in every:ten was teaching exclusively grade ten or eleven mathematics. The percentages of Type A,

Table 25
Responses of Type A, Type \& and Type C Teachers
to Question 16 (Are You Now Teaching Any Subjects Other Than Grade Ten or o - Eleven Mathematics?)

Responses	Type A	Type B	Type C	'Totals'	
	No. \%	No. . \%	No. \%		\%
Yes	6966.	$34 \cdot 74$	96. 80	199	73
No	$36 \% 34$	12. 26	2420	72	27
Totals	$105 \therefore 100$	$46 \quad 100$	120.100	27*	100

Type B, and Type ${ }^{\circ}$ C teacher,s who were teaching exclusively high school mathematics we're 34 per cent, 26 per cent, and 20 per cent respectively.' A/chi-square test of these groups on the basis of whether or not they taught courses other than high school mathematics revealed significant differences; and it was concluded that aplarger percentage of Type A than Type B or. Type C teachers were teaching only high. school mathematics.

* A further investigation revealed that 70 per cent of the sixty-nine Type A teachers who taught other courses were,'teaching (1) mathematics in lower grades, or .
(2) science. The 34 Type B teachers and ahe 96 Type C teachers who taught outside the area of high school mathematics, specified a wide varicty of other courses. Twenty three petcont wex teaching mathematics in lower grades, 16 per cent were teaching science, 31 per cent were teaching two or more non-mathematics courses, and the remainder specified other courses such as religion, foreign languages $h_{\text {, }}$ art, music, social studies, and English.

In a previous section of this chapter (p. 53) the fact that. the majority of mathematics teachers*were teaching in relatively small, central high schools was bricfly discussed. At that time it was felt that because " most of the schools were relatively sniall and contained five grades (central high schools), many of the teachers女aight be required to teach a variety of subjects and grades even if their preparation for such assignments were inadequate, In an attempt to see if this was actually the case, teacheris in the different size schools were classified on the bas'is of what part of their total teaching time was allotted for high school mathematics courses. The data Which are shown in Table 26 indicates that the percentages of teachers in small, medium; and large schools who taught, high school mathematics on a full-time basis were 14 per cent, 15 per cent, and 53 per cexnt respectively. On the other hand, the percentages of teachers in the small, medium, and large high'schools who were involved in teaching
high school mathematics for less than half their total teachịng time were 49 per cent, 43 per cent, and 11 per cent respectively. In both cases., chi-square test revealed that these differences were significant. Thus, as was

Table '26
Distribution of Teagers in the Different Size Schools According to Time Spent Teaching High School Mathematics

Per cent of total teaching time	Size of School			$\begin{aligned} & =\text { Totals } \\ & \text { No. } \quad \%, \end{aligned}$
	Small	Mėdium.	Large.	
	No.	No: . ${ }^{\text {a }}$	No: \%	
0.- 24	6	14.12	4 …	22
25-49	32.43	$36 \cdot 31$	5 -	. $73 \therefore 27$
50-74	$17 \quad 23$	3530	16°. 20	68 25
75-9.99	10. 14	$14^{*} .12$	13.16	37 ${ }^{\circ} 14$
100	18.14	$17-15$		71.
Totals	73.100	116. 100	$82 \quad 100$	271.100

expected, teachers in thẹ smaller schools spent less time teaching high school mathematics courses than did teachers in the larger schools.

The information contained in Table 27 indicates that the percentage of total teaching. time that is spent teaching high school mathematics varies according to teacher type: The percentage of Type A, Type B, and Type C teachers who were involved in teaching high school
mathematics for more, than half their total teaching time were 76 per cent, 67 per cent, and 55 per cent respectively. The use of the chirsquare test showed that these differences were significant, "and it was concluded that the teachers with the better mathematics background taught more classes of, high. school mathematics:

Table 27
Distribution of Type A, Type B, and. Type C Teachers According to Time Spent Teaching High School Mathematics

The finding that 76 per cent of the more qualified, Type A teachers were involved in teaching high schọol mathematics for more than half their total teaching time iş an indication that these teachers were being utilized to near maximum potential. However, theifact that 67 per
cent of Type B teachers, and 55 per cent of Type C toachers were teaching high school mathematics for more than half their time is cause 'for concern. It means that the teaعhing loads of 96 poorly prepared teachers consisted mainly of high school mathematics. This serves as an indication of s the shortage of well qualified senior high school mathe* matics tcacher's in this province.

Strengths and Weaknesses of Mathematics Background
' In order to formulate appropriate in-service measures for high school mathematics teachers, it is necessafy to know the strengths and weaknesses of their mathematics background. In an attempt to deternine any strengths and weaknesses, question 12 asked teachers to list the number of semester courses they had completed in specific areas of mathematics. Respondents were asked to ' list all first year courses separately since it was 覀elt that this would make it easier for them to categorize their courses. However, for purposes of classifying teachers by number and kind of courses taken, these first year courses, were ignored. . This was done because in relation to the CUPM recommendations which were u'sed in, this study, such. courses are considered part of high school mathematics and thus, a prerefisite for all other mathematics courses. By eliminating these first year courses, ${ }^{\circ}$ the researcher was able to determine the number of semester courses
completed in \cdot the arcas of algebra, analysis, geometry, probability and statistics, and computer science.' The mean number of semester hours earned in each'area'was coniputed for all teachers, and for teachers in the different. size schools. These means.were then compared with the, \} minimum semester hours recommended by CUPM in each of the areas of mathematics. The results are shown in Table 28.
\backslash The information in Table 28 indicates that the mean number of semester hours earned by all teachers in all five areas of mathematics is less than that recommended by CUPM. The mean number of semester hours earned by the 271 respondents in higher algebra was 5.43, and this is. fairly close to the six semester hours recommended by CUPM. Similarly, the mean of 8.85 semester hours accumíaigted in analysis approximates the minimum nine semester hours recommended by CUPM. Teachers in large high school had carned a mean of 6.14 semester hours of algebra, and a mean of 9.77 semester hours of analysís. Thus', the 271 respondents, and particularly those in the large high. sçools ćan be considered to have reasonably strong backgrounds in algebra and analysis.
, The mean number of semester hours earned by the respondents in the areas of geometry, probability and statistics, and computer mathematics were $1.65,2.12^{\circ}$, and 1.03 respectively. x_{0} Since these are well below the minimum recommended by the CUPM, it is obvious that the major

Table 28
Comparison of Mean Number of Semester Hours Earned in Algebra, Analysis, Geometry, Probability and Statisticis; and Computer Mathematics with the CUPM Recommendations

weaknesses in the mathematics background of the respondents were in the areas of geometry, "probability and statistics, and computer mathematics. The fact that geometry was determined to be a very weak area'is disturbing because the majority of teachers teach geometry ingrades ten or eleven.

The CUPM also recommended that teachers of high school mathematics should have completed six semester hours of upper class electives. The mean number of semester hours of upper class electives earned by the respondents was 2.09 and; as for other areas of mathematics, is well below the CUPM recommendation.
[: The distribution of total semester hours in each of the six areas of mathematics covered b by the CUPM Level. III recommendations is shown in Table 29. The cumulative totals in each area indicate that 114 teachers lacked the CUPM recommendation of six semester hours of algebra; 143 teachers did not have the CUPM recommended nine semester hours of analysis; 213. faiked to have the recommended six hours of geometry; 196 did not have the six semester hours of probability and statistics; 215 failed to meet the recommended three semester hours of computer mathematics; and 204 teachers did not have the six semester hours of upper class electives recommended by' CUPM.

