
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Pennission)

1+1 National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and
Bibliographic Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
dissertation.

Canada

Your file Votre reference
ISBN: 0-612-93061-0
Our file Notre reference
ISBN: 0-612-93061-0

L'auteur a accorde une licence non
exclusive permettant a Ia
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
Ia forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve Ia propriete du
droit d'auteur qui protege cette these.
Ni Ia these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ant ete enleves de ce manuscrit.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

A Database Management System to Support the Instance-based Data

Model: Design, Implementation, and Evaluation

by
Jianmin Su

A thesis submitted to the School of Graduate Studies
in partial fulfillment of the requirements for the degree ofMaster of Computer Science

Department of Computer Science
Memorial University

May2003

St. John's Newfoundland

Abstract

The instance-based data model (IBDM) was recently proposed by Parsons and Wand
[2000]. One of the key contributions of this model is class independence. The IBDM
separates the storage of information about instances from the organization of a schema
using classes. This thesis transforms the IBDM from concept to real world
implementation. It develops and analyzes possible base data structures for implementing
an instance-based DBMS, and creates a flexible query language iQL (instance-based
query language) for the data model. Two proofs of concept DBMSs are implemented (one
for each of two base data structures) in order to test and verify the analytical results of the
research. Also, the instance-based database model is compared with the relational
database model to obtain a clear understanding of the advantages provided by the
instance-based database model.

ii

Acknowledgment

First I want to thank Dr. Jeffrey Parsons for being my advisor. Under his guidance, I
successfully overcame many difficulties and learned a lot about data modeling. I still
remember the time when I began my research in Fall 2001 . In that semester, we
communicated every week. In each meeting, he explained my questions patiently, and I
felt my quick progress from his advise. I am also thankful that he spent time to proofread
this thesis to reduce my mistakes in grammar.

Second I want to thank Ms. Elaine Boone. She always helped me a lot, either in my study
or my life. Also, I want to thank Ms. Jane Foltz for she, as a head of the department,
kindly helped me.

Special thanks to Dr. Krishnamurthy Vidyasankar, Dr. Manrique Mata-Montero, Dr.
CaoAn Wang, Dr. Siwei Lu, Dr. Paul Gillard, and Dr. Miklos Bartha. With their kind help,
I learned much during my program.

Thanks to all computer science staff. Without their help, I could not finish my program.

Finally, I want to thank my family, especially my wife and my son. Without their endless
support and love for me, I would never have achieved my current position. I wish they
live happily always.

iii

TABLE OF CONTENTS

Abstract 11

Acknowledgments Ill

Table of Contents lV

List ofTables Vll

List of Figures Vlll

1 Introduction 1

2 Fundamental Concepts of the Instance-based Model 5
2.1 Fundamental Concepts of Ontology 5

2.1.1 Things and Properties 5
2.1.2 Classes 6

2.2 Fundamental Instance-based Model 7
2.2 .1 Basic Principles Underling the Instance-based Model 7
2.2.2 Two-layered Model 8

2.3 Basic Differences between Instance-based and Class-based Models 9
2.3 .1 Instances Are Independent of Classes 9
2.3.2 Instances in a Class May Possess Different Properties 10

2.4 Summary 11

3 Base Data Structures for an Instance-based Database 12
3.1 Base Information in Each Layer in the Instance-based Database 12
3.2 Methods for Storing Data in the Instance-based Data Model 12

3.2.1 Instance Layer 13
3.2.2 Class Layer 14

3.3 Base Data Structures 15
3.3.1 First Base Data Structure 15
3.3.2 Second Base Data Structure 17
3.3.3 Third Base Data Structure 20

4 Comparing Data Operation in Each Base Data Structures 27
4.1 Environment of Comparison 28

iv

4.2 Comparison of Query Complexity 30
4.2.1 Properties that an Instance Possesses (Form) 31
4.2.2 Instances that Possess a Property (Scope) 32
4.2.3 Instances Linked by a Given Mutual Property 32
4.2.4 Instances that Share a Mutual Property with a Given Instance 32
4.2.5 Instances that Belong to a Class 33
4.2.6 Classes to which an Instance Belongs 35
4.2. 7 Query in the Class Layer 36

4.3 Comparison ofUpdate Complexity 38
4.3.1 Insert or Delete an Instance 38
4.3 .2 Update an Instance Property Value 41
4.3 .3 Delete or Insert a Property of an Instance 41
4.3.4 Delete a Property from a Database 44
4.3.5 Update a Property in a Class 46

4.4 Summary 47

5 Choosing Base Data Structures 49
5.1 Mathematical Models for Choosing Base Data Structures 49
5.2 General Methods for Choosing Base Data Structures 52

5.2.1 Database is Very Small 52
5.2.2 Query Operation Dominate 53
5.2.3 Update Operation Dominate 56

6 iQL Language 58
6.1 Query 59

6.1.1 SQL-like Query Capability 59
6.1.2 Unique Query Capability 63

6.1.2.1 Property Query 63
6.1.2.2 Limited and Unlimited Query 64

6.2 Rules for Implementing Unlimited Query 66
6.3 Query Implementation 7 4
6.4 Update 78
6.5 Rules about Update 80

7 Implementing, Testing and Comparing 84
7.1 Implement an Instance-based Database System 84

7 .1.1 Programming Languages for the Implementation 84
7.1.2 Structure oflnstance-based DBMS 84
7.1.3 Steps for Implementing an Instance-based Database System 88

v

7.2 Implement two Database Systems Using two Base Data Structures 89
7.3 Testing 91
7.4 Implementing Mutual Properties 92
7.5 Comparing two Database Systems 97
7.6 Efficient Query and Update Methods 101

8 Comparison of Relational Database Model with Instance-Based Database Model107
8.1 Comparison in the Database Design Process 107

8.1.1 Differences in Requirements Collection and Analysis 107
8 .1.2 Differences in the Conceptual Schema Design 108
8.1.3 Differences in the Data Model Mapping 110
8.1.4 Differences in the Database Implementation 111

8.2 Comparison in the Database Management and Application 113
8.2.1 The Range that a Database System Managed 113
8.2.2 Managing Temporal Data 114
8.2.3 Merge Capability 115
8.2.4 Ability to Manage Instance-specific Data 116
8.2.5 Support for Multiple Views 117

9 Conclusion and Extensions
References
Appendix 1 Date Stored By the Sample Database
Appendix 2 Some Results of the Test

vi

119
121
124
128

List ofTables

Number page

Table 1 The denotation of the instance-based database 30
Table 2 Query in the instance layer 37

Table 3 Query between two layers 37

Table 4 Query in the class layer 37
Table 5 Update instance or property values of an instance 48

Table 6 Insert or delete a property in a database 48

Table 7 The denotation of the operations of database 50

Table 8 iQLqueries 79
Table 9 Update operation 83

Table 10 Results of a query involving a mutual property 97

Table 11 Test of queries (types shared with the relational model) 99
Table 12 Test of special queries of the instance-based model 100

Table 13 Test ofupdates 100
Table 14 Results of reducing the effect of checking 101
Table 15 Results of high efficiency test 104

vii

List of figures

Number page

Figure 1 First base data structure 16
Figure 2 An example of the first base data structure 18
Figure 3 Second base data structure 19
Figure 4 A example of the second base data structure

20
Figure 5 Third base data structure 21
Figure 6 An example of the third base data structure 24
Figure 7 First example of other possible base data structures 25
Figure 8 Second example of other possible base data structures 26
Figure 9 Third example of other possible base data structures 26
Figure 10 An example of the database where there exists a 'Covering' problem 68
Figure 11 An example ofthe database where there exists a 'Order' problem 71
Figure 12 Methods for mutual properties select 71
Figure 13 An example of the database having 'Range' problem 73
Figure 14 A direct linked mutual property 73
Figure 15 An example of results of unlimited query 76
Figure 16 Instance-based DBMS structure 85
Figure 17 Mutual property Supervise 93
Figure 18 Instances change their state by acquiring a mutual property 95
Figure 19 Comparison of two database systems 101

viii

A Database Management System to Support the Inst<ll.'1ce-based Data Model: Design, Implementation, and Evaluation

Chapter 1

Introduction

Database theory has developed with the growth of computing applications. Database

systems have evolved through three main generations. They are hierarchical database

systems, network database systems, and relational database systems. Since Codd's

seminal article [Codd 1970], database theory and implementation has evolved

significantly. Many database models have appeared since that time. The Relational Data

Model is the basis of most commercial database management systems (DBMS) currently

in use. In addition, in the past decade, a number of object-oriented (00) database

languages have been proposed (e.g., [Maier 1986] [Albano, Ghelli, and Orsini 1995]).

However, 00 DBMSs have yet to achieve wide spread adoption in practice.

Most of the data models that underlie today's DBMSs are class-based, which means

that the data models assume that the instances (e.g., tuples or objects) must belong to

classes. In a class-based model, information about instances is stored according to the

classes to which they belong. This leads to two categories of problems-either related to

design or related to implementation. The design problems include: multiple classification

problem, v1ew integration problem, schema evolution problem, and interoperability

problem. The implementation problems (operation problems) include: handling

exceptional instances problem, reclassifying instances problem, adding and removing

By Jianmin Su 03-9-2

instances problem, removing a class problem, and redefining a class problem [Parsons

ahd Wand 2000].

The two layered . data model (referred to in this thesis as the "instance-based data

model") [Parsons and Wand 2000] was proposed to address the problems listed above.

This model is based on ontological and cognitive principles. It supports instances

independent of any class. Using this feature, the instance-based data model (IBDM)

allows' the classes in the class layer to be changed at any time without causing any

instance information to be lost. This is in contrast to class-based data Ihodels, in which

anyc lass update operation may cause loss of some instances or information about the

properties of insta:rices. Also, the IBDM resolves or reduces the design problems

mentioned above.

Parsons and Wand proposed the instance-based data :model and suggested some

methods of implementing this model. Iri this · thesis, we continue their research and focus

on developing ahd evaluating methods of implementing the instance-based data model.

We develop some efficient accessing methods for the instance model. We also develop the

basic rules of implementing the instance-based model. This research explores and paves

the way for the instance-based data model database to progress from concepts to real

world implementation. The research develops and analyzes possible base data structures

for implementing an instance-based database. It also develops some methods for an

instance-based data model database, to design and implement an instance-based database

2

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

management system based on the model. The research shmvs that the instance-based data

model can be supported in a real world DBMS implementation, and also demonstrates the

methods for the instance-based data model DBMS design and implementation. The thesis

includes three major parts:

1. Analyze the base structure

In this part of the thesis, we focus on analyzing possible approaches to implementing an

instance-based DBMS. This includes the following tasks:

e analyze what will be stored in each layer of the instance-based database;

e identify possible base data structures for implementing an instance-based

database;

e compare the computational complexity of each base data structure in the

instance based database under various types of update and query operations.

The research provides a method for choosing the base data structure to implement a

certain instance-based DBMS in chapter 5.

2. Analyze and implement DBMS operations

In this part, we focus on methods for implementing a DBMS to support the IBDM.

According to the theory of this model, we

• describe potential operations in the instance-based DBMS;

• develop a language (iQL) for the instance-based DBMS;

3

By Jianmin Su 03-9-2

• analyze methods for implementing the commands of iQL m the

instance-based DBMS;

e develop some rules for implementing some special quenes of the

instance-based DBMS to resolve ambiguities on these queries.

3. Implement using two base data structures and evaluate

In this part, we implement two instance-based DBMS versions using two different base

data structures. We then compare the two database systems to validate the analysis results

ofthe preceding two parts. We also compare iQL (instance-based query language) query

commands with SQL query commands to demonstrate how the IBDM has some

advantages.

The thesis ptoceedsas follows. Chapter 2 provides an overview ofthe concepts of the

instance-based model. Chapters 3-5 analyze the possible base structures and give a

general method to choose these structures when designing a database system. Chapter 6

discusses how to implement the commands of iQL in the instance-based model. Chapter 7

then implements two database systems and compares them. Chapter 8 discusses some

differences between the instance-based model and the relational model. Chapter 9

discusses some conclusions and suggestions for further work.

4

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

Chapter 2

Fundamental Concepts of the Instance-based Model

The instance-based model is based on the ontology of Bunge [Bunge 1977; 1979]. It does

not rely on the concepts of inherent classification, which is fundamental to class-based

models, such as the relational and 00 models. This chapter reviews some important

concepts of the instance-based model, based on Parsons and Wand [Parsons & Wand

2000].

2.1 Fundamental Concepts of Ontology

2.1.1 Things and Properties

Postulate: The world is made of things that possess properties.

By ontology, things can be concrete or conceptual. So the word "thing" refers either to a

specific object that exists in physical reality, or to anything perceived in someone's mind.

Ontology also postulates that there are no things without properties, and that properties

are always attached to things. It is also important to recognize that not having a property

is not a property.

There are two types of properties. Intrinsic properties depend on one thing only.

Mutual properties depend on two or more things. In fact, an intrinsic property describes a

thing its'elf, while a mutual property describes a relation between things. For example, the

5

By Jianmin Su 03-9-2

color of a person's hair is an intrinsic property. However, 'a person is a professor; is a

mutual property, since it depends on the existence of both a person and a faculty. It cannot

belong to a person if the faculty does not exist.

An ontological principle connects the existence of a thing with its properties:

Principle: No two things possess exactly the same set of properties.

Whether a property (either intrinsic or mutual) of a thing exists is not decided by huma11.s.

However, when people refer to a property of things, there are two meanings: one is that it

is possessed by some things, another is people realize a property (or a set of properties)

and define this property (or a set of properties) of things as the property (common

property) that people call. In the ontology, this property (comnion property) is called an

Attribute (by ontology, an attribute is a characteristic assigned by people to things and

usedto model a thing). In this thesis, consistent with the concepts of the Parsons and

Wand [2000] in the instance-based model, we also call this common property a property,

but in fact, after this section, any property we refer to is an attribute (unless otherwise

indicated).

2.1.2 Classes

The concept of a class is widely used in our life. People refer to classes without conscious

thought [Parson and Wand 2000]. For example, when we refer to 'Students', 'Birds', or

'Bread' we refer to classes. A class is a set of things possessing a finite set of common

6

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

properties (these are real properties). Things can have one or several properties m

common.

Definition: A set of things T is a class if and only if there exists a finite set of

properties P that is possessed by all members ofT.

This section introduced some basic concepts of the ontological theory. Based on these

principles, We will introduce the concepts ofthe instance-based model.

2.2 Fundamental Instance-based Model

2.2.1 Basic Principles Underling the Instance-based Model

The instance-based model depends on the ontological and classification theory views. The

basic principles of this model (taken from Parsons and Wand [2000]) are as follows:

Representation Principle 1: The world is viewed as made of things that possess

properties.

Representation Principle 2: Classes are abstractions created by humans in order to

describe useful similarities among things.

Two conclusions can be derived from the above principles. They are also the bases of the

instance-based model.

Corollary 1: Recognizing the existence of things should precede classifying them.

Corollary 2: There is no single "correct" set of classes to model a given domain of

instances and properties. The particular choice of classes depends on the application.

7

By Jianmin Su 03-9-2

The basic principles and the conclusions let us recognize that instances exist

independent of any classes. This is the fundamental idea underlying the IBDM.

2.2.2 Two-layered ModeJ

Based on the two principles and their corollaries, the instance-based model proposes a

two'"layeted approach to information modeling, each layer assuming responsibility for

representing different ·aspects of a domain. The instance layer represents instances and

. their properties. The class layer describes how the things are classified for certain

purposes. Each layer stores information and implements operations as follow:

Instance layer: consists of the instances and their properties necessary to model a

particular domain. The operations on the instance base provide the capability to create,

maintain, and examine information about the domain of instances.

Class layer: consists of classes that describe similarities among instances in the

instance base in terms of their shared properties. The operations on the class base provide

the capability to create, maintain, and examine the classes in the class base. Some of these

operations rhay invoke operations on the instance base.

This two-layered model or instance-based model follows the representation principles

listed above. First, since the instance layer exists independent of the class layer and an

instance stores all information itself, in this model an instance's existence is independent

and individual. And since all instances store all information of the real world in the

8

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

database, it reflects Representation Principle 1. Second, since the class layer only stores

the information about class definitions (in terms of properties), a class's existence does

not affect any instance in the instance layer. In addition, a class definition must refer to

the information in the instance layer (we will discuss this in chapter 7). A class can be

defined only if things exist. Thus, the relevant properties must exist in the instance layer.

Iri addition, there must be instances that possess the properties defining the class.

Otherwise, we cannot define this class in this model. This reflects Representation

Principle 2.

The next section discusses some differences between the instance-based model and

class-based models.

2.3 Basic Differences between the IBDM and Class-based Models

Class-based data models are dependent on two corollaries: (1) We identify every thing by

a specific class to which it belongs; (2) There exists a preferred set of classes to describe a

domain. In a class-based data model, all information about instances is stored in classes.

There are no instances that remain unclassified and all instances in a class possess the

same properties specified in the class definition. However, in the instance-based model,

although there are also instances and classes, the conception is not same. A class is only

defined by some common properties of a set of instances. So there are two basic

differences between the two models.

9

By Jianmin Su 03-9-2

2.3.1 Instances Are Independent of Classes

One basic difference between the instance-based model and the class-base models is that

the former supports instances independent of classes. In the instance-based model, the

class layer only stores the information defining the class in terms of properties, no

information about instances is stored in the class layer. An instance belongs to a class

only if it possesses a subset of properties that match the class definition. Therefore, in the

instance-based model, whether or not a class exists in the class layer has no effect in the

instance layer.

2.3.2 Instances in a Class May Possess Different Properties

The second basic difference is that, in the instance-based model, instances may possess

some different properties even if they belong to same class. Because all information about

an instance is stored in the instance layer, an instance automatically belongs to a class if

and only if the instance possesses all properties in the class definition. So different

instances may have different properties whether or not they are in same class. This

corresponds to the way people use classification in day-to-day life. For example, when

people refer to a class 'employee', it means 'all people employed by some company' .

These people will have some different properties. Some of them may have some special

skills, others may not have these special properties. But when we say 'employee', they

are all included. This is in contrast with class-based models, in which an instance only

10

A Database Management System to Support the instance-based Data Model: Design, Implementation, and Evaluation

possesses the properties defined in the class to which it belongs, instances do not possess

"extra" properties. Consider the above example of a class 'employee' in a class-based

model. If the class does not have a definition that includes the skills possessed by

employees, then retrieving an instance of this class cannot provide information about

skills even if this instance possesses (in the real world) certain skills.

The two basic differences produce very different results between the instance-based

model and the class-based models. For example, in the instance-based model it is possible

both that some instances do not belong to any class, and that other instances belong to

more than one class. In contrast, in class-based models an instance must belong to a class,

and instances generally do not belong to more than one class unless those classes are

subclasses of a common superclass.

2.4 Summary

The basic differences between the instance-based model and class-based models are that

the instance-based model recognizes first that things exist, and second that classes reflect

how humans organize their know ledge about the common properties of individual things.

