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ABSTRACT

Previous studies have demonstrated that collateral sprouting in sensory neurons is an

NGF dependent process, and that the onset of this sprouling can be accelerated by electrical

stimulation (depolarization) of nerves, producing a precocious collateral sprouting.

However, the mechanism underlying this phenomenon is not clear.

In the present study, the mechanisms underlying precocious collateral sprouting were

studied in adult rats in vivo. Electrical stimulation was performed on the intact cutaneous

nerves at 8V. 20 HZ, I min. These intact nerves were isolated from the adjacent nerves by

dissecting the nearby nerves. The intact dorsal cutaneous nerves were treated under three

paradigms: i) electrical stimulation (S); ii) isolation of intact nerves (I); iii) electrical

stimulation plus isolation (S+I). After varying periods of time (1 h. 4h, 8h, 1d, 2d, 4d, 8d, and

14d), the dorsal root ganglia (ORGs) connected with these nerves were dissected and the

possible factors related to precocious sprouting were investigated in the ORG neurons using

in situ hybridization (ISH), immunocytochemistry (ICC) and Western blot assays. The

parameters examined included immediate early genes (lEGs), such as CREB, egr·l, c-fos,

c-jun, and Oct-2; NGF receptors (Trk A and p75); and potential members of the NGF - Trk

A signal transduction pathways inducing downstream signaling (PI3-kinase, SHC, PLC·y,

ERK1).

The results showed thal, among lEGs, CREB mRNA was quickly induced after Ih



electrical stimulation. aDd this increase lasted to 4d. The effects of isolation started at 111.

and the combination of isolation plus stimulation resulted in this occurri.ng sooner. At the

protein level. the exp!USion ofpCRES was only significantly increased under stimulation

at 8h (p<O.OS). After 4h. electrical stimulation started to induce the elevation of egr-J

mRNA and this induction lasted until 211. but the protein level was significant increased only

at 8h. Isolation, which would result in increased NGF levels in the skin due to the adjacent

cutaneous denervation. did not induce significant changes in Egr-l protein during the

experimental period. Isolation plus stimulation shortened the dwation of Egr-I increase (at

Id) and this increase lasted to 4d. Except for electrical stimulation alone and isolation

alone. isolation and stimulation together induced signilicanl: increases of Fos in DRGs at 2d

and 4d. Stimulation did not have significant effects on Jun protein. but after 8b, isolation

plus stimulation, respectively. resulted in significant increases in Jun protein compared with

control. Oct-2 was not affected by any of the treatments in these experiments.

Under the treatments of electrical stimulation and isolation. expression of Trk A

receptor mRNA and protein showed different patterns in these experiments. The mRNA

level ofTrk. A did DOt significantly increase after electrical stimulation; however. isolation

alone resulted in a significant increase of TrkA mRNA aod this increase reached a peak at

4d. Combined with electrical stimulation,. isolation induced a large increase at a very early

time point (I b). but this gradually declined at later time points (2d and 4d).

The protein level ofTrk A was only increased at Ih and 4h stimulation time points.



There was, however, an increase induced by isolation plus stimulation at later time points

(4d and Bd). The pbospborylated state ofTrk A receptor did not appear to be increased

except at the isolation treatment at Ib and (onger time points of 4d and 3d. With respect to

p75, mRNA levels were altered lime by electrical stimulation. Isolation alone induced a

peak change at 2d. The combination of electrical stimulation and isolation resulted in

increased expression ofp75 by 4h. pealciDg at Id, and then gradually decreasing.

Among the proteins which propagate NGF sigoals, PlC-y I was slighdy induced by

stimulation and isolation at tbesbort time periods (Ill. 4b) and the very late time point (Bd).

Pl-J kinase was incn::asedonly at the latest time point (Bd) foUowing treatments. SHC and

MAP kinase (ERKI) were not obviously affected by any of these treatments.

The results addressed lhe hypotheses that, during precocious collateral sprouting,

electrical stimulation induces some alterations in lEG expression and elevated Trk A receptor

expression and/or activation, and acts in concert with the increased availability ofNGF to

result in an aecelerued terminal sprouting response. 1bis study provided information about

the potential mechanisms associated with prcclXious sprouting at the molecular level.
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Chapter I

INTRODUcnON

1.1 The coUateral sprouting of seasory neuroas in adult aaimals

CoUatenl sprouting is a phenomenon whereby intact Dons produce many tennina1s in

their target tissue to form a neuritic arbor. This process happens in the central nervous system

(CNS) (Gilad et oJ.• 1979: Friedman er ai.• 1986) and the peripheral nervous system (PNS)

(Diamond et al., 1976; Kinnman et oJ., 1986) during the developmental (~. in Crutcher.

1986) or adult stage of the animal (Diamond et a/.. 1992c). However. in different stages.

collateral sprouting appears to have different fimctions (rev. in Diamond et ai.. 1992d).

During development, collateral sprouting oot only meets the occd that the axon has enough

neuritic connections with its target tissues. but also erlSlnS the efficiency of an axoa's

function. In the adult animal, collateral sprouting in the PNS bas a positive function; that is..

after axonal damage in one inoervari.oo. field. the axocs in aD adjacent field will sprout to re

innervate the denervated tazget area. However. in the highly organized CNS. the effect of

collateral sprouting may DOt be advantageous due 00 the possibility of the formation of

aberrant COnnectiODS. In this introduction. I will discuss the collateral. sprouting in the PNS.

but not in the CNS. of adult mammals.

In adult animals. the peripheral sensory neurons experience two kinds of outgrowths

which are different from those seeD. in their developmental stage: one is called regeneratioD..



and the other is called collateral sprouting. These two processes are different in several

aspects. Regeneration occurs after injury to axons; that is, after cutting or crushing of the

axon. the injured terminal close to the peripheral area will degenerate and then new axonal

growth will occur back to the original target tissue resulting in recovery of sensory function.

Collateral sprouting, on the other hand., is growth from intact axoIlS. When axons are injured,.

the intact axOIlS in an adjacent undamaged target area will elaborate multiple collateral fmc

branches to reinnervate the denervated target area. Another difference between the two

processes is that collateral sprouting is nerve growth factor (NGF}depcndent (Diamond et aJ.,

1987; Diamond et al., 19913), while regeneration does not appear to be influenced by NGF

(Diamond et aJ., 1992b).

Collateral sprouting in the adult animal is important in sensory recovery in the PNS after

damage. Since the fllSt demonstration ofcollateral sprouting in sensory neurons (Weddell

et ai., 1941), other workers have conducted funher experiments to confirm this phenomenon

in adult salamanders and rats (Aguilar et aJ.. 1973; Stirling, 1973; Cooper et al., 1977 a, b;

Devor et ai., 1979). It was found that while some sensory neurons in the skin indeed

underwent collateral sprouting, not all peripheral sensory neurons had this ability.

Due to its easy dissection and large size, the dorsal root ganglion (ORG) is often used as

a model to investigate various neuronal properties, from ion channel to neurotrophic factor

dependence. According to the cell morphology and the staining of clumps ofNissl substance

in the cytoplasm, the sensory neurons in DRGs have been classified into two types ofcells:



large light (L) and small darlt(SD) DCUJOos(Lawson. 1979; rev. in Lawson, 1994). The size

distributiOC1'5 of L and SO oeurons overlap (Lawson, 1979). L neurons cover the entire size

range ofme ganglion, from small. medium to large cells; whereas SO neurons are normally

small cells. Further classification can be made according to the type of nerve fibers arising

from these neurons. Large neurons generally give rise to myelinated fibers which can be

divided into two groups: A6 and Awll fibres. In tats, Act fibers are low threshold

mcchanoreceptors which have fast conduction velocities. and A6 fibres are high threshold

mechanonociceptors with slower conduction velocities. The SO neurons arc genen.lly

associated with unmyelinated C-fibers. which are categorized as high threshold

tbennooociceptors (Harper and Lawson, 1985a, b; Lawson, 1994). In a stUdy ofcoUaterai

sprouting, it was found that the low threshold mechanoreceptive Aa nerve fibers had the

ability ofcollateral sprouting only during a critical period during developmenl. for example.

when rats were younger than 20 days (Jackson and Diamond. 1981), while in the adult animal,

Aa. fibres failed to produce functional collateral spouts into denervated areas of mammalian

skio (Diamond &: Jackson, 1978; Hon:b, 1981; Jackson &: Diamond, 1984). On the other

hand, the high threshold myelinated mcchanooociceptive A6 fibers and unmyelinated

thennonociceptive C fibers do undergo collateral sprouting into adjacent denervated area in

the adult. By physiologically mapping the enlargement of the denervated area (due to

invasion ofcollateral sprouts) using the cutaneus trunci muscle (elM) reflex (Nixon et oJ.,

1984; Doucette & Diamond, 1987; Theriault and Diamond, 1988), it was found that only



nociceptive All and C fibers contributed to the enlarged area. Earlier studies in SalamaDder

skin indicated that coUateral sprouting was regulated by an agent manufactured continually

by the target skin (Diamond et ai, 1976). Subsequent investigation by daily administration

of anti-NGF serum in adult rat suggested that it was NGF which regulated the collateral

sprouting ofsensory nerves in the skin (Diamond et aL, 1987). Further studies demonstrated

that collateral sprouting was a NGF dependent process (Diamond et oJ., 199'2a; Mearow et 01.

1993; Mearoweta/.• 1994).

1.2 Tbe role of NGF in collateral sprouting

Nerve: growth factor (NGF) was first found and purified from male: mouse: submaxillary

gland (Levi- Montalcini and Hamburger. 1953; Cohen. 1959) and later purified from snake

venom (Cohen, 1960). It is a complex of three subunits (4, p, 1), and among them, the P

subunit acts as the biologically functional unit (Greene et al, 1971). Early studies indicated

that NGF was an important trophic factor in the development and survival ofsympathetic

neurons aod certain sensory neurons (rev. in Sc:ga.\ and Greenberg, 1996; Lewin and Barde,

1996). In adult animals, although NGF is not so critical to sensory neuron survival. it still

exerts other effects on adult sensory or sympathetic neurons (rev. in Johnson et aI., 1986;

Lewin and Barde, 1996). Experiments indicated that, for sensory neurons and sympathetic

neurons, NGF is supplied exclusively from their peripheral targets and that there was a

competition between these two types of neurons for limiting amounts of target-derived NGF



(Shelton & Reichardt, 1984; Korsching & Thoenen, 1985). Subsequent experiments indicated

that NGF was manufactured in target skin (both dermis and epidermis) of sensory axons

(Davies et af., 1988), and also in Schwann cells along the degenerating peripheral nerves of

adult animals (Taniucbi et af., 1981). In addition, subsequent to skin clcnervation, NGF

mRNA levels in the skin increased., suggesting that the production ofNGF might be regulated

by sensory axons (Mearow et af.. 1993). Sensory neurons are able 10 take up and retrogradely

transport NGF in adult mammals (Stoeckel et ai, 1975; Richardson and Riopelle, t 981).

Further experiments showed that endogenous NGF regulated the sprouting ofA6 and C fibres

(Diamond et 01.• 1987, 19913). In these experiments. sub-cutaneous injection of anti-NGF

daily for 25-28 days blocked collateral sprouting, but not regeneration. Funhennore, systemic

injections ofNGF into skin could induce the collateml sprouting ofintaet DRG neurons in the

absence of denervation (Diamond et af., 1992c; Mearow, 1997). However. NGF did not

affect regeneration of sensory axoos in these experiments (Diamond et al.• 19913). After the

denervation ofadult rat, the NGF mRNA expression was upregu1ated in the skin, suggesting

that the increased NGF concentration was responsible for the collateral sprouting of the

remaining intact sensory neurons (Diamond et ai., 1987; Mearowet aI • 1993a). The available

evidence supports the view that collateral sprouting of nociceptive afferents is an NGF

dependent process.

1.3 The phenomenon of precocious sprouting of sensory neurons



In the study ofcolla1eral sprouting ofnociceptive aerve5, Nixon ~I aL (1984) developed

a metbod to measure collateral sprouting ofhigh threshold nocioeptors. Wbm the back. skin

of anaesthetized rats was pinched. it produced a bilateral reflex excitation of the tmderlying

cutaneur tnmd muscle (CTM), ~ting in a very visible wrinkling of the loose dorsal skin.

This reflex could also be elicited when A6 and C fibres were electrically stimulated.

Therefore, by measuring the area ofskin from which the reflex response could be elicited,

they estimated the extent of the area innervated by A6 and C fibres (Nixon el al., 1984). If

collateral sprouting happened. the area ofenlargement could also be detected by this reflex.

Using this method to study collateral sprouting, they found an interesting phenomenon, i,e .•

periOOic examination ofthc recovery ofCThi reflex by pincbiog the skin resulted in an earlier

recovery of innervation, due to the field expansion of the remaining intact A6 and C fibres

(Nixon et ai.. 1984). Subsequently, it was observed that electrical excitation of intact A6

fibres in the remaining sk.in also rculted in an earlitt recovery of innervation. It was

suggested that impulses shortened the latency to the onset of coUateral sprouting of the

activated A6 fibres. 1be same phenomenon was also found for polymodal nociceptive C

fibres; pinch. heat, or electrical stimulation respectively also caused the precocious sprouting

ofC fibres (Doucette & Diamond. 1987).

Normally, following skin denervation and isolation of one cutaneous nerve. the time

required to first observe functional re·i.nnervation of the denervated skin (by the sprouting

axons ofthe remaining •isolated' intact nerve) ranges from I 0-12 days. However, electrically



stimulating A6 and C tilm:s for several minutes prior to, or at the same time of. dcnc:rvation,

the sprouting of doJ'sa1 cutaneous nerves in adult rats appeared ~ier than in the non

stimulated ncr'Ics. Further studies investigated tilt: coinvolvemcnt of electrical stimulation

and NGF (Diamond et ai., 1992a; Mearow. 1997). It was found that electrical stimulation

ofdorsal cutaneous nerves at voltages sufficient to activate the high threshold A6 and C fibres

caused the coUaterai sprouting to be observed S-6 days earlier than the oonna! sprouting. The

intriguing feature of this phenomcoon is the fact that NGF must be available al the time of

stimulation. If, at the time ofstimulation. the animals were treated with 1 or 2 injections of

anti-NGF. the stimulation lost its effectiVttlCSS and the earlier onset of coUatera1 sprouting

did not appear (Diamond et aJ.• 199'28).

1.4 Molecular mechanisms of precocious sproutipg

Electrical stimulation and. increased availability ofNGF together result in the accelerated

sprouting of nociceptive neurons. However, the mechanism underlying this precocious

sprouting is uncertain. From otbc:r unrelated stUdies. it was observed that electrical

stimulation and/or membrane depolari2:arion via KCI and NGF, respectively, induce some

changes ofcertain gene expressions and protein synthesis through the activation of different

transduction pathways (Sukhatme et ai.• 1988; Bartel et aI.• 1989; Sheng et al.• 1990; Sheng

etaJ., 1991; Bitrenetal.,I992; TayloretoJ.. 1993; Kendall etal.• 1994; Emoretal.• 1996).

These experiments have given some information reg:uding genes that might be involved in



the pm:ocious sprouting phenomenon after membrane depolarization and NOF trealment.

Such candidates rouId involve immediate early genes (lEGs) sucb as c-fos, c-jun, egrh:ifl68.

pCREB. which have been shown (Q be induced by noxious stimulation or NOF. In addition.

since NGF appears to be central to the response. perhaps alterations in NGF receptor

expression or activity might be of importance.

1.4.1 The cb-DgtS ofNGF receptor iadaced by NGF or electrical StimUlatiOD dume

sprouting

NGF. like other growth factors, exerts its effects by biDding to cell membrane receptors,

and subsequent activation ofsignaJing pathways (e.g.. Kaplan and Stephens. 1994; Chao

1994; Segal and Greenberg, 1996). NGF binds to two receptors: a low affinity neurotrophin

receptor. known as p75 (Chao et af.• 1986; Radeke et al.. 1987) and a high affinity specific

receptor tyrosine kinase, Trk A (Kaplan el al., 1991a, b; Klein et at., 1991 a).

