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Abstract

This thesis deals with the design of an Artificial Neural Network (ANN) based

relay for ission line ion. A novel neural network that indicates

whether a fault is within or outside the ion zone (fault indication) of a

line is presented. This method has been extended to locate the distance of the fault (fault
location). The proposed scheme utilizes the frequency components of the voltages and
currents to make a decision.

The first part of the work employed frequency components of one cycle of post-
fault data as the inputs to the ANN. The results obtained were promising, thus forming the
basis to improve the speed of the relaying decision. This is achieved by using the
frequency components of half cycle of pre-fault and half-cycle post-fault data as the
inputs to the ANN.

The neural network employed is small in size, fast and robust. Data obtained from
the Electromagnetic Transients Program (EMTP) for single-line-to-ground faults and
three-phase faults have been used for testing and the results are found to be accurate. The
performance of the trained neural network is good and the proposed ANN has the
potential for implementation in a digital relay for transmission line protection. The results
of the proposed ANN methodology are found to be accurate under the conditions of

different fault location, fault inception angle and fault resistance.
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Chapter 1

Introduction

1.1 Protective Relaying of Power Systems

Electric energy is one of the most fundamental requirements of the modem
industrial society. The power system is made up of interconnected equipment, broadly
classified into three main groups namely, the power equipment, protection equipment and

the control equij The power equi and di the

electric power to the loads. The control equipment maintains the power system at its
normal voltage and frequency, and maintains optimum economy and security in the
interconnected network. The protection equipment protects the power system.

The power system is subject to constant disturbances created by random load
changes, natural causes, and equipment or operator error. Faults may result from
insulation, electrical, mechanical or thermal failure [1]. The major types and causes of
failures are listed in Table 1.1.

Protective relays are installed in different parts of the power system. The protective

relay detects abnormal power system conditions, and initiates corrective action as quickly



as possible to restore the power system to its normal state. The purpose of protective
relays is to ensure normal operation of the power system. Protective relay systems must

perform correctly under adverse system and environmental conditions.

Table 1.1: Major types and causes of failure in power systems [1]

Type Causes

Insulation Design defects, aging insulation, improper manufacture, improper
installation, contamination

Electrical Lightning surges, switching surges, overvoltages

Thermal Coolant failure, tage, increase in the
temperatures
Mechanical ~ Snow or ice, earthquake, overcurrent forces

Protective relays must meet these genera! requirements: correct diagnosis of
trouble, quickness of response and minimum disturbance to the power system [2]. For a
well-designed and efficient protective system, the following design criteria are necessary
3, 4]-
® Reliability

It is the measure of the degree of certainty that the relay will perform correctly. System

reliability consists of two main bility and security. D
ensures the correct operation in response to system trouble, while security signifies the

ability of the relay to avoid mal-operation from all system disturbances [2].



« Speed
Speed is required to obtain minimum fault clearing time, thus protecting the equipment. A
high speed, instantancous relay is preferred. High speed indicates that the time taken to
locate the fault should not exceed certain pre-defined time limit (usually 3 cycles at 60
Hz), and instantaneous indicates that there is no delay in the operation of the relay.

o Selectivity

is the i of the relay with other protective devices.

Complete selectivity is obtained when a minimum amount of equipment is removed from
service for the isolation of a fault.

* Economics

The concern is to obtain the maximum protection at minimum cost. Relays having a
clearly defined zone of protection provide better selectivity, but generally cost more. A
compromise is made between the high performance and the cost, and consequently both
low speed and high speed relays are used to protect the power systems.

e Simplicity

A protective relay system should be kept as simple and straightforward as possible, while
still accomplishing its intended goals. A simple design is needed for easy implementation

and maintenance.

T ission lines are the ing links between the generating stations and

the distribution systems, and lead to other power system networks over interconnections.

