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A problem which has enthrallé& mathematicians thrOuph
-the ages 1is that of decidinm the cardinality of the set of
es of the form n +1. 'This thesis deals with ﬁhis
problem)from a topological standpoint.

. -~ LY

Chépter 1 discué%eé the . hpfeditary pfdberties of
topolqglcal spaces which arp moot appllcable to the Qpaoes
used and the problem at’ hand. Its objective is to’ make
availalle, informatlon which is uqeful for pn@ducxnr

In Chapﬁer II several tostloyical structures on the
rational. intemers are discussed and“8xtended to the -
Gauoqian intezers. Also, mention is made of. how these
topo]oplcal structures can be. extended to meneral alvebraic

number fiulds. The properties of these topolories, alonn T.“

with thoqe-of another one, are given, and also various
subqpaces are ,discussed. - ° N\ '

A discussion of the applications of the topolopical
structures described in the previoqsichapter make up the
contente of'Chdpter IIT. Also, some properties 6f the
topolovieq on the rational infnvers are discu°qed and %

their meneralizations are inQn.
. . J
Chapter IV changes our- problem from one- 6f finding
1nfgnltely many prime numbers to that of discuqsinp which
‘properties a,topological,st;ncture should have in ‘order

to be useful far solving the problem. g

'The final chapter, Chéptpr V, gives somé different
approaches for tackling the problem. One of these
approaches involves -some algedbraic bopolomy while others
‘remain entirely within the.field of ngmber theory...

Y

k4

a



-

-~

wlth this and related problems in nuﬁber thpory. ©o

>
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Althounh no ma jor conclusions are drawn from thn paper
1t artempts to use tonolowicnl methods and ideas -in dealinp
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f’ Zz = the “aet of rat;oﬁal ii‘;u‘;ggcr; .

“ > .f.':hc set - of na bural. 1'1;;'m.be:.-s« s . -
T

ol - dae |Ha ) r} ‘ .' |

. } L | '
"/ # = the set of Gaussian integers

- ?_f- {a+bi | a€1f+,“b'_.£ If}
. : . : ‘e |
| P = the set of prim‘néQ_in'tegers : R . \\_ ;
# « an arbitrary finite subset of P~ - . S G |
" 7T . C1(U) = the closure of the set U - - oo L ’

‘Int(U) = the intérior of the” getU - . .

. o PO | |
6U = the ‘boundary of the set U
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. nt: 0
! This paper was written us an attempt to answer two

" questions. The first is one of antiquity: mAre there -

infinitely many primes of the form n*+17v,. This question -

- is ‘referred togvt,hrouphout the’ paper as: the nproblem in-

" questionmn or th"g nproblem -at handu. The" other question '
arose from o paper by'S. W. Golomb which appeared in-. ‘
'Volume 66 of the Amerdican Mathematical P..onthly in 1959. '
In his pgflit entitled "A Coniiected Topology for the o
Integers"ﬁ" Golomb used topological methods to’ prove the
infinitude of the primes and the fact fhdt the existance
:‘of a prime in all arithmetic prog'csqions of . the form
"a+bn where a. and b are relatively prime, is equivalent to
the statement- of Direchlet .s Theorem. From: this work came ‘
the nuestiorr: nCan topolovical methods be used’ to answer
.,imilar questions about the intep'ers?" '

_ Cw

- . s .‘

In this thesis we work towarda answers to these two-.
questions by considering topological structures on ‘the
Gaussian integers and those induced on such subspaces as \
: the rational intep'ers.

. . Definitions o:t‘ required topological properties and |

’ 'types of heredity are stated in’ chgpter I. We then

" ‘proceed with these definitions to prove which properties

)are hereditary and which ones are not Our conclusions

" are tahuilated within the chapter to make .easy reference

-posaible.. L N C R ’

.asu—! e L

4 . In, Chapter IT we . discuss Beveral topological structurea
on. the Gaussian integerv and sugrest ways of extendinp'
them tO‘ general algedbralc number fields, ' The- first
topglogy is due to H. Furstenberg dnd appeared in 1955

in Volume 62 of the American }natl{ematical Monthly . 'The."
sec_ond is the one by 'S. W.. Golgmb which is mentioned above.

LY
) o ‘i.'tl?v}é’d.:’l'.b
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Both theqe to’polopins are defineoe on the ratlonal 1nte'-rers )

but we extend them to the Gausnan integers and also

considex the topolories of several subsets of this snﬂce. CL
The third topolou;‘)' is similar to. the others ’but; it is . L iy
defined using closed sets rather than. open qets. The

properties. of all spaces and’ subspaceq are exammpd and

tabulated at the end. of the chtmter.
a - ’

'I.‘he-se three topolovies are 1nV°Stll?ated further An -

A Chapter III. Here we look at their usefulness in solvin?

' to ‘the: problem. Here: we mention such things as the use,

b 'iples and the properties of n.n;,yptian fractions, all of

p,gart:icular problems hy disc_ussmq: the denqity of the’ s ‘ e
primes, the number of primes in each"open‘ set and. other ' :
similar topies. We a.P'am-refer to Golombls’ paper and .:,_,b.

extend his theorems to the Gausqian 1ntepers. T T

CUEO LI T - J

Chaptdr Iv t'ivos & differgnt out;Iook on 'tie pi'oble‘m.v':' ‘ .
in thd.q chapter, rather than discuss a nartlcu ar topoloo:y,
we decide which properties we reouire on a topolos:;y in- :

'_ order that it be’ useful for provincr the problem at hand.~
" Our problem. then becomes one of _provine the existance of

a s:.nrrle topology: 1nstead of provim* the ex1¢3tanbe of

. an infinity of ‘primes. I ’-"_ o Coe ‘

....' . A{-‘ ~ ! "' . " )

The . f£inal chapﬁer' deals with'_'dili"ferer.xt approaches:

N
of .cohomolopy theory, the. application of Pybhan-orean ‘

e L ety

which’ eurmest ways of golving the- problem. ,

to the first. oues’cion but‘. does illustrai?e seyeral: different
ways of viewing it. A partial answer to, the second '
question is riven by actually’ extendinsr the topology bo T
the Gaussian integers and answerina ouestions which are‘ o

analo.rrue to those posed by Golomb in h:.s paper. - \"_:

2




of spacee. oo. ‘because of their 1mportance to fhis
branch ot‘ mathematics, this chapter deals exelusively

.o ) with topolop‘ical prOperésles. ’ : -

~

- e
. - oo prOperty which is preserved bv every eubqpace of a space
' ortm.nally havinv‘ thf}‘property.

. . "'\(
D
;

+

oo counterexamples. SR SR

: To illustrate the effectn.veness of hereditary
properties ;ue have the foHOWIRP .

, .

.

-~ of its sBubspaces. We wish to- prove that A has - the
. property P By aseuminr: the negativn of pwe find. that
A will satisfy certain topolo,o:lcal propertiee and will .

" not satisf» others. Now Afq” is an hereditary- 'oroperty o

. &nd X has a, but under ‘our necative hypothesis A does
; AR not have a, we hawe ‘a proof b_f our h.ypot@ig..

e . o 5

L}

- 'Hence, a table of. heredltary oroperties would be -
quite helnful for uging the -idea mantioned above. P

-

b ' ‘The" 'propert‘ies whicix are listed’belo'w'are those
s which-\ are most applicable to the problem at hand and

because of the. inconsistency in the literature of the
. definitions of PHBge propertles, they are also stated
Thus we have the followinp;. o ’

Cad

"T*"

. :\‘_;,,
l /’f"d

~ - { - , - . LI
a,

A

. 'c\’n,

F_I"'

Tl

‘l‘opolop:y can be dei‘ined as the study of the- pronertieq'

i : . e : g o -/
We define an hereditary' property as a topolozical’

prample- We 1et X reppesept a spece and A repreaent one ‘

P : ' . LA

i . Lo . - . N . . LA . .
4. ] ' . . L e : 1 .
‘ 4 - . N . ) R * P . T . . . > B - N L,
. . N ~ K T . A - . e e . L. @
] v v - . + v
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Definition 1: A spacs, (X rl:), is TO if for every pair of -

“‘;;plnts ayb € X there exists an open sét G € © such that |
:eitﬂeraGOandbEOoraﬂOandbGO. S ‘""'

a * '(; - . -

E Definition 2: A space, (X t), is 'I,‘(1 if for every pair of

pointe a b E X there exist ‘open: gets. 0 and 0 in t ‘such

"thataGO andbEO'butaJ!O andeO. o

i o o .

'Defihition 3% A space, X, is ‘J.‘2 if for every pair of
points a,b ¢ X there ‘exist dis;joint open sets @ and 0

which contain a and b’ respectively. ,© . o

N S . . . ’ - ‘ .‘-/

Definition 4. A'epace Xy is '.I.‘3 1f for eVery closed set

- A .and point b not-in A, there exist dis;joint open sete
: OA and Ob which contain A and b reepectively o

. “
©

. Definition 5: A space., X ie T.q if -for every pair- of

disjoint closed sets A and B. in X, there exists a pair
of disjoint open sete O and 0B which contain A and B

Definition 6: A space, X is '1‘,3 if for eve‘ry pair of
’ seperated sets A arid B in X, thére exist diso;}oint open
‘gsets 04 and Og containinu' A and B respectively. '

.
[AEIN
P

E .Definition 9. A epace is rep'ulai' if and only. if it 1s

both T, and T3 N . ™

. o tT
LI . oo - 1 -

b

p 808 Ty L

v

’ Defihition 9: A space is compact if eVery Open cover
contains a finite suchVer. . : '

! S '

A

) Definition 10 A epace is locally compact i}‘ each point

is contained in a compact neighbourhood.

quinition 8s - A oapace is @fmai&f snd gnly if it iz both :
N T N ° ! .