Since collateral sprouting is anNGF~tprocess. the involvement of both Trk A

and the low affinity p75 receptor in this process was examined. It was found that in ORG

neurons undergoing col18leral sprouting, tbe mRNA expression ofTrkA and p75 were both

elevated (Mearow et ai, 1994). lD experiments where collateral sprouting had beeD blocked

by anti-NGF treatment, there was no upregu1ation of the mRNAs for the NGF receptors

(Mearowand Kril. 1995). IfNGF was given systemically, in the absence ofany dencrvation.

an upreguJationofbotb p75 and TrkA mRNA was observed (Mearow. (994; Miller el al..



1994). Further analysis indicated that the NGF level in the skin was upregu1ated after two

days deoervatiOD (Mearow el 01.• 1993).

It is generally accepted that most oftbe effects ofNGF~ exerted via binding to the Trk

A receptor; p7S appears 10 be neither necessary nor sufficieot for many aspects of NGF

sigoalling (e&-. Chao, 1994; Segal and GrecDberg, 1996). The role oftbe p7S receptor is not

clearly defined although suggested roles have included modulation of the cellular response

to NGF (Barker d al., 1994; Hanl2opoulos elal.. 1994; Verdi et al., 1994) and involvement

in neuronal apoptosis (Bartlett et al.• 1996; VanderZee et al., 1996). For example, studies

with p7S-I- knockout mice indicate that in the absence of p75 receptors, sensory neurons

exhibit a decreased sensitivity to NGF such that they require a higher concentration ofNGF

for swvival (Davies et ai., 1993). In a recent study, it was observed that there was little or no

collateral sprouting in p75-1- KO mice; however sprouting could be induced with injections

ofNGF (Diamond elol., 1995).

Signalling events subsequeot to the binding and concomitant activation of the Trk

receptors have been the subject of intense investigation. Most of those studies (until fairly

receoUy) have dealt with the effects of NGF on a variety of neural rumor cell lines, most

notably the PCl2 cell line. lbe binding of NGF to its cognate receptor results in

autopbosphorylation and activation. In vivo studies indicate that, in sciatic nerves, following

ligation of the nerves at several centimetres away from ORO cell body. Trk A receptor was

retrogradely transported in the axon, presumably after binding to NGF at the nerve tenninal



(EbJers et aL, 1995). It was also shown that Trt A was transpOrted in a phosphorylated or

active state. because the Tric A retrograde transport and phosphorylation were increased by

NGF injection in foocpad. aDd. abolished by blocJriog the endogenous NGF with anti-NGF

(EhlersetaL.I995).

On the basis of all these observations.. it seems reasonable to suggest that denervatioD of

the skin results in increased levels ofNGF which subsequently bind and activate the Trt A

receptor, followed by the initiation ofa cascade ofbiochemical events which may ultimalely

resuJt in. or at least influence the process of. collateral sprouting.

With respect to the role of electrical stimuJation in the acceleration of the sprouting

response. experiments have provided some evidence that depolarization may d~tly

influence either NGF receptor activation states, or levels of expression. Previous studies

indicated that membrane depolarization could cause the expression ofTd:: A receptor in MAH

cells, an immortalized sympatboadrenal progenitor ceU line. nol initially respooding to NGF

(Bim::oetaL.I992). Membrane depolarizarionalso results in the pbospborylationofTrk A

in NGF-sensitive PC 12 cells and subsequent neurite formation (Solem et af., 1995).

However, the neurite growth induced by this depolarizarioo only occurs ifNGF receptors were

partly activated by overexpression ofTrk A or trealment with a low level ofNGF. Therefore,

the possible involvement of electrical stimulation in collateral sprouting may be that the

depolarization induces the pathways which are also activated by NGF; for example, the

neurite growth induction in PCl2 cells by depolarization as a result of calcium influx was

10



due to the activation ofRas signallransduction pathway (Solem el al., 1995; Rusanescu el

al., 1995) which also can be induced by NGF (eg., Kaplan and Stephens, 1994).

1.4.2 Tbe changes of growth-related immediate early genes (lEGs) induced by NGF or

electrical stimulation

The function ofiEGs in the nervous system has been extensively studied in the PCI2 cell

system. Extracellular stimulation, such as GF or electrical activation, or depolarization with

KCI, caused the induction of certain genes whose transcription is activated rapidly and

transiently within minutes of stimulation, and does not need de novo protein synthesis

(Sukhatme et aI, 1988;Bartel et ai, 1989; Sheng el al., 1990; Herdegen el al., 1991 a; Sheng

el al., 1991). These kinds of genes are called inunediate early genes (lEGs). lEGs are the

earliest downstream nuclear targets for extracellular stimulations and their products act as

transcription factors, somehow regulating the expression and activity ofdownstream genes

and finally generating long tenn biological change ofcells (Cole, el at., 1989; Rusak, el aJ.,

1990; Abraham el al., 1991). Therefore, lEGs function as mediators to couple the external

stimulation to cellular biological change. c-fos and c-myc protooncogenes were the first two

genes found to respond to growth factor treatment, and later many more lEGs were found

(rev. in Sheng and Greenberg, 1990). Among them, c-fos, c-jun, and egr-l (early growth

response gene, also called zi0268, NGFl-A, or Krox-24) are well studied genes more directly

related to growth response induced by NGF and membrane depolarization (Herdegen el al.,
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1991 a; rev. in Stepbeos., 1993; Bartel el ai.• 1989; Sukhatme el ai.• 1988; Sheng el ai.•

1990.1993; Cbangelian el m.• 1989; Robertson. 1992). c-fos protooot:O&ene belongs to a

leucine zipper gene family. and can form dimer complexes with c-jun which bel;mgs to

anotberIEGfamily(Ja1avaandMai.I994). lbedimer. refcm::dtoasAP-1.can bindto a

relatively specific sequence in the promoter region of other genes and activate their

transcription(Curnm and Franza. 1988; Kerppola and Curran,. 1992). It was found that the

transcription of c-fos was mediated by the cAMP response element binding protein (CREB)

(Konradi et aI. 1995). CREB is a member of a gene family whose protein product has a

similar structure as Fos and JUIl, and fonns fimctiooal bomodimers via a leucine zipper

intetactioo (Dwarti I!I aL. 1990). The ioc:rcased transcription ofc-fos induced by membrane

depolarization, Ca2+ influx. cAMP elevation in cell~ is mediated through a cAMP response

element {CRE)-like sequence that binds CREB (Fisch el ai.• 1989; Sheng et al.• 1988. 1990).

Subsequently. CREB is phosphorylated ala specific residue (Ser-133) lcnown to be recognized

by cAMP-depcndcnt protein kinase and this process is important for activation ofCREB as

a transcription factor in vivo and in vitro (yamamoto et aL, 1988; Gonzales and Montminy,

1989; Sheng et al, (990). Furthermore, the activation of c-fos by NGF also requires intact

CREs and involves the activationofCREB through a Ras-dependent protein Icinase.

In ORG neurons. NGF induced a rapid c-fos gene expression afttt 30 min treatment in

cultured cells (Lindsay et m., 1990). In PC12 cells. NGF stimulation resulted in an increase
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within 30 min in c·jun. similar to that seen for c·fos (Bartel el oJ.• 1989). Membrane

depolarization also elevated c.jun mRNA expression. but the change was relatively small

(Bartel et aI.• 1989). egr-I bas the same motifas c.fos and c-jun. andean be actiV3led by

both NGF and membrane depolarizJltion (Sukbaune et ai.• 1988; Bartel et ai.• 1989), but it

was activated mort: strongly by NGF than by membrane depoLarization. like c-jtm (Bartel et

01.• 1989). Treaunent of adult ORG neurons with NGF increased egr-I mRJ'lA expression

afler60 minutes (Kendell et ai.• 1994). In the 5' upstream sequence ofegr-I gene. aCRE-like

sequence is present (Christy et aI.. 1989). indicating that this rEG might be also activated by

eREB through the binding to eRE site in DNA sequence.

In addition to the above lEGs. sensory oeuron octarner-binding protein Oct-2 is another

intm:sting lEG. Oct·2 was fitstly identified asa B cell immuooglobuJin.specific transcription

factor (He elaL. 1989; Lilycropetal., 1991 a). Subsequmtly, Oct-2 and otber POU (named

for its fouodermember. Pit·l. Oct-I and 2 and unc-86) proteins.. Oct-I and Bm-3. were found

specifically expressed in adult rat sensory neurons {1.atchman el al.. 1992). Among tbem..

Oct·2 was the only gene coding for a transeription factor whose mRNA level and functional

protein level were elevated in the presence ofNGF in isolated ORG neurons (Wood et oJ.•

1992; Ensor et aJ.. 1996). An ill '1'0:0 study sbowed that Oct-2 was induced in a situarion

where target NGF levels were increased following an inflamxnatory~ induced after

injection ofcomplete Freunds adjuvant; anti-NGF treatment abolished this increase (Ensor

eloJ., 1996). In the upstream sequences of the neuropeptide. calcitonin gene-related peptide
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(CGRP), whose expression is regulated by NGF, there are also octamer binding sites

(Stolarsky-Freedman et ai, 1990). h was suggested that Oct-2 might playa similar rofe as a

transcription factor in regulating gene expression in ORO neurons that respond to NGF.

Further stUdies iodieated that Oct-2 presented the kinetics ofan lEG when it was induced by

NGF (Kendall el aJ.• 1995). ~fore, Oct-2 is a potential candidate in mediating NGF

signal transduction during precocious sprouting.

Most of experimental results for depolarization have come from the cell culture model

(Banel et aI., 1989; Lindsay etaf.• 1990; Sheng et oJ., 1990; KeodaH et of., 1994), but in vivo

studies would give more ditect evidence of the involvement of electrical stimulation in

regulation of lEGs. In spinal cord. noxious electrical stimulation of rat sciatic nerves at

intensity ae:tivatingA6IC fibres strongly induced. the cxpressioDofFos, JW1and Egr-I protein

in the dorsal born ofthc spioal cord(Hcrdegcn et aL, 1991 a). Fwther. in ORG neurons. basal

expression ofc-fos, c-jun, egr-I. CRED. Oct-2 bas been shown (Herdegen et aL, 1991.. b,

1992; JenkinsetaL. 1993; KendaI.I elal., 1995). Even though there isevidc:oce thatelectricaJ

stimulation caused little or no change in the cxpres.siOD. of these lEGs in ORG neurons

themselves (eg. Hunt et oJ., 1987; Hcrdegen et aL, 1991). the time period after electrical

stimulation and the spinal level of ORGs are different than those used in the experiments

described in lhis thesis. Therefore, under electrical stimulation. investigating the changes in

expression of these lEGs in ORG neurons will give us some information about the

involvement of electrical stimulation in regulating the gene expressions of lEGs and help us
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to understand the mechanism of precocious sprouting.

1.4.3 Rdattd patla".ys ~ro.pNGF recept:on

As indicated above, NGF exerts its effects primarily via a high affinity receptor. while

the contribution of the low affinity receptor p75 is not fully understood. It was found that the

protooneogeDe Trk A t}'TOSine kinase was the high affinity receptor for NGF and the binding

ofNGF to Irk A receptor causes rapid autopbospborylation oftyTOSine kinase ofTrk A

(Kaplan et aJ.•1991). The phosphorylated tyrosine kinase activates other proteins through the

Ras transduction pathway and related pathways (p13·kinase. PlC-y) ( rev. in Kaplan and

Stephens. 1994). It has been suggested that the Ras MAP kinase is necessary for the effects

ofNGF on neuronaJdifferentiation and neurite outgrowtb as opposed to survival (e.g., Kaplan

and 51oph=. 1994; SegaJ and G=nbc<g, 1996).

The autopbospborylalionofTrk A tyrosine Irinasc provides recognition or docking SilCS

for compooents ofcellular signalling pathways. For example. NGF was shown to induce the

complexfonnationofTrkA withPlC-yl (OhmichietaL. 1991) and withSHC (Obermeier

et ai.• 1993b; Stephens et ai.• 1994). Beside: these two proteins. another protein molecule

activated by NGF is PI·3 kinase. PI-3 kinase also binds to the Irk A receptor (Obmichi et

0/..1992; Obermeier et oL. 1993b) and the binding of PI-) to Trk A results in the

phosphorylation of PI-3 kinase. In addition to the above three protein molecules which are

dim::tly associated with Irk A receptor. another molecule. SNT is also phosphorylated after
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NGF binding to Trk A (Rabln~t aI., 1993). PLC-y. SHC, and PI-3 kinase fonn complexes

with the activated Trk teeeplOrS relativcly rapidly after NGF treatmcot (Obcnneier et al.

1993b; Loebct a!. 1992; Stepbcnset al. 1994). Each oftbcse molecules is thought to activate

a distinct pathway that may function in differentiation (SHC. PLC·y) or survival (p1·3

kinase) (Kaplan and Stephens. 1994; RasouJyetaL. 1995; Kaplan. 1996; Kaplan and Miller,

1997; Tolkovsky, 1997) (Fig. I).

SHC binding and activation Links Trk activation to the pllras-MAP kinase signalling

pathway, which bas been shown to be essential for NGF·induccd neurite outgrowth in PCll

cells (Hagag et al, 1986). Stimwation ofRas results in the sequential activation of Raf-B,

MEK. (MAPK kinase), MAPK (also ERKs) and the Rsk kinases; the latter two are responsible

for activation gcoc~ooalevcots (Kaplan and Stcphens, 1994; Segal and Greenberg,

1996).

PLC-y I activation results in increascd activity ofthis enzyme, and resultingdownmcam

cellulae events may iDCludc alterations in the activity of protein kinase C (pKq, ion fluxes

(especially calcium), cytOst:elctal reorganU:atiOD, and gene expression (VettCl" et ai, 1991;

Obermeier et al, 1993a). PLC-y I activation may also provide another mecbanism for

activating the Ras cascade, since mutated Trk: receptors no looger able to bind PLC·y I and

SHe~ not able to induce Ras-MAPK signalling (Stephens et al, t 994).

PI-3 kinase stimulates the formation of pb.osphoinostides that appear 10 act as second

messenger molecules stimulating other serinelthreonine kinases; these effects may function
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rigoR 1. Trk A sipa! traasdactioa path....ays. Adapted fro.. Kaplan aad Stepbau,

1994; Rasollfy d .... 1995; Kap..... 1996; Kaplu ud Miller. 1997; ToIkovsky, 1997.
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to regulate aspects ofprotein synthesis and cellularmorpbology. It may also playa role in

both survival and neurite formation. although the data in this regard is somewbal confusing

(Vao and Cooper, 1995; Peng d ai, 1995; Creedon er aI., 1996).

Another protein which appears to be specifically activated by NGF in PCI2 cells (the

forma-signalling proteins can also be activated by EGF in PCI2 cells) is SNT (Rabin et al,

1993). This SNT protein appears to act via a pathway distinct from the PLC-y I or SHe

pathways. and may be imponant in the differentiation and NGF·lnduced neurite formation in

PCI2cells(pengeral., 1995).

Based on the available information. it seems likely that multiple NGF-regulated pathways

are involved in survival, differentiation and newite promotion activities (Kaplan and

Stephens.. 1994; Greene and Kaplan, 1995; Obermeier er aI., 1995; Segal and Greenberg,

1996). While most of this information has come from studies ofPCI2 cells., it is likely that

similar pathways may be activated in primary neurons, although there may be individual

differences (Klinz and Heumann 1993; Klinz daL, 1996; Segal daL, 1996) depeoding upon

the age and type ofneuron. Thus., both ras-dc:pc:ndeot and ns-indepcodent cascades~ likely

to be involved, although the data provide conflicting results suggesting that in some cases

MEK. Ras and PI·3 kinase are required for neurite growth, while in other cases they are not

required or not sufficient (Borasio er aI., 1993; Peng et al.• 1994; Obermeier et at., 1994;

Klinz er al., 1996).

