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ABSTRACT 

The aim of this thesis is to study the geometry of Banach spaces~ 

the existence of fixed points and the convergence of iterative sequences 

of certain mappings in Banach spaces. 

We introduce some of the basic definitions and give a brief survey 

of some well-known results on fixed points for different mappings. 

We also introduce and discuss different classifications of Banach 

spaces. A few results~ similar to those of uniformly convex Banach spaces, 

have been given for weakly uniformly convex and weakly* uniformly convex 

Banach spaces. 

Finally considering more general mappings, of types Diaz and Metcalf 

[ 46], Dotson [48], Kirk [ 87] ~ some new results and various generalizations 

have been given on the asymptotic regularity and the convergence of the 

iterative sequences in Banach spaces. We end with mentioning some of the 

applications of fixed point theory in brief. 
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1. 

INTRODUCTION 

S. Banach [ 7], in 1922, formulated his classical theorem, known 

as the Banach contraction principle, which may be stated as follows: 

"A contraction mapping of a complete metric space X into itself 

has a 1.mique fixed point". 

Because of its widespread applicability in proving the existence and 

uniqueness of solutions of the differential and integral equations, many 

extensions of the above principle have been given in recent years by 

several mathematicians such as Chu and Diaz [36], [37], Edelstein [52], 

[ SSj, [56], Rakotch (11J1, Bailey [ 6], Boyd and Wong [17], Browder [28], 

Sehgal [120] and others. 

The main objective of this thesis is to study the geometry of Banach 

spaces, the existence of fixed points and the convergence of the iterative 

sequences of certain mappings in Banach spaces. 

The preliminaries of metric and normed linear spaces as well as some 

of the well-known results on fixed points of different mappings are given 

in chapter I. 

In chapter II we discuss different classifications of Banach spaces 

according to various geometric properties of their unit balls. In 1936, 

J .A. Clarkson [ 38] introduced the notion of uniform convexity of the norm 

in a Banach space as follows: a norm is uniformly convex if, whenever the 

midpoint of a variable chord in the unit sphere of the space approaches the 

boundary of the sphere, the length of the chord approaches zero. Many 

generalizations of 1.miform convexity have been given in recent years, for 

example see [ 94], [ 3 ] , [60]. As a simple consequence of the definitions 

of (WUC) and (W*UC) Banach spaces, we obtain a few results which are 
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useful in applications. Moreover, using the concept of normal structure 

([18]), we give some interesting results for semi-nonexpansive mappings 

which are modelled after Zizler [ 139]. 

In chapter III we have obtained several results even when the hypothesis 

of nonexpansiveness of a mepping T is weakened up to the extent that T 

is required to be nonexpansive only at its fixed points (whenever they exist). 

Considering a nonexpansive (quasi-nonexpansive) mapping T, we show that 

a more general mapping S, of type Kirk [87], is nonexpansive (quasi­

nonexpansive) and asymptotically regular or weakly asymptotically regular 

in (UC) and (WUC) Banach spaces. Thus, we generalize certain results of 

Browder and Petryshyn [ 32] as well as of Kirk [ 87]. We note that, in 

general, it is not the case for nonexpansi ve mapping T that the sequence 

of Picard iterates · ffn (x ) } converges to fixed points of T •• In case T 
0 

is a densifying or:·:a ::deilsifying nonexpansive mapping, we give some new 

results for the convergence of the iterative sequences of the mappings 

S and T A' which in turn generalize and improve certain results of 

Petryshyn [lOfl, Singh [125 ] , Diaz and Metcalf [ 46], Edelstein [57], 

Schaefer [119], Krasnoselskii [90], and Kirk [87]. 

In the end we mention some of the applications of fixed point theory 

in brief. 
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CHAPTER I 

INTRODUCTORY CONCEPTS 

In this chapter we introduce some preliminary definitions and some of 

the known res u1 ts primarily on metric spaces. We shall use the conventional 

shorthand "iff'' for "if and only if''. Moreover, we shall denote by K 

the field 1R of real numbers or the field € of complex numbers. 

1.1. Preliminaries. 

Definition 1.1.1. Let X be a non-empty set and let R+ denote the 

positive reals. We define a distance function + d:X X X -+- R 

iff the following conditions are satisfied for all x,y,z € X: 

(i) 

(ii) 

(iii) 

(iv) 

d(x,y) .::._ 0, 

d(x,y) = 0 iff x = y , 

d(x,y) = d(y,x), 

d(x,z) < d(x,y) + d(y,z) (triangle inequality). 

to be a metric 

A metric space is a pair (X,d) in which X is a non-empty set and d 

is a metric on X. We may denote the metric space by X alone when the 

metric d is understood. 

Definition 1.1.2. The diameter o (A) of a non-empty subset A of the 

metric space (X,d) is defined by 

o(A) =sup · {d(x,y) : x,y Q A}. 

If the diameter of A is finite, i.e. o(A) < ~, then A is said to be 

bounded; if not, i.e. o(A) = ~, then A is said to be unbounded. 

We define the distance between the point x and the subset A of 

(X ,d) to be 
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d(x~A) = inf · {d(x~y) : y~ A} 

and~ in an anologous manner~ define the distance between the two subsets 

B and C of (X~d) to be 

d(B~C) = inf {d(x~y) x E. B~ y 6. C}. 

Definition 1.1. 3 • . A sequence · {x } in a metric space X is said to 
n 

converge to the point X E X and we write 
0 

X ~X. ~ n o iff~ for each real 

m.unber & .:> ·0~ there exists a positive integer N(e:) such that d(xn~x0) 

for all n .::_ N. In otherwords~ X ~X 
n o iff lim d(x ~x ) = 0. 

n-+- n o 

Definition 1.1.4. A sequence · {x } is said to be a eauchy (or~ 
n 

fundamental) sequence iff~ for each real number e: > 0~ there exists a 

positive integer N(e:) such that d(x ,x ) < e:~ for all m~n .::_ N. m n 

Remark 1.1.1. Every convergent sequence is a Cauchy sequence. 

Definition 1.1.5. A metric space is said to be complete iff every Cauchy 

sequence in X converges in X. 

Definition 1.1.6. A metric space X is said to be separable iff there is 

a countable subset of X that is dense in X. 

Definition 1.1. 7. Let X be a metric space. The subset A of X is said 

to be totally bounded if given e: > 0 there exists a finite number of 

subsets A ,A ~A ~ ••• ~ An of X such that 
1 2 3 

n 
o (~) < e (k = 1 ~ 2, • • • , n) and A C U ~ 

k=l 

Remark 1.1. 2. If a subset A of a metric space X is totally bounded 

then it is bounded but not conversely. However, in lR. botmded and totally 

bounded sets are equivalent. 
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The following well-known theorem is the most important and useful 

property of totally bounded sets. 

Theorem 1.1.1. Let X be a metric space. Then a subset A of X is 

totally bounded iff every sequence of points of A contains a Cauchy 

subsequence. 

Definition 1.1.8. A metric space X is said to be compact if from every 

open covering . {G } 
a 

of X it is possible to extract a finite subcollection 

of the G 's whiCh constitute an open covering of X. 
a 

Definition 1.1.9. A linear space over K is a quadruple 

X is a non-empty set, + is a mapping (x,y) -+ X + y of 

(X,K,+,•) where 

XxX into X, 

• is a mapping (a,x) -+ a~x of K x X into x .. such that the following 

conditions are satisfied for all x,y,zE. X and a,a E. K: 

(i) X + y = y + X , 

(ii) x + (y + z) = (x + y) + z , 

(iii) there exists a E X such that x+a=x, 

(i v) for eaCh x E. X there exists -x E X suCh that 

(v) 

(vi) 

(vii) 

(a+ 13)• x = a•X + 

a.•(X + y) = a•X + a.y 

a •(S • X) = (aS) • X , 

(viii) 1 • X = X • 

13•x , 

x + (-x) = a, 

We shall write the linear space X or (X,K) instead of the linear 

space (X , K, + , • ) . 

We want to introduce and discuss here a few resultsrelated to the notion of 

convexity. Many important topics in the theory of linear spaces rely on 

convexity. This notion, stemming from intutive geom:et:ric ideas, can be 
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formulated purely analytically. 

Definition 1.1.10. Let x andy be two points in the linear space X. 

Then the segment connecting the two points x and y is the totality of all 

points of the form ax + f3y where a ~ 0 :~ f3 > 0 and a + f3 = 1. 

Definition 1.1.11. A subset G of a linear space X over ·K is called 

convex i£ given two arbitrary points x and y belonging to G:~ the segment 

connecting them also belongs to G. 

To illustrate the definition:~ we give the following examples: 

Examples 1.1.1. 

(1) The empty set and a set consisting of one point are convex sets. 

Also~ the line segment:~ plane and triangle are convex sets in 3-dimensional 

Euclidean space. 

(2) Let M be a subset of the space C[a,b] consisting of all 

continuous ftmctions satisfying the extra condition I f(t) I < 1. Then M 

is convex:~ since I £(t) I :< 1, I g (t) I ~ 1 together with a ~ 0, f3 ~ 0, 

a + f3 = 1 implies 

la£(t) + f3g(t) ~ a + f3 = 1. 

The following lenuna gives some basic properties of convexcsets. 

Lemma 1.1.1~ If G
1 

and G
2 

are convex sets, so also are the sets 

G1 n G2, AG1 and G1 + G2, where A is a scalar. 

Definition 1.1.12. The intersection of all closed convex sets containing 

a set G is a closed convex set which contains G and which is contained 

in every closed convex set containing G. This set is called the closed 

convex hull or, convex closure of G, and is denoted by Co (G). 

Alternatively, one can define convex closure of G to be the smallest 
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closed convex set containing G. 

Definition 1.1.13. Let X be a linear space over K. A mapping x .-+ II xll 

of X into the set R+ of positive reals is called a norm on X iff it 

satisfies the following conditions for all x~y £ X and a £ K: 

(i) J lx II ~o ~ 

(ii) llx II= o iff X = 0~ 
(iii) I t~~ II = I a .l II x I I ' 
(iv) llx + Y II ~ llx II + IIY II (triangle inequality). 

-
A normed linear space over K is a pair (X~ 11·11 ) , where X is a 

linear space over K and II· II is a norm on X. We shall write the normed 

linear space X instead of ex~ II· II). 

Every normed linear space X is a metric space with a metric d defined 

on X as d(x~y) = llx - y II for all x~y E. X. 

Definition 1.1.14. Two norms II 11
1 

and II 11
2 

on a normed linear space X 

are said to be equivalent iff there exist numbers a and b with 

0 < a < b < oo such that 

a llx 11 1 ~ llx 11 2 _:5. b llx 11 1 for all x E X. 

Definition 1.1.15. A complete normed linear space is called a Banach space. 

Examples of some well-known Banach spaces are the following: 

~(a~b] the space of continuous functions f on the interval [a,b] ~ 

with t ·t f 11 = sup { 1 f c t) 1 : t e. [a, b J } • 

for p > 1 the space of sequences x = (x ~x , 
1 200 

) for which 

II x II = C L I x.j p) l/p • 
P . 1 

l.=l 

00 

I 
i=l 

lx. lp < oo 
]. 

with 

; . · 
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Lp for p ~ 1 : the space of all equivalence classes of fl.Blctions f that 

th are ll -measurable and p power summable on finite set E 

with 

Definition 1.1. 1§·. Let X be a linear space over K. A mapping 

x x y + (x~y) of X x X into K is said to be an inner product (or scalar 

product) on X iff 

(i) (x,x) > 0 for all x E. X 

(ii) (x,x) = 0 iff X = 0 X € X, 

(iii) (x,y) = (y,x) for all x,y £ X 

(iv) (ax + ~y, z) = a(x,z) + ~ (y ,z) for all x,y,z E. X and a~~ E. K. 

If X is an inner product space, we define a norm II· II in terms of 

the inner product as llx II = (x,x) l/Z for all x E. X. 

Definition 1.1.17. If an inner product space X is complete, X is said 

to be a Hilbert space. 

. :~· ·. ~-
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1.2. Some Fixed Point Theorems 

Definition 1.2.1. Let T be a mapping or transformation of a set X into 

itself. A point x E. X is said to be a fixed point of T if T(x) = x. 

In otherwords, a point which remains invariant tmder a mapping is known as 

a fixed point. 

Definition 1.2.2. A mapping T of a metric space X into itself is said 

to satisfy Lipschitz condition if there exists a real ntunber k (known as 

Lipschitz constant) such that 

(1) d(T(x), T(y)) ~ k d(x,y) , for all x,y~ X. 

If the condition (1) is satisfied with a Lipschitz constant k such 

that 0 < k < 1, then T is called a contraction mapping. 

One of the well-known theorems in oonn~ction with the fixed points of 

a mapping in a metric space is that given by Banach [ 7] and known as 

Banach Contraction Principle. This theorem has been used extensively in 

proving existence and uniqueness theorems of differential and integral 

equations. 

Theorem 1.2.1. Banach Contraction Principle: 

Let (X,d) be a complete metric space and T:X + X be a contraction 

mapping. Then T has a unique fixed point (i.e. the equation T (x) = x 

has a unique soiution). 

Proof. By h~othesis there is a real number k with 0 < k < 1 such that 

d(T(x), T(y)) ~ k d(x,y), for all x,y E. X. Choose any point x
0 

E X 

and set x1 = T(xJ, . ~ = T(x1 ) = -:r2(x
0
), and in general, let xn = ~(~0). 

We shall show that the sequence {xn} is a Cauchy sequence. Let m, n 

be positive integers with m > n. In fact, 



d(xm,xn) = d(Tm(x
0
), Tn(x

0
)) ~k d(Tm-l(x

0
), 'f'l-1 (x

0
)) 

< kn d (Tm-n (x ) , x ) 
0 0 

-- kn d( X " m-n 
< kn{d(x , 
- m-n 

+ 

X ) 
0 

xm-n-1).+ d(xm-n-1" xm-n-2) 

+ d(x , x )} 
0 

10. 

< knd(xl" xo) { km-n-1 + km-n-2 + .... +1} 

kn 
~ 1-k d(xl, xo). 

Since k < 1, d(x , x ) is arbitrarily small for sufficiently large n. m n 

Thus the sequence {xn} is a Cauchy sequence. Since X is complete, 

lim xn 
n-+<lO 
Since 

exists. Let lim x = u n . 
n-+<lO 

T is continuous, 

T(u) = T lim xn 
:(l-+-00 

= lim T{x ) = 
n~ n 

lim xn+l 
n~ 

= u. 

Thus the existence of fixed point is proved. We shall now prove the 

uniqueness. Let T(u) = u and T(v) = v, u ~ v. Then d(u,v) = 
d(T (u), T (v)) ~ k d(u, v). But k < 1, therefore d(u,v) = 0 i.e. u = v. 

Hence uniqueness. 

Definition 1.2.3. A mapping T of a metric space X into itself is said 

to be contractive mapping if d(T(x), T{y)) d(x,y), for all x,y £X, x ~ y. 

A contractive mapping on a complete metric space need not have a fixed 

point as the following example demonstrates: 

Example 1.2.1. The map f: 1R -+- 1R defined by f(x) = x + 1r /2 - arc tan x 

is clearly contractive but has no fixed point. 

Edelstein [53] has given the following theorem for the existence of 

a fixed point for a contractive mapping. 
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Theorem 1.2.2. Let X be a metric space and let T be a contractive 

mapping of X into itself. If· there exists a point x
0 

E. X such that its 
n. 

seqUence of iterates · {Tn(x
0
)} has a convergent subsequence · {T 1 (x

0
)} 

converging to a point ~ in X~ then ~ is a tmique fixed point of T. 

A simpler proof [49] of this theorem may be given as follows: 

n. 
Proof. Since · {T 1 (x )} converges to ~EX and T~ being a contractive 

0 

mapping~ is continuous on X therefore the sequence · {Tni+~(x0)} converges 
n.1=2 

to T(~)and consequently the sequence · {T 1 (x )} converges to T2 (~). 
0 

. · n n+l Cons1der the sequence {d(T (x ) ~ T (x ) ) } of non-negative real 
0 0 

numbers. If for any n ~ d (Tn (x ) ~ Tn+ 1 (x ) ) = 0, there remains nothing to 
0 0 

prove as comes out to be a fixed point of T. Thus we may assume 

without loss of generality that each term of this sequence is positive. Since 

T is contractive therefore for x
0 

F T(x
0
), we have 

d(x ~ T(x )) > d(T(x), T2(x )) > 
0 0 0 

> ~ ... 
i.e. · {d(Tn(x ), Tn+l(x ))} is a decreasing sequence of positive real 

0 0 

numbers bounded by d(x ~ T(x )). Hence it converges together with all its 
0 0 

subsequences to some real number a. Now~ assume ~ F T(~). Then 

n. n.+l 
d(~~ T (~)) = d (lim T 1 (x

0
), lim T 1 (x ) ) 

0 

n. n.+l 
= lim d (T 1(xo)' T 1 (x )) 

0 

= a 
n.+l n.+2 

= lim d (T1 (x ) ~ T 1 (x )) 
0 0 

n.+l n.+2 
d 

1 . 
lim T 1 ' (x ) ) = (lim T (x ) , 

0 0 

= d (T (~) ~ T2 (~)) 

< d (~~ T(~)), which is absurd. Hence T(~) = ~i.e. is 

a fixed point of T. For uniqueness of ~, let ~ F ~ be a point in X 

such that T ( '0 = ~~ Then 

. .. ;~ 
,. 

. . . · ' 

.. ·~~ 
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d(~, ~) = d(T(~), T(~)) < d(~, ~) 

a contradiction. Thus e is a tmique fixed point of T • 
...... 

Definition 1.2.4. A mapping T of a metric space X into itself is said 

to be ilonexpansi ve mapping if 

d(T(x), T(y)) < d(x,y), for all x,y ~ X. 

Cheney and Goldstein [35] proved the following theorem: 

Theorem 1.2.3. Let T be a mapping of a metric space X into itself 

such that 

(i) T is nonexpansive, 

(ii) if x # T(x), then d(T(x), T2 (x)) < d(x,T(x)), for all x EX 

and (iii) for some 
n. 

. n 
the sequence {T (x

0
)} has a subsequence 

· {T 1 (x ) } 
0 

converging to u. 