-,

4
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L
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Definition 12: A space is connected if end only if it -
"is not the union of two seperatéd sets. :

. ghas the property.,

[+ . . ! v

Deftnition 11: & space is paracompact if every open cover
haa an: open locally finite refinement

{
s

oo <
a . .

.Définttidn. 13: A quce is path, connectpd if for evary

nair of"points a ‘and ‘b-there .exigts a continuouq funotion,ﬂ
'f, from the unit interval such that £(0)=a and f(1)ab.-

. : ~
Definition 14: A spaco is locally connected if it.has a
basis consisting of connected’ sets, R

) o . ' . I
We also stute the following: .

Definition A A topoloplcal property is horeditary if every
subqpqco hao the properfy whenever the space has it.

. &
. i

'Definition B: A topoloaicul property'is F- hereditary if

every closed qubquce has the property whenevor the @pace

: haa it. g .

R

*

'Definition C:. A topolowicnl nroperty is G-hereditary if
'every open qhbspace has the property whenever the space‘
has it. '

Definitlon D: A topolorical property is C-hereditary if'
every continuous functlon preserves it. ]

Definibion F: A topolowical property is- q-hereditary if
every ‘quotient spaca has the property whenever the space

has it. !
.

Definition.F: A topologicel property is finite P-hereditsry: -

if ebery finite product-of spaces with the proparty also

' ' ”, ! )

SRR



"d'rable'of Hereditary:Properties-o‘

Ya °

L d

Table 1.1 ~ .

|

]

‘Topolorical. Spaces

- Locally Connecﬁed

IR

’ D .o f
‘ i
n
. i
-t
A e
N ¢ F G. C . q - P
‘H H H ' H H
e e e . e e . e
T r r T r r
e - & e e e e-
; -4 . 4 d a. d d
S i i - 31 1 i
t t t t t t
a a .a a a a
- ' r T > r r T
Property y Y Ly y y Y
To + + 4 - - +
: . Q
! N R S S
, .
.T2 | : N + + + T | +
) 7/ '3 + +g - - +
’1‘3‘ + - |
T | ‘ + + :+ - .;
Regular + o+ + - - +
-Normal. - + - - - -
Compact - + . -. + + +
Locally Compact - + - - - ’;
Paraconpact - + - - -
Connected - - - + + *
Path Connected - - - : + - +
| + - i+ S+
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On, the oreviouslbaae in Table-1. l we'have lioted the
topological properties and indicated whether or not they
are hereditary. In the table & M4n indicates that.the

property 'is hereditary, a8 "=" that it is not hereditary

and a "blank" that it has not been determined.

3
¢

If we now number the rows and columns of the taﬁle.'

' in the same way as we did the definitions we see that theé

entries:

o
!

A1, A2, A3, A7, A8, All, BS, ‘B9, B10,.B11, C8, Cl1, D9,

D10, D11, D12 D14, F1, F2, F3, F?, ¥8, ¥9, F10, Fll,and
F12 cab all be found in <14>, . .

1|

A%, A6, C10, Cl4, E10, F4, Fl4,.can all\ef found 1in '<6>.

B5, E1, £8, dnd El4 can be found in <20>,

.Dli'and Fléacqn be .found in <9>,

E3, B4 and E5 can, be fouod_in <10>,

~B1, B2, B3, B4, B6, B7, C1, C2, C3, C4, C6 'and C7 all

follow from the fact that every hereditary property is

- aleo F~hered1tary and G-hereditary. ' S

Bl2 and Bl3 are proven by givinv X the particular point
topology (' the only open sets are those containing a
particular point ), .which is both connected and path
connected. We take Y such that it does not contain the
particular point. Now Y is closed and has the discrete
topo]oqy.which is neither,goﬁqected nor path cBnﬂedted,

[y

E2 is proven by glving X the finite complement topolosry.
( the only open sets are those having finite complements )

which is Tl‘ Ne take a finite set U aﬁd'partition,x by

\ ) . \ Vot
. o, '
. e
. . . ’ ‘ .. . . e " .
A . "
C . . . . R -
. s B . . o

P
X



o

takinm each polnt of U as a coﬁnonent and its comblementA
~as a compoenent, Now'any set V. with' (X\U) C v is’ open '
and any set W with (X\U) A W & @ is closed. This is aust
the particular point topolofy on a finite set and it is
. not Tl. -
ES and ¥6 are proven by n1v1np X the right half-open
1ntcrva1 ‘topology ( basis miven bJ sets of the form
[a,b) ) which is both ', and TS’ “However, the product
topology on X X X js nelther Tu nor Tr.
C9 is proven by giving X the exec luded poinﬁ topology
( the only open sets other than' X are those which dc not _
include a siven point ) which is compact. Now ahy subsét -
which does not: contain the excluded point is ‘opén and
has the discrjte topology which is not comnact
AS is proven by COnsiderinn the divisor topology on N+
( basis given by sets of.the,form U, =.the seﬁ of aLf
divisors of n ) which is Tq. If we now consider the
prime multiples of 2 as a subspace, it has the particular
. point topolory which is not T#’

@1, D2, D3, D7 and D8 all follow from the fact.that every
function igto the indiscrete topology is’continuoﬁq-and
this tbpdlogy is ngither_To,‘Tl}”Tz, regular nor normal.

. v ) 4 (!,;\}
B4, D5, and D6 follow.from the fact that every function
from the discrete.topdlogy is continuous and tnis.bopology

i T,, T, and TS. e

C1l2 and 013 are proven by giving X the excluded point
topology which is connected and path sgonnected, whereas
any open set is neither connected nor path connected,
’ . ‘IA -~ .’ . .
E9, E12 and £13 follow from the Tact that all C-hereditary

-



’

' properties are g-hereditary.

A9, Alo, Al2 and Al3 follow from the fact that if a ,
“'property is. not G-hereditary then it is not hpredltary.;

A14 is proven by giving [-1, 11 the oveplapplng interval

tdpology ( renerated by sets of the. forfn [-1} ,b) for b>0

“and (a 11 for a<Q ) which is locally'connected: Then-

we have that the subspace topolomy.on iO,l] is the'rinht )

half-open interval topolom? which ié,not‘locally connectéd.

Thus, we have the table completed and we 111ustrate-
its uspfulness by the following:

r

Examﬁlef Suppose we ‘have a space X which is both T2 and
connected. However,. we require a topology on X which )

L x X wi}l be connected and TE’ but now if we prOJect.
. this ‘topology' onto X we have that the resulting topology
" is connected since the property is C-hereditary but - the
space is not necessarily TE' This gives a possible ‘
easy construction of our required space. Another con-
struction which ives the same.results is that of takinm
-the quotient topology on X.’ o '

fis connected but not T2. Using the table we see that .

DR O



¢+ In this chapter we will consider extenslons of
topologies jon the rational integers to t0poloaical | .
structures on the Gaussian- integers. Hecause the Gaussiaﬂ’
integers are more complex thin the rational integerq, '
we’ have to be careful of our definitionq since a seeminply
non-trivial basis may lead to'a trivial topology. - '

¢ o, . ) . .
Ll &

_ To illustrate~h6w;sucﬁ a triiiai tppoldmy cen be
defined-ge take a proof- which was riven by Soioﬁon We
Golomb in the American Mathematical Monthly in 1959,

‘ change it slightly but still leave it valid, énd then
extend it to the Gaussian integers and note the conse-
'.'Aquences. Hence we state. the following

Theorem: There are infinitely many prlmes.\ ) p ‘
Proof: Sinceé the set of intepers is symmetric abou the
"oripin we need- only consider the set ﬁ+ of positlve
integers, We define a basis for.a topology on ﬂ+ by 3
-declaring: open all sets B(a,b) = the set of” integers of
the form a+bn where a,b ¢ 1, p €N, and/(a b)=1. We
see 'that B = uB(a,b) covers ' and B(a,b). n B(a',b*) & ¢
or B(a,b) " B(a',b') = B(q,[b,b']) where .q i5 the smallest
element in the intersection and I[b, b'l is the least
common multiple of b and b'. Hence, we see that B does
indeed form a basis for a topoloyieal stnucture on N*.
Now since { } ﬁ*\B(Z 1) it is a closed subset of f+
‘We consjder Ap, {p,_2p,,§p, «..p where p is prime, and
we note that’ﬁ+\Ap(= B(l,p?'u'B(2!p) U oo U B(p-l,p) _
and hence A is closed, If we assume there are only =~
Iinitely meny primes, {pl, Poy eeey pk} we have that
APLU Ap2 ess U Apk is closed, but f\Apl ees U Apk*-:{l}
which‘ 1s also closed. Now this impossible since #* is
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connected, Therefore, we have a contradiction and hence

there are infinirtely many primes.

An extensmn .of .this proof to t:he Gaussian integers
results in the followxng o v L .

] . o

Theorem: There-are infinitely many Gaussian prlmes.