11

By Jianmin Su 03-9-2

Chapter 3

Base Data Structures for an Instance-based Database

In this chapter we discuss what information will be stored in each layer of the

instance-based database model, and propose several base data structures that can be used

in this model.

3.1 Base Information in Each Layer in the Instance-based Database

According to the definition of the instance-based model, the two layers are an instance

layer and a class layer. All instance information is stored in the instance layer. The class

layer stores only the class information. So in the instance layer only information about

instances will be stored: normally, an instance identifier, intrinsic properties, and mutual

properties. In the class layer, only the class definition is stored.

3.2 Methods for Storing Data in the Instance-based Data Model

In the instance-based model, a two-layered implementation should provide a mechanism

(instance engine) for identifying instances. The properties possessed by instances can also

be identified by this mechanism. The mechanism is used for identifying that an instance

or a property is unique.

12

A Database Ma'l.agement System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

3.2.1 Instance Layer

There are at least two possible approaches to implementing properties in the instance

layer. One is to maintain each instance as a list, consisting of the instance identifier,

followed by a set of the pointers to the properties that the instances possesses. An intrinsic

property can also be maintained as a list, consisting of the property identifier, followed by

a set of pairs consisting of the instance identifier and the value of the property for this

instance. This base data structure can be simply denoted as follows:

instance identifier {property pointers}

property identifier {(instance identifier, value)}

Another method is to maintain only a part of the above base data structure, that is,

maintain each intrinsic property as a list, consisting of the property identifier, followed by

a set of pairs consisting of an instance identifier and the value of the property for this

instance. This base data structure can be denoted as follows:

property identifier {(instance identifier, value)}

Similarly, there are two methods for storing mutual properties that parallel those

described above. Specifically, if two instances possess a mutual property together, we

combine their identifiers to construct a new identifier indicating the two instances are

related to each other using this mutual property (if more than two instances possess a

mutual property together, we also combine their identifiers to get a new identifier of the

mutual property). So the two base data structures for storing mutual properties can be

13

By Jianmin Su 03-9-2

denoted as follows:

First:

instance identifier {pointers to mutual properties}

mutual property identifier {(instance! identifier, instance2 identifier, value)}

Second:

mutual property identifier {(instance 1 identifier, instance2 identifier, value)}

Here, we only show a mutual property jointly possessed by two instances; if a mutual

property is jointly possessed by more than two instances, we can combine the identifiers

of all instances that jointly possess the mutual property to form a new identifier indicating

the instances are related to each other using this mutual property. For example, ifthere are

three instances that jointly possess a mutual property MPl, then we store this mutual

property in the form: MP 1 {(instance 1, instance2, instance3, value)} . If there are more

than three instances jointly possessing a mutual property, the same approach is used.

Since there is no difference in the methods used to store intrinsic properties and

mutual properties in the instance-based model, the word "property" may be used hereafter

to refer to either an intrinsic or a mutual property.

3.2.2 Class Layer

There are also at least two possible approaches to store classes in the class layer of the

instance-based model. First, we can maintain a class as a list, consisting of the class name

14

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

(if class name is unique in class layer) or class identifier followed by the set of property

pointers that this class possesses. We denote this approach as follows:

Class name {property pointers}

Second, classes may be used to store both the properties the class possesses, and the

instances. This means storing the class name or class identifier followed by two sets- a

property pointer set and an instance identifier set. Properties or instances in the respective

sets are possessed by the class. This method can be denoted as follows:

Class name ({property pointers}, {instance identifiers})

We have discussed the data storage methods at each layer of the instance-based

model. In the next section, we discuss combining these methods to form base data

structures of this model.

3.3 Base Data Structures

3.3.1 First Base Data Structure

The first base data structure model is depicted in Figure 1. In this approach, we store each

instance in the instance layer as an instance identifier followed by two sets: an intrinsic

property pointers Set and a mutual property pointers set. In addition, we store each

intrinsic property by an identifier followed by a set of pairs of (instance identifiers, value),

and each (binary) mutual property by an identifier followed by a set of triples of

(instancel identifier, instance2 identifier, value). In most cases, the two instance

15

By Jianmin Su 03-9-2

Figure 1: First base data structure

16

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

identifiers can combine to form an identifier of the two instances jointly possessing the

mutual property (for example, the easy way is using one instance identifier followed by

another instance identifier to construct a identifier of the mutual property). So a mutual

property can be expressed as a (binary) mutual property identifier followed by a set of

pairs of (identifier, value). Finally in the class layer, we store, for each class, the class

name or class identifier followed by a property pointers set. We call this base data

structure the first base data structure.

Figure 2 depicts a simple database organized according to this structure. There are

three instances: instance 1, instance 2, and instance 3. Instance! possesses property!,

property2 and property3. Instance2 possesses property! and property3. Instance3

possesses propertyl and property2. Instance! and instance2 jointly possess

mutualpropertyl, instance2 and instance3 also jointly possess mutualpropertyl. There are

two classes: classl and class2. Each class has some intrinsic properties and mutual

properties in its definition: classl is defined by intrinsic properties propertyl and

property2, and mutual property mutualptopertyl; class2 is defined by intrinsic properties

property! and property3, and mutual property mutualpropertyl.

3.3.2 Second Base Data Structure

The second base data structure model is depicted in Figure 3. In this approach, we store

an intrinsic property identifier followed by a set of pairs of (instance identifier, value),

17

By Jianmin Su 03-9-2

and a (binary) mutual property identifier followed by a set of triples of (instance!

identifier, instance2 identifier, value). As in the first data stmcture, the two instance

identifiers can combine to form an identifier of the two instances jointly possessing the

Instance layer

instance 1 instance 2 instance 3

property l-ID property l -ID property 1-ID

property 2-ID property 3-ID property 2-ID

property 3-ID mutualpropertyl-ID mutualproperty 1-ID

mutual property 1-ID

mutual property 1 property 1 property 2 property 3

instance l-ID instance2-ID value instance 1-ID value instance 1-ID value instance 1-ID value

instance3-ID instance2-ID value instance2-JD value instance3-ID value instance2-ID value

instance3-ID value

Class Layer

class 1 class 2

property l-ID property l-ID

property2-ID property3-ID

mutualpropertyl-ID mutual property l-ID

Figure 2: An example of the first base data structure

18

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

Instance layer

Figure 3: Second base data structure

19

By Jianrnin Su 03-9-2

mutual property. So a mutual property can be expressed as a (binary) mutual property

identifier followed by a set of pairs of (identifier, value). As in the base data structure 1,

we store the class name or class identifier followed by a property pointer set in the class

layer. We call this base data structure the second base data structure.

Figure 4 depicts the same database contents as figure 2, but organized according to

the second base data structure.

Instance layer

mutual property 1 property I

instance 1-ID instance2-ID value instance l-ID value

instance3-ID instance2-ID value instance2-ID value

instance3-ID value

Class layer

class 1

property l -ID

property2-ID

mutualproperty I-ID

property 2

instance l-ID value

instance3-ID value

class 2

property l-ID

property3-ID

mutualpropertyl-ID

property 3

instance l -ID value

instance2-ID value

Figure 4: An example of the second base data structure

20

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

Figure 5: Third base data structure

21

By Jianmin Su 03-9-2

3.3.3 Third Base Data Structure

The third base data structure model is depicted in Figure 5. In this approach, we store for

each instance in the instance layer an instance identifier followed by two sets: an intrinsic

property pointers set and a mutual property pointers set. In addition, we store an intrinsic

property identifier followed by a set of pairs of (instance identifiers, value), and a (binary)

mutual property identifier followed by a set of triples of (instance! identifier, instance2

identifier, value). As in the above approaches, the two instance identifiers can combine to

form ah identifier of the two instances jointly possessing the mutual property. So a mutual

property can be expressed as a (binary) mutual property identifier followed by a set of

pairs of (identifier, value). For each class, we also store the class name or class identifier

followed by two sets: a property pointer set and an instance identifier set. In this case, the

first set is the definition of the class. The second set is the set of all instance identifiers of

the instances that belong to this class. We call this base data structure the third base data

structure.

Figure 6 depicts the same database contents as shown m Figure 2 organized

according to the third base data structure.

From the above analysis, we know that since an instance-based DBMS must support

two independent layers, the instance layer and the class layer, any base data structure used

by such a DBMS must store the information of instances and classes separately. In each

of the above three base data structures, the database is stored in two parts: an instance

22

A Database Management System to Support the Instance-based Data Model: Design, Impiementation, and Evaluation

layer that stores instance information and a class layer that stores class information.

Based on these requirements of the base data structure, other possible structures are

depicted in Figilres 7 to 9; however, they have no advantages for implementing the

instance-based modeL The structure shown in figure 7 cannot be directly implemented

because any programming language used to implement an instance-based DBMS stores

data based on the basic data types supported by the language. We only have methods for

storing data with a single known data type in a structure. There is no efficient method that

stores data of different data types to one structure directly. If we store data as in Figure 7,

since the types of the properties may be different, different instances may need different

structures to store. But before an instance is entered into a database we do not know

which types of data (properties) will be in the instance structure. For example, suppose

we store the instances· as Figure 7, and each instance possesses several properties. Since

different properties may have different types, they may need a different number of bits to

store. For instance, an instance may possess the first property as a string type and the

second property as an integer. However, another instance may possess properties that are

all decimal fractions. Therefore, if storing the instance identifier followed by a set of pairs

of property identifier and value in one file, there is no way to indicate the beginning of the

second property of an instance. Even if we set the space for storing the first property as

equal to the length of biggest property of the database, the problem still exists. In the

future, we may add a property the length of which is longer than any property that existed

23

By Jianmin Su 03-9-2

Instance layer

instance 1 instance 2 instance 3

property l-ID property l-ID property l-ID

property 2-ID property 3-ID property 2-ID

property 3-ID mutual property 1-ID mutualproperty 1-ID

mutualpropeityl-ID

mutual property 1 property 1 property 2 property 3

instance1 -ID instance2-ID value instance 1-ID value instance1-ID value instance 1-ID value

instance3-ID instance2-ID value instance2-ID value instance3-ID value instance2-ID value

instance3-ID value

Class layer

class 1 class 2

property 1-ID property l -ID

property2-JD property3-ID

mutual property 1-ID mutual property l-ID

instance l -ID instance 1-ID

instance2-ID instance3-ID

Figure 6: An example of the third base data structure

in the database after setting the space of the first property. We call this problem the

unknown structure problem. It is difficult to access data that has an unknown structure in

current programming languages. The structure shown in Figure 9 has the same problems

24

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

as in Figure 7. Therefore, we only consider the first three data structures in the remainder

of this thesis.

Instance layer

instance I

property 1

property 2

property 3

value

value

value

class 1

property l

property 2

instance 2

property 1 value

property 3 value

Class layer

class 2

property 1

property 3

instance 3

property 1 value

property 2 value

Figure 7: First example of other possible base data structures

The three base data structures are methods that can be used to store data in a DBMS

that supports the instance-based model. However, choosing the best structure to support

an instance-based DBMS is not trivial, since the relative efficiency of updates and queries

varies between the base structures. The next chapter compares the three base data

structures by analyzing the complexity of update and query operations.

25

property 1

instance 1

instance 2

instance 3

By Jianmin Su 03-9-2

property I

instance I value

instance 2 value

instance 3 value

class 1

property 1

property 2

instance 1

instance 3

Instance layer

property 2 property 3

instance 1 value

instance 3 value

instance l value

instance 2 value

Class layer

class 2

property 1

property 3

instance 1

instance 2

Figure 8: Second example of other possible base data structures

property 2

instance 1

instance 3

Instance layer

property 3

instance I

instance 2

instance 1

property 1 value

prope1ty 2 value

property 3 value

instance 2

property 1 value

property 3 value

Class layer

class 1

property 1

property 2

class 2

!Property I

property 3

instance 3

property 1 value

property 2 value

Figure 9: Third example of other possible base data structures

26

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

Chapter 4

Comparing Data Operation

in Each Base Data Structures

The previous chapter identified three potential base data structures for implementing an

instance-based DBMS. Each has its advantages. The first data structure can query

instances faster than the second one. The second data structure enables properties to be

deleted faster than first one. The third data structure is better than the first or second one

for queries about instances that belong to some classes. But the third data structure is not

good for updating instances or properties (since we need to maintain the integrity of a

database). These are general conclusions from our data structure knowledge. However, to

select the most suitable data structure when designing a database system, we must analyze

the operations that will apply in this system.

In this chapter we first give some assumptions for comparing the three base data

structures, then compare the cost of each type of operation in different base structures. In

the instance-based model, database operations are of three types: the first involves queries

in the instance layer, the second involves queries bet"W'een two layers, and the third

involves update operations in database. Our comparison is likewise divided into three

parts.

27

By Jianmin Su 03-9-2

4.1 Environment of Comparison

For ease of comparison, some environment variables in an instance-based database need

to be assumed 1•

In the instance layer, we first assume that for each base data structure, the database

always stores this structure using a B+ tree [Comer 1979] [Bayer and Unterauer 1977]

[Knuth 1973], which means it uses a B+ tree to store each type of data. That is, in a system

based on the first or third base data structure, its instance layer will include three

directories: the instance directory that includes all instance files, and each instance file

stores the instance identifier followed by the pointers to the properties possessed by this

instance; the property directory that includes all property files, and each property file

stores the property name followed by a set of (instance identifier, value) pairs for the

instances possessing the property; the mutual property directory that includes all mutual

property files, and each mutual property file stores the mutual property name followed by

a set of pairs of an identifier (two instance identifiers combine to form it) and a value of

the two instances jointly possessing the mutual property. In each directory, all files are

stored as a B+ tree. Also, any file itself stores the elements in it as a B+ tree.

In an instance-based database system based on the second base data structure, the

instance layer includes only two directories: the property directory and the mutual

1. The results that each operation needs time on each base data structure depend on these assumptions.

However, the comparative results of this chapter do not depend on them.

28

A Database Management System to Support the l.nstance-based Data Model: Design, Implementation, and Evaluation

property directory. We assume the structure of each directory is as described above.

In the class layer the assumptions are the same. Classes are stored in a B+ tree, and

each class also uses a B+ tree to store its elements. That means in an instance-based

system using the first or second base data structure, we store all class files in one directory,

the class directory, as a B+ tree. Each file stores only a class definition. Also, the structure

of each file stores the class definition (property pointers) as a B+ tree. However, in a

system based on the third base data structure, a class file includes two parts: one is the

class definition, another is a set of identifiers of the instances belonging to the class.

Therefore, in this base data structure, there are two B+ trees in one class.

Here, we assume everything is stored as a B+ tree. Of course, in a real instance-based

database, instances or classes may not be stored as a B+ tree. They may be stored as a

hashing table [Knuth 1973], a linked list, or any other data structures (e.g., grid file

structure [Nievergelt 1984]). The assumptions here only provide a unified enviromnent

for the comparison.

We also assume that the memory of the system is big enough to contain one node

datum, that is B (B is the node size). In addition, we assume that all the data types are the

same as the data type of the instance identifier. We use the access algorithm proposed in

[Kanellakis 1996].

Before beginning the comparison, we introduce some notation for our analysis.

Let (X, P) denote the instance base where X is a set of instances and P a set of properties

29

By Jianmin Su 03-9-2

possessed by instances in X. The average number of properties possessed by an instance

in X is denoted by lp. The number of instances in the database is Id. The average number

of instances possessed by a class is C1• The average number of instances possessing a

property in P is denoted by P1. The number of properties in the database is Pd. f.J

denotes the power set of a set. A class is defined by a subset of properties: Ce f.J (P). The

class base is a set of classes. The average number of properties in a class is denoted by Cp.

The number of classes in the database is Cd.

This notation is summarized in tablel.

Table 1 The denotation of the instance-based database

Symbol Denotation

Id The number of instances in the database

Ip The average number of properties possessed by an instance in the database

pd The number of properties in the database

Pr The average number of instances possessing a property in the database

cd The number of classes in the database

Cr The average number of instances possessed by a class

Cp The average number of properties in a class defmition

4.2 Comparison of Query Complexity

The queries in the instance layer are the following: properties that an instance possesses

(Form of a instance); instances that possess a certain property (Scope of a property);

instance pairs linked by a given mutual property (Lscope); instances that are linked with a

30

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

given instance via a given mutual property (Llnst) [Parsons and Wand 2000].

4.2.1 Properties that an Instance Possesses (Form)

This operation is called Form in the instance-based model. The form ofx EX is a function

Fortn: x~ ,f.J(P) such that Form (x)={ p EP I X possesses p }. In the different base data

structures, the operations for implementing the function Fonn(x) and the corresponding

complexity are as follows.

1.1 In the first data structure (DSl, refer to Figure 1), the operations are as follows. First,

find this instance in the database, this needs time loglct. Then, get the pointers of the

properties this instance possesses, this needs time lp/B. The last step is to get the

values of every property the instance possesses. For each property, this step needs to

find this property, then get the value according to the instance identifier. The time

needed is logP ct+logP1. So, to get values of all the properties of this instance requires

time Ipx(logP ct+logPr). Therefore, the total time required for the Form operation in

DSl is: loglct+ lp/B+ lpx(IogPct+logP1).

1.2 In the second data structure (DS2, refer to Figure 3), the operation must retrieve all

properties to determine whether or not each property is possessed by the instance, so

this operation needs time P ctxlogP1•

1.3 In the third data structure (DS3, refer to Figure 5), the data structure is the same as

DS 1 in the instance layer, so the query time is the same as DS 1; that is, logict+ lp/B+

31

By Jianmin Su 03-9-2

4.2.2 Instances that Possess a Property (Scope)

This operation is called Scope. The scope ofP EP is a function Scope(P):

P~ go (X) such that Scope (P)= { x EX I x possesses P } . In all three data structures, to

perform this query, it is necessary to first find this property in the database (the time is

logP ct), then get all the instances that possess this property (the time is P1/B). So this

operation needs time logP ct+Pr/B.

4.2.3 Instances Linked by a Given Mutual Property

This operation is called Linked Scope. The linked scope of a mutual property P E P is a

function LScope(P): P~ p(X) such that LScope(P)={S E p(X) I P is a mutual property

of all x E S}. Since mutual properties are stored by the same structure in the three base

data structures, the time needed for this operation in each of the three data structures is

4.2.4 Instances that Share a Mutual Property with a Given Instance

This operation is called Linked instances. The linked instances of an instance x is a

function Linst: X 0 P ~ p(X) such that Linst(x, P)={y EX I Pis a mutual property ofx

and y}. As with the Linked Scope operation, in the three data structures, the time needed

for this operation is the same. Since a mutual property uses a combined identifier of two

32

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

instance identifiers, there is no method to decide which identifier we need unless we

retrieve all identifiers. So the operation is in two steps: find the mutual property (the time

is logP d) then get all identifiers (the time is P1/B). Therefore, this operation needs time

logP d+ Pr!B.

From the above, it is clear that for queries in the instance layer, the first and third data

structures are superior to the second one, since they are faster for querying an instance

form and are equivalent on scope and mutual property queries (when querying the

instance layer, if the first or third base data structures are not faster than the second base

data structure, they can use the same method as the second base data structure to query).

