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(i)t .

ABSTRACT

The aim of this thesis is to study the geometry of Banach spaces,
the existence of fixed points and the convergence of iterative sequences

of certain mappings in Banach spaces.

We introduce some of the basic definitions and give a brief survey

of some well-known results on fixed points for different mappings.

We also introduce and discuss different classifications of Banach
spaces. A few results, similar to those of uniformly convex Banach spaces,

have been given for weakly uniformly convex and weakly* uniformly convex

Banach spaces.

Finally considering more general mappings, of types Diaz and Metcalf
[ 46}, Dotson [48], Kirk [87], some new results and various generalizations
have been given on the asymptotic regularity and the convergence of the
iterative sequences in Banach spaces. We end with mentioning some of the

applications of fixed point theory in brief.
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INTRODUCTION

S. Banach [ 7], in 1922, formulated his classical theorem, known

as the Banach contraction principle, which may be stated as follows:

"A contraction mapping of a complete metric space X into itself

has a unique fixed point'.

Because of its widespread applicability in proving the existence and
uniqueness of solutions of the differential and integral equations, many
extensions of the above principle have been given in recent years by
several mathematicians such as Chu and Diaz [36], [37], Edelstein [52],

[ 55, [56], Rakotch [113}, Bailey [ 6], Boyd and Wong [17], Browder [28],
Sehgal [120] and others.

The main objective of this thesis is to study the geometry of Banach
spaces, the existence of fixed points and the convergence of the iterative

sequences of certain mappings in Banach spaces.

The preliminaries of metric and normed linear spaces as well as some

of the well-known results on fixed points of different mappings are given

in chapter I.

In chapter II we discuss different classifications of Banach spaces
according to various geometric properties of their wnit balls. 1In 1936,
J.A. Clarkson [ 38] introduced the notion of uniform convexity of the norm
in a Banach space as follows: a norm is uniformly convex if, whenever the
midpoint of a variable chord in the unit sphere of the space approaches the
boundary of the sphere, the length of the chord approaches zero. Many
generalizations of uniform convexity have been given in recent years, for
example see [94], [ 3], [60]. As a simple consequence of the definitions

of (WUC) and (W*UC) Banach spaces, we obtain a few results which are




useful in applications. Moreover, using the concept of normal structure
([18]), we give some interesting results for semi-nonexpansive mappings

which are modelled aftex Zizlex [ 139].

In chapter III we have obtained several results even when the hypothesis
of nonexpansiveness of a mzpping T is weakened up to the extent that T
is required to be nonexpansive only at its fixed points (whenever they exist).
Considering a nonexpansive (quasi-nonexpansive) mapping T, we show that
a more general mapping S, of type Kirk [87], is nonexpansive (quasi-
nonexpansive) and asymptotically regular or weakly asymptotically regular
in (UC) and (WUC) Banach spaces. Thus, we generalize certain results of
Browder and Petryshyn [ 32] as well as of Kirk [87]. We note that, in
general, it is not the case for noneipansive mapping T that the sequence
of Picard iterates '{Tn(xo)} converges to fixed points of T..In case T
is a densifying or-a:demsifying nonexpansive mapping, we give some new
results for the convergence of the iterative sequences of the mappings
S and Ty, which in turn generalize and improve certain results of
Petryshyn [10§, Singh [125], Diaz and Metcalf [46], Edelstein [57],

Schaefer [119], Krasnoselskii [90], and Kirk [87].

In the end we mention some of the applications of fixed point theory

in brief.



CHAPTER 1

INTRODUCTORY CONCEPTS

In this chapter we introduce some preliminary definitions and some of
the known results primarily on metric spaces. We shall use the conventional
shorthand "iff" for "if and only if". Moreover, we shall denote by K

the field T of real numbers or the field € of complex numbers.

1.1. Preliminaries.

Definition 1.1.1. Let X be a non-empty set and let R" denote the

. . . . + .
positive reals. We define a distance function d:X x X - R to be a metric

iff the following conditions are satisfied for all x,y,z € X:

1) d(x,y) > 0,
(Ai) dxx,y) =0 iff x=y
(iii) d(st) = d(}':x)’

Gv) d(x,z) < d(x,y) + d(y,z) (triangle inequality).

A metric space is a pair (X,d) in which X is a non-empty set and d
is a metric on X. We may denote the metric space by X alone when the

metric d 1is understood.

Definition 1.1.2. The diameter §(A) of a non-empty subset A of the

metric space (X,d) 1is defined by

8§(A) = sup {d(x,y) : x,y € A}.

If the diameter of A is finite, i.e. §&8(A) < », then A 1is said to be

bounded; if not, i.e. &8(A) = «, then A is said to be umbounded.

We define the distance between the point x and the subset A of

(X,d) to be




d(x,A) = inf {d(x,y) : y € A}

and, in an anologous manner, define the distance between the two subsets

B and C of (X,d) to be

d(B,C) = inf {d(x,y) : x& B, y & C}.

Definition 1.1.3. A sequence '{xn} in a metric space X 1is said to

converge to the point x, € X and we write X, > Xy iff, for each real

number € >:0, there exists a positive integer N(e) such that d(xn,xo)

<e, for all n > N. In otherwords, x =+ x iff 1limd(x_,x ) = 0.
- n o oo n’"o

Definition 1.1.4. A sequence ‘{xn} is said to be a €auchy (or,

fundamental) sequence iff, for each real number e > 0, there exists a

positive integer N(e) such that d(xm,xn) < e, for all m,n > N.

Remark 1.1.1. Every convergent sequence is a Cauchy sequence.

Definition 1.1.5. A metric space is said to be complete iff every Cauchy

sequence in X converges in X.

Definition 1.1.6. A metric space X is said to be separable iff there is

a countable subset of X that is dense in X.

Definition 1.1.7. Let X be a metric space. The subset A of X is said
to be totally bounded if given € > 0 there exists a finite number of

subsets Al’Az’As’ ceays An of X such that
n
s(A) < ¢ &k =1,2, ... ,n) and AC | .
A A

Remark 1.1.2. If a subset A of a metric space X 1is totally bounded

then it is bounded but not conversely. However, in R bounded and totally

bounded sets are equivalent.




The following well-known theorem is the most important and useful

property of totally bounded sets.

Theorem 1.1.1. Let X be a metric space. Then a subset A of X is

totally bounded iff every sequence of points of A contains a Cauchy

subsequence.

Definition 1.1.8. A metric space X 1is said to be compact if from every

open covering '{Ga} of X it is possible to extract a finite subcollection

of the Ga's which constitute an open covering of X.

Definition 1.1.9. A linear space over K is a quadruple (X,K,+,-) where

X 1is a non-empty set, + 1is a mapping (x,y)+> x+y of X x X into X,
e is a mapping (@,x) > a*x of K x X into X, such that the following

conditions are satisfied for all x,y,z€ X and a,8 € K:

A) x+y=y+x ,
(i) x+ (y+2) = (x+y) +z,
(iii) there exists ©6 € X such that X+ 606 =Xx,
(iv) for each x € X there exists -x € X such that X+ (-x) = 6,
(V) (o +B)ex= aqaex+ Bex ,
(Vi) ae(x + y) = aex + a.y ,
(vii) a«(Bex) = (aB)e x ,

(viii) l1lex =x,

We shall write the linear space X or (X,K) instead of the linear

space (X,K,+,e ).

We want to introduce and discuss here a few resultsrelated to the notion of
convexity. Many important topics in the theory of linear spaces rely on

convexity. This notion, stemming from intutive geometric ideas, can be



formulated purely analytically.

Definition 1.1.10. Let x and y be two points in the linear space X.

Then the segment connecting the two points x and y 3is the totality of all

points of the form cox + By where @ > 0, B >0 and o +8 = 1,

Definition 1.1.11. A subset G of a linear space X over K is called

convex if given two arbitrary points x and y belonging to G, the segment

connecting them also belongs to G.

To illustrate the definition, we give the following examples:

Examples 1.1.1.

(1) The empty set and a set consisting of one point are convex sets.
Also, the line segment, plane and triangle are convex sets in 3-dimensional
Euclidean space.

(2) Let M be a subset of the space C[a,b] consisting of all
continuous functions satisfying the extra condition |f(t)|.i 1. Then M
is convex, since If(t)l L1, |g(t)| < 1 together with a>0, 8 >0,

a + 8 =1 dimplies

laf(t) + Bg(t) < a + B8 = 1.

The following lemma gives some basic properties of convex:sets.

Lemma 1.1.1. If G1 and G2 are convex sets, so also are the sets

Gy NGy, AG; and Gy =+ Gz, where A is a scalar.

Definition 1.1.12. The intersection of all closed convex sets containing

a set G is a closed convex set which contains G and which is contained
in every closed convex set containing G. This set is called the closed

convex hull or, convex closure of G, and is denoted by EEIG).

Alternatively, one can define convex closure of G to be the smallest




closed convex set containing G.

Definition 1.1.13. Let X be a linear space over K. A mapping x> | x|

of X into the set R' of positive reals is called a norm on X iff it

satisfies the following conditions for all x,y € X and o € K:

@ Hxll 20 ,

Gi) Ikxll=o0 iff x =0,
Gii) |fex || =le| | <[]
GAv) |+ vyl <|kxll+ ||l (triangle inequality).

A normed linear space over K is a pair (X, |]+]l] ), where X is a
linear space over K and | I-H is a norm on X. We shall write the normed

linear space X instead of (X,]|]-|]).

Every normed linear space X 1is a metric space with a metric d defined

on X as d(x,y) = |[x - y|| for all x,y € X.

Definition 1.1.14. Two norms || ||1 and || ||2 on a normed linear space X

are said to be equivalent iff there exist numbers a and b with
0 <a <b <« such that

al|x|l, = [Ixl], <b]|x|], £or all xeX.

Definition 1.1.15. A complete normed linear space is called a Banach space.

Examples of some well-known Banach spaces are the following:
«Cla,b] : the space of continuous functions f on the interval ([a,b],

with }}E|| = sup {|£(t)]| : t € [a,b]]}.

£P  for P >1 : the space of sequences x = (xl,xz, ee. ) for which
[+ -] . o 1
IolxlP <o kx|l = CF 1l /p




for p >1 : the space of all equivalence classes of functions f that

are B -measurable and pth power summable on finite set E

with lell, = ([gll® an?/? .

Definition 1.1.16. Let X be a linear space over K. A mapping

XXy > (x,y) of X xX into K is said to be an inner product (or scalar

product) on X iff

(GA) x,x) >0 for all x € X

b4

iff x =0 » X € X,

o

(ii) (x,x) =

(iii) (x,y) = (y,x) for all x,y € X

b4

Av) (ox + By, z) = o(x,z) + B(y,z) for all x,y,z€ X and a,B € K.

If X is an inner product space, we define a norm ||- || in terms of

1/2

the inner product as ||x|| = (x,x) for all x € X.

Definition 1.1.17, If an inner product space X 1is complete, X 1is said

to be a Hilbert space.




1.2. Some Fixed Point Theorems

Definition 1.2.1. Let T be a mapping or transformation of a set X into

itself. A point x € X 1is said to be a fixed point of T if T(x) = x.

In otherwords, a point which remains invariant under a mapping is known as

a fixed point.

Definition 1.2.2. A mapping T of a metric space X into itself is said

to satisfy Lipschitz condition if there exists a real number k (known as

Lipschitz constant) such that

) d(T(x), T(y)) < k d(x,y) , for all x,y € X.

If the condition (1) is satisfied with a Lipschitz constant k such

that 0 <k <1, then T is called a contraction mapping.

One of the well-known theorems in connection with the fixed points of
a mapping in a metric space is that given by Banach [ 7] and known as
Banach Contraction Principle. This theorem has been used extensively in

proving existence and uniqueness theorems of differential and integral

equations.

Theorem 1.2.1. Banach Contraction Principle:

Let (X,d) be a complete metric space and T:X + X be a contraction
mapping. Then T has a unique fixed point (i.e. the equation T(x) = x

has a unique solution).

Proof. By hypothesis there is a real number k with 0 < k < 1 such that
d(T(x), T(y)) <k d(k,y), for all x,y € X. Choose any point x, € X

and set x, = T(xo), X = T(xl) = 'I'Z(xo), and in general, let = Tn(;co).

*n
We shall show that the sequence '{xn} is a Cauchy sequence. Let m, n

be positive integers with m > n. In fact,
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dixp.x) = A x), Tx)) <k a@™x), T x)))
<K' @), x )
=k" dlx o, x)
SKMAlx L x o 0) A g, X o)
toeeiiee.. v dx, x )}
<KM0, x) (KPP M2, +1}

K
f-T:E' d(xl, xo).

Since k <1, d(xm, xn) is arbitrarily small for sufficiently large n.
Thus the sequence '{xn} is a Cauchy sequence. Since X is complete,

1im x, exists. Let 1lim X, =u.
n+oo n_).a,
Since T 1is continuous,

T(u) =T 1lim x_ = 1lim T(x_ ) = 1lim x = u.
N e n n+l

Thus the existence of fixed point 1is proved. We shall now prove the
uniqueness. Let T(u) =u and T(V) = v, u# v. Then d(u,v) =
d(T(u), T(v)) <k d(u,v). But k <1, therefore d(u,v) =0 i.e. u=v.

Hence uniqueness.

Definition 1.2.3. A mapping T of a metric space X into itself is said

to be contractive mapping if d(T(x), T()) d(x,y), for all x,y € X, x#Yy.

A contractive mapping on a complete metric space need not have a fixed

point as the following example demonstrates:

Example 1.2.1. The map f:IR> R defined by £f(x) = x + m/2 - arc tan x

is clearly contractive but has no fixed point.

Edelstein [53] has given the following theorem for the existence of

a fixed point for a contractive mapping.
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Theorem 1.2.2., Let X be a metric space and let T be a contractive

mapping of X into itself. If there exists a point X, € X such that its
n.

Sequence of iterates '{Tn(xo)} has a convergent subsequence {T 1(xo)}

converging to a point & in X, then £ 1is a unique fixed point of T.

A simpler proof [49] of this theorem may be given as foliows:

n.
Proof. Since {T l(xo)} converges to E€ X and T, being a contractive
n.+l_
mapping, is continuous on X therefore the sequence {T 1 %(xo)} converges
. on, 42
fr it

to T(&)and consequently the sequence (xo)} converges to T2(g).

Consider the sequence {d('l‘n(xo) R Tn+1 (xo))} of non-negative real
numbers. If for any n, d(Tn(xo), Tn+1(xo)) = 0, there remains nothing to
prove as Tn(xo) comes out to be a fixed point of T. Thus we may assume
without loss of generality that each term of this sequence is positive. Since

T is contractive therefore for X # T(xo) , We have

d(x,, T(x)) > AT, T2(x))) > ...... > A, ™)) s L.

i.e. '{d(Tn(xo), Tn+1(x°))} is a decreasing sequence of positive real
numbers bounded by d(xo, T(xo)). Hence it converges together with all its

subsequences to some real number a. Now, assume E# T(E). Then

ni ni+1
d (Uim T “(x ), 1lim T (x,))

d(g, T(&))

n. n.+1
limd (T 7(x)), T' (x))

= o
n.+1 ni+2
dmd (T5 (x), T (x)))

ni+1 ni+2
=d (1im T (xo), 1im T '(xo))

d (T(&), T2(&))

A

d (¢, T(§)), which is absurd. Hence T(§) = £ i.e. is

a fixed point of T. For uniqueness of £, let £ # £ be a point in X

such that T(E = ¥ Then .
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d(g, &) = d(T(E), T(E)) < d(&, ¥)

a contradiction. Thus & is a unique fixed point of T.

N

Definition 1.2.4. A mapping T of a metric space X into itself is said

to be nonexpansive mapping if
d(T(x), T()) < d(x,y), for all x,y € X.

Cheney and Goldstein [35] proved the following theorem:

Theorem 1.2.3. Let T be a mapping of a metric space X into itself

such that

(i) T 4is nonexpansive,
(ii) if x # T(x), then d(T(x), Tz(x)) < d(x,T(x)), for all x € X
and (iii) for some X, € X, the sequence '{Tn(xo)} has a subsequence

AT 1(xo)} converging to u.
Then the sequence '{Tn(xo)} converges to u and u is a fixed point of T.

These results have been further generalized by Edelstein [52], [55], [56],
Rakotch [113],Chu and Diaz [36], [37], Bailey [6 ], Browder [28], Belluce
and Kirk [10], [11], Kirk [84], Boyd and Wong [17], Sehgal [12D], Wong[134],
and many others. Many of these fixed point theorems have been used to

guarantee the existence and uniqueness to solutions of differential and

integral equations.

Following Kannan [81], we define

Definition 1.2.5. A mapping T of a metric space (X,d) into itself is said

to be semi-nonexpanding (or semi-nonexpansive [135]) if
AT, THY) < 7 WdETE) + dy,TeN} x,y € X.

Semi-nonexpansive mappings have been discussed by Kannan Ej?], [781, [79]1,




13.

[80], [81], Reich[114],[115], Woodward [135], and others.