. Proof™ If we consider the Gaussian integers in the same

way we coneidered the rational integers .we see that'. ‘the -
(aussian’ plane can be divided 1nto four symmetric parts,

‘nanely, the  four quadrants. We take G+ to be the quadrant
. in which the integers a+bi are such that ‘a ¢ s and. b € N

. As we can see; if we

r t. .- . ( take the union
.i.. 11, £ +Ui¢+U-1¢+u-i¢+
J;Eh: g . 'we see that we have all

the Gauasian integers

except 0. ( This is .

f“:"h“ 1828 R §86 . . ‘analogue tgiﬁ" u .-1.5*'-. ),
g8 Hence, we need only

t

A

oL

r

'
X000
oA e are
-+
4 a2 4 2 't
Lo 2

Lo

L
N
+
-+

} +4Z -+++ o . . extend our topology _oxi &
=18 TEHEg -i°¢+: © . to a topology on §'. We '

define a topdlégy on ¢

o o B(a,ﬁ) = the set of all’
Fim.xre 2. 1 Lo mussian integers of the

The Gaussian Plane . form a+6ﬁ where  a,B. € g,

(a,E) =1, 6;¢ ¢ u {O}and
‘a#6p € . The restric—-' i

tlon "that on+6ﬁ é G"’ is necessary 8ince sf" is not closed
under multiplication whereas: ' is. 'Now B = UB(a,ﬁ) ]
covers ¢* 5o to show that f is'a basis ve need to show

that B(a B) n B(a!,p!) = B(a B) or ¢. o -

"If at this p01nt we assumed that I was indoed a "
basia for the topolog our prooi would continue g8 it

- , ; ~4'-—\_"

. by declaring open all sets -

Y
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- 4id in the'rational case, 'HoWever, we look‘more oloéely

,at B, We find that M = {aski |2 £} = B((k+1)i,1)
nJB(ki+1 ~i)y ‘and ﬂ
Hpnce, we have that for all k, ﬁk is open and Mk is open.

(.Now if -we take a point a+bi;§ &' then we have that
, {awbi} ‘= ﬁb-n M anﬁ is therefore open. So we see ‘that

¢+ has .the diacrete topolomy, ono/quite different from
the one we wlshed to ettend. ! . _ N -

Since the ﬂopology .arose. from one on the space of

"rational integers and our problems reSulted from the fact

that the positive rational 1ntegers are closed with
respect to multiplication, whereas ¢+ is not,’ Thereforq,
it seems reasonable that‘if(we wish to define a topology
on ¢+, we first‘definq one for the -whole of the Gaussian
integers and .then consider tho_suoepoqe topolosy. ‘

, Thls is what we will do. w1th the topology Harry v
Furstenberg used in his paper On the“Infinitude of

PTimes“.l Furscenberg introduces 8 topology on the.set -

of rdtional integers by using arithmetic’ progressions

-as & basis. ' With this topology, which makes Z normal

and' metrizable, he proves thot there are infinitely
many primes. ' '

"_We will now look'olo%ely at this apace and discuss
the topological properties it has. In our discussion

- B(a, b) will represent the arithmetlc progression a+nb.
.Hence, we have the following.

)

’Theorem 1: The“space is Tj, T;, and T,.

Proof: Pick ¢ such that (a-b,e) = 1. Then a: G B(a c)
b ¢ B(b,c) and s(a,c) N B(b,c) = #. Hence, the space is

T? and therefore Tl and To.

-

1. American Mathematical Monthly, 62 (1955), 353. .

.'7-

- 2

-

‘o

-“

o

- {keai | a ¢ M} = B(k-1,1) 0 B(ket, 1.

P
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Theorem 23 The space is- lagr 5, regular and normal,

Proof: The space is metrizable and ‘hence it is '1‘5 A
.T5space is T4 Since the ‘space is Tl and Tu, it 1is T5
and normal. A T 3 space is .regular, ‘ “

"

1

Theorem 3: The spacé is not compact. ' !
Prdof We. cover Z.by open sets consisting of the multiples
of primes. This is an infinite open cover having no
finite'subcover and hence .the space is not compact.

. Theofem #4: .The space is not locally compact. '
Proof: We take an arbitrary neighbourhood B(a,b) of ¢

.'and show that it is not compact, First, ‘we cover part - e
of B(a,b) with B(a 2b). Then we take the number closest
to a- which is not covered ' If there ‘are several - we take
either, sey d. We then use the open set s(4, Bb) as part
of. our coveb Continuing ‘in, this manner we have an

. infinite open cover which has &o finite subcover and

.hence we find that the space ik not lotally. compact, -

£ ) ' . .
Theorem 5: The space is neither connected nor path

-

connected. . :
Proof: The sets 5(1 2) B(2,2) form & non-trivial sep-
aration of, the space and hence. it is’ not connected. A
space which. is nét connected’ is 'not path connected.

v | | L EENT
Theorem 6: The space is not locally connected. o
Proof: -B(a,b) = B(a,2b) U’B(a+b; 2b), i. e. we have a
non-trivial seperation of- an arbitrary neighbourhood.

We now consider an extension of this topology ‘to
the Gaussian idtegers and we will call this new topology

| . the uUpen Set Topology (0. S. T ). We define this top-

ology by taking as a basis the. open sets B(a, H)\= Gaﬁesian

integers of the form. a+bE where a, B, 66 #. We see. that

this is indeed a basis when we note.that if. B(a B) n B(a',ﬁ')

Dl
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¥ #Z then it is ?(a,ﬁ) Where ‘@ is some elcment in the
intersection and ff is.. the -least common nultlple of B
and B' Iookin# at the propertiés of this tonolomy

) we have the followinr.

o |
Tﬁeorem 7: The Bpace is Ty, T fand'T
Proof: Pick v ¢/ # such that (a-[,v) = 1. Then o« € B(x,v),
B ¢ B(B,Y) and’B(a,r) n B(ByY), = #. Hence, the spack is
. T2 and thﬁ“eiOTG Tl and TO. - S
' {

-Theorem 8: The space‘is T5 and ropular. .‘

"is in the complement of A, If A ‘is finite we také the B
~difference between all pairs of elements in A u a?. :
"We’then consider the set of norms of all these differences
© and piok the largest element in this set, say 1. now

a ¢ B(a, 1) and A ¢ §\B(a,1), both of which are disjoint/

open sets. If A is infinite then A = G\(uB(a B)) .= n(F\B(a, B))

If the intersection is finite then A is! also open and ﬂ

#\A is open givinr us the.required seperation. If the

intorsectlon is infinite we:  take an interveoti n of only
.finitely:many. of the sets, each not containing |the point
a. This mives us-an open set containing A ‘and |having an
open complement oontaining a., Hence, the spaca is T5°and
sin¢e it iskalso Ty 1t is regular, . a
Theorem 9: The space is second countable.

Proof: Every basic open set is specified by & pair of
Gausgian’integers -and this is a COQntable.sot. Hence,
the space has a countable basis.

.n. . R . .
. Theorem 10 The space is TS' 4,. 2 regular and normal.
Proof: According to <14> a second .countable. T5 space is

T5 an@ hence T4. ‘AATq, Tl,spacells T; and normal.

.Theoréo llfjgho space - is_not “compact.

!



. ,‘ . o g ;51
& ...

s ' : - :

Proof We cover ﬁ by the open sets consisting of muitiples .
of primes, Since there are infinitely many primes this"

+is an infinite éover having no flnite subcover, and hence
the space is npt compact. |

‘heorem 12: The space is not locally compact.
Proof: We take an arbitrary neiahbourhood B(a P) of y °
and ahow that it is not compacb. First, we cover.part
\ﬁﬁ neighbourhood with B(x,28). Then, WO take the
poi closegt “to wo, which has not been covered If‘there'
" are severalxﬁe use either, say 6. We. then-use B(S, 3?) T
in our cover. Goncinuinp the process. we arrive at an § :
infinite cover for B(a,f) which has no. finite subcover
and hence the space - is not 1ocally compact.

. Theorem 13: The space is nelther connected nor'peth
connected, S '
.Proof: The sets B(I 1+1), B(2 1+1) form a non-trivial
seperation for the space and hence it is not connected.

= Since - the space is not connected it is not path connected.
L. . , R R o

" Theorem 14: The space is not locally connected .
Proof: An arbitrary neivhbourhood B(a,B) can be covered
by the disjoint neimhbourhoods B(a,(¥+1)F) and B(o+p;(1+1)B).

e o o . : | _

We ﬁow consider the subspace topology on.Z which -
is introdpced by the Open Set Topology ‘and .decidq how -
it compares with the topology used by Furstenberg. We
find that’ all properties are the same and hence formulate

) the following. T o

! . . L

Theorem' The"Furstenberd' Topology on Z and the qubspace
topoloay introduced by the Opcn Sat Topology are the.
same.,
" Proof: First we show that every open set in the Fursten-
'berg Topology is open in the O. S. T. on Z. Take

£
]
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‘Now we show that eVer} open set in the O. S. T. on Z is

,’"Furstenber@“ Topology. . . )

e
!

0 = uB(a b). We want to-show that there is ‘a U € 0. S. T.