A further investigation of the distribution of

Tab1e 29
Distribution of Total Semester Hours in Algebra; Analysis, Geometry, qProbability and Statistics, Computer Mathematics, and Electives

Semester Hours	Areas of Mathematics					
	Algebra	Analysis	Geometry	Probability	Computer ${ }^{\text {c }}$	Electives
	No ., Cum: ${ }^{\text {a }}$ No.	No. Cum. No :	No. Cum.	No. ${ }_{\text {Nom. }}$	No. Cum. No.	No: Cum. No:
$\therefore 0-2.99$	82.82	$72 \quad 72$	193193	$168 \quad 168$	215215	179. 179
3-5.99	$32 \quad 114$	23.95	20, 213	28196	25.240	25204
$6-8.99$	89203	48143	51.264	68 264	26266	$50 \quad 254$
\% - 11.99	15 2̀18	13155	0264	1. 265	4.270.	4258
12-14.99	$43^{\circ} 261$.	54.210	7271	5. 270	1271	13.271
15 or more	$10 \cdot 271$	61. 271	0271.	1271	$0 \quad 271$	$0 \quad 271$
,						

${ }^{\text {a }}$ Cumulative number of teachers
${ }^{\mathrm{b}}$ Probability and Statistics
${ }^{\text {C }}$ Computer Mathematićs
total scmester hours in the six areas of mathematics revealed that 30 per cent of the 271 respondents had carned no credit in algebra; 27 per cent had no'courses.in analysis; 71 per cent were without a course in geometry; 62 per cent häd no credit irmprobability and statistics; 79 per cent had completed no courses in computer mathematics; and 66 per cent had none of the recommended" electives:. This part of the investigation also revealed a startling fact:. 42 teachers of high school mathematics had completed none of the coursework recommended by CUPM, and 5 of these teachers had not complefed even a first year course.

Preferred Typos of In-Service Training

Mathematics teacherstwere given an opportunity to express their opinions regarding the type of in-service training they preferred. Table 30 summarizes the responses of 2.54 teachers who answered the question on what they considered the most desirable type of in-service training. Summer courses were preferred by 78 teachers and, evening courses by another. 74 teachers as most desirable types of in-service.training., Saturday courses, correspondence courses; and television courses wère mentioned by a small number of teachers:

The respondents also indicated that there was a great need for Memorial University to offer mathematics
courses at the off-campus centers. Over two hundyedteachers indicated that they 'felt there was a need for

such courses.
Table 30
Mathematics Teachers' Preference of Type of In-Service Training.

Type of Training \quad| Number of teachers |
| :---: |
| Showing preference |

Correspondence courses in mathematics 19
Television ccourses in mathematics 33
Summer university courses in 73 mathematics
Saturday courses in mathematics which 28would meet in a nearby location
Weekday evening courses in mathematics 74which would meet in a nearby locationOther ${ }^{\text {a }}$127:
${ }^{\text {a Other }}$ responses included :" "Go back to university for a year."'"Coursework not the answer.""In-service training needed in more than" academicsubject matter.!
,NONRESPONDENTS

The findings of this study must be interpreted with the realization that they are based on the responses
of 81 per cent" of the study population. : it is possible that the answers of the nonrespondents would not correspond closely to the answers of the respondents, and the study would be biased in favour of one of the groups. Because the 'questionnaire' was anonymous, and because there was very little data available to the researcher from sources other than the teachers themselves, no attempt could be made to determine the degree and direction of bias in this study.

In similar' studies, ${ }^{0,9}$ it has been determined that a strong bias exists in favour of the better prepared teachers. If this is the case in this study, then the findings show a more favourable picture of the mathematics preparation of high school mathematics teachers than would have been obtained with a 100 per cent response rate. Thus, the negative findings of this study assume added importance. If the bias exists in favour of the less \} prepared teachers, then the answers of the 65 better prepared nonrespondents would have shown, to some degree, a more favourable picture than was obtained from the answers of the 271 respondents. However, the 81 per cent who responded to the questionnaire, are even with the limitations mentioned above, a meaningful sample.

$$
\begin{aligned}
& { }^{8} \text { High, op cit. p. p. } 114: \\
& { }^{9} \text { Bradshaw, op. cit., p. } 65 .
\end{aligned}
$$

SUMMARY

This chapter has presented an analysis of the responses to questionnaire items concerning (1) school environment, (2) preparation of mathematics teachers, (3) attitudes and interests toward mathematics and mathematics teaching, and (4) in-service training of mathematics teachers. The major findings will be summarized in Chapter V and recommendations based on these findings will be presented there.

CHAPTER Y

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The purpose of this chapter is to present (1) a summary of the major findings revealed by an analysis of the data collected by means of the questionnairc, (2) the conclusions reached on the basis of these findings, and (3) recommendations directed toward overcoming some of the problems identified in (1) and (2).

SUMMARY

Purpose of the Study
\because This study was concerned with determining the current status of the preparation of senior high school mathematics teachers in the province of Newfoundland and Labrador, and utilizing the information obtained to. formulate appropriate in-service measures for these teachers: ${ }^{\circ}$

Study Population

During the fall term of the $1972-73$ school year. questionnaires were sent to 344 teachers who were 1 isted in the records of the provincial Department- of Education as teaching at least one course in grade ten or eleven mathematics. Nine teachers were later deleted from the
study population when it was learned that they did not meet the requirements for participation in this study. Thus, the final study population was. fixed at 335 teachers..." " Responses were received from 271 of the teachers; and this' return rate of 80.9 per cent was considered sufficient too allow the completion of the other phasesfof the study. School Environment

Organizational patterns. Two main organizational patterns of secondary. schools were noted: (1) the five year Central High School (grades 7-I1); and (2) the three year Junior High School (grades 7-9) followed by a two year Regional ${ }^{H i g h}$ School (grades $1_{0} 0,11$). A relatively unimportant pattern noted was the Al1-Grade (K-11) School. It was found that 61 per cent of the respondents were teaching in Central High Schools, ' 36 per cent' were teaching in. Regional High Schools, and 3 per cent were teaching in All-Grade Schools.

School size. Schools with a total enrollment of more, than, 500 students were classified as large high - schools, those schools with an enrollment of 200 to 499 students were classified as medium size schools; and any school with an enrollment of less than 200 students"was ${ }_{i}$ classified as a small high school. 'The data from the questionnaire revealed that 30 per cent of the respondents
taught in Large high schools, 43^{\prime} per cent of the teachers taught in medium size schools, and 27 per cent in small high schools.

Preparation of Senior High School Mathematics Teachers

Undergraduate majors and'minors. Forty per cent of the 271 respondents reported mathematics or'a mathematics composite as their undergraduate major. Over 20 per cent had no major at all, and the remainder reported majors in a wide variety of fields. The number of mathemătiọs majors as opposed: to non-mathematics majors was, not significantly greater in the larger high schools.: ${ }_{\varphi}$
"The American Association for the Advancement of Science (AAAS) recommended that the minors of high qchool mathematics teachers be in supporting axeas (philosophy, logic, psychology; all.areas of science) because this would lend support to the background of the teacher. Responses indicated that 17° per cent had a minor in mathematics, and 25 per cent of the teachers had minors in areas that could be considered as supporting areas for mathematics.