We next compare the data structures with respect to queries between the instance

layer and the class layer. There are two queries between instance layer and class layer:

instances that belong to a class, and classes to which an instance belongs.

4.2.5 Instances that Belong to a Class

Tlus operation is called Membership. The membership of a class is a function Mem:

C~ p(X) such that Mem(C) = {x EX I x EScope(P)VP EC}. The time required to

perform this operation is different in the three base data structures.

1. 1 In DS 1, the class does not store any information about instances. However, the

property information is stored in both the instance layer and the class layer. Therefore,

the following operations are required for the query. First, find the properties possessed

33

By Jianmin Su 03-9-2

by the class, i.e., query the class defmition. This involves finding the class first (the

time is logCd), then retrieving all property pointers in the class definition (the time is

Cp/B). Thus, this step requires time logCd+Cp/B. Second, for an instance it is

necessary to check whether it possesses each property in the class definition. If there

are some instances that possess all of the properties, then these instances belong to the

class. In the second step, it is not necessary to check all instances in the database. We

only check the instances that possess at least one property in the class definition. This

step uses the following method:

1. Get the set of instances that possess the first property in the class definition. That

is a scope of the property. It needs time logPd+P1/B;

2. Check whether an instance of the set possesses the second property in the class

definition. If any instance does not possess the property, delete it from the

instance set. For one instance, this check involves finding the property first (the

time is logPd), then checking whether the instance possesses the property (the

time is logPr). Therefore, to check all the instances (P1) in the instance set needs

time (logP d+logPI)xP1;

3. Check other properties in the class definition. Since only the (Cp-1) remaining

properties that in the class definition need to be checked, therefore, step 2 and

step 3 need time (Cp-l)x(logPct+logP1)xP1•

So, the second step need time is the sum of steps 1-3. That IS

34

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

(logP d+P1/B)+(Cr-1)x(logP ct+logP1)xP1. The total time needed for this operation is

the sum of the above steps:

1.2 In the second data structure, the operation is the same as the first one.

1.3 In the third data structure, the class stores a set of instance identifiers that all

instances belong to the class. So the query operation is to find the class in the class

layer (the time is logCct), then get the all instances that belong to this class (the time is

C1/B). So the time required for this operation is logCd+C1/B.

4.2.6 Classes to which an Instance Belongs

This operation is called Sort. A sort of an instance x EX is a function Sort: X~ go(C)

such that Sort(x) = {C EC I xis a membership of C} . The time needed in the three base

data structures is as follows.

1.1 In DS 1, it is necessary to compare all properties possessed by the instance with all

properties possessed by each class in the class layer. If there are some properties

possessed by this instance that constitute all the properties that define a class, then

this instance belongs to the class. It is necessary to check all classes in the class layer

to find the classes to which this instance belongs. The operation requires the

following steps. First, fmd the instance and get all property identifiers possessed by

the instance (the time is logict+Ip/B). Second, get all class definitions, this requires

35

By Jianmin Su 03-9-2

time CdxCp/B. The last step is to compare the property identifiers possessed by the

instance with each class definition. Since the property pointers in an instance and in a

class are all stored by a B+ tree, that we want to compare the two B+ trees. To decide

whether or not one is a subset of another between these B+ trees need time is Ip+Cp

[Cormen 1989]. Therefore, this step needs time Cdx(Ip+Cp). So the operation need

time is logid+lp/B+CdxCp/B+Cdx(lp+Cp).

1.2 In DS2, this query is more complex than in DS 1 because it is necessary to find the

properties possessed by an instance in the instance layer first. This step involves

querying the properties that an instance possesses. It is necessary to check all

properties to find which properties the instance possesses, so the time needed is

PdxlogP1. Then it is necessary to determine which classes this instance belongs to. The

second step is the same as the first data structure operation in the comparison step, it

needs time CdxCp/B+Cdx(Ip+Cp). Thus, the total time needed for this operation is

PdxlogP1+ CdxCp/B+Cdx(Ip+Cp).

1.3 In DS3, the class stores all instances that belong to the class. So the only operation is

to check all classes to find which class that to which this instance belongs. This

operation need time is CdxlogC1•

It is clear that the third base data structure is superior for querying the instances that

involved some classes.

36

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

4.2.7 Query in the Class Layer

There are two queries in the class layer: which classes possess a property and which

properties define a class. Because the information between class and properties in the

class layer is the same in the three data structures of the instance-based model, the time

needed in each data structure also is the same. In this case, query time of these two

queries has no effect on the results of our comparison.

The first query, query a class definition, only needs to find the class, then retrieve the

properties possessed by this class. This operation need time is logCd+Cp/B. The second

query, classes that possess a property, needs to check all classes to find which classes

possess this property. This operation need time is CdxlogCp.

This completes our comparison of the complexity of the basic query operations in the

instance-based database system. Tables 2- 4 summarize the results of the comparison.

Table 2:Query in the instance layer

Query Query properties that an instance possesses Query instances that possess a property

first data structure logld+ lp/8+ }px(logPd+logPr) logPd+P1/B

Second data structure Pd X logPr logPd+P1/B

third data structure logLJ+ lp/B+ Jpx(logP d+logPr) logPd+PriB

Table 3:Query between two layers

Query Query instances that belong to a class Query classes to which an instance belongs

first data structure logC.+C,JB+(logP,+P1/B)+(C,-J)x(logP,+logP1)xP1 logld+ lp/B+CdxCp/B+Cdx(Ir+Cp)

second data structure logc.,+C,JB+(logP ,+P1/B)+(C,- l)x(logP ,+logP1)x P1 PdxJogP1+ CdxCp/B+Cdx(lp+Cr)

third data structure logCd+CrfB CdX log C1

37

By Jianmin Su 03-9-2

Table 4:Query in the class layer

Query Query classes possess a property Query a class definition I
first data structure CdX logCp logCd+Cr/B I

second data structure CdX log Cp logCd+Cp/B

third data structure CdX log Cp logCd+Cp/8

From the above comparison, we find that the third base data structure is best for

querying operations. It is fast in queries that span the instance and class layers (Table 3),

and it is equivalent on other query operations with the first base data structure.

4.3 Comparison of Update Complexity

The second major type of comparison in the instance-based database involves update

operations in each data structure. There are three types of update operations: update an

instance or some property of an instance; update a property; and update a class. Next, we

compare the complexity of these operations under each of the three data structures.

4.3.1 Insert or Delete an Instance

Any insert or delete instance operation updates both the instance and also the properties

that the instance possesses. That means that when inserting a instance to a database, two

steps are needed: first, add the instance, that is a function Add_Inst ::=X --) Xu {x};

second, add properties to the instance, this is the function Add_Prop_Inst(x, P) ::= p(x)--)

p(x) u {P} , and add properties to the instance layer if the properties are not in the

database before, this is the function Add_Prop(P) P --) P u {P} . The converse

38

A Database Manage.ment System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

operation is the delete an instance operation, again with two steps: first, delete properties

of the instance, that is a function Del_Prop_inst (x, P)::= p(x)---) p(x)-{P}, and remove

properties from the instance layer if the properties are possessed by no other instances,

this is function Del_Prop(P) ::= P ---) P-{P}; second, remove the instance, that is a

function Rem_Inst(x)::=X4X-{x}. Since the data structure is different in the three base

data structures, the time required for these operations is different.

1.1 In DS 1, if inserting an instance, we need only to insert the instance to the instance

layer. This step includes two parts: first, insert instance identifier and the property

identifiers ofthese properties the instance possesses. This part need time is loglct+lp/B;

second, insert each value of each property possessed by the instance to the properties.

This part need time is lp x(logP ct+logP1) . So this operation need time is

Loglct+ Ir/B + Irx(logP ct+logPr).

If we want to delete an instance we need to first locate this instance in the instance

layer, which on average requires time loglct. Then, we need to get all properties that

the instance possesses, this step need time is Ir/B. Based on the properties the instance

possessed, delete each property value of the instance. That is, find each property (the

time is IrxlogP d), and delete each value of the instance (the time is IrxlogP1). Thus,

the total time is IrxlogP d+ IrxlogP1• If this instance is the last one that possesses a

property, then delete the property also. Finally, delete the instance file. Therefore, this

operation needs time is

39

By Jianmin Su 03-9-2

logid+ Ip/B + Ir x(logPr+logP d).

1.2 In DS2, if inserting an instance, we only need to insert the values of each property the

instance possesses to each of the properties, so the time needed is Ipx(logP d+logP1) .

To delete an instance, we need to check the whole instance layer to find the properties

possessed by this instance, then delete them. This operation needs time P dxlogP1•

1.3 In DS3, if inserting an instance, we also need two steps: first, insert the instance to the

instance layer which, like inserting an instance in DS 1, needs time logld+ I riB +

Irx(logP d+logP1). Second, we check whether this instance belongs to each class in the

class layer. If the instance belongs to any class, add its identifier to the class. For each

class, this step needs to compare this instance to the class (the time is Ip+Cr). If it

belongs to the class, insert its identifier to this class (the time is logC1). The total time

needed for one class in this step is lp+Cr+logC1. So, for all classes in the database, the

total time needed for the second step is Cdx(Ip+Cp+logC1). Therefore, the insert

operation needs time logld+ lp/B + Ipx(logPd+logP1)+ Cdx(Ip+Cp+ logC1).

The delete operation is more complex than in the other base date structures. We need

to delete the instance in both the instance layer and the class layer. So there are two

steps for this operation. The first is to delete this instance in instance layer, which is

the same as deleting an instance in DS 1. It needs time log~+Ip/B+Ipx(logP1+logP d).

The second step is to delete the instance identifier from the classes in the class layer to

which the instance belongs. This step checks all classes to determine whether the

40

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

instance identifier is in its instance identifier set, and if so, deletes it from the set. This

step needs time CdxlogC1• So this operation needs time

logld+lp/B+lpx(logPd+logPr)+CdxlogCr.

4.3.2 Update an Instance Property Value

In this case, the operation is only in the instance layer and the three data structures need

the same operation: find the property first, then find the instance value. The time needed

is logPd+ logPr.

The two above update operations are the same as in the relation database or the object

oriented database operation in that they are all value operations. That means any update

operation only changes the value of the database, either instance or property value. These

operations do not change the schema of the database. However, the following update

operations are not supported in either a relation database or an object oriented database.

These operations let the schema change without loss of information. These update

operations are compared next.

4.3.3 Insert or Delete a Property of an Instance

This operation is in the instance layer. The 'add a property to an instance' operation is a

function Add_Prop_Inst(x, P) ::= p(x) ~ p(x) u {P}. Of course, if the property does not

already exist in the instance layer, there is an additional operation at first: add the property

41

By Jianmin Su 03-9-2

to the instance layer. That is a function Add_Prop(P) ::= P --)> P u {P}. The opposite

operation is 'delete a property of an instance', that is a function Del_Prop_Inst(x, P) ::=

p(x) --)> p(x) - {P}. An additional operation, remove the property from the instance layer

is also needed if the property subsequently belongs to no instance, that is a function

Del_Prop(P) ::= P--)> P - {P}. The time needed for this operation is different in the three

data structures.

1.1 In DS 1, if inserting a property of an instance, there are two steps. First, insert the

property to the set of the property pointers that this instance possesses. This step

needs to find the instance first, then add the property. The time needed is logict+logip.

Second, insert the property value of this instance for this property. If no instance

possesses this property before, then add this property to the database first. This step

needs to fmd the property first, then add the value. The time needed is logP ct+logP1. So

the insert operation needs time

logict+ loglp+ logP ct+logPr.

There are also two steps in the operation for deleting. First, find the instance in the

instance layer, and delete the property pointer from the instance file; second, find the

instance identifier in the property file, and delete this (instance identifier, value) pair.

Of course, if this instance is the only instance that possesses the property, then we

need to delete this property at the same time we delete the value. The first step needs

time logict+ logip. The second step needs time logP ct+logP1. So the delete operation

42

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

needs time

logid+ loglp+ logP d+logPr.

1.2 In DS2, this operation is the same as 'update an instance property value' . In this data

structure, we do not care whether update is on the value or the schema itself, since

there is no difference in operations on the data structure. The time needed is also the

same as update an instance property value, which is logP d+logP1•

1.3 In DS3, there is a difference between updating a property value and updating the

property itself. In the third data structure, the class stores some instance identifiers in

the class layer. Therefore, if a property of an instance is deleted, this instance may no

longer belong to some classes. So if deleting an instance property, we must check all

classes to determine whether or not the instance still belongs to each class. If the

instance no longer belongs to a class, delete the instance identifier from the set of the

instance identifiers in the class. So for the third data structure, the delete operation

requires two steps. The first step is to find this property in the instance layer and

delete the property pointer in the instance file, then delete the pair (instance identifier,

value) in the property file. This step is the same as in DS 1. The time needed is logld+

logip+ logPd+logPJ. The second step is to check the instance in the class layer. For

each class, if this instance no longer belongs to the class then delete this instance

identifier from the class. This operation needs time:

1ogld+ loglp+ logPd+ logP1 +Cdx(logCp+logC1) .

43

By Jianmin Su 03-9-2

In the above, the operation is to implement deleting a property of an instance, so we

only check whether the property that is deleted from the instance belongs to some

classes. For each class definition that includes this property, we must check whether

the instance belonged to the class before. If so, then we delete the instance identifier

from the class. We do not check whether this instance belongs to other classes that do

not possess the property that is deleted by this instance. An instance belongs to a

class if a subset of the properties it possesses equals the class definition. So, if we

delete a property from an instance, it can only change the fact that this instance

belongs to a class which includes this property in its definition.

If we insert a property to an instance, we also need two steps as in deleting a property

of an instance. However, in second step, if a class definition includes the property

that we insert to the instance, then we need to check whether a subset of the

instance's properties match the class definition. If so, we add the instance to the class.

So, the first step of the insert operation is the same as the delete operation, but in the

second step, we need to compare the properties possessed by the instance to the class

definition if the class includes the property in it definition. The second step needs

time Cdx(logCp+(Cr+lp)). So the total time ofthis operation is:

logld+ loglp+ logPd+ logP1 +Cctx(IogCp+(Cp+lp)).

As in the delete operation, in the second step we only compare the classes whose

definition includes the property inserted into the instance with the instance.

44

A Database Management System to Support tbe Instance-based Data Model: Design, Implementation, and Evaluation

4.3.4 Delete a Property from a Database

The instance-based data model allows a property to be deleted from a database without

losing information. Since we store property definitions in the instance layer in all the

three base data structures, we need to delete a property definition in the instance layer.

However, in the class layer, some class definition may include this property pointer.

Because the property definition has been deleted, the pointers lose their meanings, so

these pointers also need to be deleted. Thus, we apply this operation in both instance layer

and class layer. To implement this operation, each data structure has different costs.

1.1 In DS 1, a property definition is stored in the instance layer, but its pointer is stored in

both the instance layer and the class layer. To implement this operation, first we need

to check the property pointer in each instance of the instance layer. If any instance

includes the property pointer then delete the pointer (the time is Idxlogip). We also

need to delete all values of every instance possessing the property (the time is logP d).

Second, check each class of the class layer, if any class includes the property pointer

in its definition (the class includes the property in its definition) then delete this

pointer or delete this class* (the time is CdxlogCp). Thus, this operation needs time:

In DS2, the property definition is also stored in the instance layer, but only the class

* The decision on whether the class should be redefmed to now exclude the deleted property or be

deleted, should be made by the database administration.

45

By Jianmin Su 03-9-2

delete it (the time is logPd). The second is to find the property pointers in some class

layer and store the property pointer in some class definitions. Therefore,

implementing this operation also needs two steps. The first is to find this property in

the instance layer and definitions in the class layer and delete it (the time is CdxlogCp).

This operation needs time: logPd+CdxlogCp.

1.3 In DS3, this update operation is the same as DSl, because deleting a property from

both the instance layer and the class layer will not affect the classification of

instances. So the time needed is the same as the DS 1: Idxloglp+ logP d +CdxlogCp.

4.3.5 Update a Property in a Class

Inserting or deleting a property in the class layer does not affect the instance layer in any

of the three data structures. But there are some different operations between the first two

data structures and the third one. Since in the first two data structures, the instance layer

and the class layer are independent of each other, if we update in one layer, it does not

affect the other. So in the two first base data structures, there is no operation needed in the

instance layer. The operation is only to find the class and insert or delete the property

identifier in the class. The time needed is logCd+logCp.

However, in the third data structure there are some relations between the class layer

and the instance layer, because in this case the class stores the pointers to the instances

that belong to the class. So if we delete or insert a property in the class definition (the

46

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

time is logCd+logCr), we also need to check whether an instance belongs to the class (the

time IS Idx(Ip+Cr)). The time required for this operation IS greater:

logCd+logCr+Iax(Ir+Cr).

In general, any operation to update a property in the database can be transformed into

two types of operations: update a property of an instance and update a property of a class.

So after this chapter, we will not analyze the operation of update a property in the

database but analyze update a property in either an instance or a class.

4.4 Summary

At this point, all operations of the instance-based database have been compared. Tables 5

and 6 summarize the results of the update operations in each base data structures.

From the comparisons above, we know that the second base data structure is faster

for updating some data than either the first base data structure or the third base data

structure. This is because it is faster than the first and the third base data structures when

updating some properties of an instance. The first base data structure, also, is faster than

the third base data structure when updating some property of an instance and updating

some properties of a class. However, the comparison of this chapter is based on each

operation separately. We do not know which base data structure is best for a certain

system having particular query and update frequency. In the next chapter, we discuss how

to select a base data structure based on these considerations.

47

By Jianmin Su 03-9-2

Table 5:Update instance or property values of an instance

Update delete or insert a instance update a property values in a instance

first data structure logld+ Ir/B + lp x(JogP,+logP d) Jog Pct+ log P,

second data structure PctxlogP1 log Pct+ log Pr

i third data structure logld+lp/B+Ipx(JogP d+logPI)+Cctx logC r log Pd+ log P1

Table 6:Insert or delete a property in a database

Update Insert or delete a property of a instance Insert or delete a property of a class

first data structure logict+ log!p+ logPd + logP1 logCct+logC.

second data structure JogPct+logPI logCd+logCp

third data structure logict + loglp+ logPct+ logP1 +Cctx(logCp+logC1) logCct+logCr+Ictx(lp+Cr)

48

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

Chapter 5

Choosing Base Data Structures

Different databases serve different purposes. Sometimes we store data to a database only

to support queries. The data in such databases are changed infrequently, if at all. This type

of system is usually used for some public service areas. In these databases, queries are

much more frequent than updates. However, in other cases, the data in a database are

changed frequently. Common examples include transaction processing systems (i.e., a

sales system, or a reservation system). In these databases, the most common operations

are updates. So in the real world, the prevalence of query versus update operations is

highly variable and application specific.

Since the fi·equency of operations on a database can vary, and since chapter 4 showed

that base data structures incur different costs for query versus update operations, to

choose a suitable base data structure for an instance-based DMBS, we must analyze the

three base data structures accordingly.

5.1 Mathematical Models for Choosing Base Data Structures

Before specifying the mathematic models, we define several variables used in the analysis.