Remarks 1.2.1.

(1) 1In general, a semi-nonexpansive mapping of a complete metric space
X into itself does not imply the existence of a fixed point (take the unit
circle and T(z) = -z, orput X = {0} [1,2] and T(x) = 0, x # O,
T(0) = 1 [114]).

(2) In some cases semi-nonexpansive maps are nonexpansive. However,
the two notions are quite independent; nonexpansive maps must be continuous

while semi-nonexpansive maps need not (see Kannan [78], Woodward [135]).

(3) Any semi-nonexpansive map T has at most one fixed point. For,
if T(x) = x and T(y) = y, then
d(x,y) = d(T(X), TH)) £ 5 {dx,TE)) + dF,TGN} = 0.

(4) A semi-nonexpansive map is continuous at its fixed point (if such

a point exists).

For two operators T, and T, each mapping a complete metric space X
into itself, Kannan [77] investigated a sufficient condition for the
existence of a common and unique fixed point in X. He has proved the

following result which we state without proof.

Theorem 1.2.4. If T1 and T2 are two operators each mapping a complete

metyic space (X,d) into itself and if

d(T, (), T,¥)) < aldx,T,(®)) + diy, T,0))},

where x,y € X and 0< a < -1-, then T1 and T, have a unique common

fixed point in X.

In case T, is identical with T2 in Theorem 1.2.4., we have
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Theorem 1.2.5. (Kamnan[77]) If T be an operator mapping a complete metric

space (X,d) into itself and if

d(T(x), T(Y)) =< ald(x,T(X)) + d(y, T(¥))}

where x,y €X and 0 < a < —;— > then T has a unique fixed point in X.

Several generalizations of these theorems have been given by Kannan [78],

Singh [122],[123],[124], Reich [114],[115], Dube [49], Yadav[136],Fukushima [62] é

Srivastava and Gupta [129], Zamfirescu [137], and others.

Definition 1.2.6.

Let f be a one-to-one mapping of a metric space (X,d)
onto a metric space (Y,dl). The mapping f is said to be a homeomorphism
iff the mappings f and f"1 are continuous on X and Y respectively.
Finally the mapping f is said to be an isometry iff

d(xl,xz) = dl(f(xl), f(xz)) for all Xy, X, € X.

Remark 1.2.2. Clearly every isometry is a nonexpansive mapping.

Definition 1.2.7. A linear topological space is a linear space X with a

topology defined in such a way that

(i) the mapping (x,y) * x+y of X xX~=>X is continwous,

(ii) the mapping (a,x) > ax of K x X > X is continuous.

Definition 1.2.8. A locally convex linear topological space is a linear

topological space with a base for its topology consisting of convex sets.

Theorem 1.2.6. Brouwer's fixed point theorem:

Let C be a non-empty compact convex subset of a finite dimensional

normed linear space, and let T be a continuous mapping of C into isself.

Then T has a fixed point in C.

The Brouwer's fixed point theorem in the form stated above does not hold
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in infinite dimensional spaces as the following example shows:

Example 1.2.2. Consider the space £2 of sequences x = ;{xl, Xos eonoceesl

with izl |xi|2 < ». Define T as a map of the closed solid sphere into

itself as follows:

for x = (X,, X,, «...) let T(x) = T - [IX]iz > X5 X, R )
|ITx)||? = 1. Now suppose x is a fixed point. Then |Ix|| = It |l = 1.

But then x; = 0 and it can be seen also that x, = 0, x3 =0, ...... « Hence

x = 0. This contradicts the fact ||x|| = 1. Therefore, T has no fixed point.

The following theorem i5 an extension to infinite dimensional space of

the Brouwer's fixed point theorem/

Theorem 1.2.7. Schauder's fixed point theorem - First form:

A continuous map of a compact convex set C in a normed linear space X

into itself has at least one fixed point.

Definition 1.2.9. An operator T which maps a Banach space X into itself

is said to be compact if it maps an arbitrary bounded set imto a compact set;

T 1is completely continuous if T is continuous and compact.

The second version of Schauder's fixed point theorem, which follows below,

is more suitable for the applications.

Theorem 1.2.8. Schauder's Theorem - second form:

Let T be a completely continuous map of a closed convex bounded set C

in a complete normed linear space X into itself. Then T has at least one

fixed point.

The proof of these theorems, together with a discussion of other related

results, may be found in [13]. Schauder's theorem was foreshadowed by the work
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of Birkhoff and Kellogg[l 5]on existence theorem in analysis. Afterwords
Tychenoff [131]extended Schauder's .result from Banach spaces to arbitrary

locally convex linear topological spaces. In both cases Brouwer's theorem

was used as a starting point.

Theorem 1.2.9. Schauder - Tychonoff's fixed point theorem.

Let C be a non-empty compact convex subset of a locally convex
(Hausdorff) linear topological space X, and let T be a continuous mapping of

C into itself. Then T has a fixed point in C.

These theorems have been used very often; perhaps the Schauder's theorem
is one of the most important theorems for the numerical treatment of equations
occurring in analysis. Recently Browder [27] gave generalization of Schauder
and Tychonoff fixed point theorems. He has also given several generalizations
to Schauder's fixed point theorem '’ (see [121] for references)]}) which centers
around the concept of asvmptotic fixed point theorems and of deformation of

non-compact mappings.
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CHAPTER II

_GEOMETRY QF BANAGH SPAGES

2.1. Some Results on Reflexive Spaces.

Definition 2.1.1. A bounded linear transformation of a normed linear space

X over K into K is called a bounded linear functional on X,

Remark 2.1.1.

The word functional is used to distinguish mappings of a linear

space into the field R or (.

Definition 2.1.2. The Banach space consisting of all bounded linear

functionals on a normed linear space X over K, denoted as X*, is called

the dual space (conjugate space) of X.

Definition 2.1.3. The dual space X* has a dual space (X*)*, called as

the second dual of X. We usually write X** in place of (X*)*.

Definition 2.1.4. Let X be a normed linear space. Then

U= {x€X: |{x|]] <1} and s= {xeX: || x|| =1}
are called the unit ball and the unit sphere respectively.
Similarly in the dual space X* of X,
Ut = {fe X* : ||f]| <1} and S* = {fe€X*: ||f|| =1}

are called the unit ball and the unit sphere respectively.

Remark 2.1.2. A ball, open or closed, in a normed linear space is convex.

In what follows, we denote by (f,x) the value f(x) of £ at x.

Definition 2.1.5. For a given € >0 and a finite number of elements

f I.’ fz’ LI [ fn E— x*, let

V(£;, £, -or 5 £5e) = {XEX: |(£;,x)| <, for every i =1,2, ..., nJg
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then the family V of all sets V(£,, f2, cee s fh; e) for every choice

of €& and any finite sequence fl, f2, cee s fh, defines a basis of

neighborhood of zero of a topology which is called the weak (or X*) topology
of X.

Remarks 2.1.3.

(1) Under weak topology a normed linear space X 1is a locally convex

linear topological space.

(2) In the sequel by the terms weakly closed set, weakly compact set,
weak closure of a set etc., we mean closed set, compact, closure of a set

etc., in the weak topology.

(3) The norm topology (or strong topology) and the weak topology of

a Banach space X are equivalent iff X is finite dimensional.

Definition 2.1.6. In the dual space X* of a Banach space X the family
V* of sets

VE(X, Xy, eee , X 3E) = {fe X* : I(f,xi)| < e for everyi= 1,2, ... , n.},
(e >0 ; X15 Xp5 eoe xne X)
defines a basis of neighborhood of zero of a topology which is called the

weak* (or X*) topology in X¥*.

Remarks 2.1.4.

(1) ©Under weak* topology, X* is a locally convex linear topological space.

(2) 1In general, the weak topology in the dual space X* of a Banach

space X is finer than the weak* topology in X%*.

Some of the importance of the weak* topology stems from the following

theorem:
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Theorem 2.1.1. (Alaoglu [ 11])

The unit ball U* of X* is compact in the weak* topology.

Definition 2.1.7. A sequence '{xn} CX converges weakly to x €X i.e.
X ¥ X, € X iff lim (f,xn) = (f,xo) for every f € X*.
Geometrically, X Y X, means that the distance from x, to any hyperplane

through X, goes to zero.

We observe that X, is unique as a weak limit for, if X ¥ Yos then

f(xo - yo) = 0 for all f € X*. Therefore X, = ¥,-

Remarks 2.1.5.

(1) Every weakly convergent sequence '{xn} is necessarily bounded and

moreover, the norm of its limit is less tham or equal to 1lim inf ||x_|].

(2) It is clear that strong convergence implies weak convergence. But

the converse implication is not true in general (see [100]).

Definition 2.1.8. A mapping T of a Banach space into itself is said to be

demiclosed if for any sequence {xn} such that X Y %x and T(xn) >y

then y = T(x).

Definition 2.1.9. A mapping T of a Banach space X into itself is said

to be strongly continuous if for any sequence '{xn} <. X such that

x % x € X implies T(x) > T(x,).

Definition 2.1.10. A sequence '{fn}cx* converges weakly* to £ € X* i.e.

w* . .
fn > f0 € X* iff 11m(fn,x) = (fo, x) for every x € X.
We note that a sequence {fn]- C X* cannot have two distinct weak* limits.

We state the following simple property, due to Opial [104], of weakly

convergent sequence in a Hilbert space.
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Lemma 2.1.1. If the sequence '{xn} is weakly convergent to X, in a

Hilbert space H, then for any Yo # X, in H,

(1)  1lim inf ||x - y_|| > lim inf Hx - = 1]

Proof. Since every weakly convergent sequence is necessarily bounded, both
limits in (1) are finite. Thus, to prove this inequality, it suffices to

observe that in the equality

lx, - y 12 = Fx, - x, + x, =y i3,

Hx, - xOH2 + 1, - y°||2 + 2 Re(x - x_, X o

the last term tends to zero as n tends to infinity.

Theorem 2.1.2. Each closed convex subset of a Banach space is necessarily

weakly closed.

The following statement is a simple consequence of the above theorem.

Theorem 2.1.3. The weak closure of every bounded set of a Banach space

is contained in its convex closure.

Definition 2.1.11. Let X be a normed linear space. The linear isometry
* &
X > X of X into its second dual X** is called the canonical mapping.

Definition 2.1.12. A Banach space X 1is said to be reflexive iff the

canonical mapping X > x** maps X onto X**

Remarks 2.1.6.

(1) It is clear that every Hilbert space is reflexive. For 1 < p < =, =

the spaces 2P and LP are reflexive. But the converse is not true.

(2) The weak and weak* topologies coincide if the space is reflexive'([76}).;

The following theorem due to Gantmakher and Smulian [65], [66], Kakutani



21.

[76], Eberlein [51], Nikaido [99], is one of the fundamental properties

of reflexive Banach spaces.

Theorem 2.1.4. A Banach space is reflexive iff its unit ball is weakly

compact.

Remark 2.1.7. From Theorem 2.1.2. and Theorem 2.1.4., it follows immediately

that in a reflexive Banach space every bounded closed convex set is weakly

compact.

In somewhat different way the above theorem may be stated in the following

form (see Opial [103]):

Theorem 2.1.5. A Banach space X is reflexive iff every bounded sequence of

elements of X contains a subsequence which is weakly convergent.

The following characterization of reflexive spaces, due to Smulfan [126],

is worth mentioning:

Theorem 2.1.6. X 1is reflexive iff every decreasing sequence of non-empty

bounded closed convex subsets of X has a non-empty intersection.

The notion of monotone operators was introduced by Zarantonello [13B],
Minty [97] and Kadurovskil [ 741, and has been extended to Banach spaces by
several authors. The theory of monotone operators and its application to
nonlinear partial differential equations, evolution equations, variational
inequalities, etc., have evolved into a substantial chapter in nonlinear

functional analysis.

In what follows C is a subset of a Banach space X.

Definition 2.1.13. A mapping T:C + X* is called monotone if

(T(x) - T(y), x~-y) >0 for all x,y in C,
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and strictly monotone if

(Tx) - TY), x-y) >0 for all x,y(x # y) in C.

It is obvious that the sum, product with a non-negative number of
monotone operators are again monotone operators. It is easy to see that a

strictly monotone operator has an inverse, which is also a strictly monotone

operator.

In Hilbert space an intimate relationship between monotone and non-

expansive mappings is expressed by the following:

Proposition 2.1.1. (Minty [97]) Let C be a subset of a Hilbert space

H and T:C - H a nonexpansive mapping. Then the mapping I-T is monotone.

Lemma 2.1.1. enables to prove the following useful property of non-
expansive mappings in Hilbert spaces which in [23] has been proved by the

means of the theory of monotone mappings.

Proposition 2.1.2. (Opial {104]}) In a Hilbert space H, for every non-

expansive mapping T:C - H (C¢H), the mapping I-T is demiclosed.

Proof. Let {xn} C C be a sequence which is weakly convergent to an element

X, of C and the sequence '{xn - T(xn)} converges to an element y  in
X. Then we have

lim inf ||xn - x || 2 1im inf IIT(xn) - T(x )|| = 1im inf =, - ¥, - T(x )],
N0 <o n>e

so that from Lemma 2.1.1. it follows that 5(0 =y, * T(io).

Definition 2.1.14. A mapping T:C - X* 1is called strongly monotone if there
exists a continuwous positive function d(t) defined on R" with

lim d(t) = +o as to= such that

(Tx) - T, x - y) > d(|x - y|D|Ix - y||,




23.

for all x,y in C.

In the following . -denotes the weak* convergence in the dual space X*.

Definition 2.1.15. A mapping T:C » X* is called hemicontinuous if for
any x in C, y in X and any sequence {tn} of positive real numbers, from

x+tnyeC m=1,2, ... . ) and tn+0 as m~> », it follows that
T(x + tny) ~ T(x).

Definition 2.1.16. A mapping T:C - X¥ is called coercive if

lim(_TT('}Ic'z?hﬂ = 4o as ||x|]| » +w.

The condition of coerciveness of a mapping T:C > X* is basically a

Condition on the behaviour of T at infinity. The following gives the

relationship with strongly monotone maps.

Proposition 2.1.3. (See Opial [103]) If O € C, then every strongly monotone

mapping T:C »+ X* is coercive.

One basic property of monotone mappings is expressed by the following

fundamental:

Theorem 2.1.7. (Browder [26], Hartmand and Stampacchia [71])

Let C be a closed convex subset of a reflexive Banach space X and
T:C > X* a monotone hemicontinuous and coercive mapping. Then for each

given u in X*, there exists an X in C such that
(Tixo) -u, X - xo) >0, for all x in C.
In recent years, many results have been given on the surjectivity

property of monotone mappings, for example see Minty [97], [98], Browder

[19], [20], and the others. For mappings defined on the whole space X,

one can easily derive from Theorem 2.1.7. the following fundamental:



24,

Theorem 2.1.8. (Minty [98], Browder [19]). Let T be a monotone hemi-

continuous and coercive mapping of a reflexive Banach space X into its dual
space X*., Then T maps X onto X*, For each given u in X*, the

set T'l(ub) = {x€X : T) = uo} is bounded, closed and convex.

For strongly monotone méppings Theorem 2.1.8 can be considerably

strengthened by further information on the inverse mapping.

Theorem 2.1.9. (Minty [98], Browder [20]). Let T be a strongly monotone
hemicontinuous mapping of a reflexive Banach space X into its dual X%,
Then T issone-to-one, maps X onto X¥%*, and the inverse mapping T_I:X* + X

is continuous and maps bounded sets of X* onto bounded sets of X.

The main results of the theory of monotone mappings can be extended to
broader classes of mappings whose consideration is motivated by the theory of

partial differential equations.

Definition 2.1.17. A mapping T:X > X* of a Banach space X into its dual

space X* is called semimonotone if there exists a mapping S:X x X »> X*

such that T(x) = S(x,x) for all x in X while S satisfies the three

following conditions:

(i) for each fixed y in X, the mapping x -+ S(Xx,y) is hemicontinuous,
(ii)l for each fixed x in X, the mapping y—> S(x,y) is continuous
from the weak topology on each weakly compact subset of X to the
strong topology of X¥*,

(iii) for all x,y in X,

(S(x,y) - S(y,y), x-y) >0,

Note that every hemicontinuous monotone mapping T:X + X* is trivially

semimonotone with S(x,y) = T(x), for all x,y in X.
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The following basic result is a direct generalization of Theorem 2.1.8.

Theorem 2.1.10. (Browder [21]) Let X be a reflexive Banach space and

T:X - X* a semimonotone coercive mapping. Then T maps X onto X%*,

An important example of a monotone mapping from a Banach space X into
its dual space X* 1is given by the so-called duality mappings. This

concept was first introduced and studied by Beurling and Livingston [14].

Later it was generalized, extensi;éiy investigated and applied by Browder [24],[3
Further studies were also made by Laursen [92], Kato [82], Asplund [4 ],
Dubinsky [50], Petryshyn [104], and others. In addition to their usefulness
in the theory of Fourier Analysis and the study.of Banach spaces, duality
mappings play an essential role in the study of J-monotone, accretive,

P-compact and A-proper mappings.