Degrees earned: Seventy-seven per cent of the respondents indicated that they had earned at least one degree. The most common degree reported whe achelor's in education which was held by 64 per cent df the teachers.

In addition, ninety-nine teachers had earned a Bachelor of Arts, and sixty-four teachers held a Bachelor of Science degree. On1y 9 per cent. of the 27 i respondents reported. their Mighest degrée to be a Master's or Doctor's degree, When teaghers were classified. asidegree teaclfers or noydegree teachers, it was found that there was a signifi-cantiy greater number, of degree teachers in the larger high schools than there was in the smaller high schools: $\quad \therefore$.

Period of Completion of last degree. The majority of degrec teachers, have had little time to pursue higher degrces because they have only recently earned théir last degre $\dot{e} . \quad$ Fifty-one per cent of the 210 degree teachers indicated that they had éarned their last degree since 1970, and. forty per 'cent had earned their last degree in the period from 1965 to 197.0.

Graduate work: Fifty-four teachers'reported that "
"ompleted, or are now completing graduate work. Twenty-nige teachers specified education as their field of graduate work, four teachers specified mathematics, and the others named a wide variety of areas.

Classification by CUPM recommendations. The CUPM Level III"récommendations ${ }^{1}$ were used as guideline's to

[^17]classify the respondents as Type A, Type B, or Type C teachers. Mathematics teachers who had completed more than 24 semester hours of the coursework recommended by CUPM were classified as Type A teachers; those who had 13 to 24 semester hours of the coursework recommended by CUPM wiere classified as Type B teachers; and those teachers who had zero to 12 semester hours of the coursework recommended by the CUPM were classified as Type C teachers. The percentages of mathematics teachers classified as Type A, Type B, and Type C teachers were 39 per cent, 17 per cent, and 44 per cent respectively. A chi-square test revealed that the course background classification of teachers in the larger high schools was not significantly better than the course background 'classification of teachers in the smaller high schools., '

Recency of university credits in mathematics. The recency of completion of university courses in ma'thematics is an indicator of how well teachers are keeping abreast of new developments in mathematics. It was found that 73 per cent of the 271 mathematics teachers had completed courses in the period of time from 1968 to 1972 . The percentages of Type A, Type B, and Type C teachers who had completed mathematics courses in the time period from 1968 to 1972 were 88 per cent, 74 "per cent, and 59 per. cent'respectively. A chi-square test of these groups on
the basis of taking' courses from 1968 to 1972 as opposěd to taking mathematics courses prior to 1968 reveaĺed significant differerices in favour of the teachers with the, higher CUPM course background classification.

Gertíficate standing of mathematics teachers. The Education (Teacher Training) Act (1968): of Newfoundland gives the Teacher Certification Committee the authority and responsibility of certifying all teachers who teach in the public schopols of this province. Teachers are 'awarded a Certificate to teach designated as Certificate I, Certificate II, . . or Certificate VII depending on the coursework and degree qualifications of the teacher. The certificate standing of mathematics teachers was regarded as'another indicator of their depth of pre-. paration. The percentages of Type A, Type B, and Type C teachers who had Certificate IV or higher were 97 per cent, 94 per cent, and 68 per cent respectively. A chisquare test revealed that a larger percentage of Type A than Pype B or Type C teachers hold Certificate IV or higher. A chi-square test also showed that the Certificate standing of teachers in the larger high schools was significantly higher than the Certificate standing of teacheŕs in the smaller high schools. It was feit that the relatively high Certificate standing of the teachers (as a group) had been attained on the basis of courses
other than mathematics.

Age of respondents. It was found that the 271 respondents were a relaṭively young group. Twenty-four per cent of them were under 25 years old and another 54 per cent were in the 25 to 34 age group. Only 10 per cent of the respondents were more than 44 years old. The percentàges of Type A, Type B, and Type C teachers who were less than 35 years old were 91 per cent, 72 per cent, and 68 per cent respectively. A chi-square test showed that 'the younger teachers had a higher CUPM course background classification than did the older teachers. It was noted that since the majority of the respondents were relatively young, they had many years of teaching ahead of them. Thus, a study of their preparation to teach mathematics assumes' added significance. ${ }^{\prime}$

Mathematics teaching experience. The number of years of mathematics teaching experience of the respondents supports the contention that they are a relatively young group. Seventy-five per cent of the respondents had less than 10 years of mathematics teaching experience and 40 per cent had less than four years experience. The younger, Type A teachers had significantly less mathematics teaching experience than did the older, Type B and Type C teachers.

1 Interests and Attitudes Toward Mathematics
In order to make proposals, for in-service training, it was necessary to get some indication of the interest and attitudes of teachers toward mathematics and mathematics teaching.

Plans for future coursework. Only thirty-three per cent of the respondents indicated that they had definite plans to take more mathematics courses in the next two years: This was regarded as an indication that only onethird of the mathematics teachers in the high schools. planned to keep abreast of current and future happenings in mathematics by taking more university mathematics courses.

Method of assignment to tèach mathematics. 'An indirect indicator of the interest a teacher has in \dot{a} particular subject is whether or not it was the teacher' β Wish to teach that subject. Eighty-two per cent of the respondents reported that they were hired to teach mathematics, or that they requested to do so after teaching other subjects. Only 18 per cent of the teachers indicated that they had been assigned to. teach mathematics even. though they had not requested the assignment.

Enjoyment in teaching mathematics. Nearly 80 per cent of the 271 respondents indicated that they enjoyed
teaching mathematicis above áll other subjects.. This' seems rather starting in light of the fact that only 40 per'. cent of the respondențs had a major in mathematics, and only $3 \dot{9}$ per cent (Type A teachers) had close to the 36 semester hours of coursework recommended by CUPM for high school mathematics teachers. Only 4 teachers felt that. this lack of preparation prevented them from enjoying the teaching of: mathematics.

Membershidp in NCTM. Membership in organizations related to one's teaching ficld provides another means for professional growth of teachers. Since the National Council of Teachers of Mathematics (NCTM) is a leading professional organization fgr mathematics teachers; it was expected that many of the respondents. would be members. It was disappointing to ndte that only 8 per cent of the respondents had membership in the NCTM. A chi-square test revealed that a larger number of Type A than Type B. or Type C teachers were members of the NCTM.

Membership. in NTA Mathematics Council. The Mathematics Council of the Newfoundland Teachers' Association (NTA) is a provincial organization for mathe-matics teachers at all leyels. It was found that many teachers werenot even aware of thelexistence or purposes of this Council. Only 20 per cent of hịgh school mathematics teachers judicated that they were members of the

Mathematics Council.

Mathematics Clubs. Respondents were asked to indicate if they sponsored a mathematics club in their school. Only 8 teachers stated that they were engaged in this activity.