Transmission lines physically integrate the output of generating plants and requirements



of customers by providing pathways for the flow of electric power. Transmission line
protection forms an important topic of research, as they are the vital elements of the
network, and are subjected to a majority of faults occurring in the power system. The
range of the possible fault current, the effect of load, the direction of the fault as seen
from the relay, the impact of system configuration, all have to be considered in the design
of transmission line protection schemes.

The focus of the research presented in this thesis is on transmission line
protection. Distance relays are normally used to protect high voltage transmission lines.
Conventional distance relays measure the impedance of the transmission lines from the
relay location to the point of fault. Under ideal conditions, impedance is directly
proportional to fault distance. If the fault is located within the relay’s protection zone, the
relay generates a trip signal. Over the years, distance relays for transmission line
protection have undergone changes from electromechanical relays to static relays and to

digital relays [5-7]. Digital relays also provide communication capability (7). High-speed

p ing and icati ilities of modern mi are leading to
research work using adaptive relaying and Artificial Neural Networks (ANN) for
improved protection [8-12].

‘When a fault occurs on the ission line, it is very i to find the fault

location and make necessary repairs, in order to prevent the fault from spreading and thus
restoring the power system to its normal state. Hence, accurate fault location is essential.
Different types of fault locators are available [13, 14]. Recently, ANN based fault locators

have been proposed [15, 16].



1.2 Aim of the Thesis
Fast and accurate location of fauits in an electrical power transmission line is vital

for the secure and economic operation of power systems. This is more so in view of the

fact that due to an increase in issil i and i pressures,

utilities are being forced to imize the issi ilities of the existing
transmission lines. This effectively means that in order to maintain system security and
stability, there is a demand for minimizing damage by restoring the faulted line as quickly

as possible.

Power system i are always i igating i ive and ing ways
to enhance the performance of the power system and related protective devices. Recently,
there has been considerable interest in the application of ANN to power system protection
[8-12, 15, 16]. The response of a trained ANN to the inputs is extremely fast. However, to
the author’s best knowledge, the time required for making a trip decision of an ANN
based algorithm is found to be at least one cycle of the power system frequency. Also, the
time taken to train the network is found to be quite long, in terms of hours and even days
[8, 10, 11, 15]. This drawback is present both in the case of distance protection and fault
location schemes. Also, the work reported considers only the single-line-to-ground fault
case.

This work explores the application of an ANN based methodology for
transmission line relaying. A novel feedforward neural network, which indicates whether

a fault is within or outside the ion zone of a ission line, is The

neural network scheme is extended to locate the distance of the fault location. It is



proposed to design an ANN based algorithm to perform the functions of distance
protection and fault location. The proposed scheme utilizes the frequency spectrum of the
voltages and currents to make a trip decision. The emphasis of this work is to:

* minimize the time required for reaching the decision

e provide an accurate relaying decision

Single-line-to-ground fault and three-phase fault cases are considered. The performance
of the trained neural network is evaluated by testing the ANN based algorithm with data
obtained from the simulation of a transmission line model, using Electromagnetic
Transients Program (EMTP). The obtained results are compared with a simulated Fourier-
based algorithm in terms of speed and accuracy. The results are found to be accurate in
the presence of different fault conditions, such as fault location, fault resistance and fault
inception angle. The decision of the ANN output is obtained in about half-cycle after the

fault inception.

1.3 Organization of the Thesis

Chapter 2 of this thesis focuses on the zones of protection, principle of operation
of distance relays, equations governing the three-phase distance relays for the various
fault types, the effect of fauit resistance, the different types of relays and opcration of fault
locators used in transmission line protection.

Chapter 3 discusses the computer relay architecture. The transmission line model

used in the si ion is described. The used to obtain the data of the




transmission line model using EMTP is explained. The simulation results obtained using
a Fourier-based algorithm are presented.
A brief di ion on ANN is in Chapter 4. Applications of ANN for

distance protection and fault location in a transmission line are discussed. The proposed
ANN based methodology for transmission line relaying is described in this chapter.