A furtber complication arises from studies suggesting that the duration of the activation
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may play a role in the specificity ofdiffirem growth factors and that certain pathways an: or

an: not contributing to the observed cellular n:sponses (mr. in Marshall. 1995). Thus, NGF

results in the sustained activation ofthe Ras-MAP Icinase palhwaythallasts for scveraI hours

(fraverse el ai.• 1992). It is apparent that the phosphorylation ofthe various tyrosine residues

on the Trk receptors does not occur simuJtaneously, but rather in some coordinated fashion.

and this could also be a method ofdetermining the outcome of the activation (Segal er al.

1996).

1.5 Objective of tbis study

Based on the: above information. it was hypothesi:zed that prior to the prttocious

collateral sprouting, electrical stimulation might activate certain rEGs or elevate Trk A

receptor activity to act in c:onc:ert with the increased availability ofNGF to result in an

ac:c:elerated tennina.I sprouting response. Therefore. the purpose of this study was to

investigate the gene expressions and possible transduction pathways induced by these

extrac:eUuJarfactors.

1. In vivo, ptttocious coUateral sprouting was generared in partially denervated rat. skin by

electrical stimuJation of the remaining intact nerves. In tbc:se experimen~. rEGs. including

CREB. cgr·l,c~fos,c~jun. and O<::t·2 which can be induced by membrane depolarization or

elevated NGF levels or both) were assayed using primarily immunocytocbemisty (ICC).

2. Because NGF exerts i~ function via NGF high affinity receptor Trk A, potential cbaDges
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in Trk A rec:eptorexpressioo and its phosphorylation (activation) stale were also investigated

under deoervation and electrical stimulation statUS using in sil1l hybridization and Western

(immuooblot) analyses. The potential downstream. signalling components activated by such

manipulations were also assayed using Western analysis.
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CHAPTER II

MATERIALS AND MEmODS

2.1 Materials

Animals, female Sprague-Dawleyms(IJD-180 g, at least 6~ks old},~ supplied

by the Memorial University ofNewfoundland Animal Care Facility (96 rats in total). TISSUe

freezing medium was purchased from Triangle Biomedical Sciences. Sodium Peotobarbital

(Somnolol) was obtained from MTC Phannaceutica1s. Sigma Chemical Company is the

supplier of aprotinin. phenyl methyl sulphonyl fluoride (PMSF). leupeptin and vanadate.

Protem·A agarose or sepharose beads were obtained from Santa Cruz Biotechnology, Inc..

GIBCO-BRL supplied norma.! goat serum and bovine serum albumin. Aqua penn motmting

media was purcbasod from Fisher. Eastman Kodak company was the producer of Kodak

autoradiography NTB2 emulsion.

The rainbow colour protein ladders were supplied by Amefsbam Corp. and Sio-Rad

Laboratories.

Dc protein assay kit was purcbased from Bio-Rad Laboratories.. Amersham CorpJLife

Sciences division supplied Hybond ECL membrane., Enhanced Chemiluminescence reagents

(Eel reagents) and Hyperfi.lm.

Vectastain Elite ABC kit was obtained from Vector laboratories.

The monoclonal RTA antibody (frk A antibOOy) was a kind gift from Dr. L. Reichardt;
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a 203 pan-Trk antibody was kiDdly provided by Dr. David Kaplan., MontrcJ.1 Neurologic:al

Institute. Santa CIUZ was the supplier of the rabbit polyclooal antibodies Egr-l. Tn. ERKI.

and PLC-y l. The mouse monoclonal phosphotyrosine antibody 4G 10. rabbit polyclonal

antibodies against pCRES. PI·] kinase and SHC were obtained from Upstate Biotechnology

loc. e-Fos antibody was purchased from Oncogene Science., Inc.

["S]dA11' and ["!>1dA11' w= "'PP""" by Duponc

Terminal Deoxynueleotidyl Transferase (TDl) was purchased from GmCD-BRL.

The Northern Exposure software for computer·base<i Image analysis system was the

product ofEMPIX Imaging.. MCID image analysis system was from Imaging Research Inc..

Pharmacia LKB Biotechnology was the supplier ofUitraspectrOpbotometer n and Ultroscan

XL Laser Densitometer.

2.2 Surgery and Stimulation/isolatioD paradigms

The procedures for rat surgery were similar to those described in Diamond et al.

(1992a.b) and Mearow et of. (1994). Briefly, female Sprague Dawley rats were injected

inaaperitooeal1y with sodium pentobarbital (4.5 mgllOOg rat weight). Five to ten min later.

the reflex reaction was checked by squeezing the paws. When the rats were anaesthetized.

the fur was clipped from the skin of thoracolumbar region of the back., and the skin was

sterilized by wiping with 75% (vlv) ethanol. A 4 - 5 em midline incision was made and the

skin was gently separated from underlying tissue and the dorsal cutaneous nerves (DeNs)
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on both sides wa"C cxpo:sr.d. For the stimu1atioo pandigm. the DCNs from TlJ to no (Fig.

2A) were separated from body wall. and a string ofsilk thread was inserted uodcrneath the

nerves. The left side DCNs from TlJ to TlO were stimulated by bi;x>lar stimulating

electrodes at 8 V, 20 HZ for 1 min whicb excited both All and C fibres and elicited the CTM

(cutaneus trunci muscle) reflex (Nixon et ai, 1984), whereas the right side nJ to TlO

nerves, lUi internal controls, were not stimulated. For the isolation plus stimulation paradigm

(Fig. 2B), on both sides L I, Tl2, Til, 1'9 and T8 oerves were cut just distal to their exits

from the body wall. This treatment gave the target areas of T1J and TID nerves intact

scmory fields, and isolated their fields from tbose ofdcoerwted skin. The right side TIJ and

TI0 nerves were separalCd from the body wall (producing the oonna.I sprouting); the left side

TlJ and TID nerves were respectively both separated and stimu.lated (producing the

accelerated sprouting paradigm). After these treatments, the skin was sutured with clips (for

short term, less than I day) or silk thread (for long term, more than I day), and lhe animals

were permitted to recover.

2.3 DRG dissection

At different time points foUowing surgery. the rats were deeply rranaesthetized with

sodium pentobarbital (4.5 mg/loo g rat weight). The skin was quickly opened again at

previous suture site. Along the spine, the muscles around it were cut open with scissors.

At 2·J coo posterior to the last rib, the spine was transected and exposed dorsally and
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Figure 2. Schematic diagrams ofstimulation and isolation plus stimulation paradigms.

These diagrams show the back view of a rat. The back skin was opened after

anaesthetization. A. The stimulation paradigm. The left side DCNs, TIO to TI3 were

separated from the body wall and stimulated with electrical bipolar electrodes at 8 V for I

min. The right side DCNs were just separated from body wall and not treated as a sham

control. B. The isolation plus stimulation paradigm. On both sides of the rat, T8, T9, Til,

TI2, and Ll DCNs were cut at the exit point from body wall. The left side T10 and T13

were separated from body wall and electrically stimulated with electrodes at 8 V for I min-

isolation plus stimulation treatment. The right side TI 0 and T13 were only separated from

body wall - isolation treatment. The back skin was sutured and rats were allowed to

recover. After different time periods, the DRGs connected with the DCNs were dissected

from the rats.

,j"j- electrical stimulation
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bilatera.Ily. Aftc:rpulling uptbe spinalc:ordaodcuttingtbe rcstofbooes on both sides. ORGs

were exposed.. Tt3 ORG is located in the first intervertebra.l space posterior to the last rib.

Forward from this point are ORGs Til. Ttl and TIO in order; caudally is ORG lumbar I.

ORGs were removed quickly. For protein (western blot and immunoprecipitation assays)

and RNA (RT~PCRassay) extraction, DRGs were put directly into a microcentrifuge tube

and immediately frozen in liquid nitrogen. Normally, 4 ORGs were taken for each time

poinL For frozcn..secti.oning (imnnmocytOcbemisrry and in situ hybridizarion assays), DRGs

were embedded in tissue fn::ezing medium and quicldy frozen in liquid nitrogen. Tissues

were stored at ·7r:fC.

1.4 Protein extnctioa aad qaantitation

The DRGs were taken out from the·70°C freezer and placed on ice. Cold lysis buffer.

containing 0.1% (v/v) NP-40. 10% glycerol, 1 mM phenylmetbyl sulfomyl fluoride (PMSF),

10 mglml aprotinin. I mglmJ leupeptin, and 0.5 mM sodium orthovanadate in TBS (Tris

Buffered Saline) (Kaplan and Knusel, 1997) was then mixed with the frozen tissues. The

DRGs wee homogeni%ed on ice with an electrical homog~ for sever3l seconds and then

kept aD ice for 20 minUlCS. The insoluble material was removed. by centrifugation 31 13,000

rpm. 4°C for 15 min and the supernatant was aansferred into another fresh microcenttifuge

lUbe.

Total protein concentration was measw-ed by a Bio-Rad Dc protein assay kit. Briefly,
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a standard curve was made each time when this assay was perfonned. Five dilutions of

protein standard I (Bio-Rad) from 0.1 mgfml to 1.43 mglml protein were prepared in lysis

buffer. 2S J.l1 ofstaodards and samples were mixed with 125 J.l1 ofreagenf A'(reagent A +

S) and 1 mI of reagent B then incubated at room temperature for 15 min. The absorbances

were measured at 750 nm using a spectropholometer. Finally. the concenlJation of each

sample was determined according to the standard working curve. DRG samples were

duplicated to ensure the: accuracy ofdetermination. The Iysatcs wen: stored at -7d'c or used

directly for Western blot or immunoprecipitatioD.

To extract enough protein for western blot or immuooprecipitatioll, at least 4 DRGs were

used.. In certain conditions..such as isolation. only 2 DRGs were obtained from one: animal.

Nonnal.ly, one: DRG was used for ICC, the OUler one was used for protein extraction or both

were used for prolein. Therefore, the DRGs for protein extraction came from at least 2-4

animals. On the other hand. since western blot were repeated several times. more animal

were used to get enough protein to repeat the experiments.

2.5 Western blot assay

Normally, 10 J.L8 of protein was used for the Western blot assay. Sample buffer [10".4

glycerol, 2% sodium dodecyl sulfate(SDS), 0.1 M dithiothreitol (OTT), 0.005%

bromophenol blue] was added into the protein lysate, boiled for 3 minutes, and then loaded

onto a 8'10-12% SDS polyacrylamide gel (29:1 acrylamide:bisacrylamide). Electrophoresis
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was nm in etc:etropboresis buffer [2S mM Tris.base. 250 mM glycine: (pH 8.3), 0.1 % SOS)

at 200 V (constant voltage) for 45 min in a BiG-Rad minj-clcctropboresis apparalUS. The

nitrocellulose membranes were soaked in transfer buffer (25 mM Tris.base, 192 mM

glycine, 20% methanol) for at least 15 min. After electrophoresis. lhe gel was put into

transfer buffer for 10 min. Subsequently, the proteins were transferred Ol'lto nitrocellulose

membranes ina transfer tank aI 100 V. 200 mA. 4'c for 90 min. After transfer. the blot was

allowed to air dry and used directly for probing or scaled with Saran Wrap at tfc prior to

use.. To eliminate nonspecific biDding ofantibodies. the blot was blocked with 3% BSA in

TBST(TBS withO.I% Twem-20) or 5% skim mill: ira 1l3STat room temperatUn: fOl" I botD".

Subsequently, the blot was incubated with primary antibody in 5% mill:: ira TBST 01" 3% BSA

in TBST overnight with shalcing. 1be dilutions ofprimary antibodies are RTA. 1:10.000:

TrkA. 1:100: pCREB. 1:250: anti-phosphotyrosine. 1:1000; Egr-I. 1:400: ERK-I. 1:5000:

PLC-g I. 1:5000; PI·3 kinase. 1:800; SHC. I: 1000. After washing with TBST for 10 min

three times, the biOI was iDcubated in secondary antibody (goat ami-rabbit or goat anti-mouse

antibody) at I :3000 dilution ira Blotto for I hour. After rinsing three times \1o"ith TBST. the

blot was placed between a transparent plastic folder. iDcubaud with EnbaDccd

chemiluminescence reagents (Eel. Amersbam) for exactly OIle minute. and exposed to a

sheet of Hyperfilm· from 30 seconds to 10 minutes.. depending on the streragtb. of signals.

2.6 ImmuDoprecipitatioD Assay
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This assay foUows Kaplan aod Knusel's protocol (1997). Briefly, 50 IJ.g ofprotein lysate

was incubated with 20 ILl ofanti-Trk A or Pan-Trk antibody at 40C overnight with rotation.

Then 30 IJ.I of proc:ein-A sepbarose beads was added and incubated with rotation at 4°C for

2 hours. Beads were pelleted by spinning 35 seconds at 3000 rpm. washed with cold lysis

buffer three times, and boiled in I x sample buffer for 3 min. The supernatant was loaded

on 10 or 12 % SDS-PAGE gels and run in electrophoresis buffer at 100 V. 120 rnA for 45

min. Subsequently, the proteins were trar1Sfm'ed to Hybood nitrocellulose membrane. The

blot was probed by anti-trkA or anti-pbospbotyrOSine antibody as described in section 2.5.

The signals were quantitated by Ultrasean XL Laser Densitometer{Pharmacia LKB

Biotechnology). Statistical analysis was performed with the Prism program.

2.7 ORG sectioning

DRGs stored in tissue freezing medium at -7r:i'C were removed and immediately put into

liquid nitrogen. Next, the tissue was mounted on the cryostat chuck with tissue freezing

medium and again quickly frOzeD in liquid nitrogen. Frozen sections Wett made using a

cryostat miaotome at 14 JJrn. then thaw-mounted 0010 gel.aIin-coated slides for several time

points and dried at room temperature. Eac.h slide contained control and experimental

sections and was stored at -2r:fc until used in immunocytOChemistry (iCC) or in situ

hybridization (ISH) assay.
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2.8lmmUDocytocbemistry

The protocol used for iIDmunocytochemisty utilized a peroxidase detection method

(Mearowet aJ.. 1994). The procedure is as foUows: sections removed from the freezer were

allowed to aitdry for 20 minutes at room temperature and demarcated by a PAP pen to fonn

compartments around them. Subsequently, the sections were fixed in 4% freshly-made

formaldehyde in PBS (Phosphate Buffered Saline) for 20 min. Endogenow peroxidase was

removed with 03% HP2 in 100% methanol for 30 min, followed by three washes with 1 x

PBS. Sections were incubated in 10% nonnaJ goatsenm (NGS) containing 0.1% Triton-X

100 in PBS to block. nonspecific protein binding at room temperature for I h. then directly

incubated with primary antibody in 3% NGS plwO.l% Triton-X 100 attfc ovemighL For

rabbit polyclonal antibodies Fos and Egr-I, the dilution factors were 1:200 and 1:100.

respectively. For rabbit polyc:lonal antibodies pCREB. Jun and Oct-2. the dilutions were

1:2000. I :7500. and 1:2000. After incubation in primary antibody, slides were washed with

PBS three times for 10 minutes each. and subsequcntly, incubated with biotinylated

secondary antibody (goat anti-rabbit or goat anti-mouse IgG) for I h. Visualization oftbe

antibody pattern was carried out in avidinlbiotinlperoxidase reagent for I hour. Finally.

sections~ incubated with 0.05% 3,3'- diaminobenzidine (DAB) in 100 mM Tris buffer

(pH 7.0) and O.Ql2% H~02. The slides were firstly dehydrated with Aqua penn mounting

media.. dried and secondarily mounted with Permount or D.B.X. neutral mounting medium

for permanent protection. The proteins of pCREB, Egr-I, Fos, Jun and Oct-2 genes were
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primarily located in nuclei. Tberef~ the diffettnt sizes ofcells (diameter. small, <30}1lD.;

mcdiwn.. between)O}1lD. to 4O.,m; large, > 4O~) containing dark nuclear staining and total

cells in each ORO section~ CO\D1ted under the light microscope using the axnputer based

image analysis system (Northern Exposure) and the data were stored in the Exce~ program.