Definition 2.1.18. A gauge function is a real-valued continuous function

u defined on R = {t € R : t > 0} such that

i) w(@) =0,
(ii1) lim u(t) = +=

L]

(iii) wu 4is strictly increasing.

An example of a gauge function is u(t) = t.

Definition 2.1.19. Let X be a Banach space and X* its dual space. Let
u(t) be a given gauge function. The duality mapping in X with gauge
function u is a mapping J from X into the set ZX* of all subsets of
X* such that

J() =0

and Jex) = Axre x* : (ex,x) = x| Hxd], (e = wdx]]3 x £ 0.
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Remark 2.1.8. For x # 0, the set J(x) 1is nonempty and convex.

The following result is essentially a reformulation of a characterization

of reflexivity due to James [72].

Theorem 2.1.13. Let X be a Banach space and X* its dual space. Let

J be the duality mapping in X with a given gauge function wu. Then X

is reflexive iff the union of all sets J(x), x €X, covers X¥*,

Remark 2.1.9. See Laursen [92] for another characterization of reflexivity

and Petryshyn [107] for characterization of certain Banach spaces using

duality mappings.
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2.2. Uniformly Convex Spaces and Related Results.

The theory of different spaces which are contained in general Banach
spaces, has been developed considerably in the last two decades. In these
years, considerable progress has been made in the classification and
characterization of Banach spaces according to various geometric properties
of their unit spheres. For the reference of these systematic developments,
one can see Cudia [39], Zizler [139] and Milman [96]. The different
properties, given in this and the following sections, depend on the norm
and linear structure, and thus can be defined for arbitrary normed linear
spaces (not necessarily complete). But, since our primary concern is with
Banach spaces, we have phrased all the definitions in terms of a Banach
space X. In some cases, we have listed two or more equivalent formulations

of the same property.

In 1936, J.A. Clarkson [ 38] introduced the notion of uniform convexity
of the norm in a Banach space. Expressed in geometric terms this property
is simple: a norm is uniformly convex if, whenever the midpoint of a
variable chord in the unit sphere of the space approaches the boundary of

the sphere, the length of the chord approaches zero.

Definition 2.2.1. Uniformly Convex Spaces (UC):

A Banach space X is called uniformly convex (UC) iff it satisfies

any one of the following equivalent conditions:

(I) [38] for any e > O, there exists a &(g) > 0 such that if

x,y € U and ||x - y|| > € then

125 <1 - sce).

C o et e s e oy 0 TV b=
5 L K
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(II) [116] for any € > 0, there exists a 8(e) > 0 such that

11%n * n]| |
X5 Yy € U (n=1,2, ...) and — ' 21- §(e)
imply |[lx - y || <e.
. X, vy,
(II1) [16] given x ,y €S (n=1,2, ...) and |‘|——-§—-——-||-> 1
imply ||x -y || > o.

For 1 <p <=, the Banach spaces 4P and LP are wniformly
convex ([38]).

Every Hilbert space is uniformly convex but the converse is not always
true, e.g., spaces EP, 1 <p < are uniformly convex but none of them

is Hilbert space except £2.

Remark 2.2.1. It is interesting to note that Lemma 2,1.1. fails to be true

for all uniformly convex Banach spaces (see [104)).However, it remains still
valid for a larger class of uniformly convex Banach spaces having weakly

continuous duality mappings.

Lemma 2.2.1. (Opial [X04F).If in a Banach space X having a weakly continuous

~duality mapping J the sequence '{xn} is weakly convergent to X , then

for any Yo in X,

(1) ]1;2 inf |[|x -y || _>_11l_1£ inf ||x - x_|].

If, in addition, the space X is umiformly convex, then the equality in (1)

occurs iff X, =Y,-
The following useful result is worth mentioning:

Theorem 2.2.1. (Milman [95], Pettis [111]., Kakutani [76])

Every uniformly convex Banach space is reflexive.

Of course, the converse is not true, as can be seen from the following:




29.

Example 2.2.1. ([44]) Consider a finite dimensional Banach space X, in

which the surface of the unit ball has a 'flat' part. Such a Banach space

is reflexive because of finite dimensionality. But the 'flat' portion in

the surface of the ball destroys uniform convexity.

Remark 2.2.2. It might be of interest to note that none of the following

spaces can be renormed so as to be uniformly convex:

g1, £7, 1!, L7, cla,b],
and the space C of convergent sequences, since none of them is reflexive.
The following characterizations of a uniformly convex Banagh space

are due to Bynum [34]. We will omit the proof.

Theorem 2.2.2. A Banach space X is uniformly convex iff for each t in

0,2],

B(t) = inf {1 - (£,y) : x,ye S, ||x-y|l]l >t, fe I}

is positive, where J is the duality map from X into X*.

Theorem 2.2.3. A Banach space X is uniformly convex iff the duality
map J of X into X* is uniformly monotone - in the sense that for each

t e (0:2] >

y(t) = inf {(f-g x-¥) : x,y €S,i|x - y|| > t, feI(X); geI (N}

is positive.

The following lemmas, stated without proof, are immediate consequences

of the definition of uniform convexity (see. [103] for details).

Lemma 2.2.2. Let X be a uniformly convex Banach space. Then for any d > 0

and e > 0, the inequalities ||x|| <d, I|lyll =d, lix-yll>e imply

i
1
'

-
£
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25211 < a - st a

The following lemma is due to Schaefer ([119]:.

Lemma 2.2.3. Let X be a uniformly convex Banach space. Then for any

©>0, d>0 and ae(0,1), the inequalities [|x|| < d, [{yll < 4a

and ||x - y|] 2 ¢ imply

|lax + By|| < {1 - 2 §(p min. (x,8)}-d

where o + 8 = 1.

The following result is useful in applications ([ 44]).

Proposition 2.2.1. Let X be a uniformly convex Banach space. Suppose

that there are given two sequences {x_} and {y_ } such that [x || - 1,
X +y n n n
Hy b < Hx il and [|25"2]|>1 as n+ = Then

llxn - ynll -+ 0 as n =+ o,

Proof. Construct two new sequences

X

n n
z = and w_= .
n ]Ixnll n ||xn||

zZ_ + W
It is easy to see that Ilznll =1, ||wn|| <1 and || —E—E-—E-ll + 1.
So by uniform convexity it follows that Hzn - wnll + 0, which implies

readily that

llx, -y Il 0 as n -+,

X +y
Remark 2.2.3. 1In Proposition 2.2.1. the condition on —ILET—Jl could

be replaced by the analogous one on ax + (1 - a)yn, where a &(0,1).

We mention some interesting results on uniformly convex Banach spaces,

which are due to Edelstein [58]. Following Edelstein [58], we define the

I oyiars wopniis. M LIRS

ZEna R R 3
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asymptotic center.
Let C be a closed convex set in a uniformly convex Banach space X.
Given a bounded sequence ‘{un:n = 1,2, ...} in the set C,

define
r &) = sup'{lluk -yl] :k>m}, ye€x.
It is well- known that a unique point <h € C exists such that
rm(cm) = inf {rmi(y) : y € C} = T -

Clearly, r_ > r and T, > 0 for all m= 1,2,

m = Tmel ..., SO that sequence

{r :m = 1,2, ...,} converges to r =inf {r m=1,2, ...} . We note

that if r = 0, then the sequence A{un} converges.

Definition 2.2.2. If ‘{cm} converges then c¢ = lim Sn is called the

>
asymptotic center of {un} (with respect to C)[sg].

The following result due to Edelstein [58] shows that the asymptotic

center ¢ exists.

Theorem 2.2.4. Let C be a closed convex subset of a uniformly convex

Banach space X and ’{un} is a bounded sequence in C, then the sequence

'{cm} converges. (Thus the asymptotic center c¢ exists.)

Proof. If r =0 then '{un} is a Cauchy sequence and

1lim u = 1lim ¢ = ¢,
n m
n--o Moo

We may then assume that T > 0. Suppose now, for a contradiction, that

"{c_} f£ails to converge. Then an e > 0 exists such that for any natural
m

number N there are integers n > m > N with |[|c - ¢ || > e. From the

uni form convexity of X and the fact that

M - e |l =z, =7, k > n),

Hw - el 2z, &k > m),
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it follows that

.cm.+ cn Hc - c H
(1) ||uk- ——é——ll <, Q-5 !m n'!))
T
¥, - 8EN k > n),

where D is the diameter of '{un . On the other hand, since

1 .
5 (cm + cn) # c.> there is a k > n such that

FEIReN O

S —— - - TR YT
iy T Ry e R e AT T es D,

cm+ cn
(2) < ey - ——|

For such a k, (1) and (2) hold simultaneously so that
T, T, 2T 6(%) >r 6(%). This, however, is impossible since '{rk}

converges.

Remark 2.2.4. If X is a Hilbert space then c¢ belongs to the convex

closure of "E'un}.

Using the concept of the asymptotic center, Edelstein [58] proved

the following result, which we state without proof.

Theorem 2.2.5. Let X, C, {u} and c(= 1im ¢ ) be as in Theorem 2.2.4.
n m

and T:C > C be a mapping of C into itself satisfying the following

conditions:

s T T R R R

1) u = Tn(x) for some x € C and alln=1,2, ...,;

(2) there exists a positive integer n, and neighborhood V of ¢

in C such that
HT*) - Tl < T @) - vl k>n_, vew.
Then T(c) = c.

An immediate consequence of Theorem 2.2.5. is the following result ([58]).

'-EW@"”W&&E&@WBW#& & I
e 14_:_-":“-‘_“ T T—— s i B
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Corollary 2.2.1. Let C be a bounded closed convex subset of a uniformly

convex Banach space X and suppose that T is a continuous mapping of C
into itself such that for each x € C there is a positive integer N = N(x)

such that, for all integer n >N and all y €GC,
HT") = ;] < [T ) - ™ T )]

Then T(g) = & for some E € C.

Remark 2.2.5. The well-known theorem of Browder [25], GBhde [70] and
Kirk [83], asserting that each nonexpansive mapping of a bounded closed
convex subset of a uniformly convex Banach space X into itself has a

fixed point, follows from the above Corollary 2.2.1. wupon setting N =1
for all x €C.

Definition 2.2.3. Weakly Uniformly Convex Spaces (WUC):

A Banach space X 1is called weakly uniformly convex, denoted as (WUC),

iff it satisfies any one of the following equivalent conditions:

(I) [128] for each € > 0 and each g € S*, there is a &(e,g) > 0 such

that if x,y € S then the inequality

1 2524] > 1 - sCe.n)

implies | g(x) - g < e.
X +Yy
n n
(I1) [139] x, y, € U (a = 1,2, ...), || =—5—1] =1
. . w
implies L > 0.

Remark 2.2.6.

(1) Let X be a (WUC)-space, M be a closed linear subspace of X.

Then M 1is a (WUC)-space.

(2) A space X has an equivalent norm which is (Wuc) iff X is

isomorphic to a (WUC)-space Y.

TR b

T R R AT D TP T ),
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(3) Space C[0,1] has no equivalent (WUC)-norm.

(4) Obviously, uniform convexity implies weak uniform convexity.
But the converse is not always true, as can be seen from the following

example [139].

Example 2.2.2. Day [41] has constructed a separable reflexive strictly

T A
e T S R e R s

convex (see Definition 2.3.4.) space Xo which is not uniformly convex
in any norm. Introduce a norm |||+||] in this space as follows: let

'{fk}:=1 be a countable dense subset of S*., Define the functional

I(x) on Xo by

T 1 1/2
IX) = (.3 £2. (X))
Rzl X Tk

Let ||x|| denote the norm of X_. Then it is easy to see that norm

|||'||| defined as
HixI] = dixli2 + 2zan??,

is the equivalent norm to ||x||. We see that this norm is (WUC). Let
X +y
Hix 11 = vl =1 = 12, oo 5 1] 228y

We have
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I2(x, +y ) + T2(x - ¥) = 20 (12(x) + 120y))) -

It is easy to see that

R R T e AR

lx, + v 112 <2 <clix 12 + 1lyal 12

From these facts it follows (by addition) that

Hix, + v l1] o+ 120x, - v =2 ~cllIxl 112 + |1y, 1119,

R T T IV 213 LSy AT

The right hand side of this inequality is equal to 4, |||x + y [l|®> 4

by assumption. Therefore
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2 -
I (xn yn) - 0.
Thus we have fk(in - yn) -+ 0, as n-~»> o, for every k..

Thus sequence '{x.n - y,} is bounded in X and £ (x -y ) >0 as

n-+® and k =1,2, ,.... . Hence by the well-known theorem [112],,
o, as n > »,
Thus |||-||] is (WUC) but not uniformly convex.

(5) It follows from Zizler [139] that not every (WUC)-Banach space

is reflexive.

Definition 2.2.4. Weakly* Uniformly Convex Spaces (W*UC):

A Banach space X* 1is called Weakly* Uniformly Convex, denoted as

{(W*UC), iff it satisfies any one of the following equivalent conditions:

(1) [128] for each € >0 and each x € S, there is a &§(e,x) > 0 such

that if f,g € S*, then the inequality

HESE] > 1- 8,0

implies | £(x) - gx) | < e.
fat &
(II) [139) £, g, € U* (n = 1,2, ...) ||———2———|| +1
. . w*
implies fn -8 7 0.

We state and prove the following lemmas, which are immediate

consequences of the definitions of (WUC) and (W*UC) Banach spaces.

Lema 2.2.4. Let X be a (WUC)-Banach space, then for any d > 0, € > 0

and for every g € S* there exists a 6(%,g) '==~6_e > 0 such that
"a",g

Hxll <a, |lyll <d, lgx-y»]|>e, (x,y€X) imply

G
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W52l 2 -6 0 3 -a
38
Proof. Zizler [139] showed that if X is (WUC) then the following
implication hoids: For every ‘g € S* and for every e' > 0, there exists
a %”g>05ﬁhﬁa x,ye X, | gx-y) | >e'. max. (||x|],]ly]D
imply

ST < a -6, ) - max (Ixl]L1HylD.

Since in this case, max. (Y[x||,|]y]|])-='d, hence the result follows if we

e
choose €' = =

T

Lemma 2.2.5. Let X be a (WUC)-Banach space. Then for any ¢ > 0, d > O,

o € (0,1) and for every g € S*, the inequalities ||x|| < d,[|y]] < 4

and |g(x - }’)I > e,(x,y € X) imply

[|ex + By]] < {1 - 28 min. (a«,8)} - 4,
i3
where o + B8 = 1,
Proof. Without loss of generality, we may assume that 0 < o < %-
Then
[lox + gy|] =|]atx + ¥) + (8 - 0)y]|

< 2 [IE5H] + 6 -o Iyl

-8 *d+ (B - a)d
< 2a (1 %,g) ( )

I

2a*d - 2a°8 c jed + (1 - a)=d - oz__'.d'
a8

{1-258 min. (x,8)}-d .
€
a‘:g
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We give the following result for a (WUC)-Banach space, which is

useful in applications.

Proposition 2.2.2.

Let X be a (WUC)-Banach space. Suppose that there

are given two sequences {x } and {y } in X such that ||xn|| > 1,

*n* Yn
Hygll < 1= |l and ||=—=—I] =1 as n+=. Then

X, =~ Y, 0, as n-> =

Proof. We construct two sequences

*n Yn

z = —11?§:rr- and w, = —TTE;JT—- .
z_ + W

It is easy to see that ||zn|| =1, |[lw ] <1 and ||-JL7E—JH| > 1.

Therefore, by the definition of (WUC), it follows that
Z - W 10, as n > ,
n n
Consequently X, = Y, L3 0, as n > o,
We also state the following similar results without proof, for (W*UC)-

Banach spaces.

Lenma 2.2.65 Let X* be a (W*UC)-Banach space, then for any d > 0, ¢ >

and for every x € S, there exists a Ge
E,

[£(x) - ex)] > e,

> 0 such that inequalities
x

l1£]] <4, |lgll =<d4 and

(f,g € X*) imply

||f_§_gg_||i(1-aE )-d.

*
Lemma 2.2.7. Let X* be a (W*NC)-Banach space. Then for any x € §,
d>0, forevery € > 0 and 0€(0,1), the inequalities ||£|]| < d,

llgl] <d and |£(x) - gx)| > e, (f,g8 €X*) dimply

0

T NIRRT TV




[lax + By|] < {1 - 5,

where o + B =

Proposition 2.2.3.

38.

* min (a,B8)}-d,
q-x
1.

Let X* be a (W*UC)-Banach space. Suppose that

there are given two sequences

eyl < T1£,1] and ||

Remark 2.2.7.

{fh} and {gn} in X* such that

£ 01~ 1,
'l-gn n
-l > 1,

as n > 2, Then

as n > <«

- gn _V_V)_*O’

In Proposition 2.2.2. (Proposition 2.2.3) the condition on

*n ¥ Yn fn * By '
— (on -——ar——-a could be replaced by the analogous one on
ax, + a - a)yh (on afn + (1 - a)gn), where 0 < a < 1.