Then the sequence · {Tn(x )} converges to u and u is a fixed point of T. 
0 

These results have been further generalized by Edelstein [52], [55], [56], 

Rakotch [llSj,Chu and Diaz [36], [37], Bailey [6 ], Browder [28], Belluce 

and Kirk [ 10], [ 11], Kirk [ 84], Boyd and Wong [ 17], Sehgal [121>1, Wong [1341, 

and many others. Many of these fixed point theorems have been used to 

guarantee the existence and uniqueness to solutions of differential and 

integral equations. 

Following Kaiman [ 81], we define 

Definition 1.2.5. A mapping T of a metric space (X,d) into itself is said 

to be semi-nonexpanding (or semi-nonexpansive U3~) if 

d(T(x), T(y)) ~ ~ - {d(x,T(x)) + d(y,T(y))l, x,y & X. 

Semi-nonexpansive mappings have been discussed by Kannan [77], [781, [79], 
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[80], [81], Reich[ll4] 11 [ii.1Sl, Woodward (135], and others. 

Remarks 1.2.1. 

(1) In general, a semi-nonexpansive mapping of a complete metric space 

X into itself does not imply the ~xistence of a fixed point (take the unit 

circle and T(z) = -z, or put X = {0} U [1,2] and T(x) = 0, x F 0, 

T(O) = 1 [114]). 

(2) In some cases semi-nonexpansive maps are nonexpansive. However, 

the two notions are quite independent; nonexpansive maps must be continuous 

while semi-nonexpansive maps need not (see Kannan [78], Woodward [135]). 

(3) Any semi-nonexpansfve map T has at most one fixed point. For, 

if T(x) = x and T(y) = y, then 

d(x,y) = d(T(x), T(y)) < ~ {d(x,T(x)) + d(y,T(y))} = 0. 

(4) . · A semi-nonexpansive map is continuous at its fixed point .(if such 

a point exists). 

For two operators T1 and T2 each mapping a complete metric space X 

into itself, Kannan [77] investigated a sufficient condition for the 

existence of a common and unique fixed point in X. He has proved the 

following result which we state without proof. 

Theorem 1. 2. 4. and T are two operators each mapping a complete 
2 

metric space (X ,d) into itself and if 

where x,y E: X and 

fixed point in X. 

. 1 
0 < a < 2 , then T 1 and T 2 have a unique conunon 

In case T
1 

is identical with T2 in Theorem 1.2.4., we have 
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Theorem 1.2.5. (Kannan[77]) If T be an operator mapping a complete metric 

space (X~d) into itself and if 

d(T(x)~ T(y)) ~ a{d(x~T(x)) + d(y~ T(y))} 

where x~y EX and 1 0 < a < 2 ~ then T has a unique ~ixed point in X. 

Several generalizations of these theorems have been given by Kannan .. ,[78], 

Singh[l22]~[123]~[i24]> ReiCh (llfl~(ll$}~ Dube [49]~ Yadav[l36]~Fukushima 

Srivastava and Gupta [129] ~ Zaafirescu [137], and others. 

Definition 1.2.6. Let f be a one-to-one mapping of a metric space (X~d) 

onto a metric space (Y~d1 ). The mapping f is said to be a homeomorphism 

iff the mappings f and f-l are continuous on X and Y respectively. 

Finally the mapping f is said to be an isometry iff 

Remark 1.2.2. Clearly every isometry is a nonexpansive mapping. 

Definition 1.2.7. A linear topological space is a linear space X with a 

topology defined in such a way that 

(i) the mapping (x~y) ~ x + y of X x X ~ X is continuous, 

(ii) the mapping (a,x) ~ ax of K x X ~ X is continuous. 

Definition 1.2.8. A locally convex linear topological space is a linear 

topological space with a base for its topology consisting of convex sets. 

Theorem 1.2.6. Brouwer's fixed point theorem: 

Let C be a non-empty compact convex subset of a finite dimensional 

normed linear space~ and let T be a continuous mapping of C into i~self. 

Then T has a fixed point in C. 

1be Brouwer's fixed point theorem in the form stated above does not hold 
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in infinite dimensional spaces as the following example shows: 

Example 1.2.2. Consider the space l 2 of sequences x = '(x1, x 2 , ••••••• } 
00 

with i~l I xi 12 < oo. Define T as a map of the closed solid sphere into 

itself as follows: 

for let ..... } . 
IIT(x) 11 2 = 1. Now suppose x is a fixed point. Then llx II = IIT(x) II = 1. 

But then x 1 = 0 and it can be seen also that x 2 = 0, x3 = 0, •••..•• Hence 

x = 0. This contradicts the fact llx II = 1. Therefore, T has no fixed point. 

The following theorem is an extension to infinite dimensional· space of 

the Brouwer's fixed point theorem; 

Theorem 1.2.7. SChauder's fixed point theorem First form: 

A continuous map of a compact convex set C in a normed linear space X 

into itself has at least one fixed point. 

Definition 1. 2. 9. An operator T which maps a Banach space X into itself 

is said to be compact if it maps an arbitrary bounded set nto a co.mpact set; 

T is completely continuous if T is continuous and compact. 

The second version of Schauder' s fixed point theorem, which follows below, 

is more suitable for the applications. 

Theorem 1. 2. 8. SChauder' s Theorem - second form: 

Let T be a completely continuous map of a closed convex bounded set C 

in a complete normed linear space X into itself. Then T has at least one 

fixed point. 

The proof of these theorems, together with a discussion of other related 

results, may be found in [13]. Schauder's theorem was foreshadowed by the work 
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of Birkhoff and Kellogg [l S] on existence theorem in analysis. Afterwords 

Tychonoff [131] extended Schauder's .result from Banach spaces to arbitrary 

locally convex linear topological spaces. In both cases Brouwer's theorem 

was used as a starting point. 

Theorem 1.2.9. Schauder - Tychonoff's fixed point theorem. 

Let C be a non-empty compact convex subset of a locally convex 

(Hausdorff) linear topological space X, and let T be a continuous mapping of 

C into itself. Then T has a fixed point in C. 

These theorems have been used very often; perhaps the Schauder' s theorem 

is one of the most important theorems for the nlDilerical treatment of equations 

occurring in analysis. Recently Browder [27] . gave generalization of Schauder 

and Tychonoff fixed point theorems. He has also given several generalizations 

to Schauder' s fixed point theorem :· r (s_e,e [12~] .for. re:fer'enqes))) which centers 

around the concept of asvmptotic fixed point theorems and of deformation of 

non-compact mappings. 
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CHAPTER II 

2.1. Some Results on Reflexive Spaces. 

Definition 2.1.1. A bounded linear transformation of a normed linear space 

X over K into K is called a bounded linear functional on X. 

Remark 2.1.1. The word functional is used to distinguish mappings of a linear 

space into the field ~ or 1. 

Definition 2.1.2. The Banach space consisting of all bounded linear 

functionals on a normed linear space X over K, denoted as X* J is called 

the dual space (conjugate space) of X. 

Definition 2.1.3. The dual space X* has a dual space (X*)*, called as 

the second dual of X. We usually write X** in place of (X*)*. 

Definition 2.1.4. Let X be a normed linear space. Then 

u = . {x e X : I txll ~ 1} and S = { x E:. X II xll = ll 

are called the unit ball and the unit sphere respectively. 

Similarly in the dual space X* of X, 

U'* = . {f E. X* : II fll .::.. 1} and S * = · { f e. X* : I I f II = 1} 

are called the unit ball and the unit sphere respectively. 

Remark 2.1.2. A ball, open or closed~ in a normed linear space is convex. 

In what follows, we denote by (f,x) the value f(x) of f at x. 

Definition 2.1.5. For a given E > 0 and a finite number of elements 

f ].' f 2 , • • • , fn e. X*, let 

I (f. ,x) I < E , for every i = 
]. 
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then the family V of all sets V(f1 , f 2, ••• , fn; e) for every choice 

of e and any finite sequence f 1 , f 2 , ••• , fn, defines a basis of 

neighborhood of zero of a topology which is called the weak (or X*) topology 

of X. 

Remarks 2.1. 3. 

(1) Under weak topology a normed linear space X is a locally convex 

linear topological space. 

(2) In the sequel by the terms weakly closed set, weakly compact set, 

weak closure of a set etc. , we mean closed set, compact, closure of a set 

etc. , in the weak topology. 

(3) The norm topology (or strong topology) and the weak topology of 

a Banach space X are equivalent iff X is finite dimensional. 

Definition 2.1.6. In the dual space X* of a Banach space X the family 

V* of sets 

' X ;E) = ' {f E X* n 

(e > 0 ; x1 , x2 , ••• , xn £X) 

I (f,x.)j < e for every i = 1,2, ••• , n.}, · 
1 

defines a basis of neighborhood of zero of a topology which is called the 

weak* (or X*) topology in X*. 

Remarks 2.1. 4. 

(1) Under weak* topology, X* is a locally convex linear topological space. 

,(2) In general, the weak topology in the dual space X* of a Banuh 

space X is finer than the weak* topology in X*. 

Some of the importance of the weak* topology stems from the following 

theorem: 
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Theorem 2.1.1. (Alaoglu [ 1]) 

The unit ball U* of X* is compact in the weak* topology. 

Definition 2.1.7. A sequence {xn} ex converges weakly to 

xn ~ x
0 

G X iff lim (f,xn) = (f,x
0

) for every f E. X*. 

x E. X i.e. 
0 

Geometrically, x ·!t. means that the distance from n xo xn to any hYPerplane 

through x
0 

goes to zero. 

We observe that is unique as a weak limit for, if X .!t. y n · o' then 

f(x - y ) = 0 for all f ~X*. Therefore x = y • 
0 0 0 0 

Remarks 2.1.5. 

(1) Every weakly convergent sequence · {xn} is necessarily bounded and 

moreover, the norm of its limit is less than or equal to lim inf I lxnl I· 

(2) It is clear that strong convergence implies weak convergence. But 

the converse implication is not true in general (see [100]1). 

Definition 2.1. 8. A mapping T of a Banach space into itself is said to be 

demiclosed if for any sequence · {xn} 

then y = T(x). 

such that X !t. X 
n 

Definition 2.1.9. A mapping T of a Banach space X into itself is said 

to be strongly continuous if for any sequence · {x } C CX such that n 

Definition 2.1.10. A sequence · {f } c X* converges weakly* to f E. X* i.e. n o 

We note that a sequence {f } c X* cannot have two distinct weak* limits. n 

We state the following simple property, due to Opial {10~1, of weakly 

convergent sequence in a Hilbert space. 
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Lemma 2.1.1. I£ the sequence {xn} is weakly convergent to x in a 
0 

Hilbert space H, then for any Y .L X 
0 -r 0 

in H, 

(1) liminf llx -Y II> liminf llx- x II· n o n o 

Proof. Since every weakly convergent sequence is necessarily bounded, both 

limits in (1) are finite. Thus, to prove this inequality, it suffices to 

observe that in the equality 

II xn - Y 0 11 2 = I I xn X + X - y II& , 
0 0 0 · 

= llx -n X
0

ll 2 + llx
0

-Y
0
II 2 + 

the last term tends to zero as n tends to infinity. 

2 Re(x - X , X n o o 

Theorem 2.1.2. EaCh closed convex subset of a Banach space is necessarily 

weakly closed. 

The following statement is a simple consequence of the above theorem. 

Theorem 2.1. 3. The weak closure of every bounded set of a Banach space 

is contained in its convex closure. 

Definition 2.1.11. Let X be a normed linear space. The linear isometry 

** x ~ x of X into its second dual X** is called the canonical mapping. 

Definition 2.1.12. A Banach space X is said to be reflexive iff the 

canonical mapping x-+ x** maps X onto X**. 

Remarks 2.1.6. 

(1) It is clear that every Hilbert space is reflexive. For 1 < p < m, 

the spaces ~p and Lp are reflexive. But the converse is not true. 

(2) The weak and weak* topologies coincide if the space is reflexive 

The following theorem due to Gantmakher and Smulj;~an [65], [66], Kakutani 
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[ 76] ~ Eberlein [51]~ Nikaido [99], is one of the ftmdamental properties 

of reflexive BanaCh spaces. 

Theorem 2.1.4. A Banach space is reflexive iff its unit ball is weakly 

compact. 

Remark 2.1.7. From Theorem 2.1.2. and Theorem 2.1.4.~ it follows immediately 

that in a reflexive Banach space every bounded closed convex set is weakly 

compact. 

In somewhat different way the above theorem may be stated in the following 

form (see Opial [103]): 

Theorem 2.1.5. A Banach space X is reflexive iff every bounded sequence of 

elements of X contains a sUbsequence which is weakly convergent. 

The following characterization of reflexive spaces, due to S.Ultan [126], 

is worth mentioning: 

Theorem 2.1.6. X is reflexive iff every decreasing sequence of non-empty 

botmded closed convex sUbsets of X has a non-empty intersection. 

The notion of monotone operators was introduced by Zarantonello [13~], 

Minty [ 97] and Kacurovskii [ 74], and has been extended to Banach spaces by 

several authors. The theory of monotone operators and its application to 

nonlinear partial differential equations, evolution equations, variational 

inequalities, etc., have evolved into a sUbstantial chapter in nonlinear 

ftmctional analysis. 

In what follows C is a subset of a Banach space X. 

Definition 2.1.13. A mapping T:C -+ X* is called monotone if 

(T (x) - T (y) , x - y) > 0 for all x,y in C, 



22. 

and strictly monotone if 

~T(x) - T(y), x- y) > 0 for all x,y(x F y) in C. 

It is obvious that the sum, product with a non-negative number of 

monotone operators are again monotone operators. It is easy to see that a 

strictly monotone operator has an inverse, which is also a strictly monotone 

operator. 

In Hilbert space an intimate relationship between monotone and non-

expansive mappings is expressed by the following: 

Proposition 2.1.1. (Minty [97]) Let C be a subset of a Hilbert space 

H and T:C + H a nonexpansive mapping. Then the mapping I-T is monotone. 

LeDDlla 2.1.1. enables to prove the following useful property of non-

expansive mappings in Hilbert spaces which in [23] has been proved by the 

means of the theory of monotone mappings. 

Proposition 2.1.2. (Opial {10~]) In a Hilbert space H, for every non­

expansive mapping T:C + H (CcH), the mapping I-T is demiclosed. 

Proof. Let · {xn} C C be a sequence which is weakly convergent to an element 

x
0 

of C and the sequence 

X. Then we have 

{x - T (x ) } n n converges to an element y 
0 

in 

lim in£ II x - x II > lim in£ II T (x ) - T (x ) II = lim in£ II x - Y - T (x ) II , no- n o no o 
n+= 'I1:'+<lD n-+<» 

so that from Lemma 2.1.1. it follows that x = y + T(x ). 
0 0 0 

Definition 2.1.14. A mapping T:C +X* is called strongly monotone if there 

exists a continuous positive function d(t) defined on R+ with 

lim d(t) = +~ as t-+<» such that 

(T (x) - T (y), x - y) > d (II x - Y II) II x - Y II , 
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for all x,y in C. 

In the following """" ·· · denotes the weak* convergence in the dual space X*. 

Definition 2.1.15. A mapping T:C ~X* is called hemicontinuous if for 

any x in C, y in X 

x + tny E C (n = 1,2, 

T(x + tny) ..... T(x). 

and any sequence · {t } of positive real numbers, from n 

• ) and tn ~ 0 as m ~ co• it follows tnat 

Definition 2.1.16. A mapping T:C ~X~ is called coercive if 

as II X II ~ +oo • 

The condition of coerciveness of a mapping T:C ~ X* is basically a 

Condition on the behaviour of T at infinity. The following gives the 

relationship with strongly monotone maps. 

Proposition 2.1.3. (See Opial [10$]) If 0 £C, then every strongly monotone 

mapping T:C ~ X* is coercive. 

One basic property of monotone mappings is expressed by the following 

fundamental : 

Theorem 2.1.7. (Browder [26], Hartmand and Stampacchia [71]) 

Let C be a closed convex subset of a reflexive Banach space X and 

T:C ~X* a monotone hemicontinuous and coercive mapping. Then for each 

given u 
0 

in X* , there exists an X 
0 

in 

(T(x ) - U , X - X ) > 0 , 
0 0 0 -

c such that 

for all x in C. 

In recent years, many results have been given on the surjectivity 

property of monotone mappings, for example see Minty [97], [98], Browder 

[lg], [20], and the others. For mappings defined on the whole space X, 

one can easily derive from Theorem 2.1. -7 .• the following ftmdamental: 
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Theorem 2.1.8. (Minty [9~, Browder [19]). Let T be a monotone hemi-

continuous and coercive mapping of a reflexive BanaCh space X into its dual 

space X*. Then T maps X onto X*. For eaCh given u 
0 

in X*, the 

set -1 T (u) = 
0 

{x EX : T(x) = u } 
0 

is bolm.ded, closed and convex. 

For strongly monotone mappings Theorem 2.1.8 can be considerably 

strengthened by further information on the inverse mapping. 

Theorem 2.1.9. (Minty [98], Browder [20]). Let T be a strongly monotone 

hemicontinuous mapping of a reflexive BanaCh space X into its dual X*. 

Then T iss one-to-one, maps X onto X*, and the inverse mapping T-l :X* -+- X 

is continuous and maps bolm.ded sets of X* onto botmded sets of X. 

The main results of the theory of monotone mappings can be extended to 

broader classes of mappings whose consideration is motivated by the theory of 

partial differential equations. 

Definition 2.1.17. A mapping T:X-+- X* of a Banach space X into its dual 

space X* is called semimonotone if there exists a mapping S:X x X -+- X* 

suCh that T(x) = S(x,x) for all x in X while S satisfies the three 

following conditions: 

(i) for each fixed y in X, the mapping x-+- s(x,y) is hemicontinuous, 

(ii) for each fixed x in X, the mapping y-+- S(x,y) is continuous 

from the weak topology on eaCh weakly compact subset of X to the 

strong topology of X* , 

(iii) for all x,y in X, 

(S(x,y) - s (y ,y)' X - y) ~ o. 

Note that every hemicontinuous monotone mapping T:X + X* is trivially 

semimonotone with S(x,y) = T(x), for all x,y in X. 
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The following basic result is a direct generalization of Theorem 2.1. 8. 

Theorem 2.1.10. (Browder [21]) Let X be a reflexive BanaCh space and 

T :X -+ X* a semimonotone coercive mapping. Then T maps X onto X*. 

An important example of a monotone mapping from a BanaCh space X into 

its dual space X* is given by the so-called duality mappings. This 

concept was first introduced and studied by Beurling and Livingston [14]. 