The ICC experiments for each gene were perfonncd on a series of slides. Each slide

contained the sections from control and Wee treatments: stimulation. isolation and

stimulation plus isolation at one: of the following time points (1 h, 4h, 8h. Id, 2d. or 4d).

Normally, atone time point. one slide bad 3-5 sections for each treatment (fremone ORO).

So. for one single experiment.. one ORG~ used for one treatment at each time point. For

each gene., 2-6 experiments were run (2-6 DRGs were used for each treatment at each time

point (n"'2-6), and some of these DRGs were: from the same or different animaJs since one

or two DRGs could be obtained for certain treatment). After ICC experiments. nuclear

stained neurons and total neurons from one ORO section were counted under light

microscope and the percentage of nuclear stained neurons in total neurons was calculated..

One to five sections could be sampled on one slide for each treannent and each time point

and lbese data were averaged as one value for one experiment at thai. treatmentftime point.

Subsequently, the values from repeated experiments (DRGs) at each lreatmentftime point

were analysed and the mean values and standard errors of the means were obtained. Here.

the n value was the times of experiments run for this gene and also equal to the numbers of
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DRGs used for this gene at each trcarme:uVtime point.. To statistically analyse the effects of

treatments aod times on the gene expression. two types oftests were performed on Minitab

statistics software. Firstly, multiple analysis ofvuiaoce by general linear model (MANDV

by g1m) was used to analyse the significant difference (p<O.05) between control group and

treatment groups (stimulation. isolation. isolation plus stimulation) during experimental time

period. and also the significant difference (p<O.OS) within each treatment with the change of

thetime.. Then. ifgroupsignificanr.diffemx:csexisted. ooeway ANOYA with Dunnett's test

was further used to test the significant differences (p<O.OS) between control and each

treatmel:lt (stimulation. isolation. stimulation plus isolatioa) at each time point. The data for

each gene wett plotted using the SigmaPlo~program and each figure is accompanied by a

summary data table. The n values in the table represent lhe number of ORGs used for each

gene. In these experiments, individual OROs were subjected to the different treatments and

an acceptable way 10 anaJyze the data is to consider each ORO as an n - 1 (G. Skanes. J.

Evans personal communications)

2.9 In situ bybridizatioD (ISH) assay

Oligonuc:la)tide probes were used for ISH. The anti-sense sequeoces of oligos for the

probes are: TrkA (Mertioel al.• 1992), S'AAG GTI GM erc AAA AGO orrGTC CAT

OAA OGC AGe CAT GAT GGA GGC3'; Trk A (Meakin et ai, 1992). S'Ge AAG AAA

GAC CIT Tee AAA GGe TCC CTC CCC TAG CTC CCA err GAG3'; P7S (Radeke
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eI af., 1987). extracellular domain • S'CAC GAG TCC CGA GeC CAC CTC GCA CAC

ocr GCA AGC erc ACA GTG GeCJ', membrane spanning element - S'GAA AGe AAT

ATAGGC CAC AAG GeC CAC GAC CAC AGC AGe CAA GAT GGAJ'. CREB

(Gonzalez ~t a1., 1989), S'GTC TGC TCC AGA GTC CAT GGT CAT CTA GTC ACC

GGTGGTJ';NGFI{EGR-I, WlSdco rtal., 1990). S'GCG TIGcrc AGCAGCATC ATC

TCC TeC AGT TIO GGG TAG TIG TCC3';

On ice. S pmol ofoligos, SO mCi oflfS dATI. 1110 of reaction volume of5 x Tailing

buffer were mixed with 15-30 units ofTDT (Tenninal Deoxynucleotidyl Transferase) in 50

J.l1 and incubated at 3"'flC for 30 min. 350 J.dofTE8, 20 J.lI ofS M NaCI. 2.5 J.lloftRNA

(\ 0 mglml), and 425 I-li of Phenollchlorofonn mix were then added to the above mixture.

After vortexing and spinning down. the aqueous phase was precipitated with ethanol. lbe

pellet was air-dried and resuspended in 100 J.I.1 ofH!O with 100 ruM DTI. Finally, I ..... of

sample was taken to count incorporation efficiencies.

/" situ hybridization (ISH) was carried out on frozen ORG sections (14 J.llI1 thick)

according to established procedure (Mearowrt al.• \989 and 1994). Briefly, sections were

removed from the freezer. air-dried and fixed with 4% formaldehyde in PBS-OEPC for S

min at room temperature. After tbn:e 5 min washes with PBS-DEPC, slides were placed into

0.25% acetic anhydride in 0.1 M triethanolamine HCI for 10 min. subsequently dehydrated

with 70%, 9()O/o and \00% ethanol and air-dried. The lSS_labelled oligonucleotide probes

were mixed with buffer A (4 x SSC. 50% formamide, 250 mg/rnl yeast tRNA, 500 mg/ml
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sonicated salmon sperm DNA.. I x Denhardts solution. 5% dextran sulfate, and 100 mM

On). Normally,IOOlJ1oftbeabovemix(cootaining I x lotdpm ofJ'S) were needed per

slide. Slides were coverslipped and incubated at 420(: in a humidified chamber overnight.

Covmlips were removed. in 4 x sse containing I mM p-mercaptoethanol. and then the

sections~ washed at 4(fC according to the following sequences: two times in 2 X SSC

for 30 min each; two times in I x SSC for 30 min each. After brief rinsing in cold tap water,

the slides were allowed to air dry.

For autonIdiograpbic visulization. slides~ initially exposed to Kodak X..()MAT film

for 1·2 days. and then dipped in Kodak l'lfB2 emulsion, dried, placed in foil-wrapped black

boxes, and exposed at.(lC for 2-4 weeks depending on the kind ofprobes used. Finally, the

slides were developed with Dektol. coverslipped and analyzed using an computer-based

image analysis system (MCID.St. Catharines. Ont.).

One experiment was run for each gene on a series of slides. The slides carried at least

5 sections representative of areas throughout the same DRG; control and experimental

sections were processed on the same slides. A grain counting software option was used to

rmdomIy count grains from neurons in which the nucleus was visible under phase contrast.

Over 100 neurons on three sections froD100e DRG at each treatment I each time point were

analyzed. 1lle grain numbers and area ofeach neuron were computed and grain density

(number ofgrains per~2 neuronal area) was calculated for each neuron. Subsequently, the

data from each treatment I time point were statistically analyzed. first. as a function of the
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total cell population sampled. and, second , following classification of the samples into three

groups based upon neuronal size. Neurons were classified as small (<30 ~m diam.),

medium(3D-40~mdiam.), and large (>40~m diam.). Then, the changes ofgrain density at

each treatment I time point were statistically analyzed by oneway ANOVA plus student (-test

using Minitab software to investigate the significant difference (p<O.OS) caused by

treatments or times.

The figures were drawn with Prisms program and the bar of SEM were put onto the

figwes. The n value for each bar was 100 neurons, representing 1 or2 DRGs per each time

point. These experiments were carried out to further confirm results from previous

experiments (Mearaw, 1998).
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Chapter III

RESULTS

3.1 Tbe expression of mRNA! aad proteins of immediate early genes

(lEG,)

3.1.1 mRNA exprasioD dettdtd by In Situ HybridiutioD

In order to examine the response of lEGs during precocious sprouting, the mRNA

expression of several lEGs was detected by in Si/II hybridization (ISH) on 14 j.LIIl frozen

sections from ORCs prepared under situations which would cause the depolarization oCtile

ORO neurons and/or the elevation ofNGF levels in the target area.: i) electrical stimulation

ofOCNs (depolarization), ii) nerve isolation (NGF level increase), and iii) stimulation plus

isolation (the combination oftbese two factors), As described in the methods. the nerves

on the left side of the animals were stimulated. while the contralateral nerves were not

stimulated and used as controls for effects produced by surgery. After Itl. 4b, lei. 2d, and 4d,

the appropriate ORGs were dissected and frozen sections were cut using a cryostat. Each

slide contained the control (C), stimulated (S), isolated (I) and stimulated plus isolated (S+I)

conditions for a given time point_

The raw data were subsequently aoalyzed in two steps. First, the grain density (nwnber

of grains per neuron area, J.lIIl~) at each time point was calculated for each treatmenL

Subsequeotly, in order to learn more about the response oftheditfere:o.t populations ofORG
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neurons, the grain density was funher analyzed as a function of neuron size (diameter). The

neuronal population was grouped into three sizes: small «30 ~M diam.), medium (30-40 ~M

diam.) and large (>40 ~M diam.) neurons.

CREB exp1'eSSiOil in DRG Itell1'ons The grain density of CREB under stimulation (5),

isolation (I), and isolation plus stimulation (1+5) treatments at Ih, 4h, Id, 2d, 4d is presented

in Fig. 3A. The rats which were treated only by surgery were used as controls at each time

point. Statistical analysis indicated that all three treatments induced significant increase (

p<0.05) of CREB expression during the experimental period, but the amplitude presented

different characters depending on the treatment. Electrical stimulation alone resulted in 1.5X

increase of CREB expression as early as Ih compared with control, and this increase was

further elevated at 4h , reached a peak ld after stimulation, and subsequently declined.

Isolation alone induced an unexpected large increase ofCREB after Ih treatment, and later

it resulted in a peak increase (2.5X compared with control) after 2d. Isolation plus

stimulation induced a consistent increase of CREB expression from Ih to 4d, with little

change in amplitude. Further analysis ofmRNA expression in the small neuronal population

is shown in Fig. 38. The expression of CREB in the small sized neurons was very similar

to that in the total population, suggesting that CREB was expressed primarily in the small
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Figure 3. EllpressioD of CREB mRNA ill ORC nenron!. /11 situ hybridization and

anaJysis were performed on frozen sections ofDRGs from animals at Ill. 411. Id, 2d. and 4d

after stimuIal:ion and isolation plus stimulation pandigms as described in methods. A. The

grain density ofCREB mRNA in the total neu:rona1 population at control and each tmmncnt

per time point. B. The grain density ofCREB mRNA in small nc:uroDS at each control and

treatment per time point. Significant differences between control and each treatment at

different time points were analyzed by Oneway ANOYA plus student's t-test on Minitab

program (p<O.OS). The different treatments are represented as: control (empty bar),

stimulation (hatebed bar). isolation (cross-batcbed bar) and isolation plus stimulation (solid

bar). Each bar represents the analysis of 100 neurons from I ORO per treatment.
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egr-l mRNA expression itr DRG neurons The results of mRNA expression of egr-I are

shown in Fig. 4. Although there were no changes in egr-I mRNA expression in DRO

neurons after Ih post-stimulation, there was an significant increase (p < 0.05) at the 4h and

1d time points, but was not significant at 2d. In the isolation paradigm, there was an

unexpected increase ofegr-l expression after Ih. Even though there was some increased egr

1 expression at 4h, Id and 2d, these changes were not significant (p<0.05). However, after

4d, a significant increase of the egr-l expression was detected again after isolation alone, and

this increase was 1.7 X relative to control. The combination of the stimulation and isolation

treatment resulted in significantly increased expression ofegr-l during the whole period of

experiments. This increase peaked by 1d, and remained somewhat elevated by 4d.

The egr-l expression as a function of neuronal size was further analyzed (Fig. 48). In

small size neurons (which are the neurons expected to be initiating the sprouting response)

egr-I expression did not show a similar expression pattern to that in the total population of

neurons, suggesting that there was no neuronal specificity to the expression of egr-l gene.

3.1.2 Protein expression in DRG neurons

To investigate the functional products of certain lEGs, protein expression in DRO

neurons was investigated by immunocytochemistry, immunoprecipitation and Western-blot

assays in the situation ofstimulation, isolation and stimulation plus isolation at several time
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Figo~ 4. Exprusioa of .-1 ..RNA iD ORC oeurou. In situ bybridi2at:ion was

performed on frozen sections of DRGs from animals at Ill. 4h. Id. 2d. and 4d after

stimulation and isolation plus stimulation paradigms as described in melhods. A. The grain

density of egr·t mRNA on the total oeuronaI popuJation at conaol and eacb treatment per

time point. B. 1be grain density of egr.1 mRNA in small neurons at each control aDd

treatment per time point. Significant differences between conaol and each treatment at

different time points were analyzed by Oneway ANOVA plus student's Hest on Minitab

program (P<O.OS). The different treatments att represented as: control (empty bar),

stimulation {batcbed bar), isolation (cross-hau:bed bar) and isolation plus stiInu.lation (solid

bar). Each bar represents the analysis of 100 neurons from 1 DRG per treatment.
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periods after three trealments.

3.1.2.1 Immunocytochemistry (ICC) analysis

In order to identify the location of certain lEG proteins, ICC was perfonned on frozen

sections of DRG neurons; use of DAB and HRP linked secondary antibody resulted in an

insoluble brown product at the sites of positive antibody staining. For each primary antibody

used for ICC, the optimal primary antibody dilution was detennined by incubating the slides

in 5 dilutions of primary antibody, and the one which showed clear nuclear staining with the

lowest background was selected as the optimal antibody dilution for future use. The

specificity of the antibody was checked by two steps. The [irst one was to omit the primary

antibody and determine the status ofnuclear staining. These experiments showed that in the

absence of primary antibody, the nuclei ofDRGs were not stained. Next. the same series

of slides were treated with the best dilutions of primary antibody plus ten times amount of

control peptide which blocked the epitope of this antibody. The results indicated that, in the

presence of control peptide, the nuclear staining by this antibody was totally blocked,

indicating that the staining was specific to this antibody. All the antibodies used in these

experiments were specifically tested. Fonner studies indicated that the influence of

stimulation occurs at very early time points, less than 2 days (Nixon et 01.,1984; Doucette

and Diamond, 1987; Kril el aI., 1993); on the other hand, the increaseofNGF level induced

by isolation occurs at least 2 days later (Mearow et aI., 1993). Here, what is interesting is

the separate and combined effects ofelectrical stimulation and isolation on gene expression.
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My preliminary experiments indicated that electrical stimulation resulted in an increase of

certain gene expressions shortly after treatment (0.5h. Ih. 4h. 8h and Id) and isolation

increased these gene expression after longer period of treatment (ld. 2d. 4d. 8d. and 14d)

(data not shown). Therefore, based on the preliminary experiments, the time points chosen

for further study were designated as Ib. 4h, 8h, Id., 2d and 4d for the latcrexperiments.

pCRES prouilt expression A3 a cAMP binding protein. CREB exerts its function when

it is phosphorylated at IllSer. Therefore. using a phospho-specific CREB antibody, the

phosphorylated protein. pCREB, was examined in DRG neurons at different time points

under three types of treatments (stimulation, isolation, and isolation plus stimulation). ICC

results showed that pCREB was specifically localizM in the nucleus of DRG neurons. The

pCRES sta.ini.ng in DRG neurons under control and isolation plus stimulation at 2d is

representatively given in Fig.S. The immunostaining ofpCREa was distributed in diff~t

sized neurons, but occurred predominantly in small neurons. The percentages of pCRES

stained cells in total counted cells from different treatments at different time points were

presented in Fig. 6 and all the data for the figure were listed in the attached table. The basal

expression of pCREB in total neurons was 20.63 % to 30.47%. Except the mean value at

4h stimulation was less than control (might be due to difference of individul DRGs), the rest

of mean values were all larger than control. Statistical analysis by MANOVA by glm

indicated that, within each treatment group (stimulation. isolation., and isolation plus
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Figure s. Imm1lllOSbiaiag of pCREB proteill ill DRG neurons. The: micrographs show

the immunostaining of pCREB protein in DRG neurons. ICC was performed on frozen

section as described in the text. The phospho-specific pCREB monoclonal antibody was from

Upstate Biotechnology Inc. It can be seen that the nuclei of DRG newons are darldy stained

by pCREB antibody. A. Nuclear staining ofpCREa UDder control t:reannent. and B. Nuclear

staining ofpCREa aI 2d UDder isolation plus stimulation treatment. The arrow heads point

out the dark staining oftbe nuclei. Scale bar- 100 1JJtl.
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Fiprt 6. ADaIy,is oftbe peruatage ofpCREB immaaostaiDed DcaroD! in total DRG

DcaroD!. The immWlOstained ceUs and total ORG neurons per section were counted under

the light microscope. On each slide. the 3-5 sections for control and each experimenml

treatIneDt (stimulation, isolation and isolation plus stimulation) at different time points (I b.