Professional publications. Mathematics teachers were asked to list any professional publications in mathematics which they read. Almost 50 per cent of the res pondents failed to indicate a single publication which they subscribed to or reqd. Fifty-two per cent of the mathematics teachers indicated that they subscribed to or read occasionally The Mathematics Teacher, 19 per cent of the teachers indicated The Arithmetic Teacher, and 16 per cent indicated School Science and Mathematics. A chisquare test revealed that the teachers with the higher CUPM course background classification showed a significantly głeater degree of interest in The Mathematics Teacher than did the teachers with lower CUPM classification.
.
In-Service Training of Senior High School Mathematics Teachers

If well, prepared teachers are to remain up-to-date, and if forly prepared teachers are to improve their backgrounds in mathematics to an acceptable standard, there is a great need for planned programs of in"-service education for all mathematics teachers. The data produced ,
in this section provided basic information which was used to make proposals for in-service education for mathematics teachers.

Mathematics courses taken while in service. In-
service activity, as measured, by the number of mathematics courses taken since teaching c'areer began, has been characterized by extremes in this province. Thírty-seven per cent of the respondents have taken no courses, 40 per cent of the teachers have taken four or more courses, and ill per cent have taken nine or more courses since they first began teaching. These findings indicate that.a great effort has", been made by teachers to improwe their 'mathematics background, but since there are'still many teacliers who have nothing close to the CUPM reGommended background, these efforts must, continue.

Other in-service activity. Only 20 teachers indicated the occurrence of any in-service activity at the school district.level. The most common type of inservice training specified by these 20 teachers was workshops.

Teaching assignment"s. The mathomatács courses. taught,most frequently by the respondents were algebra, geometry, trigonometry, and general mathematick. Grade X aigebra was taught by' 153 teachers, Girade X geometry
was taught by 154 teachers; Grade X general mathematics by 59 teachers, Grade XI algebra"by 144 teachers, a combined geometry-trigonometry course in Grade XI was taught by 125 teachers; and Grade 'XI general mathematic's was taught by 49 teachers. This data indicated that most teachers were teaching more than one course; the most common being algebra and geometpy.

Only 27 per cent of the 271 respondents were teaching exclusively grades. X or XI. mathematics. The other 73 per cent taught one or more courses in areas other than high school mathematics. A chi-square test revealed that a larger pofcentage of Type A than Type B or Type C teachers were teaching only high school mathematics courses.

It was found that the size of the school was a determining factor in whether or not teachers taught courses other than high school mathematics. The percontages of teachers in small, medium, and large high schools who taught only high school mathematicis courses were 14 per cent; 15 per cent, and 53 per cent respectively. This indicates that possibly the organizational patterns in the smalle'r schools dictate that teachers' must teach other coursés in order to make up full class loads.

A further investigation of the class loads of mathematics teachers"in high schools revealed that the percentages of Type A, Type B, and Type. C teachers who
were teaching high schdol mathematics courses for more than half their total teaching time were 76 per cent, 67 per cent, and 55 per cent respectively. This means that the class loads of many poorly prepared teachers consisted mainly of high school mathematics coursses. This is an indication of the shortage of' well qualified mathematics teachers at the high school level.

Strengths and weaknesses of mathematics background. It was found that the 271 respondents have reasonably strong backgrounds in algebra and analysis; but are very. weak in geometry, probability and statistics, and computer mathematics. The above conclusions were based on the following findings: (1) 114 teachers did not meet the CUPM recommendation of six semester hours of algebra; (2) 143 teachers did not meet the CUPM recommendation of nine semester hours of analysis; (3) 213 teachers did not meet the CUPM recommendation of six semester hours of geometry; (4). 196 teachers did not meet the CUPM recommendation of six semester hours of probability and statistics; and (5) 215 teachers did not meet the CUPM recommendation of three semester hours of computer mathematics. Further investigation of the distribution of total semester hours earned by the respondents revealed that 42 teachers of, high school mathematics had not compieted any of the coursework recommended by the CUPM.

The fact that geometry was determined to be a weak area is very alarming because geometry is one of the mathematics course most frequently taught in Newfoundland high schools. The finding .that. 42 teachers have absolutely no background in mathematics is equally alarming. Both findings serve to point out the urgent need for in-service training in all areas of mathematics, especially geometry. An investigation of the mean number of semester hours'earned by teachers in the different size. schools revealed no consistent patterns. Only in the areas of algebra and analysis was. the mean number of semester hours earned by teachers in the large high school significantly greater than the mean number of semester hours earned by teachers in the smaller high schools. The mean number of semester hours earned by the teachers in the large high schoóls in algebra and analysis also exceeded the CUPM recommendation for algebra and analysis.

Preferred types of in-service training. Summer unizersity mathematics courses and weekday evening courses were indicated most frequently by the respondents' as the most desirable types of in-service training. Correspondence courses, Saturday courses, and television courses ranked low as desirable types of in-service training. Over 200 of the respondents indicated that there was a need for Memorial University to offer mathematics courses at the

CONCLUSIONS

1. There is a critical shortage of well prepared senior high school mathematics teachers in Newfoundland. This shortage is evidenced by the findings that (a) sixty per cent of the teachers did not have a major in mathematics, (b) sixtyone per cent of the respondents had earned less than 25 semester hours of mathematics credits, (c) forty-two teachers had not earned a single. semester hour of mathematics credit; (d) only four teachers had completed, or were completing, graduate work in mathenatics, (e) the majority of the teachers lack preparation in one or more of the areas of mathematics, and (f) seventy-one per cent of the high school mathematics teachers had earned no credit in geometry, a course that the majority of them taught.

2: The shortage of adequately prepared teachers was evidenced in all size schools. Only in a few, instances was-it found that the teachers in the larger high schools were better prepared than the teachers in the smalker high schools.
3. There are serious gaps in the mathematics.background of the majority of the teachers in all
areas of mathematics, especially geometry, probability and statistics, and computer mathematics. As a result of these gaps;" very féw. teachers have the exact background that is recommended by the CUPM for teachers of high school 'mathematics. Furtherimore, only 39 per cent of the teachers, the Type A teachers, can be considered to have backgrounds that even approximate, the background recommended by the CUPM.
4. . As a group, the better prepared, Type A teachers had the following characteristics: (a) they were all teaching mathematics at their own request, (b) they were the youngest teachers, and consequently the least experienced, (c) they had higher Certificate standing than the other groups, (d) they showed more interest in the NCTM and its publications than did the poorly prepared teachers, (e) they had more recently completed university training in mathematics than the other groups, and (f) they all enjoyed teaching mathematics.
5. The number of teachers with inadequate background in mathematics is not likely to decrease soon because the majority (67 per cent) of the teachers have indicated that they do not intend to take mathematics courses in the near future.
6. The majority of the respondents have shown little
professional orientation toward mathematics through membership in professional organizations and reading professional publications.
7. ' In-service opportunities for high school mathematics teachers were found to be imited to university on-čampus courses. No eviḍence was \therefore found of a planned program of in-service at the school diştrict level.
8. A great deal of misassignment of teachers was noted. . It was found that only 27 per cent of the respondents were teaching exclusively high school mathematics: This means that some of the better prepared teachers were teaching other subjects, and less qualified teachers had to be brought in to teach the mathema.tics courses that could have been taught by qualified teachers if they hadn't been assigned to other areas.
9. The majority of the teachers were found to be teaching in relatively small. (enrollment less than 500), central high schools (grades 7-11):
10. The majority (80 per cent) of the teachers indicated that they enjoyed teaching mathematics above all other subjects. Only 4.teachers considered that their lack of preparation prevented them from enjöing mathematigs teaching.
11. The respondents are a relatively young group.