‘on §. such that U nZ = 0. PFor each B(a b) ¢ 0 we pilck '

B(a,b) C U and then B(a,b) n'Z = B(a,b) and [UB(a,b)] n z
-UB(ab)=0 . ~

open in the " Fyrstenberg” Topology.. Take 0 = U'n 7 where

U = uB(a,B) and U ¢ 0. S. T. on . vow B(a,B) N Z = B(a,|B|)
where '8 = a5 for some & ( if a doeq not exist then '

B(a,B) NZ'= @ ). Hence, O has the form uB(a,b) which is..

<open in the “Furstenbarg TOpology. “

- R ‘ [
. Therefore, sxnce the two topologies are the same, PR

the 0. 5. T. on ¢ is indeed a. generalization of the .I‘g
e . s
. Other useful subspaces of # are ¢+ F, and.ﬁi, and

' these all have'the same properties as the total space .$.

We willjreturn to this topoloqical Qtructure later. and
discuss 1ts value in -being applicable to. particular
problems in number theory.

r
3

The ‘next topology we consider is the one ‘used' by ,
Solomon W. Golomb in & paper entitled "A Connected :
Topology for ‘the' Intep:ers".2 He -defined:a: topolog& on .
£ by takins as a basis arithmetic progressions of the"
form -an+b where a and b are relatively prime. This

_topological structure on 7 was then used to prove the:

infinitude of the primes and the space was found to be j.

T, and connected but neither T3 nor compact. .
- 3

2

. We' add to Golomb‘s analysis of this topoloqy the

following >

Theorem, 1%: The-sﬁace is Ty and Ty, but it is neither

2. American NMathematical monthly, 66 (1959), 663. |

R B
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ZT » T 5,‘regrular norgelq'locelly;conpact; nor paracompect.na:f '
Proof A T, space is T, and Ty. -The space is Tl but not ‘
_T3 and henCe not' Tyu Since the space 1s not T, ‘it is
neither T nor normal and .since it is not T3 it's not ,
regular., The space is T2 “but not:'T3 ann hence neither:

locally compact nor paracompact

Theoreﬁ 15: The space 18 not locally’ connected. . ‘ o
Proof Suppoge -N is ‘an open neighbourhood of 1 con-
tained in B(1, 2), let 1+42n ¢ N for some n > O. B
- Then U = B(l 2n+ ) is an open subset of B(1, 2)
' 'whose relative complement V- is open and con-
tains 1+2n ( since V = 8(1,2)\B(1, 2n+1) ' !.. n;'
- 02 B121,2™Yy ), Thus U NN anaVv AW G
seperate iv, so B(l 2) cannot contain any 6pen,ﬂ , ,
connected neighbourhood of 1. Thus the space . K Y

is not locally connected.3

g Theorem 16 The space is- not path’ connected
" Proof': Aseume the space is path connegted and p:[0,11 -» N

is.e path connecting a.and b, Now,eince f is Tl, P passes o
~ through a countable number of closed sets ahd their - .
f'preimages under p must be. disjoint élosed eubsets of o y11 & =
'Hence we have.igmx (0,11 can’ be® written as a countable,. S
union of disjoint closed sets which is a contradiction
Tand therefore the -space 18 not path connected‘

-

,  We again extend this topplogy "to one on the Gaussian ,l ‘ ﬂ'
integers. ‘This new topology will be ‘called the Relativeiy
trimeé Open Set Topology ( R.-P. 0. S. T. ) and. is defined
" by open sets which are arbitrary unions and finite-
\intereections 'of the sets Ba,B)- = Gaussian integera or Sy
the form a+&p where o, B,6 ¢ & and (a,B) = 1, yow;we . '& ¥‘<3“

.n ' o ) '!ﬁ

3, :zounterexamples in Topology, Lynn A. Steen and J. Arthur_” .
Seebach Holt Rinehart and Winston, Inc. (1976), 83..; .

M- - . . P
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. Proof: Obviously % = uB(a,E) ‘covers §. . e need only rove

:n~B(a' g!) and hence

oo B(a!,B") which givés ¢ = arbyf = a'+6'ﬁ' ‘Now we. have o
x-¢ = (b-bo)ﬁ = (b‘-b')ﬁ' . Therefore, ta pr1 |’ (x~w) !
and hence x = g+5(p, ﬁ‘] for ,séme’ b ¢ &, Hence x € B(m,IB ﬁ'])

topology,

progé the'fcllowiqgﬁ N ;' "'”";i:. a
. ) «“ SRR el T4 : T . .

Theorem. Sets of the form B(a,f) form a basis for the. . SR
topology on . o o Ty :

that B(a,B) n.B(a! ,B') - B(a B) or @. Now either B(a,B) -

n B(ax',8') = @ or Bla,p) n B(u',B') A@, 1 ‘the inter- .
section is not empty we have o € B(a,p) " p(a',B') and’’ 2
we claim that B(a,B) n B(a‘ B‘) = B(o, Ig,p! 17 where [B, ﬁ'] )
is the  least.common multiple of p’and B!.and it is

s
"defined because of unique factoni tion in ﬁ}. We.now .

givé a proof of the above claim,, iret we show that .
B(a,B) o B(a!, g1 ¢ (¢,[B,B,1). Ve ‘g'sgume x ¢ B(a, B)
X = 0+BF = @ +6'b' But ¢ ¢ B(a,e)”

Next, we shiow that B(m,EB E'J) ¢ B(a,e) A BCal B we - ;;j

. agsume X B(m,[B LEDE and (g, B11 = YR = v'e'. Now .

x =r @+0 (B, B!l = G+GOB+9Y5 = o 1+8 ﬁ'+9Y'B' and therefore T
x € B(a E) n B(a',pt ) Hence ﬁ ia a basia for our . )

\

v | ' 7 . .“ " '.\ . ’/: ) ':_ l . . .
Ag before, ‘we now .consider thc following:; e

2 -

. Theorem 17: The’ spa@e is TO and T4, but is noither T

o ) ‘ o T

Té nor T3 - .
Proof: If & l 04 B we pick Y such that (a-B,Y) o (a,y) = 1._
Then, o t B(a,Y) and B [ 4 B(a,y) If a = O we pick ¥ such. .~

~  that (B,Y) = 1 and then B ¢ B(B,Y) and o ‘¢ B(B,Y)«

Similarly Af B = 0. Hence the space is. TO. Since thel
only open set contgining zero is the total space, the .
Space ig neither Tl nor T2. The space is not T5 since _'u
every closged set contains zero. gnd thé only- open set ;;

-.containinq zero is the total space; - The space 19 T4- -"fcgﬂ.f

A |

°'vacuoualy since there are no disaoint closed sebs Sy

. ) ) . .

- - - Al . . N
T . s, ® ’ 1 ’ ‘ ¢
v : T . R
‘. . - ! .,

'NJ‘l
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Theorem 18‘ The space is not. T :
Proof: We consider the sets (1 and {2a\0} which"are
geperated -in #. We have <—}‘ 21,0} and { oa\O } = {2&}.

If the set {1} is covered by B+0Y then we refjuire that _

{B+by}) n {20} = @ and therefore we find that.-this open

set .must, contain the- progresaion {1+6v} where y is even

-and hence Yy ¢ <2a} Now if ¢+56 is in the .open cover of
,(Za} and it contains y we have, that for some & or Y = o+b,0.

Since (9,¢) =1 wé “have (O,Y) = 1 and hence {¢+be} n <B+67}
is ‘infinite. Hencet no disjoint neighbourhoods exist,

P . ‘ K

. _Theorem 19: The spaco is compact locally compact and

paracompact. ' : !

' Proof “The total ‘space. must be contained in every open

cover and hence every cover has a finite subcover. Phua,
the space.is compact ‘and therefore locally compact and..

' paracompact. R

N

. that [0,1) can be expressed ag a countable union -of
d:fgoint cloqed qetq, which is a contradiction, " If f

. Theorem 26' The space is connected.

o

Proof The only open - cloqed set in this topology is
the total: space.

Theorem 21: The space i's not path connected.

Proof: Assume ¥:[0,11] —> ¢ 45 a path connecting a,b ¢ ¢
If £ does not pass through zero, since it passes through
a countable number of points which are closed, we have -

-4

passes throurh zero, say f(n) = O then we consider £((o,n))
and if this is never zero we arrive at the same ‘contradic-
tion as above. In this way we can eliminate any zeros

-and thus always arrlyc.at a contradictlon which proves

our- theorem.

[]

Theorem 22: The "space is not locally connected
Proof 'If (1+1) J o and (i+1) I a+B then B(a,p) = B(a (1+1)B)

i P

7



U B(a+g,(1+1)B). Hence, we have a seperated neighbour- .
hood and therefore the space is not locally connected. ©

_We now consider the subspace topolomy inherited by = ..
¥ from the R. P,. 0. S. T. on $§, We find that this space’
‘has the same properties as those of the "Golomb"- Topology
on ) and therefore we state and prove the followinn

-t

Theorem: The "Golomb" Topology on } is'tho same os the

'_'topolomy on § inherited from the R. R, 0..S. T. on {.

Proof: First we show that an open set in the "Golomb"
'Topology is open in the subspace topology. An open set
"in the “Golomb" Topology is a union of .sets of the form
{a+nb) and these sets are simply- {a+6b) n ) which-are open
in the subspace topology. .Nnow we show that an open set

in the subspace topology is open in the’ BGolomb" Topolomy.
We take. B(a,ﬁ) - {a+6ﬁ which is open in ¢ Now we
consider B(a B) A¥. If this empty then it is opén in.
the. "Golémb" Topology. If it is not empty then 15
". contains’ an element a which is relatively, prime to b. .