The structure and design of the ANN based relaying for transmission line
protection is presented in Chapter 5. The concept of using the frequency components of
voltage and current as inputs for the ANN is explained. The work is divided into two

main parts; in the first part, the ANN based uses the post-fault i
and in the second part, both pre-fault and post-fault information are used. The ANN based
relaying is considered for single-line-to-ground faults and three-phase faults.

Chapter 6 is devoted to the simulation results of the ANN based relay. The
proposed ANN based methodology for transmission line relaying shows promise and has
potential for implementation in a digital relay. The proposed scheme for transmission line

relaying is also compared with the Fourier-based algorithm. Some of the advantages of

the proposed scheme for ANN based ission line ion are highlj A
possible on-line configuration of the proposed scheme is presented.
In Chapter 7, the summary of the thesis highlighting the contribution of the

research and suggestions for future work are outlined.



Chapter 2

Transmission Line Protection

2.1 Introduction

Transmission lines form a major component of the power system. Transmission

line protection is a challenging area in power system protection. The extent of exposure in

miles of | ission lines to weather iti different system configurations, and the
compromises to be made between dependability and security make transmission line

A ission line ion scheme would include

distance protection (fault indication) and fault location. A relay used in distance
protection indicates whether a fault is inside or outside the protection zone, whereas a

fault locator indicates the exact location of the fault.

The ing chapter di the zones of ion in a ission line. The
need for the distance relay and the basic principle of distance protection of transmission

lines is explained. A fault ingina ission line can be analyzed by its sequence

network. The equations governing these sequence networks are presented. The effect of

fault resi ona ission line is also discussed. The impt in the types of




relay is described. When a fault occurs in a ission line, it is Y to
the location of the fault in order to isolate the fault section from the power system. Fault

location ina ission line is briefly di

2.2 Zones of Protection

The common parameters that reflect the presence of a fault are the voltages and
currents at the terminals of the protected apparatus. Every fault in the neighbourhood of a
relay will disturb its input voltages and currents. However, the relay should disregard
those voltage and current conditions produced by faults that are not within the
responsibility of the relay. This responsibility for protecting a portion of the power system
is defined by a term known as zone of protection. Zone of protection is a region defined
by an imaginary boundary line on the power system one-line diagram. A fault in a
protective zone initiates the operation of the relay, and the fault is called internal. A fault
outside the protective zone does not initiate operation of the relay, and therefore it is
called an external or through fault [17, 18]. The zone of protection should meet the
following requirements [3]:

* There must be at least one zone of protection for all the power system elements.

* The zones of protection must always overlap to ensure that no portion of the power
system is left without protection.

The region of overlap must be such that the likelihood of a fault occurring inside the

region of overlap is minimized. This overlapping of adjacent zones is illustrated in Fig.

2.1. Each element of the power system is defined by a protection zone and these zones
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overlap. In Fig. 2.1 the zones of | ion, for the bus to the ission line

(AB) are designated as bus protective zone and the line protective zone respectively. The
circuit breakers, represented by the numbers 1, 2 and 3 are located between the two
adjacent elements. A bus is an integral part of the power system, with incoming and
outgoing lines terminated on it with appropriate circuit breakers. Usually, the line
protective zone is set between 85% and 90% of the line length. In this case, the bus
protective zone covers for the fault occurring near terminal A of the transmission line. A
fault F in the protective zone causes the tripping of circuit breakers 1 and 3. Eventually,
circuit breaker 2 will trip after certain delay, as it is located within the line protective
zone. This ensures correct removal of the fault element.

Line Protective

Bus Protective Zone
Zone .
—

25 i»

Figure 2.1: Overlapping of protective zones around circuit breaker.