These variables are listed in table 7:

49

By Jianmin Su 03-9-2

Table7: The denotation of the operations of database

Variables Denote the meaning

QI
Proportion of database operations comprised of 'instance
form' queries;

Qp Prop01iion of database operations comprised of 'instances
possessing a property' operations

Qc-I
Proportion of database operations comprised of 'instances
!of a class' operations

QI-C
Proportion of database operation comprised of 'classes
of an instance belongs to' operations

Ur
~roportion of database operation comprised of 'update
an instance' operations

UI-P
Proportion of database operation comprised of 'update
a property of an instance' operations

Uc.p
!Proportion of database operation comprised of 'update
a property of a class' operations

Since we want to compare the different costs of the three base data structures, we will

not consider further the operations that have the same costs in all three base structures.

According to the comparison in chapter 4, the class query operations in Table 4 incur the

same cost for all three base data structures. Therefore, we only consider Tables 2, 3, 5 and

6 for calculating the different cost of each base structure. We also do not include the

operation 'query instances which possess a property' , as all three base data structures

have the same cost for this operation. In each operation, if there are some steps of an

operation that have the same cost in all three base data structures, we delete these costs in

each structure. For example, the operation 'query instances that belong to a class' has a

step 'finding the class', and in all three base data structures there is a term, logCd, that

50

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

represents the cost of that step, so we eliminate this for the pmpose of comparison. After

canceling items of the three base data structures with the same costs, we count the sum of

the product of the remaining operations multiplied by the proportion of each operation

occurrence in all the operations of the database. The results represent the costs of each

base data structure. We list them as follows.

First base data structure:

(logld+lp/B+lpx(logP d+logPr))xQr+(Cp/B+(logP d+Pr/B)+(Cp-1)x(logP d+logPr)xPr)xQc-r+

(logid+lp/B+CdxCp/B+Cdx(Ip+Cp))xQr-c+(logid+Ip/B+Ipx(logPr+logPd))xUr+(log4i+

loglp)xUr_p+(logCd+logCp)xUc-P

Second base data structure:

(i)

P dxlogPrxQr+(Cp/B+(logP d+Pr/B)+(Cp-1)x(logP d+logPr)xPr)xQc-r+(P dxlogPI+xCp/B+

Cdx(Ip+Cp))xQ,_c+ PdxlogPr xUr +(logPd+logPr) xUr_p+(logCd+logCp)xUc-P (ii)

Third base data structure:

(logld+ lp/B+ lpx(logPd+logPr))xQr + Cr/BxQc-r+ CdxlogCr~Qr-c+ (logid+lp/B+

Ipx(logPd+logPJ) +CdxlogCr)xUI+ (logld + loglp+Cdx(logCp+logCI)) xU1_p+

(iii)

If we compute these three expressions, the result with the lowest total cost indicates the

"best" data structure to choose for an instance-based DBMS. In practice, however, the

relative proportions of queries and updates of various types are not known. The next

section discusses a general and useful comparison approach.

5 1

By Jianmin Su 03-9-2

5.2 General Methods for Choosing Base Data Structures

From the three expressions in the previous section, we can in principle accurately choose

the best one of the three base data structures when designing a database system. However,

the values of many variables need to be known in order to compute the results. In practice,

many of these variables will not be known in advance. The expressions above, therefore,

are not immediately useful for determining how best to implement an instance-based

database system. Instead, we focus on developing some general methods for choosing the

base data structures.

For our analysis, database systems can be classified into three types. One is when a

database is very small. The. second is when the update operations are very frequent. The

third is when query operations are very frequent.

5.2.1 Database is Very Small

In this case, 'small' means that all data of the database can be loaded into the system

memory in one access operation. So, if there are some data structures such that the data

can be loaded into the memory in one access operation, then we should choose these data

structures. In our data structures, DS2 requires the least memory, and DS 1 needs less

memory than DS3.

In some cases, there can be more than one base data structure that makes the database

size small. The criterion for choosing a data structure in this .case is the query or update

52

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

frequency.

In most cases, it will be impossible to load all data of the database at one access

operation. In this case, we do not need to think about storing data in the least space, but

need to consider all the conditions in the mathematical model.

When deciding which base data structures are most suitable for a database, we first

consider what types of update operations are frequently performed in a database. If we

observe the operations in a relational database or an object oriented database, we find that

users mostly update some attributes values of an instance or an instance itself. In the

instance-based database, we allow update operations on classes or instance properties

(schema changes). However, these operations may not be very frequent in a real database.

Therefore we do not consider update to the schema in the following analysis.

5.2.2 Query Operation Dominate

We define this type of database to mean that we query data or update the property values

of instances possess much more than delete instances, properties or classes. From the

comparison of chapter 4, we know that for query operations, the third base data structure

will be faster than the second or first base data structure, since it is faster in querying

instances belonging to classes. Also the first data structure is better than the second data

structure for querying instances. Therefore, we compare the third base data structure with

first base data structure to get the conditions that direct us to choose the third base data

53

By Jianmin Su 03-9-2

structure. We do not compare the third base data structure with the second base data

structure in this case, because in the instance layer the second base data structure only is a

part of the first data structure, and in the class layer they are same. So for any query or

update involving the values of properties, the cost of the second data structure is no less

than the first data structure.

First, we delete all clause of update attribute property or class property from the

mathematical models above. Then we find that DS 1 and DS3 are different in two parts.

One is querying instances of some classes, and another is updating an instance. So if

(Cp/B+(logP ct+Pr/B)+(Cp-1)x(logP ct+logPr)xPr) xQc-r+ (loglct+lp/B+CctxCp/B+

Cctx(lp+Cp))x Qr-c +(logla I lp/B I lpx(logPr+logPa))xUr > CI/BxQc-r+ CctxlogCrxQr-c+

(1)

then the third data structure will require less time. We can analyze expression (1) in

general as following:

In most cases, Cp< Ip, ld~CctxCr~PctxPr/C, P1~Cr and in the current case B is bigger

than 64K/4 or 32K/4 (B is the node size of the B+ tree, it is less than the size of the

system's memory). So logC1 is much smaller than C~, and lp is also much less than B. This

means:

(Cp/B+(logP ct+Pr/B)+(Cp-1)x(logP ct+logPI)xPr) xQc-r~(CpxPr) xQc-r~(CpxC1) xQc-r

and

54

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

So, we can reduce expression (1) to

Since C1/BxQc-I << (CpxC1) xQc-h so we do not consider C/BxQc-1. Then expression (1)

can be approximately rewritten as

(2)

(3)

In a large database system, assume Cp=10, Cr= lOOO, Cd=20-100 (we assume Cd=50), rd~

1,000,000-1,000,000,000.

So log LJ~3-4 and logC1~1-2

Then expression (3) means

or

20x(Qc-I + Q,_c)> U, , (Qc-r + Qr-c)>-
1

* ul
20

(4)

which is our result in the 'query is much more' case. That is, the sum of the proportion of

the queries of the database operations comprised of operations involving instances some

classes are bigger than -
1
- the proportion of database operations comprised of 'update

20

an instance', then the third base data structure is better. Otherwise, the first base data

structure is better.

From the previous comparison, we do not care about the query operations on the

instance layer, because they are the same in these operations for two data structures.

55

By Jianmin Su 03-9-5

5.2.3 Update Operation Dominate

In this case, the choice is the first or the second data structure. Since update operations are

much more frequent than query operations, we need not be concerned about the

difference between the query operations of the two data structures. It is only necessary to

compare the difference in the complexity of update operations. According to the previous

analysis, the time needed for update operations in the two data structures can be

expressed in the follow expressions,

DSl (logLJ+Ip/B+Ipx(logPI+logPd)) xUI

DS2 pdxlogPI xu]

(5)

(6)

In general Pd>>lp, and logLJ <<Pd. Therefore, expression (5) <expression (6). That means

the second base data structure is slower than the first base data structure for both queries

and updates. So the first data Structure is the good choice for this case.

We have compared the three base data structures in different application cases. To

summarize, we suggest the following.

1. If the database is small and only one base data structure (the second base data

structure) can store the database in one access, then the second base data structure is

the best choice. Otherwise:

2. If query operations are more common in a database system, and the update operation is

not more than twenty times the sum of the proportion of the 'instances of a class'

operations and the 'classes an instance belongs to' operations, then the third base data

56

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

structure is the best choice. Otherwise:

3. The first base data structure is the best choice.

This chapter completes the analysis of the base data structures. We have proposed three

base data structures and given some suggestions for selecting them. In the next chapter,

we begin to discuss how to implement an instance-based database system.

57

Chapter 6

iQL Language

By Jianmin Su 03-9-2

Prior to the implementation of relational database management systems, no standard

query language existed, with different systems using different query methods. Any user

wanting to query different systems needed to understand the structure of different

databases. This inhibited user acceptance of new database systems, since understanding a

new system required a significant investment of time and effort. The SQL language is

considered one of the major reasons for the success of relational databases in the

commercial world. Because it became a standard for relational databases, users were less

concerned about migrating their database applications from other types of database

systems to relational systems. If users became dissatisfied with the particular relational

DBMS product they chose to use, converting to another relational DBMS would not be

expected to be too expensive and time consuming, since both systems would follow the

same language standards. Another advantage of using such a standard is that users can

access data stored in two or more relational DBMSs using the same statements in a

database application program without having to change the statements.

In this chapter, we propose an SQL-like language, called iQL (instance-based query

language), for the instance-based database model. This language supports most of

standard SQL, and provides some additional queries not supported by SQL.

58

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

6.1 Query

6.1.1 SQL-Uke Query Capability

The SQL standard depends on the relational data model. .Any SQL query command refers

to classes (relations, tables). This is evident from the general form of an SQL query

command:

Select <attrdnde and j.wction /;dp

From <tat/., fiAl>

[Wliere <conditio,"?]

[(}roup 6y < ~roupi"~ attrd,uJe?}>]

[Jfaving <vroup condili<>t"?]

[Ortfer 6y < allribule fiAl>];

This general form indicates that: a query can consist of up to six clauses, but only the first

two, select and from, are mandatory. The select clause lists the attributes to be retrieved or

functions to be computed. The from-clause specifies all relations (classes) needed in the

query. The last three clauses only relate to how to output the results set, and do not affect

the query capability. Moreover, any attribute in a query command must belong to one

class in the from-clause. For example, a query

Select first_ name, birthday
From employee

indicates that the query operates on the class employee. Only instances belonging to the

relation (class) employee will be selected, and the attributes frrst_name and birthday must

be defined with respect to relation (class) employee.

The instance-based data model supports all SQL query operations applied in the

relational model, and relational model queries have counterparts in the instance-based

59

By Jianmin Su 03-9-2

model [Parsons & Wand 2000]. For example, a simple query, what is the student name

and student number if student name is 'John', is expressed in SQL as:

Select Name, Student_number from Student where Name= 'John';

The instance-based model also uses this expression on this type of query. This query can

be explained as an expression in the instance-based model:

Form((Mem (Student) n Scope (Name= 'John)) n Scope(Student_number), {Name,

Student number})

This query has several steps: First, retrieve the property Name to find which instance

possesses value 'John', that is Scope (Name I Name='John'). There is no method for

fmding the value 'John' directly in any base data structure in the instance-based data

model, so this step needs to retrieve all keys (that is instance ID) to get an instance set.

Second, retrieve the instances of the class student (Mem(Student)). Third, check which

instances retrieved in the first step belong to the class Student. If any instance does not

possess all properties in the class Student definition, delete it from the instances set. Next,

if the class Student definition does not include property Student_ number, then check all

instances in the set. If any instance does not possess the property, delete it from the

instance set. Finally, retrieve the values of property Name and Student_number for each

instance in the instances set, and output it. The above four steps implement the query.

However, in a real database, optimization methods may be different, so the order of the

steps may not be the same. This example includes two basic types of operations of the

60

A Database Management System to Support tbe Instance-based Data Model: Design, Implementation, and Evaluation

relational model, that is select and project.

Another example illustrates the join operation. Consider a query to find the Name of

students who take the course Comp 1700. This example query is expressed by a standard

SQL as:

Select Student Name from Student, Course where Student_ID=Course.S_ID and

Course.number=Compl700;

In this case, the iQL language is somewhat different from the standard SQL. In the

relational model, we express the relationships between the classes (Student and Course)

using a foreign key. Any class C 1 refers to another class C2 if and only if there is a

foreign key of Cl that references C2 (or there is a foreign key of C2 that references Cl),

and any relation between the instances is expressed by the classes. However in the

instance-based model, one instance relates to another instance since they share a mutual

property. It does not matter whether they belong to classes. Thus in this model, one

instance may share more than one mutual property with another instance. Alternatively,

an instance may not relate to other instances. So if a query needs to refer to some mutual

properties, they must be indicated. To illustrate, the above query will be expressed in iQL

as:

Select Name from Student, Course sharing Take_ Course

where Course_number = Compl700;

Here, the word "sharing" indicates the mutual property on which the query is based. This

61

By Jianmin Su 03-9-2

query can be explained as an expression:

Form (Mem(Student) n Linst ((lvfem(Course) n Scope (Course_number=Comp1700)),

Take_course) n Scope(Name),{Name})

This query can be implemented rn several steps: First, retrieve the prope1ty

Course number to find which instances possess value Comp 1700, that 1s Scope

(Course_number Course_number = 'Comp1700'). This returns a set of instances

(possibly one). Second, check which instances in the set belong to the class Course, this

step deletes instances which do not belong to the class Course from the set. Third, get

another instance sharing the mutual property Take_ course with each instance in the set.

This step retrieves a new set of instances. The next step is checking which instances from

this set belong to the class Student. If any instance does not belong to the class Student,

delete it from the instance set. Then, if class Student definition does not include the

property Name, check which instances possess this property. If any instance does not,

delete it from the set. Finally, to get the results, we retrieve the values of property Name

for each instance in the instance set, and output it.

From above two examples, we see that, in the instance-based model, a query

command can be decomposed into a sequence of basic query operations discussed in

Chapter 4 to get the desired results.

In this section, we have discussed the same queries that the instance-based database

model shares with the relational model. In the next section, we discuss two types of

62

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

queries that are unique to the instance-based model.

6.1.2 Unique Query Capability

Since the instance-based model supplies two layers in a database, with instances

independent of any class and classes independent of any instance, the model has more

powerful query capabilities than SQL. We provide two types of queries that are not

available in class based models.

6.1.2.1 Property Query

In class based models, any query is related to classes. So in the above general query

model, any query command needs a from-clause in the standard SQL. In class models,

there is no method to retrieve from a database all instances that have certain properties,

because all instances may be distributed over many classes, and every property is defined

with respect to a class. In a class-based model, it is necessary only that a property

identifier is unique within a class. Thus in a database, it may be that some properties that

are different properties have the same names, and some properties that are the same

properties (i.e. they have the same semantics) have different names in different classes. So

even querying all classes, there is no guaranteed way of combining them to get correct

results.

In the instance-based model, the instance layer stores all instance information. Any

instance or property identifier is assigned by the instance engine. This engine guarantees

63

By Jianmin Su 03-9-2

that each identifier is unique in a database. It is therefore possible to query the whole

instance layer to fmd which instances possess some properties. All instances that possess

a property must store it using the same name. So the query will be solved by retrieval at

the instance layer. For example, if querying which instances possess the property 'age',

the command is showed as follow:

Select age,·

Using any base data structure of the instance-based model, the operation involves

checking the instance layer to find the property 'age', and output all (instance; value)

pairs stored in the property 'age' . Of course, a query can add some conditions for

selection. For example, a query

Select age Where age=30;

is also allowed in the instance-based model. More generally, any restriction clause in the

SQL model can be added to an iQL command as a condition.

In iQL, a query that only has one clause (select clause) is enough to retrieve results.

Other clauses are optional conditions of a query. This is not same as SQL, in which a

query must have at least two clauses (select and from).

6.1.2.2 Limited and Unlimited Query

To implement a join operation in SQL, the from clause must declare all classes (relations)

and the where clause must declare all properties used to join these classes (otherwise, a

query Select *from a, b; produces a Cartesian product. Such a result can be very large,

64

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

and generally is not needed). The instance-based model supports two types of join

operations, which we call limited queries and unlimited queries. A query that declares the

mutual properties on which the join is based is called a limited query. This type of query

mirrors an SQL query that includes some join operations, and has already been discussed.

However, iQL supports a type of join query that we call an unlimited query, in which the

query command does not declare mutual properties of the join. Obviously, SQL (and class

based models in general) does not support unlimited query, because a DBMS that

supports SQL will not be able to perform a join unless the join conditions are specified in

the query. In the instance-based model, two instances jointly relate to each other via

mutual properties, and mutual properties are stored by the instance layer. Therefore,

instances can be related without reference to classes, and no foreign key is needed.

For example, the limited queries of the above examples may be shown as below:

Select P 1, P2 sharing mutua/property]; (4)

Expression (4) means "if there are two instances, one possessing Pl another possessing

P2, and the two instances share a mutual property mutualpropertyl, then output the pair

consisting of the values of Pl and P2". The limited query is analogous to the join

operation in the relational model. However, an unlimited query is different. For example,

the unlimited queries of the above examples may be shown as below:

Select P 1, P2 From Cl, C2;

Select PI, P2;

or

(5)

65

By Jianmin Su 03-9-2

Expression (5) means "if there are two instances, one (instancel) possessing Pl and

another (instance2) possessing P2, and the two instances share some mutual properties,

then output the triple of (value of instancel possessing Pl, name of the mutual property

shared by two instances, value of instance2 possessing P2". The name "unlimited query"

means that no mutual property is declared or defined in the query. The primary advantage

of unlimited query is that it offers 'join" query in which no limiting conditions are

specified.

In this section we introduced a concept of unlimited query. The next section we

present two rules for implementing unlimited query.

6.2 Rules for Implementing Unlimited Query

In the instance-based model, each instance is stored in the instance layer independently.

Two cases may arise. First, sometimes some instances possess a certain set of properties;

however, some other instances possess a subset of the properties of the set but are linked

via mutual properties to some instances that possess another subset of the properties of

the set. For example, suppose there are three instances: a student has a property Weight

(75KG), a building has a property Color (yellow), a washing machine has two properties

Weight (50KG) and Color (white), and the database stores information that the student

has an office located in the building with mutual property Office-in. The question arises,

what will be the result of a query such as:

66

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

Select Color, Weight;?

The results will be values of the properties of an instance (washing machine) or the

related values that the two instances (student and building) possess each property. This

type of problem is called the ' covering' problem. To get a clear semantics for such a

query, we must define a rule in the instance-based rnodel.

Rule 1. (Cover Rule) If two or more properties appear in an unlimited query command

and there are some instances that possess all the properties, then only the values of the

instances that possess all the properties will list to the results.

For example, if there are some data in an instance-based database as in Figure 10. An

unlimited query

Select Property], Property2;

will return the result:

Property! Property2
a c

Instance 1 possesses Property 1 and Property2, so even though instance4 and instance2 are

linked with mutualproperty3, the result will not include the values of these properties for

the linked instances. We need Rule 1 because, in the instance-based model, all instances

are stored in the instance layer, and each instance possesses its properties independently.