* Qur interﬂection is simply (a+n|E|} which is also’ open’
in the "Golomb" Topology. Hence, the two topologles are
the same and’the R. ,P. 0. S.. T. on # is indeed an extension
'of the "GolombM Topology. : _ \ -

Now we look af the subspace topology on & and
consider the following ‘ . S

-

-
,ge

. Theorem 23: The space is To.
" Proof: @ itsclf is TO and this property is hereditary.

. Theorem 24: The gpace is T2 and T .

Proof: We can seperate a,B by B(a,y) and B(B,v) where

(a-é’y) - (aﬁ,y) « 1.: Thus the space 1is T2 and T

o~

Theorem 2if"The space_is not T5. C e, e

\
Y.
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.. Proof: We take the point 1 and the closed’ set {26 |6 . ¢+}

Now an open covering of 1 which doee not meet {26} must

contain a progression {1+76>, where. 7 is even. That is,.

Y € (26} © Let {a+bB} be ‘the mémber of the open covering

of {26} which contains y. Thus we have y = a+b of and :
“gince (a,e) = 1 we have (Y.B) = 1, and hence {a+6B} n {l+bv} .
is infinite. Therefore, we cannot find disjoint neighbour-;

4

hoods. ' D .
i . T _ ?
Theorem 26 The space is neither Tys T 51 regular, normal,'
compact, locally compact nor paracompact. :
Proof: The space is Tl and not T3 so therefore it is not
T4., Since it is not T4,1t is neither TS nor normal. .
Since it is not T5 it is not regular and since it is T2
but not T5 it is neither compact, locslly compact nor
paracompact. .
to I
Theorem 27: The space is connected.
Proof: We take A = {a*ﬁﬁ} and B = {y+69} to ve disaoint
open sets in §. Their closures contain multiples of £
and v respect1vely and - hence are not disjoint.,\pow , N
A' = AN g and BY. = B ng* are disjoint open sets with .
"intersecting closures and since every basic open set in - R o
¢+ can be expressed in. the same way as ‘Al above, we have
_that the space-is connected ( gsee <1> ).

Theorem 28: The- space is not péth connected. -
" Proof: Thé proof of this theorem is analogue to ‘the : -
proof of Theorem 16. . ' '

' .Theorem 29: The space is not locally connected, o )
Proof: If (i+1) f o and (i+1) [ (a+f) then B(a,p) n ¢ a
= (B(a,(i+1)B) f’$+)vU-(B(a+ﬂ,(i+1)B)<r;¢f), Hence, we
have a seperated neighbourhood and therefore the spaée

' is not.locally connected. ' ‘

©
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= (c a-b), Hence the space is T, and therefore T

. Theorem 32: The space is ‘not T

Flnally we 1ook at the subspace topoloqy o the
subset Hl and we #ave the followtng.

Theorem. 30: The'spaée is TO' 1 -
Proof: ¢ %s-TO and this property is hereditary.

Theorem 31: The space is T, and,TI. B -
Proof: The open sets have rational common difference and
starting point in Nl We seperate a+i and b+i by the
sets B(a+i,c) and B(b+i,c) where (c, (a+i)(b+i)) =1

ce .
Proof: We consider the point i and the set {(1-0-1)6;} nbfl.
now {(1+1)6} ¥y - {lis1) + 2K} and 17 {Cie)) + 2x)i

We assume O covers i and O n {(1+1) + Ek} = #. Now O
contains {Y6+1} where y has the form (i+l)+2k. Let
{a+65} be in the open coverinc of ((i+1)6} r\N1 such that

. for some: b, LY = a+boﬁ. NOw / (a,f) = 1 —> (Y,B) = 1 and

hence {u+bL} <1+GY} is infinite and thus the space is
no_t T5o C . ' ’

Theorem 33: The space is neither TQ' TS’ remular, normal,
compact, locally compact . nor paracompact. ’
Proof: The space is Tl but not T3 and hence not Ta. A

a space which is . not T 1s neither T5 nor normal. A space

which is not T5 is not regular. The space is T2 but not
\Ti X

Theorem 34: The space is connected. :

Proof; The closure of any basic open set cbntains tﬁe
muitiples of the common differencé defining the set, and’
therefore two disjoint open sets 'do not have disjoint
closures which makes the space connected. : T
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and hencg neither compact, locally compact nor peracompaet;

a



! ©

Proof: Again the ‘proof of this theorem is analogue to '

the proof of Theorem 16, . . o

" Theorem 36: The apace is not locally connected.
Proof: If (i+l) .} o &dnd (i+1) } (o+B) then B(qa,P) n ¥,
= (B(G3(i+1)ﬁ) n le u (B(a+g,(1+1)B) T‘Nl)s ’Hgnce, we
have a seperated neighbourhood and therefore the space
is not locally connected. ‘
» : .

The final topolqu:we wish to discuss in this chapter
is not,one'which has been motivated by some paper as were .
the previous two, but it appearé'to be of some valué in
this ﬁresent»discussion1 This topology will be called
the Straight Line Closed Set Topolégy (S. L. C. S. T.)"
and is defined by the closed sets B(a,B) = Gaussian
-integers of 'the form a+nf where (oyB) = l;‘a,BHE & and
n ¢ 7, and agpitrary.intersections'and,finite unions of

f Yo, et

such sets. . <o ' 8
. ¥ 4 ',’2’ + Y

In this topology we see that all points are .closed
and hence all finite subsets are closed. The topological
properties of this space are given in the following:

- Theorem 37: The space is T, and T,.

' Proof: All ‘points in the space are closed

o : N .
Theorem 38: The: space is neither T2 nor Qa. ‘
Proof: There are no disjoint open sets, ‘ .

‘ !

fTheofem‘5934The-spéce is qéitﬁér.T4,‘T5,’regﬁlar ﬁor‘ﬁormai;
Proof: The space 1is Tl and not T5 énd therefore not T4.
A space which is not T, is neither Ty nor normal, The
-space is nog regulsr because it is not T,. ’ '
Theorem 40: The épace ié.éompact, locally .compact and -
paracompact. ‘ '

—
2e
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rroof: An opén set is the complement of a finite union of

closed sets and since § cannot be covered by a finite
union of straight lines _(vasic closed scte), eveTy open

cover is finite. Thus the space is compact and therefore .

locally. compact and paracompect. N
Theorem 41: The space is/ connected.
Proof: There are no d13301nt*open sets and hence there is

no non-trivial seperatlon.g%v

Theorem 42 The space is not path connected.

Proof: Assume f£:[0,11 -—? # is a map with £(0) = a. and '
£f(1) = . Now f ‘must pass throuph a countable- number of
points-which are closed sets. in . -and therefore the
preimages of thesge points must be disjoint closed sets.,
Hence, we can write (0,11 a8 a countable union of disjoint
closed sets which pivee us a contradiction.

-Theorem 4%; The space is locally connected.

Pfoof‘ Asqume U is open in &. Then ¢\U ‘is closed,and is

-a- finite union of basic closed sets. If U has\a ﬁon-.

trivial seperat1on, say V,W, then G\V end G\W are.cloeed ‘
in & and ‘hence are the finite unions of basie closad
sets. This gives us the fact that § can be expre90§d as.

“a finite union of closed sets which leads to a cont

dictiono T . .. R ' . X N §
* N . - ) - / .

¥
3. .
Ae before we - will now 1ook at the propertiee of the. .

three subspeces I A , and Nl. We have. ‘ %

. Theorem 44: The subspace ﬁ 1s Ty and T,.

Proof: Both these pboperties are hereditary.

Theorem 45: The subspace ﬁ 1s not Ts. _
Proof: We prove this by showing that N cannot be covered
b} a finite number of- cloaed aets;% Hence we must show

e
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that ‘all ‘but a fimite number of points cannot be covered

(4

=

'by- taking the intersectinn of the elements of the open

Theoren 48: The subspace | is connected. , w
‘Proof: Assume A,B seperatee . Then A = ¥\B = a Iini@e'.'}ib )
"union of closed sets.“’Similarly B is a finite union of.- '

by a rinite number of arithmetic: progreeqions in .’
Assume ¥ = a finite. union of sets of the form B(a,b).

1f we call these: sets B Ba, veey B and have them "
generated respectively by (al,bl), (82, 2), ceny (an,b )
then neither set- containg b b2...b or any of its multiples.
Thus we have’ an infinite set which is not contained in
the unlon of these sets. This shows us that )| cannot be
expressed,as the finite union of closed sets and therefore
we cannot find dlsjoint open sets to seperate any two
points. Lo - ' -

!

- > 0

Theorem 4#6: The subspace Jf is’ neither TE’ /h' Tg, regular

-nor normal.

Proof: The space is TO but not T and hence not ‘I‘3 Tde .
space is Tl and not T5 and therefore not T,. A space . oy
which is not 1, is neither T5 ‘nor normal, The space 18"
not T3 and - therefore not regular.

—
Theorem 47: The subspace N is compact locally eompaet
and paracompact. : .

Proof: i is a tlosed subset ‘of the S, L. C. S. T. on ¢

and compactness is weakly hereditary. Therefore, Z is
compact:, Now, since’ every open cover of }f can -be defined

cover of £ with )f, we have that {f is compact.. A compact
space 18 1oca11y compact and paracompact.