Later it was generalized, extensi~~ly investigated and applied by Browder (24l.t.3. 

Further studies were also made by Laursen [92], Kato [82], Aspltmd [4 ] , 

Dubinsky [50], Petryshyn [lOt], and others. In addition to their usefulness 

in the theory of Fourier Analysis and the stu.IY._,·of BanaCh spaces, duality 

mappings play an essential role in the stUdy of J-monotone, accretive, 

P-compact and A-proper mappings. 

Definition 2.1.18. A gauge function is a real-valued continuous function 

defined on 
+ R = {t E R : t ~ 0} such that 

(i) ll(O) = 0 , 

(ii) lim ll (t) = += , 

(iii) ll is strictly increasing. 

An example of a gauge function is l!(t) = t. 

Definition 2.1.19. Let X be a Banach space and X* its dual space. Let 

ll(t) be a given gauge function. The duality mapping in X with gauge 

function ll 

X* such that 

and 

is a mapping J from X 
X* into the set 2 of all subsets of 

J(O) = 0 

J(x) = {x* E X* (x*,x) = ·l{x*ll llxll, llx*ll = llCIIxll}, x F 0. 
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Remark 2.1.8. For x ~ 0~ the set J(x) is nonempty and convex. 

The following result is essentially a reformulation of a characterization 

of reflexivity due to James [72]. 

Theorem 2.1.11. Let X be a Banach space and X* its dual space. Let 

J be the duality mapping in X with a given gauge function ~· Then X 

is reflexive iff the union of all sets J(x)~ x ~X~ covers X*. 

Remark 2.1.9. See Laursen [92] for another characterization of reflexivity 

and Petryshyn [lOJ] for characterization of certain Banach spaces using 

duality mappings. 



27. 

2.2. Uniformly Convex Spaces and Related Results. 

The theory of different spaces which are con~ained in general Banach 

spaces~ has been developed considerably in the last two decades. In these 

years~ considerable progress has been made in the classification and 

characterization of Banach spaces according to various geometri~ properties 

of their unit spheres. For the reference of these systematic developments~ 

one can see Cudia [39], Zizler [139] and Milman [96]. The different 

properties~ given in this and the following sections, depend on the norm 

and linear structure~ and thus can be defined for arbitrary normed linear 

spaces (not necessarily complete). But~ since our primary concern is with 

Banach spaces~ we have phrased all the definitions in terms of a Banach 

space X. In some cases~ we have listed two or more equivalent formulations 

of the same property. 

In 1936~ J .A. Clarkson [ 38] introduced the notion of uniform convexity 

of the norm in a Banach space. Expressed in geometric terms this property 

is simple: a norm is uniformly convex if~ whenever the midpoint of a 

variable chord in the unit sphere of the space approaches the boundary of 

the sphere, the length of the chord approaches zero. 

Definition 2.2.1. Uniformly Convex Spaces (UC): 

A Banach space X is called uniformly convex (UC) iff it satisfies 

any one of the following equivalent conditions: 

(I) [ 38] for any e: > 0 ~ there exists a cS (e:) > 0 such that if 

x, y E U and II x - Y II > e: then 

cS (e:). 
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(II) .[116] for any e > 0, there exists a o (e) > 0 such that 

(III) [16] 

x , y 4!: U (n = n n 1,2, ... ) and 

given 

imply 

x , y E S (n = 1,2, ..• ) n n 

llx - Y II -? o. n n 

llxn + Ynll > 
2 1 - o (e) 

and 
xn + y 

1:1 2 n11~1 

For 1 < p < 00 , the Banach spaces .e,P and are tmiformly 

convex ( [38]). 

Every Hilbert space is uniformly convex but the converse is not always 

true, e. g. , spaces .tP, 1 < p < oo are uniformly convex but none of them 

is Hilbert space except £.2 • 

Remark 2.2.1. It is interesting to note that Lemma 2.1.1. fails to be true 

for all tmiformly convex Banach spaces (s·ee- [10"4')•).However, it remains still 

valid for a larger class of tmiformly convex Banach spaces having weakly 

continuous duality mappings. 

Lemma 2.2.1. (Opial[l04:J).If in a Banach space X having a weakly continuous 

duality mapping J the sequence · {xn} 

for any y
0 

in X, 

is weakly convergent to 

(1) lim inf II xn - y 
0 
II ~ lim in£ II xn - x 

0 
11. 

n-?oo n-?oo 

X ' 0 
then 

If, in addition, the space X is uniformly convex, then the equality in (1) 

occurs iff x
0 

= y 
0

• 

The following useful result is worth mentioning: 

Theorem 2. 2 .1. (Milman [ 95], Pettis [111;]!, Kakutani [ 76]) 

Every uniformly convex Banach space is reflexive. 

Of course, the converse is not true, as can be seen from the following: 
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Example 2. 2.1. ([44]) Consider a fini ·te dimensional Banach space X, in 

which the surface of the tmit ball has a 1 flat' part. Such a Banach space 

is reflexive because of finite dimensionality. But the 'flat' portion in 

the surface of the ball destroys tmiform convexity. 

Remark 2.2.2. It might be of interest to note that none of the following 

spaces can be renormed so as to be tmiformly convex: 

1 00 1 00 
~ , ~, L , L , C[a,b], 

and the space C of convergent sequences, since none of them is reflexive. 

The following characterizations of a tmiformly convex Banaeh space 

are due to Bym.un [ 34]. We will omit the proof. 

Theorem 2. 2. 2. A Banach space X is wtiformly convex iff for each t in 

(0 J 2] J 

13(t) = inf {1- (f,y): x,y~S, llx- Yll ~t, fE.J(x)} 

is positive, where J is the duality map from X into X*. 

Theorem 2. 2. 3. A Banach space X is tmiformly convex iff the duality 

map J of X into X* is uniformly monotone - in the sense that for each 

t E (0, 2] , 

y(t) =in£{(£ - g, x- y) x,y f: S, !flx- Yll ~ t, fEJ(~} .~ gr~J(y) } 

is positive. 

The following lemmas, stated without proof, are immediate consequences 

of the definition of tmiform convexity (see .. ~103] for details). 

Lemma 2.2.2. Let X be a uniformly convex Banach space. Then for any d > 0 

d 0 h . 1" t" II II < d IIYII _< d. II X - Yll _> E an e > , t e 1nequa 1 1es x _ , , imply 
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II x+yll . tt,.. 
2 ~ { 1 - 0 (d) s • d. 

The following lemma is due to Schaefer 1 [1~9];. 

LeJJDDa 2.2.3. Let X be a tmiformly convex Banach space. Then for any 

e: > 0, d > 0 and a E.(O,l), the inequalities llxll ~ d, IIYII ~ d 

and I I x - Y I I > e: imply 

I lax + ayll ~ {1 - 2 ~ (~) . u d JIU.n. (a,S)}• d 

where a + a = 1. 

The following result is useful in applications ([44]). 

Proposition 2. 2.1. Let X be a rmiformly convex Banach space. Suppose 

that there are given two sequences · {xn} 
X + y 

I I I I I I I I and II n n I 1~ 1 Yn ~ xn 2 as n ~ oo. 

llx -YII~o n n as n ~ Q). 

Proof. Construct two new sequences 

Yn 
and w = -....--.~ ..... 

n llxnll 

such that 

Then 

It is easy to see that II z II = 1, n < 1 and II II + 1. 

So by uniform convexity it follows that II z - w II ~ 0, which implies n n 
readily that 

Remark 2. 2. 3. 

llx - Y II + 0 as n + Q) n n 

In Proposition 2.2.1. the condition on 
X + y 

n n 
2 

be replaced by the analogous one on axn + (1 - a)yn' where 

could 

a ~(0,1). 

We mention some interesting results on uniformly convex Banach spaces, 

which are due to Edelstein [58]. Following Edelstein [58], we define the 
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asymptoti£ center. 

Let C be a closed convex set in a uniformly convex Banach space X. 

Given a bounded sequence · {u :n = 1,2, •• ~~ in the set C, define n 

k > m} , y ~ X. 

It is well- known that a unique point c E. C exists such that m 

r ( c ) = inf { r :(y) m m m y E C} = r . 
m 

Clearly, r > r m- m+l and r > 0 for all m = 1,2, •.. , so that sequence m-
· {rm:m = 1,2, .•. ,} converges to r = inf · {rm:m = 1,2, ~ .• } • We note 

that if r = 0, then the sequence {u } 
n 

converges. 

Definition 2. 2. 2. I£ {em} 

asymptotic center o£ · { un} 

converges then c = lim em 
~ 

(with respect to C) [58]. 

is called the · 

The following result due to Edelstein [58] shows that the asymptotic 

center c exists. 

Theorem 2.2.4. Let C be a closed convex subset of a uniformly convex 

Banach space X and · {un} is a bounded sequence in C, then the sequence 

· {c} converges. (Thus the asymptotic center c exists.) 
m 

Proof. If r = 0 then {un} is a Cauchy sequence and 

lim 
n-+oo 

= lim 
Jn+OO 

c = m c. 

We may then assume that r > 0. Suppose now, for a contradiction, that 

· {c } fails to converge. Then an e: > 0 exists such that for any natural 
m 

number N there are integers n > m > N with II em - en II 2:_ e:. From the 

uniform convexi'J:Y o£ X and the fact that 

II~- c II < r < r (k 2:.. n) ' n - n- m 

II~- c II .< r (k ~ m)' m - m 



it follows that 

(1) 

where D is the 

1 
+ c ) 'F -· (c en, 2 m n 

(2) 

< r 
- m 

< r - m 

diameter of 

there is a 

< lluk-r n 

e: (1 - 0 (-)) 
D 

{u }. n On the 

k > n such 

c + c 
m nil 2 . 

(k ~ n) ~ 

other hand, since 

that 

For such a k~ (1) and (2) hold simultaneously so that 
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rm - r > r n- m 
0 (~) 

D 
> r This~ however~ is impossible since · {rk} 

converges. 

Remark 2.2.4. If X is a Hilbert space then c belongs to the convex 

closure of · fu }. 
n 

Using the concept of the asymptotic center, Edelstein [58] proved 

the following result, which we state without proof. 

Theorem 2.2.5. and c(= lim c ) be as in Theorem 2.2.4. 
m+«>m 

and T:C + C be a mapping of C into itself satisfying the following 

conditions: 

(1) for some X E C and all n = 1,2~ . . . . . , 
(2) there exists a positive integer n 

0 

in C such that 

Then T(c) = c. 

and neighborhood V of c 

(k > n , v ~ V). 
- 0 

An inunediate consequence of Theorem 2.2.5. is the following result ~[5~1). 
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Corollary 2.2.1. Let C be a bounded closed convex subset of a uniformly 

convex Banach space X and suppose that T is a continuous mapping of C 

into itself such that for each x E C there is a positive integer N = N(x) 

such that, for all integer n ~ N and all y £ C, 

Tn-1 (y) II· 

Then T(~) = ~ for some ~ E. C. 

Remark 2. 2. 5. The well-known theorem of Browder [25], Gtlhde [70] and 

Kirk [ 83], asserting that each nonexpansi ve mapping of a bom1ded closed 

convex subset of a uniformly convex Banach space X into itself has a 

fixed point, follows from the above Corollary 2.2.1. upon setting N = 1 

for all x E C. 

Definition 2.2.3. Weakly Uniformly Convex Spaces QWUC): 

A Banach space X is called weakly uniformly convex, denoted as (WUC), 

iff it satisfies any one of the following equivalent conditions: 

(I) [128] for each e > 0 and each g E S*, there is a o(e,g) > 0 such 

that if x,y t S then the inequality 

implies 

II x ; y II > 1 - o (e, g) 

g(x)- g(y)j <e. 

(I I) [ 139] xn, y n E U (n = 1 , 2, · • · L I I 
implies 

Remark 2.2.6. 

X - y ~ 0. n n 

(1) Let X be a (WUC)-spape~. M be a closed linear subspace of X. 

Then M is a (WUC)-space. 

(2) A space X has an equivalent nom: which is (WUC) iff X is 

isomorphic to a (WUC)-space Y. 
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(3) Space C[O~l] has no equivalent (WUC)-norm. 

(4) Obviously~ t.miform convexity implies · weak lm.iform convexity. 

But the converse is not always true~ as can be seen · from the following 

example [139]... 

Example 2.2.2. Day f!:ll] has constructed a separable reflexive strictly 

convex (see Definition 2.3.4.) space X which is not uniformly convex 
0 

in any norm. Introduce a norm I I I· I I I in this space as follows: let 
. co 
{fk }k=l be a cot.mtable dense subset of S*. Define the ft.mctional 

I (x) on X
0 

by 
... 

I (x) :::: ( .. {: · h f2k (x)ll/ 2 
k=l 2 

Let llxll denote the norm of X
0

• Then it is easy to see that norm 

111•111 defined as 

lllxlll = Cllxll 2 + I 2 (x))
1

/
2 ~ 

is the equivalent norm to II x II· We see that this norm is (WUC). 

I II x I II = IllY Ill = 1 (n = 1 ~ 2 , n n 

X + y 
• · ·) , Ill n 2 n Ill + 1. 

We have 

It is easy to see that 

From these facts it follows (by addition) that 

II I xn + Y n II 1 + I 2 (xn - Y n) ~ 2 • ( II I x 111 2 
+ IllY n I I I ~) • 

Let 

The right hand side of this inequality is equal to 4 ~ Ill xn + Y n 111 2 
+ 4 

by assumption. Therefore 



Thus we have 

. I 2 (x - y ) + o. n n 
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n+ex~ and k = 1,2, .... ~ . Hence by the well-known theorem [1121], 

as n + ex~. 

Thus I 11·1 I I is (WUC) but not uniformly convex. 

(5) It follows from Zizler rl.39] that not every (WUC)-Banach space 

is reflexive. 

Definition 2.2.4. Weakly* Uniformly Convex Spaces (W*UC): 

A Banach space X* is called Weakly* Uniformly Convex, denoted as 

(W*UC), iff it satisfies any one of the following equivalent conditions: 

(I) [12&] for each e:: > 0 and each x E S, there is a o (e:: ,x) > 0 such 

that if f,g ~ S*, then the inequality 

implies 

(I I) fil.391] 

implies 

I If; gil > 1- o(e::,x) 

I f(x) - g(x) < e::. 

fn, gn E U* (n = 1,2, .•• ) , 

w* . 
fn - ~ + 0. 

We state and prove the following lemmas, which are immediate 

consequences of the definitions of (WUC) and (W*UC) Banach spaces. 

Lemma 2.2.4. Let X be a (WUC)-Banach space, then for any d > 0, e:: > 0 

and for every g E. S* there exists a o (d,g) ·=·o > o · e:: 
d'g 

such that 

llxll ~d, IIYII ~d, jg(x- Y)l .::_e::, (x,y E X) imply 
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} • d. 

Proof. Zizler [13~] showed that if X is (WUC) then the following 

implication h_olds: For every g E. S* and for every e: • ~ 0, there exists 

a o , > 0 such that x, y E: X, I g (x - y) I ~ e:' • max. ( I I x II , II y Ill e: ,g 

imply 

Since in this case, max.qfill,IIYI.I)··=·c;l, hence the result follows if we 

choose e:' = e: 
d • 

Lemma 2. 2. 5. Let X be a (WUC) -Banach space. Then for any e: > 0, d > 0, 

a E: (0, 1) and for every g (: S*, the inequalities II xll .:5.. d, II Yll .:5.. d 

and lgCx- y)l ~ e:,(x,y EX) imply 

I lax + 6YII < . {1 - 2 0 
e: min. (a,S)} • d , 
d'g 

where a + 6 = 1. 

Proof. 

Then 

1 a<-· 2 
Without loss of generality, we may assume that 0 < 

!lax+ 6YII =llaCx + Y) + (~- a)yll 

< 2a II x ; y II + (6 -a ) II Y II 
< 2a (1 - o ) • d + (6 - a) •d e: , g 

d 

= 2a•d- 2a•o e: ) ~d. + (.1- a)~d_- a~d 

d,g 

,; {1 - 2 o min. (a,6) }•4 •-
e: 
<Pg 
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We give the following result for a (WUC)-Banach space, which is 

useful in applications. 

Proposition 2.2.2. Let X be a (WUC)-Banach space. Suppose that there 

are given two sequences {xn} and {yn} in X such that llxnll -+- 1, 

X + y 
I I Y n II ~ II xn II and II n 2 n I I -+- 1 as n -+- oo. Then 

Proof. We construct two sequences 

X Yn n and z = llxnll 
w = llxnll n n 

It is easy to see that llznll = 1, llwnll ~ 1 and 

Therefore, by the definition of (WUC), it follows that 

Consequently 

w z - w + 0, n n 

w 
X -y -+-0 

n n ' 
as 

as n+oo. 

z + w 
II n nil -+-1. 

2 

We also state the following similar results without proof, for (W*UC)-

Banach spaces. 

Lemma 2.2.6~ Let X* be a {W*UC)-Banach space, then for any d > 0, e > 0 

and for every x E 5, there exists a o > 0 such that inequalities e 
d"x 

llfll ~d, llgll < d and lf{x) - g(x)l ~ e, (f,g ~X*) imply 

II f ; g II ~ c1 - o e ) ·d. 
d"x 

Lemma 2.2.7. Let X* be a (W*UC)-Banach space. Then for any x E. 5, 

d > 0, for every e: > 0 and aa(O,l), the inequalities llfll ~ d, 

I lgl I~ d and lf(x) - g(x)l > e, {f,g EX*) imply 

... 
i ~· 

i 
'·'· 
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II ax + By II < { 1 o • min (a,B)}•d, e: 
d ' X 

where a + B = 1. 

Proposition 2.2.3. Let X* be a (W*UC)-Banach space. Suppose that 

there are given two sequences {f} and {2} in X* such that llfnll-+ 1, 
f + n -n 

I I ~ I I ~ II fn II and I I n 2 gn II -+- 1 , as n -+- co. Then 

Remark 2. 2. 7. 

X + y n n 
2 

(on 

w* 
fn - &n -+ 0 , as n -+ co. 

In Proposition 2.2.2. (Proposition 2.2.3) the condition on 

fn + ~ 
2 ) could be replaced by the analogous one on 

(on afn + (1- a)&n), where 0 < a < 1. 

Using the modification of one method of Kadec [75], Zizler [139] 

has proved the following results, which we state without proof. 