Each property identifier is unique in the whole database system. Therefore, there may be

a case such that an instance is jointly related to another instance, and each one possesses a

subset of properties in the select clause of our query, but there is another instance

67

By Jianmin Su 03-9-2

possessing all properties possessed by the previous two instances. The first rule gives a

method to resolve potential ambiguity in this situation. It reduces many complexities of

unlimited queries, and gives them a clear semantics.

Instance layer

instance 1 instance 2 instance 3 instance4

property I property 2 property 3 property l

property 2 mutualproperty 3 mutualproperty2 mutualproperty3

mutual property! mutualproperty2 mutual property!

property 1 property 2 prope.rty 3 mutual property 1

instance I a instance 1 c instance 3 I e instance l lmstance 3 !value

instance 4 b instance 2 d

mutual property 2

instance 2 !instance 3 !value

mutual property 3

instance 2 !instance 4 !value

Figure 10: An example ofthe database where there exists a 'Covering' problem

In the instance-based model, to implement query operation, there exists another

problem, which we call the 'order' problem. The 'order' problem reflects the second case

mentioned above. That is, sometimes there is an instance set such that all instances jointly

relate to another with different mutual properties (e.g. in Figure 11, instance! and

instance2 jointly possess mutualpropertyl , instance2 and instance3 jointly possess

68

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

mutualproperty2, instance1 and instance4 jointly possess mutualproperty3, and so on).

However, there may be more than one instance possessing a subset of properties that

appear in the select clause of a query. For example, consider some data stored in the

instance layer as shown in Figure 11. We pose the question, what will be the difference

between two queries such as:

Select Property2, Property], Property3; and

Select Property], Property2, Property3;?

To support unlimited queries, there are two rules to be applied.

Rule 2. (Order Ru1e) We check whether an instance links to another instance

according to the order of the properties in the select clause.

By this rule, the above query

Select Property2, Property], Property3;

will give the results:

Property2

b
Property1

mutualproperty 1 a

But an unlimited query

Select Property1, Property2, Property3;

will get results

mutualproperty3
Property3

d

Property 1 Property2 Property3
a mutualproperty1 b mutualproperty2 c

In the two queries above, the properties are not in the same order at the select clause, so

the results are not the same. A real world example is shown in Figure 12, there are five

69

By Jianmin Su 03-9-2

Instance layer

instance 1 instance 2 instance 3 instance 4

property 1 property 2 property 3 property 3

mutualpropertyl mutualproperty2 mutualproperty2 mutualproperty3

mutualproperty3 mutual property 1

property 1 property 2 property 3 mutual propertY 1

instance 1 Ia instance 2 lb instance 3 c instance 1 !instance 2 !value

instance 4 d

mutual property 2

instance 2 !instance 3 !value

mutual property 3

instance I !instance 4 !value

Figure 11: An example of the database where the:re exists a 'Order' problem

taking

~
instance I instance2

(studentiD=200079713) (courseiD=6754)

textbookof

instanceS ,. referenceof
(courseiD=67 51)

instance3

(ISBN=0-07-044756)

.. instance4
(ISBN=0-8053-1755-4)

Figure 12: Methods for mutual properties select

70

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

instances: instance! is a student, it possesses a studentiD (200079713); instance2 and

instanceS are courses, they respectively possess courseiD 6754 and 6751; instance3 and

instance4 are books, they respectively have ISBN 0-07-044756 and 0-8053-1755-4. The

relations between the instances are showed by arrows, and the names of relations (mutual

properties) are above each arrow. According to rule2, an unlimited query:

Select studentiD, courseiD, ISBN;

will get result:

studentiD
200079713 taking

courseiD
6754 textbook of

ISBN
0-07-044756

Even if the instance! is related to instance4 (the student buy the book) and instance4 is

related to instanceS (the book is a reference of the course), they still not list to the result,

because the order of the relations are not in the order of properties in the select clause.

Rule 2 (Order rule) is important for the instance-based model, because the model can

express very complex relations between instances. The order rule gives a condition for

retrieving mutual properties, that is, which mutual property is the first choice and which is

the second and so on. The system returns the results based on this condition.

Rule 3. (Range Rule) Only 'direct' mutual properties are used for retrieving.

Here, direct mutual properties means each instance that will be retrieved must possess at

least one property which is in the select clause. The instance-based model can contain

very complex relations between instances. An instance may be related to many other

instances, and sometimes there may be an instance that is related to all other instances of

71

By Jianmin Su 03-9-2

a database. We call this problem a 'range' problem. So we must define which instances

are the set that we will retrieve when we implement a query. Rule 3 just gives the range.

This rule indicates that a query will only check the mutual properties between the

instances that must possess at least one property in the command. For example, if there

are data as in Figure 13, a query:

Select Propertyl, Property2;

will return results

Property I

a mutual property 1

Property2

c

Although instance4 is linked to instance3 with mutualproperty2 and instance3 is linked to

instance! with mutualpropertyl, it is not a direct link. Therefore, the results will not

include it.

In Figure 14, we use real data showing the meaning of direct mutual property. A student

(possessing a property Name) may buy or borrow a book (possessing a property ISBN). A

student may also take a course (possessing a property courseiD), and a course may use a

book as a textbook. Then the results of a query Select Name, ISBN; should include only

the direct associations between people and books. The results should not include the

names of students and ISBN s of books where for students who take some courses that use

some books, because a 'student takes a course' is not a direct mutual property. In Figure

14, a bold arrow shows the direct mutual property, while a thin arrow shows an indirect

72

A Database Management System to Support the Instance-based Dal>i Model: Design, Implementation, and Evaluation

mutual property.

In this section we provided three rules for implementing the unlimited query. In the

next two sections, we discuss how to implement query and update operations.

Instance layer

instance 1 instance 2 instance 3 instance 4

property I property2 property 3 property 2

mutual property 1 mutualproperty 1 mutualproperty2 mutualproperty2

mutua! property 1

property 1 property 2 property 3 mutualproperty 1

instance 1 I a instance 2 c instance 3 I e instance I instance 2 value

instance 4 f instance 1 instance 3 value

mutual property 2

instance 4 instance 3 value

Figure 13: An example of the database having 'Range' problem

Course (CourseiD)
Query: Select Name, ISBN;

Students ~~--------..... ~Books
(Name) Borrow (ISBN)

results:

Name
John

Brown

Smith

Rabbit

Figure 14: A direct linked mutual property

73

ISBN
buy 0-768-03141-8

borrow 0-786-03 141-6

borrow 0-669-03141-9

buy 0-889-03141-2

By Jianmin Su 03-9-2

6.3 Query Implementation

The three rules reduce some complexity of unlimited query. However, implementing this

type of query is costly. Assume an unlimited query is: select P1, P2, P3, ••. , Pn; the steps of

implementation are as below:

First, find the set (setl) of instances that possess properties from P 1 to Pm (l<m<n).

Second, if there is a property Pm+l (m+ 1 <n) such that no instance in setl possesses it, and

there are some instances (set2) that possess P m+J to Pm+g (m<m+g<n), then check whether

there is a mutual property jointly possessed by a pair of instances s1 and s2 (s1 Esetl,

s2 E set2). If there is a pair of instances jointly related with a mutual property mp, add the

pair to a linked instances set Sl{s1, mp, s2 I s1Esetl, s2Eset2}. Here, if the pair of

instances jointly possesses more than one mutual property, we only list one. Third, if

there are some instances (set3) possessing Pm+g+J to Pr (m+g<p<n), we repeat the second

step. However, when we check, we only check whether there is a mutual property

between the second element of a pair in S1 and the instances in set3 to form a new linked

instances set S2{ s1. mp, s'z, mp1 , S3 I s1, mp, s'zESJ, and mp1 is a mutual property}.

Repeat the third step until all properties in the select clause are possessed by the linked

instances set. Then, the results will be the values of the each element (that is a line of

linked instances) possessing the properties in the select clause. If there is no element in

the linked instances set, then return null.

This algorithm adheres to Rulel, Rule2 and Rule3 . The first part of each step uses

74

A Database Management System to Support tbe Instance-based Data Model: Design, Implementation, and Evaluation

Rule 1 to check the results, the last part of each step uses Rule 2 and Rule 3 to check the

results. In a commercial implementation of an instance-based DBMS, there may be

methods for optimizing each query, but the main process is as above.

The algorithm lets the unlimited query produce results analogous to the multi-join

operation in the relational model. The first step is to find the classes (instance sets, that is

tables in the relational model), the second step is to find the conditions of join. However,

in the unlimited query, there are two differences compared to the join opertion in the

relational model: first, the instance sets (classes or tables) are not indicated by users, they

are automatically decided by the properties in the select clause and data in the database;

second, the relationships between the two sets are different. In the instance-based model,

the relationships are based on instances, so even if they are in the same set (selected in the

first step) they may have different relationships with the instance in another set. Therefore,

the meaning of the unlimited query is different. A result in an unlimited query means:

either some instances possess the properties, or some instances possess part of the

properties and are linked to each other with some mutual properties. For example, if a

database stores some information about a person (name, age) and a department (location,

city), and a person may work, study, visit a department, then an unlimited query: select

name, city; will give results as show in Figure 15. From Figure 15, we interpret the

semantics of this query to be the associations between people and cities.

75

By Jianmin Su 03-9-2

Name City

Johnson study-at St. John's
Brown study-at Halifax
Smith works-at St. John's
Williams visit-to Toronto
Rabbit visit-to Ottawa

Figure 15: An example of the result of an unlimited query

Unlimited queries can help us if we do not know the schema of a database. However,

this operation is very costly. In many cases, a query may need some condition for

reducing the number of instances that need to be checked in the query, or to limit the links

that need to be checked. All these conditions are applied to the query by adding a

from-clause, where-clause and sharing-clause in the instance-based model. The

from-clause and where-clause are the same as the standard SQL in the relational database

model. Although the relation between instances and classes is different, the two clauses

give the same meaning in queries on both the instance-based model and class-based

models. Only the sharing-clause is unique to the instance-based model.

In the relational model, a single property may be stored by many entity types. In fact,

many of these properties are not intrinsic properties. They are mutual properties between

two instances. However, there is no mutual property concept in the relational model. The

information that an instance is related to another instance (or one class is related to

another class) is stored by a foreign key. Many classical papers of the relational model

76

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

explain this method (e.g., [Markowitz & Makowsky 1990] [Johanneson 1994] [Date and

Hopewell 1970]). A join operation on different entity types just links instances using

these properties, and if a query involves more than one table (or class), the join operation

is needed by the query command. If there is no join condition, the join will not be

implemented. This condition is added to the where clause in the form

property! =property2, typically involving different relations, not a select condition of the

form property! =value. In the instance-based model, an instance is stored in the instance

layer, and an instance is related to other instances with mutual properties. Therefore, if we

need to add some conditions involving an instance's relationship to others, the query

command must include some mutual properties. These mutual properties are included

with the sharing clause, which follows the from clause in our iQL query model.

A mutual property expresses two types of information between two instances: one is

that the two instances are jointly related to each other, the other is that there is a value

resulting from their relation. Therefore, there are two forms that a mutual property can

have in the sharing clause. In the first, only a mutual property identifier appears in the

sharing clause. This means we only check the mutual property if any instance links to

other instances with this mutual property. In this case, the sharing clause is of the form:

sharing MPl, MP2, . .. , MPn (MPl , MP2, ... , MPn are all mutual properties). In the

second form, we declare both a mutual property and a value of the mutual property, which

means we need to check the mutual property only if an instance is linked to another

77

By Jianmin Su 03-9-2

instance with this mutual property and the value. In this case, the sharing clause is of the

form: shared MP1=valuel, MP1=value2, ... , MPn=valuen (MPl, MP2, ... , MPn are all

mutual properties).

As in the relational model, there are many methods for optimizing the condition

clause in a real database design. Such methods are beyond the scope of the thesis.

However, adding a sharing clause will reduce the complexity of a query.

Each type of query supported by the instance-based model is listed in Table 8.

The instance-based database model supplies more powerful query capability than the

relational model. A user can query a database more freely, using the form of unlimited

query or linking query in this model. However, we do not think users can use these forms

randomly. Since a powerful query will cost more time to get results, we suggest that the

user add conditions to a query command as much as possible, instead of only using

powerful unrestricted queries. We also discuss how to develop efficient queries in the next

chapter.

6.4 Update

Since the instance-based model supports classes independent of any instance, it supports

more update operations than the relation model. These update operations are divided into

78

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

Table 8 iQL Queries

Commands Contents

Query instance layer

select*; list all instance forms

select Pl, ... , Pn; list values of Pl to Pn possessed by some
instances or some related instances

select* from cl, c2, ... , en; list all instance forms that belong to the
class c 1 to en

select Pl, .. . , Pn from c1, c2, ... , en; list values of P 1 to Pn possessed by some
instances or some related instances that
belong to class c 1 to en

select * where Pl =1value and2 P2=value list all instance forms for instances that
and . .. and Pn=value; possess P 1 =value and P2=value and . . .

and pn=value
select Pl, . .. , Pm where PI =value and list values of Pl to Pm possessed by some
P2=value and ... and Pn=value; instances or some related instances such

that they possess P 1 =value and P2=value
and .. . and Pn=value

select Pl, . . . , Pm from cl, c2, ... , cq list values of Pl to Pm possessed by some
where Pg=value' and Pg+ 1 =value and .. . instances or some related instances that
and pn=value; belong to the class c 1 to cq and possess
(P1, .. . , PmEP and Pg, . .. , PnEP) Pg=value and Pg+ 1 =value and ... and

pn=value

select Pl, . .. , Pn sharing mp1 and mp2 list values of P 1 to Pn possessed by some
and ... and mpn; I instances that are related to each other by

mutual property mpl,mp2, .. . , mpn.

select P1, . .. , Pn from cl, c2, ... , cq list values of P 1 to Pn possessed by some
sharing mp 1 and mp2 and ... and mpn; instances or some related instances that

belong to class cl, c2, .. . , en, and are
related each other by mutual property mp 1,
mp2, ... , mpn.

select Pl , . .. , Pm from cl, c2, .. . , cq list values of P 1 to Pm possessed by some
where Pg=value and Pg+l=value instances or some related instances that
and ... and Pq=value sharing mpl and mp2 possess Pg=value, and Pg+ 1 =value,
and ... and mpn; and . .. , and Pq=value, and are related to
(Pl, .. . , PmEP and Pg, .. . , PqEP) each other by mutual property mpl ,

mp2, . .. ,mpn.

79

By Jianmin Su 03-9-2

Table 8 (Cont)

query property belong to query the form of this instance
instance instanceiD;
query mutualproperty information belong query all mutual properties that this instance

1 ~o instance instanceiD; possesses with others

query mutual property mutual property ID query all instances that sharing a mutual

<,value> sharedby instance Instance ill property (and value) with the special instance
withothers;
query instance share mutualproperty query all instances that share a special mutual
mutualpropertyiD; tproperty

query mutualproperty *; query all mutual properties

Query (class layer)

query class *; query all classes

query property belongto class className; query a class definition

query class has instance instanceiD; query all classes that a special instance
belongs to

Note: 1. the notation '= ' indicates that there we can use all comparison operations,

including =, <, >, ¥, .:S'; ;:::.

2. the notation 'and' indicates that there we can use either disjunctive or

conjunctive.

three types: update instance, update property (include mutual property update), and

update class. All these update operations were discussed in Chapter 4. To implement the

update operation, some rules are needed.

6.5 Rules about Update

The instance-based model supports classes independent of any instance, so updating a

80

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

class will not affect the instance layer. However, since the instance layer stores all

instance information, include property definitions, a property update may affect class

definitions. If a property is deleted from the instance layer, its information must be lost

from the database. If there is a class definition that includes this property in the class layer,

then the database loses the semantics of these classes. So the first update rule is:

Rule 4. If a property (or a mutual property) is deleted from the instance layer, it must

be deleted from the class layer. Any class including this property in its definition must be

deleted, or its definition must be changed not to include this property.

For example, consider a class Student defined by properties set {Name, Student_ID, Sex,

Age}. If, at some tinie, the property Age is deleted from the instance layer, Rule 4 implies

that we either change the class Student definition to property set {Name, Student_ID, Sex}

or delete the class Student. Otherwise, database integrity will be lost, since a class will

refer to a property that no longer exists. The rule is based on the three base data structures.

In these data structures, the class layer does not store property definitions. Therefore,

Rule 4 maintains the integrity ofDBMS.

In the instance-based database model, there is not a static database schema, the

instance layer stores all instance information and the properties information. So another

rule is:

Rule 5. A property exists in a database if and only if some instances possess this

property (At the time we checking).

81

By Jianmin Su 03-9-2

This rule indicates that property existence depends on instances. It also expresses an

advantage of the instance-based model: there is no need to manage any properties when

no instance possesses them, and there is also no need to manage any classes if no

instances belong to them 1•

The basic update operations, such as update an instance, update a class, and update a

property, were discussed in chapter 4. We call these basic update operations 'simple'

update operations. Other update operations either are a simple operation or a query

operation plus some simple update operation set, so are easily implemented. We do not

discuss them again, but summarize them in Table 9.

This chapter discussed how to implement the iQL language in the instance-based

model. We have provided two types of powerful queries that give the instance-based

model advantages over class-based (notably, relational) models. Although we did not

discuss the optimum methods for implementing this language, if we follow the base rules

of the implementation and use a correct base data structure, we can implement an

instance-based database system. In the next chapter, we will apply these rules to discuss

how to implement an instance-based database, test and compare two implementations

based on different base data structures.

1. Tilis rule is according to the "pure" model. In a real database of this model, for efficient query or

update we may maintain a class definition even if no instance belongs to it.

82

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

Table 9 Update operation

Command Contents
~nsert (instance layer)

insert instance ins_ID (propertyl, valuel, insert an instance

property2, value2, · · ·, propertyn, valuen); (users indicate an instance ID)

insert instance (property 1, value 1, insert an instance

property2, value2, ···, propertyn, valuen); (users do not indicate an instance ID)

insert property (pro1, valuel, pro2, value2, insert some properties to an instance

··•, pron, valuen) into instance ins ID;
insert mutualproperty mutualproiD shared insert a relation of two instances and the
by instance insiDl, insiD2 value valuel; value of the relation

~risert (class layer)

insert class ClassName (property!, insert a class

property2, · · ·, propertyn);
insert property (property!, property2, insert a set of properties (mutual properties)

· · ·, propertyn) into class className; to a class

Delete (instance layer)

delete instance ins_ID; delete an instance

delete instance from cl, c2, ... , en; delete some special instances that
belong to class cl, and c2, and .. . , and en

delete instance where PI =valuel and delete some special instances that

P2=valuel and ··· and Pn=valuel; possess P 1 =value 1, and P2=value 1,
and . . . , and Pn=value 1

delete instance from c 1, c2, · · ·, cq delete some special instances that
wherePp=valuel and Pp+l==valuel belong to class class c 1, and c2, and
and ···and Pn=value; ... , and cq and possess Pp=value 1 and

Pp+ 1 =valuel and .. . and Pn=valuel
delete property (properties set) delete some properties

from instance ins_ ID ; from special instance
delete property (properties set); delete properties from database
delete mutualproperty mutualproiD delete a relation of two instances
shared by instance insiDl,insiD2; sharing a mutual property
delete mutualproperty mutualproiD; delete the mutual property
Delete (class layer)

delete class className; delete a special class
delete property (properties set) delete some properties from a class
from class className;

83

By Jianmin Su 03-9-3

Chapter 7

Implementing, Testing and Comparing

In this chapter we describe prototype implementations of two instance-based database

management systems based on the first two base data structures. The implementations

include query and updating operations to demonstrate that this system can produce correct

results. We also compare and validate results of the cost of operations using each of the

two base data structures. Finally, we discuss how to design efficient query methods in the

instance-based model.