Thus, whatever training they have is recent, and their experience has been with teaching modern mathematics'.

12: The majority (73 per cent) of the teachers have completed mathematics courses in the past four years, and 63 per cent have taken at least one course since they first began teaching. This is an encouraging finding because it indicates that most teăchers have shown some interest in trying to improve their mathematiss background.
13. The degreel qualifications and Certificate standing of the respondents, is relatively high in relation to the amount of mathematics coursework completed. This leads to the cofnclusion that these degrees, and Certificates we awarded on the basis of $: \cdots$ other, non-mathematics coursework, because it was found that the majority of the mathematics teachers hád several degrees and high certificates, but little academic mathematics training.

PECOMENDATIONS ${ }^{3}$

The summary in the first part of this chapter has served the first purpose of the study--to determine the current status of the preparation of senior high school mathematics teachers in Newfoundland and Labrador. The recommendations which follow will be directed toward the second purpose of the study-to formulate appropriate in service measures to improve the preparation of senior high school mathematics teachers in this province.

1. It is recommended that all concerned-high school mathematics teachers, school administrators, school board officials, Department of Education officials, Newfoundland Teachers' Association, Memorial University--ße informed of the great need for inservice training programs for high school mathematics teachers: An essential ingredient of any program of in-service training is a realization of the need for such a program. This study has shown that thexe are many' poorly prepared high school mathematics teachers in the province's sfoools, and that a real need for in-service programs does exist.
2. It is recommended that in-service training in algebra and geometry be initiated as, soon as possible. It was found that training in these areas is very ${ }^{\circ}$ essential because most teachers teach alpgebra and geometry at the high school level: Teachers in these areas must be made aware of how limited their preparation is, and of the importance of upgrading. If. in-service neasures to up.- grade these teachers cannot be ${ }^{\text {a }}$ provided at the school district level, then some form of assistance should be provided to allow them to get the necessary training at
a university.
3. It is recommended that a Mathematics Consultant awith responsibility for secondary sçool mathematics be included as part of the staff of the provincial Department of Education. It is also recommended that school boards, whenever possible, should hire a Mathematics Consultant as part of their supervisory staff. . These consultants should be individuals who have (a) a sound background in all areas of . mathematics', (b) knowledge of current trends and happenings in mathematics education, and
(c) experience in the teaching of mathematics at the high school' level. Such people could provide the necessary guidance and leadership in organizing and operating successful programs of in-service training
: for high school mathematics teachers.
4. . It is recommended that Memorial University through its 'division of Extramural Studies, offer mathematics courses particularly in algebra and geometry, at its off-campus centers. This could possibly be done by making use of the ETV facilities and/or the well qualified teachers referred to in the next recommendation.
5. It is recommended that teachers who have above average mathematics preparation be trained and utilized as instructors and directors of in-service
training programs in their local school districts. This study has shown that some highiy trained teachers, teachers with from 50 to 75 semester hours of mathematics, are teaching in the high schools of this province. Such teachers are a potential source of instructors for localized programs of in-service.
6. It is recommended that small study groups be formed in areas where location and distance make it impossible for teachers to take formal courses during - the schpol year. These study sessions could serve to help teachers up-date their preparation and also stimulate some interest in the reading of relevant professional publications.
7. rIt is recommended that all schools which are large enough should have a Mathematics Department, and as. the head of that department, a'well qualified mathematics teacher. This person in addition to organizing and administering, the high school mathematics program could possibly assist in the hiring and assigning of mathematics teachers and try to ensure that qualified mathematics teachers are used to maximum potential. The department head could also be a leader and-organizer of in-service activities, leading discussions, organizing study sessions, encouraging teachers to keep informed and.up-to-date by organizing and maintaining a library of
professional mathematics materials in the school, keeping teachers infbrmed on curriculum reform, and most of all, acting as a liaison between the school and the other levels of education in the province.
8. It is recommended that high school mathematics teachers have access to the publications of the . National Cquncil of Teachers of Mathematics (NCTM). Such NCTM publications as The Mathematics Teacher are a valuable resource for the teacher who wishes to keep current with happenings in the field of mathematics and they should be available to teachers in all schools.
9. It is recommended that all high school mathematics teachers be well informed on all matters relating to high school mathematics and high school mathematics teachers. Keeping teachers well informed should be one of the main functions of the NTA. . Mathematics Council:
10. It is recommended that teachers who have limited, preparation in mathematics but wish to continue teaching mathematics should up-grade their mathematics background as soon as possible. If they; refuse to up-grade, then they should be replaced as soon as more qualified teachers are available to fill their positions.

The final group of recommendations are not directly concerned with in-service training but have considerable relevance in that they suggest improvements in other ateas that watuld do much to reduce the number of unprepared mathematics teachers and thus reduce the need for in-service measures.
11. It is recommended that a real effort be made by personnel responsible for assigning mathematics teachers in high'schools to see that the well :qualified, teachers are used to maximum potential in teaching mathematics. This study has shown that many teachers have been misassigned. Highly qualified' mathematics teachers have been assigned. to teach in other areas, and because there was such a limited-number of qualified teachers, other less prepared teachers 'had to be assigned to teaḍh high school mathematics courses. It would appear that the number of poorly prepared teachers who teach high school mathematics could be reduced by reassigning them to areas for which they are more qualified and replacing them by the qualified teachers who are teaching in other areas.
12. It is recommended that the 42 teachers who have not earned a single credit in mathematics be replaced. This can probably be done by adopting more careful assignment practices as discussed in
the previous recommendation.
13. It is recommended that personnel responsjble for hiring mathematics teachers do all in their power to see that all high school.mäthematics teachers hired in the future have at least a major. in mathematics.
14. It is recommended that Memorial University reexamine its course requirements for mathematics majors, and if necessary change them to ensure that a prospective teacher who completes a mathematics major will have as a minimum, the trainitg recommended by the CUPM. This study has shown that many teachers, even those with a major in mathematics, lack sufficient coursework in all areas of mathematic's, especially geometry, probability and statistics, and computer mathematics. This is primarily a result of the fact that many of the courses in algebra and analysis, and all courses in geometry and probability-statistics are optional courses, and courses in computer mathematics cannot be used to fulfill the requirements of a mathematics major. If these requirements for a mathematics major were brought more in-line with the recommendations of the CUPM, it would reduce the number of inadequately prepared mathematics teachers entering the teaching force. Changes.in the
requirements might also mean that more mathematics teachers would qualify for; and participate in, graduate programs following their undergraduate training.
15. It is recommended that Teacher Certification requirements and procedures be re-examined with a 'view to improving them and ensuring that teachers will teach only in areas for which they are academically prepared. Under the present certification system a teacher is not certified as a teacher of a particular subject but is. . certified as a teacher who will be assigned to teach some subject by an administrator in a. school. Thus, a teacher can end up teaching a subject for which he has no preparation. Some kind of. Certification or Accreditation system should be adopted that would ensure that teachers of mathematics meet a minimum, standard such as that recommended by the CUPM before they are Certified to teach mathematics.

Suggestions for Further Research.