23 Di Pr ion of Tr ission Lines

As mentioned in chapter 1, the function of protective relaying is to promptly
remove from service any element that starts to operate in an abnormal condition. The
relays prevent further damage to equipment, reduce stress on other equipment, and

remove the faulted equipment from the power system as quickly as possible, so that the



n
integrity and stability of the remaining system is maintained. There are several protective

used for ission line ion [5] such as:

* Overcurrent relaying - These relays respond to the change in the current magnitude.

* Differential relaying — These relays respond to the phase angle between two ac inputs.
These relays are suitable for a small extent of protection.

* Directional relaying — These relays respond to the magnitude of the algebraic sum of
two or more inputs and are usually used in double-end-feed lines.

« Distance relaying — These relays respond to the distance to a fault.

Among these, distance relays are commonly used to protect high voltage
transmission line circuits. The impedance of the transmission line is fairly constant and
these relays respond to the distance to a fault on the transmission line. The major
advantage of distance relays lies in the fact that they have a fixed reach, ie., the relay’s
zone of protection is a function of only the protected line impedance, which is a fixed
coristant, and it is relatively independent of the current and voltage magnitudes. Distance

relays also have the ability to operate for fault currents near or less than maximum load

current. They have a greater i trip coverage to an relay.

2.3.1 Basic Principle of Di Pr

In the single-phase system represented by Fig. 2.2, a short circuit at location F is
considered. The distance relay under consideration is located at line terminal A. AB
represents the transmission line and S denotes the sending end. Z, represents the

of the R, and Ry, represent the relays. The voltage
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and current at the relay location are related by equations (2.1) and (2.2). Equation (2.3)

relates the primary and secondary impedance.

Zp=Eely @y
Zis=EJL @2
Zes=Zgp* (00 @3

where E is the voitage, I is the current, Z is the impedance, subscript p and s denote the

primary and secondary quantities respectively.

—s

s A (In) R4jX F B

(1)

I

Figure 2.2: Voltage, current and impedance as seen by the relay

In equation (2.3) n; and n, the current and voltage turns

ratio. The ratio E/I is known as the apparent impedance seen by the relay. This impedance
is represented by the point Z, when plotted in the complex R-X plane, as shown in Fig.
2.3. The R-X diagram is commonly used to analyze the relay response [1].

Most of the relays for distance protection of transmission line use the mho

characteristics. If the load current is of constant magnitude, and the sending end voltage at
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the relay location is constant, then the corresponding voltage phasor and hence the
impedance will be a circle in the R-X plane. The point Z in Fig. 2.3 corresponds to the
fault at a certain portion of the transmission line. As the location of the fault is moved
along the transmission line, the point Z moves along the straight line AB in Fig. 2.3. The
line AB makes an angle 6 with the R-axis, where 8 is the impedance angle of the
wansmission line. For an overhead transmission line, © lies between 70° and 88°,
depending upon the system voltage [2]. Whenever the ratio of the system voltage and
current falls within the circle, the relay operates. Knowing the inaccuracies and fault
resistance that can be allowed, a more accurate zone shape can be defined so as to occupy

a minimum area of the complex R-X plane.

Reactance X B

Figure 2.3: Typical R - X diagram to illustrate the relay characteristics

(6 = Impedance angle, AB = Length of the transmission line)
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The distance relay is energized by voltage and current supplied by voitage and
current transformers respectively. The purpose of the current and voltage transformers is
to reduce voltages and currents to levels manageable by the relays and to physically
isolate the relays from high voltage [4, 17]. According to the principle of operation
explained earlier, the relay detects the fault condition and issues a trip signal to the circuit

breaker. The circuit breaker di: the faulted ission line, so as to avoid

further damage to the system.

2.3.2 Distance Relay Characteristics

There are four types of distance relays based on the shape of their operating

namely, i relays, i or mho relays, reactance relays and

relays. As i earlier, the R-X diagram is commonly used to

represent the characteristics of the relay.
X
z
II R

Figure 2.4(a): Impedance relay characteristics
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An impedance relay compares the system current and voltage in amplitude, and
the calibration of this relay is in terms of the ratio of the two, thus indicating impedance.