4h. 8h. ld, 2d and 4d) were analyzed.. Foreach control or tmttment per time point. ODe ORG

was used per experiment. The cells with stained nuclei and total ceUS in ODe DRG section

were axmted and the petteDtage ofstaioed ceUs in total. (%) was calculated. Thus, a given

experimental series is the data from I ORG per treatment per time point. ie. a total of24

ORGs per experiment from at least 12 rats. The plotted data represent the Mean of 2-6

experiments; the table presents the Mean. SEM, n value and statistical analysis. Statistical

analysis was carried out using the foUowing tests. MANOVA by ghn was used to test group

differttlce (p<O.05. significant difference) caused by treatments across the time points.

Significant differences (p<O.05) between control and treaanents at each time point were

tested by oneway ANOVA with Dunnett's test (represented by. in the fi~ and table).

The different treatmenIS are presented as foUows: conlrol. solid dot; stimulation. open dot;

isolation, solid triangle; isolation plus stim'.llation, open triangle.
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stimulation), treatment did DOt induce significant increase of the gene~ionwith the

change of tested time period (Ih.. 4h, 8h, Id. 2d. and 4<1) (p<O.05). However, with the

change of time. all the treatment groups showed significant differences from the control

group (P<O.05). Based on lhese results, Oneway ANQVA plus Dunnett's test was used to

investigate that at which time points the significant increases for each tJ'ealment occurred.

The results indicated that, except at 8b stimulation induced significant increase of pCREB

~ion(p<O.05), at other time points (Ih, 4b, 8h, Id. 2d, and 4d), stimulation, isolation

and isolation plus stimulation did DOt induce significant increase of pCREa expression in

DRG neurons (p<O.05).

£g,-1 p,ot~ilf expnssiolf Egr-J protein was also localized to the nucleus. TIle nuclear

staining of Egr-I protein under control and isolation plus stimulation treatment in ORO

neurons is shown in Fig. 7. The percentage of nuclear stained cells in total ORO neurons

was analyzed statistically and the data are shown in Fig. 8 and the attached table. Under

control situation, the basal expressionofEgr-1 protein in toW ORO neurons was 32..29% to

34.37% at different time points. MANQVA by glm indicated that all treatment groups

(stimulation. isol.ation. isolation plus stimualtion) were significant differences from control

group along with the time periods (Ib, 4b, 8b, Id, 2d. and 4d) (p<O.05). Based on these

results, onewayANOVA with Dunnett's test were used to further detect at wrucb time point,

the significant difference induced by each treatment occurred (p<O.05). It was found that
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Ytgare7.IlD.maaostabtillc olEV-l proteia ia ORG aeoroas. ICC was performed on

frozmsections as described in the [ext. £gr-l polyclooa1 antibody was purchased from Santa

Croz Biotech. TIle nuclei of DRG neurons art darkly stained by £gr-l antibody. A.

Nuclear staining of Egro) under control treatment, and B. Nuclear staining of Egr-I at 2d

under isolation plus stimulation treatment. The arrow heads pointed out the dark staining of

the nucleus. Scale bar- 100~.
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Figure 8. AnalYllls of the percentage of Egr-l immunolltained neurons in total ORG

neurons. 1be immunostained cells and total ORO cells per section were counted under the

light microscope. On each slide, the 3·5 sections for conlrOl and each experimental treatment

(stimulation, isolation and isolation plus lltimulation) at different time points (1 h, 4h. 8h, Id,

2d and 4d) were analyzed. For each control or treatment per time point, one ORO was used

per experiment. The cellll containing stained nuclei and total cells in one ORG section were

counted and the percentage of stained cells in total (%) was calculated. Thus, a given

experimental series is the data from I ORO per treatment per time point, ie, a total of24

DROs per experiment from at least 12 rats. The plotted data represent the Mean of 2·6

experiments; the table presents the Mean. SEM, n value and statistical analysis. Statistical

analysis was carried out using the following tests. MANOVA by glm was used to test group

difference (p<O.05, significant difference) caused by treatments across the time points.

Significant differences (p<O.05) between control and treaonents at each time point were

tested by oneway ANOVA with Dunnett's test (represented by • in the figure and table).

The different treatments are presented as follows: control, solid dot; stimulation, open dot;

isolation, solid triangle; isolation plus stimulation, open triangle.
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stimulation alone induced some iDcreases ofEgr.t expression at Ih and 4h. However only

at 8h. it induced a high value as 49.13% and ~ted in a significant diffcrmce compared

with control (p<O.OS). At later time points, even though stimulation still cause some

increase ofEgr-t ~ion. the value became decIeased gradually. Isolation alone did not

cause a significant increase of Egr-t at each time point compared with control (p<O.05).

However. interestingly, when isolation was combined with stimulation. the significant

increase of Egr-t protein expression appeared. at td (p<O.OS). Subsequently. it started to

decrease a bit at 2d and 4d compared with control.

The distribution of Egr·t expression in different sized neuronal populations showed

that, as the percentage of immuoostained srna11 neurons in total immlDtostained oeuroos,

Egr·t protein was mainly expressed in small neurons and basal expression in small neurons

was about 500/0 (data not shown).

Fospro«iJr expnssion As shown in Fig. 9, Fos protein was predominantly localized in the

nucleiofORG neurons. The quantitative analysis ofFos expression in ORO neurons as the

percentage ofstained cdIs in total CO\Dlted cr:Us was done and the data were described in Fig.

to and the attached table. Statistical analysis of stained neurons showed the basal

expression ofstained ceUs in total ORO ccUs was 22.92% to 32.06% (sec table). Compared

with control group, treatment groups were significantly different from it with the tested time

periods (lh, 4h, 8h, td., 2d.,and 4d) (MANOVA by glm, p<O.OS). Based on the above
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Figure 9. Immunoslaining of Fos protein in ORG neurons. ICC was performed on

frozen section as described in the text. Fos polyclonal antibody was from Oncogene Science.

The nuclei of DRG neurons are darkly stained by Fos antibody. A.. Nuclear staining of Fos

under control treaonent, and B. Nuclear staining ofFos at 2d under isolation plus stimulation

treaonent. The arrow head point out the dark staining of the nuclei. Scale bar = 100 J.lm.
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Figure 10. ADalysis of tbe perceatage of Fos imlllaJIostaiDed aearoDS in total DRG

oearou. The immu:oostained cells and total ORO cells per section wen: COWlted under the

light microscope. On each slide. the 3-5 sections for control and each~tal treatJnent

(stimulation. isolation and isolation plus stimulation) at different time points (lh. 4b.. 8h. Id,

2d and 4d) were analyzed. For each control or treatment per time point. one ORO was used

per experiment. The cells containing stained nuclei and total cells in one ORO section were

counted and the percentage of stained ceUs in lotal (%) was calculated. Thus. a given

experimental series is the data from I ORO per treabnent per time point. ie. a total of 24

ORGs per experiment from at least 12 rats. The plotted data represent the Mean of 2-4

experiments; the table~ts the Mean. SEM, n value and statistical analysis. Statistical

analysis was carried out using the foUowing tests. MANOVA by gIm was used 10 leSt group

difference (p<O.OS. significant difference) caused by treattneolS across the lime points.

Significant differttlCeS (p<O.OS) between control and treatments at each time point were

tested by oneway ANOVA with Dunnett's test (represented by • in the figure and table).

The different treatments are presented as foUows: control. solid dot; stimulation. open dol;

isolation. solid triangle; isolation plus stimulation. open triangle.
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results, onewayANOVA with Dunnett's t-test were further used to test the significant change

ofFos at each single time point (p<0.05). The results showed that stimulation and isolation

alone did not induce significant increase of Fos protein expression at all the tested time

points (p<0.05). However, the combination of isolation and stimulation treatment resulted

in the number of positive neurons reaching as high as 43.95% at 2d, and 41.90% at 4d

respectively, significantly increased compared with control (p<0.05). In this case, the

combination of stimulation and isolation induced a larger increase than individual

stimulation and isolation treatments, indicating that the electrical stimulation and NGF had

some overlapping effects on Fos protein expression.

hm protein expression Like other lEGs, Jun protein was also present in the nucleus in

DRG neurons (Fig. 1I). The expression of Jun was examined only in the later experiments,

so at some time points, the data was not obtained (8h: stimulation, Id: all the treatments).

According to the statistical analysis, 28.0eVl/o to 32.50o/oofthe totaJ DRG neurons had a basal

expression of Jun according to the data from control at Ih, 4h, 8h, 2d, and 4d (Fig. 12 and

attached table). MANOVA by glm were performed to investigate the group differences. It

was shown that all treatment groups (stimulation, isolation, isolation plus stimulation) were

significantly different from control group with the tested time points (p<0.05). Based on the

above results, oneway ANOVA with Dunnett's test were then used to test the significant

differences between control and each treatment at each time point (p<0.05). It was shown
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FiguR II. 1..ldaDostaininc or Jan proteiD in ORG aearollS. lee was performed on

frozen sections as described as the text. Jun polyclonal antibody was from Santa Cruz

Biotech. The nuclei of ORG neurons are darkly stained by Jun antibody. A. Nuclear

staining ofJun under control treatment, and B. Nuclear staining ofJun at 4d under isolation

plus stimulation treabnenl The arrow head point out the dark staining ofme nuclei. Scale

bar-IOOIJlll.
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Fipre 11. Aaalysb of the pen:eatage of JIlD immuoostaiDed uearoas in total DRG

MUroas. The immUDOStained cells and total ORG cells per section wen: counted under the

ligbtmicroscope. On cadt slide. the )·5 sections forCODuol and eachexpc:rimc:ntal. treattnc:Il1

(stimulation. isolation and isolation plus stimulation) 81 different time points (tb. 4h. 8h. 2d

and 4d)~ analyzed. For each control or treatment per time point, one DRG was used per

experiment. The cells containing stained nuclei and total cells in one ORG section were

counted and the percentage of stained cells in total (%) was calculated. Thus. a given

experimental series is the data from I ORG per txeatment per time point.. ie, a total of 20

ORGs per experiment from at least to rats. The planed data represent the Mean of 2

experimc:ut;;; the table presents the Mean . SEM. n value and statistical analysis. Statistical

analysis was carried out using the foUowing tests. MANOVA by gIm was used to test group

difference (p<O.05, significant difference) caused by treatments across the time points.

Significant differences (p<O.05) between conaol and treatments at each time point were

tested by oneway ANOVA with Dunnett's test (represented by' in the figure and table).

The different treatments are presented as follows: conao!. solid dot; stimulation, open dot;

isolation. solid triangle; isolation plus stimulation, open triangle.
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in Fig. 12 that the percentage ofslainc:d cells increased more or less at different time points

compared with control. Stimulation alone did DOt cause large changes at the tested time

points. Isolation alone caused significant increase of Jun protein compared with control as

early as 8h (p<O.OS), and this situation lasted until 4d. As the same as isolation aJone,

isolation plus stimulation induced significant increase: of Jun expression as early as 8h

(p<O.OS), and this effect existed till 4d.

0cJ..1protDJt aptYSSion Oct-2 protein was loc:alized in the nucleus and the rc:prcse:n.tative

example of ouclear staining at control and isolation plus stimulation treatment is provided

in Fig. 13. Unfortunately, from the data ofOct-2 (Fig. 14), it seems that the results did not

show any consistent pattern under cootrol and the three treatments at the time points which

were checked (ih, 4h, 8h. 1eL, 2d and 4d) (data oot shown). Therefore, further analysis was

not performed.

3.1.2.2 Westel'1l blot analysts - Egr and pCREB

Western blot analysis was used to further examine the protein expressioo of Egr-I and

pCRES. HeLa cell and NUOD cell Iysates wett used as positive controls. and. Egr-I

protein was observed 00 the blots at the size of 87 teD in these samples. However, at

different time points (lh, 4h, 8h, Id., 2d, 4d), there were 00 obvious changes among control

and other treatments for Egr-I (data not shown).
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Fipre 13. lmlllluDostailldig ofOct-2 proteiD ia ORG anrou. ICC was performed on

frozen section as described in the tat. Oct-2 polyclonal antibody was from Santa Cruz.. The

nuclei of DRG neurons ale darkly stained by Oct-2 antibody. A. Nuclear staining ofOct-2

under control treatment. and B. Nuclear staining of Oct-2 at 2d under isolation plus

stimulation treatrnenL lhe arrow head pointed out the dark staining of the nuc:1ei. Scale bar

"IOO~.
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Figure 14. Analysis oftbe ptnftltaCe orOn-2 immuaostaDed aearoas in total DRG

neurons. The immunostained cells and total ORG cells per section were COW1ted under the

light microscope. On each slide. the 3-5 sections forcontro( and each experimental treatment

(stimulation, iso1ationand isolation plus stimulation) at different time points (Ib.. 4b.. 8b.. Id.

2d and 4d) were analyzed.. For- each control or treatment per time point, one ORG was used

per experiment. The cells containing sraiDed nuclei and total cells in one ORO section were

counted and the: percentage of stained cells in total (%) was calculated. Thus. a given

experimental series is the data from I DRG per tre8.bnent per time point, ie. a total of 20

ORGs per experiment from at (east 10 rats. The plotted data represent the Mean of 2

experiments; the table presents the Mean. SEM. n value and statistical analysis.
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Tbesizc ofpCREB was 43 KD. Helacelilysatessbowedastrong band at 86 KDand

a band at 43 KD for pCREB-probed blots. But for the ORO Iysates only faint 86 KD bands

appeared and the 43 KD band was not detectable. This is probably due to the relatively low

amounts of phosphorylated CREB in the samples, and the possibility is that most of the

pCREB was present in a dimerized form.

3.2 The expression of mRNAs and proteins of NGF receptors

The mRNA expression of the NGF receptors, Trk A and p75, was analyzed on frozen

sections by ISH after stimulation. isolation, and isolation plus stimulation treatments. In

addition.. the Trk A receptor protein and its phosphorylation state were detected by

immunoprecipitation and western blot analysis.

3.2.1 Trk A and p75 mRNA expression detected by In Situ hybridization The grain

densities ofTrk A receptor mRNA at Ill. 4h. ld, 2d and 4d under stimulation. isolation.

isolation plus stimulation treatments are shown in Fig. 15A. While stimulation alone appears

to cause little change in Trk. A receptor mRNA, both isolation and isolation plus stimulation

produced large changes. With isolation alone the grain density significantly increased

(ANOVA, p<0.05) after Idand lasted to 4d.. Isolation plus stimulation induced a significant

increase in the grain density ofTrk A as early as th (p < 0.05). but then decreased to control

level at 2d. Further analysis of grain density with respect to neuronal size classification

70



Figure IS. ExpressioD orTrk A recqKer mRNA iJI DRG ae.roa.s-In silll hybridization

was performed on fro%m sections of DRGs from animals at Ih. 4b.. ld. 2d. and 4d after

stimuJation and isolation plus stimulation paradigms as described in methods. A. The grain

density ofTrk A mRNA on the total oeuronaI population at control and each tmltrnentltime

poinL B. The grain density of TrkA mRNA in small neurons at each control and

treatmentltime poinL Significant differences between control and eacb treatment at different

time points were analyzed by Oneway ANOVA plus stUdent's t-test on Minitab program

(p<O.OSl. The different treatments are represented as: control (empty bar). stimulation

(hatched bar).. isolation (cross-halcbed bar) and isolation plus stimuJation (solid bar). Each

bar represents the analysis of 100 oeurons from I ORG per tteattnenL
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indicated that theexpressioo ofTrk A in small neurons presented a similarpanem with that

seen in the total aeuron population. suggesting that the changes wen: taking place mainly in

small neurons (Fig. I5B).