While this study was concerned with the subject 'matter preparation of mathematics teachers and its implications for in-service education; there are other areas of concern which came to light during the course of
the study that might be considered appropriate for further research: The researcher offers the following suggestions:

1. The study produced evidence of a great deal of misassignment of teachers in relationship to mathematics instruction. A study of the specific ciauses of such misassignment and of ways to remedy it - could prove to be very useful.
2. This study was only concerned with senior high school mathematics:teachers. A study of the sub-l ject matter"preparation of mathematics teachers at other levels (elementary and junior high school) would be desirable because it would provide a complete picture.
3. An investigation into the possibility of adopting some kind of accreditation system: in this province should be undertaken. Such a system would ensure that teachers teach only in areas for which they. are prepared.

Concluding Remarks

This study has shộn thatarmajority of senior high school mathematics teachers in Newfoundland are not adequately prepared to teach mathematics. They lack sufficient coursework in most areas of mathematics and in most cases do not meet the minimum recommendations of the CUPMM. This is a serious situation and immediate, well-.
planned in-service measures are necessary if the background of teachers is to be: upgraded to even minimum standards.

$$
7
$$

BIBLIOGRAPHY
$\xrightarrow{1}$

BIBLIOGRAPHY

A. BOOKS

Bórg, Walter R. Educational Research, An Introduction. New York: David McKay Company, Inc., 1965.

Campbell, William G. Form and Style in Thesis Writing. 3d ed. Boston: Houghton Mifflin Company, 1969.

Commission on Mathematics \therefore Program for College Preparatory, Mathematics. New York: College Entrance Examination Board, 1959:

Davis, Robert B. The Changing Curriculum: Mathematics. Washington, D.C.: Association for Supervision and Curriculum Development of the National Education Association, 1967.
Downie, N. M., and R. W. Heath. Basic Statistical Methods. 2nd'ed. New York: Harper and Row, Publishers, 1965.

National Council of Teachers of Mathematic $\$$. A History of Mathematics Education in the United States and Canada. Thirty-second Yearbook. Washington, D.C.: National Council of Teachers of Mathematics, 1970.

National Science Foundation. Guide to Programs. Washington, D.C.: National Science Foundation, 1968.

National Society for the Study of Education. Mathematics Education. Sixty-ninth Yearbook, Part I. Chicago: University of Chicago Press, 1970.

Price G. Baley. "Progress in Mathematics and i.ts
Implications for the School's," The Revolution in School Mathematics. Washington, D.C.: The National Council of Teachers of Mathematics, 1961.

Report of the Cambridge Conference on School Mathematics. Goals for School Mathematics. Boston: HoughțonMiffin Co., 1963. vir

Seyfert, Warren C. (ed.). The Continuing Revolution in Mathematics. Washington, D.C.: National Council ofoTeachers of Mathematics; 1968.

B. ARTICLES IN PERIODICALS *

Adler, Irving, "Criteriadof Success in the Seventies," The Mathematics Teacher; 65: 38-9, Japnuary, 1972.
Al ppaugh, J.N. "A Survey óf Secondary Mathematics Programs in Missouri With Emphasis on Coftent, Procedures and. Preparation of Teachers," Dissertation Abstracts, 26: 5259, 1965.
American Association for the Advancement of Science. "Preparation for High School Science Teachers," Science, 131: 1028, April, 1960.

Brown, J. A., and J". R. Mayor. "The Academic and-Professional Thaining of Teachers of Mathematics," Review of educational Reseärch, 31: 298, June, 1961.
Diennes, Zoltan P. "Comments on Some Problems of Teačher Education in Mathematics," The Arithmetic Teacher, 17: 263, March, 1970.

Fehr, Howard F. "Mathematics Education for a Scientific, Technolagiçal, and Industrial Society,". The Mathematics Teacher, 61: 67.0, November, 1968.
"The Secondary School Mathematics Curriculum Improvement Study Goals - The Subject Matter - . Accomplishments," School Science and Mathematics, 70: 281-291, April, 1970.

Fisher, J. J'. "A Survey to Determine the Extent of Implementation of CUPM Recommendations," Dissertation Abstracts, 28: 1324-25, 1966.

Gager, W: A. "Is Your College Giving Proper Training for Teachers of Secondary School Mathematics?", The Mathematics Teacher, 55: 493; October, 1962.

Hlavaty, Julius H. "Towards the Golden Jubilee Year - 1970," The Mathomatics Teacher, 61: 622, November, 1968.

Jones, P. S., and A. F. Coxford. "Academic and Professional Preparation of Secondary School Mathematics Teachers," Review of Educational Research, 34: 322, 'June, 1964: ?

Kline, Morris. "A Proposal for the High School Mathematics Curriculum,", The Mathematics Teacher, 59: 322-330, April, 1966.

Lyng, Merwín J.' "Factors Relating to a Teacher's Knowledge of Contemporary Mathematics," The Mathematics Teacher, $61: . .695$, November, 1968.

Maclane, Saunders. "The Impact of Modern Mathematics," \therefore The Mathematics Teacher, 49: 66, February, 1956.

McAul'ay, J. D. "Training and Retraining óf Mathematics and Science Teachers," Education Digest, 30: 29, September, 1965.

Secondary School Curriculum Committee. "The Secondary School Mathematics CuriricuIum," The Mathematics Teacher, 52: 414-15, May, 1959.

Smith, Lehi: "Continual. In-Service Education," The Mathe matics Teacher; 61: 535, May, 1968.

Smith', Shelby D. "A Survey of Mathematics Teachers in Illịnoịs," Dissertation Abstracts, 27: 2091, 1966.

C. REPORTS

Americian Association for the Advancement of Science (AAAS), and the National Association of State Directors of Teacher Education and Certification. . Guidelines and Standards for the Education of Secondary School Teachers of Science and Mathematics. Washington, D.C.: AAAS, 1972.

Committee on the Undergraduate, Program in Mathematics. Eleven Conferences on the Training of Teachers of Elementary School Mathematics. Berkeley, California: Mathematical Association of America, 1966.

- Recommendations on Course Content for the Training of Teachers of Mathematics. Berkeley, California:
Mathematical.Association of America, 1971.
- Recommendations for the Training of Teachers of Mathematícș. Berkeley, California: Mathematical Association of America, 1966.
- Recommendations for the Training of Teachers of Mathematics, A Summary. Berkeley, California: Mathematical Association of America, 1961.

Easterday, K. E. "Study of Mathematics Teachers in Alabamaㄷ Final Report." U.S. Department'of Health, Education, and Weolfare, ${ }^{\text {O }}$ Office of Education 1967.

National Council of Teachers of Mathematics. Administrative Responsibility for. Improving Mathematics Programs. Report of the Joint Commission on the Administration of Mathematics Programs., Washington, D.C.: National Council of Teachers of. Mathemateics, 1965..

D. ${ }^{*}$. UNPUBLISHED MATERIALS

Bertram, Charles J". "Seilected Characteristics of Mathe: matics Teachers in Indiana Pubiic Secondary. Schools.." Unpublished Doctoral dissertation, Indiana University; 1971.

Bradshaw, Charles K. "Mathematics Teaching in the Public ," Secondary Schools of the State of Nevada." Unpublished Doctoral dissertation, University of California, Berkeley, 1968.
Haigh, Williaṃ E. .. "Preparation of Senior High School Mathematics Teachers in South Dakota:" Ünpublished Doctoral dissertation, Indiana University, ,1970.