Theorem 2.2.6. Let X* be separable space. Then X is (WUC)-Banach 

space. 

Corollary 2.2.2. Let X be a reflexive separable Banach space, then X 

is (WUC)-Banach space. 

Theorem 2. 2. 7. Let X be a separable Banach space. Then X* is 

(W*UC)-Banach space. 

:.i 
~:: 

'· 
~: 
!.' 
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2. 3. Some Other Spaces .in General Banach Spaces. 

A.R. Lovaglia (94]~ in 1955~ considered a weaker type of convexity 

which is known as local uniform convexity. Geometrically~ this differs 

from uniform convexity in that it is required that one end point of the 

variable chord remains fixed. 

Definition 2.3.1. Locally Uniformly Convex Spaces (LUC): 

A Banach space X is called locally uniformly convex (LUC) iff for 

given e: > 0 and an element x e. X with 
0 

c5 (e: ,x ) > 0 such that 
0 

X + y 

llx II = 1~ there exists a 
0 

II 0

2 11~1 c5(e:,x L 
0 

whenever II x - Y II > e: 
0 

Remark$;2. 3.1. 

and II Y II = 1. 

(1) It is clear from the definitions that uniform convexity implies 

local uniform convexity. But the converse is not true in general, as can 

be seen in [ 94j. 

(2) If we intxoduce in the space C[O,l] an equivalent (LUC)-norm 

by a method if Kadec [75] ~ we obtain an example of a (LUC)-space which 

has no equivalent (WUC)-norm [140]. 

M.M. Day [42] defines the notion of local uniform convexity near a 

point. Geometrically~ this differs from uniform convexity in that the 

variable chord in the unit sphere is contained in a sphere . abo~ some point 

b , where as local uniform convexity requires only that one end point of 
0 

the chord remains fixed. 

Definition 2.3.2. Locally Uniformly Convex Spaces near a point: 

If II b II = 1, a Banach space X is said to be locally uniformly 
0 



40. 

near b if there is a sphere about ·. b . in which the condition for 
0 0 

l.mifo:nn convexity holds. · 

Remark 2.3.2. In his paper Day [42] proves that if a Banach space X 

locally l.miformly convex near a point b 
0 

then X is isomorphic to a 

uniformly convex space. Hence local uniform convexity near a point b 
0 

implies isomorphism of the space X with an uniformly convex space. 

However~ Lovaglia [94] showed that there exist locally uniformly convex 

is 

Banach spaces which are not isomorphic to any uniformly convex Banach spaces. 

Thus the notion of local uniform convexity and Day's notion of local uniform 

convexity near a point are essentially different. 

In 1960 ~ K. W. Anderson [ 3 ] investigated another type of convexity 

which is called midpoint locally uniform convexity (MLUC). Geometrically~ 

it states that if the midpoint of a variable chord in the unit sphere 

approaches a fixed point on the unit sphere~ then the length of the chord 

approaches zero. In fact~ this property has been known and considered for 

sometime by other people~ notably G. Lumer and M.M. Day, but its relations 

to other convexities were investigated by Anderson [ 3 ] • 

Definition 2.3.3. Midpoint Locally Uniformly Convex Spaces (MLUC): 

A BanaCh space X is called midpoint locally uniformly convex (MLUC) 

iff it satisfies one of the following equivalent conditions: 

(I) and an element x E X W=ith llx II = 1~ 
0 0 given e: > 0 there exists 

and llxll ~1~ IIYII ~1, llx- Yll > e: such that 

I I x + y - 2x 
0 

II ~ o .L 

(II) 11xn11 = 11Yn11 = llx
0

ll = 1 and llxn + yn- 2x
0

ll + 0 imply either 

I I xn Y n II -+ o 

or~ II xn - x0 II -+ 0 , 
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or, IIY· - X II + 0 n o 

Remark 2~ 3. 3. Anderson [ 3] ha.S shown that local uniform convexity implies 

midpoint local uniform convexity~ But the converse is not true as can be 

seen from example given in [3 P·ll]. 

Definition 2.3.4. Strictly Convex ·spaces: 

A Banach space l is called strictly convex iff 

llx + Yll = llxll + IIYII implies X= Ay, A> 0 whenever X F 0, y 1:0, 

x,y E. X. 

We state without proof the following result which gives necessary 

and sufficient conditions for a Banach space to be strictly convex. 

Theorem 2.3.1. €Ruston {l}.YJ). Either of the following conditions is 

necessary and sufficient for a Banach space X to be strictly convex: 

(1) whenever I lxl I = jiYI I = 1 and x 1: Y (x,y £X) 

-~.- · II !..fL II < L 

(2) for any non-vanishing functional f over X there exists at most 

one (there may not be any) element 

fCx l = II f II . 
0 

Remarks 2. 3 . 4. 

x '= X such that 
0 

(1) In Theorem 2.3.1. the restriction on 

by the analogous one on ax + (1 - a):y where 

X+ y 
2 

llx II = 1 
0 

and 

could be replaced 

(2) All Hilbert spaces, (UC)-spaces, (LUC)-spaces and (MLUC)-spaces 

are strictly convex. The converse is not true in general for any of these 

spaces , (see [ 38] , [ 94] , [ 3 ]) • 

(3) The spaces ~1, Ll, ~= are not strictly convex. 

(4) If X is a reflexive Banach space, then X has an equivalent 
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strictly convex norm [93]. 

Combini~g the· results in [ 38], [ 94], Anderson [ 3 ] has proved the 

following general theorem, whiCh we state without proof. 

Theorem 2. 3. 2. For any Banach space the· following implication holds: 

uc -+ LUC -+ MLUC -+ strict convexity. 

Furthermore, none of these implications can be reversed. 

We state without proof the following lemma which is very useful in 

application. 

Lemma 2.3.1. Let X be a strictly convex BanaCh space and C a weakly 

compact convex subset of it. Then, for every y ~ C, there exists a 

\.Ulique x E. C suCh that 
0 

I I x - Y II = inf II x - Y II • 
0 

xE.C 

In general, the duality mapping J is multi-valued. However, if the 

dual space X* is strictly convex, then the set J(x) consists of exactly 

one point. We state the following propositions without proof. 

Proposition 2.3.1. ([ 44]) Let X be a Banach space with a strictly 

convex dual space X*. Let J be the duality mapping in X with the 

gauge f1.mction ll· Then the set J(x) consists of precisely one point. 

Proposition 2.3.2. ([ 44]) Let X be a Banach space with a strictly 

convex dual space X*. Then the duality mapping J in X with gauge function 

is monotone (strictly monotone if x ~ y). 

We mention the following characterizations of strictly convex BanaCh 
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spaces by means of duality mapping J. 

Theorem 2.3.3. (Torrance [130]). A Banach space ·x is strictly convex iff 

for x andy inS such that x ~ y and for fin J(x), 1 - (f,y) > 0. 

Proof. Suppose that X is strictly convex and let x,y, and f be as 

above. Then it follows from Theorem 2.3.1. that 

1 - (f ,y) .::. 2 - II X + y II > 0. 

Now suppose that the second condition of the Theorem is satisfied and that 

X is not strictly convex. Then, there exist x,yE S (x, y) such that 

llx + Yll = 2. Let and h ~ J(z). Since llhll = l=llxii=IIYII 

and (h,x + y) = 2, (h,x) = 1, a contradiction, since z , x. 

Theorem 2.3.4. (Petryshyn (107]). A Banach space X is strictly convex 

iff the duality mapping J of X into X* is strictly monotone. 

A simpler proof [34] of this theorem may be given as follows: 

Proof. Suppose that X is strictly convex. Let x,y ~X, f E J(x), 

and g E J(y). Then, 

llfll IIYII - (f,y).::. llfll Cllxll + IIYII - llx + YIIJ 

and II g II II x II (g, x) .::_ II g II C II x II + II Y II - II x + Y II) 

and by the use of equation 

(f- g,x- y) = rll£11 - llglll[llxll - IIYIIl + fll£11 IIYII - (f,y)] 

+ rllgll llxll - (g,x)] 

(with each of the three terms on the right being non- negative), we have 

'· 

(£- g, X- y).::. cllxll- IIYIIJ 2 + cllxll + IIY'IIJCIIxll + IIYII- llx + YIIJ. ! 

If x , y and II ~II = II Y II , then II x II > 0 and 
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II xll + IIY·II · ~ II x + Yll = II x.ll (2 -II · 11 ~II + rfxrr II), 
whiCh is positive by the strict convexity of X. Consequently, J is 

strictly monotone. 

Now, suppose that J is strictly monotone and that X is not strictly 

convex. Then by Theorem 2.3.3, there exist x,y £ S (x ~ y) and an 

f E J(x) such that 1 - (f,y) = 0. As before, 1 - (f,y) · ~ 2- llx + Yll, 

so II X + Yll = 2. If z = X ; y 

and II h II = 1 = II x II = II Y II , so 

and h ~ J (z) , then (h, x + y) = 2 

(h,x) = 1. Consequently, ..... 

(h - f, z - x) = 1 - (h,x) + 1 - (f,z) = 0, which contradicts the fact 

that z -F x. 

The concepts of fully k-convex and weakly fully k-convex spaces 

have been introduced and studied by Fan and Glicksberg ~0 ] , [ 61]. 

Definition 2.3.5. Let X be a real normed linear space. For any integer 

k > 2 a sequence {x } of elements of X will be called a (IC i)-sequence n 

for i = 1,2,3, or 4, respectively, if 
k 

(k .1) lim llx II = 1 
n~ n and II ~ i~l xn. II > 1 

. 
' 

k 

Ck. 2) lim II ~ i~1 xn. II = 1 
nl, •••• nk~ J. 

(k .3) 

or , 

{x } 
n 

nl 

is 

~ n2. 

botmded, and llxn 

< ~ nk . , -

l. 

. , 
k 

II < II.!. · L - k i=l l 

for any k indices 

X n. II for any k indices 
l. . . 

(k .4) {x } is bounded, and, for every n 1 , there exists an M = M(n1 ) 

s:ch that II~ II ~II!.-~ x II for M ~n2. ~ •• -~ nk-1 ~ nk. n , . k J.-1 n. 
l ' ' l. 
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For any integer k ~ 2 and for i = 1~2~.3~4~ let us consider the 

following conditions concerning X: 

(F.k.C.i) Every (k i)-sequence {xn} in X is a Cauchy sequence. 

(W.F.k.C.i) Every (k i)-sequence · {~n} in X is weakly convergent. 

We note that condition (F.2.C.2) has been previously considered by 

Smulian [ 127] • 

We state without proof the following result due to Fan and Glicksberg (6G} • . · 

Theorem 2. 3~ 5. For any fixed integer k ~ 2 and for any norrned linear space 

X, the four conditions (F .k .c .i), 1 ~ i ~ 4, are mutually equivalent. 

Also, tl-te four conditions (W .F .k .c .i) ~ 1 ~ i ~ 4, are mutually equivalent. 

Definition 2.3.6. A Banach space X is said to be fully k-convex (weakly 

fully k-convex) if it satisfies any one of the equivalent conditions (F. k. C. i) 

1 < i < 4 (conditions (W .F .k .C .i), 1 < i ~ 4). 

Remark 2.3.5. It follows from 

k+l 

k t+ 1 II_!_ ! . ~ · II 
k k+l i=l n. 

]. 

that every ((k + 1).2)-sequence is also a (k.2)-sequence. Hence every 

fully k-convex (weakly fully k-convex) space is also fully (k + 1)-convex 

(weakly fully (k + 1)-convex). Every Uniformly convex space is easily 

seen to be fully 2-convex and therefore fully k-convex space for any k > 2. 

We state without proof a property not shared by uniformly convex spaces. 

Theorem 2.3~6. (Fan and Glicksberg [60]) Let k be an integer >2, and 

let p be a real number >1. Let · {X (i)} be a sequence of fully k-convex 

Banach spaces. If X denotes the Banach space of all those sequences 
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with ~(i) E. xCi) (i = 1,.2,3, ~ •• ) and 

< 00, then X is fully k-convex. 

Remarks 2.3.6. 

(1) In Theorem 2.3~6., if we take X(i) = .e.i+l (i = 1,2,3, ••• ), 

then, by a result of Day [41], the resulting fully 2-convex Banach space 

X (for any p > 1) is not tmiformly convex in any topologically equivalent v: 

norm. 

(2) Fully k-convex Banach spaces are reflexive. Also, a weakly 

fully k-convex space is reflexive iff it is weakly complete. 

We define the concept of uniformly non-squareness originally introduced 

by James [ 73]. 

Definition 2.3.7. Uniformly Non-square spaces (UNS): 

A Banach space X is uniformly non-square iff there is a positive 

number c5 > 0 such that there do not exist x and y in X for which 

ffxll ~ 1, IIYII ~ 1, llx+yll > 1- 0 2 . and II x ; y II > 1 - o . 

Remark 2.3.7. Obviously, a uniformly convex space is uniformly non~square, 

but it is not known whether uniform non-squareness and uniform convexity 

are isomorphically equivalent. 

We state without proof the following result due to James [73]. 

Theorem 2.3.7. A Banach space is reflexive if it is uniformly non-square. 

Remark 2.3.8. The converse of Theorem 2.3.7. is not true. James [73] 

describes a class of reflexive Banach spaces, no one of which is isomorphic 

to any uniformly non-square space. It is interesting to note that this 

; ·· 

' . >. 
;· ." 

----"~~ 
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gives an alternative method of proving Day's [41] theorem that there 

exist a reflexive Banach space that is not isomorphic to any uniformly 

convex Banach space. 

The notion of uniformly convex in every direction (UCED) was first 

used by A. L. Garkavi [ 67], [ 68], to characterize normed linear spaces for 

which every boWlded subset has at most one CebysetV center. The geometrical 

significance of this concept is that the collection of all chords of the 

Wlit ball that are parallel to a fixed direction and whose lengths are 

bounded below by a positive number has the property that the midpoints of 

the chords lie Wliformly deep inside the Wlit ball. 

Definition 2.3.8. Uniformly Convex in Every Direction Spaces (UCED): 

A Banach space X is uniformly convex in every direction (UCED) iff 

for any e: > 0 and every nonzero z E. X, there exists a number 

o(e:,z) > 0 such that, if x- y = ).z, llxll = IIYII = 1 and 

then l'!. I ~ e: . 

The following theorem, stated without proof, gives several properties 

that are equivalent to uniform convexity in every direction for a normed 

linear space. 

Theorem 2.3.8. (Day-James-Swaminathan ~43]) 

Each of the following is a necessary and sufficient condition for a 

normed linear space X to be (UCED). 

(I) If there are sequences {x} 
n 

for: ~which - , 

(b) x - y = a:< z, 
n n n 

and a nonzero member z of X 

for every n, 

for every n, 



48. 

(c) llx +y!ll-+2, . n n 

then <:£ ... -+- o. n 

(II) If there are sequences {xn} and {y n} in X such that 

(a) II xnll ~ 1 and 11Yn11 ~ 1, for every n, 

(a) X - y -+- z. n n 
(y) llx + Y II -+- 2, n n 

then z = 0. 

(III) For no nonzero z is there a bounded sequence · {x } in X such 
n 

that 

where p is any ntunber for which 2 ~ p < co. 

(IV) For each nonzero z in X, there is a positive number o such that 

II x + ~ z II < 1 - o , whenever II xI I ~ 1 and II x + z II < 1. 

Remarks 2.3.9. 

(1) It might be noted that in Theorem 2.3.8. condition (I) '<1' 

be substituted for '=1' in the restrictions on and y • 
n 

can 

(2) A uniformly convex space is (UCED)-space but the converse is not 

always true. In fact, there are spaces - even reflexive Banach spaces 

that are (UCED), but not isomorphic to a uniformly convex Banach space. 

However, it is not known whether every reflexive Banach space can be renormed 

so as to l;>ec>(U(;ED) . 

(3) I£ X is (UCED), then X is strictly convex. The converse is 

not true as can be seen from the following example [68] (also see [43]): 

Example 2~3~1. The space C[O,l] of all real continuous functions on the 

unit interval with the norm 

II £11 = sup . { 1.£Ctll} + cf~ I £CtJ l2 dt) 1;
2 

() 
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is strictly convex, but this space is not (UCED). 

(4) It has been shown by Zizler fl141J] that X can be renonned so · as to 

be (UCED) if there is a continuous one-to-one linear map of X into a 

space Y that is (UCED). 

We state· without proof the following result. 

Proposition 2. 3. 3. {Zizler (141]])). Every separable Banach space has an 

equivalent norm which is (UCED). 

It is interesting to give the following example, due to Zizler rr14~}, 

of a Banach space which is (UCED), but not (WUC). 

Example 2.3.2. Consider the space C[O,l] with an equivalent norm 

11-.lif.lll = cllfll 2c[o, 11 + IITCf)ll 2 
L2[o, 11 )

112 

where T is the natural 'identity mapping' of C[O,l] into L2 [0,1]. 

Then I II· I II is (UCED). But space C[O,l] does not have any equivalent 

(WUC)-norm (see Remark 2.2.6 (3)). 
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2.4. Normal and Complete Normal Structures. 

The concepts of normal structure and complete nonnal structure have been 

of fundamental importance in some recent investigations concerned with 

determining fixed points of different mapp~ngs, for example see Belluce and 

Kirk [ 8], [ 9], [10], Kirk [85], Kannan [80], [81], Zizler[l39]L 

Woodward [13$] and others. 

Definition 2.4.1. Let C be a botmded convex set in a Banach space X, of 

diameter d. 

A point x E X is said to be diametral point for C if 

sup I I x - "[II = d. 
yEt 

Example 2.4.1. In the Banach space C[O,l] every point of the bounded and 

convex set 

. {f(t): 0 2. f(t) .::.. 1, f(O) = 0 1 f(l) = 1} 

is diametral. 

The notion of normal structure was introduced by Brodskii and Milman 

[ 18] as follows: 

Definition 2.4.2. A convex set G in a Banach space X is said to have 

normal structure if for each botmded convex subset C of G, which contains 

more than one point, there exists a point x ~ C which is not diametral 

for C. 

Geometrically, G has normal structure if for every botmded and convex 

subset C of G, there exists a ball of radius less than the diameter of C 

centered at a point of C and containing C. 

Remark 2. 4.1. We say that a Banach space has normal structure if each of 
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its bounded convex subsets has normal structure. But there are Banach spaces 

whiCh do not possess normal structure. 