Fig. 2.4(a) i the i relay istics. The istics plot as a

circle with suitable radius, called the setting Z. The center of the circle coincides with the
origin of the R-X diagram.

A mho relay takes into account, the phase angle between the voltage and the
current, producing a more complex response characteristics. The mho relay
characteristics, shown in Fig. 2.4(b) are also described as a circle, but the periphery passes
through the origin in the R-X diagram. In Fig. 2.4(b), the line OA has magnitude Z, called
the setting at the impedance angle 6.

Figure 2.4(b): Mho relay characteristics

A reactance relay illustrated in Fig. 2.4(c), is non-directional, and hence not
preferred. The reactance relay has a straight-line characteristic, parallel to the R-axis and

offset by the setting X, along the axis by the The relay

characteristics have a tripping region below the setting X.
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Figure 2.4(c): Reactance relay characteristics

R

Figure 2.4(d) the relay istics. The

relay characteristics are made use of in solid state or computer relays. In computer relays,
the characteristics of a quadrilateral relay are defined in the software of the relay, such

that the effect of fault resi: and can be

[17]). If the

of the faulted ission line falls inside the quadrilateral characteristic, the

relay indicates a trip output.

Figure 2.4(d): Quadrilateral relay characteristics

2.4 Three Phase Distance Relay

There are basically ten types of faults on a three phase power system, for which a

relay should operate (phases are referred to as a, b, ¢ and ground is referred to as g):



* Phase-to-ground (a-g, b-g, c-g)

«  Phase-to-phase (a-b, b, c-a)

* Two-phase-to-ground (a-6-g, b-c-g, c-a-g)
« Three-phase (a-b-c)

Single-line-to-ground fault is the most common type of fault and a three-phase
fault is the most severe one compared to the other types of faults [1]. The equations that
govern the relationship between the voltages and currents at the relay location are
different for each of the ten distinct types of faults. Regardless of the type of fault
involved, the voltage and the current used to energize the appropriate relay unit are such
that the relay will measure the positive-sequence impedance to the fault [3, 4]. The
computation of the fault current and voltage is greatly simplified by the use of the
sequence networks. When a fault occurs, an unbalance is created in the system. The three
unbalanced phasors of a three-phase system can be resolved into three balanced system of
phasors, namely the positive sequence, negative sequence and the zero sequence
components. The sequence networks represent the equivalent circuit of the sequence

impedances and shows all the paths for the flow of the sequence currents.

A F B
Figure 2.5: Single-line diagram of the transmission line model

(AB = Length of the transmission line, F = fault)



18

The behaviour of these sequence networks to the various types of faults is
explained below. The one-line diagram of the transmission line model, shown in Fig. 2.5
is used to determine the appropriate voltage and current inputs to be used for the distance

relays for the different faults. AB represents the transmission line, with a fault F at certain

portion of it.
A D B
ElT Zie T Eu
-0 E B
E{ Ze ] B
A2b |E B
EVI Zor e

Figure 2.6: Sequence network connection for phase a-ground fault

For a fault between phase @ and ground of the transmission line considered, the
sequence networks will be interconnected as in Fig. 2.6. The positive sequence, negative
sequence and zero sequence components of voltage at the relay location are represented
by equations (2.4), (2.5) and (2.6) respectively [2].

E=E(-Zyly @4

Ey=E;-Zycly @5)



Eoe=Eg-Zoclo 26)
where E,, E,, Eg, I;, I, and I, are the positive sequence, negative sequence and the zero
sequence components of voltage and current respectively. The voltage at the fault point

can be set equal to zero and is given by equation (2.8).