~»

closed sets.f/Hence; i can be eipressed as a finite union

Lef elpsed sets which is a contradiction. Therefore the

subspace is connected. - ‘ : -

. | | AR | R _ |

Theorem 49: The subspace ) is not path connected.
[ . S
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Proof: If we assume it 1s path connected then this impliea
-that [0,1] can be expressed as. a countable uﬁion of
disjoint closed sets which is impossible. "This contra—
diction tells us that’ the subspace is not path cohnected

Theorem 50: The suoépace ¥.1is locally cOnnectcd.
~ Proof: If U = N\(finite union of closed sets) is dis-
.1codnocted then. U« a finite union of cloged sets. Hence,
# can be expressed as a findte union of closed sets
. which is a contradiction, - C

Theorem S1: The subspace g ipgéoth'To and Tl. ‘
Proof: § is both To and T;, and both these properties
are hereditary.- ' ' ' o

SR

~ Theorem 52: The subspace #* is neither T
rogular nor normal. . L .

Proof: There are no disJoint open gets - and henoe thc

‘ subspace is not T2 The subapace is TO but it is not

T, ‘and therefore not T3 Tie subapace is-not T,° since B
it is Tl‘but not T3f" A apace.yhich is not,'i‘4 is neither
’1‘5 nor normal. vThc space isanot '1‘3 afid hence not reguiar.

T T T

Theorom 55 The subspace G+ is compact locally compact. ’
and paracompact.. - . ‘
!kroof Any open set is the complement of a finite union
of-~ closed sets and Bincc ¢‘ cannot be covered by ‘a
finite union of closed sets, every open cover must be
finite. "Hence, ¢+ is compact and: therefore 1ocally

compact and paracompact.

i

Theorem 54: The eubspace ¢+ is connected
Proof: There are no disjoint open eeta and henco no non-
trivial seperation. R

Theorem 55: The subspace $* is not path connected.
“»

)
B
. o . . N N
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L . N
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Proof: If we assume the s_u‘uap'aee is path conhocted then ,.
,this*implies that (0,1l can'be written as a’ countable
union of disjoint ‘closed ‘sets which iz a contradiction.

Theorem 56: The subspace’ ¢+ :'i.s locally connecbed.'

: 'Proof Asauminp‘ that for an arbitrary open neighbourhood
we can find a non-trivial soperat;iojm' we have that: ¢+
can be written as & finite union-of” closed sets ‘which is

¥ % a contradiction. Hence, the subspace #¥ is locally
connected. ' ' ‘ '

‘Theorem 57: The subspace Jf, is both T, snd T,.
Proof: # is both Ty and T, and both these properties
are here ditar‘y. ‘ ' '

Theorem 58: The subspace jl is 'l"2.

Proof: If a+i and b+i are two distinct points then we ‘
pick P = 4k+3, which is both a rationa‘l prime and a-
Gaussian prime, such that (a=b,p) = 1. Then B(a+i,p)
and B(b+i,D) are open sets seperating a+t’and b+i.

Theorem 59: The subspace Iﬂl is compact, locally compact
and’ paraoompact.
s Proof: N’l is a closed subset of 9’:"' and these three
propert’ies are weakly hereditary. .
Theoren 60 -The’ aubspace Iﬁ'l is TB’ 4 ‘regular and normal.
The subspace i., both T2 and paracompact and therefore '
T3 and'_'l‘4. A TO’ space is regular and a‘ 19 Tu space
+is normal. ° . | : L -

v
-

' Theorem 61: The subspace ﬂl is TS' '
Proof: We note that a basic closed set gives rise to a
‘subbas:.c open set. The set consistlng ‘of ‘basic: closed
sets is countable since the basic closed sets are defined
by elements from the counteble set £ x Z. Hence, we have

,-5‘ .
€



a countable open subbasis which make s t;he space second
.countable. Now? gince the sgpace is regular it is m‘etriz-

able and therefore '.'L‘5 g

{

Theorem Gé' The éubspacc pfl is neither connected nor
*path connected,

Proof: B(i, 3) U B(i+1, 5) U B(1+2 3) is a non-trivial
.,seperation of *‘1 and hence the subspace is not connected
and therefore not path connected

s
Al

Theorem 65 The subspace ﬁ is not locally connccted. :
Proof: The open ‘set N\B(i 3) has the non-trivial geper-
ation p‘iven by B(i+1, 3) U’ B(1+2 3), )

' Thus, we have surveyed three topclogies on the set
of Gaussian integers and the structures they induce on
scveral subspaces.  Several propertiea have been given
and proven for each of the spaces and they are tabulated -
be low for easy reference. It .s_hould be noted that
dlthough the topologies have been defined in similar
- ways their properties are quite different. Our table

fo Llows: ' I
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. Table 2.1 . I - K
Propertles of Topolop-ies on G and Induced Topologles on
its Subspaces :

F G .
u ol
r 1 S
8 o |Relatively ‘| Straight
t -Open . m Prime Line
e] Set b Open Closed
: n' | Topology ‘ Set 1. Set
‘ b ~ on T | Topology - | Topology
e the o on - on.
r | Spaces: .p| . the- . ‘the
g . 0 | Spaces’: Spaces:
. ' It 11 . ' )
T o
o 18 '

, PUE Z FVF Wiy |E X g M Xty
Ty + + + o+ |+t o+ ] F e o
T + 0+ + + + HlE -+ o+ rE o+ o+

C 41 - N g o

- TZ + + + +.+ + |t e b o+ F]=e - = s
'.I."5 L T IR £
T, B PR + + + +|= + = e e - - &

)
Ts L T A T B
Regular T i
Normal + + + + 4+ 4] e e e - A +

Compact A + R PO
Loc. Cbmpact e . + O+ O+ o+

' Paracompé.c_t; -t = e =+ o+ o+
Connectedi - - -"‘ - - =+ & + 0+ 0+ + v 4=

‘ ‘Path Conn. = = = = = == = = = == = = =

."Loc. Conn.- L T T I N o+ -
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under consideration and will not be given here.

L3 L

As a final note in this chapter we look at the
problem of extending these three topological structures:
‘to & general algebraic 'number field. Since the 0. S.. T.
makes no restrictions on any of the integers defininp-
the basic - open sets we extend it - to a general field by
the €ollowinz equivalence Te lation: :

o T § iff & = 58 + § for fixed 0 and arbitrary &

However, this approach cannot be used when extending
the R. P. 0, S, T. and the g\. L. C. % T. because in

_.order to define these two structures we require that the

defininé; integers. be relatively prime. " Before we can ,
discuss the greatest common divisor of two elements we

need uniqiie factorization and this proberty is_’not always" s

present in- arbitrary algebraic number fislds. If however,
‘we restrict our discuasion to Euclidean number fields

’ our extension is analogue to those given. !

The 'details-oi“ eaéh' eictensic;r_:,_taiies wiﬁ:h""ﬁhe . i"ield

-
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_/\'by Furstenbers to prove the infinitude 6f the rational.

V to that .of Furstenberg.

Chagter III
. énnlinamms_m_ﬂm_mm.ams

In tHis ‘¢hapter we ‘again look’ at the three topolop!ies
'which we deTined and discussed in the previous chapter,
but this time we view their usefulness with respect ‘to
particular problems in number theory.

) ty

-

The first topology, the Open Set. Topology, was used
primes. We use. t,he extended topolop'lcal structure on S
& to prova tl‘)e. :
Theorem: There are infinitely many Gaussian primes. ’
Proof: We consider the set A= UA . where A consists of
all multiples of ' and n runs throug:h the set of Gauss 1an;
'primes. - The only numbers not belonginp to A are 1, -1’,_ :
1, and -i and since {1, -1, i, -Li} is clearly not open,‘\
A cannot be closed.. Since A, is closed for all m then

A must be sn infinite union of sucH sets and hence there

%

+ We rcallze, of* course, that the proof above -isg analogue:
4,

is an 1nfin1ty of primes. e

v

5* T

Looking more clos.ely at the 0. S. 1.~ we see that -
becauge the multiples of a compound, number form an open
sat, the primes are not dense in this topology. Hence,
-this ‘topological structure on (¢ hag little value when

£

. discﬂssinp’ the local properties of _Prime numbers.

an open set in.the 0. S. T., be relatively”ﬁri‘fne, we. have

'the R. P. 0. S. T. mhich ‘can also bo ‘used to prove the: . .

!