Nelsoñ; Donald 0. "A Survey of Selected "Characteristics of Alberta. Mathematics Teachers." "Unpublished Master's thesis, University of Calgary; 1969.

E. OTHER MATERIALS.

Memorial University of Newfoundland. Calendar 1972-73. ~ St. John's, Nfld.: Memorial University, 1972:

- Extramural Studies, Off-Campus Coürses, 1973-74. St. John's, Nfld.:. Memorial University, 1973.

Neŵfoundland Teachers' Association. 'Hảndbook, 1972=73. St: John's, Nfid.: The Newfoundland Teachers' Association, 1972.

APPENDIX A

RECOMMENDATIONS FOR LEVEL III

(Teachers of high school mathematicts)

Prospective teachers of mathematics beyond the elements of algebra and geometry should complete a major in mathematics and a minor in some field in which a substantial.amount of mathematics is used. This latter should be selected from areas in the physical sciences, biological sciences, and from the social studies; but the minor in each case should. be pursued to the extent that the student will have encountered substantial applications of mathematics.

The minimum requirements for high school mathematics 'teachers should consist of the following:
(A) Three courses in analysi's.
(B) Two courses in abstract algebra. The courses should include linear algebra as well as the study of groups, rings, and fields.
(C). Two courses in geometry beyond analytic geometry. These courses should be directed at a higher understanding of geometry of the school curriculum.
(D) Two courses in probability and statistics.
(E) In view of the introduction of computing courses in the secondary school, a course in computer science is highly. recommended.
(F) Two upper-class elective courses. A course in the applications of mathematics is partiocularly. desirable. Other courses suggested are introduction to real variables, number theory, topology, or history of mathematics. Particular attention should be given to laying groundwork for latter graduate study. ${ }^{1}$
${ }^{1}$ Committee on the Undergraduate piogram in Mathematics, Recommendations for the Training of Teachexs of Mathematics (Berkeley, California: Mathematical Association of America, 1966), pp. 9-10.

APPENDIX B

QUESTIONNAIRE

Check the appropriate blank, or answer as otherwise indicated.

1. Age: under 25 45 or over \qquad 25-3.4 \qquad ; 35-44 \qquad ;
2. Sex: male \qquad ; female \qquad .
3. Type of school: Regional .H.S. \qquad ; Central H.S. \qquad ; All-grade \qquad -
4. Total enrollment of the school: Less than 200 \qquad ; • 200-499 \qquad ; 500 and over \qquad .
5. What is your present teaching certificate:
 \qquad ; V
\qquad ;
6. Please list any Education (Bachelor) degree (s) you now hold.
\qquad
7. Please list other Bachelor degree (s') you hold.
\qquad
8. Please list any other degrees or diplomas not mentioned in number (6) or (7).

0

9. (a) In which year did you receive your last degree?
(b) This degree was obtained: In Newfoundland \qquad ; Outside Newfoundland \qquad -
(a) academic undergraduate major (s)
(b) academic undergraduate minor (s)
10. If you have done graduate work, specify the field (egg. mathematics)
11. Please list the number of courses you have completed in each of the following areas of Mathematics. "Course" refers to ONE semester of work. For example, if you have completed a full year course in Geometry, count it as TWO courses in Geometry. If you have trouble in classifying a course, please list it in category "h".

SUBJE'CT AREA
NUMBER OF COURSES
(a) FIRST-YEAR COURSES \qquad
(b) HIGHER ALGEBRA. Includes Modern Algebra; Linear Algebra, Algebraic Structures.
(c) ANALYSIS. Includes Analytic Geometry \qquad \because and Calculus, Calcalus, Differential Equations, Advanced Calculus, Vector Analysis, Real Variables, Complex Variables, Calculus of Variation, Fourier Series, Metric Structures.
(d) GEOMETRY. Includes Projective

Geometry, Differential Geometry, Euclidean and Non-Euclidean Geometry, Topology.
(e) PROBABILITY AND STATISTICS. Includes only those courses in Probability and Statistics taught by Mathematics Departments.
(f) KQMPUTER SCIENCE. Includes courses in Computer Mathematics and Computer Programming.
(g) ELECTIVES. Theory of Equations, History of Mathematics, -Number Theory, Numerical Analysis,' Foundations of ,Mathematics, Set Theory, Logic.
(h) OTHERS (specify any not included above)
13. When did you last complete a university course in Mathematics?
 -
14. How many SEMESTER courses in Mathematics have you completed since you first began teaching?
15. Do you have definite plans to take more Mathematics courses in the next (TWO years? Yes \qquad ; No \qquad -
16. Are you now teaching any subject(s) other, than Grade X or XI mathematics? Yes \qquad ; 9 No \qquad .
17. If the answer to (16), is "yes", 1ist the other subject(s) and the gade(s) to which you teach it. SUBJECT (S)

GRADE (S)
\qquad

18. Please indicate the percentage (approximate) of your teaching time spent on the following?

GRADE X	$\begin{aligned} & \text { PER } \\ & \text { CENT } \end{aligned}$	GRADE XI	PER CENT
Algebra		Algebra'.	
Geometry		Geometry and Trigonometry	
General Mathe: matics		General Mathematics	
Other Mathematics courses (Specify)		Other Mathematics courses (Specify)	

19. How many years have you taught Mathematics in Grades. X or XI?
 more than $\overline{15}$ years \qquad .
20. At whose request are you teaching mathematics? Mine: I was hired to teach mathematics.
Mine. I was teaching other subjects and requested to teach one or more courses in mathematics.

My administrator's. I was teaching (or hired to teach) other subjects and he assigned one or more mathematics courses to me:

Other (specify)
21. Do you enjoy teaching mathematics? (Check one)

No. I would prefer not to teach it.
I dislike it somewhat but feel that with additional preparation in mathematics I would enjoy it.
__ I enjoy teaching it butprefer teaching other subjects.
\because I enjoy it and prefer teaching it above all other subjects.

Other (specify) \qquad .
22. Are you the sponsor of a Mathematics Club in your: school? Yes \qquad ; No \qquad .
23. Are you a member of the Mathematics Council of the Newfoundlanid Teaçhers' Association? Yes \qquad ; No \qquad -
24. Are you a member of the National Council of Teachers of Mathematics (NCTM)? Yes \qquad ; No \qquad .
25. Please check the professional publications which you read and specify the frequency.

| PUBLICATION |
| :--- | :--- | :--- | :--- |

Mathematics
Teacher
School Science and Mathematics

Other (s)
(Specify)
26. Are any of the publications mentioned in (25) available in your school? Yes" \qquad ; No \qquad .
27. Has the school board you are now teaching with sponsored in-service training in senior high school mathematics in'the past TWO years?

Yes \qquad ; No \qquad ; Don't know \qquad .
28. If "yes", please specify the nature of the in-service training.
29. Which of the following do you consider the most desirable type of in-service training? (Check only one)

Correspondence courses in mathematics.
Television courses in mathematics.

- Summer university courses in mathematics.
- Saturday courses in mathematics which would meet in a nearby location.

Weekday evening courses in mathematics which would meet in a nearby location.

- Other (specify)
\qquad

30. Have there been any university mathematics courses (other than those offered on-campus at Memorial) offered in your area in the past TWO years?

Yes \qquad ; No \qquad ; Don't know \qquad .
31. Do you feel that there is a need for university mathematics courses to be offered in your area?