Using the modification of one method of Kadec [75], Zizler [139]

has proved the following results, which we state without proof.

Theorem 2.2.6. Then X

Let X* be separable space. is (WUC)-Banach

space.
Corollary 2.2.2.

Let X be a reflexive separable Banach space, then X

is (WUC)-Banach space.

Theorem 2.2.7. Let X be a separable Banach space. Then X* is

(W*UC) -Banach space.

ANDIAY % ST TR M TSI T Ky € et yrey
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2.3. Some Other Spaces #n General Banach Spaces.

A.R. Lovaglia [94], in 1955, considered a weaker type of convexity
which is known as local uniform convexity. Geometrically, this differs
from uniform convexity in that it is required that one end point of the

variable chord remains fixed.

Definition 2.3.1. Locally Uniformly Convex Spaces (LUC):

A Banach space X 1is called locally uniformly convex (LUC) iff for
given € > 0 and an element x € X with [Ix 1] = 1, there exists a

(e ,xo) > 0 such that

XY
II 2 llil—s(e,xo),
whenever ||x - yl| > and ||y|| = 1.

Remarks:2. 3.1.

(1) It is clear from the definitions that uniform convexity implies
local uniform convexity. But the converse is not true in general, as can
be seen in [ 94.

(2) If we introduce in the space C[0,1] an equivalent (LUC)-norm
by a method if Kadec [75], we obtain an example of a (LUC)-space which

has no equivalent (WUC)-norm [140].

M.M. Day [42] defines the notion of local uniform convexity near a
point. Geometrically, this differs from uniform convexity in that the
variable chord in the unit sphere is contained in a sphere about some point

bo’ where as local umiform convexity requires only that one end point of

the chord remains fixed.

Definition 2.3.2. Locally Uniformly Convex Spaces near a point:

if ||b || = 1, a Banach space X is said to be locally uniformly
o

=
2

2
D

*
P
S
%
"- 3
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near bo if there is a sphere about ‘bo' in which the condition for

uniform convekity holds.-

Remark 2.3.2. In his paper Day [42] proves that if a Banach space X is

TN € R ST T

locally uniformly convex near a point bo then X is isomorphic to a

o SR

i

B

L
L
-
F i
i

uniformly convei space. Hence local umiform convekity near a point b°
implies isomorphism of the space X with an uniformly convex space.
However, Lovaglia [94] showed that there exist locally uniformly convex
Banach spaces which are not isomorphic to any uniformly convex Banach spaces.
Thus the notion of local uniform convexity and Day's notion of local umiform

convexity near a point are essentially different.

In 1960, K.W. Anderson {3 ] investigated another type of convexity
which is called midpoint locally uniform convexity (MLUC). Geometrically,
it states that if the midpoint of a variable chord in the unit sphere
approaches a fixed point on the unit sphere, then the length of the chord
approaches zero. In fact, this property has been known and considered for
sometime by other people, notably G. Lumer and M.M. Day, but its relations

to other convexities were investigated by Anderson [3 ].

Definition 2.3.3. Midpoint Locally Uniformly Convex Spaces (MLUC):

A Banach space X is called midpoint locally uniformly convex (MLUC)

iff it satisfies one of the following equivalent conditions: i

(I) given € > 0 and an element X, € X with ||x°|| = 1, there exists j

a 8(e,x) >0 and Il <1, |lyll <1, |lx-yl| > ¢ such that

lx +y - 2x || 6!

(11) ||in|| = Ilynll = ||x°|| =1 and ||x +v¥, - 2x°|| + 0 imply either

Hx, =yl ~0

or, len—ic°||+ 0
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Remark 2.3.3. Anderson [ 3] has shown that local uniform convekity implies

midpoint local uniform convexity. But the converse is not true as can be

seen from e:rcampleA given in [3 P.11].

Definition 2.3.4. Strictly Convex Spaces:

A Banach space X is called strictly convex iff

[1x + ¥l = {|x]] + |ly]] implies x = Ay, » > 0 whenever x # 0, y #0,
X,y € X.

We state without proof the following result which gives necessary

and sufficient conditions for a Banach space to be strictly convex.

Theorem 2.3.1. (Ruston [11¥7]). Eifher of the following conditions is

necessary and sufficient for a Banach space X to be strictly convex:

(1) whenever ||x|| = Hy” =1 and x #y (x,y € X)
= || =3 || <1

(2) for any non-vanishing functional f over X there exists at most
one (there may not be any) element x & X such that ||x°|| =1 and

£x ) =]} -

Remarks 2.3.4.

(1) In Theorem 2.3.1. the restriction on 5—:2'—-}:- could be replaced
by the analogous one on ax + (1 - a)y where 0 €(0,1).

(2) All Hilbert spaces, (UC)-spaces, (LUC)-spaces and (MLUC)-spaces
are strictly convex. The converse is not true in general for any of these
spaces, (see [38, [94, [3D.

(3) The spaces £, L}, £° are not strictly convex.

(4) If X is a reflexive Banach space, then X has an equivalent
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strictly convex norm [93].

Combining the results in [3g8], [94], Anderson [3 ] has proved the

following general theorem, which we state without proof.

Theorem 2.3.2. For any Banach space the following implication holds:

UuC -+ LUC -+ MLUC -+ strict convexity.

Furthermore, none of these implications can be reversed.

We state without proof the following lemma which is very useful in

application.

R R e T 0. e A L

Lemma 2.3.1. Let X be a strictly convex Banach space and C a weakly

compact convex subset of it. Then, for every y¢C, there exists a

unique X € C such that

Ix, - yl| = inf [[x - y|] «
x€C

In general, the duality mapping J is multi-valued. However, if the
dual space X* is strictly convex, then the set J(x) consists of exactly

one point. We state the following propositions without proof.

Proposition 2.3.1. ([44]) Let X be a Banach space with a strictly

convex dual space X*. Let J be the duality mapping in X with the

gauge function u. Then the set J(x) consists of precisely one point.

Proposition 2.3.2. ([44]) Let X be a Banach space with a strictly

convex dual space X*. Then the duality mapping J in X with gauge function

u is monotone (strictly monotone if x £v).

We mention the following characterizations of strictly convex Banach

:
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@
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spaces by means of duality mapping J.

Theorem 2.3.3. (Torrance [130]). A Banach space X is strictly convex iff

for x and y in S such that X#y and for f in J(X), 1 - (£,y) > o.

A e R R R e AT

Proof. Suppose that X is strictly conveic’ and let x,y, and f be as

above. Then it follows from Theorem 2.3.1. that

b

1- () 22- |Ix+y|]>o0. :

3

Now suppose that the second condition of the Theorem is satisfied and that E
X 1is not strictly convex. Then, there exist x,y € S (x # y) such that £
b

[lx + y|] = 2. Let 2z = "_:2‘._! and h € J(z). Since ||h]]| = 1=]|x|]|=|]|y]] ‘g

and (h,x +y) =2, (h,x) =1, a contradiction, since 1z # x.

f

Theorem 2.3.4. (Petryshyn [107]). A Banach space X is strictly convex

iff the duality mapping J of X into X* is strictly monotone.

A simpler proof [34] of this theorem may be given as follows:

Proof. Suppose that X is strictly convex. Let x,y e X, fe J(x),

and g € J(y). Then,
LEELE Lyl - gy >[Il dixI] + Tlyll - [lx + ¥l
and  |lgl| [Ix]] - &= > [lell dixll + |yl - [lx+¥|D

and by the use of equation

£ - gx~-y) =[lI£€] - [lell3txl1 - Hyll3 +« CHEl] [lyl] - 5,91
+ [llell 1=l - (g,x)1

(with each of the three terms on the right being non-negative), we have

€-g x -y 2 Alxll = HyID2+ dixll = HylDdIx = Hyll = 1x+ y]].

1f x#y and |[|x|| = |Iyl], then ||x|| >0 and
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el Al = eyl = 1l @ -1+ 7 1D,

which is positive by the strict convekity of X. Consequently, J is

strictly monotone.

Now, suppose that J is strictly monotone and that X is not strictly

convex. Then by Theorem 2.3.3, there exist k,y'e S x#y) and an f

fe J(i) such that 1 - (f,y) = 0. As before, 1 - (£,y) > 2 - |]x + yil,
so |jx+y|| =2. 1f z = !L%_Z. and h ¢ J(z), then (h, x +y) = 2
and |[|h|] =1 = ||x]] = ||y]], so (h,x) = 1. Consequently,

th-f,z-x)=1- (h,x) +1- (f,z) =0, which contradicts the fact
that 2z # x.

The concepts of fully k-convex and weakly fully k-convex spaces

have been introduced and studied by Fan and Glicksberg [60 ], [61].

e

Definition 2.3.5. Let X be a real normed linear space. For any integer

At

k > 2 a sequence '{xn} of elements of X will be called a (K.i)-sequence

for i =1,2,3, or 4, respectively, if é
(k.1) lim ||{x || =1 and || % izl x || 21 for any k indices ;é
n>o 1 §a
ny <n, <...fm ;
; ) 1 3
(k-2) 1lim g a2 % =1
= . 5
Ny see. gy > i 2
X :
(k-3) {x_} is bounded, and ||xn1|| < g igl xni || for any k indices @
n <n, < ... <n
or
3
(k.4) '{xn} is bounded, and, for every n,, there exists an M = M(nl)
such that ll*n !l j_ll%‘i=1 xn_ll for M<n, <...2mn _, <1y.
1 i
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For any integer k >2 and for i = 1,2,3,4, let us consider the

following conditions concerning X:
(F.k.C.i) Every (k i)-sequence '{kn} in X 1is a Cauchy sequence.

(W.F .k.C.i) Every (k i)-sequence .&n} in X is weakly convergent.

We note that condition (F.2.C.2) has been previously considered by

Smulian [127].

We state without proof the following result due to Fan and Glicksberg [60].

Theorem 2.3.5. For any fixed integer k > 2 and for any normed linear space

X, the four conditions (F.k.C.i), 1 <i <4, are mutually equivalent.

Also, the four conditions (W.F.k.C.i), 1 <i <4, are mutually equivalent.

Definition 2.3.6. A Banach space X is said to be fully k-convex (weakly

fully k-convex) if it satisfies any one of the equivalent conditions (F.k.C i)

1 <i <4 (conditions (W.FXk.C.i), 1 <i <4).

Remark 2.3.5. It follows from
k+1 X : k

k,+ 1 1 . 112 1
: Lox - =2llx < |]= . .

that every ((k + 1).2)-sequence is also a (k_2)-sequence. Hence every
fully k-convex (weakly fully k-convex) space is also fully (k + 1)-convex

(weakly fully (k + l)-convex). Every imiformly convex space is easily

%
2

|

seen to be fully 2-convex and therefore fully k-convex space for any k > 2.

TN

We state without proof a property not shared by uniformly convex spaces.

Theorem 2.3.6. (Fan and Glicksberg [60]) Let k be an integer >2, and
let p be a real number >1. Let '{Xcl),} be a sequence of fully k-convex

Banach spaces. If X denotes the Banach space of all those sequences
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x=16@) wien @ e x@ G -1,2,3 :..) and

[1x}] = C .Illlg(i)llp )llp < o, then X is fully k-convex.
i=i=

Remarks 2.3.6.

(1) In Theorem 2.3.6., if we take XU = 23"l (3 -1,2,3, ...),
then, by a result of Day [41], the resulting fully 2-convex Banach space

X (for any p > 1) is not uniformly convei in any topologically equivalent

norm.

(2) Fully k-convex Banach spaces are reflexive. Also, a weakly

fully k-convex space is reflexive iff it is weakly complete.

We define the concept of uniformly non-squareness originally introduced

by James [73].

Definition 2.3.7. Uniformly Non-square spaces (UNS):

A Banach space X is uniformly non-square iff there is a positive
number &6 > 0 such that there do not exist x and y in X for which
Pixll <1, Hyll <1, 15321 >1-6 and || 252 >1-6.

Remark 2.3.7. Obviously, a uniformly convex space is umiformly nonssquare,

but it is not known whether umiform non-squareness and uniform convexity

are isomorphically equivalent.

We state without proof the following result due to James [731.

Theorem 2.3.7. A Banach space is reflexive if it is uniformly non-square.

Remark 2.3.8. The converse of Theorem 2.3.7. is not true. James [73]

describes a class of reflexive Banach spaces, no one of which is isomorphic

to any uniformly non-square space. It is interesting to note that this
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gives an alternative method of proving Day's [41] . theorem that there

exist a reflexive Banach space that is not isomorphic to any uniformly

convex Banach space.

The notion of uniformly convex in every direction (UCED) was first
uséd by A.L. Garkavi [67], [68], to characterize normed linear spaces for
which every bounded subset has at most one Cebysew center. The geometrical
significance of this concept is that the collection of all chords of the
unit ball that are parallel to a fixed direction and whose lengths are
bounded below by a positive number has the property that the midpoints of

the chords lie uniformly deep inside the unit ball.

Definition 2.3.8. Uniformly Convex in Every Direction Spaces (UCED):

A Banach space X is uniformly convex in every direction (UCED) iff

for any € > 0 and every nonzero z € X, there exists a number

8(e,z) > 0 such that, if x -y =2z, ||x|| =1]lyl]l =1 and
[1E5E]] >1-8 then N <.

The following theorem, stated without proof, gives several properties
that are equivalent to uniform convexity in every direction for a normed

linear space.

Theorem 2.3.8. (Day-James-Swaminathan §43])

Each of the following is a necessary and sufficient condition for a

normed linear space X to be (UCED).

(I) 1If there are sequences ' b&% and ‘{yn} and a nonzero member z of X

for:which-.
(a) llin|| = llynll =1, for every n,
(b) X, =Y, = iz, for every n,
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(@ Ilx, +ylll~+2,

then d"‘. =+ 0.
ol
(II) If there are sequences '{xn} and '{yh} in X such that
(a) llxnll <1 and ||yn|| <1, for every n,
8) X, -V, *oz.
@ lx, +y |l > 2,

then 1z = 0.

(IIT) For no nonzero =z is there a bounded sequence '{in} in X such

that

—1 N - ;
21 |x, + 2l|P [ P55 -ill2x + z]|P + o,

where p is any number for which 2 < p < =,
(IV) For each nonzero z in X, there is a positive number & such that

[]x + %-zll <1-868, whenever ||x|] <1 and IIX + z|| < 1

Remarks 2.3.9.

(1) 1t might be noted that in Theorem 2.3.8. condition (I) '<1' can
be substituted for '=1' in tﬁe restrictions on X and Yn*

(2) A uniformly convex space is (UCED)-space but the converse is not
always true. In fact, there are spaces - even reflexive Banach spaces -
that are (UCED), but not isomorphic to a uniformly convex Banach space.
However, it is not known whether every reflexive Banach space can be renormed
so as to beCi(UECED).

(3) If X 1is (UCED), then X is strictly convex. The converse is

not true as can be seen from the following example [68] (also see [43]):

Example 2.3.1. The space C[0,1] of all real continuous functions on the

unit interval with the norm

1
[1€]] = sup {l£(&) |} + (J | £(t) |2at) /2
0
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is strictly convek, but this space is not (UCED).

(4) It has been shown by Zizler [[141]] that X can be renormed so as to
be (UCED) if there is a continuous one-to-one linear map of X into a

space Y that is (UCED).

We state without proof the following result.

Proposition 2.3.3. (Zizler [141]). Every separable Banach space has an

equivalent norm which is (UCED).

It is interesting to give the following example, due to Zizler [[141]),

of a Banach space which is (UCED), but not (wWuc).

Example 2.3.2. Consider the space C[0,1] with an equivalent norm

N 1/2
bl = (gl 12gg0 0y + HITEO112 L2pg 1Y

where T is the natural ‘identity mapping' of C[0,1] into L2[0,1].
Then |||-|{|| is (UCED). But space C[0,1] does not have any equivalent

(WUC)-noxrm (see Remark 2.2.6 (3)).
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2.4. Normal and Complete Normal Structures.

The concepts of normal structure and complete normal structure have been
of fundamental importance in some recent investigations concerned with
determining fixed points of different mappings, for example see Belluce and
Kirk [ 87, [9]1, [10], Kirk [85], Kannan [80], [81], Zizler[139]j.
Woodward [135] and others.

Definition 2.4.1. Let C be a bounded convex set in a Banach space X, of

diameter d.

A point x € X is said to be diametral point for C if

sup L|k -yl] =d.
Yy €

Example 2.4.1. In the Banach space C[0,1] every point of the bounded and

convex set
{f(t): 0 < £(t) <1, £(0) =0, £(1) = 1}
is diametral.

The notion of normal structure was introduced by Brodskii and Milman

[18] as follows:

Definition 2.4.2. A convex set G in a Banach space X is said to have

normal structure if for each bounded convex subset C of G, which contains
more than one point, there exists a point x € C which is not diametral
for C.

Geometrically, G has normal structure if for every bounded and convex
subset C of G, there exists a ball of radius less than the diameter of C

centered at a point of C and containing C.