' ’I‘ﬁe‘oréni:' There are'-i‘nfiﬁit}oly mz‘any~Gauesian brimes. -

&Sty P -

By’“makix.lg the reat’riction "that the pair,m,&",/ci'efining ’

!
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_ Proof:’If m is prime "the progrfgt'.slsion {67:}' is closed),

since its complement- 1s 8 union of open sets. Consider . ' .
.the union X =-u (611:} extended over a1l ?Jrimes. If t;hia Vo .
‘is'a finite union of cloaed sets, hen X is c¢losed. But' - »
the complement of X is {1, -1, i, -B-}}J wh.i,ch.m neither

empty nor-infinite. ' Since the complement of X is' not
open, X cannot be closed, the union‘is hot' a finitc one, . .

and W number of primeq is infini’te. bl

. . - LN 4
This proof is analogue to that used by Golomb in hlo ' A
'proof of > infinitely many rational primes. Also, we have = - |

 the followinp' : . : < ‘

L R v
: . .
Theorem: If § is a Sfinite subset.of P then the asqertion

that P\g is dense in ,G ig equivalcnt to the assertion , ‘
that p is dense in .. . : : . ; .
Proof: If P\$ is demse im§ for all § then P is dense. ’
If P is dense in‘§ then every open set contains a prime. - RO
i.e. for all pairs a, Bwith (a B) = 1 in # we have: that ‘
there exists 8- ¢ # such that or.+5 B = My = a prime. Now ’
(Byo+byB) = 1 so there exists bl € & such that a+6OE+615 N
= n, = a prine. i.e. oc+(bJ o*0)B = 7. ' Continuing this” - .-
process we have that there are infinitely many primes in B
B(a,B). As meritioned in the proof of the rational cage . L
" Bhis theorem is.the same as’ saying thet if the closure of

\the primes is the Gaussian 1nteg~rs then?the derived set '; . L
of the primes is the Gaussian integers and viece versa., ' S

. @
-«

Theorem: In this topolop;y thc 1nterior of the set of

primes is empty.
Proof Assume B(a,ﬁ) is an open set consistinrg entirely

of primes. If we let b = a+f+l then b = araf+b® +B -
= (a+p)(E+1) which is composite ar}d produces &cont:rarwf’."’“,’“

. ¥

"dlcﬁion. .

o |

where the proofs are agdin analogue to Golomb's,



In this topology we. find' that ,'P and P\$ are both:.
‘dense and this follows froh a theorem by Direchlet in
which he proves that v -

ghcreaare infinitely many primes of the form

f'“n, " o+bB where & is an arbitrary Gaussisn integer
' _and o and B are given Gausaian integers with
(a B)=1,

. -
;

Since our beéic open Bets in this topdlomy are such
. - arithmetic- progrcnsions in Gaussian intevers, the density
o of P and F\$ follows. I 'L

i
J

“The thlrj topology, the S. L. C. .S. T., ig different
" froms the other two: topolovical structurcs on ¢ in' that
"here we have that Nl is 8 closed subqpace. In the -
other two topologieq thiq subspace, was rieither 6pen nor. °
closed, and hacause of "the importance of this subspace
in the solutﬁfn of the problem at hand all the informatibn

. we find on 1t could prove valuable, . . f

. In°tnis/space we’also find ﬁhaf P and P\$ are dense.
"These facts Zfollow since tho complemcnt of .every basic
':_closed set must ‘contain an arithmetic promreSBion of the
type describcd by Direchlet above,- ‘and hcncc we have
that eveng opcn set contains an infinitude of primes.

;. Althouvh this chanter draws on concrete conclusions 3

- about - the three tonolomieq, the discu991on civen 4llus- .
trates more properties of the: structurgs. These proper-
ties are discussed in the followinp chapter when we try

. to discovar'which bopoldries are, usoful for solving our
problem.' We find that these. three; topologies quite

) plosely fit the requirements for asusoful topology and

1. ’-<12>," pEe S1l. = SR



' £ e
' this seems to. indicdte that some minor chénges in the =
..stricture may be the key to solving the problem. o
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v

In the previous two chapters we were mainly inter- o
ested in three topological structures on the Gaussian
integers, and we considered their value for solving the"
problem at hand’ and related problems. . b

Now, rather than discuss a ﬁafticular topology we _
~want to discuss which properties a topology must have ' _
“in order to be useful for solvmnv ‘the ' problem and then '
try to decide .its existence. Thus we have’ the.followiné:“ .

o

Theorem 1: If, there eéxists a tdpolomy'on # with the ‘
followine two prorerties: '

1. AF = & i.e. P\$ is dense in §

L2, Nl is open in § , , L o
. then there are inflnitely many primes of the form.n' +1.
Froof: Assume thern are only fin1te13 msny primes of the :
form n®+1. Then there are only flnitely nany Gauss ian |
primes of the form n+i, i.e. ﬁl contains only finitely
many primes. If we denote this finite set by § then
AZg = P\Nl ( G\ﬁl'which is closed since ﬁ is- open
property 2 of the topology. ' Now we have C ﬁ\Nl
which conﬁradicts property 1 of the tooology and hence
-the theorem is proven, ’

A statéménﬁ quite similar to that of the above'
theorem is ‘that if there exists a topoloiical structure .
on ¢ in which A\$ is dense and the interior of Nl is
non-cnpty, then there are infinitely many. Drimes of the . .
form n°+1. ' This follows since the interior of ﬁl is an a
open subset of Nl containing infinitcly many Gaussian

primes.

) ) ‘/r].
We have the existence of topolories satisfying one

. . s -



of the properties of the topolomy, but not satisfying

' . the other. For example if we -take the topology generated

by finite complcment we have that P\$ is dense but Nl
is not open. The excluded point tono]ozy ( the opan sets
are those which do not include a given poig} ) on'{f with

. 21+1 being, the excluded point, has ﬁl open but A$ not
. dense. "~ Now the minimal- topology generated by these two
'topolovies is called Fort Space and is defined by declar-..

inm open any set whose complement is Iinite or: includes

. a.riven point. In this space ¥, is apain open.but P\S
" still fails to be dense., Although this example .did.not.

prove the exiqtence or the required topology it 11luss

. trates a method which probably could be used to achieve

. this end. )

Another topologmy worth’ mcntionlnp in this connection"
is. the pdrticular point topology ( the- only open sets
are those which contain a given point )."on & with 1+i
bein= the particular boint. “Now ﬁ is ppen since it

" contains 1+i, and Pvlq “dense becaﬁse 1+i is a prime cone-

tained in every open. set. However, P\$ ‘86111 fails to
be dense.
: ' {1' ; ) A
. If we now.cohsidqr closed sets instead of open ones,
L 4 R
we ‘have the following:

N

" Pheorem 2: If there exists a topology on G with the,

following properties
1. For all closed sets C in f, CnP in infinite:‘

2. Nl is closed in &

then there are infinitely many prlmes of the form ni+l.
A .

’

We note that J; is closed in the S. L. C. S. T.. of

:Chnpter 2 but since every point-is’ closed in this topology
‘propcrty 1l of the theorem fai;s.‘ ' .

o
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Thus far in this chapter we have.tried to illustrate
the relationship: between the_ proof of: a single exlistence
( one topology ) and the proof of an infinite existence
( infinity of primes of the form n®+1 ). We now change
~this theme slightly by statineg and provingfthc following:

Theorem 3 If for infinitely many pairs a,b of rational
intezers we can dafine a particular point topology, tg,
on § in which P is dense and ﬁ 'i¢ open then we have’
.proven the existance of an inflnitude of primes of the
form n®+1. . ’
Proof: We define tb using- a+bi as the particular point.
Now if P is dense ﬁhcn a+bi must be primc, and if Jl

is open then it must contaln a+bi. These two. facts.imply
that the particular point must be a prime of the form
n+i. Now, an infinitude of these topolovies gives an
infinitude of such primes and hence an infinitude gf

primes of the fofm n*+1l. oo e

Another useful topolegical structure on § is given °
" by the following: ' '
Theorem 4: If there exists a connected topology on ¢
having P\$ dense, Ml closed ‘and ¢\N1 seperated, we have
the existance-of infinitely many primes of the form n®+1,
[ | - . '
The proof of this theorem involves the Excision Theorem
in Tohomology Theory andis'di%cussed in detail in the
next .chapter. , / ' N

t
1 "

wa

This chapter is nct.intcpded to give a complete .

1ist of all useful. topolomies but.only to illustrate
)

some of those which may be.effective. .



In this final chapten, we look at a series of dis-
cussions on problems arisiﬁﬂ’aé a result of the problem
in question. Althousgh no conclusions have been drawn
from these discussicna, they are included because they

provide ideas whichfmay be Helbful in solvinc the pgoblem.

1. Our iirst discusglon involves aoma alzebraic topolo:y.
We Yefine a topolomy,,t, on ﬁ by declaring open any set,

U, whose complement conbainq finitely many primes, or

© is empty. Hence, a set, C, is closed if and only if 1t
contains finitely many primes. This topolosy has the
‘prbperty'thaf P\g ( wheré $ is any finite subset of P )
is-dense. If we agsume, now, that ﬁl hes only finitely’
many primes then it is closed. We take U £o be any open
superset of Jl and bJ the hxclsion Theorem of Cohomology
Theory we have that: :

ﬁq(s&,,u) = Hq(ﬁ\Nl,U\Dfl)

If we could show that this result leads to a-contradic-
tion then. we would have that there are infinitely many
prlmes of the form n®+1.

Now, beéause of the complicated structure of the
,fdﬁolomy on G, especially with repard to discussing
cohomology, we turn to the Alexander Cohomology and ﬂ‘ .
find that accordine to <B8> we have: ’

#O (X,A) 1is 1somorphic to the group of all locully constant .
functions from X into ¢# and hence i (X,A) = O if X is
connected and A £ 0. o,

v

o . .o
We -see that for the topology defined above the .
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theorem does noﬁ.mivé the required contradiction since

both & and G\I‘llare connected. However, by referring to
Table 1.1 in Chapter I we find that connectedness is not
hereditary and hénce it may be possible teo find a, topo-
logy. on ¢ which'is connected but having G\Dfl L\aconnecbed.