As the low affinity ofNGF receptor, the mRNA expression ofp75 was also investigated.

The grain density of this receptor at Ill. 4h. Id, 2d and 4d is shown in Fig.16. Stimulation

alone did not cause a significant elevation ofp75 mRNA over time. With isolation alone,

the significant change in grain density was observed at the 2d and 4d time points. The

increase of p75 expression with isolation plus stitnulation was significant from 4b to 2d.

In small size ORG ocurons. the expression was similar. although there was more variability

in theroults. Tbis might teflect the factthattbe intensity oftbe ISH signal was much greater

over the small neurons. and was mote difficult to assess accurately with the image analysis

program used.

3.2.2 ImmulloprecipitatiOD aDd Western ...lysis of Trk A esprasiOD aDd

phosphorylation state

To visualize the Trk A receptor and its phosphorylated form. immunoprecipitation was

perfo~ fimIy by using a Trk A antibody, and then the Western blots wen: probed

sequential.ly with Trk A and anti-pbospbotyrosine. Lysatcs from spinal cord treated in vitro

with NGF were used as a positive control. The Trk A ~ptor has a molecuJar weight of

140 KD, as seen in the Trk A blot.. The blot probed with anti~phosphotyrOsinealso showed
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F"tpre 16. Exprusioa olp7S receptor mRNA ill DRG aeuroos.ln situ hybridization was

pai'ormed on frozen sections of DRGs from animals at lb, 4b. lei,. 2e1,. and 4d after

stimulation and isolation plus stimulation paradigms as described in methods. A. The grain

density ofp75 mRNA on the total neuronal population at control and each treatment /time

point. B. The grain density of p75 mRNA in small neurons at each control and

tI'eatmcntltime point. Significant differences between conttol and each treatment at different

time points were analyzed by Oneway ANQVA plus student's t-Iest on Minitab program

(p<O.OS). The different treatments are represented as: control (empty bar), stimu.lation

(hatched bar), isolation (cross-hatched bar) and isolation plus stimu.lation (solid bar). Each

bar represents the analysis of 100 ncwons from J DRG per treatment.
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a 140 KD band. indicating that this was phosphorylated Trk A (data DOt shown).

To test the potential change in Tn: A receptOr expression and activity. Iysates~

extracted from DRG DetJr'Om from. control, stimulation. isolation. isolation plus stiDluJation

at Ih. 4h, 2d. 4d and 3d. Protein cooc:mtrations were detennined and aliquots of equivalent

amounts of protein of the Iysales were electrop~ and transferred to nitrocellulose

filters. Western blots were probed with Tn: A antibody (RTA) or an anti-pbospbotyTOSine

antibody. Experiments were conducted in triplieale. The results of a ~tative Western

blot ofTrkA are shown in Fig. 17. In panel I. compared with the TrkA band in control

lane corresponding to 140 KD.~ appeared to be a slight increase in the density of bands.

especially at Ih and 4b stimulation time points. In panel 2. there seems to be increased

density of Tn: A bands (relative to control) were presented at 4d and 8d isolation and

isolation plus stimulation time points. The samples in panel 1 were run on the same gel;

samples in panel 2 wen: electropbon:sed on 2 separate gels - although in the same

electrophoretic NO. This repre:sentative blot was the final one run on the 1asl of tile available

samples; while the blots of the 2d and 4d samples are not optimal they were included as

representative of the series.

1be representative results ofpbosphotyrosioe expression from Western blot are shown

in Fig.18. There were no major differences in the patterns ofTrk A proteins phosphorylated

on tyrosine under any of me conditions. except perhaps at the Ib time point and. for the

isolation condition.
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Fipn: 17. WesterD blot ofTrk A receptor aprasioa i.a DRG oearou. Treated (sOm.

00. iso+stim) and comrol ORGs Wtte removed at Ih. 4h. 2d. 4d. and 8d.. ORGs were

homogeniud in lysis buffer. Lysate was extracted with lysis buffer and protein

concentration was measun:d by protein assay kit (Bio-Rad). 10 Ilg of protein was subjected

to 10 % 50S PAGE. and transfmat to ECl nitroceUuJose membrane (Amersham). After

blocking with 5 0/, skim milk. the blot "'35 probed with Trk. antibody (RTA). The binding

of this antibody was detected with ECl Idt{Amersbam). The size ofTrk A receptor is 14()

KD. Panel I were samples from 1h and 4h. Panel 2 wert: samples from 2d,. 4d and 3d. C 

control; S - stimulation; I • isolation: 1+5 - isolation plus stimulation.
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Figure 18. Wcskn blot orpbospbotyl'OSiDe orTrkA in DRG uanuas. Experimental

procedure was as described in Fig.17. PhosphotyrOsine antibody was from Upstate

Biotechnology lncorp. Panel I shows samples from t hand 4h. Panel 2 shows samples from

2d, 4d and 8d. C - control; S ~ stimulation; I - isolation; ( +8 • isolation plus stimulation.

There was a band around 140 KD and might be the pbosphnrylated Trk A tyrOSine kinase.

The markers on the left side indicate the possible location of several protrin molecules: _

(p/><KphorylaIod T<k A); - (pho",h<xy1aI<d SHC); • (p/><Kphoryl"od ERK)
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3.3 Expressioa of proteias related to NGF receptor mediated pathways

The binding ofNGF to TrkA m%ptorstimulates the intrinsic tyrOSine kinase actiyj[y

ofthis receptor. initiating the autopbosphorylation of this receptor on several sites (tyrosine

residues). There are several cytoplasmic proteins which associate with the Trk A receptor

after activation, and subsequently activate do1M15tream. signaling cascades (eg. Kaplan and

Stephens. 1994). As part of the experiment to investigate the potential contribution ofTrk

activation and subsequent cellular signaling to collateral sprouting, preliminary experiments

to examine the presence of these protein~ carried out. lbe same Western blots were

probed sequentially with antibodies to PLC-yl and, PI-3 kinase (pB5). SHe. and MAP

kinase (ERK1).

PLC-yl The molecular weightoftbe PLC-yl protein is 145 KD. The expression of this

protein at Ill. 4h. 2d. 4d and 8d under four conditions were shown in Fig. 19. There were

some small increases in expression ofPLC-yl (compared to control) detec:ted at the early

time points. although at 8d there seems to be greater increase in PLC-y I.

Pl-J The antibody used recognizes the 85 KD subunit ofPI-3 kinase (fig. 20). Compared.

[0 the conaol sample, there was an increased expression ofPI-3 kinase in the experimental

samples, particularly at 3d. There was little difference between the different experimental

conditions.
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Figure 19. Westera blot of PLC-yl ill DRG DeurollS. Experimental procedwe was as

desaibedinFig.17. PLC·yl was fromSaotaCnJzBiotccb. The size of PLC·yl on the blot

is 145 KD. Panel 1shows samples from Ih and 4h. Panel 2 shows samples from 2d. 4d and

3d. C - control; S· stimulation; [ - isolation; [ +5 • isolation pilLS stimulation.
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Fipfe 20. Western blot orr•..J kUI-.se ill ORG altU.roos. Experimental procedure was as

described in Fig.17. PI-3 kinase antibody was from Upstale Biotechnology Incorp. The size

of PI-3 kinase on the blot is 85 KD. Panel I shows samples from Ih and 4h. Pane12 snows

samples from 2d. 4d and 3d. C - control; 5 - stimuJation;. - isolation; I +5 - isolation plus

stimulation.
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SHe When the blot was probed with the SHC antibody, three bands appeared on the blot.,

66 KD, 52 KD and 46 KD (as expected) (Fig.2l). However. the 52 KD bands was always

more strongI:y expressed in DRG Iysaus. Under the four-conditions oftrcatments,~~

no obvious differenc~ in SHe signals at the time points examined.

MAP 1dJIJI.R (ERK) The aDnDody recognizes two isofonns of MAP Kinase (ERK). ERKI

(44 KD) and ERK2 (42 KD). The Western blot results with ERK are shown in Fig. 22.

Under all conditions investigated and at all time points. there was a stronge~onof both

isoforms, but there appeared to be only slight difference among the different treaDnents and

time points. There does seem to be an increase in the expression of the p44 isform at later

time points.

It is possible that the above results may be due to large differences in the amount of

protein loaded per lane, however. this is not likely to be the case. since the PI-3 kinase and

PLC·yl resuJtsare from the same blot probed sequentially, and the SHC and MAPK results

are from another blot probed sequentially. If. for example. the large differences in the 3d

expression of MAPK compared to the 2d experiment were due to 10ading differences. we

would expect to see simiJar magnitudes ofdifferences with the anti-SHC b10L

These proteins are also pbospborylated as part of their activation by NGF binding to

Trk A. The Fig. 18 shows a series ofbands identified by the pbospbotyrosine antibody. The

bands corresponding in size to those discussed above can be seen. However, there appears

to be little change with the different times and treatments.
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Fipre 21. Westen blot of SHe iD DRG aearoa.s. Experimental procedure was as

described in fig.17. SHC antibody was purchased from Upstate Biotechnology Incorp. Tbc::re

were three SHC bands showed up on the blot: 66 KD. 52 KD and 46 KD. Panel I shows

samples from lh and 4h. Panel 2 shows samples from 2d. 4d and &d. e . conttol; S 

stimulation; I - isolation; I +S • isolation plus stimulation.
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Figure n. Western blot or ERK-l ill. DRG .earoDS. Experimental procedure was as

described in Fig. 17. ERK-l antibody was from SantaCruz Biotech. The sizcsofERK-l on

lhe blot were 44 KD and 42 KD. Panel I shoW! samples from Ib and 4h. Panel 2 shows

samples from 2d. 4d and 3d. C - coDtrol; 5 - stimulation.; I - isolation; I +5 - isolation plus

stimulation.
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Attempts to cany out experiments where specific proteins were immunoprecipitated

and then the immunoprecipitates probed with anti-phospbotyrosine were not entirely

successful due to the limited amount ofboth sampJe and antibodies. as well as a problem

with the particular anti-pbospbotyrosine annbody used. This is also the reason why the blots

in Fig.19-22 were not re-probed with anti-pbospbotyrosine.

3.4 Summary

The results of this study can be summarized as follows. CREB rnRNA was quickly

induced after Ih electrical stimuJation, and this increase lasted to 4d. The effect ofisofation

started at Id. and the combination of isolation plus stimuJation resulted in this occurring

sooner. At the protein level. compared with control. the expression of pCREB protein was

only significantly increased lIDder stimulation at 8h (p<O.05), not under other treatments at

other time points.

Electrical stimuJation started to induce the elevation ofegr-I rnRNA levels after 4h and

this induction lasted until 2d for mRNA; for protein. compared with control. only at 8ll. the

significant elevation were seen.. Isolation. which wouJd cause the increase ofNGF level in

skin (Mearow et al., 1993) did not induce significantin~ of Egr-I protein expression

in the nucleus during the experimentaJ time period. However. isolation plus stimuJation

induced a significant increase of Egr-I protein after Id and this increase lasted to 4d.

Therefore. isolation plus stimuJation not only shoneoed the duration ofegr-I increase. but
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also caused a long time increase of this gene.

Compared with control, stimulation or isolation alone did not affect the expression of

c-Fos, However, at 2d and 4d. isolation plus stimulation respectively induced significant

increase ofFos.

Stimulation alone did not have significant affects on Iun protein level, however, from

811. isolation and isolation plus stimulation respectively caused significant increases in Iun

protein level compared with control.

Under the treatments of electrical stimulation and isolation, the change of Trk A

receptor mRNA and protein showed different patterns in these experiments. The mRNA

level ofTrk A did not significantly increase after electrical stimulation; however, isolation

alone resulted in a significant increase of TrkA mRNA and this increase reached a peak at

4d (2.0X relative to control). Combined with electrical stimulation, isolation induced a large

increase at very early time point (Ih), but the increase gradually decreased at late time points

(2d and4d).

The protein level ofTrk A was only increased at lh and 4h stimulation time points.

The increase induced by isolation plus stimulation only showed up at the late time points (4d

and 8d). "The phosphorylation state ofTrlc. A receptor did not appear to be increased except

after the isolation treatment at lb and at the longer time points of4d and 8d.

p75 mRNA level was altered little by electrical stimulation. Isolation alone induced

a peak change at 2d. The combination of these two factors resulted in increased expression

ofp75 by 4b, and their effects was largest at ld, and then gradually decreased.
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Among the proteins which propagate NGF signals, PLC-y I was slightly induced by

stimulation and isolation at the earlier time period (Ill. 4h) and at the very late time point

(8d). PI-3 kinase was increased only at the late time point (Bd) after these three treatments.

SHC and MAP kinase (ERKI) were nOI obviously affected by any of these treatments.
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Chapter IV

DISCUSSION AND FUTURE DIREcnONS

4.1 Tbe significance of this study

The phenomenon of precocious sprouting in SCIISOry oemons was first recognized by

Nixon et af., (l984) and Doucette and Diamond (1987). In order 10 test the recovery of

responsiveness in rat skin after denervation. they periodically pinched or hot probed the skin

(i.e. testing the skin with a wann (6QDC) metal probe) and found that this testing resulted in

an earlierdevelopment ofthe recovery. Electrical stimulation in their e:xperiments mimicked

the effects induced by pinching or hot probing. However. when 1TX was used to block: the

propagation of electrical impulse from the peripheral processes to the cell bodies.. this

precocious sprouting did not occur. This suggested that impulses produced by electrical

stimulation were transmined to the ORO neurons first, and somehow induced some changes

in the responsive neurons and produced the accelerated sprouting of the nerve terminals

(Nixon et al., 1984; Doucette and Diamond.. 1987). Further studies showed thaI this

precocious sprouting: is an NGF-depmdent process (Diamond et aJ., 1987; Diamond et al.,

1992a) because this process did not occur in the absem;e of NGF. Studies in adult rats

indicated that when electrical stimulation was perfonned prior to or just at the same time of

deoervarion ofttle dorsal eutaneus nerves, the onset ofcollatera1 sprouting was earlier lhan
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in untreated animals (Douc:dte aDd Diamond; 1987; Diamood el a!.. 1992 a, b). Therefore.

it seems tba1 the effects of electrica.I stimulation act to reduce the Iatmcy ofsensory terminal

collateral sprouting which i5 physiologically detectable in the slcin.. However. what sorts of

factors regulate this interesting phenomeooo. i5 still a mystery. My study firstly investigated

the possible elements. related 10 this process at the molecular level, in particular, whether

electrical stimulation might activate certain lEGs or elevate Tn: A receptor activity to act in

concert with the: incmlsed availability ofNGF to result in an acceler.tted collatenJ. sprouting

response. This study wiU help to understand the mechanism of this collateral sprouting.