Remark 2.4.1. We say that a Banach space has normal structure if each of
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its bounded convex subsets has normal structure. But there are Banach spaces

which do not possess normal structure.

Example 2.4.2. The Banach spaces (C[0,1], £!, L1 do not have normal structure.

We state the following results without proof, which give larger class

of sets with normal structure.

Theorem 2.4.1. (Brodskii and Milman [18]) Every convex and compact subset

of a Banach space has normal structure.

Theorem 2.4.2. (Edelstein [54], Browder [25]) Every uniformly convex Banach

space has normal structure.

Theorem 2.4.3. (Zizler [141]). A Banach space has normal structure if it is

uni formly convex in every direction.

Theorem 2.4.4. (Zizler [139]). Every bounded closed convex subset of a (WUC)-

Banach space has normal structure.

Theorem 2.4.5. (Zizler [139]). Every bounded closed convex subset of a (W*UC)-

Banach space has normal structure.

The notion of complete normal structure was introduced by Belluce and
Kirk [ 9] in the following way:

For bounded subsets H and S of a Banach space X, let
r,(l-l) = sup {||s - x|| : x € H}

r(H,S)

inf '{rs(l-l) : s e S}

C(H,S) {s €S : rs(H) = r(H,S)}.

The members of C(H,S) are called the Cebysev centers of H in S.

Definition 2.4.3. ([9]). Let G be a closed convex subset of a Banach

space X. Then " G has complete normal structure iff each bounded closed convex
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stbsét W of G, which contains more than one point, has the property that

the closure of uLJ AC(Wm, W) 1is a nonempty proper subset of W whenever

| {Wu: o € A} is a decreasing net of subsets of W such that

r(Wa, W) = r(W,W) for each o € A(A-index-set).

Remark 2.4.2. Complete normal structure implies normal structure is eeen

by taking Wy =W in the above definition.

We state the following results without proof.

Theorem 2.4.6. (Belluce and Kirk [ 9]) If C is a convex, compact subset

of a Banach space then C has complete normal structure.

Theorem 2.4.7. (Belluce and Kirk [ 9]) If C is a nonempty bounded closed

convex subset of a uniformly convex Banach space then C has complete normal

structure.

Theorem 2.4.8. (Day, James and Swaminathan [43]) A reflexive Banach space

has complete normal structure if it is uniformly convex in every direction.

There have been a number of recent results on fixed points of nonexpansive
and semi-nonexpansive mappings in Banach spaces, using the notion of normal
structure. Brodskii and Milman [18] have considered isometries T of a
bounded closed convex subset C of a Banach space X into itself. They were
able to prove the existence of a fixed point for T proveded X is reflexive
and C has normal structure. An argument similar to the one in Brodskii-
and Milman [ 18 was used by Kirk [83] to prove the following fundamental

result, which we state without proof.

Theorem 2.4.9. Let X be a reflexive Banach space, and C a bounded closed

convex subset of X with normal structure. Then a nonexpansive mapping T of
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C into itself has a fixed point.

Remark 2.4.3. It is worth mentioning that the restriction on C and the

space X 1in Theorem 2.4.9., are necessary, as shown by means of examples in
[ 44]. The necessity for normal structure of C is illustrated by the

following example (Browder { 25]):

Example 2.4.3. Let X = Co, the space of sequences converging to zero, U
the unit ball in the maximum norm, e, the unit vector with first component

1 and other zero, S(x) = (0,x1, X, «+.). Then the mapping

T(x) = e; +S(x)

1

maps U into itself, is nonexpansive, and has no fixed point in U.

An immediate consequence of Theorem 2.4.9. is the following result of

Browder [25], Gdhde [70], Kirk [83].

Theorem 2.4.10. Let T:C - C be a nonexpansive mapping on a bounded closed

convex subset C of a uniformly convex Banach space X. Then T has a fixed

point in C.
The following result follows from Theorem 2.4.9. and Theorem 2.4.4.

Theorem 2.4.11. (Zizler[i39]). Let X be a reflexive (WUC)-Banach space,

C a bounded closed convex subset of X, T a nonexpansive mapping of C

into itself. Then T has a fixed point in C.

The following is an immediate consequence of Theorem 2.4.11. and

Corollary 2.2.2. s LTy,

Theorem 2.4.12. (Zizler [139]).Let X be a separable, reflexive Banach

space. Then X is isomorphic to a space Y with the following property:

RS

T VR i ST e

esen

gy o
v

2
|
:
i
i



et it

Proof.

54.
Every nonexpansive mapping . T of a bounded closed convex subset C

into itself has a fixed point.

We give the following result for (UCED) -Banach spaces.

Theorem 2.4.13.

Let X be a reflexive (UCED)-Banach space and C a bounded

closed convex subset of X. Then a nonexpansive mapping T of C into itself

has a fixed point in C.

It follows from Theorem 2.4.3. that C has normal structure, hence

result fbllows from Theorem 2.4.9.

Remark 2.4.4.

It is of interest to see that Theorem 2.4.12 can be obtained

as an immediate consequence of Theorem 2.4.13, and Proposition 2.3. 3.

We state the following results without proof:

Theorem 2.4.14. (Belluce and Kirk [ 8]) Let C be a bounded closed convex

subset of a Banach space X and suppose that C has normal structure. Let
M be a weakly compact subset of X. Assume T is a nonexpansive mapping
of C into itself with the property that for each x & C, the closure of

x) : n=1,2, ...} contains a point of M. Then there is:an x € M

such that T(x) = x.

Theorem 2.4.15. (Kirk [85]) Let C be a non-empty weakly compact, convex

subset of a Banach space X, and suppose C has normal structure. Then

every nonexpansive mapping T:C~ C has a fixed point.

Efforts to generalize Theorem 2.4.15. by weakening the assumption of
normal structure have been unsuccessful, although an apparent slight weakening

does yield a result for contractive mappings.

Definition 2.4.4. ([85]) A bounded convex subset C of a Banach space X
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is said to have normal structure relative to F, F& X, if for each bounded

convex subset H of C which contains more than one point, there is a point

x in F such that
sup {||x-y]] : y €H} <« s@H) .

Theorem 2.4.16. (Kirk [85]) Let C be a nonempty weakly compact, convex

subset of a Banach space X and suppose C has normal structure relative to

C. If T:C™>C 1is contractive mapping, then T has a fixed point in C.

The following generalization of Theorem 2.4.15. is due to Kirk [85],

which we state without proof.

Theorem 2.4.17. Suppose C 1is a nonempty weakly compact, convex subset of

a Banach space X, and let T:C-> C be nonexpansive map. If for each x
in C it is the case that conv {x,Tx,T?x, ... } has normal structure, then

T has a fixed point in C.

I1f one merely assumes that for some positive integer N the Nth iterate,
TN, of T is nonexpansive then T mneed not have a fixed point since, in
particular, a periodic homeomorphism of the umit ball of a Hilbert space may
be fixed point free (Klee [ 88]). Goebel [ 69} obtained-sufficient conditions
to guarantee existence of fixed points for mapping T such that TN is
nonexpansive. Using normal structure Kirk [86] proved the following result

which we state without proof.

Theorem 2.4.18. Let X be a reflexive Banach space which has strictly

convex norm and suppose C is a nonempty bounded closed convex subset of X
which possesses normal structure. Suppose the mapping T:C> C has the

N . .
property that for some integer N> 1, T is nonexpansive, and suppose

further that there is a constant k satisfying
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N 2[N - 1)(N - 2)k® + 2(N - 1)k] < 1

such that HTj(x)—Tj(y)llf_kllx—yH; for all x,y €C, 1<3j <N-1,

Then T has a fixed point in C.

A more thorough study of the concept of normal structure has been
initiated in Belluce - Kirk - Steiner [12], where examples of noncompact
convex subsets of non-strictly convex spaces which possess normal structure
were obtained. Also spaces shown by Day [41] to be strictly convex, reflexive,
and not isomorphic to any uniformly convex space, were shown to have the
property that each of their bounded convex subsets has normal structure. It
is interesting to note the example ({12]) which shows that normal structure
is not implied by reflexivity. We state the following two results due to

Belluce - Kirk =~ Steiner [12] without proof.

Theorem 2.4.19. There exists a Banach space which is reflexive , strictly

convex, and which possesses normal structure, but which is not isomorphic to

any uniformly convex Banach space.

Theorem 2.4.20. Let X, and X, be Banach spaces with norms II-II1 and

II' H respectively. Let X = }'(1 © )(2 with the norm of X given by
2
Ll<]] = sup (||9||1, ||-||2). _If X, and X have normal structure, then

X has normal structure.

Some interesting results, using normal structure, have been given for
semi-nonexpansive mappings by Kannan [80], [81], and Woodward [135]).

Following Kannan [81], we define

Definition 2.4.5. A mapping T of a bounded subset C of a Banach space X

into itself is said to have property B on C 1if for every closed convex

subset F of C, mapped into itself by T and containing more than one element,
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)

there exists x-€ F such that

lx - T 11 <sup |y - Ty |].
y€F

Remark 2.4.5. If C has normal structure then a semi-nonexpansive mapping T

of C into itself must have property B on C. But the converse is not true L3

as can be seen from the following example ([81]:

Example 2.4.4. Let m be the space of bounded sequences of numbers with

the supremum norm {3, p. 5] and let C ={ x€m : Hx]l <2} Clearly C
is a bounded convex set in m. Now let F be the subset of C such that
F = [xl, X, ...] where X, = {0,0, ..., 1, 0, ...}, (1 in the kth place).
Evidently 6&(F) = 1. Also ?%PF”X -y|l]| =1 for every x € F. Hence C
does not have normal structure. But the operator T:C - C defined by

T(x) = » X €C 1is such that

(R1H]

T - Tl < 3 ilx -t + |y - Tolll, xyed,

and for every closed subset F! of C mapped into itself by T and containing

more than one element, there exists x € F' such that

llx - T < sup ||y - TO]].
y &F*

We state the following result without proof. i : 1

Theorem 2.4.21. (Kannan [80]) Let T be a continuous semi-nonexpansive

mapping of a bounded closed convex subset C of a reflexive Banach space
X into itself and let T have property B over C. Then T has a unique

fixed point.

We give the following result:
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Theorem 2.4.22. Let T be a continuous semi-nonexpansive mapping of a

bounded closed convex subset C of a reflexive (WUC)-Banach space (of a
reflexive (UCED)-Banach space) X into itself. Then T has a unique fiked

point.

Proof. It follows from Theorem 2.4.4. (Theorem 2.4.3.) that C has normal

structure.' Hence result follows from Remark 2.4.5. and Theorem 2.4.21.

Combining Corollary 2.2.2.(or Proposition 2.3.3.) and Theorem 2.4.22.,

we get the following:

Theorem 2.4.23. Let X be a separable reflexive Banach space. Then X is

isomorphic to a Banach space Y with the following property:

Every continuous semi-nonexpansive mapping T of a bounded closed

convex subset C into itself has a unique fixed point.
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CHAPTER I1I

SOME FIXED POINT THEOREMS

Let X be a Banach space with norm Il'll and D a subset of X.

Throughout this chapter, if T is a self-mapping of D, we use F(T) to

denote the set of fixed points of T in D.

3.1. Nonexpansive and Quasi-Nonexpansive Mappings.

We recall that a mapping T:D * X is called nonexpansive if
llT(x) - TCy)Il §_||x - Y|| for all x,y in D. It is well-known, however,
that the fundamental property of contraction mappings, expressed by the Banach
contraction principle, does not extend to nonexpansive mappings (see Example
2.4.3.). It is of great importance in the applications (see Browder [22]) to
find out if nonexpansive mappings have fixed points. In order to obtain
existence of fixed points for such mappings some restriction has to be made

on the Banach space X and on the subset D. In case X is uniformly convex

Banach space (see Theorem 2.4.10) or more generally X 1is a reflexive Banach

space with normal structure (see Theorem 2.4.9.) then a nonexpansive mapping :

4
from a bounded closed convex subset D of X into itself has a fixed point. A :
general situation of nonexpansive mapping T:D > X has been considered by g

Petryshyn [105] for the Hilbert space case (see also Browder and Petryshyn [33]).

Many geometric properties of Banach spaces under consideration are constantly
involved in obtaining fixed points from different mappings, viz. convexity,
uniform convexity, strict convexity, normal structure, complete normal structure,

structure of Hilbert spaces and so on.

In this section we show that some of the results can be obtained, in the
general setting of a Banach space, even when the hypothesis of nonexpansiveness

is considerably weakened. Essentially, we show that part of the analysis which

does not require the full force of nonexpansiveness, but requires only the

=
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existence of at least one fixed point together with nonexpansiveness only

about each fixed point.

Definition 3.1.1. (Dotson [48]) A self-mapping T of a subset D of a
normed linear space X is said to be quasi-nonexpansive provided T has at

least one fixed point in D, i.e. F(T) is non-empty, and if p € F(T) then

T - pl] < ||x - pl] holds for all x & D.

This concept which Dotson [47] has labelled quasi-nonexpansive, was

essentially introduced (along with some related ideas) by Diaz and Metcalf [45].

One notes that in assuming T:D - D a quasi-nonexpansive mapping, we also
assume the existence of a fixed point of T in D and thus a nonexpansive
mapping T:D - D with at least one fixed point in D is quasi-nonexpansive
and that a linear quasi-nonexpansive mapping on a subspace is nonexpansive on
that subspace. But there exist continuous and discontinuous nonlinear quasi-
nonexpansive mappings which are not nonexpansive. Following is an example,

due to Dotson [48], of a continuous quasi-nonexpansive mapping which is not

nonexpansive.
Example 3.1.1. The mapping T from the reals to the reals defined by
T(x) = % sin & X #0
(X = 2 X H
=0 s x = 0.

Following Browder and Petryshun [32], we define

Definition 3.1.2. A mapping T from a Banach space X into itself is said

to be asymptotically regular if Tn+1(x) - Tn(x) + 0, as =n + o, for all

x € X.
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Definition 3.1.3. A mapping T from a Banach space X into itself is

said to be weakly asymptotically regular if Tn+1(x) - Tn(x)~¥ 0, as n -+ =,

for all x e X.

Remark 3.1.1. Obviously every asymptotically regular mapping is weakly

asymptotically regular.

In general, a nonexpansive mapping T is not necessarily asymptotically’
regular. However, in some cases the determination of the fixed points of T
can be replaced by the same problem for an asymptotically regular mapping.
Namely, the following result due to Browder and Petryshyn [32] holds, which

we state without proof.

Theorem 3.1.1. Let X be a uniformly convex Banach space and T:X >~ X a

nonexpansive mapping. If F(T) is non-empty then the mapping

T, =AI+ 1 -MT , 0<a<1,

is nonexpansive and asymptotically regular. Moreover, E(T) = FCTA).

Considering a more general mapping than T,, Kirk [87] has proved the

following two results which we state without proof.

Theorem 3.1.2. Let D be a convex subset of a Banach space X and T a

nonexpansive mapping of D into itself. Define the mapping S:D > D by

k
(X) S=a°I+a1T+a2T2+....ré..+osz,

§a.=1,

where o; > 0, a; > 0, and 0 i

i
Then S(x) = x iff T(x) = x, i.e, F(T) = F(S).

Remark 3.1.2. Assumption a, > 0 in Theorem 3.1.2. is necessary to rule out

the possibility that a fixed point of S is merely a point at which T is

periodic.
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Theorem 3.1. 3.

Let D be a convex subset of a uniformly convex Banach space

X and T a nonexpansive mapping of D into itself. Define the mapping

S:D+ D as (K) in Theorem 3.1.2. If F(T) is non-empty then mapping S is

asymptotically regular.

We remark that Theorem 3.1.3. is true even if T is a nonexpansive

mapping of X into itself. Hence the following holds:

Theorem 3.1.4.

Let X be a uniformly convex Banach space and T a nonexpansive

mapping of X into itself. Define S:X + X as (K) in Theorem 3.1.2. If

F(T) is non-empty then the mapping S is nonexpansive and asymptotically

regul ar.

Proof. Same as of Theorem 3.1.3. with the fact that p € F(T) implies

p € F(S).

Remark 3.1.3. In case a, = A, @, = ag =

and F(T) = F(T ). Hence we obtain Theorem 3.1.1. as a particular case of

A - " 0, we have S =T

A
Theorem 3.1.4.

We give the following generalization of Theorem 3.1.4. for quasi-nonexpansive

mappings.

Theorem 3.1.5. Let X be a uniformly convex Banach space and T a quasi-

nonexpansive mapping of X into itself. Define the mapping S:X > X as (K)
in Theorem 3.1.2. Then the mapping S is quasi-nonexpansive and asymptotically

regular.

R n
Proof. Let x € X. Define the sequence {xn} by x =8 (x), n=1,2, ...
Suppose p € F(T). Then the sequence'{llxn - p|]? is nonincreasing, since

S is quasi-nonexpansive and S(p) = p, We may suppose ]ﬁ]—'»f'c}J |x, -pl]=4d >0.