Example 2.4.2. The Banach spaces C[O,l], ~~~ Ll do not have normal structure. 

We state the following results without proof, whiCh give larger class 

of sets with normal structure. 

Theorem 2.4.1. (Brodskii and Milman [18]) Every convex and compact subset 

of a Banach space has normal structure. 

Theorem 2.4.2. (Edelstein [54], Browder [25]) Every uniformly convex Banach 

space has normal structure. 

Theorem 2. 4. 3. (Zizler (141]). A BanaCh space has normal structure if it is 

uniformly convex in every direction. 

Theorem 2.4.4. (Zizler [139J). Every bounded closed convex subset of a (WUC)-

BanaCh space has normal structure. 

Theorem 2.4.5. (Zizler[fl391J)). Every bounded closed convex subset of a (W*UC)-

Banach space has normal structure. 

The notion of complete normal structure was introduced by Belluce and 

Kirk [ 9] in the following way: 

For botmded subsets H and S of a Banach space X, let 

xll X E H} 

r(H,S) = inf · {rs (H) : s E: S} 

C(H,S) = · {s E. S : r (H) = r(H,S)} . 
s 

The members of C (H,S) are called the Cebysev centers of H in S. 

· 2 4 3 ([ 9 ]). Let G be a closed convex subset of a Banach Definit1on .•• 

Then G has complete normal structure iff each bounded closed convex 
space X. 
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stibse't W of G, which contains more than one point, has the property that 

the closure of a~ AC(Wa, W) is a nonempty proper subset of w whenever 

. {Wa: a ~ A} is a decreasing net of subsets of W such that 

r(Wa, W) = r(W ,W) for each a E A (A-index-set). 

Remark 2.4.2. Complete normal structure implies normal structure is eeen 

by taking Wa = W in the above definition. 

We state the following results without proof. 

Theorem 2. 4.6. (Belluce and Kirk [ 9]) If C is a convex, compact subset 

of a Banach space then C has complete normal structure. 

Theorem 2. 4. 7. (Belluce and Kirk [ 9]) If C is a nonempty botmded closed 

convex subset of a tmiformly convex Banach space then C has complete nonnal 

structure. 

Theorem 2.4.8. (Day, James and Swaminathan [43]) A reflexive Banach space 

has complete normal structure if it is uniformly convex in every direction. 

There have been a m.DDber of recent results on fixed points of nonexpansi ve 

and semi-nonexpansi ve mappings in Banach spaces, using the notion of normal 

structure. Brodskii and Milman [18] have considered isometries T of a 

bounded closed convex subset C of a BanaCh space X into itself. They were 

able to prove the existence of a fixed point for T proveded X is reflexive 

and C has normal structure. An argument similar to the one in Brodsk=ii. 

and Milman [ 18] was used by Kirk [ 83] to prove the following fundamental 

result, which we state without proof. 

Th 2 4 9 Let X be a r eflexive Banach space. and C a bounded closed eorem • . • , 

convex subset of X with normal structure. Then a nonexpansive mapping T of 
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C into itself has a fixed point. 

Remark 2.4.3. It is worth mentioning that the restriction on C and the 

space X in Theorem 2.4.9., are necessary, as shown by means of examples in 

[ 441· The necessity for normal structure of C is illustrated by the 

following example (Browder [ 25]): 

Example 2.4. 3. Let X = C , the space of sequences converging to zero, U 
0 

the unit ball in the maximum norm, e 1 the unit vector with first component 

1 and other zero, S(x) = (O,x1 , x2 , ••• ). Then the mapping 

T(x) = e 1 + S(x) 

maps U into itself, is nonexpansive, and has no fixed point in U. 

An immediate consequence of Theorem 2.4.9. is the following result of 

Browder [ 25], Gohde [ 70], Kirk [ 83]. 

Theorem 2.4.10. Let T:C + C be a nonexpansive mapping on a bounded closed 

convex subset C of a uniformly convex Banach space X. Then T has a fixed 

point in C. 

The following result follows from Theorem 2.4.9. and Theorem 2.4.4. 

Theorem 2.4.11. (Zizler[[39]~. Let X be a reflexive (WUC) - Banach space, 

c a bounded closed convex subset of X, T a nonexpansive mapping of C 

into itself. Then T has a fixed point in C. 

The following is an immediate consequence of Theorem 2.4.11. and 

Corollary 2.2.2. 

Theorem 2. 4.12. <ii,~izler [139]). Let X be a separable, reflexive Banach 

space. Then X is isomorphic to a space Y with the following property: 
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Every uonexpansi ve mapping . T of a botmded closed convex subset c 

into itself has a fixed point. 

We give the following result for (UCED)-Banach spaces. 

Theorem 2.4.13. Let X be a reflexive (UCED)-Banach space and c a bo1.mded 

closed convex subset of X. Then a nonexpansive mapping T of c into itself 

has a fixed point in c. 

Proof. It follows from Theorem 2.4.3. that C has normal structure, hence 

result follows from Theorem 2.4.9. 

Remark 2. 4. 4. It is o£ interest to see that Tlieore·m 2. 4.12 can be obtained 

as an immediate consequence o£ Theorem 2.4.13, and Proposition 2.3.3. 

We state the following results without proof: 

Theorem 2.4.14. (Belluce and Kirk [ 8]) Let C be a bounded closed convex 

subset o£ a Banach space X and suppose that C has normal structure. Let 

M be a weakly compact subset o£ X. Assume T is a nonexpansi ve mapping 

o£ C into itself with the property that for each x £ C, the closure of 

{Tn (x) : n = 1,2, ..• } contains a point o£ M. Then there. is {an x E M 

such that T (x) = x. 

Theorem 2.4.15. (Kirk [85]) Let C be a non-empty weakly compact, convex 

subset o£ a Banach space X, and suppose C has normal structure. Then 

every nonexpansive mapping T:C+ C has a fixed point. 

E££orts to generalize Theorem 2. 4.15. by weakening the assumption of 

normal structure have been unsuccessful, although an apparent slight weakening 

does yield a result £or contractive mappings. 

Definition 2. 4. 4. ([ 85]) A botmded convex subset C o£ a Banach space X 
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is said to have normal structure relative to F, F ~X, if for each bounded 

convex subset H of C which contains more than one point, there is a point 

x in F such that 

sup · {llx- Yll : Y E. H} < o(H) 

Theorem 2.4.16. (Kirk [85]) Let C be a nonempty weakly compact, convex 

subset of a Banach space X and suppose C has normal structure relative to 

C. If T:C + C is contractive mapping, then T has a fixed point in c. 

The following generalization of Theorem 2.4.15. is due to Kirk [85], 

which we state without proof. 

Theorem 2.4.17. Suppose C is a nonempty weakly compact, convex subset of 

a Banach space X, and let T:C+ C be nonexpansive map. If for each x 

in C it is the case that conv {x,Tx,r2x, ••. } has normal structure, then 

T has a fixed point in C. 

If one merely assumes that for some positive integer N the Nth iterate, 

TN, of T is nonexpansive then T need not have a fixed point since, in 

particular, a periodic homeomorphism of the unit ball of a Hilbert space may 

be fixed point free (Klee [ 88]). Goebel [ 69] obtained sufficient conditions 

to guarantee existence of fixed points for mapping T such that TN is 

none:xpansive. Using normal structure Kirk [ 86] proved the following result 

which we state without proof. 

Theorem 2.4.18. Let X be a. reflexive Banach space which has strictly 

convex norm and suppose C is a nonempty bounded closed convex subset of X 

which possesses normal structure. Suppose the mapping T :C + C has the 

property that for some integer N > 1, TN is nonexpansi ve, and suppose 

further that there is a constant k satisfying 
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N- 2 [ (N - 1) (N - 2)k2 + 2(N - l)k] < 1 

such that II Tj (x) - Tj (y) II ~ k II x - y II ; -£ 11 E c· 1 · N or a x, y , ~ J < - 1. 

Then T has a fixed point in C. 

A more thorough study of the concept of normal structure has been 

initiated in Belluce- Kirk- Steiner [12], where examples of noncompact 

convex subsets of non-strictly convex spaces which possess normal structure 

were obtained. Also spaces shown by Day [41] to be strictly convex, reflexive, 

and not isomorphic to any uniformly convex space, were shown to have the 

property that each of their bounded convex subsets has normal structure. It 

is interesting to note the example ([12]) which shows that normal structure 

is not implied by reflexivity. We state the following two results due to 

Belluce - Kirk - Steiner [12] without proof. 

Theorem 2.4.19. There exists a Banach space which is reflexive , strictly 

convex, and which possesses normal structure, but which is not isomorphic to 

any uniformly convex Banach space. 

Theorem 2.4.20. Let x
1 

and X2 be Banach spaces with norms I 1·1 11 and 

I I· 11
2 

respectively. Let X= 

II· II = sup c II " 11 1 , II· 11 2 ) • 

X has normal structure. 

with the norm of X given by 

and X have normal structure, then 
2 

Some interesting results, using normal structure, have been given for 

semi-nonexpansive mappings by Kannan [80], [81], and Woodward [13~]). 

Following Kannan [81], we define 

Definition 2.4.5. A mapping T of a bounded subset C of a Banach space X 

into itself is said to have property B on C if for every closed convex 

subset p of c, mapped into itself by T and containing more than one element, 



there exists x-E F such that 

llx- T{x) II< sup IIY- T(y) 11. 
yEF 
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Remark 2.4.5. If C has normal structure then a semi-nonexpansive mapping T 

of C into itself must have property B on C. But the converse is not true 

as can be seen from the following example [81]: 

Example 2.4.4. Let m be the space of bounded sequences of numbers with 

the supremum norm [ 3., ;p. ;s>] and let C = { x E m : · l lx II ~ 2 }. Clearly C 

is a bounded convex set in m. Now let F be the subset of C such that 

where {0,0, •.. , 1, 0, •.• }, (1 in the kth place). 

Evidently o(F) = 1. Also ~~F llx - y II = 1 for every x E F. Hence C 

does not have normal structure. But the operator T:C ~ C defined by 

T(x) = X 

3' X E C is such that 

IIT(x) - T(y)ll < ~ [llx- T(x)ll + IIY- T(y)lll, x,y ~ C, 

and for every closed subset F' of C mapped into itself by T and containing 

more than one element, there exists x~ F' such that 

II x - T {x) II < sup II Y - T(y) II· 
y~F• 

We state the following result without proof. I . 

Th 2 4 21 {Kannan [ 80]) Let T be a continuous semi-nonexpansive eorem . . . 

mapping of a bounded closed convex subset C of a reflexive Banach space 

X into itself and let T have property B over C. Then T has a unique 

fixed point. 

We give the following result: 

i. 
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Theorem 2.4.22. Let T be a continuous semi-nonexpansive mapping of a 

bounded closed convex subset C of a reflexive (WUC)-Banach space (of a 

reflexive (UCED)-Banach space) X into itself. Then T has a unique fixed 

point. 

Proof. It follows from Theorem 2.4.4. (Theorem 2.4.3.) that C has normal 

structure. Hence result follows from Remark 2.4.5. and Theorem 2.4.21. 

Combining Corollary 2.2.2.(or Proposition 2.3.3.) and Theorem 2.4.22.~ 

we get the following: 

Theorem 2.4.23. Let X be a separable reflexive Banach space. Then X is 

isomorphic to a Banach space Y with the following property: 

Every continuous semi-nonexpansive mapping T of a bounded closed 

convex subset C into itself has a unique fixed point. 

' ·' . 

~·- -: 

i 
:-: 

: ·.· 

~- .• 
~ : 

I . 

b 



CHAPTER III 

SOME FIXED POINT THEOREMS 

Let X be a Banach space with norm II· II and 

Throughout this chapter, if T is a self-mapping of 

denote the set of fixed points of T in D. 

3.1. Nonexpansive and Quasi-Nonexpansive Mappings. 

59. 

D a subset of X. 

D, we use F(T) to 

We recall that a mapping T:D ~X is called nonexpansive if 

liT (x) - T(y) II ~ llx - y II for all x,y in D. It is well-known, however, 

that the fundamental property of contraction mappings, expressed by the Banach 

contraction principle, does not extend to nonexpansive mappings (see Example 

2.4.3.). It is of great importance in the applications (see Browder (2~) to 

find out if nonexpansive mappings have fixed points. In order to obtain 

existence of fixed points for such mappings some restriction has to be made 

on the Banach space X and on the subset D. In case X is uniformly convex 

Banach space (see Theorem 2.4.10) or more generally X is a reflexive Banach 

space with normal structure (see Theorem 2.4.9.) then a nonexpansive mapping 

from a bounded closed convex subset D of X into itself has a fixed point. A 

general situation of nonexpansive mapping T:D ~ X has been considered by 

Petryshyn [105] for the Hilbert space case (see also Browder and Petryshyn [33]). 

Many geometric properties of Banach spaces under consideration are constantly 

involved in obtaining fixed points from different mappings, viz. convexity, 

uniform convexity, strict convexity, normal structure, complete normal structure, 

structure of Hilbert spaces and so on. 

In this section we show that some of the results can be obtained, in the 

general setting of a Banach space, even when the hypothesis of nonexpansiveness 

is considerably weakened. Essentially, we show that part of the analysis which 

does not require the full force of nonexpansiveness, but requires only the 
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exi~~ence of at least one fixed point together with nonexpansiveness only 

about each fixed point. 

Definition 3.1.1. (Dotson [48]) A self-mapping T of a subset D of a 

nonned linear space X is said to be quasi-nonexpansi ve provided T has at 

least one fixed point in D~ i.e. F(T) is non-empty~ and if p ~ F(T) then 

I IT (x) - P II ~ I I x - P I I holds for all x E: D. 

This concept which Dotson [47] has labelled quasi-nonexpansive~ was 

essentially introduced (along with some related ideas) by Diaz and Metcalf [45] . 

One notes that in asstuning T :D -+ D a quasi-nonexpansive mapping~ we also 

assume the existence of a fixed point of T in D and thus a nonexpansive 

mapping T:D-+ D with at least one fixed point in D is quasi-nonexpansive 

and that a linear quasi-nonexpansive mapping on a subspace is nonexpansive on 

that subspace. But there exist continuous and discontinuous nonlinear quasi-

nonexpansive mappings which are not nonexpansive. Following is an example~ 

due to Dotson [ 48J ~ of a continuous quasi-nonexpansi ve mapping which is not 

nonexpansive. 

Example 3.1.1. The mapping T from the reals to the reals defined by 

T(x) = X . • 1 
2 SJ.n x 

= 0 

X F 0 

X = 0. 

[ 
t [ Following Browder and Petryshun [3~, we define 
! 
~ 

f: Definition 3.1. 2. A mapping T from a Banach space X into itself is said 

to be asymptotically regular if Tn+l (x) - Tn (x) + 0, as n -+ oo~ for all 

X£ X. 
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Definition 3.1.3. A mapping T from a Banach space X into itself is 

said to be weakly asymptotically regular if ~+l(x) - Tn(x) ~ 0~ as n -+ oo 1 

for all x E X. 

Remark 3.1.1. Obviously every asymptotically regular mapping is weakly 

asymptotically regular. 

In general~ a nonexpansive mapping T is not necessarily asymptotically· ,. 

regular. However~ in some cases the determination of the fixed points of T 

can be replaced by the same problem for an asymptotically regular mapping. 

Namely~ the following result due to Browder and Petryshyn [32] holds 1 which 

we state without proof. 

Theorem 3.1.1. Let X be a uniformly convex Banach space and T:X-+ X a 

nonexpansive mapping. If F(T) is non-e~ty then the mapping 

TA = ~I + (1 - A)T 0 < A < 1~ 

is nonexpansive and asymptotically regular. Moreover~ F(T) = F (TA). 

Considering a more general mapping than TA 1 Kirk [87] has proved the 

following two results which we state without proof. 

Theorem 3.1. 2. Let D be a convex subset of a Banach space X and T a 

nonexpansive mapping of D into itself. Define the mapping S:D-+ D by 

a T 2 k 
(K) s = a I + alT + + ... ·rc .. + ~T ~ 

0 2 

where a. > 0, al > 0~ and i!o a. = 1 
]. - ]. 

Then S(x) = x iff T (x) = x, i . e 1 F (T) = F (S) • 

Remark 3.1. 2. Assumption a > 0 
1 

in Theorem 3.1.2. is necessary to rule out 

the possibility that a fixed point of S is merely a point at which T is 

periodic. 

~ ··--w= 
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Theorem 3.1.3. Let D be a convex subset of a uniformly convex Banach space 

X and T a nonexpansive mapping of D into itself. Define the mapping 

S:D-+ D as (K) in Theorem 3.1.2. If F(T) is non-empty then mapping s is 

asymptotically regular. 

We remark that Theorem 3.1.3. is true even if T is a nonexpansive 

mapping of X into itself. Hence the following holds: 

Theorem 3.1.4. Let X be a uniformly convex Banach space and T a nonexpansive 

mapping of X into itself. Define S:X ~X as (K) in Theorem 3.1.2. If 

F(T) is non-empty then the mapping S is nonexpansive and asymptotically 

regular. 

Proof. Same as of Theorem 3.1.3. with the fact that p ~ F(T) implies 

p c: F (S). 

Remark 3.1. 3. In case a = A., 
0 

N - N - -"""2- Vlit3- ••••• - ~ = 0, we have S = T A. 

and F (T) = F (T ) • Hence we obtain Theorem 3. 1.1. as a particular case of 

Theorem 3. 1. 4. 

We give the following generalization of Theorem 3.1.4. for quasi-nonexpansive 

mappings. 

Theorem 3.1.5. Let X be a uniformly convex Banach space and T a quasi-

nonexpansive mapping of X into itself. Define the mapping S:X ~ X as (K) 

in Theorem 3.1.2. Then the mapping S is quasi-nonexpansive and asymptotically 

regular. 

Proof. Let x £ X. Define the sequence . {xn} · by 

Suppose p E F (T). Then the sequence . { jjxn - P rl} 

n x = S (x), n = 1,2, ..• 
n 

is nonincreasing, since 

s is quasi-nonexpansive and s Cp) = P, we max suppose -~~I xn - P II = d > o. 