"Hence, we see t:hat if we can. prove “the exlstance of

“n connncted topolop;v on' ff having P\P dense, *‘1 closed,

and ¢\I{1 seperated ‘we have the solution to our problem.
This result was already mentioned 1n the previous chapter,

2. We now consider two problem., in number theory, both
of which are unproven, and try to esbablish a relation-
ship betwren them., Before we state thesé problems we
consider the following problem by Robert Spira which .

‘appeared in the American Mathematical Monthly in 1956.
- theé problem has-the following statement:

Consider the two propositions:

I. If (a,b) = 1 then ax+b assumea infinitely
many prime values. o

II. If (a,b) = 1 thﬂn ax+b assumeq at least one
prime value, : -

I is Direchlet!s Theorem, Clearly I implies II.
Show that II implies I.Y '

"The proof of this theorcm usinr" number theory is
qultn easy, but below we restate the theorem. in a:opolo;gi—

"cal terms and present a topological discussion of the
.proof. Thus, we state the ,following.

-—

Pheorem: The set of rational primes, P, is dense in [ ]
with the -topology given by arithmetic propressions
{ Golomb Tonoloe;y ) ir and only if Direchlet's Theorem

holds.

[

‘1. Americah ,Mathematicalﬂh‘loothly., 63 (1956), 42,



ing P\$ and hence CL(P\F)  C .F\B(a,b) .and therefore P}g

integer a such that a®+b® is a prime of the form 4k+l.

:Conjecture. If for ever{;izééf—there exists a b ¢ Z such
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Discusqion ‘Agsume Direchlet!s Theorem holds, 1.6, for

'all a,b [N with (a,b) = 1 the sequence {a+bn} contains’

infinitely meny primes. Since <a+bn> = Bla tuu: a baqic
open get in our topolopy we have that P meets every
basic open set and is therefore dense, :

. Assume P ig dense in N and assume $ is a finite subset

of P. wow since § is finite and all nonempyt open sets
in ¥ are infinite we have that Mit($) = ¢ Now, if it

were true that:

.
A

| CUAD = CLAIntS - G - ¥

we would hqvé that P\@ is. dense in fi. If we now agsume
that B(a,b) is a baslc open oet containing only finitely
many primes, suy B, then #\B(a,b) is a closed set contain-
is not dense., This is a contradiction implying that
s(a,b) contains infinitely meny primes for all relativeiy
prime pairs a,b and hence Direchlet!s Theorem holds.

Phe mistake in this discussion is the fact that
C1(P\$) £ C1P\Int§ in general. Lf however, we have that
P is dense and § is open or 6P n 8% = @ ( where GP,is;
the boundary of p =_ClP\IntP ) then the theorem holds.

We are now ready to.discuss the cénnection
between the two problems in number theory. The first
is-the infinitude of primes of the form n'+1, and the
second is the existance of an integer b -for every given

Hence we staute the: _ ‘ ' “

that a® +b is a ratiopal prime-of the form 4k+1 then
there are infinitely many primes of the form n'+1. .

'Discussion Ve topologize the Gaussian interers with the

e

o
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.product of'the'indiscrete’topology on the rétional
integers and the particular point topolopy on the ration-
al integers ( in this topoloZy a set is, open'if and.only
if it contains the point 1 ). Now we let by = <n+bi |
n € £ and b is fixed in Zk, and M be an arbitrary. subset
of Z, then sets of the i‘orm;_nNl { beVN } are open in
our topology. We see that‘ﬁhese open sets form a basis
for the topology and since '§%i- is a Gaussian prime
common to every basic open set, Whe primes are dense in
this topological space. Now if $ is afinite subset of
then, since all non-enpty open sets are infinite,
I t =@ and if wé apain assume that: .

¢

Tt

©

_Cl(.P\$) = CL.P\In'tSE - MG - ¥

- we have that P\$'is dense in §#. Hence, wé have thét
every basic open set contains infinitely many primes,’
and therefore there are 1nf1nite1y many primes of the
form n*+1. '

In this discussion the same'fdllécy occurred as
previouwsly and aithbumh this does not supply a proof. of
the conjecture it indicates that one may not be impossible.
It -is worth noting that althouqh neither of the two
. problems have been solved we have that primes of the
:form,a,+b have. been tabulated in- <11> for values of a.
up to 3136, énq there are no coupteréxamplés up to this
point. - 5
3. Our next discussion will concern the- decomnosition
of numbers of the form n’+1 into prime - factors. 'Wé have
some results in this direction already. For example,_

Al

it has been prOVed that there are infinitely many integers

of the form n'+1 haviﬂ% at most three prime factors.

“

2. <15> D.,- 1050

.



We state a conjecture which, if proven, glves us the
above result for two factors. '

_Conjecture: There are infinitely many gaussian primes’.
" of the form x+(x+1)i. .
Theqreﬁ: If there are infiniteiy many Gaussian primes

of the form x+(x+1)i then there are infinitely many
rational integers of the form n®+1. with only two factors.
Proof: An infinitude of GausSian primes of the form
,x+(x;l)i implies an infinitude of rational primes of the

form 2x"+2x+1. now, multiplicatlon by 2 gives us numbers e

of the form 4x° +4x32 = 4x° X141 = (2x+1)%+1 = n*+1.
-Hence we have infinitely many ratlonal integers of the
form n* +1 with only two facters.

. As a matter of fact,.for an arbitrary natural
ﬁnumber k, we have that if (1+21)+n(1+(2k+1)1) is prime .
1nf1nite1y often then there: are infinitely. many integers
of the form n*+1 with exactly k+2 factors.

Andther result is one of, Bredlhin, that there are
inflnitelb many primes of the form n’ tm +1.3 SinCe we
wish to find an infinitude of primeq of the form X' +1,
the solution.follows if the two sets of intepers mentioned,
(- {primes of the form n®+n +1} {1nteg?rs of the form
x"+1} ), have infinite intersection. We note that a
discussion of the intersection of these two sets leads
%o a discussion of Pythagorean triples.

‘ Also worth noting is the fact that evéry proper
_ fraction can be expressed as a sum of Egyptian frqcfions
b (~§ractions’witﬁ numerator 1 ). If we now consider a/b ’

and rewrite it as bedi we see that the elements of M, . .

-—-J . ‘:‘
"3, <155, pg. 103.

,-'%, ‘ ) N ' {
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can be used fo “genenaté"fthp ele@ents of G*;” This
guggests a mapping which in turn’éuggests a possiﬁle
topology for ¢+ Hence, by giving ﬁl a particular
topology, some useful results may arise from the topo—
logy introduced on §'. L

4. In this discussion we consider ﬁhe.folloving proven:

Theorem: If f£(x).is a polynomial of depree n with intager
coefficients and k.is an arbitrary integer, then the
gréatgst common divisor of the numbers f(x), x runniﬁr
over all intggers is equal to the greatest common dlvisor
of the following n+l integers: f(k), f(k+l), ..., £(k+n) .}

and the:
'..: ‘ l. ' .

: Conjé&turé: If f(x) is an irreducible polynomial with

intepral coefficients end if N denotes the greatest

common divisor of the numbers £f(x), x running over all

rintepers, then the polynomial f(x)/N takes prime number

values for 1nfinitely many: x's.” .

The above two conditions togéther, imply the infin-
itude of primes of the. form n®+1, and also many similar
questions are answered as consequences of these two
conditions.

In 1958 A. Schinzel formulated the following:

Coﬁjecturé H: If 3 18 a natural nﬁmber and if fl(x),.
2(x} eeey I (x) are polynomials with integral coeffi- .
- cients satisfyinp the condition: that each of the poly-
nomials f. (x) is 1rreducible, 1ts leading coefficient

Xa

4. <16>' pg- 11-
5. <16>, pg. 127.



"is positive and there is no natural number d>1. that.is

a divisor: of .each of the, numbers P(x) = fl(x)fzix)...f (x), '
X beinq an integer, then there exist infinitelj many '
"natural values of x for which each of . the numbers fl(x),

_ fz(x), coes £ (x) is primé.. .

]

Someuconéequences of this conjecture follow:

: 1 \ n - n 'n - n .
1. For fl(x) a'xz+1 fe(x) = x"+3, 5(x) = x"+7, 4(x) = x'+9,
the conjecture 'holds and this’ gives us infinitely many. '
quadruplets of primes, and hence infinitely many prime
tw1ns.

hY

\,g :
2. There are infinitely many primes of the form x* +1

I 9 : I'a"
and X +l. N , '

- 5 Applying the conjecture to rl(x) = X and. rz(x) = x+2k
we Have that every even number hds infThitely nany ’
representations as the difference of two primes.

“4. If (a,b) = (a,b(b+2)) = 1, then there exist infinitely. |
many prime twins in Ythe arithmetic progression (an+b}r , - o

T
5. Every”odd integer has infinitely many representations /7 - c
as the diﬁference of a prime and the doublé of a‘prime.

‘ 6. There exist arbitrarily long arithmetic progressions,‘
whose' terms are consecutive prime numbers. . ;
4 ’ : - . ' o
' Thus, we see that if we assume the validity of this o
: conjecturc, the solution to our problem follows as a '
simple consequence.‘

8

p——

6. <16>, pg. 128..  .* . ‘ -
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