4.2 The role of immediate early genes (lEGs) ia precocious sprouting ia

DRGs

Some lEGs, as transcription factors, regulate downstream target genes by largely

unknown mechanisms. and cause long lasting biological effects. For example, fEGs have

been shown to be activated by a variety of extracellular stimuli such as depolarization.

neurottopbins, light and so on (e.g., Bartel ela!.. 1989; Herdegen etaJ., 1991; Tayloret 01.•

1993; Ginty eta!.. 1993; Keodal.I eta!.. 1995). Bectrica1 stimulation, which depolarizes the

nerve membrane and is similar to the depolari2lltion by Ket. can also regulate certain gene

expression (e.g. Sukhatme et aL, 1988; Bartel et at., 1989; Sheng et at.. 1990; Lu el at.,

1991; Sheng el at., 1993; Yoon and Lau., 1994) and control growth., differentiation and

sprouting of many cell types (Saffen el aJ., 1988; Banel er 01.• 1989; Manivannan and
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Terakawa, 1994; Solem ef a/. , 1995). One possible common pathway activated by these

different stimuli may be regulated by depolarization influenced cyclic AMP levels (rev. in

Ghosh and Greenberg, 1995). For example, elevation of cAMP levels induces the

translocation of the cAMP response element binding protein (CREB) from the cytoplasm to

the nucleus, where the phosphorylated fonn ofCREB (PCREB) binds to a cAMP response

element (CRE)~like sequence in DNA (Fisch et aI., 1989; Sheng et aI., 1988, 1990). In the

promoter regions of certain immediate early genes, such as c-fos, c-jun and egr·t, CRE

elements have been described (eg., Angel et al., 1988; Christy el aI., 1988; Changelian e/ aI.,

1989; Fisch et 01., 1989). Thus, the expression of these genes may be regulated by CREB

after depolarization of membranes. Therefore, if electrical stimulation causes some changes

in TEG expression or induction, CREB might be the one mediating the effects of electrical

stimulation, and the first gene to be activated during this process. Besides depolarization,

NGF is another factor regulating lEG expression. Among lEGs, c-fos (e.g. Greenberg et al.,

1985; Kruijer et al., 1985; Bartel ef al., 1989; Buckmaster et al., 1991), egr-I (Milbrandt,

1987; Bartel et 01., 1989; Cao et al., 1990; Kendall el 01.,1994), c-jun (Bartel e/ aI., 1989)

and Oct·2 (Kendall el af., 1995) are the examples of genes regulated by NGF in neurons.

Since electrical stimulation and NGF are the factors related to precocious sprouting in my

study, the lEGs which can be activated by these two factors will be discussed in the

following sections.

CREB CRES, as one of the members of a Ca 2+-mediated transduction pathway, is
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expressed in many ceU types (eg. Sbe:ng etaL, 1990, 1991; RuppertetaL, 1992; lmaki ~t aL,

1994; Komadi and Heckers, 1995; Sbiromani ~t oL, 1995) and activated by many factors.

such as depolarization (Sheng et 01., 1990), NGF (Ginty et 01., 1994), and light (Ginty et 01.,

1993). Previous studies showed that CREB-immunolabeled neurons were found in lumbar

DRGs ofuntreated rats; this basal expression exhibited a higb variability which ranged from

absence to weak labeling of around 8% ofall counted cells (Herdegen u aL, 1992).

In my stUdy, since CREB exerts its function subsequent to phosphorylation on Ser'll

(eg. Sheng et oJ., 1990), an antibody against phospborylated CREa, pCRES (Ginty et oJ.,

1993) was used to teflect the activity of CREB in ORG neurons. My results found that

pCRES presented a basal expression in lhe nuclei of ORG neurons (Fig. 5), and that the

percentage oftotaJ immlmO-5tained cells at lhe basal level was from 20.63 % 10 30.41%

depending 00 differmt ORGs (fig.6), higber than that in the previous studies. The possible

reasons which might account for lhe difference between my study and lhe fonner studies may

be as follows: firstly, it may be related 10 the localization of ORO neurons. The ORGs

examined in my study were from thoracic (TI Q...TI 3) OROs, but the ORGs in the fonner

studies were from. hmbar levels. The lumbar ORGs have a greater total number of neurons

than thoracic ORGs(lO· 12,000 vs 6- 8, 000), and also have a higbcrrepresentarion oflow

thresbold and limb propriceptive afferents, which may influence the proportion ofIabeled

cells; secondly, it may be possibly due to the diffetence in antibodies. The titer of the

antibody might be a factor to influence the binding ofantibody to the epitope. In my study,
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the antibody specificity was tested by adding pCREB control peptide into the optimal

ooocentn.tioo ofpCREB antibody to block its function. In these conttol situations., staining

was abolished. therefore, my results should not be due 10 the non-specific staining of the

The change of CREB mRNA and protein under noxious stimulation in in vivo ORG

neurons has not been previously investigated. In my stUdy, the effects of electrical

stimu1arioo on tbisgene in ORG neurons were studied in vi\OO forthe first time. lnterestingly,

it was found that electrical stimulation induced the increase ofmRNA for CREB expression

as early as Ih (see Fig. 3A) and the mRNA level ofCREB expression mK:bed a peak at lei.

However. for the pCREB protein. compared with control al: each time point. electrical

stimulation only induced significant increase of its expression at 8h (p<O.OS), later and

shorter than the increase of mRNA level (fig. 6). However, this apparent discrepancy is

reasonable since the mRNA levels reflect the amount ofCREB mRNA in each neuron. while

the prolein level reflects the number of neuroll! that were PeREB positive. Furthermore,

protein expression was that of the activated form ofCREB, while the ISH examined IOtal

CREB message.

Isolation alone did not have effects on the expression of pCREB protein in my study.

Previous studies indiC31ed tbat. an inctease in NGF mRNA level was detected in skin 2d after

denervation (Mearow et 01., 1993). According to my results, isolation alone did not result

in significant changes ofpCREB prolcin al: later time point (p<O.05) (fig.6). The reason for
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this might be that since these ocurons an: normally expressed 10 low levels ofNGF, an

increase in cutaneous NGF did not furher induce the change of pCREB.

The change of pCRES was further detected by the cooperative effe<:ts of electrical

stimulation and isolation treatments. Under the influence of dectrica1 stimulation and

isolation, while pCRES expression was elevated compartd to control. the increases were not

significant (p<O.05).

In ORG neurons., all1lough CREB rnRNA and protein were observed in all sizes of

neurons., pCREB expression was most marked in small-size neurons (65.6%) (data not

shown); the CREB mRNA expression profile in small neurons was similar 10 that in the toalI

population of neurons (Fig. 3B). Since collateral sprouting occur.;: primarily in small

neurons, lhese resuhs provided funher evidence !hat CREB may be involved in mediating

signals during precocious sprouting.

However. an interesting result for these experiments is that. as early as 8h, stimulation

induced a significant increase of pCRES expression (p<O.05). It suggested thai: electrical

stimulation might be an important factor in the induction of pCREB expression. Since

pCREB was upregulated by electrical stimulation at early time point. the possible role of

pCREB may be that il is involved in !be regulation of do",nstrealD genes expression

importaD[ for priming the neurons to respond more rapidly 10 the sprouting stimulus, NGF.

egr-l egr.\ is a gene actiVlUed in different neuronal tissues by many factors (eg. Milbrandt,
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1987; Cole et a/.. 1989; Hughes et Di.• 1992; Bartel et a/.. 1989; Felipe eta/.. 1993: Keodall,

1994; Mtmdsc:hau et a1.• 1994). In cultun:d PCI2 cells and adult ORG neurons.

depolari23tion and NGF resulted in upregulation ofmis gene (Bartel el aI., 1989; Kendall

et 01.. 1994). However, in the in vivo situation. a change in the expression of this gene

induced by electrical stimulation and NGF in DGR neurons has oot been well studied.

Nevertheless., previous stUdies have shown an increase in the expression of this gene in

dorsal barns after sciatic oerve section (Herdegen etoL. 1992). The results from an in vivo

study in rat showed that Egr·1 protein was either absent or gave a weak basal

immunostaining in up to 10"10 of large and small lumbar ORO neurons (Herdegen et 01..

1992). On the other band, it was bighly expressed in superior cervical ganglion of the adult

rat (Milbrandt. 1981), indicating that it has some ceU-specific expression. In my stUdy.

electrical stimulation aloae or in cooperation with NGF was examined in the in vivo situation

in thoracic (flo-T13) ORO oeurons. Unlike the former study where Egr-l presented a

variable immunostaining in lumbar DRGs (Herdegen et Di., 1992). Egr-l basal expression

was detected consistently in three sizes ofDRG neurons. and the protein was detectable in

as higbas 3229% to 34.37% of total. labeled cclls (Fig. 8). An increaseofEgr·1 expression

~ at 4b (42.18%). but the significant increase ofEgr-l protein was first observed at 8b

aftc:relectrical stimulation (p<Xl.05), Iatc:r than that found. in PC12 cells (Bartel et ai.• 1989).

The expression ofprotein ofEgr·l in the isolation alone experimental condition did not show

any significant increases compared with control (p<O.05). This suggests that the change of
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GF alone might be not strong enough to induce the change of Egr-I protein expression.

This was further supported by another group of experiments where the isolation plus

stimulation acted to induce a significant increase of Egr-I protein (p<O.05) as early as Id and

which lasted until 4d.

Since there are CRE elements in the promoter region ofegr-I (Changelian et at., 1989),

it might be a potential downstream target of the pCREB. In my study, the change of Egr-I

protein did show some relationship with that ofpCREB protein (Fig.8). From the results of

peREB (Fig. 6), electrical stimulation induced significant increase of peREB protein at 8h

(p<O.05); similarly, electrical stimulation also resulted in a significant increase of Egr-l at

the same time point. These results suggest that the increase of pCREB might induce the

increase of Egr-l protein level and regulate its expression during precocious sprouting.

Of interest is that electrical stimulation and isolation appeared to have cenain interactive

effects in inducing the expression of Egr-l protein. As shown in Fig. 8, when the nerves

were treated by electrical stimulation and isolation together, the expression of Egr-I protein

was not a simple accumulation of these two effects. At early time points (4h and 8h),

electrical stimulation induced a large increase of Egr-I protein expression, but the

combination of electrical stimulation and isolation did not show a significant increase.

However, at 1d, even though the separate effects ofelectrical stimulation or isolation did not

show significant changes (p<O.05), their cooperative effects induced significant increase of

Egr-I protein.

WI



According to the results from ICC ~data not sbowu), although Egr-l was expressed in

all sizes ofncurons, most of the labeled cells~ the small neurons. The increasing trend

after stimulation orland isolation tmdmcnt for the small neurons was similar to that of toW

cell population. From previous knowledge, it is known that these small to medium size:

neurons would be expected to undergo collateral sprouting (Diamond et at.• 1992a; Mearow

etat., 1994). Therefore, these results further suggested that. although the mechanism of their

interaction is not clear. electrical stimulation and isolation contribute to the activation ofegr

I and might be involved in collateral sprouting process.

~ous studies showed that electrical stimulation ofsciatic nerves at A6IC intensities

induced the expression ofegr-I in the central postsynaptic targets of the noxious afferents

in spinal cord (Herdegen et 01.• t 991), which may be an important mechanism in the

physiology of sensing noxious/painful stimulation. LinIe change was observed in the ORG

neurons themselves, although the time points examined were somewhat: different than those

used in the present experiments. A further point that might account for differences in

expression could be the anaesthetic used. In my experiments.. the animals were relatively

lightly anaestbeti:zed. so that the effects of the stimulation on the CTM reflex could be

observed.. M~ complete anaesthesia (as used in the previous studies) might depress some

potential responses.

c-fos c-fos is a well stUdied gene that can be activated by many factors during different
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biologic processes (eg. rev. in Angel and Karin. eloJ.• 1991; Sheng and Greenberg. 1991).

In different tissues aDd under different treatments., c-fos expression presents a variety of

paucms (eg. Bartel et oJ., 1989). While there an:: a number of studies examining the

influence of noxious stimulation in e-fos activation in ORG neurons (Hunt et a'.. 1987;

Jenkins and Hunt. 1991), in vivo studies on the involvement ofe-fos in ORG neurons Wlder

both electrical and NGF stimulation an:: I3rCly documented. For- example, it was shown tlw

basal expression of e-Fos was not detected in hunbar ORG oeuroos in untreated animal

(Herdegen et 0/., 1992), and its expression in ORGs was neither activated by noxious

stimulation of sciatic nerve or hind paw (Hunt el at., 1987; Jenkins and Hunt; 1991), even

though c-fos was upreguIated in dorsal hom after noxious stimulation (Herdegen et 0/.•

1991). NGF does induce a relatively rapid c-fos expression incuJtured ORGs cells (Lindsay

et a'., 1990). and an in vivo study also showed that NGF induces Fos protein in Tdc. A

immunoreactive lumbar ORG neurons (Michael et oJ.• 1996). In my study, the basaI

expression ofc-fos in thoracic ORGs and the involvement ofelectrical stimulation and NGF

was initially found dwing the collateral sprouting accelerated by electrical stimulation

(Fig. to). The expression of c-Fos was not significantly increased (p<O.05) after electrical

stimularion alone and isolation alooe but it was significantly incn:ased after co-treatment of

stimulation and isolation 81M and 4d (p<O.05). The results of some stUdies have indicated

that CREs exist in the promoter region ofc-fos (Sheng elo1, 1988; Sheng et oJ., 1990).

Since the response ofc-fos was later than CREB, and NGF cooperated with stimulation to
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result in some changes on c:-Fos. it seems that CREs aUght be dirt:dJy or indin:ctly involved

in the regulation ofc:-Fos response.

Since under stimulation conditions the basa! expression of c-fos was not detected in the

previous studies (Hunt ttt ai.. 1987: Herdegen ttt aJ.• 1991a), in order to c:1arif)' that the

immunostain.ing in my experiment was lQl.. the experiments were carefully c:ontrol.led.. A

control peptide which blocks c:-f05 epitopes was added into primary antibody incubation

solution in some experiments. Futther, it is known that electric:al stimulation of the sciatic:

nerves teSU..lts in the c:-f05 expression in the dorsal born of the spinal cord (Herdegen ttl aJ..

1991). Therefore. spinal cord sections.. from cord segments whose related. DCNs were

electric:ally stimulated, were used as a positive control to test the signal of c-f05. In these

experimcnls. the peptide blocked the Fos expn::ssioo.. but the signal was also observed in the

appropriate spinal cord sections (data oot shown). Thus, my observation should reflect a

real staining for c-Fos protein. Compared with my experiments, the observation that c-fos

expression was not detected in ORCs in other experiments might be due to the foUowing

reasons. Firstly. the DRGs were from different SOwt:CS. The DRGs tested in fonner

experiments were from the lumbar area, while in my experiments. the DRGs were from

thoracic ami.. Secondly. the dectrical stimuJation was c:ooducted on different nerves derived

from these DROs. and it is conceivable that lhey aUght bave different responses to the

electric:al stimulation. Thirdly. the condition ofelectrical stimulation used in these treatments

were different in terms of frequency and duration. Fowthly, the antibodies used in different
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experiments were differmt, as were the time points investigat~ the effeca ofanaesthesia

as discussed above may also be relevanL

Recent results supported our observations ofc-Fos CX(RSSion in ORO neurons. and its

upreguJation by NGF (Michael elol., 1996). This preliminary repon indicated that 3 hr after

an intrathecal injection ofNGF there was a significant increase (about 10%) in the number

of DRG neurons expressing c·Fos. In cultured ORGs, NGF upregulated the expression of

c-Fos rapidly: by adding NGF to the culture modiwn. c-Fos expression was elevated within

30 min (Lindsay et aJ., 1990). In my stUdy, c-fos appeared to increase under 1bc: treatment

of isolation, however. this was DOt significant (p<O.OS) (Fig. 10). A potential explanation

is that c-fos is not vet)' sensitive to smaJJ changes in NGF levels in the skin. Unlike

stimulation and isolation alone. electrical stimulation and isolation together induced

significant increases (p<O.OS) in c-fos protein after 2d. suggesting that depolarization and

NGF might work in coordination with each other through the same or different pathways in

inducing this protein expression.

c-Juu As acomponenJ: oftbe AP-l ONA-binding protein. c·lun bas been well stUdied. In

vivo studies showed 1ba1c-Jun expression is more related to the transectionfmjury of nerves.