If d = 0, there is nothing to prove. Therefore, ass tmle d > 0. Then 



(adopting the notion T0 = I) we have 

where z = n 
1 

1 - a 
0 

xn+l 

k 
l 

i=l 

- p = 

= 

= 

i a (T (x ) o n 
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S(x ) 
k n 

- p 

l i 
i=O aiT (xn) - p 

ll (x - p) + (1 - a.o)zn, o n 

- p). 

k 
l 

i=O 
Since and (l. = 1, 

1. it follows that 

Also 

lim sup 
n-+«» 

II zn II < d. 

lim 
n-+«» 

II xn - P II = d, lim II xn+ 1 - P II = d. 
n-+«» 

Because X is tmiformly convex it must be the case that 

However, 

and so 

lim II xn - p - zn II = 0. 
n-+«» 

= (1 - a ) (x - p - z ) , o n n 

lim II xn+l - xn II = 0 7 completing the proof. 
n-+oo 

~ = 0, we have S = T ). and 

F(T) = F(T).). Hence the following result is a particular case of Theorem 3.1.5. 

Theorem 3. 1.6. Let X, T be as in Theorem 3.1.5. Then the mapping T). :X +X 

defined by 

T). = ).! + (1 - ).)T, 0 < A < 1, 

is quasi-nonexpansive and asymptotically regular. Moreover, F(T) = F(T ). 

We remark that Theorem 3.1. 6. shows that Theorem 3.1.1. is true for 

quasi-nonexpansive mappings. 
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We give the following r lt f (W ) esu or UC -Banach spaces. 

Theorem 3.1.7. Let X be a (WUC) -Banach space and T a nonexpansive mapping 

of X into itself. De£1·ne th · s e mapp1ng :X -+ X as (K) in Theorem 3. 1. 2. 

If F (T) is non-empty then the mapping S is nonexpansi ve and weakly 

asymptotically regular. 

Proof. On the same lines 

Banach space, Proposition 

However, X n+l 

completing the 

In case 

- X = (1 
n 

proof. 

a = :A a 2 0 , 

as of Theorem 3.1. 3. , 

2.2z~~ : ~implies that 

1\x - p - z II w 
-+ 0. 

n n 

- a ) (x p - z ), 
o n n 

= ag = •••• = ~ = 0, 

except, since X 

and so X - X n+l n 

we have S = T 
:A 

is (WUC)-

w 
0, -+ 

and 

F(T) = F(T:A). Hence the following result is a particular case of Theorem 3.1. 7. 

Theorem 3.1.8. Let X and T be as in Theorem 3.1.7. If ~(T) is nonempty 

then the mapping T :A: X -+ X defined by 

T :A = :AI + (1 - :A)T, 0 < :A < 1, 

is nonexpansive and weakly asymptotically regular. Moreover F(f) = F (TA.). 

We give the following generalization of Theorem 3.1.7. for quasi-

nonexpansive mappings. 

Theorem 3.1. 9. Let X be a (WUC) - Banach space and T a quasi-nonexpansive 

mapping of x into itself. Define the mapping S:X -+X as (K) in Theorem 

3.1.2. Then the mapping s is quasi-nonexpansi ve and weakly asymptotically 

regular. 

Proof. same as of Theor em 3.1.5., except, since X is (WUC) -Banach space, 

j 

l 
i 

I i 
1 

·j 
! 
I 
i 



Proposition 2. 2. 2. - iiup lies that 

However, 

and so w 
xn+l - xn -+ 0, completing the proof. 

Remark 3.1. 4. In Theorem 3.1.9., if a = 
0 

A, 

65. 

we have S = T 
A and Hence, in particular, we see that 

Theorem 3.1.8. holds for quasi-nonexpansive mappings. 

Browder and Petryshyn [32] have proved the following result for 

asymptotically regular mapping. We omit the proof. 

Theorem 3.1.10. Let T be a nonexpansive asymptotically regular mapping of 

a Banach space X into itself. Suppose that a subsequence {Tn(j)(x
0

)} , 

converges strongly to some point y. Then y is a fixed point of T and 

the whole sequence · {Tn(x )} converges strongly to y. 
0 

In the following, we just ass tUne the nonexpansiveness of T about the 

fixed points. 

Theorem 3.1.11. Let X be a Banach space and T a continuous asymptotically 

regular mapping of X into itself such that 

(i) whenever p E F(T), IITCx) - pJI ~ llx- PII, for all x E. X. 

Suppose· that-~.• sUb.sequence · {Tn (j) (x
0

) } , X E. X, 
0 

converges strongly to 

some point y. Then y is a fixed point of T and the whole sequence · {Tn(x )} 
0 

converges strongly to y. 

Proof. We first · show that y is a fixed point of T, i.e., F(T) is non-



empty. We have 

Tn(j) (x ) + y 
0 

On the other hand 
~ 

(I - T)ofl (j) (x ) 
0 

implies (I- T)Tn(j)(x) +(I- T)y. 
0 

Tn(j) +1 
+ o, 
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since T is asymptotically regular. Thus (I T) o H - y = • ence y E.: F (T) . 

Therefore, from (i), we see that the whole sequence converges to 

because 

y 

I I Tn + 1 ex l - Y II II n . II 
0 

.::_ T (x 
0

) - y , for all n = 1, 2, . • • • • 

For weakly asymptotically regular mappings, Browder and Petryshym 

[ ] have proved the following result which we state without proof. 

Theorem 3. 1. 12. Let X be a Banach space, T a nonexpansi ve mapping of 

X into itself. For a given f £ X, let Tf(u) = T(u) + f~ and suppose 

that the mapping. T f is weakly asymptotically regular. Let 

n xn = T f(x
0 

) be the sequence of Picard iterates for the equation 

u = T(u) - f starting with X .t 
0 

and suppose that an infinite subsequence 

of the sequence · {x } converges strongly to an element y of X. Then 
n 

y is a solution of u - T(u) = f and the whole sequence . { xn} converges. 

strongly to y. 

For weakly asymptotically regular mappings whiCh are nonexpansive on 

F(T), we give the following: 

Theorem 3.1.13. Let X be a Ba11ach space and T a continuous weakly 

asymptotically regular mapping of X into itself such that 

(i) whenever p E F (T), liT (x) - p II < 11x - p II, for all x E: X. 

Suppose that a subsequence {Tn (j) (x
0
)} , X

0 
E X, converges strongly to 
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some point Y· Then y is a fixed point of T and the whole sequence 

converges strongly to y. 

Proof. We first show that y is a fixed point of T, i.e., F(T) is 

non-empty. We have 

Tn(j)(x)-+- y 
0 

implies (I- T)Tn(j)(x)-+- (I- T)y. 
0 

On the other hand, 

(I - T)Tn (j) (x ) = Tn (j) (x ) ..... Tn (j) + 1 (x ) '!t. 0, 
0 0 0 

since T is weakly asymptotically regutar. Since strong convergence implies 

weak convergence and weak limit of a sequence is tmique, therefore 

(I - T)y = 0. Hence y ~ F (T). We see, from (i), that the whole sequence 

converges to y because 

for all n = 1,2, .•.. 

We state without proof the following result on metric spaces. 

Theorem 3.1.14. (Diaz and Metcalf [46]) Let T:M-+- M be continuous map, 

where M is a non-empty metric space. Suppose 

(i) F (T) is non-empty 

(ii) for each x E M, with x + F(T), and each p E F(T), one has 

d(T(x),p) < d(x,p). 

. n . 
Let x e M. Then either the sequence {T (x )} contains no convergent 

0 0 

subsequence, or lim Tn(x ) exists and belongs to F(T). 
n-+oo 0 

Corollary 3.1.1. (Diaz and Metcalf [46]). Suppose, in addition to the 

hypotheses of Theorem 3.1.14., that, for some X E M, 
0 

. n . 
iterates {T (x )} 

0 
contains a convergent subsequence. 

the sequence of 

Then lim Tn(x ) 
0 
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exists and belongs to F (T). Thus , tm.der the above asstDnptions, the 

sequence . {Tn (~0)} converges to a fixed point of T. 

In general, it is not the case for nonexpansive mappings T that the 

sequences of Picard iterates · {Tn(x)} converge to fixed points of T, 

and thus when such fixed points exist other approximation teChniques are 

needed. One such technique is to form the mapping 

0 < X< ' 1, 

and then show that under certain circmnstances the Picard iterates of T A 

converges to a fixed point of T. The first such result (for A = ~) was 

obtained by Krasnoselskii [90]. Schaefer [119] .has proved Krasnosel·stil! 5--

result for arbitrary A ~ (0,1) which we state below without proof. 

Theorem 3.1.15. Let D be a closed convex subset of a uniformly convex 

Banach space X, T:D + D a nonexpansive mapping, and suppose T(D) is 

contained in a compact subset of D. Let x be an arbitrary point of 

D. Then the sequence defined by 

x = ~xn + (1 - A)Xn' n+l · 
n= 0,1,2, •.. ; A~(O,l), 

converges to a fixed point of T in D. 

1 
Edelstein [57] established Theorem 3.1..15. (for . A = 2) in a 

strictly convex Banach space~ which is, recently, proved by Diaz and 

Metcalf [ 46] for arbitrary A ~(0,1). We will omit the proof. 

Th 3 1 16 Let D be a closed convex subset of a strictly convex 
eorem • • • 

Banach space X, T:D + D a nonexpansive mapping, and suppose T(D) is 

contained in a compact subset of D. Then, for X E D, 
0 

· {T~ (x
0
)}, where T A: D -+ D is the mapping defined by 

the sequence 
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Tl = li + (1 - . l)T, l 6 (0,1), converges to a fixed point of T in D. 

Considering a more general mapping S than T l' Kirk [87]. has 

proved the following two results which we state without proof. 

Theorem 3. 1. 17. Let X be a tmi formly convex Banach space and T a 

nonexpansi ve compact mapping of X into itself which has at least one 

fixed point. Define the mapping S:X ~ X as (K) in Theorem 3.1.2. Then, 

for each x
0 

E X, the sequence · {Sn(x
0

)} converges to a fixed point of T. 

Theorem 3.1.18. Let X be a uniformly convex Banach space, D a 

bounded closed convex subset of X, and T a nonexpansive mapping of D 

into D. Define the mapping S:D ~ D as (K) in Theorem 3.1. 2. Suppose 

T has at most one fixed point p in D. Then, for each X E: D, the 
0 

sequence {Sn (xo)} converges weakly to p in D. 

We state without proof the following result due to Browder and 

Petryshyn [ 32] • 

Theorem 3.1.19. Let T:X ~X be a nonexpansive asymptotically regular 

mapping in a Banach space X. Suppose the set F (T) of fixed points of 

T is non-empty. Suppose T satisfies the following condition: 

(0) (I - T) maps bounded closed subsets of X into closed subsets of X. 

. n 
Th ..r:: h E X the sequence {T (x

0
)} converges strongly to some en, ;~.Or eac x

0 
, 

point in F (T) . 

Remark 3.1.5. Let 
l'-(0,1). Then T T = ~I+ (1 - l)T, where 

l . 

satisfies condition (0) iff Tl also does. To see this observe that 

I- Tl = (1- l)(i- T). 

The following corollary of Theorem 3.1.19. follows from Remark 3.1.5. 
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and Theorem 3.1.1. 

Corollacy · 3.1 ~ 2. Let T be a nonexpansi ve mapping of a rmiformly convex 

Banach space X into itself. S th t h ( uppose a: t e set F T) of fixed points 

of T is non-empty. Suppose T satisfies the following condition: 

(0) (I - T) maps bounded closed sUbsets of X into closed subsets of x. 

Then~ for each X ~ X, 
0 

the iteration method 

the sequence · {xn+l} = 

converges strongly to a fixed point of T. 

detennined by 

Remark 3.1.6. Since every completely continuous mapping satisfies hypothesis 

(0) (see [32])~ with the use of Theorem 3.1.1. one obtains Theorem 3.1.5. 

(Schaefer [119]for arbitrary ). E:(O,l) and Krasnoselskiii [90] for ). = ~) 

as a corollary to Theorem 3.1.19. 

Following [lOS], we define the following class of operators. 

Definition 3.1.4. A continuous mapping T from a Banach space into itself 

is said to be demicompact if every bormded sequence · {x } ~ such that . n 

· {(I - T~x} converges strongly~ contains a strongly convergent subsequence 
n 

. {x }. 
n.j 

Petryshyn fi10~] has proved that the class of demicompact operators 

contains, among others, all compact (completely continuous) operators. 

We state the following result without proof. 

Theorem 3.1.20. (de Figueiredo [44], p.47) A demicompact mappi ng T of 

a Banach space X into itself satisfies condition (0). 
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Remark 3.1.7. It was stated in [32] that the converse of Theorem 3.1.20. 

holds. ButJ in generalJ this is not true. For exampleJ the mapping T = 1 

satisfies trivially condition (e)J but it is not demicompact (44]. 

We reframe a result of Diaz and Metcalf [46] in terms of quasi­

nonexpansive mappings as follows: 

Theorem 3.1.21. Let T:X-+ X be a continuous quasi-nonexpansive asymptoticall: 

regular mapping of a Banach space X into itself. Suppose 

(e') the (continuous) real-valued ftmction fJ defined by f(x) = llx - T(x)!'l 

for x E XJ maps bounded closed subsets of X into closed sets of real 

numbers. 

ThenJ for 

in F(T). 

. n 
the sequence {T (x )} 

0 
converges to some point 

Remark 3.1. 8,. It is of interest to note that the condition of nonexpansiveness 

in Theorem 3.1.!9. is weakened in Theorem 3.1.21. But at the same time 

hypothesis (e') of Theorem 3.1.2l.~s stronger than hypothesis (e) of 

Theorem 3.1.19. To see thisJ suppose, in accordance with (e'), that f 

maps bounded closed subsets of ·x into closed sets of real numbers. Let 

D be a bounded closed set in X. ThenJ by (e')J the set 

f(D) ={II (I- T)(x)l I ; x ~ D} is a closed set of real numbers. ButJ the 

norm function is a continuous ftmction on X to the real m.unbers, while 

the set f(D)J by (e')J is a closed set of real numbers. ConsequentlyJ 

the inverse image of the set f(D)J with respect to the norm function, 

namely, the set (I- T)(D), must be a closed subset of X. But this means 

that every bounded closed set D is mapped by (I - T) into a closed set, 

which is just l}ypothesis (e) . ([46]) •· 
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The next result due to Diaz and Metcalf [46], stated without proof, 

shows that the hyPothesis (0') of Theorem 3.1.21. can be weakened to 

that of (0) of Th 3 1 19 · h eorem • • • , WJ.t out altering the conclusion of 
Theorem 3.1.21. 

We again reframe the statement in terms of quasi-nonexpansi ve 
mappings. 

Theorem 3.1.22. Let T:X ~ X be a continuous quasi-nonexpansive asymptotically 

regular mapping of a Banach space X into itself. Suppose T satisfies 

the following: 

(0) (I - T) maps bounded closed subsets of X into closed subsets of X. 

Then, for 

in F(T). 

X E. X, 
0 

. n . . 
the sequence {T. (x )} 

0 
converges to some point 

We give the following result for quasi-nonexpansive mappings. 

Theorem 3.1.23. Let T be a continuous quasi-nonexpansive mapping of a 

uniformly convex Banach space X into itself. Also if T satisfies 

condition: 

(0) (I - T) maps bounded closed subsets of X into closed subsets of X. 

Define the mapping T~:X+ X by T.A = .AI+ (1- .A)T, .AE(O,l). Then, 

for x
0 

E X, the sequence · {T~(x0 )} converges strongly to some point in 

F(T). 

Proof. It follows from Theorem 3.1.6. that T.A is a continuous quasi­

nonexpansive asymptotically regular mapping and F(T) = F(T.A). Moreover, 

Remark 3.1.5. implies that T.A satisfies hypothesis (e). Hence T.A 

satisfies all the hypotheses of Theorem 3.1.22., thus result follows. 

Remark 3~1.9. Theorem 3.1.23. is true, in particular, if we replace 

hypothesis (0) by the complete continuity or demicompactness of mapping T, 

since coD1pletely continuous or demicompact mappings always satisfy hypothesis (0) · 
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3. 2. Measure of Noncompactness and Some Fixed Point Theorems. 

The concept of measure of noncompactness is due to Kuratowski [91]. 

Let D be a bounded subset of a metric space X (in case X is a Banach 

space we always mean a real Banach space). Following [91] we define a(D), 

the (set) measure of noncompactness of D, as follows: 

Definition 3.2.1. By the real number a(D) we denote the inftmum of all 

numbers € > 0 such that D admits a finite covering consisting of 

subsets of diameter less than £. 

Some useful properties of a are the following ones (see Nussbaum ~10~] 

for detailed discussion and proof). 

Theorem 3. 2 .1. (Nussbaum [101;], Darbo [40]). 

subsets of a metric space X, and let 

Then, we have 

(i) 0 < 

B (A) = . {x E. A : d(x,A) < r}. 
r 

a (A) <: · o .(A) , 

Let A and B be bounded 

(ii) a(A) > 0 and a(A) = 0 iff A is precompact, 

(iii) a(AA) = lA I a(A), where A is a real number, 

(iv) if A c B then a(A) < a(B), -

(v) a(B (A)) ~ a(A) + 2r, 
r 

(vi) a(A) = aCA.Y = a.(Co A), 

(vii) a(A + B) ~ a(A) + a(B), 

and (viii) a(A U B) =max. {a(AL a(B)}. 

We state without proof the following result due to Nussba\Dil l [Hll,J. 



Theorem 3.2.2. Let X 

B = {x c X : II xll < 1} 

a(B) = a(S) = 2. 
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be an infinite dimensional Banach space~ let 

and S = · { x E X : · ll x II = 1} • Then 

We also define X (D), the measure of noncompactness of D used 

by Sadovsk.Y· ~llf}, to be 

X(D) = inf. {e: > 0 D admits a finite e:-net } . 

Although these two measures have a good deal in common but X(D) does 

not have all the properties of a(D) since x(D) does not depend 

intrinsically on the botmded set D. In fact, if D c:. B c:X, where X is a 

metri-c~ spa.ce , and-::D is bo\Dlded subset, then the a(D) is independent of 

whether D is considered as a subset of B or of X. But, in general, 

this is not true for X(D), as the following example shows ([64], see also 

[101]): 

Example 3. 2 ~ 1. Let D be an infinite orthonormal system of a Hi !bert 

space H. We have X (D) = 1 if we consider D as a subset of H and 

X(D) = 12 if we consider D as a subset of itself. 