7.1 Implementing an Instance-based Database System

7.1.1 Programming Languages for the Implementation

Many programming languages could be used to implement the instance-based database

system, such as JAVA, C, or C++. In this research we have chosen to use JAVA as the

implementation language in order to take advantage of JAVA's cross-platform portability.

7.1.2 Structure of Instance-based DBMS

The instance-based model is different from the relational model with respect to the design

of database systems. The instance-based database system has a dynamic schema. It is

managed by system managers and users. For example, system managers may define some

classes for the security of systems and some for the common information query, while

84

A Database Management System to Support the Instance-based Data Model: Design, implementation, and Evaluation

users may define special classes for faster query or update data1
. Nevertheless, designing

Figure 16: Instance-based DBMS structure

I. In instance-based model , the security needs some special approaches. In this thesis we do not

consider this kind of approaches.

85

By Jia'lmin Su 03-9-3

an instance-based database is much simpler than designing a relational database. The

components in our implementations are shown in Figure 16.

Our instance-based database management system consists of three parts. These three

portions are (from the bottom to the top of Figure 16): data storage, algorithm

management, iQL language and database management. The components of each portion

are as follows:

Stored Data: This component includes two parts. The first is the instance layer data,

which includes instances, intrinsic properties and mutual properties, as well as the values

of intrinsic and mutual properties for all instances. The second part is the class layer data.

It includes only class definitions in the first and second base data structures.

Data Storage Methods: This area also includes two parts. One part is the method used

to store the instance layer information. This includes a method to store instances

themselves, a method to store intrinsic properties, and a method to store mutual properties.

The second part is the method used to store the class layer information. This includes a

method to store class definitions.

Algorithms for Accessing Data: This component is related to the data storage method.

Because data access methods are based on data structures, it also includes two parts:

methods to access instance layer information and methods to access the class layer. The

first part includes some algorithms to access instance layer information. First, there is an

algorithm that specifies how to insert, delete, and retrieve instance information. Second,

there is an algorithm that specifies how to insert, delete, and retrieve intrinsic property

information. Third, there is an algorithm that specifies how to insert, delete, and retrieve

86

A Database Management System to Support tne Instance-based Data Model: Design, Implementation, and Evaluation

mutual property information. The second part includes an algorithm to access class layer

information. This includes inserting, deleting and retrieving the definition of classes. Each

algorithm above must adhere to the base rules of the instance-based model.

Query or Update Algorithm: This component includes the methods and algorithms

that are presented in chapter 6. Since this affects the efficiency of a query or update,

optimization methods will need to be applied in this component for a database system

based on this model. Such methods are beyond the scope of this thesis.

Instance and Class Engine: The instance engine manages the instance layer. In fact,

the instance engine is not only algorithms to query or update the data in the instance layer

but also an identification tool for the instance layer. It creates a unique identifier for each

instance, intrinsic property, and mutual property in the database. For example, it creates a

unique instance identifier for each instance when it is first added to the database system.

Also, it deletes the identifier when the instance is deleted from the database system. In the

same way, the class engine manages the class layer. It is not only algorithms about

querying or updating the data in the class layer but also an identification tool for this layer.

It creates a unique class identifier for each class.

Compiler: This component includes a compiler which compiles iQL commands.

iQL language: This component implements the standard language of the

instance-based database. It supports standard SQL, and also has extended query and

update abilities that pertain to instances independent of any classes, as presented in

87

By Jianmin Su 03-9-3

chapter 6.

The last two parts are the same in the implementations for each of the two base data

structures.

7.1.3 Steps for Implementing an Instance-based Database System

The instance-based database system design follows the structure shown in Figure 16,

from the bottom to the top. The steps are:

1. Select a base data structure: According to the discussion in the chapter 5,

different base data structures will vary in efficiency for query and update

operations.

2. Design the data storage structure and data access methods: In this step, the first

activity is to design a structure for storing data. This structure declares for each

layer where data will be stored, and which type of files will be used for data

storage. The second activity is to design data access methods for each type of

file. Different data access methods may have different cost and components.

For example, a hash table is very fast for accessing, but incurs a high cost in

storage space. In contrast, linked lists are very slow for accessing, but need

relatively little storage space.

3. Design an instance engine and a class engine: A different instance engine and

class engine will be designed for different data storage structures in this step.

The engines guarantee that each instance, property and class are unique in the

88

A Database Management System to Support the Instance-based Data Mode!: Design, Implementation, and Evaluation

database.

4. Implement algorithms: This step involves implementing all algorithms for

query and update. It may also involve optimizing these algorithms for different

base data structures.

5. Design a compiler for the iQL language. Since this language is the standard

language of the instance-based database model, the compiler does not need to

design for every instance-based DBMS. The iQL compiler is a standard

· compiler for the instance-based database system, and can be used by any

instance-based database system implementation.

The five steps above are needed to implement an instance database system. However, we

note that, in the instance-based database model, if no instance has been added to a

database system, then neither a database nor a database schema exists. In contrast, in the

relational model, even if there are no records in the database, the schema can exist, and

relationships between tables can exist.

7.2 Implementing two Database Systems Using two Base Data Structures

In this section, we will describe our implementation of two database systems using the

first two base data structures presented in Chapter 3. The basic structures and data are

described next.

All base data are stored as files, either at the instance layer or at the class layer. Each

89

By Jianmin Su 03-9-3

type of file is stored in one directory. So in the first base data stmcture, there are four

directories in the database. They are instance, property, mutual property and class.

However in the second base data stmcture, there are only three directories in the database:

intrinsic property, mutual property and class respectively. In general, each class stores

only one class definition and a class definition includes only a few properties or mutual

properties (e.g., ten to twenty properties in a class). Therefore, each class file stores the

class definition information (a class is defined by properties or mutual properties) in a

linked list. Similarly, each instance file stores the property pointers or mutual property

pointers that the instance possesses in a linked list.

For each property file and mutual property file, things are quite different. An intrinsic

property file may store a few or many values, perhaps thousands or millions, possessed by

instances. A mutual property file can also store a few or many values shared by some

instances. Therefore, for fast querying and updating, in each intrinsic property file and

mutual property file, after comparing the advantages of each ordered indexing structure,

we decided to store data as a B+ tree [Silberschatz, Korth and Sudarshan 1996]. In the tree

of an intrinsic property file, the instance identifier is the key. And in the mutual property

file, two instance identifiers, the pair sharing the mutual property, are combined to form a

key. AU methods for accessing data are based on the above structures. After implementing

all algorithms for each base data structure, we can build a standard iQL language and a

compiler for this language in the instance-based database model. Of course, each

90

A Database Management System to Support the Instance-based D-.ata Model: Design, Implementation, and Evaluation

algorithm will need some optimization methods added for fast querying or updating

operation to be practically or commercially feasible. However, such enhancements are

beyond the scope of this thesis.

At the end of the design, data were added into each of the database systems to

initialize them. We added the data shown in Appendix 1 to each database system (the data

are mostly same as the Figure 7.6 in [Elmasri and Navathe 2000]). In Appendix 1, an

instance is expressed as an instance identifier followed by the pairs of intrinsic property

identifier and value of this instance possesses the property. A relation between instances is

expressed as a mutual property of two instances. A class is expressed as a class identifier

followed by the property identifiers of the properties in the class definition. After adding

data to each database system, two instance-based database systems have been built. Each

of them is based on one of the two base data structure presented earlier.

7.3 Testing

The purpose of testing is to check the query and update capabilities of the implemented

databases. All commands in Table 8 and Table 9 in Chapter 6 are tested and some of the

results are listed as examples in Appendix 2.

Some commands of iQL language listed in Table 9 are not implemented in this

project. They can be described as composite commands. Since they are all based on the

others commands in the Table 9, all commands of this type can be implemented in the

91

By Jianmin Su 03-9-3

instance-based database system. This is because in this model, any instance, or property,

or class has a unique identifier. So combining each type will produce no confusion. For

example, a composite command:

Delete instance from Cl where Pl=A and P2 in (select P2 from C2 where P3=B),

is composed of two basic commands. One command selects P2 from C2 where P3=B

while another command deletes the instance from Cl where Pl=A and P2=results of the

first command.

From the results list, we know that commands of query or update are implemented

correctly. However the detail of the implementation of mutual properties has not been

discussed in this thesis. Because the mutual property concepts are different from the

concepts of the relation in the relational model, we provide some details about

implementing mutual properties in the instance model in the next section.

7.4 Implementing Mutual Properties

Thus far, we have not considered how to answer queries such as " who has a supervisor?"

in the instance-based model in the example databases. In the previous chapters, we did

not consider in detail how to implement mutual properties. It seems that the mutual

property stores information that is not suited for this type of query. This is because, if

only a mutual property identifier is stored in an instance when the instance possesses this

mutual property with another instance, then there is no information about which instance

92

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

is an "active" instance and which is a "passive" instance of the mutual propert/. There is

no method to differentiate the instances if the query involves a mutual property itself.

However, in the instance-based database system, we can answer this query correctly. In

this section, we consider how to store mutual properties information in each layer.

Two types of information about mutual properties need to be stored. The first

involves the way in which a mutual property stores instances. Instead of randomly storing

instances to form the key in a mutual property, in our implementation, the mutual

property always stores an instance which is an 'active' instance in the first column.

Another instance which is a 'passive' instance is stored in the second column when they

are combined to form a key of the mutual property. This will give information to the

mutual property itself about which instance is an active instance. For example, a mutual

property Supervise may store its value as shown in Figure 17.

Supervises

instance l instance 2 1999,08,20

instance l instance 3 2000,01,05

instance 4 instance 3 1997,07,01

Figure 17: Mutual property Supervise

In Figure 17, all instances in the first column are employees, that means instance I and

l. We do not think there are an "active" and a "passive" side for all mutual property in the real world.

However, for efficiency we can define the sides when we defming a mutual property.

93

By Jianmin Su 03-9-3

instance4 are employees. The instances in the second column are supervisors, which

means instance2 and instance3 are supervisors. And the third column contains values of a

supervisor related to an employee (e.g., date on which supervisor commenced). There is

no confusion.

The second kind of information is about the way in which the instances or classes

store mutual property information. From the above, we know that instances possessing a

mutual property must be divided into two sets (for binary mutual property). The first set is

active instances. Another set is passive instances. The question becomes how to store this

information to each set of instances. By ontology, when two things interact, one may

cause the other to change. Changes to things are manifested as changes to properties. We

can find a definition in ontology as below:

Definition: Thing X acts on thing Y if and only if the states that Y traverses for a

given subset · of M (M is a set of time instances) when X is present are different from the

states that Y would traverse if the thing X did not exist. Things X and Y interact if at least

one acts on the other. [Wand Storey and Weber 1999]

That means if two instances interact then at least one gets a new state. For example,

consider an instancel that is a student (first state), and another instance2 that is a book. If

the student borrows the book, the instancel enters a new state 'borrower' and the

instance2 enters new state 'borrowed book'. This change is showed in Figure 18.

According to the ontology, a state of an instance is a set of properties. So an instance

94

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

changes to a new state by interacting with another. That means if an instance is jointly

related with another instance, it must possess some properties.

By the mutual property definition, a mutual property expresses the fact that an

instance is related to another instance. So if an instance possesses a mutual property with

another instance, this means the two instances interact. Therefore; each instances, either

the active instance or the passive instance, must have a set of special properties since they

belong to a side of the mutual property. We define that the active instance possesses a set

of properties named "attaching another instance with the mutual property", and express

this set of properties as one notation. That is the mutual property identifier plus a"->".

lnstanfl (Student)
I borrows f-1 ---~-n-st_an_c+~{ (Book)

Instancel (Borrower) Instance2 (Borrowed book)

Figure 18: Instances change their states by acquiring a mutual property

Also we define that the passive instance possesses a set of properties named "attached by

another instance with the mutual property", and express this set of properties with the

mutual property identifier plus a "<-". For example, in Figure 17, instance3 is a

supervisor ofinstancel, so instance3 possesses an additional property 'Supervise->', and

instance! possesses a additional property 'Supervise<-'. And if instance3 is a supervisor

95

By Jianmin Su 03-9-3

of more than one instance, it only possesses one property 'Supenrise->'. The same is true

for a passive instance. By the ontology definition, we also know that the existence of

additional properties is based on the mutual property. If an instance no longer possesses a

mutual property with other instances it loses the additional property of this mutual

property at the same time. Since mutual properties have this property, we get a solution

for storing mutual property information into an instance. If an instance possesses a mutual

property with other instances then we store the additional property to the instance.

In the class layer, we also need a method for storing mutual property information in a

class definition. By the ontology, a class classifies a set of things into two subsets. One

subset is the things that possess all properties in the class definition. They are the things in

the class. Another subset is the things that do not belong to the first subset. They do not

belong to the class. Since a mutual property expresses the relation of two sets of instances

(e.g. relation of active instances and passive instances), if we only store a mutual property

identifier to a class definition, the class definition will not be clear about which instances

will be included in the class, active instances or passive instances or both of them. In fact,

a class including a mutual property also indicates that it includes only one set of the

instances of the mutual property, either active instances or passive instances. For example,

a class Students means a set of persons who study in a school. This class may include a

mutual property, Study-at, expressing a relation between persons and schools. However,

the class only indicates one set of instances, persons, in the class. By this meaning, a class

96

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

definition can also store the additional property of a mutual property as a part of the class

definition to indicate the mutual property. So if a class Student includes a mutual property

Study-at, the class definition then includes an additional property Study-at->.

We know that an instance possessing a mutual property with others may have more

than one additional property. However, only two property identifiers, mutual property

identifier plus a"->" and mutual property identifier plus a"<-", are considered to apply to

instances or classes. Since the forms of the two identifiers are very similar to the form of

the mutual property identifier, it is very convenient for algorithms to determine to which

mutual property the additional property is related.

When we apply these two parts of the method for including mutual property

information in each base data structures (the second base data structure does not store an

instance's information as a file, so only classes store mutual property information in the

second part), all commands give correct results. The example commands and results are

listed in Table 10.

Table 10 Results of a query involving a mutual property

97

By Jianmin Su 03-9-3

In the next section, we compare the two database systems with the results that we

derived in chapter 4.

7.5 Comparing two Database Systems

After implementing the instance-based database systems according to the two base data

structures, two systems were built. We added more data to the example in Appendix 1 to

facilitate our comparison (each database system now stores 217 instances for the

comparison that follow, the attached disk include all data). The commands are compared

using a PC system running Windows 98. We used a separate program to record each

command's running time. The results are shown in Tables 11, 12, and 13.

From Tables 11 and 12, we see that the database system which is based on the second

base data structure is not faster than the one based on the first base data structure for

query operations. And if query commands are related to instances or classes, the database

system based on the first data structure is faster than the second one. If query operations

are only related to properties or mutual properties, then the two systems require the same

time for querying. The comparisons of all these queries empirically confirm the analysis

in Chapter 4. However, we can see that the update operations highlighted in Table 13 are

not as the same as the analysis results. By checking the implementation methods of each

database, we find that this difference is not coming from the implementation methods

themselves, but from the iQL language compiler. The compiler always checks whether or

98

A Database Management System to Support tbe Instance-based Data Model: Design, lmplementation, and Evaluation

not the command is correct first. When checking whether or not the instances in these

commands exist, the first data structure requires less time than the second data structure.

Table 11: Test of queries (types shared with the relational model)

commands time

first stmcture second structure

Query

select*; 55.8 241.46

select * from DEPARTMENT; 0.33 2.2

select * from PROJECT; 0.55 3.24

select * from EMPLOYEE; 51.25 214.98

select * where DNUMBER=5; 0.22 0.44

select * from DEPARTMENT where DNUMBER=5; 0.11 0.77

select DNAME,DNUMBER; 0.44 0.5

select FNAME,SSN; 22.63 22.85

select LNAME,SSN from EMPLOYEE; 31.3 1 252.1

select LNAME,SSN from EMPLOYEE where BDATE='JO-NOV-27'; 10.71 226.9

select DNAME,DNUMBER from DEPARTMENT where DNUMBER=5; 0.28 3.08

select LNAME,SSN where BDATE=' I9-JUL-58'; 1.43 1.54

select DNAME,DNUMBER where DNUMBER=5; 0.04 0.05

select FNAME,DNAME; 70.8 11 2.82

select PNAME,DNAME; 1.43 3.63

select FNAME,DNAME where SSN=888665555; 49.65 93.26

select FNAME, DNAME from EMPLOYEE,DEPARTMENT; 77 226.4
:

select FNAME, DNAME from EMPLOYEE,DEPARTMENT where SSN=333445555; 54.93 201.47

select FNAME,SSN,DNAME sharing MANAGER; 956 9.77

select FNAME,DNAME where SSN=888665555 sharing MANAGER; 9. 12 9.39

select FNAME, DNAME from EMPLOYEE,DEPARTMENT sharing MANAGER; 13.56 125.Ql

seloct FNAME. DNAME from EMPLOYEE.DEPARTMENT where SSN~333445555 sharing MANAGER: 13.79 123.59

99

By Jianmin Su 03-9-3

Table 12: Test of special queries of the instance-based model

commands time

first structure second structure

Query I
query property belongto instance 8; 0.22 0.6

query property belongto class EMPLOYEE; 0.05 0.05

query class has instance 3; 0.11 0.54

query class *; 0.06 0.06

query mutualproperty information belongto instance 4; 0.05 0.55

query instance share mutualproperty MANAGER; 0.05 0.05

query instance share mutualproperty ISEMPLOYEE; I 0.61 0.65

query m utualproperty "; 0.05 0.05

query mutualproperty HOURS value sharedby instance 8 withothers; 0.16 0.16

Table 13: Test of updates

time

instance (SSN,333445555,FNAME, 'Alice', SEX,'F');

property (MJNIT,'F',LNAME,'Smith') into instance 16;

property (MIN IT) into class EMPLOYEE;

mutualproperty ISEMPLOYEE from class EMPLOYEE;

mutualproperty (ISEMPLOYEE<-) into class EMPLOYEE;

property MlNIT, LNAME from instance 16;

mutualproperty RELATIONSHIP sharedby instance 5,13;

mutualproperty MANAGER sharedby instance 2, ll;

mutualproperty SALARY;

property MlNIT from class EMPLOYEE;

Note: Shaded ones indicate results that differ from the analysis in Chapter 4.