Transection of the sciatic nerves resulted in a rapid induction of c-lun expression in its

lumbar ORG neurons (Herdegen et oL. 1992). However. in L4/S DRG. small and large

neurons showed low basal c·Jun expression which was restricted to the cell nucleus (Leah
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eto1., 1991; Heniegenet 01.,1991: Herdegeneto1., 1992; Jenlcinsetal., 1993). In my study,

the basaJ~on ofc-J\D1 in DRGs was stable and high in all sizes of neurons. Noxious

ekctricaJ. stimulation, which activated A6 and C- fibers, produced a quick inctuse ofc-Jun

expression in ipsilateral dorsal hom oflumbar spinal cord. but did not provoke additional c

Joo immunoactivity in dorsal root ganglia within 2 h after electrical stimulation (Herdegen

etal.• I99I). Similar results were obtaincd in my study (fig.12). Duringmyexperimental

period (lb. 4h, 8b. Id., 2d., and 4d), electrical stimulation did not induce any change ofc-Jun

proteiD in DRGs after electrical stimulation of DCNs. The involvement of c-Joo in ORO

during colla1eral sprouting was previously investigated (Jenkins et 01.. 1993). It was shown

that after denetvation of L41L5 nerves, the saphenous nerve. which was derived from LJ

DRG. could collaterally sproul into the L4IL5 area. During this process, an elevation in c·

Jun protein expression was visualized in the intact L3 ORO nucleus even though the results

were equivocal due to the high variationofimmunopositive cells (Jerkins tloJ.• 1993). Like

the above results, in my stUdy, isolation alone significantly upreguJated expression of c-Jun

proteiD as early as 8h after isolation and this increase lasted to 4d (p<O.05). An interesting

result in my stUdy is that, under the t:reatments of stimulation and isolation, c·Jun protein

expression also significantly increased (p<O.05) even though that the increases were not

significantly diffetent from isolation alone treatment at the same time point (p<O.05). Again.

these results support the idea ofconpemtivity between depolarization and the provision of

the sprouting stimulus (Le., nerve isolation).
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Oct-2 Oct·2, as a member of the POU (named for its founder members., Pit-I, Oct-I and

2. WU'·86) family, is specifically expressed in sensory oeuroos (Latcbman et al 1992). In

cultured ORG neurons, it is expressed at high levels and regulated by NGF (Wood er aJ.,

1992; Latclunan et ai.• 1992; Kendall et ai., 1995). An in vivo study also showed that NGF

increased Oct-2 mRNA level in ORG neurons innervating inflamed tissue dwing

inflammation. and that anti·NGF blocked this increase. indicating that the expression ofOct·

2 was NGF-dependent (Ensor et a/.. 1996). However, the effects of electrical stimularion

OD the expression ofthis gene have not been studied. I carried out preliminary experiments

and found that although Oct·2 protein bad a basa1 expression in ORG neurons (Fig.14), as

previously reported (Wood el aI., 1992; LatclunaD el ai., 19(2), the results of Oct·2 under

different treatments were not consistent. Since the sample number used here was small.

further experiments need to be performed in order to find out the involvement ofOct·2 in

precocious sprouting.

While it is appreciated that larger sample sizes would provide greater accuracy to the

results obtained, this was DOt always possible to achieve d~ to time constraints,

experimental design, and availability of reagents. For example, with respect to the lCC

analyses., loss ofsections from slides n::suJtcd in smaUer sample sizes than original expected.

However, although for some samples, the n value is small, the results from my study still

suggested that stimulation and isolatioD indeed caused some change of these lEGs. In order

to further confinn these results, in the future. more samples can be used and further studies
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can be done based on my experiments.

The protein expression of these above lEGs was also examined by Western blot

assay. Since lEG proteins of interest were likely present in the Iysates at relatively sma.lI

amounts and the Western technique may not have been sensitivecnough 10 specifically detect

the band of interest., the Western bioi analysis did not yield satisfactory results 10 show the

change of protein level on blots. Because only limited amounts of lysate were available.

immlmOprec:ipitation, which is a more sensitive technique to check protein expression. was

oot performed to investigate the changes on the protein of interest under the present

situations..

4.3 The role of NGF receptor in precocious sprouting

The effects of electrical stimulation or depolarization on NGF receptor expression have

not been studied extensively in vivo. In in virro experiments. membrane depolarization has

been shown to induce the expression of tile Trk A receptor in MAH cells. an immortalized

sympatboadrena.l progenitor cell line which did oot initially respond to NGF due to the

absence of Trk. A receptor (Bim:o et aI, 1992), suggesting the relationship between

depolarimtion and NGF receptor. In my study. the effects of electrical stimulation on the

expression ofTrk. receplor were for the first time investigated in vivo. At the mRNA level

(Fig. IS) and protein level (Fig. I 7), Trk A expression was increased very little after electrical

stimulalion compared with control. Although p7S receptor presented an elevation over time,
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the elevation was also not significant. These results are consistent with those from other

studies in adult DRGs (Mearow, 1998), suggesting that electrical stimulation had some

effects on NGF receptors, but that it was not sufficient in itself to significantly alter the

receptor mRNA expression.

Previous in vitro studies showed that NGF receptor was upregulated by GF in adult

sensory neurons (Lindsay et aJ., 1990). In vivo studies have also indicated that NGF mRNA

level increased in the skin during collateral sprouting ( Mearow et aJ., 1993). In addition,

in DRG neurons both p75 and Trk A mRNAs were upregulated prior to and during collateral

sprouting (Mearow et al., 1994; Mearow, 1994). Similar results were obtained in my study

but in my experiments earlier time points were examined. So, as early as 2d, increases in

these two NGF receptor mRNAs could be seen.

Interestingly, in my experiments, although electrical stimulation alone did not induce

significant upregulation of Trk A and p75 receptor expression, electrical stimulation

combined with isolation resulted in significant increase of these two receptor staning at Ih

and 4h respectively.

Since the phosphorylation state ofthe Trk A receptor is an indication of its activation, any

change on this phosphorylation is a useful parameter to evaluate the involvement ofTrk A in

mediating biological phenomena. The phosphorylation of Trk A is a rapid process; for

example, phosphorylated Trk A was detectable 5 min following the addition ofNGF to PCI2

cell culture (Kaplan et aJ., 1991b). Membrane depolarization by KCI resulted in the phos-
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pborylation ofTrkA in NGF sensitive PCI2 celts aDd subsequent oeurite formation (Solem

e/ al., 1995).

Based on the possible involvement of NGF and membrane depolarization in the

phosphorylation ofTrk A in othertissues, phosphorylated TrkA was detected in ORG neurons

in vivo in my stUdy. The basal expression ofphosphoI)'lated Trk A was detected in ORG

neurons using Western analysis (Fig. 18). However, electrical stimulation did not increase

the activity ofTrIc A. Even in the presence of increased NGF (isolation) at later time poinu

(2d. 4d. 8d), electrical stimulation did IlOt induce an obvious increase in the phosphorylation

stateofTrkA.

According to the results. there might be two possibilities to explain the function of

electrical stimulation. One is that the change of Trlt A activity induced by electrical

stimulation and NGF might be very fast and transient. and the time duration selected in my

study might not be narrow enough to cover the time points where the phosphorylated Trk A

was increased. The other one is that depolarization (electrical stimulation) might not be

strong enough to induce the change of phosphorylation ofTrk A but it could be transiently

"'priming" the celis to response to the real sprouting stimulus, i.e., NGF.

4.4 The involvement ofNGF receptor down-stream proteins ia precocioWi

sprouting

As the high affinity receptor, Trk A is thought to mediate the effects ofNGF, and result
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in the activation of intracellular proteins (rev. Kaplan and Stephens, 1994; Segal and

Greenberg, 1996k; Kaplan and Miller, 1997). In PC 12 cells, the proteins which propagate

the information from Trk A receptor have been of intensive study (e.g. Loeb et ai" 1994;

Stephens eta!. 1994; Soltoffet a!., 1994; Obenneieret al., 1993; Ohmichi et al., 1991; Vetter

et ai, 1991). It is thought that PLC-y, PI-3 kinase and SHe mediate different pathways to

produce different biological effects on the cells. In addition to the above proteins, MAPK is

an important protein recognized to mediate the signals. Based on information obtained by

studying PCI2 cells, potential changes in the above proteins under electrical stimulation

orland isolation were investigated in DRG neurons in my study. However, while the results

showed that these protein were basally expressed in adult DRG neurons, electrical stimulation

orland isolation did not result in any obvious influence on these proteins during collateral

sprouting process. Again this may be because basal levels are already relatively high, and as

such our stimuli may not influence changes detectable with the methods employed.

Furthermore, at the time 1carried out my experiments, phospho-specific antibodies against

these signalling components were not available. Use of such reagents would allow for the

investigation ofwhether the various treatments resulted in activation of these proteins, rather

than changes in their levels of expression.

4.5 The probable patbways mediating electrical stimnlation and NGF

signals in precocious sprouting
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Evidence from PCI2 cells show that depolarization induced neurite outgrowth occun

only when NGF recept:or was partially activated. either by overexpressioo ofTrkA aT by

treatmeDt with a low concentration of NGF; depolarization alone was insufficient to

stimulate neurite fonnation (Solem ~tal., 1995). Further studies indicated that the inhibitors

of Ca :. channels and Ca:' ICaImoduJin-dependent protein kinase n and IV reduced this

depolarization·induccd outgrowth. suggesting that depolarization stimuli act together with

subthrcsbold activation ofNGF reccprors to induce neurite growth through a Ca :. and CaM

kinasc-dependc:signal transduction pathway (Solem. ~t al.. 1995). From the resuJ.ts in my

study, it seems that electrical stimulation of the DCN nerves and the likely NGF increase

after denervation (isolation) could have similar effects. In my stUdy, e1ecuical stimulation

induced increased expression ofcertain lEGs ( cgr·I), and NGF also induced the expression

of this gene separately, even though there was a time delay on this induction. The mRNA

levels and protein expression of CREB. and egr-I significantly (p<O.05) increased at very

early time points under the trealment of e1ectticaJ stimulation and the appearance of the

increases in these two genes showed a time order (CRES a.ppeam1 ftmly, then egr-I

appeared). Isolation. which 8divalcd NGF receptor expression in my experiment at the lattt

time points (after Id). also stimulated egr-I expression. Interestingly, under the situation of

electrical stimulation and isolation, the increase in the expression of this gene appeared

earlier than isolation alone. In addition, the amplitude of increase was not the simple
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addition of these two treatments. For example, Egr-I protein was incn:ased by electrical

stimulation as early as 8h. However, it was increased by isolation plus stimulation at ld,

later than stimulation alone:.

From fonner evidence it is known that electrical stimulation or dqx)larization can

increase the influx ofCa ~. into the cytoplasm ofelectrically excitable ceUS and subsequently,

the inc:reased Ca!- can upregulate the expression ofCREB orpCR£B in the nucleus (Sbeng

et oJ.• 1991). Since the existence ofCRE binding site in the promoter regions ofegr-I, c-fos,

c-jun. these genes were thought to be the downstream genes ofCREB (e.g.• Angel et al.•

1988; Christy et aJ.. 1988; Cbangelian et aJ., 1989; Fisch et aJ.. 1989). Previous studies

suggest that calcium influx induces neurite growth through a src-ras signaling cassette in

PCI2 cells and egr-I was also activated in this process (Rusanescu et aL, 1995). My results

suggest a similar order of regulation among these genes: the expression ofegr-I and c-fos

were partially regulated by lhe increase of CREB under electrical stimulation alone.

However. since under the co-treatment of electrical stimulation and isolation, the expression

of the lEGs were different. other mechanisms might be involved in this process. The results

suggested that isolation and stimuJation might induce an increase in NGF receptors. and this

increase in expression and potential for increased activation might coosequcmJ:y activate ras-

mediated transduction pathways (Ginty et aL, 1994). Downstream genes reguIa1ed by CRED.

egr-i, c-fos and c-jun might also be controlled by this transduction pathway. Therefore. the

effects of electrical stimulation on precocious sprouting could be such that. electrical
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stimulation direct.ly activated lEGs.. such as CREB, egr.) expression. In addition.

denervation induced increases in skin levels ofNGF might lead to activation of tile Trk A

receptor at certain time points., which could enhaoce the transduction through the ras

pathway and subsequently upregula1e expression oflhese lEGs. When these two effects are

combined together. it could produce a particular pattern of lEGs expression. in this way, it

is possible that target genes which subsequently regulate collateral sprouting could be

expressed earlier with the combination ofstimulation plus isolation than isolation alone, thus

shortening the latency of the onset of collateral sprouting. For example. with electrical

stimulation and systemic NGF injection (rather than nerve isolation), the expression of

mRNAs for GAP43 and Tal (proteins known to be involved in collaleral sprouting), are

upregulated earlier than with just NGF alone; stimulation alone has little influence on their

expression (Kri.I el ai., 1993: Mearow. 1998).

4.6 Future directiODS

The results of the present series of experiments have addressed the hypothesis that..

during the precocious collateral sprouting., electrical stimulation activates the expression of

certa.in lEGs and elevates Trk A receptor expressio~ electrical stimulation acts in concert

with the incmlsed availability ofNGF to result in an accelerated terminal sprouting response.

With respect to the rote of particular lEG expression in the phenomenon of accelerated

sprouting, the results are not fully conclusive. However, as the results from the different
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methodological approacbes (i.~.• ICC and ISH) are at least consistent. it would seem that the

trends seen and the seemingly inconsistent inaeases and lor decrease in expression may be

of importance in the neuronal response to cbaoges in the external environment. The

alterations seen in p75 and Tn: A mRNA expression are essentially the same as those

observed in previous studies ofthis system (KriI e/ of., 1993: Mearow, [994; Mearow e/ oJ..

1994: Mearow. 1998). The present results add further information by examining earlier time

points. In addition. to examining alterations in mRNA expression of the NGF receptors.

which might be assumed to be a downstream event, it was of interest to investig3le the

possibility thai. electrical stimulation (i.e.. depolarization) might have a much earlier effect

on at least the Tn: A receptor.

Thus, the influence ofstimulation 00 the activity of the Tn: reccptor(as reflected by its

phosphorylation state) was examined, as were the potential effects on oo1Nt1StrCam signaling

interaction that could evenOJally lead to the sons ofalter.lrions expected in gene expression.

The results obfained provide for the first time information from in vivo experiments about

phosphorylation states ofTrlt and potential downstream interactions. While a moo: involved

stUdy was beyond the scope ofme present thesis. these data provide a basis upon which to

continue further studies.

Such studies could include:

i) The dwarioo between eac.h sampling could be narrowed in the future experiments and the

change of pbosphorylation state ofTrk. A would be detected under these conditions.
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ii) Since the NOF- mediated activation of the ras pathway is most likely involved in the

process, the activation ofras or inhibition ofras after isolation and isolation plus stimulation

treatments could be tested by Western blot analysis in the future.

iii) In addition to examining the ORO neurons, ligation studies of stimulated nerves could

be included to assess changes in retrograde signals. It is possible that any alterations in

signaling components may have been attenuated by the time the cell body is reached. The

NGF receptor complex or other signaling intennediates must travel several centimeters from

the nerve tenninals to the cell bodies. Alternatively, the signaling events may be purely local

events, occurring at the site ofNGF interaction with its receptors at the tenninal site (eg.,

Campenot, 1994; Kimpinski e/ al., 1997; Senger and Campenot, 1997).

iv) Studies in which endogenous NGF is blocked using anti-NGF are useful. It is possible

that in these in vivo experiments the prolonged exposure of the axons to target-derived 'GF

may act to either I) result in relatively high basal levels of activation, where small changes

(as might be induced by our stimuli) would be difficult to detect (Knusel e/ al., 1996). 2)

Alternatively, the increased exposure could act to depress Trk activation (Knusel e/ aI.,

1997); the timing of the exposure compared to when samples are taken for analyses would

be an important variable. ICC may be another approach which might show small changes

better; with the Western analysis, where lysates of total DROs were analyzed, small changes

in Trk A activation in the NOF responsive population (50010 of the neurons, at least) may be

diluted out by the total ORO signal.
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v) The use of pbospbo-specific antibodies (i.e.. p-trt and MAPK and others) that are

currently becoming available may prove 10 be more sensitive and allow for detection ofsmall

and more specific changes.
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