Closely associated with the notion of the measure of noncompactness, 

is the concept of 'k-set-contraction'~ introduced by Kuratowski · [91] and 

further studied in [40], [11&],~ [10~] (see Nussbatun [101!] for other references}. 

De£. · t" 3 2 2 If G 1.· s·- a subset of X and 'T a continuous mapping of l.nl. l.On • • • 

G into X, then T is said to be k-set-contraction if 

a (T (D)) .::_ k a (D), 

for some k > 0 and for any botmded set D in G. 

Remark 3. 2 .1. It is easy to see that mappings of Lipschitz's class are 
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k-set-contractions with the same constant k. The class of 

k-set-contractions with k < 1 contains the class of completely continuous 

mappings and contraction mappings. It was shown in [ lOi ]that a more 

general example of a k-set-contraction with k ~ 1, is the class of semi-

contractive type mappings (see Definition 3.2.6., also see [lOf]). 

We state without proof the following elementary properties about k-set-

contractions. 

Theorem 3.2.3. (Nussbaum · [1~1]). 

(a) Let X., i = 1,2,3, be metric spaces. 
1 

Assl.Dlle that 

T . X +X is a k 1-set-contraction, . 1 1 2 

and T2: x2 +X is a k 2-set-contraction. 
3 

Then T2T1 is a k k -set-contraction. 
1 2 

(b) Let X be a metric space and y a Banach space. Assl.Dlle that 

Tl: X+ y is a k
1
-set-contraction, 

and T2: X+ y is a k -set-contraction. 
2 . 

Then Tl + T2 X+ y is a (kl + k )-set-contraction. 
2 

we state without proof the following result for k-set-contraction 

mappings. 

L .. · · · ~'em 3.2.4. (Darbo [40]) Let o be a bounded closed convex subset of 

X and T ·.D + D a k-set-contraction, k < 1. a Banach space , 

has a fixed point in D. 

Then T 

· of above result is due to Nussbaum [10~] 
The following generalizat1on 

which we state without proof. 

Theorem 3. 2. 5. Let D 
be a bounded closed convex subset of a Banach 

Let Dl ~ __ Go (T (D)), and 
space and T : D -+ D a continuous mapping· 
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D = "'CC(T (D 
1
)), 

n n- for n > 1. Purthermore, asstmle that a (D ) -+ 0 
n " 

as n -+ oo • Then F (T) '1: 4> • 

Following (63], we define 

Definition 3. 2. 3. A continuous mapping T of · G c X into x is said 

to be densifyina, · if for any bounded set D c G such that a (D) > o, 

a (T (D)) < ~ Q\). 

Remarks 3. 2. 2. 

(1) Using the notion of the measuTe of noncompactness x; Sadovsky [11~] 

defines the concept of1 'condensing mappings' same as definition 3.2.3. 

l2) Obviously, every k-set-contraction with k < 1 is a densifying 

mapping but the converse is not true, as can be seen from the following 

example ([132]): 

Example 3. 2. 2 ·~ Let 

function such that 

cp: [0, +oo] -+ [0, +oo] be a right continuous nondecreasing 

cf> (r) < r for r > 0, and let T:X-+ X satisfies 

IIT(x) - T(y) II ~ cp ell X - Yll)" for every x,y E X. Then T is densifying. 

On the otherhand T is not a k-set-contraction. 

Note that contraction mappings and completely continuous mappings are 

densifying; also sums of contraction mappings and completely continuous 

mappings defined on Banach spaces are densifying. 

Definition 3. 2.4. A continuous mapping T of G c: X into X is said to 

be !-set-contraction, if 

~ (T (D) ) < a (D) 

~or any botmded set D C G. 
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Remark 3.2.3. Obviously~ every k-set-contraction mapping with k < 1 

is !-set-contraction. In particular~ the class of densifying maps and 

the class of nonexpansi ve maps are contained in the class of 1-set-cont·raction. 

We state without proof the following basic result. 

Theorem 3. 2. 6. (Filri and Vignoli [64] ~ Nussbaum '[102]). 

Let D be a nonempty bounded closed convex subset of a Banach space 

X~ and let T :D -+- D be a densifying mapping. Then T has at least one 

fixed point in D. 

Remark 3.2.4. Furi and Vignoli [63] were first to introduce formally the 

notion of densifYing mappings. It seems that Theorem 3.2.6. has been 

established independently by Furi and Vignoli [64] an~ Nussbaum [102]. 

In case T is a condensiJlg mapping~ The~rem 3. 2.6. has been established 

by Sadovsky -[118]. 

Recently~ Petryshyn (.lQSlhas proved the following generalization of 

Theorem 3.1.15. and Theorem 3.1.1~., which we state without proof. 

Theorem 4. 2. 7. Let X be a strictly convex Banach space~ D a botmded 

closed convex subset of x~ and T be a densi:fying nonexpansive mapping 

of D into D. For each constant X with 0 < X < 1~ let 

TX = XI + (1 - X)T. 

Then~ for each X 
0 

in D, the sequence {xn+l} = · {T~(x0 )} 

determined by the iteration method 

n = 0,1,2, ••• , X 0 £ D, 

converges strongly to a fixed point of T in D. 

Rema-rk · 3~ 2. 5. 3 2 7 C
ertainly holds if the nonexpansive mapping 

Theorem ••. 
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T of D into D is of the fo'l'1Il T = H + c. w1.· th c , completely continuous 

on D and H such that IIH(x) - H(y) II ~ qllx Yll for all x and y 

in D and some q with 0 < q < 1. We note that in case T = H + c 

with H = 0 or q = O, Theorem 3.2.7. yields Theorem 3.1.16. In case 

T = H + C with H = 0 or q = 0, and A= ~ , Theorem 3.2.7. yields 

the result of Edelstein [57]. In case 0 < q ~ 1, Theorem 3. 2. 7. for 

T = H + C improves the corresponding result in [tlOl. 

The following generalization of Theorem 3. 2. 7. is due to Singh [125] 

which we state without proof. 

Theorem 3.2.8. Let X be a Banach space, D a bounded closed convex 

subset of X, and T be a densifYing mapping of D into D. Define a 

mapping TA :D-+ D by TA = AI . + (1 - A)T, 0 < A < 1. Let TA be such 

that 

(i) whenever p E. F(T,), I ITA (x) - PII < llx - PII for all x '= D - F (T A). 

Then, for each x 
0 

in D, 

a fixed point of T in D. 

converges strongly to 

We prove the following general result. 

Th 3 2 9 Let D be a boWlded closed subset of a Banach space X eorem ••. 

and T: o -+ o a densi fYing mapping such that F (T) is nonempty • Define 

a mapping TA :D -+ D by 

TA = AI + (1 "" A)T, 0 < A < 1, 

such that 

) II T
, (x) - p II < II x - p II , for all x £ D - F (T, ) . 

(a) whenever p E F(TA , A A 

the sequence · {T~(x0)} converges strongly to a 
Then, for each x 0 in D, A 

fixed point of T. 
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Proof. It is obvious that F (T) = F(TA). 
since F(T) 

Therefore F(T ) 
A is nonempty 

is nortempty by assumption. Also TA is a densi£Ying mapping 
of D into D, this being a consequence of the facts that T is densifying 
and that A lies in (0,1). 

In view of the inequality (a) above and Corollary 3.1.1., to show 

that the sequence · {T~(x0 )} converges strongly to a point in F(T), it 

suffices to show that · {T~(~0 )} contains a convergent subsequence 
n ·· 

{TAJ(x0 )} • Now, for each x
0 

in D, the sequence s 
0 

. n 
{T (x ):n=O,l,2, •• } 

0 

is botmded and its transformed into the sequence sl n 
{T (x ) : n=l,2, ••• }. 

Hence a(S
0

) = a(S
1
), 

Thus sequence {T~(x0 )} 
arid therefore a(S ) = 0, since T 

0 

contains a convergent subsequence. 

is densi£Ying. 

Thus all the hyPotheses of Corollary 3.1.1. are fulfilled, and 

F (T) = F (T A), hence the result follows. 

Remarks 3. 2.6. 

{1) We can obtain a number of well-known results sach as Theorem 

3.2.8., Theorem 3.2. 7., Theorem 3.1.16. (i(4~] for arbitrary A E (0,1) 

and [57] for A = ~ ) , and Theorem 3.1.15. ([119] for arbi~rary 

A c (O ,1) and [90] for A = ~), as corollaries to Theorem 3. 2. 9. 

as follows {we will omit the detailed discussion): Since with the given 

hypotheses in any one of these theorems, T is a densifying mapping 

from a bounded closed subset of a Banach space into itself. Moreover 

F(T) is nonempty and the mapping T A' 0 < A.< 1, always satisfies 

hypothesis (a) of Theorem 3.2.9. Thus all the hypotheses of Theorem 3.2.9. 

are fulfilled, hence the result follows. 

{2) We observe that . Theorem 3. 2. 9. is valid for any x 
0 

E. D, even 

if D is a bounded open subset of X and T :D ~ D is a densifying mapping. 
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We give the following generalization of Theorem 3.2.7. in which TX 

is required to be nonexpansive only about its fixed points. 

Theorem 3.2.10. Let X be a strictly convex Banach 

closed convex subset of X, and T be a densifying 

Define a mapping TX:D + D by 

TX -= XI+ (1- X)T, 0 < X < 1, 

such that 

(i) whenever p E. F(TxL llrx (x) - PII < llx- PII 

Then, for each X 
0 

in D, 

to a fixed point of T in D. 

space, D a bowtded 

mapping of D into D. 

for all x E. D. 

converges strongly 

Proof. It follows from Theorem 3.2.6. that the set F(T) is nonempty. It 

is obvious that F(T) = F(TX). It is also easy to see that TX is a 
.. 

densifYing nonexpansive map of D into D, this being a consequence of the 

facts that T is densifYing nonexpansi ve and that X .: (0, 1). Next, 

we show that strict convexity of X and condition (i) implies 

i.e. is not a fixed point of T X then X F p, 
0 

and the open line seiJllent joining the point x 0 and TX (x0 ) must, by 

llx - PII strict convexity, be contained in the open sphere of radius 0 

and centered at p. Since TX(x
0

) is an interior point of this line 

segment, one has 

II T (x ) - p I I < II x - P II · X o o 

Thus all the hypotheses of Theorem 3. 2. 9. are fulfilled, and hence 

result follows. 
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Remark 3.2.7. Theorem 3.2.10. generalizes Theorem 3.2.7. in the following 

sense: 

With all the hypotheses of Theorem 3.2.7., we have 

and TX nonexpansive -.. - tGge'ther imply TX s ·atisfies condition (i) of 

Theorem 3.2.10. Thus all the hypotheses of Theorem 3.2.10. are fulfilled 

and hence result follows. But with all the hypotheses of Theorem 3.2.10., 

mapping TX is not nonexpansive on D. 

We consider a more general mapping S of type Kirk [87], and give 

the following general unified approach on convergence of the sequences 

of iterates of S. 

Theorem 3.2.11. Let X be a Banach space, D a bounded closed convex 

subset of X, and T be a densifying nonexpansive mapping of D into D. 

Define the mapping S:D + D by 

a T2 + 
k 

s = a I + a1T + ....... + akT , 
0 2 k 

where a. > 0, al > 0, and l a. = 1. Let s be such that 
1. - i=O 1. 

(A) whenever p E F (S), II S(x) - PII < II x - PII for all x E D - F{S). 

Then, for each x
0 

in D, the sequence · {sP(x
0
)} converges strongly to 

a fixed point of T in D. 

Proof. It follows from Theorem 3.2.6. that the set F(T) is nonempty 

and from Theorem 3.1.2. that F(T) = F(S). It is also easy to see that 

· · f D into D this being consequence 
S is a densifying nonexpans1. ve mapp1.ng o ' 

of the facts that 
T is densifying nonexpansive mapping and that 

k r <l_j_ = 1 
i=O 

In view of the inequality (A) and Corollary 3.1.1. to show that the 

.·· . . . 
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. n 
sequence {S (x

0
)} converges strongly to a point in F (T) ~ it suffices . 

to show that the sequence . {Sn (~0)} contains a convergent subsequence 

n· {S J (x
0
)l. Now~ .for each x

0 
in D~ the sequence S = {Sn(x ) 

0 0 
n = 0~1~2~ 

is bounded and it's transformed into the sequence S =· {Sn(x ) 
1 0 n = 1~2~ 

Hence a(S
0

,) = a(S1) ~ and therefore a(S
0

) = 0~ since S is densifying. 

contains a convergent subsequence n· {S J (x ) }. 
0 

Thus all the -hypotheses of Corollary 3.1.1. are fulfilled~ and 

F (T) = F ~1t), hence the result follows. 

Remark 3.2.8. It is of interest to observe that in case m2 = a 3 = ... = ~ = 0, 

we can delete the nonexpansiveness of mapping T in Theorem 3.2.11.~ since 

then, obviously~ we have F (T) = F (S) • 

We obtain some new and other well-known theorems as corollaries to 

Theorem 3.2.11.~ in the following way. 

Corollary 3.2.1. Let X be a strictly convex Banach space~ D and T as 

defined in The?rem 3.2.11. 

S = a . I + 
0 

Define the 

a1T + a T2 
2. 

k r a. = 
]. 

i=O 

mapping S:D + D by 

k 
+ ••••••• + akT ~ 

1. Then, for each X 
0 

Proof. Obviously, S is nonexpansive and F(S) is non-empty. 

in D, 

Since X 

1 Banach Space, using the argument of Theorem 3.2.10., 
is a strict y convex 

it can be seen that S satisfies hypothesis (A) and hence all the hypotheses 

of Theorem 3. 2 .11. Therefore result follows from Theorem 3. 2.11. 

Remark 3. 2. 9. d Corollary 3. 2.1~ certainly hold if the 
Theorem 3.2.11. an 

nonexpansive mapping T of D 
into D is of the form T = G + H, where G 
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compact (completely continuous) on D and H such that 

IIH(x) - H(y) II ~ qll x - Yll for all x andy in D ·and some q £ (u,l). 

Corollary 3. 2. 2 • Theorem 3. 2. 8. becomes a particular case of Theorem 3. 2.11. 

as follows: In case ao = ~. a2 = a 3 = ..... = ak = 0 in Theorem 3.2.11., 

we have S = TA, hence the result follows from Theorem 3.2.11. and 

Remark 3. 2. 8. 

Corollary 3.2.3. Theorem 3.2.1. can be derived from Theorem 3.2.11. as 

follows: Take a
0 

=X, a
2 

= a 3 - ••••• = ~ = 0 in Corollary 3.2.1., 

then we have S = TA and hence Theorem 3.2.7. follows from Corollary 3.2.1. 

Corollary 3.2.4. Theorem 3.2.10. becomes a particular case of Theorem 

3.2.11. as follows: In case a
0 

=X, a 2 = a 3 = ••••• = ~ = 0 in Theorem 

3.2.11., we have S = TX. Moreover, strict convexity of X and hypothesis 

(i) of Theorem 3.2.10. imply hypothesis (A) of Theorem 3.2.11. Hence the 

result follows from Theorem 3.2.11. and Remark 3.2.8. 

Corollary 3.2.5. Theorem 3.1.16. can be derived from Theorem 3.2.11. as 

follows: Take a 
0 

= ~ = 0 in Corollary 3.2.1. 

then we have s = TX. Hence the result follows from Corollary 3.2.1. and 

Remark 3.2.9. with H = 0. 

If in addition to above, we ass tune that we get a 

result due to Edelstein [51]. 

Th 3 1 15 can be derived from Theorem 3.2.11. as Corollary 3.2.6. eorem • • • 

follows: Take ..... = ~ = 0 in Corollary 3.2.1., then 

we have · {Sn(x
0

)} = · {xn+l}. Since every lDliformly convex Banach space is 

strictly convex, hence the result follows from Corollary 3.2.1. and Remark 

3.2.9. with H = 0. 

. i 
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1£ iB addition to above, we assume that 

due to Kransnoselskii [90]. 

a = l. = 
0 

1 2' we get a result 

Remarks 3. 2 .10. 

(1) In view of Remark 3.2.9., Theorem 3.2.11 and Corollary 3.2.1., 

for H = 0 improve Theorem 3.1.17. 

(2) In view of Remark 3.2.9., Theorem 3.2.11. and Corollary 3.2.1. 

for T = H + G with 0 < q ~ 1 improve the corresponding result in 

Petryshyn and Tucker [llQ]. 

We will now discuss the mappings with a boundary condition. Let X 

be a real Banach space and D an open botmded subset of X, with D 

and D denoting its closure and boWldary respectively. In particular, we 

will denote by 

B = · {x E X : llx II < r } 

the open ball about the origin, 

8 • {x E X llx II = r} 

its botmdaxy and B = B U B its closure. 

Following [29], we define 

Definition 3.2.5. Let X be a Banach space, D a subset of X, T a 

mapping of 0 into x. Then T is said to be semicontractive if there 

exists a mapping V of D x D into X such that T(x)' = V(x,x) for x 

in D, while 

(i) for each fixed yin D, v ( •,y) is nonexpansive from D to X, 

(ii) for each fixed x in D, V"(x, •) is strongly continuous from 

X, uniformly for X in bounded subsets of D. 
to 

D 

. I 
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Following ~29], [10,], we also define 

Definition 3.2.6. The mapping T:D ~X is of semicontractive type with 

constant k < 1 if there exists a continuous mapping v of D x D into 

X such that T(x) = V(x,x) for all x in D, while 

I I V (x, z) - V (y, z) I I ~ k II x - y II , x,y,z «: D, 

and the map x ~ V(•,x) is completely continuous from D to the space of 

maps from D to X with the tmiform metric. 

Imposing the well-known Leray-Schauder condition Browder [ 29] has . 

proved the following two results which · we state without proof. 

Theorem 3. 2.12. Let X be a uniformly convex Banach space, D a .. botmded 

closed convex subset of X with 0 in the interior of D. Let T be a . 
semicontractive mapping of D into X such that for each x in D, 

T(x) 1: AX for any A > 1. Then T has a fixed point in D .. 

Theorem 3.2.13. Let X be a Banach space, D a bounded closed convex 

subset of X having 0 in the interior, T a mapping of D into X 

such that for each x in D, T (x) ;. AX for any A > 1. Suppose that T 

is a semicontractive type with constant k such that 

(a) If k < 1, T has a fixed point in D. 

(b) If k < 1 and (I - T)D is closed in X, then T has a 

fixed point in D. 