100

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

So even if the update operations for the database based on the second data structure are

faster than the ones based on the first data structure, the results show that the database

based on the first data structure is fast in these operations. If we reduce the effect of the

checking, we get the results of these update operations shown in Table 14. They are the

same as our analysis. We summarize the results of the comparison of two database

systems in Figure 19.

When comparing two database systems, we also find that if a query operation or an

update operation refers to the instances that belong to classes then the time needed is very

big relative to other operations. In the next section, we discuss how to get fast query or

update under these cases.

Table 14: Results of reducing tbe effect of checking

Conunands Time

First Structure Second Structure

insert property (MINIT,'F',LNAME,'Smith') into instance 16; 0.12 0.1
'

delete property MINIT, LNAME from instance 16; 0.32 0.22

delete property SSN from instance 8; 0.1 0.08

delete mutual property RELATIONSHIP sharedby instance 5,13; 0.12 0.08

delete mutualproperty MANAGER sharedby instance 2,1 1; 0.12 0.08

101

Query refer to
properties

Update refer to
properties

By Jianmin Su 03-9-3

instances

instances

classes

classes

Figure 19: Comparison of two database systems

7.6 Efficient Query and Update Methods

In the relational database model, any operation, query or update, acts on tables. Each

record is stored in tables, and each record has a unique key value in a table. A record has

static membership in a table. That means a record is in, and only in, a certain table until it

is deleted; it does not move to other tables. So a query or update operation can retrieve

each table declared in each command to find data (records) that the operation needs, and

then the query or update operation will be based on these data to generate results.

However, in the instance-based model, the class layer is independent of the instance layer.

Therefore, instance membership in classes is dynamic. An instance may belong to more

than one class or may not belong to any class. And class membership may change if some

102

A Database Management System to Support the Insta.oce-based Data Model: Design, Implementation, and Evaluation

properties of an instance are updated, or some class definitions are updated. So in this

model, if a query or update command refers to some instances of a class, we must decide

which instance belong to the classes (In third base data structure, after updating a

property of an instance or a class, we need to do this to update which instances belonging

to which class. So here, we only refer our methods to the first two structures). This time is

(10)

In a real database, the number of the properties, P d, and the number of instances that

possess a property, P1. are decided by the data in the database, we cannot change them.

Only the number of the properties in a class definition, Cp, is the item that we can decide.

In the instance-based database system, the class definition is not basic data of the

database, it is decided by users. Users (or managers) can change a class definition or

update a class any time without losing any information in the database.

To optimize Cp we must realize that the goal of defining a class in the instance-based

model is different from class-based models. In the class-based models, classes store all

information of instances in a database. So when we define a class, it must include all

properties that will store instance information in it. In fact, in class models, all

information is stored in classes. We cannot reduce any properties of a class if we want to

retain the fact that some instances possess these properties (and the value of the

properties). However, in the instance-based model, we repeat that the concept of classes

reflects how people organize knowledge about things in the world [Parsons and Wand

103

By Jianmin Su 03-9-3

1997]. What concept do people refer to when they talking about a class. For example, if

people refer to a class 'car', do we think about the names or the colors of cars? Generally,

it is not. Rather, it is the concept of a motorized vehicle that is the definition of the class

'car'. In this definition, we find no special property (name, maker, or color) of a car in the

definition, only the properties that what is this class 'car' different from other things are

included. The instance-based model reflects this recognition. In this model, the instances

layer stores all information of instances. Classes do not store any information about

instances. A class is defined only because people want to classify instances to a set so that

we can operate on this set to get fast query or update in the database. Therefore, if we

define a class, we only include into the class definition the special properties that are

possessed by the instances of the class and are not totally possessed by other instances.

We call these special properties a minimum set of properties possessed by the instances of

the class. This concept of a minimum set of properties is the same as the concept of

preceding properties [Parsons and Wand 2002]. According to this recognition, when

defming a class, we do not add the common properties possessed by both the set of the

instances that we want to define and some other instances. For example, a class Employee

may only include a property employed-by-company in its definition. It may not include

the property Name in it, because other persons must possess the property. In other words,

a name does not belong to the minimum set of the common properties of the set of the

instances. This recognition is our first method to support fast query or update in the

104

A Database Management System to Support tile Instance-based Data Model: Design, Implementation, and Evaluation

instance-based model. If we use this method to define the classes in Appendix 1, then the

cost ofthe query or update that refer to some instances of some classes reduces to 50-70%

ofbefore. Table 15 shows some example data of the comparison.

Table 15: Results of high efficiency test

Commands Time
Before using After using
the methods the methods

select * from EMPLOYEE; 5!.25 12.4

select LNAME,SSN from EMPLOYEE; 31.31 11.5

select FNAME, NAME from EMPLOYEE,DEPARTMENT; 77 22.4

select FNAME, NAME from EMPLOYEE,DEPARTMENT shared MANAGER; 13.56 6.1

The second method of the optimization is that, if the minimum set of the common

properties of the instances that we want to classify is still big after using first method, we

can create a new property to represent the set of properties both of the class definition and

each instances of the class. So the class definition only includes one property and we can

access it fast. We name the type of the new property as a compound property (in fact, it is

a preceding property [Parsons and Wand 2002]), and to retain the integrity of the database

we must add an engine (compound property engine) to manage the compound properties

before we add any compound property to a database. The compound property engine will

be able to update and manage the compound properties. That means this engine has two

functions. First, it manages each compound property definition, updates these definitions,

and deletes or inserts compound properties. Second, it adds a compound property to an

105

By Jianmin Su 03-9-3

instance automatically if the instance possesses a subset of properties that are the same as

the definition of the compound property, and it deletes the compound property if the

instance loses some properties in the definition of the compound property. Of course, the

engine will take some time to check properties when updating an instance or a property.

However, the number of compound properties and other properties is much smaller than

the number of instances that possess a property, so the cost of this engine operation is

small.

In the instance-based model, the properties an instance possesses may change over

time. So in order to get a fast query or update, users should create a plan to create a good

class set for database operations, which means managing the dynamic classes suited for

different queries. This is also one of the differences between this model and the

class-based models.

In this chapter, we completed the implementation and comparison of two database

systems. We also discussed how to store mutual property information in both the instance

layer and the class layer. Finally, we proposed two methods for speeding up class related

operations. We expect that users will frequently use these methods to manage the dynamic

schema. In the next chapter, we compare the differences between the instance-based

model and the relational model.

106

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

Chapter 8

Characteristics of the Instance-Based Database Model

In the previous chapters, we have discussed some different features of the instance-based

model in comparison to the class-based models. In this chapter, we will summary the

characteristics of the instance-based model and point out the differences of the

instance-based model as compared with the relational model. We compare the

characteristics of the instance-based model to those of the relational model because the

relational model is dominant in database research and in practice. The characteristics

cover two aspects: the design method and the management method. The focus will be on

the differences between the two models.

8.1 Characteristics in the Database Design Process

8.1.1 Characteristics in Requirements Collection and. Analysis

Using the relational data model, a database designer needs to collect a large amount of

data requirements before beginning to design a database. This includes understanding

which types of data will be used · for the database and which types of relationships will be

added to the database. This means a lot of time is required to design a big relational

database. Many books or papers that relate to implementing relational databases give

suggestions for selecting relations (e.g., [Elmasri and Navathe 2000] [Silberschatz Korth

107

By Jianmin Su 03-9-3

and Sudarshan 1996]). However, since a database will be designed to operate on some

special type of data (that is the data suited for a special schema of the database) and a

designer may not have the special knowledge of the data, it is difficult to abstract the

schema of the data even for an experienced database designer [Prietula and March 1991;

Batini Ceri and Navathe 1992; Storey and Chiang 1990]. And the data collection and

analysis process are also quite time-consuming.

In the instance-based model, however, the schema in the database is dynamic, and the

relations among the instances are expressed by mutual properties, so we do not need to

perform as much work in collecting and analyzing the data. From chapter 5 we know that

when we design a database system for the instance-based model, we only need to know

two things. The first is whether the database system is big. The second is whether this

system will perform updating operations more than querying operations. We do not need

to consider which type of data will be in the database. So the instance-based model

reduces many complexities associated with the relational model when preparing database

system design.

8.1.2 Characteristics in the Conceptual Schema Design

In the relational data model, the first step in implementing a database is to design the

database schema. The schema is specified during the database design process and is not

expected to change frequently [Elmasri and Navathe 2000]. In fact, a schema is a set of

108

A Database Management System to Support tbe Instance-based Data Model: Design, Implementation, and Evaluation

tables in the relational database model. However, designing schemas of a database system

is not an easy task.

There are two aspects that make this process difficult. The first is related to how to

classify data to some entities: what are the attributes of each entity and what type of

relationships exists between two types of entities. These are sometimes very confusing in

database design [Wand, Storey and Weber 2000]. Another aspect is how to combine

schemas. The relational model only maintains a name (either a table name or an attribute

name) unique in one schema, while a database system may have more than one schema.

So there may be many conflicts, such as name conflicts, type conflicts, and domain

conflicts in the global database [Elmasri and Navathe 2000] and view integration

problems [Parsons and Wand 2000]. For example, the concept of a DEPARTMENT may

be an entity type in one schema and an attribute in another.

Therefore, in order to merge data, we need to design a global schema for a database

system. However, mapping real data to a global schema is very difficult, because the

relations of the data in a large database are very complex. On the other hand, sometimes

we do not know whether a type of data (relation) needs to be added to the database if we

do not need it currently, but may need it in the future. These factors make schema design

both costly (in time) and complex.

In the instance-based model, the instance engine and the class engine manage the two

levels respectively. There is only a dynamic schema in a database. The information about

109

By Jianmin Su 03-9-3

which instances possess a property is stored by only this property, and the relationships

between instances are stored by mutual properties. Both instances and properties are

unique in the instance level and classes are unique in the class level. So when merging

data, the instance-based model will reduce many problems associated with the relational

model.

In addition, smce in the instance-based model the relation between instances is

represented using mutual properties, we only need to add mutual properties to express

relations between instances for forming all relations in a database. There is no abstraction

needed for expressing the relation between instances. Therefore, we can describe very

complex relations between instances with a very simple method: if a relation between

instances exists, we add this relation via a mutual property.

8.1.3 Characteristics in the Data Model Mapping

In the relational model, the conceptual schema can be expressed as an ER or EER

diagram. This schema needs to be implemented at a logical level, that is data mapping or

logical database design. There are many normalization rules for this mapping [Codd 1972]

[Fagin 1977; 1979] [Bernstein and Goodman 1980], and also some new rules are still

being developed [Date and Fagin 1992] [Levene 1995]. To implement these rules, we

need to implement some complex methods. And there is no method to choose these rules.

This can cause confusion. For example, when designing a database, a designer may not

1!0

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

use the 'best' rule, but one which is enough for the database. So splitting a conceptual

schema into a logical schema needs in-depth understanding of the relationships of the

entities. Since the relationships between the entity types are expressed as a foreign key in

each table, even though the foreign key is not an attribute of an entity [Wand, Storey and

Weber 2000], the meaning of the foreign key can also be very confusing. In addition, not

all attributes in a table represent intrinsic properties, some represent mutual properties.

However, a mutual property's existence dependencies on the existence of instances that

jointly possess this mutual property. If storing a mutual property of two instances as an

intrinsic property of one instance, when another instance is deleted from the database, the

meaning of this property is lost.

In the instance-based model, smce the information of instances is stored in the

instance layer, classes (schema) are both dynamic and independent. Therefore, although

the mapping still applies for fast querying and updating it does not affect queries or

updates on instances. Even if no schema exists, we can retrieve from the database using

' limited' or 'unlimited' query.

8.1.4 Characteristics in tbe Database Implementation

In the relational model, we must implement two types of languages respectively. The first

type is DDL (Data Definition Language). It includes the SDL (Storage Definition

Language). We use this language to create the database schemas and empty database files.

111

By Jianmin Su 03-9-3

The second type is DML (Database Manipulation Language). This is the language with

which users manage the data.

In the instance-based model, the schema (classes) is dynamically managed, and it is

also independent of instances. So we do not need to design an independent language to

manage it. Therefore, we do not differentiate DDL and DML. The implementation will

combine them into one language: IDBL (Instance-based Database Language).

In this section, we compare differences in the database design process between

class-based and instance-based database models. From these comparisons, we know that

the database design in the instance-based model is simpler than in the relational data

modeL When designing a database using the instance-based model, there is no confusion

such as can arise in the relational model. And there is no complex relationship analysis

such as required in the relational model. Also, in the relational model, each database is

based on a special schema, so different types of data need different database schemas to

manage. That is why we can see many database schemas in different application in the

relational model. In the instance-based model, however, a database is not based on certain

schema, so it can be used to manage any data, which means we only need design one

database system for each type of requirement as discussed in Chapter 4. This property of

the instance-based model will let us disentangle drastically from a complex database

design process.

112

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

8.2 Characteristics in the Database Management and Application

One goal in designing a database is to make it easy for users to manage the data. Based on

this point, we compare the two data models in terms of how data are managed by users.

There are five differences between the models in this regard. We compare them in the

following subsections.

8.2.1 Range that a Database System Manages

In the relational model, a database is based on a special schema, so a database system

needs to manage static classes. If the database needs to manage extended data or reduce

the range of data it manages, the classes may need to be reorganized. This will produce

one of the two results: First, only some classes change. In this case, when we change

classes, some information may be lost [Parsons and Wand 2000]. Second, we may need to

redesign the database system, that means there are many tables or relations that need to be

changed. So the old system may not suit the new data, and we need a new database. In

this case, we may need to spend a lot of time and money to design the new database. The

rescheduling is caused by the dependence of instances and schemas. In a class-based

database, instance existence depends on a special schema. However, in the instance-based

model, the database schema is dynamic, and the schema (classes) is independent of any

instances. The schema (classes) is used to enable fast retrieval of some instances that

belong to a certain class. Therefore, a database, once created, can manage any data.

113

By Jianmin Su 03-9-3

8.2.2 Managing Temporal Data

The second difference between the instance-based model and the relational model is that

the properties an instance possesses can be dynamically changed if necessary. In the

relational model, records belong to tables. No record can possess a property (attribute)

that does not belong to the table in which the record is located. In fact, in this model, a

record (instance) is only a set of values in a table. Therefore, if a record is located in a

table, it will be in the table until it is deleted from the database. It does not become a

record belonging to another table even if changes in the real world necessitate such a

transformation. For example, suppose for a database system in a university, there are two

entity types: Student and Professor. Suppose that a person first studies at the university

and graduates, and then he/she becomes a professor of the university. In a relational

database, when he/she graduates from the university, we delete this record (instance) from

the entity type Student. We add a record to the entity type Professor since he/she becomes

a professor. Of course, some properties of the person are changed when he/she changes

from a student to professor. However, it is the same instance, and a data model should

allow this semantics to be preserved. However, there are two problems in a relational

database: The first is we cannot express that one record is 'continued' by another. When a

record is deleted, any information in this record is deleted from the database. The

database system itself does not store any information to express the relation between

these two records unless some information is stored in second record itself. Another

114

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

problem is that the records do not continually reflect the instance in the real world. Some

time (after deleting the first record and before adding back the second record) the

database loses the information of this instance1
• In the instance-based model, since

instances store their properties, and an instance can change the properties it possesses any

time, if we store an instance in the database, it will be in the database until the user does

not want to manage it (delete it), and the database will reflect its state over the time.

Taking the example above, if a student becomes a professor, we only delete some

properties that relate to being a student and add some properties that relate to being a

professor. The instance is always in the database. So the instance-based model is more

compatible with a real time system, such as a real time data statistical system, etc.

8.2.3 Merge Capability

The third difference between the two database models is that the instance-based model

supplies a 'whole range' definition. That means in a database any instance, property, or

class has its unique identifier and definition. In the relational model, however, any

attribute name is unique only in one table, and a table name is only unique in a schema.

Therefore, in a whole database system, there may exist some attributes that have same

names but different meaning [Parsons and Wand 2000]. Similarly, some tables that have

1. Some of the information might still be kept if one designs the RDB to reflect subclasses. However,

this special design is "rigid" in that it is fixed and can only deal with subsets of properties. Not any

general addition and loss of properties.

115

By Jianmin Su 03-9-3

different names may be the same [Kim et al. 1995] [Sheth and Larson 1990]. This

complicates database querying. However, in the instance-based model, any identifier,

either instance identifier, property identifier, or class identifier, is unique in the whole

database system. So no confusion exists in retrieving from the whole database. That is

why we can suggest whole range query and unlimited query in instance-based model.

This makes the instance-based model suitable for distributed database systems, which are

used more and more today, especially due to the rapid growth ofhigh-speed networks.

8.2.4 Ability to Manage Instance-Specific Data

The fourth difference of two models is that the instance-based model is based on

instances. That is it supplies relationships 'based on instances' . In the relational model,

any record belongs to a table. The records in a table must have the same attributes. That

means a table only maintains the common attributes of the set of instances in it. Any

relation is built between tables (that is the key we referred in the relational model, such as

foreign key, weak key etc.). That is, any relation is between two sets (each refers to a table)

of instances (records). However, the instances in the real world are different. No set of

properties that an instance (thing) possesses is the same as the set of properties another

instance possesses. And the relationship between the instances also is very complex. That

is why it is very difficult to design a database schema in a large database system. In fact,

if we do not reduce some attributes or relations between the real data we cannot build the

116

A Database Management System to Support tbe Instance-based Data Model: Design, Implementation, and Evaluation

schema. Therefore, in the relational model, both the attributes of instances and the

relations between instances are curtailed. They are curtailed to maintain the same

properties or relations if they are in same table (we do not say relational model can not

express complex relation, but it is very costly to express that). In the instance-based

model, instances are the base of the data. Any instance stores its information. So an

instance can store its special properties. And we have a concept of mutual properties. This

concept lets us express the relations between instances very easy. To express any relation,

we only add a mutual property between these instances that are jointly related each other,

whether they are in same class or not. Therefore, the instance-based model has better

abilities than the relational model for managing data.

8.2.5 Support for Multiple Views

The fifth difference between the two models is that for different users, the instance-based

model supplies more suitable retrieval than the relational model, even for the same data.

This is because in the relational model, database schemas are static in a certain database

system, so a database only includes the special entity types in the schema. Any retrieval

must be through these entities and relations between these entities. In the instance-based

model, however, the schema is dynamic. Any user can either retrieve from a database

using the schema supplied by some system managers or can create some classes to form

the schema to suit his/her special needs. For example, in a university, to retrieve some

117

By Jianmin Su 03-9-3

people, an academic officer may need to partition the people to students and faculty. But a

security officer may need to partition them by different departments. In the instance-based

model, it is easy to achieve this goal. Therefore, different users can use different schemas

to retrieve the same data in a database system and without difficulty in the instance-based

model.