Yes \qquad ; No \qquad \because

E
©APPENDIX C

LETTER OF TRANSMITAL

November 20, 1972

Dear Mathematics Teacher:

The attached questionnaire will gíve information to be used for a Masțer's thesis concerning the preparation of senior high school mathematics teachers in Newfoundland. Your responses are necessary because your experience with mathematics will contribute significantly to an analysis of some of the problems in the area of high school mathematics education.

The study is concerned with (1) determining the current status of the preparation of mathematics teachers in the senior high schools of Newfoundland, and (2) utilizing the information obtained to formulate realistic programs of in-service education in mathematics: It is hoped that this study will lead to some recommendations which could improve the mathematics program in the province".

It will~be appreciated if you can find the time to complete the questionnaire as soon as possible, and return it in the stamped, self-addressed envelope enclosed. The questionnaire is anonymous, and none of the information . can be associated with an individual or a, school. The only interest of the researcher is in the compositerdatas

I wish to thank you in advance for your participation in the study and, also, express my appreciation for the time you devote to the consideration of the questionnaire. Your prompt return of the questionnaire will contribute to early completion of other phases of the study.

Sincerely yours;

Enclosures
Fred N. Denty

APPENDIX D

FOLLOW-UP LETTER ${ }^{1}$

'December 2, 1972
Dear

About two weeks ago a questionnaire was sent to the grade X and XI mathematics teachers in your school. This.questionnaire will give information to be used in a study concerning the preparation of high school mathematics teachers in the province. To date, the overall. return has been very favourable, but it would be desirable to have near 100 per cent return before tabulating the results and drawing conclusions.

Because of the nature of the study, it was considered advisable to have the "questionnaire anonymous. Thus there is no way of knowing who did, or did not return the questionnaire. It is in this connection that I solicit your help and cooperation. Would you please mention the questionnaire to the tgachers involved from your school (the names are listed below) and ask them to take a few minutes of their time to complete and return the questionnaire if they haven't already done so?. If they have returned it, please express my sincere thanks to them for their valuable assistance in the completion of this study.

Thank you for your cooperation.
Sincerely yours,

Fred N Penty

${ }^{1}$ This letter was addressed to the Head of the Mathematics Department or the Principal of the school.

[^0]: ${ }^{2}$ William E. Haig, "Pareparation of Sénior High School Mathematics Teachers In South Dakota" (unpublished Doctoral dissertation, Indiana University, 1970), p. 2.

[^1]: ${ }^{2}$ Committee on the Undergraduate Program in Mathmatics, Recommendations on Course Content for the Training of Teachers of Mathematics (Berkeley, California: Mathematical Association of America, 1971), p. 4.
 ${ }^{3}$ Irving Adler, "Criteria of Success in the: Seventies," The Mathematics Teacher, 65: 38-9, January, 1972.

[^2]: ${ }^{7}$ The Report of the Cambridge Conference on School Mathematics, Goals for School Mathematics (Boston: Houghton Mifflin Company, 1963), p. viii.
 ${ }^{8}$ Howard F. Fehr, "The Secondary School Mathematics Curriculum Improvement Study Goals - The Subject Matter Accomplishments," School Science and Mathematics, 70: 281291, April, 1970.

[^3]: ${ }^{15}$ The Report of the Cambridge Conference on School Mathematics, Goals for School Mathematics (Boston: Houghton Mifflin Company, 1,963), p. 7 .
 ${ }^{16}$ Howard F. Fehr, "The Secondary School Mathematics Curriculum Improvement Study Goals - The Subject Matter. Accomplishments," School Science and Mathematics, 70: 281-291, April; 1970.

[^4]: ${ }^{17}$ Philip S: Jones, "Present-Day Issues and Forces," A History of Mathematics Education in the United States and Canada: The Thirty-Second Yearbook of the NCTM (Washington, D.C.: NCTM, 1970); p. 463:

[^5]: ${ }^{30}$ CUPM, Recommendations for the Training of Teachers of Mathematics, A Summary (Berkeley, California: Mathematical Association of America, 19.61), pp. 9-13.
 ${ }^{31}$ CUPM, Recommendations on Course Content for the Training of Teachers of Mathematics (Berkeley, California: Mathematical Association of America, 1971), pp. 17-18.

[^6]: ${ }^{34}$ Committee on the Undergráduate Program in Mathematics, Eleven Conferences on the Training of: Teachers of Elementary School Mathematics (Berkeley; California: MAA, 1966).
 ${ }^{35} \mathrm{~K}$. E E Easterday, "Study ofoMathematics Teachers in Alabama'. . Final Report," U.S. Department of Health, Education and Welfare, Office of Education, May, 1967, p. 40.
 -
 ${ }^{36}$ Shelby D. ©Smith, "A Survey of Máthematic's Teachers in Illinois," Dissertation Abstracts', 27": 2091, 1966.
 ${ }^{37}$ Bradshaw, op. cit., p. 199.

[^7]: ${ }^{4}, 3 \mathrm{~J} . \mathrm{A}$. Brown and J. R. Mayor, "The Academic and Professional Training of Teachers of Mathematics," Review of Educational Research, 31: 298, June, 1961..

[^8]: ${ }^{44}$ Merwin J. Lyng, "Factors Relating to a Teacher's Knowledge of Contemporary Mathematics," The Mathematics Teacher, 61:.695, November, 1968.

[^9]: ${ }^{45}$ National Council of Teachers of Mathematics; American Association of School Administrators, National Association of Secondary-School Principals, Association for Supervision and Curriculum Development; Report of the Joint Project on the Administration of Mathematics Programs, Administrative Responsibility for Improving Mathematics Programs (Washington, D.C.: National Council of Teachers of Mathematics, 1965), p. 11.
 ${ }^{46}$ Jones and Coxford, op. cit., p: 326.

[^10]: - ${ }^{47}$ W. A. Gager, "Is Your College Giving Proper Training for Teachers of Secondary School Mathematics?" The Mathematics Teacher, 55: 493, October, 1962°.
 ${ }^{48} \mathrm{Haigh}$, op. cit:, p. 5.
 ${ }^{49}$ Lehi Smith; "Continual In-Service Education," The Mathematics Teacher, 61: 535, May, 1968.

[^11]: ${ }^{6 \times 3}$ Memorial Universpity of Newfoundland, Extramural Studies, Off-Campus Courses, $10.7 \mathrm{j}^{-7.4}$, Foreword.

[^12]: ${ }^{3}$ See Appendix C
 ${ }^{4}$ See Appendix D.

[^13]: ${ }^{5}$ Walter R. Borg, Educational Research, An Intro: duction (New York: , David Mckay Company, Inc., 1965), p. 202 .

[^14]: ${ }^{2}$ See Apperidix A.

[^15]: ${ }^{3}$ William E. Haigh, "Preparation of Senior High School Mathematics Teachers 'In South Dakota," (unpublished Doctoral dissertation, Indiana University, 1970), p. 78.

[^16]: ${ }^{4}$ Newfoundland Teachers' Association, "Teacher (Certification) Regulations", 1.972," Handbook, 1.972-73; (St. John's, Nfid.: The Newfoundiand leachers': Association; 1972); pp., 18-27.

[^17]: ${ }^{1}$ See Appendix A.