Recently, a number of interesting results have been given for the 

class of densifying maps and the class of !-set-contraction T 

assumption that T satisfies the weaker boundary condition: 

under the 

< (II y) : If T (x) = :.ax for some x in D, then a ~ 1, 
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for example see Petryshyn [10~]., filO~]., Nussbatun ~10~1, Webb p3~l, Edm\D'lds 

and Webb [59] , and others. These results have been used to deduce a 

number of new, as well as other well-known fixed point theorems for various 

classes of mappings whiCh have been extensively studied recently. 

Remark 3. 2.11. In fact, condition (n <) 1 

condition - for every x in D, T (x) 1: ax, 

is equivalent to Leray-Schauder 

for any a > 1. 

Definition 3. 2. 7. Let B be an open ball in X with center 0 and 

radius r > 0. A mapping R:X + B defined by the formula 

{ X if llxll < r 
R(x) = rx if llxll 

l:fxll 
~ r, 

is said to be the radial retraction of X onto B. 

The following lemma is due to Nussbaum [10~],, which we state without proof. 

Lenuna 3. 2.1. Let X be a .Banach space and B the open t.mit ball of X 

about the origin. Then the radial retraction R:X B is a !-set-contraction. 

Theorem 3. 2.6. for densifying mappings admits the following practically 

useful generalization in case~" lh :i-s::. :a ball. 

Theorem 3.2.14. (Petryshyn ITlO~r,).Let B be an open ball about the origin 

in a general Banach space X. If T :B + X is a densifying mapping (and, 

in particular,. a k-set-contraction with k < 1) which satisfies the bo\D'ldary 

condition. 

(n ~}: If T (x) = ax for some x in B, then a_:: 1, then F(T), 

the set of fixed points of T in B, is nonempty and compact. 

Proof. 
1• s a dens 1· fying map, it 

Since every k-set-contraction with k < 1 

suffices to prove Theorem 3.1.14. for the case when 
T is densifying. 
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Let B be an open ball in X with center 0 and radjl:ils r > 0. 

Let R be the retraction of X onto B as given in Lemma 3.2.1. Then 

R is a !-set-contraction of X onto B. Now, if for all x in B we define 

the mapping T 
1 

(x) = R(T"(x)), then T 
1 

is a continuous map of B into B 

whiCh is also densifYing: since, T:B~ X is densifying, R:X ~ B is a 

!-set-contraction and, therefore, a(T
1 

(B)) < aT(B) < a(B). Hence it 

follows from Theorem 3.2.6. that T
1 

has at least one fixed point x in 
0 

B. But then x
0 

is also a fixed point of T. Indeed, if X E B, then 
0 . . . 

T(x ) = 
0 

since the asstDllption of the equality T(x ) = 
0 

IIT(xo) II 
r xo 

llx II < r. 
0 

would contradict the fact that If x E B and x is not 
0 0 

a fixed point of T, then a = IITCx
0

)11 >. 1, in contradiction to 
r 

condition < 
(II y). Thus x is a fixed point of T, and hence F = F (T) 

0 

is a nonempty set in B. Since T is continuous, F is obviously a 

closed subset of B such that T(F) = F. 'fhis also: shows that F is 

compact, for otherwise the assumption a(F) > 0 would lead to the 

contradictory inequality a(F) = a(T(F)) < a(F), which follows from the 

densi fYing property of T. 

Remark 3. 2.12. If instead of the bmmdary condition 
< (II y), we assume 

that T satisfies condition on B (i.e.' if T (x) = ax for 

some x in 'B, then a ~ 1), then the nonempty compact set F(T) is 

contained in B and hence lies at the positive distance from B. 

Petryshyn [lOS] has derived the following corollaries to Theorem 3.2.14. 

We will omit the proof (see [lOS] for detailed discussion and proof). 

Corollary 3.2.7. Let T be a densifying mapping (and, in particular, 

a k- set- contraction with k < 1) of B into X, and suppose that T 



satisfies any one of the following conditions: 

T(B) c B. . 
T(B) c B. 

liT (x) - xll 2 ~ liT (x) 11 2 - II xll 2 for all x in B. 

(1.1) 

(1. 2) 

(1. 3) 

(14.) (T (x), J (x)) ~-(x, J (x)) for all x in B, where J is 

88. 

a duality mapping of X into the set 

such that 

X* 
2 of all subsets of X* 

(J(x), x) = llxll 2 and IIJCxJII = llxll for Cl.ll. X E X. 

Then the set of fixed points F(T) ofT is nonempty and compact. 

Remark 3.2.13. In case X is a Hilbert space H, then for J we can 

take the identity mapping I and therefore in this case conditions (1.3) 

and (1~4] reduce to the condition 

(T (x), x) ~ (x,x) for all x in B, 

employed by Krasnoselskii [89], Altman [ 2] and others for completely 

continuous mapping T. 

The following new comparison result, which may prove to be useful in 

the solvability of nonlinear equations in H, is also valid. 

Corollary 3.2.8. Let T be a mapping of B into H, 

mapping of B into H, 

(T (x) ,· x) ~ II x II 2 , 

II T (x) - T 
0 

(x) II ~ II x - T (x) II 

Then F(T ) c 8 is nonempty and compact. 
0 

and T a densifying 
0 

for all x in B. 

· f 1 · plication The following special case of Theorem 3. 2.14. 1s use u 1n ap • 

Corollary 3.2.9. Let T = H + G be a map from B to X such that H 



H is a contraction on "'B'. and G · 1 1 -1s comp ete y continuous on B. 

Suppose that T satisfies condition 

and F (T) is compact. 

(II ~) 
1 on B. Then F (T) ;. cp 

89. 

For semicontractive type maps# Theorem 3.2.14. yields a generalization 

of Corollary 3.2.9. whose first part (i.e. F(T) '/: $) has been obtained in [29]. 

Corollary 3.2.10. If T:B-+ X is a sernicontractive type map with constant 

k < 1 such that en <1) h d ol s on B, then F(T) is nonempty and compact. 

Remark 3.2.14. Under condition (1.1), Corollary 3.2.7. has been obtained 

in [ 40] when T is a k-set-contraction, and in [118] when T is a 

condensing map, while, under condition (1.2), Corollary 3.2.7. has been 

obtained in [lOlJ when T is a k-set-contraction with k < 1. 

Petryshyn i[lO~] has investigated the structure of fixed point sets 

F(T) of certain densifying maps and dernicornpact !-set-contractions 

T:D-+ X. We state without proof the following result due to Petryshyn [108] 

in case D is a ball. 

Theorem 3.2.15. Let B be an open ball about the origin in a general Banach 

space x. Suppose T is a densifying mapping of B into X which satisfies 

< 
condition (II i) on B; i.e. 

If T(x) = ax for s orne x in B, then a < 1 . 

· {T } of densl.· fying mappings of B into X 
Suppose there exists a sequence n 

such that 

(a) 

and (b) 

on = sup · {II Tn (x) - T(xlll : x e. B} +0, 
as n+ oo, 

the equation 

II Yll < cS • n 

x = T (x) + y has at most one solution if 
n 
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Then T has a continuum F(T) .s:: 
~or its set of fixed point in B. 

!Jleo];'em 3. 2.15. is obtained as a corollary of the .c 11 · 
~o ow1ng more general 

result which we state without proof. 

Theorem 3. 2.16. 
(Petryshyn 1[101$].). Let B be an open ball about the origin 

in a general Banach space X. Suppose T is a 1-se~-contraction of B into 

X which is demicompact and which satisfies condition (IT ~) on B. Suppose 
1 -

further that there exists a sequence of densifying mapping~ · :t.T. } of a into 
n 

X such that the hypotheses (a) and (b) ofTheorem 3.2.15. hold. Then T 

has a continuum F (T) c B for its set of fixed points. 

Remark 3.2.15. Since every densifYing mapping is !-set-contraction and 

demicompact, Theorem 3. 2.15. follows as a special case of Theorem 3. 2.16. 

In his study of k-set-'contractions with k ~ 1, and under certain 

additional conditions on D and/or T, Nussbaum [lOl]succeeded in defining 

the notions of fixed point index for T and o£ topological degree for (I - T). 

Nussbaum [IOJ)used these in obtaining a number of interesting results, and, 

in particular, in generalizing the fixed point theorems of Darbo [40], 

Sadovsky [11'1, Browder [29], but under somewhat stronger "botmdary conditions" 

(e.g., T (D) c D). Petryshyn [101}1, [10!]}, used the' degree argument of [10~] to 

obtain more general fixed point theorems for certain densifying maps and 

!-set-contractions under the weaker boundary condition (IT ~). In fact, 

Petryshyn [108]has proved the following generalization of Theorem 3.2.14. 

which we state without proof. 

Theorem 3.2.17. If D is a bounded open subset of a Banach space X with 

0 in o and T a densifying mapping of D into X which satisfies the 

boundary condition (II <) on o, then F (T) c: .1)> is nonempty and compact. 
1 
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Using Theorem 3. 2.17. ~ Petryshyn .,.OI]proved the ~ following general 

fixed point theorem. We omit the proof. 

Theorem 3. 2.18. Let D be a bounded open sUbset of a Banach space X with 

0 in D and let T :D-+ X be a !-set-contraction satisfying 
< en T) on D. 

Then, if (I - T) (D) is closed~ F (T) ~ cf>. In particular, if T is 

demicompact and !-set-contraction, then F(T) is nonempty and compact. 

Remarks 3. 2.16. 

(1) The set (I T) (D), is certainly closed/ if T is densifying and, 

in particular, if T is k-set-contraction with k < 1. 

(2) If D is also convex, then condition r(J[ tl holds on D if 
. 

T (D) C D and, in particular, if T (D) ~ D. 

In case 0 • D~ the following generalization of Theorem 3.2.18. holds. 

Theorem 3.2.19. (Petryshyn (lO,]).Let D be a bounded open subset of a 

Banach space X and T :D-+ X a !-set-contraction such that T satisfies 

any one of the following ·conditions: 

(a) There exists an x
0 

in D such that T(x)- x 0 = a(x- x 0) holds 

for some x in D, then a < 1. 

· -
(b) D is con vex and T (D) !:: D. 

Then, if (I- T}(D) is . closed, we have F(T) ~ cf>. In particular, if T is 

demicompact and !-set-contraction, then F~) is nonempty and compact. 

As a consequence of Theorem 3.2.9., Theorem 3.2.18, and Theorem 3.2.19, 

we gi-ve the following result on convergence of the sequences of iterates for ue •.. 

dens i fying maps. 

Theorem 3.2.20. Let 
o be a bounded open subset of a Banach space X and , 
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T:D-+ D a densi£ying mapping such that T satisfies any one of the 
following conditions: 

(a') If 0 € D., en <) 
1 holds on D. 

(b') If 0 • D., there exists en yo in D such that if 

T(x) - Y0 · =' · Cji(x - Y
0

) holds for some x in D, then a~ 1. 

(c') If Q 4 D., D is convex. 

Define a mapping TA:D-+ D by TA = ~I+ (1 _ A)T, 0 <A< 1. 

be such that 
Let TA 

(a) whenever 

Then, for each x 
0 

for all 

in D, the sequence · {~(x0)} converges strongly to a 

fixed point of T in D .• 

Proof. By Theorem 3.2.~., it suffices to show that each of the conditions 

(a'), Cb') an~ (c') along with the other hypotheses imply F(T) -:1- cp. Indeed, 

with the given hypotheses if follows from Theorem 3.2.18., Theorem 3.2.19~, 

and Remarks 3.2.16. that (a'), (b') and (c'), each separately implies 

F(T) # ,. Therefore F(TA) is nonempty. Hence result follows from Theorem 

3.2.9. and Remark 3.2.6(2). 

Now, we shall discuss some of the applications of fixed point theory. 

Many applications of fixed point theorems occur in differential and integral 

equations, nonlinear vibrations, calculus of variation, optimal control theory, 

nonlinear optimization, nonlinear approximation and many other fields. Those 

most frequently used are the contraction mapping principle and Schauder's 

principle. Other results concerning completely continuous operators are also 

used. Recently, Browder [ 3QI gave a survey of the applications to partial 

differential equations, mostly about existence and tmi queness of solutions 

and about~iteration procedur es, also in the case of noncompact operators and 
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of nonexpansi ve mappings. 

In recent years densifYing {condensing) mappings proved to be very 

useful in the study of certain differential and integral equations. In 

particular, we discuss the existence of solutions of the following differential 

equation of neutral type: 

x• {t) = ·:[t, x{t), x(t - h
1 

{t)), x' (t - h
2 

(t))] (1) 

If the ftmction f{t.Xt'Y·•Z) satisfies a Lipschitz condition in the variable 

x,y and z, with constant kx, ky and kz , respectively, with kz < 1, then, 

under minor additional assumptions, the question of the existence of solution 

is easily reduced to the contraction mapping principle. As it was noted in 

[ 5], this problem can also be reduced to the Schauder's principle, by another 

method. Here we shall dispense with the Lipschitz condition in the variables 

x and y. To prove the existence theorem in this case, Badoev and Sadovsky 

[ 5] have used the fixed point principle for condensing mappings (Theorem 

3.2.6.) which we state without going into much detail: 

L E b B ch d D c: E We Shall consider (1) in COnJ"tmction et e a ana space an • 

with the initial condition 

x(t) = x {t) {-h < t ~ 0), 
0 

(1') 

where x (t) is a fixed ftmction defined on the (finite or infinite) semi­
o 

interval (-h, O]. By a solution of the problem (1) - (1') we shall mean 

a function x(t) (-h < t ~H) that satisfies the initial condition (1') and 

a) X(t) is continuous on (-h,H}; the following three requirements: 

b) x' {t) exists almost everywhere on (-h,H] and is pth power integrable, 

p > 1· c) almost everywhere on [O,H] 
- J 

x'(t) = f[t,x{t), x(t- h 1 (t)), x'(t - h2 (t))]. 

We shall denote by £(0 ,H) the set of continuous functions on [O,H] 

.. . - .. - - • -~- ,_,_. __ ,-~--- --"7 ~ -:""'";, .. ~ ; .. ---1.' . '\.'~- :.: -:-·: ·.· ;>' "' · ···· · ·· ~.r.JO- , 
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having a derivative that is pth power integrable; this set becomes a Banach 

space with the natural linear operations if we put 

For any function x(t) E E(O,H) we put 

~ {X (t), 
x(t) = 0 

x(t), 

-h < t < 0, 

0 ~ t ~H. 

llxiiE = llxllc + llx' IlL 
p 

-~ - ·Toge~her wm~h the problem (1) - (1') we consider the following operator 

equation in the space E (O,H): 

y = Iy, 

where the operator I is defined by the formula 
t 

(2) 

Iy(t) = x
0 

+ J f[s,y(s), y(s - h
1 
(s)), y' (s - h

2 
(s))]ds 

0 
(x

0 
= x

0 
(0)). 

It is not difficult to verify that if the flDlction x (t) is continuous 
0 

and its derivative is pth power integrable, then the equation (2) is 

equivalent to the problem (1) (1') in the following sense: if · .. :x(t) is 

a solution of the problem (1) - (1') then its restriction y(t) to the 

segment [O,H] is a solution of the equation (2) and, conversely, if y(t) 

is a sol uti on of the equation (2) then the fWlction "' x(t) = y(t) is a 

solution of the problem (1) - (1'). 

Badoev and Sadovsky [ 5] have established the following properties of 

the operator I. 

Lemma 3.'-2 ~ 2~ . Let E 
0 

be the set of functions in E(O,H) that satisfy the 

condition x(O) = x
0

• Suppose that the fWlctions x 
0 
(t), h 1.Ct), h 2 (t) and 

f(t, x, y, z) satisfy the following requirements: (I) x
0

(t) is continuous 

and botmded ~ -· . mo~eove; . . X!' (t).., - 1 iS"',.t~.jleler..l ~ntegraP'l~::OJl c:.ro,o]; 
0 . . 

(:Ii) -H + t <h. (t) < h + t(i = 1,2,; 0 < t < H); (III) hl (t) and h2 (t) 
- 1 
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are measurable on [0 H] · ~ , (IV) the function q (t) = t - h
2 

(t) is such 

that a) the inverse image of every set of measure zero is measurable and 

b) for any measurable set E C [O~H] satisfYing the condition q(E) S: [O,H], 

we have the inequality llE _:: r llq (E) (where the number r does not depend 

on E); (V) f(t, x, Y~ z) is defined for 0 < t < H and 11 1 a rea x, y 

and z; (VI) f(t~ x, Y~ z) is measurable in t for any fixed x, y and z; 

(VII) -J f( t ~ x~ y, z) is measurable in the pair x, y for fixed t and z; 

(VIII) f(t, x, y, z) satisfies a Lipschitz condition in z: 

(IX) for any R > 0 we can find a function ~(D) E Lp(O,H) 

I fCt, x, y, z) 1 ~ ~ Ctl 

Then the operator I is continuous from :E0 into E0 • 

such that 

s~os~~ that the following condition 

(X) krl/p <( 1
' 

1/2, 

is satisfied: 

if p > 1, 

if p = 1. 

Then the operator I is .-:~<»n.Je.~~:irn:g on D, if H is sufficiently small. 

=-
From Lemma.S- e:31."1l2:.~2.1, 3-;p2:. 3:. and Theorem 3. 2. 6. , Badoev and Sadovsky { 5 ] have 

obtained the following theorem on the solvability of the problem (1) - (1'). 

Theoremc 3 .• 2·.121. Let the functions x
0 
(t), h 1 (t), h 2 (t) and f(t, x, Y, z) 

satisfY the conditions (I) - (X). Then the problem (1) - (1') has a 

solution x(t) that is defined on some semi-interval (-h,H] (H > 0). 

there are many areas of physics and economics where 
We also mention that 

the fixed point theory is applicable. Many of the methods used are based , 
... -~- - - ~- -~- --· _--_·- · _·.· -, ·.·--- - .~- :·.~ __ .;·.~ -·::.-~:-•.:-~:.:.·.::;.-.:;·.·~o- -~--- -
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mainly on proving the convergence of the iterative sequence · {xn}, 

with X l = T (X ) • n+ ·· n There are many different ways of setting up an 

iteration scheme to obtain a fixed point of T, and which may converge 

faster than the iteration sequence xn+l = T(xn). For example, we may 

replace T by TX (see chapter III) or we may take the mapping 

t 112 x112 (if this is defined). Another method is Newton's method (suitably 

extended to infinite dimensional spaces). 
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