In this chapter, we have pointed the characteristics of the instance-based model with

the relational model in different areas. We have found that in several areas, the

instance-based model provides a better solution than the relational model. The

instance-based model is easy to design and implement. It has greater flexibility. It also has

stronger retrieve ability. Of course, the instance-based model has disadvantages in some

cases. For example, in order to do a special retrieve, the user may need to create special

classes for fast retrieving. This requires that the user understands how to create the

suitable classes. Otherwise, the user may only use the classes managed by system

managers to implement his/her querying or the classes that the user creates may not be

efficient for his/her querying. So this may not provide the best speed to respond to the

special requirements. In this case, the flexibility of the instance-based model may not be

utilized very well so that the query may become very costly. However, we believe that

with more research and development of the instance-based model, more and more

advantages of this model will be found and various techniques will be developed for this

model.

118

A Database Management System to Support the Instance-based Data Model: Design, Implementation, and Evaluation

Chapter 9

Conclusion and Extensions

In this thesis, we have focused on transforming the instance-based database model from

concepts to a real world implementation. We first proposed three base data structures for

the instance-based database model. Then, we analyzed the different operations on each

. base data structure to suggest which base data structure is best for a certain database

system. In addition, we discussed how to implement an instance-based database system

and implemented two instance-based database systems, one based on the first base data

structure, and another based on the second base data structure.

The advantages of the instance-based data model come from '"emancipating" the

instances from the "tyranny" ofthe classes' [Parsons & Wand 2000]. The implementation

of this feature is that any instance or property in the instance layer has a unique identifier.

This lets the instance-based database system support two different queries: whole range

query and unlimited query. These two types of queries support greater flexibility for

querying a database. Also, these query models are more powerful. Another advantage is

the fact that an instance has a unique identifier and that the database can capture temporal

issues related to an instance 1• This lets us continually manage an instance in the

instance-based database model.

1. In the instance-based model, the state of an instance can be changed with the time (acqi1ire or lose

some properties). We can design some methods to store this information.

119

By Jianmin Su 03-9-3

From the implementation, we also demonstrated that, if we use a suitable method

(e.g., preceding property) to define classes, we can get highly a efficient query or update.

Even if this efficiency is not greater than the relational model, this is very encouraging for

supporting the instance-based database model, since we can get powerful query or update

but at no more cost than the relational model.

There are some possible extensions of the implementation of the instance-based

database. First, a database system is frequently used with multiple users. The

instance-based database model is also suitable to this case, so how to manage multiple

users is an important issue for future research. Second, the existence of an instance-based

database is based on the existence of instances. And the existence of an instance is

expressed by the fact that it possesses some properties. Further research is needed to

examine how to express the semantics of properties clearly, and how to determine what

types of properties to keep in a database in order to support efficient query and update.

Third, the instance-based model is a new data model. Its concepts are very different from

class-based models. So for developing this model to be scalable to real world applications,

research is needed to optimize our implementation. For example, further research is

needed to determine which data structure is best suited to store real world data and how to

optimization the complex query processing.

120

References

l. [Albano, Ghelli, and Orsini 1995] Albano, A., Ghelli, G, and Orsini, R. 1995.
Fibonacci: A programming language for object databases. VLDB Journal 4, 403--444.

2. [Batini Ceri and Navathe 1992] C. Batini, S. Ceri, and S. B. Navathe 1992.
Conceptual Database Design: An Entity-Relationship Approach. Benjamin
/Cummings ISBN 0-8053-0244-1

3. [Bayer and Unterauer 1977] R. Bayer and K. Unterauer 1977. Prefix B-Trees. ACM
Transactions on Database Systems. 2, 1. 11-26.

4. [Bernstein and Goodman 1980] P. A. Bernstein, and N. Goodman, The power of
inequality semijoins. Information System. 6, 4 (1981), 255-265.

5. [Bunge 1977] M. Bunge 1977. Treatise on Basic Philosophy: Vol 3: Ontology I: The
Future of the World. D. Reidel Publishing Co., Inc., New York, NY.

6. [Bunge 1979] M. Bunge 1979. Treatise on Basic Philosophy: Vol 4: Ontology II: A
World of Systems. D. Reidel Publishing Co., Inc., New York, NY.

7. [Codd 1970] E. F. Codd 1970. A Relational Model of Data for Large Shared Data
Banks. CACM 13, 6. 377-387.

8. [Codd 1972] E. F. Codd 1971. Further Normalization of the Data Base Relational
Model. IBM Research Report, San Jose, California RJ909.

9. [Comer 1979] D. Comer 1979. The ubiquitous B-tree, ACM Computing Surveys 11.
121-137.

10. [Connen 1989] H. Corm en, E. Leiserson, L. Rivest 1989. Introduction to Algorithms.
The MIT Press and McGraw-Hill Book Company, ISBN 0-262-03141-8,
0-07-013143-0.

11. [Date and Hopewell 1970] J. Date and P. Hopewell 1970. File Definition and Logical
Data Independence. SIGFIDET Workshop. 117-138

12. [Date and Fagin 1992] J. Date and R. Fagin 1992. Simple Conditions for
Guaranteeing Higher Normal Forms in Relational Databases. ACM Transactions on
Database Systems. 17, 3. 465-476.

13. [Elmasri and Navathe 2000] Ramez Elmasri and Shamkant B. Navathe 2000
Fundamentals of Database Systems. Addison Wesley Longman, Inc., ISBN
0-8053-1755-4.

14. [Fagin 1977] R. Fagin 1977. Multivalued dependencies and a new normal form for
relational databases. ACM Transactions on Database Systems. 2, 3. 262-278.

15. [Fagin 1979] R. Fagin 1979. Normal forms and relational database operators. In
Proceedings ofthe ACM SIGMOD Conference on Management ofData. p153-160,

121

Boston, MA, 1979.
16. [Johanneson 1994] P. Johannesson 1994. Linguistic Instruments and Qualitative

Reasoning for Schema Integration. Third International Conference on Information and
Knowledge Management, Ed. N. Adam. Gaithersburg, Maryland, IEEE Press, 1994.

17. [Levene 1995] M. Levene 1995. A lattice view of functional dependencies in

incomplete relations. Acta Cybern. 12, 181-207.
18. [Kanellakis 1996] P. Kanellakis, S. Ramaswamy, D. Vengro , and J. Vitter 1996.

Indexing for Data Models with Constraints and Classes. Journal of Computer and

System Sciences. 52, 3. 589-612.
19. [Kim et al. 1995] W. Kim, I. Choi, S. Gala, M. Scheevel 1995. On Resolving

Schematic Heterogeneity in Multidatabase Systems. Modern database systems,
Addison-Wesley Publishing Company, New York, NY, 521-550.

20. [Knuth 1973] D. E. Knuth 1973. The Art of Computer Programming, Volume III:
Sorting and Searching. Addison-Wesley, ISBN 0-201-03803-X.

21. [Maier 1986] D. Maier, J . Stein, A. Otis, and A. Purdy 1986. Development of an

Object-Oriented DBMS. ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. 472-482

22. [Markowitz and Makowsky 1990] V. M. Markowitz and J. A. Makowsky 1990.
Identifying Extended Entity-Relationship Object Structures in Relational Schemas.
IEEE Transactions on Software Engineering. 16, 8. p.777-790.

23. [Nievergelt 1984] J. Nievergelt and H. Hinterberger 1984. The grid file: an adaptable,
symmetric multikey file structure. ACM Transaction on Database Systems. 9, 1,

38--71.
24. [Parsons and Wand 1997] J. Parsons and Y. Wand 1997. Choosing Classes in

Conceptual Modeling. Communications of the ACM. 40, 6. 63-69.
25. [Parsons & Wand 2000] J. Parsons andY. Wand 2000. Emancipating Instances from

the Tyranny of Classes in Information Modeling. ACM Transactions on Database
Systems. 25, 2. 228-268.

26. [Parsons and Wand 2002] J. Parsons andY. Wand 2002. Property-Based Semantic
Reconciliation of Heterogeneous Information Sources. 21st International Conference
on Conceptual Modeling, Tampere, Finland, 2002, Proceedings. 351-364.

27. [Prietula and March 1991] M. J. Prietula and S. T. March 1991. Form and Substance
in Physical Database Design: An Empirical Study. Information Systems Research. 2, 4.

p. 287-314.
28. [Sheth and Larson 1990] A. P. Sheth, J. A. Larson 1990. Federated Database Systems

for Managing Distributed, Heterogeneous, and Autonomous Databases. ACM

Computing Surveys 22, 3. 183-236.
29. [Silberschatz Korth and Sudarshan 1996] A. Silberschatz, H. F. Korth, and S.

Sudarshan 1996. Database System Concepts. McGraw-Hill, ISBN 0-07-044756-X.

122

30. [Storey and Chiang 1990] V. C. Storey, R. H. L. Chiang, D. Dey, R. C. Goldstein, S.
Sudaresan 1990. Database design with common sense business reasoning and learning.
ACM Transactions on Database Systems. 22, 4. 471 - 512.

31. [Wand Storey and Weber 1999] Y. Wand, V.C. Storey and Weber 1999. R., An
Ontological Analysis of the Relationship Conceptual Modeling. ACM Transactions on
Database Systems. 24, 4. 494-528.

123

Appendix 1
Date Stored By the Sample Database

Instances: Instances are expressed as an instance identifier followed by a set of pairs of a
property identifier and value of the instance possesses this property

1 (NAME, 'Research', DNUMBER, 5);
2 (NAME, 'Headquarters', DNUMBER, 1);
3 (NAME, 'Administration', DNUMBER, 4);
4 (FNAME, 'John', MINIT, 'B', LNAME, 'Smith', SSN, 123456789, BDATE,
'09-JUN-55', SEX, 'M');
5 (FNAME, 'Franklin', MINIT, 'T', LNAME, 'Wong', SSN, 333445555, BDATE,
'08-DEC-45', SEX, 'M');
6 (FNAME, 'Alicia', MINIT, 'J', LNAME, 'Zelaya', SSN, 999887777, BDATE,
'19-JUL-58', SEX, 'F');
7 (FNAME, 'Jennifer', MINIT, 'S', LNAME, 'Wallace', SSN, 987654321, BDATE,
'20-JUN-31 ', SEX, 'F');
8 (FNAME, 'Ramesh', MINIT, 'K', LNAME, 'Narayan', SSN, 666884444, BDATE,
'15-SEP-52', SEX, 'M');
9 (FNAME, 'Joyce', MINIT, 'A', LNAME, 'English', SSN, 453453453, BDATE,
'31 -JUL-62', SEX, 'F');
10 (FNAME, 'Ahmad', MINIT, 'V', LNAME, 'Jabbar', SSN, 987987987, BDATE,
'29-MAR-59', SEX, 'M');
11 (FNAME, 'James', MINIT, 'E', LNAME, 'Borg', SSN, 888665555, BDATE,
'10-NOV-27', SEX, 'M');
12 (FNAME, 'Alice', SEX,'F', BDATE,'05-APR-76');
13 (FNAME, 'Theodore', SEX,'M', BDATE,'25-0CT-73');
14 (FNAME, 'Joy', SEX,'F', BDATE,'03-MAY-48');
15 (FNAME, 'Abner', SEX,'M', BDATE,'29-FEB-32');
16 (FNAME, 'Michael', SEX,'M', BDATE,'Ol -JAN-78');
17 (FNAME, 'Alice', SEX,'F', BDATE,'31-DEC-78');
18 (FNAME, 'Elizabeth', SEX,'F', BDATE,'05-MAY-57');
19 (NAME, 'ProductX', PNUMBER, 1, LOCATION, 'Bellaire');
20 (NAME, 'ProductY', PNUMBER, 2, LOCATION, 'Sugarland');
21 (NAME, 'ProductZ', PNUMBER, 3, LOCATION, 'Houston');
22 (NAME, 'Computerization', PNUMBER, 10, LOCATION, 'Stafford');
23 (NAME, 'Reorganization', PNUMBER, 20, LOCATION, 'Houston');
24 (NAME, 'Newbenefits', PNUMBER, 30, LOCATION, 'Stafford');

124

Relations: A relation between two instances is expressed as a mutual property that these
two instances jointly possess this mutual property and value if necessary.

Mutual property ISEMPLOYEE shared by instance 4,1 value '09-JA_N-85';

Mutual property ISEMPLOYEE shared by instance 5,1 value '08-DEC-75';
Mutual property ISEMPLOYEE shared by instance 6,3 value '19-JUL-88';
Mutual property ISEMPLOYEE shared by instance 7,3 value '19-JUL-88';

Mutual property ISEMPLOYEE shared by instance 8,1 value '15-SEP-82';
Mutual property ISEMPLOYEE shared by instance 9,1 value '31-JUL-92';
Mutual property ISEMPLOYEE shared by instance 10,3 value '29-MAR-89';
Mutual property ISEMPLOYEE shared by instance 11,2 value '10-NOV-57';

Mutual property RELATIONSHIP shared by instance 5,12 value 'DAUGHTER';
Mutual property RELATIONSHIP shared by instance 5,13 value 'SON';
Mutual property RELATIONSHIP shared by instance 5,14 value 'SPOUSE';
Mutual property RELATIONSHIP shared by instance 7,15 value 'SPOUSE';
Mutual property RELATIONSHIP shared by instance 4,16 value 'SON';
Mutual property RELATIONSHIP shared by instance 4,17 value 'DAUGHTER';
Mutual property RELATIONSHIP shared by instance 4,18 value 'SPOUSE';
Mutual property CONTROLBY shared by instance 19,1 value '1 ';
Mutual property CONTROLBY shared by instance 20,1 value '2';
Mutual property CONTROLBY shared by instance 21,1 value '2';
Mutual property CONTROLBY shared by instance 22,3 value '2';
Mutual property CONTROLBY shared by instance 23,2 value '1 ';
Mutual property CONTROLBY shared by instance 24,3 value '1 ';
Mutual property WORKS_ ON shared by instance 4, 19;
Mutual property WORKS_ ON shared by instance 4,20;
Mutual property WORKS_ ON shared by instance 8,21;

Mutual property WORKS_ON shared by instance 9,19;
Mutual property WORKS_ON shared by instance 9,20;
Mutual property WORKS_ ON shared by instance 5,20;
Mutual property WORKS_ON shared by instance 5,21;
Mutual property WORKS_ON shared by instance 5,22;
Mutual property WORKS_ ON shared by instance 5,23;

Mutual property WORKS_ ON shared by instance 6,24;
Mutual property WORKS_ON shared by instance 6,22;
Mutual property WORKS_ ON shared by instance 1 0,22;

Mutual property WORKS ON shared by instance 1 0,24;

125

Mutual property WORKS_ ON shared by instance 7 ,24;
Mutual property WORKS_ ON shared by instance 7,23;
Mutual property HOURS shared by instance 4,19 value 32.5;
Mutual property HOURS shared by instance 4,20 value 7.5;
Mutual property HOURS shared by instance 8,21 value 40.0;
Mutual property HOURS shared by instance 9,19 value 20.0;
Mutual property HOURS shared by instance 9,20 value 20.0;
Mutual property HOURS shared by instance 5,20 value 10.0;
Mutual property HOURS shared by instance 5,21 value 10.0;
Mutual property HOURS shared by instance 5,22 value 1 0.0;
Mutual property HOURS shared by instance 5,23 value 1 0.0;
Mutual property HOURS shared by instance 6,24 value 30.0;
Mutual property HOURS shared by instance 6,22 value 10.0;
Mutual property HOURS shared by instance 10,22 value 35.0;
Mutual property HOURS shared by instance 10,24 value 5.0;
Mutual property HOURS shared by instance 7,24 value 20.0;
Mutual property HOURS shared by instance 7,23 value 15.0;
Mutual property MANAGER shared by instance 1,5;
Mutual property MANAGER shared by instance 3,7;
Mutual property MANAGER shared by instance 2,11;
Mutual property HASSUPERVISOR shared by instance 4,5 value '01-JAN-89';
Mutual propertyHASSUPERVISOR shared by instance 5,11 value '01-JAN-85';
Mutual property HASSUPERVISOR shared by instance 6,7 value '01-JAN-85';
Mutual property HASSUPERVISOR shared by instance 7,1 1 value '0 1-JAN-86';
Mutual property HASSUPERVISOR shared by instance 8,5 value '01-JAN-88';
Mutual property HASSUPERVISOR shared by instance 9,5 value '01-JA.N-82';
Mutual property HASSUPERVISOR shared by instance 10,7 value '01-JAN-85';
Mutual property SALARY shared by instance 4,1 value 30000;
Mutual property SALARY shared by instance 5,1 value 40000;
Mutual property SALARY shared by instance 6,3 value 25000;
Mutual property SALARY shared by instance 7,3 value 43000;
Mutual property SALARY shared by instance 8,1 value 38000;
Mutual property SALARY shared by instance 9,1 value 25000;
Mutual property SALARY shared by instance 10,3 value 25000;
Mutual property SALARY shared by instance 11,2 value 55000;

126

Classes:
class DEPARTMENT (NAME, DNUMBER);
class EMPLOYEE (FNAME, MINIT, LNAME, SSN, BDATE);
class PROJECT (NAME,PNUMBER,LOCATION);
class SUPERVISOR (HASSUPERVISOR<-);

127

Appendix 2

Some Results of The Test

1. Queries

128

129

130

SQL)query property belongto class EMPLOYEE;

EMPLOYEE (FNAME LNAME SSN, BDATE. ADDRESS, EMPLOYEDBY<- SALARY<- }
SQUquery class ~;

DEPARH1ENT (NAME, DNU11BER E~lPLOYEDBY~> SALARY-> CONTROLBY*>)
Et"PLOYEE (FNAME. LNA~1E, SSN" BDATE, ADDRESS, EMPL6YEDBY<"~ SALARY<-)
PROJECT (NAt1E, PNUMBER, PL01..ATION, CONTROLBY<-, i~ORKS_OI·~~;)
SUPERVISOR (FNAt1E, SSN. ADDRESSJ HASSUPERVISOR->)

SOL>query class has instance 3;

instance 3 belon•s to: DEPARTMENT;

SOL)query instance share mutualproperty l1ANAGER;

The muhJalpropert y MANAGER shared by instances :
1 and S;
2 and 11;
3 and 7;

There are 3 pair instances share the mutual property MANAGER.

131

2. Update

iQL)insert property {MINITt'F' ,LNAME,'Smith') into instance 16;

Properties have been inserted to the instance 16.

SQL)delete property MINIT, LNAME from instance 16;

Property I~HNIT has been deleted from the instance 16.
Property LNAME has been deleted from the instance 16.

SQL)insert property <MINIT) into class EMPLOYEE;

ro erties have been inserted to the class EMPLOYEE.

SQL)delete property M1NIT from class EMPLOYEE;

Pro ertv MINIT has been deleted from the class EMPLOYEE.

SQL)delete mutualproperty SALARY;

The mutual property has been deleted from the database.

SQL>delete property MINIT;

Prooert MINIT has been deleted from the databse.

SOL>delete instance 10;

there are some mutual properties in this instance, you need delete mutual proper
b r'' r.: ·L ··1 ~ . .;~L

Do you Ulant delete all mutual properties of the instance 10?
if yes, input y, else input n exit.

the insance 10 has been deleted.

SQL)delete class EMPLOYEE;

Class EMPLOYEE has been deleted.

132