If d = 0, there is nothing to prove. Therefore, assume d >0. Then




(adopting the notion T° = I) we have

*n+1 " P = Séxn) - P
_ i
- iZO T (x) - p
=o,(x, -p) + (- o )z,
k
_ 1 i
where z, = 1T igl aoCT (xn) - P).

o

k
. i
Since ||T ) - pl| < llx, - pll, and iZO @; =1, it follows that

lim sup Ilznll < d.

n->o
Also 1im X - = d, lim X - = d.
lin |Ix, - o] un |lx,,; - 2ll = d

Because X 1is uniformly convex it must be the case that

lim ||x - p -2 ]| =o0.

Nn—>o
However, X1 = X = 1 - ozc’)(x.n -p - zn),
and so lim | |x i - X || = 0, completing the proof.
oo n n
In case a, = Ay o, = Qg = ceeenen = o = 0, we have S = TA and

F(T) = F(Tl). Hence the following result is a particular case of Theorem 3.1.5.

Theorem 3.1.6. Let X, T be as in Theorem 3.1.5. Then the mapping TA:X - X

defined by

TA = ALl + (1 - A)T, 0<Aa<l1,

is quasi-nonexpansive and asymptotically regular. Moreover, F(T) = F(T ).

We remark that Theorem 3.1.6. shows that Theorem 3.1.1. is true for

quasi-nonexpansive mappings.
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We give the following result for (WUC)-Banach spaces.

Theorem 3.1.7.

Let X be a (WUC)-Banach space and T a nonexpansive mapping

of X into itself. Define the mapping §S:X - X as (K) in Theorem 3.1.2.
If F(T) 1is non-empty then the mapping S is noneipansive and weakly

asymptotically regular.

Proof. On the same lines as of Theorem 3.1.3., except, since X 1is (WUC)-

Banach space, Proposition 2.2:2. cimplies that

lx, - p - z,l| ¥ 0.

w
However, X ., - X = - ao)(xn -p - zn), and so X ., - X * 0,

completing the proof.

In case e = A, Op = Q3 T eeee = O = 0, we have S = TA and

F(T) = FCTA). Hence the following result is a particular case of Theorem 3.1.7.

Theorem 3.1.8. Let X and T be as in Theorem 3.1.7. If F(T) is nonempty

then the mapping TA:X + X defined by
T, = AL + (1 - A)T, O0<A<l,

is nonexpansive and weakly asymptotically regular. Moreover F(T) = F(TX).

We give the following generalization of Theorem 3.1.7. for quasi-

nonexpansive mappings.

Theorem 3.1.9. Let X be a (WUC)-Banach space and T a quasi-nonexpansive

mapping of X into itself. Define the mapping S:X > X as (K) in Theorem
3.1.2. Then the mapping S is quasi-nonexpansive and weakly asymptotically

regular.

Proof. Same as of Theorem 3.1.5., except, since X is (WUC)-Bamach space,




Proposition 2.2.2. -implies that

14
lxg - p - 201 % 0.
However, Xoel ~ X, = a - uo)(xn -p - zn) s
W .
and so Xe1 " X < 0, completing the proof.

Remark 3.1.4. In Theorem 3.1.9., if a = A, a, = 83 = .....

%k

=0,

we have S = TA and F(T) = F(Tx). Hence, in particular, we see that

Theorem 3.1.8. holds for quasi-nonexpansive mappings.

Browder and Petryshyn [32] have proved the following result for

asymptotically regular mapping. We omit the proof.

Theorem 3.1.10. Let T be a nonexpansive asymptotically regular mapping of

a Banach space X into itself. Suppose that a subsequence {Tn(J)(xo)} .

converges strongly to some point y. Then y is a fixed point of T and

the whole sequence '{Tn(xo)} converges strongly to .

In the following, we just assume the nonexpansiveness of T about the

fixed points.

Theorem 3.1.11. Let X be a Banach space and T a continuous asymptotically

regular mapping of X into itself such that

(i) whenever p € F(T), ||Tx) - pl] < |Ix - pl], for all x eX.

‘Suppose- that:a sﬁbsequenCe 'FTn(J)(xo)} , X €X, converges strongly to

P |
some point y. Then y 1is a fixed point of T and the whole sequence {T (xo)}

converges strongly to .

Proof. We first show that y is a fixed point of T, i.e., FE(T)

is non-



empty. We have

TP @) >y amiies @ - P - 1y,

On the other hand,

(I - T)Tn(j)(xo) = Tn(j)(xo) - Tn(j) +1 > 0,
since T 1is asymptotically regular. Thus (I - T)y = 0. Hence y & F(T).

Therefore, from (i), we see that the whole sequence converges to y

because

) -yl < 11T -y ||, forall n=1,2, ...

For weakly asymptotically regular mappings, Browder and Petryshym

[ 1 have proved the following result which we state without proof.

Theorem 3.1.12. Let X be a Banach space, T a nonexpansive mapping of

X 1into itself. For a given f € X, let Tf(u) = T(u) + £, and suppose
that the mapping Tf is weakly asymptotically regular. Let

x, = Tg(ﬁ)) be the sequence-of Picard iterates for the equation

u=T(u) - £ starting with xa, and suppose that an infinite subsequence
of the sequence '{kn} converges strongly to an element y of X. Then

y is a solution of u - T(u) = £ and the whole sequence'ifxn]' converges.

strongly to .

For weakly asymptotically regular mappings which are nonexpansive on

F(T), we give the following:

Theorem 3.1.13. Let X be a Banach space and T a continuous weakly

asymptotically regular mapping of X into itself such that
(i) whenever p € F(T), ||T(x) - pl] < |Ix- p||, for all x € X.

Suppose that a subsequence {Tn(J)(xo)} » X, € X, converges strongly to




some point y. Then y is a f:'Lxed point of T and the whole sequence

o (xo)} converges strongly to y.

Proof. We first show that y is a fixed point of T, i.e., F(T) is

non-empty. We have
™ (x ) >y implies (1 - D™ x ) > a - my.
On the other hand,
1 -mrP ) =m0 ) - ™m0y %o,

since T is weakly asymptotically regular. Since strong convergence implies
weak convergence and weak limit of a sequence is unique, therefore

(I -T)y =0. Hence y € F(T). We see, from (i), that the whole sequence

converges to y Dbecause

1™ x ) - vl < ™) - v|l, forall n=1,2, ....

We state without proof the following result on metric spaces.

Theorem 3.1.14. (Diaz and Metcalf [46]) Let T:M -+ M be continuous map,

where M is a non-empty metric space. Suppose
(i) F(T) 1is non-empty
(ii) for each x e M, with x &F(T), and each p € F(T), one has
d(T(x),p) < d(x,p).

Let x € M. Then either the sequence ' {Tn(xo )} contains no convergent
o :

subsequence, or 1lim Tn(xo) exists and belongs to F(T).
N0

Corollary 3.1.1. (Diaz and Metcalf [46]). Suppose, in addition to the

hypotheses of Theorem 3.1.14., that, for some X, ¢ M, the sequence of

' ' i ce. Then 1im T"(x )
iterates {Tn (xo)} contains a convergent subsequence. o




exists and belongs to F(T).

Thus, under the above assumptions, the

sequence ‘{Tn(io)} converges to a fixed point of T.

In general, it is not the case for nonexpansive mappings T that the
sequences of Picard iterates '{Tn(X)} converge to fixed points of T,

and thus when such fixed points exist other approximation techniques are
needed. One such technique is to form the mapping
T, = Al + (1 - AT, 0 <A< 1,

and then show that under certain circumstances the Picard iterates of Tl

. 1
converges to a fixed point of T. The first such result (for A = io was
obtained by Krasnoselskii [90]. Schaefer [119] has proved Krasnosels¥ii's.

result for arbitrary X € (0,1) which we state below without proof.

Theorem 3.1.15. Let D be a closed convex subset of a uniformly convex

Banach space X, T:D+ D a nonekpansive mapping, and suppose T(D) 1is
contained in a compact subset of D. Let x be an arbitrary point of
D. Then the sequence defined by

xn+1 = ) xxn + (1 - X)xn, n= 0,1,2, s o @ ; X e (0’1),

converges to a fixed point of T in D.

1 .
Edelstein [57] established Theorem 3.1.15. (for A = 79 in a
strictly convex Banach space, which is, recently, proved by Diaz and

Metcalf [ 46] for arbitrary Ae(0,1). We will omit the proof.

Theorem 3.1.16. Let D be a closed convex subset of a strictly convex

Banach space X, T:D+D a nonexpansive mapping, and suppose T(D) 1is
(<~
contained in a compact subset of D. Then, for x(je D, the sequenc

{Tgﬁxo)}, where T,:D > D is the mapping defined by
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TA = AI + (1 - A)T, A € (0,1), converges to a fixed point of T in D.

Considering a more general mapping S than Tk’ Kirk [87] has

proved the following two results which we state without proof.

Theorem 3.1.17.

Let X be a uniformly convex Banach space and T a
nonexpansive compact mapping of X into itself which has at least one

fixed point. Define the mapping S:X + X as (K) in Theorem 3.1.2. Then,

for each x, € X, the sequence '{Sn(xo)} converges to a fixed point of T.

Theorem 3.1.18. Let X be a uniformly convex Banach space, D a

bounded closed convex subset of X, and T a nonexpansive mapping of D
into D. Define the mapping S:D ~+ D as (K) in Theorem 3.1.2. Suppose
T has at most one fixed point p in D. Then, for each x e D, the

sequence {s® (xo)} converges weakly to p in D.

We state without proof the following result due to Browder and

Petryshyn [32].

Theorem 3.1.19. Let T:X + X be a nonekpansive asymptotically regular

mapping in a Banach space X. Suppose the set F(T) of fixed points of

T is non-empty. Suppose T satisfies the following condition:

(©) (I - T) maps bounded closed subsets of X into closed subsets of X.
© gl

Then, for each x € X, the sequence {T (xo)} converges strongly to some

point in F(T).

Remark 3.1.5. Let Tk = Al + (1 - AT, where A& (0,1). Then T

iti i i erve that
satisfies condltlop (©) iff Tk also does. To see this obs ‘

I - _T)\ = (1 -.k)(I - T).

The following corollary of Theorem 3.1.19. follows from Remark 3.1.5.

/4




and Theorem 3.1.1.

Corollary 3.1.2. Let T be a nonexpansive mapping of a uniformly convex

Banach space X into itself. Suppose that the set F(T) of fixed points

of T is non-empty. Suppose T satisfies the following condition:

() (I - T) maps bounded closed subsets of X into closed subsets of X.

Then, for each x_ € X, the sequence ' {xn+1} '{Tri(xo)} determined by

the iteration method

X, = Ax_ + (1 -MT(x), re(0,1), n=0,1,2, ...,

converges strongly to a fixed point of T.

Remark 3.1.6. Since every completely continuous mapping satisfies hypothesis

(©) (see [32]), with the use of Theorem 3.1.1. one obtains Theorem 3.1.5.
(Schaefer [119] for arbitrary A €(0,1) and Krasnoselskiit [90] for A = %9

as a corollary to Theorem 3.1.19.

Following [f05], we define the following class of operators.

Definition 3.1.4. A continuous mapping T from a Banach space into itself

is said to be demicompact if every bounded sequence j{xn}, such that
'{(I - T)x_}1 converges strongly, contains a strongly convergent subsequence
n

{xnj}.

Petryshyn [103] has proved that the class of demicompact operators
contains, among others, all compact (completely continuous) operators.

We state the following result without proof.

Theorem 3.1.20. (de Figueiredo [44], p-47) A demicompact mapping T of

a Banach space X into jitself satisfies condition ().

N



Remark 3.1.7. It was stated in [ 32]

that the converse of Theorem 3.1.20.

holds. But, in general, this is not true. For eiample, the mapping T = 3%

satisfies trivially condition (), but it is not demicompact [44].

We reframe a result of Diaz and Metcalf [46] in terms of quasi-

nonexpansive mappings as follows:

Theorem 3.1.21.

Let T:X > X be a continuous quasi-nonexpansive asymptoticall

regular mapping of a Banach space X into itself. Suppose

(') the (continuwous) real-valued function f, defined by £(x) = ||x - T (x)] ]
for x € X, maps bounded closed subsets of X into closed sets of real

numbers.

Then, for xoe X, the sequence '{Tn (xo)} converges to some point

in F(T).

Remark 3.1.8. It is of interest to note that the condition of nonexpansiveness
in Theorem 3.1.19. is weakened in Theorem 3.1.21. But at the same time
hypothesis (©') of Theorenm 3.1.21.1is stronger than hypothesis (0) of
Theorem 3.1.19. To see this, suppose, in accordance with (0'), that f
maps bounded closed subsets of X into closed sets of real numbers. Let

D be a bounded closeéd set in X. Then, by (©'), the set

£ = {]|] (@ - TXX)|| ; x € D} is a closed set of real numbers. But, the
norm function is a continuous function on X to the real numbers, while
the set £f(D), by (0'), 1is a closed set of real numbers. Consequently,
the inverse image of the set f£f(D), with respect to the norm function,
namely, the ;et (I - T)Y(D), must be a closed subset of X. But this means
that every bounded closed set D is mapped by (I - T) into a closed set,

which is just hypothesis (0). ([461).

A
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The next result due to Diaz and Metcalf [46], stated without proof

shows that the hypothesis (©') of Theorem 3.1. 21. can be weakened to

that of (9) of Theorem 3.1.19., without altering the conclusion of

Theorem 3.1.21. we again reframe the statement in temms of quasi-nonexpansive

mappings.

Theorem 3.1.22. Let T:X + X be a continuous quasi-nonexpansive asymptotically

regular mapping of a Banach space X 1into itself. Suppose T satisfies

the following:

@ 1@-T) maps bounded closed subsets of X into closed subsets of X

Then, for x € X, the sequence {T% (xo'),}. . converges to some point

in F(T).

We give the following result for quasi-nonexpansive mappings.

Theorem 3.1.23. Let T be a continuous quasi-nonexpansive mapping of a

uni formly convex Banach space X into itself. Also if T satisfies

condition:
() (I - T) maps bounded closed subsets of X into closed subsets of X.

Define the mapping TX:X -+ X by TA = Al + (1 - A)T, Ae(0,1). Then,
for x €& X, the sequence '{TI;(XO)} converges strongly to some point in
o

F(T).

Proof. It follows from Theorem 3.1.6. that T is a continuous quasi-

A

nonexpansive asymptotically regular mapping and F(T) = F(TA)’ Moreover,

Remark 3.1.5. implies that T satisfies hypothesis (©). Hence TA

A
satisfies all the hypotheses of Theorem 3.1.22., thus result follows.

Remark 3.1.9. Theorem 3.1.23. is true, in particular, if we replace

hypothesis (©) by the complete continuity or demicompactness of mapping T,

. . s i hypothesis (©). §
since completely continuous or demicompact mappings always satisfy hyp
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3.2. Measure of Noncompactness and Some Fixed Point Theorems.

The concept of measure of noncompactness is due to Kuratowski ([91].

Let D be a bounded subset of a metric space X (in case X is a Bamach

space we always mean a real Banach space). Following [91] we define a(D),

the (set) measure of noncompactness of D, as follows:

Definition 3.2.1. By the real number o(D) we denote the infimum of all

numbers € > 0 such that D admits a finite covering consisting of

subsets of diameter less than €.

Some useful properties of a are the following ones (see Nussbaum [101]

for detailed discussion and proof).

Theorem 3.2.1. (Nussbaum [101], Darbo [40]). Let A and B be bounded

subsets of a metric space X, and let
B_(A) = {x€ A:d(x,A) <tk

Then, we have
(i) 0 < a(A) < 8(A),
(ii) a(A) > 0 and a(A) = 0 iff A is precompact,
(iii) «(rA) = |A| a(A), where A is a real number,
(iv) if A €B then a(A) < a(B),
v) a(B.(A) = a(A) + 2,
(vi) a(d) = @) = o A),
(vii) o(A + B) < a(A) + o(B),

and (viii) o(AVU B) = max. {a(A), «(B)}.

We state without proof the following result due to Nussbaum :[10L].
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Theorem 3.2.2,

Let X be an infinite dimensional Banach space, let
B = {xtx:||5<||_<_l} and S= {xeX: ||x|]]=1}. Then
a(B) = a(S) = 2.

We also define X(D), the measure of noncompactness of D used

by Sadovsky §11§]» to be

X(D) = inf. {e > 0 : D admits a finite g-net }.

Although these two measures have a good deal in common but X (D) does

not have all the properties of (D) since x(D) does not depend

intrinsically on the bounded set D. In fact, if De B &€X, where X is a

metric’ space.and:D is bounded subset, then the «o(D) is independent of

whether D is considered as a subset of B or of X. But, in general,

this is not true for X(D), as the following example shows ([64], see also

[101]):

Example 3.2.1. Let D be an infinite orthonormal system of a Hilbert

space H. We have X(D) =1 if we consider D as a subset of H and

X{(D) = Y2 if we consider D as a subset of itself.

Closely associated with the notion of the measure of noncompactness,
is the concept of 'k-set-contraction', introduced by Kuratowski [91] and

further studied in [40], [11§],[10L] (see Nussbaum [101] for other references).

Definition 3.2.2. If G i§ a subset of X and T a continuous mapping of

G into X, then T is said to be k-set-contraction if
a(T(D)) <k (D),

for some k > 0 and for any bounded set D in G.

Remark 3.2.1. It is easy to see that mappings of Lipschitz's class are
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k-set-contractions with the same constant k. The class of

k-set-contractions with k < 1 contains the class of completely continuous

mappings and contraction mappings. It was shown in [101]that a more
general example of a k-set-contraction with k < 1, is the class of semi-

contractive type mappings (see Definition 3.2.6., also see [108]).

We state without proof the following'elementary properties about k-set-

contractions.

Theorem 3.2.3. (Nussbaum [101]).

(a) Let Xi, i=1,2,3, be metric spaces. Assume that
T :X =+ X is a kl-set-contraction,
1 1 2
and Ty Xy > X3 is a k2-set-—contract10n.

Then T,T, is aklkz-set-contraction.
(b) Let X be a metric space and Y a Banach space. Assume that
T,: X+Y is a kl-set-contraction,
and TZ: X»>Y is a k2-set-contraction.'
Then T, + T, : X > Y is a (k; + kz)—set-contraction.

We state without proof the following result for k-set-contraction

mappings.

i, ~~—em 3.2.4., (Darbo [40]) Let D be a bounded closed convex subset of

a Banach space X, and T:D+D a k-set-contraction, k < 1. Then T

has a fixed point in D.

The following generalization of above result is due to Nussbaum [101]

which we state without proof.

Theorem 3.2.5. Let D be a pounded closed convex subset of a Banach

space and T:D> D a continuous mapping. Let D, 5,_60(T(D)), and
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Dn = 'Cb'.('l‘(Dn_l)), for n> 1. Furthermore, assume that °‘(Dn) -+ 0,

as N+ . Then F(T) # 4.

Following [63], we define

Definition 3.2.3. A continuous mapping T of G €X into X

is said

to be densifying, if for any bounded set D& G such that a(D) > 0,

a (T(D)) < & (A).

Remarks 3.2.2.

(1) Using the notion of the measure of noncompactness X: Sadovsky [118]
defines the concept of''condensing mappings' same as definition 3.2.3.

¥2) Obviously, every k-set-contraction with k < 1 is a densifying
mapping but the converse is not true, as can be seen from the following

example ([132]):

Example 3.2.2, Let ¢:[0, +=] > [0, +°] be a right continuous nondecreasing

function such that ¢(r) < r for r > 0, and let T:X > X satisfies
T = Tonl] < ¢(||k - y|]), for every x,y € X. Then T is densifying.

On the otherhand T is not a k-set-contraction.

Note that contraction mappings and completely continuous mappings are
densifying; also sums of contraction mappings and completely continuous

mappings defined on Banach spaces are densifying.

Definition 3.2.4. A continuous mapping T of Ge& X into X is said to

be l-set-contraction, if

a(T(D)) < a(D)

for any bounded set D CG.
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Remark 3.2.3.

Obviously, every k-set-contraction mapping with k < 1

is 1-set-contraction. In particular, the class of densifying maps and

the class of nonexpansive maps are contained in the class of l-set-contraction.

We state without proof the following basic result.

Theorem 3.2.6. (Furi and Vignoli [64], Nussbaum {102]).

Let D be a nonempty bounded closed convex subset of a Banach space

X, and let T:D +> D be a densifying mapping. Then T has at least one

fixed point in D.

Remark 3.2.4. Furi and Vignoli [63] were first to introduce formally the

notion of densifying mappings. It seems that Theorem 3.2.6. has been
established independently by Furi and Vignoli [64] and Nussbaum (102].
In case T is a condensimg mapping, Thegrem 3.2.6. has been established

by Sadovsky "[118].

Recently, Petryshyn §1@8]has proved the following generalization of

Theorem 3.1.15. and Theorem 3.1.16., which we state without proof.

Theorem 3.2.7. Let X be a strictly convex Banach space, D a bounded

closed convex subset of X, and T be a densifying nonexpansive mapping

of D into D. For each constant A with 0 <A <1, let

T

AL + (1 - V)T

{x. ..} = {T3(x)}
Then, for each X in D, the sequence 11X . 2 Xq
determined by the iteration method

' . D
X, = ax_ + (1 - AT n=0,1,2, ... ; X €D,
n+l n ) (n)’ o

converges strongly to a fixed point of T in D.

Remark 3.2.5. Theorem 3.2.7. certainly holds if the nonexpansive mapplng
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T of D into D is of the form T =H + C, with C completely continuous

on D and H such that ||H(x) - Hy) || < ql |x - y]| for all x and y

inD and some q with 0 < q < 1. We note that in case T =H + C

with H=0 or q

0, Theorem 3.2.7. yields Theorem 3.1.16. In case

T=H+C with H=0 or q =0, and A = %, Theorem 3.2.7. yields
<

the result of Edelstein [57]. In case 0 < q <1, Theorem 3.2.7. for

T =H+ C improves the corresponding result in [110].

The following generalization of Theorem 3.2.7. is due to Singh [125]

which we state without proof.

Theorem 3.2.8. Let X be a Banach space, D a bounded closed convex

subset of X, and T be a densifying mapping of D into D. Define a

mapping T)\:D +~D by T, = AT+ (1 - AT, 0<Xx<1. Let T, be such

that

(i) whenever p € F(T,), T, () - pll < |]x - pl| for all x &D - F(T,).

P |
Then, for each x, in D, the sequence {T)\(xo)} converges strongly to

a fixed point of T in D.

We prove the following general result.

Theorem 3.2.9. Let D be a bounded closed subset of a Banach space X

and T:D > D a densifying mapping such that F(T) is nonempty. Define

a mapping T)\:D > D by

T, = AL+ (1=NT, 0<i<l,

such that ‘
e D - F(T,).
(a) whenever p € F(T,), ||ty x) - pll < |Ix - pl|, for all x (T,)
e es strongly to a
Then, for each x,in D, the sequence IT, (xo)} converg g

fixed point of T.
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Proof. It is obvious that F(T) = F(TA)' Therefore F(Tx) is nonempty

since F(T) is nonempty by assumption. Also TA is a densifying mapping

of D into D, this being a consequence of the facts that T js densifying

and that ) 1lies in (0,1).

In view of the inequality (a) above and Corollary 3.1.1., to show
that the sequence '{Tl;(xo)} converges strongly to a point in F(T), it
suffices to show that '{T];(;co)} contains a convergent subsequence
{T;:'j (xo)} - Now, for each X in D, the sequence So = '{Tn(xo):n=0,1,2,..}

is bounded and its transformed into the sequence S1

{T"(x ): n=1,2,...},

]

Hence (S ) = a(S;), and therefore a(so) = 0, since T is densifying.
o

Thus sequence {T;\1 (X J} contains a convergent subsequence.
o

Thus all the hypotheses of Corollary 3.1.1. are fulfilled, and

F(T) = F(TA)’ hence the result follows.

Remarks 3.2.6.

(1) We can obtain a number of well-known results such as Theorem
3.2.8., Theorem 3.2.7., Theorem 3.1.16. (i[46] for arbitrary A € (0,1)
and [57] for A = %), and Theorem 3.1.15. ([119] for arbitrary
A€(0,1) and [90] for A = -;—), as corollaries to Theorem 3.2.9.
as follows (we will omit the detailed discussion): Since with the given
hypotheses in ény one of these theorems, T is a densifying mapping
from a bounded closed subset of a Banach space into itself. Moreover
F(T) is nonempty and the mapping TA’ 0 < A < 1, always satisfies
hypothesis (a) of Theorem 3.2.9. Tilus all the hypotheses of Theorem 3.2.9.
are fulfilled, hence the result follows.

i i € D, even
(2) We observe that .Theorem 3.2.9. is valid for any X s

if D is a bounded open subset of X and T:D +D is a densifying mapping.
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We give the following generalization of Theorem 3.2.7. in which T)\

is required to be nonexpansive only about its fixed points.

Theorem 3.2.10.

Let X be a strictly convex Banach space, D a bounded

closed convex subset of X, and T be a densifying mapping of D into D.

Define a mapping T,:D > D by
Tkv=)\1+(1-)\)T, 0<A<1,
such that

(i) whenever p € F(T,), HTx(x) -pll < |lx - pll for all x € D.

Then, for each X in D, the sequence ‘{T;:(xo)} converges strongly

to a fixed point of T in D.

Proof. It follows from Theorem 3.2.6. that the set F(T) is nonempty. It
is obvious that F(T) = F(TA). It is also easy to see that T)\ is a
densifying noneipansive map of D into D, this being a consequence of the
facts that T is densifying nonexpansive and that X € (0,1). Next,

we show that strict convexity of X and conditlion (1) implies
D - F(T,).
T, x) = pll < [lx, - »ll, P eF@) and x_ € (T,)
i i i int of T, then x_# p,
If xoe D - F(T}\), i.e. x, 1s not a fixed point O Ty o
i t, b
and the open line segment joining the polnt X, and TA (xo) must, by

strict convexity, be contained in the open sphere of radius xg - pll

i i interior point of this line
and centered at p. Since T, (xo) is an P

segment, one has
T, (x,) - ol < 1= - 2l

i hence
Thus all the hypotheses of Theorem 3.2.9. are fulfilled, and he

result follows.
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Remark 3.2.7. Theorem 3.2.10. generalizes Theorem 3.2.7. in the following

sense:

With all the hypotheses of Theorem 3.2.7., we have F(T,) = F(T) # ¢,
and TA nonexpansive - - tegéther imply TA satisfies condition (i) of
Theorem 3.2.10. Thus all the hypotheses .of Theorem 3.2.10. are fulfilled
and hence result follows. But with all the hypotheses of Theorem 3.2.10.,

mapping TA is not nonexpansive on D.

We consider a more general mapping S of type Kirk [87], and give
the following general unified approach on convergence of the sequences

of iterates of S.

Theorem 3.2.11. Let X be a Banach space, D a bounded closed convex

subset of X, and T be a densifying nonexpansive mapping of D into D.

Define the mapping S:D ~ D by

k
S = aoI + a.lT + a2T2 + teesees * OtkT s

k
where @, >0, o >0, and z a. = 1. Let S be such that
o i=0

(A) whenever pe€ F(S), [||sS(x) - pl] < |lx-pl| for all xe D - F(S).
Then, for each X, in D, the sequence '{gl(xo)} converges strongly to

a fixed point of T in D.

Proof. It follows from Theorem 3.2.6. that the set F(T) is nonempty
and from Theorem 3.1.2. that F(T) = F(S). It is also easy to see that
S is a densifying nonexpansive mapping of D into D,

of the facts that T is densifying nonexpansive mapping and that

k
. 0, > 0’ - = 1
=T A 2o @

In view of the inequality (A) and Corollary 3.1.1. to show that the

this being consequence
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el
sequence {S (xo)} converges strongly to a point in F(T), it suffices.

PP .
to show that the sequence {S (x,)} contains a convergent subsequence

n; . .
{S J(xo)}. Now, for each X, in D, the sequence SOE {Sn(xo) :n = 0,1,2,

is bounded and it's transformed into the sequence S1 = {Sn(xo) i n = 1,2, ..}

Hence “(SO,) = a(8,), and therefore o(S)) = 0, since S is densifying.

Thus the sequence {s" (xo)} contains a convergent subsequence {s™ (x,)}.

Thus all the -hypotheses of Corollary 3.1.1l. are fulfilled, and
F (T)

F(T&), hence the result follows.

Remark 3.2.8. It is of interest to observe that in case &, = a3 = ... = o =0,
we can delete the nonexpansiveness of mapping T in Theorem 3.2,11., since

then, obviously, we have F(T) = F(S).

We obtain some new and other well-known theorems as corollaries to

Theorem 3.2.11., in the following way.

Corollary 3.2.1. Let X be a strictly convex Banach space, D and T as

defined in Thegqrem 3.2.11. Define the mapping S:D + D by

k
S=aI+a1T+aZT2+ ....... + a T,
k
- s D
where o; 2 0, o, > 0, and iz o; = 1. Then, for each x  1in ’

the sequence st (xo)} converges strongly to a fixed point of T in D.

Proof. Obviously, S 1is nonexpansive and F(S) is non-empty. Since X
is a strictly convex Banach space, using the argument of Theorem 3.2.10.,
it can be seen that S satisfies hypothesis (A) and hence all the hypotheses

of Theorem 3.2.11. Therefore result follows from Theorem 3.2.11.

Remark 3.2.9. Theorem 3.2.11. and Corollary 3.2.1. certainly hold if the

i = here G
nonexpansive mapping T of D into D is of the form T =6+ H, W

7
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compact (completely continuous) on D and H such that

[|Hx) - H) || < qllx - y|] for all x andy in D ‘and some q € (5,1).

Coxollary 3.2.2.

Theorem 3.2.8. becomes a particular case of Theorem 3.2.11.

as follows: In case @, = X, 0, T a3 = ..... = o, = 0 in Theorem 3.2.11.,

we have S = TX’ hence the result follows from Theorem 3.2.11. and

Remark 3.2.8.

Corollary 3.2.3. Theorem 3.2.%. can be derived from Theorem 3.2.11. as

follows: Take o, = A, Q, =03 = ceoee = = 0 in Corollary 3.2.1.,

then we have S = TA and hence Theorem 3.2.7. follows from Corollary 3.2.1.

Corollary 3.2.4. Theorem 3.2.10. becomes a particular case of Theorem

3.2.11. as follows: In case o, = Ay @, = Gy = L.... = @ = 0 in Theorem

2

3.2.11., we have S = TA' Moreover, strict convexity of X and hypothesis

(1) of Théorem 3.2.10, imply hypothesis (A) of Theorem 3.2.11. Hence the

result follows from Theorem 3.2.11. and Remark 3.2.8.

Corollary 3.2.5. Theorem 3.1.18. can be derived from Theorem 3.2.1ll. as
follows: Take o, = Ay Gy T @y = eeeee T S 0 in Corollary 3.2.1.
then we have S = TA' Hence the result follows from Corollary 3.2.1. and

Remark 3.2.9. with H = 0.

=

, We get a

"

>

fl
N

If in addition to above, we assume that o

result due to Edelstein [57].

Corollary 3.2.6. Theorem 3.1.15. can be derived from Theorem 3.2.11. as

T - = = H = i llary 3. 2- 1- then

strictly convex, hence the result follows from Corollary 3.2.1. and Remark

3.2.9. with H = 0.
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If im addition to above, we assume that a, =4 = %3 we get a result

due to Kransnoselskii [90].

Remarks 3.2.10.

(1) In view of Remark 3.2.9., Theorem 3.2.11 and Corollary 3.2.1.,
for H =0 improve Theorem 3.1.17.

(2) In view of Remark 3.2.9., Theorem 3.2.11. and Corollary 3.2.1.

for T=H + G with 0 < q <1 improve the corresponding result in

Petryshyn and Tucker [110].

We will now discuss the mappings with a boundary condition. Let X
be a real Banach space and D an open bounded subset of X, with D
and b denoting its closure and boundary respectively. In particular, we

will denote by

B= xeX: |[x||] <r}
the open ball about the origin,

Be= fxe€X: |Ix|]=r}
its boundary and B = B U B its closure.

Following [29], we define

Definition 3.2.5. Let X be a Banach space, D a subset of X, T a

mapping of D into X. Then T is said to be semicontractive if there
exists a mapping V of D x D into X such that T(x) = V(x,x) for x
in D, while
(i) for each fixed y in D, V(f,y) is nonexpansive from D to X,
(ii) for each fixed x in D, V(x,+) is strongly continuous from D

to X, uniformly for Xx in bounded subsets of D.

- T ot ] o . DOy T Tms -




85.

Following {293, [108], we also define

Definition 3.2.6. The mapping T:D - X

is of semicontractive type with

constant k <1 if there exists a continuous mapping V of D x D into

X such that T(x) = V(x,x) for all x in D, while
||V(X,Z) = VCY’Z)II f.kl |X = Y| I’ X,¥Y,2 € D:

and the map x - V(+,Xx) is completely continuous from D to the space of

maps from D to X with the uniform metric.

Imposing the well-known Leray~-Schauder condition Browder [29] has

proved the following two results which we state without proof.

Theorem 3.2.12. Let X be a uniformly conveic Banach space, D a ‘bounded

closed convex subset of X with 0 in the interior of D. Let T be a
semicontractive mapping of D into X such that for each x in D,

T(x) # Ax for any A > 1. Then T has a fixed point in D.

Theorem 3.2.13. Let X be a Banach space, D a bounded closed convex

subset of X having O in the interior, T a mapping of D into X
such that for each x in 15, T(x) # Ax for any A > 1. Suppose that T
is a semicontractive type with constant k such that

(a) If k <1, T has a fixed point in D.

®) If k<1 and (I - T)D is closed in X, then T has a

fixed point in D.

Recently, a number of interesting results have been given for the
class of densifying maps and the class of 1-set-contraction T under the

assumption that T satisfies the weaker boundary condition:

(n -;—) : If T(x) = :0X for some x in D, then a <1,

f
¥
:
p
¢
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for example see Petxyshyn [108],[109], Nussbaum {1031, webb [133], Edmunds

and Webb [59], and others. These results have been used to deduce a

number of new, as well as other well-known fixed point theorems for various

classes of mappings which have been extensively studied recently.

Remark 3.2.11. In fact, condition (X -;—) is equivalent to Leray-Schauder

condition - for every x in D, T(X) # ox, for any o > 1.

Definition 3.2.7. Let B be an open ball in X with center 0 and

radius r > 0. A mapping R:X > B defined by the formula

x if ||x|| <=
R(x)={

= if ||x|] 2=,

is said to be the radial retraction of X onto B.

The following lemma is due to Nussbaum [[102],, which we state without proof.

Lemma 3.2.1. Let X be a.Banach space and B the open unit ball of X

about the origin. Then the radial retraction R:X B is a l-set-contraction.

Theorem 3.2.6. for densifying mappings admits the following practically

useful generalization in cas e <D 'isla ball.

Theorem 3.2.14. (Petryshyn [i108]). Let B be an open ball about the origin

in a general Banach space X. If T:B~+X is a densifying mapping (and,

in particular, a k-set-contraction with k < 1) which satisfies the boundary
9
condition.
T = in E T
(n <:)'° 1f T(x) ax for some x in B, then o <1, then F(T),
1+° -

the set of fixed points of T in B, is nonempty and compact.
i i ifyi map, it
Proof. Since every k-set-contraction with k<1 1s a densifying map,

i ifying.
suffices to prove Theorem 3.1.14. for the case when T is densifying X
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Let B be an open ball in X with center 0 and radiis r > O,

Let R be the retraction of X onto B as given in Lemma 3.2.1. Then

R is a i-set-contraction of X onto B. Now, if for all x in B we define
the mapping Tl(x) = R(T{x)), then T1 is a continuous map of B into B
which is also densifying: since, T:B -+ X is densifying, R:X > B is a
l-set-contraction and, therefore, a (T, (B)) <of(B) < a(B). Hence it
follows from Theorem 3.2.6. that Tl has at least one fixed point X in
B. But then X, is also a fixed pé)int of T. Indeed, if x € B, then

. T (x
T(x,) = x, since the assumption of the equality T(x)) = .LL_(__relLL X

would contradict the fact that ||x°|| <r. If x, € B and X, is not
T(x . s e
a fixed point of T, then «a = T o)II > 1, in contradiction to
T

condition (I ;-). Thus X is a fixed point of T, and hence F = F(T)
is a nonempty set in B. Since T is continuous, F is obviously a

closed subset of B such that T(F) = F. This also: shows that F is

%iﬂi—":_%“TF*x et PR g :‘.-_,v;,‘;'_y.-.:m-»..z,v,...‘:“\

compact, for othexrwise the assumption «(F) > 0 would lead to the

e

contradictory inequality o(F) = a(@(F)) < a(F), which follows from the

densifying property of T.

e A R ARG

PR <
Remark 3.2.12. If instead of the boundary condition 41 —1—), we assume

iti < E i i T(x) = ox for
that T satisfies condition (& 1) on B (i.e., if (x)

some x in ‘B then o < 1), then the nonempty compact set F(T) 1is
» -

contained in B and hence lies at the positive distance from B.
Petxyshyn [108] has derived the following corollaries to Theorem 3.2.14,
We will omit the proof (see [108] for detailed discussion and proof).

 os . . i cular,
Corollary 3.2.7. Let T be a densifying mapping (and, in particu

B i that T
a k-set-contraction with k < 1) of B into X, and suppose
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satisfies any one of the following conditions:
(1.1) T(B)C B.
(1.2) T(B) € E.

1.3 |t - x| |2 > ||Te)]]|2 - |]x]|2 for all x in B.
(14.) (T(x), I(x)) < (x, I(x)) for all x in é, where J is

*
a duality mapping of X into the set 2x of all subsets of X*

such that

Jx), x) = |[x}||2 and ||ax)]|]| = ||x]|] for 211 x € X.

Then the set of fixed points F(T) of T is nonempty and compact.

Remark 3.2.13. 1In case X is a Hilbert space H, then for J we can

take the identity mapping I and therefore in this case conditions (1. 3)

and (1.4) reduce to the condition
(Tx), x) < (x,x) for all x in B,

employed by Krasnoselskii [89], Altman [ 2] and others for completely

continuous mapping T.

The following new comparison result, which may prove to be useful in

the solvability of nonlinear equations in H, is also valid.

: B i densifyin
Corollary 3.2.8. Let T be a mapping of B into H, and T, ade ifying

mapping of B into H, such ‘that

(T, x) < Hx||2,

LT (x) -To(x)ll < ix - Tl for all x in B.

Then F(T ) € B is nonempty and compact.
(o]

i i ication.
The following special case of Theorem 3.2.14. is useful in applicati

: B H
Corollary 3.2.9. Let T =H + G be a map from B to X such that ‘



89.

H is a contraction on B and G is completely continuous on B.

Suppose that T satisfies condition (I[-;-) on B. Then F(T) # ¢
and F(T) is compact.

For semicontractive type maps, Theorem 3.2.14. yields a generalization

of Corollary 3.2.9. whose first part (i.e. F(T) # ¢) has been obtained in [29].

Corollary 3.2.10. If T:B > X is a semicontractive type map with constant

k <1 such that (@ %) holds on B, then F(T) is nonempty and compact.

Remark 3.2.14. Under condition (1.1), Corollary 3.2.7. has been obtained

in [40] when T is a k-set-contraction, and in[118] when T 1is a
condensing map, while, under condition (1.2), Corollary 3.2.7. has been

obtained in [101] when T is a k-set-contraction with k < 1.

Petryshyn [108] has investigated the structure of fixed point sets
F(T) of certain densifying maps and demicompact 1-set-contractions
T:D > X. We state without proof the following result due to Petryshyn [108]

in case D is a ball.

Theorem 3.2.15. Let B be an open ball about the origin in a general Banach

space X. Suppose T is a densifying mapping of B into X which satisfies
condition (I ;) on B; i.e.

( <)' If T(xX) = oXx for some x in B, then o <l.
17°

' i fyi ings of B into X
Suppose there exists a sequence {Tn} of densifying mapping

such that

(a) sn-_-sup'{l['rn(x)-T(x)H : xe B} 0, as n-+ =,

i st one solution if
and (b) the equation X = Tn(x) + y has at mo

vl = §-

L e e A nnw:r.wmj
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Then T has a continuum F(T) for its set of fixed point in B.

:l‘h_e__c_a_xrem 3.2.15. is obtained as a corollary of the following more general
result which we state without proof.

Theorem 3.2.16. (Petryshyn [[108]). Let B be an open ball about the origin

in a general Banach space X. Suppose T 1is a 1-set-contraction of B into
. ‘4 < °

X which is demicompact and which satisfies condition (I -1-) on B, Suppose

further that there exists a sequence of densifying mappings '{;Tn} of B into

X such that the hypotheses (a) and (b) of Theorem 3.2.15, hold. Then T

has a continuum F(T) € B for its set of fixed points,

Remark 3.2.15. Since every densifying mapping is l-set-contraction and

demicompact, Theorem 3.2.15. follows as a special case of Theorem 3.2.16.

In his study of k-set-contractions with k <1, and under certain
additional conditions on D and/or T, Nussbaum [101]succeeded in defining
the notions of fixed point index for T and of topological degree for (I - T).
Nussbaum [10}]used these in obtaining a number of interesting results, and,
in particular, in generalizing the fixed point theorems of Darbo [40],
Sadovsky [118],Browder [29], but under somewhat stronger "boundary conditions"
(e.g., T(IE)) c D). Petryshyn [108],{109],used the degree argument of [10]] to
obtain more general fixed point theorems for certain densifying maps and

<
iti —). In fact
l-set-contractions under the weaker boundary condition (I 1) s

i i 3.2.14.
Petryshyn [108]has proved the following generalization of Theorem

which we state without proof.

with
Theorem 3.2.17. If D is a bounded open subset of a Banach space X

D i i isfies the
C in D and T a densifying mapping of D into X which satisfie

] p
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Using Theorem 3.2.17., Petryshyn {108]proved the following general

fixed point theorem. We omit the proof.

Theorem 3.2.18. Let D be a bounded open subset of a Banach space X with
0 in D and let T:D =X be a l-set-contraction satisfying (I -},) on D.
Then, if (I - T)(D) is closed, F(T) # ¢. In particular, if T is

demicompact and l-set-contraction, then F(T) is nonempty and compact.

Remarks 3.2.16.

(1) The set (I - T)(D), is certainly closed/if T is densifying and,
in particular, if T is k-set-contraction with k <1.
(2) If D is also convex, then condition (I %I holds on D if

TU‘)) € D and, in particular, if T(MD) & D.

In case 0 ¢ D, the following generalization of Theorem 3.2.18. holds.

Theorem 3.2.19. (Petryshyn [108]).Let D be a bounded open subset of a

Banach space X and T:D-+ X a l-set-contraction such that T satisfies
any one of the following “conditions:

(a) There exists an X in D such that T(X) - x, = a(x - x ) holds
for some x in l.), then a <1.

(b) D is convex and T(D) € D.

i i T 1is
Then, if (I - Tl(ﬁ) is closed, we have F(‘I_‘) # ¢. In particular, if
i t.
demicompact and 1-set-contraction, then F(T) is nonempty and compac

. L] 9’
As a consequence of Theorem 3.2.9., Theorem 3.2.18, and Theorem 3.2.1

i ates for ce...
we give the following result on convergence of the sequences of iter

densifying maps.

X and
Theorem 3.2.20 Let D be a bounded open subset of a Banach space
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T:D>D a densifying mapping such that T satisfies any one of the

following conditions:

(@) If 0€D, @3 holds on D.

(') If 0 €D, there exists an y  in D such that if

Tx) - Yo = a(x - yo) holds for some x in f), then a < 1.
(c') If 0¢&D, D is convex.

Define a mapping T,:D+D by T, = 2 + (1 -MT, 0<A<1. Let T,
be such that

(@) whenever p € F(T,), ”TA(X) - pl| < |lx - p|| for all x €D - F(T,).

Then, for each x, in D, the sequence {Tl;(xo)} converges strongly to a

fixed point of T in D.

Proof. By Theorem 3.2.9., it suffices to show that each of the conditions
(@'), (") and (c') along with the other hypotheses imply F(T) # ¢- Indeed,
with the given hypotheses if follows from Theorem 3.2.18, Theorem 3.2.19.,
and Remarks 3.2.16. that (a'), (') and (c'), each separately implies

F(T) # ¢. Therefore F(TA) is nonempty. Hence result follows from Theorem

3.2.9. and Remark 3.2.6(2).

Now, we shall discuss some of the applications of fixed point theory.
Many applications of fixed point theorems occur in differential and integral
equations, nonlinear vibrations, calculus of variation, optimal control theory,

nonlinear optimization, nonlinear approximation and many other fields. Those

. . . s '
most frequently used are the contraction mapping principle and Schauder's
Principle. Other results concerning completely continuous operators are also

used. Recently, Browder [ 30] gave a survey of the applications to partial

differential equations, mostly about existence and uniqueness of solutions ‘

. and
and about:iteration procedures, also in the case of noncompact operators
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of nonexpansive mappings.

In recent years densifying (condensing) mappings proved to be very
useful in the study of certain differential and integral equations. In

particular, we discuss the existence of solutions of the following differential

equation of neutral type:

x'(t) = “[t, x(t), x(t - h;(£)), x'(t - h,(t))] 1)

If the function f£(t,xyy,2) satisfies a Lipschitz condition in the variable
X,y and z, with constant kx’ ky and kz ,» Trespectively, with kz < 1, then,
under minor additional assumptions, the question of the existence of solution
is easily reduced to the contraction mapping principle. As it was noted in

[ 5], this problem can also be reduced to the Schauder's principle, by another
method. Here we shall dispense with the Lipschitz condition in the variables

x and y. To prove the existence theorem in this case, Badoev and Sadovsky

[ 5] have used the fixed point principle for condensing mappings (Theorem

3.2.6.) which we state without going into much detail:

Let E be a Banach space and D € E. We shall consider (1) in conjunction

with the initial condition
t
x(t) = xo(t) (-h <t <0), (1)

where x_(t) is a fixed function defined on the (finite or infinite) semi-
o
interval (-h, 0]. By a solution of the problem (1) - (1') we shall mean
. tes ‘s '
a function x(t) (-h <t <H) that satisfies the initial condition (1') and

- ] _hH .
the following three requirements: a) x(t) is continuwus on (-h, 1;

i integrable,
b) x'(t) exists almost everywhere on (-h,H] and is pth power integ
P>1l; c) almost everywhere on [o,H]

X' (t) = £[t,x(t), x(t - hy(®)), x'(t - h, (t))].

i i 0,H
We shall denoté by &(0,H) the set of continuous functions on [0,H]
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having a derivative that is Pth power integrable; this set becomes a Banach

space with the natural linear operations if we put x|z = ||x||C + ||x'||L
For any function x(t) € E(0,H) we put P

(xo(t), -h <t<o0,
®) = %y, 0<t<H

-.«- Together whth the problem (1) - (1') we consider the following operator

equation in the space E(0,H):

y = Iy, )

where the operator I is defi:ed by the formula
Iy(t) = x_ + j £[s,y(s), ¥(s - h (s)), ¥'(s - h,(s))1ds

° (x, = x (0)).

It is not difficult to verify that if the function xo(t) is continuous
and its derivative is pth power integrable, then the equation (2) is
equivalent to the problem (1) - (1') in the following sense: if wx(t) is
a solution of the problem (1) - (1') then its restriction y(t) to the
segment [0,H] is a solution of the equation (2) and, conversely, if y(t)
is a solution of the equation (2) then the function x(t) = ';"(t) is a

solution of the problem (1) -~ (1').

Badoev and Sadovsky [ 5] have established the following properties of

the operator I.

Lemma 3.2:2). Let E be the set of functions in E(0,H) that satisfy the
(o] s P
condition x(0) = x_. Suppose that the functions xo(t), h1.(t)’ 'hz(t) and
£(t, x, y, z) satisfy the following requirements: (I) xo(t) is continuous
and bounded ; - -moxeover . X! (1;‘),\-:‘ 1 is-pth:pewer; integrable’on (-H,0];
. ’ (o] . .

(1) -H+t <h (t) <h+t(=12;0<tcH; (D h(®) and b(E)
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are measurable on [0,H]; (IV) the function q(t) =t - h, (t) 1is such

that a) the inverse image of every set of measure zero is measurable and

b) for any measurable set E & [0,H] satisfying the condition q(E)€ ([0,H],

we have the inequality uE < r uq(E) (where the number r does not depend

on E); (V) f£(t, x, ¥y, z) 1is defined for 0 <t <H and all real Xx, y
and z; (VI) £(t, x, y, 2z)

(VID)) f£(t, x, y, 2)

is measurable in t for any fixed x, y and z;
is measurable in the pair x, y for fixed t and z;

(VIII) f(t, x, y, z) satisfies a Lipschitz condition in 2z:
‘f(t: X, ¥ zl) = f(t: X, Y zz)l _<__k|21 = 22|;
(IX) for any R > 0 we can find a function mR(D) € LP(O,H) such that

|f(t’ X, Y Z)l __<_mR(t)
(OitiH; |X-x°|, ly—xoliR;—oo<z<gg).
Then the operator I is continuous from E, into E

o°

Lemma 3.2.3:r., 1f ®heuconditions of .Lemmd 3.2:2. lare‘satisfied, and -iw~addivion

suppose: that the following condition is satisfied:

CX) krl/P<{1/2 if D= 1.

1, if p> 1,

Then the operator I 1is ‘comlensingon D, if H is sufficiently small.

From Lemmas c352:2.,3:2. 3 and Theorem 3.2.6., Badoev and Sadovsky f5 1 have

. as (1) - (1').
obtained the following theorem on the solvability of the problem 1 (1)

L4 9 t, x’ 3 Z)
Theorem3.2.2L. Let the functions x (t], h, (t), by () and £( y

satisfy the conditions (I) - (X). Then the problem (1) - (1') has a

s 4 - 0).
solution x(t) that is defined on some semi-interval (-h,H] (H > 0)

i omics where
We also mention that there are many areas of physics and econ

are based
the fixed point theory is applicable. Many of the methods used
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mainly on proving the convergence of the iterative sequence '{xn},

with X 41 = T(xn). There are many different ways of setting up an

iteration scheme to obtain a fixed point of T, and which may converge

faster than the iteration sequence x 1 = T(xn). For example, we may

replace T by TA (see chapter III) or we may take the mapping

Tl/2 xl/z (if this is defined). Another method is Newton's method (suitably

extended to infinite dimensional spaces).

'
e e PR A WA AR TR SN AT
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