Eyr=Eyr+Epr+Eor @7
ie, Ey=E,-Zicli- Zor-Ziolo =0 28
L= +L+)3 @9

where E, is the total voltage at phase g, I, is the current at phase a and E, is the voltage at

the point of fault. From equation (2.8),

Zor 2
E; =le[la *{leli)lo] @10

Eq =2yl +mly)] @.11)

Zoy =2y _Z,-2,
m="2L T Lo @.12)
2z, Z,

The factor m in equation (2.11) is known as the compensation factor, and this
compensates the phase current for the mutual coupling between the faulted phase and the
other two unfauited phases.

Eg=2Zyl, @13)
where 7, is the compensated phase a current. Thus, for phase a to ground fault, the fault
impedance is as illustrated by equation (2.14).

Eq

.14)
Iy +mly @19

E
z=2e-
=
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This indicates that the distance relay measures the positive sequence impedance to the
fault, when energized with the phase a voitage and the compensated phase a current.

For the case of a fault between phases b and c of a three-phase transmission line,
the positive sequence and the negative sequence voltages at the fault are equal, and are
represented as E,¢=Erand E,¢=E, - Z;e[;

Thus the fault impedance is given by

E-E
h-h

Z,= @15)

The phase b and ¢ voltage quantities, at the relay location are given by equations (2.16)

and (2.17).
Ey=Eg+o’E +aE, (2.16)
E.=E+aE +a’E, @1n
where @ = 1£120°. Hence,
E-E)= (- )(E: - E) @.18)
OG-D=@" - - ) @.19)

Ey—E. _E\-E,
Iy-I. L-I

zy= (2.20)

Equation (2.20) indicates that when a fault occurs between phases b and c, the distance
relay will measure the positive sequence impedance. Similarly, for the faults between
phase a-b and c-a faults, the corresponding relay will measure the positive sequence

impedance to the fault.
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For faults occurring between phase-to-phase-to-ground, the performance equations
for the sequence networks are exactly similar to equations (2.15) to (2.20) of the phase-to-
phase fault.

The sequence network for a three-phase fault is indicated in Fig. 2.7 [2]. A three-
phase fault causes maximum abnormal short-circuit current and hence is the most
dangerous fault [17]. For a three-phase fault, the sequence quantities are represented by
equations (221) and (2.22). The respective phase voltages are given by equations (2.23),
(2.24) and (2.25).

Figure 2.7: Sequence network connection for a three-phase fault

Ei=E,=Z;I,=Z;I, @21
E,=E=0 @22
E,=E @23)
E,=a’E; 224)
E.=aE, @25)

where a = 1£120°. Hence for a three-phase fault, fault impedance Z,is represented as in

equation (2.26).



The fault impedance for the different types of fault is illustrated in Table 2.1, with the
nomenclature as explained above. For the faults at other phases, the corresponding phase

voltages/currents are used to calculate the fault impedance.

Table 2.1: Summary of the fault impedance for different types of fault

Type of fault Fault impedance
Single-line-to-ground E,
(at phase @) P zoz— Z; I

1
Phase-phase Ep—E,
(between phase b and c) Iy—1,
Phase-phase-to-ground Ep—E,
(between phase b - ¢ and Tide
ground)
Three-phase E;

Ia

2.5 Effect of Fault Resistance

All the above equations have been derived assuming that the fault is a metallic
short circuit. If the fault involves an arc or a path through the ground, non-linear
impedances are introduced which tend to introduce harmonics into the current or voltage
[2]. As aresult, an error is introduced in the fault distance estimate, and hence may lead to

an unreliable operation of the distance relay. To accommodate the fault resistance, the trip
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zone of the distance relay is selected such that the region surrounding the apparent
impedance is included inside the zone [2, 5, 18].
In the single-line diagram of Fig. 2.8, Ry represents the fault resistance. The
contribution to the fault from the remote end is I, and hence the fault current is given by:
I=1+1, @27
The voltage at the relay location is given by equation (2.89).
E=ZJI+Rc(I+L) 28)
Zqis the impedance when the fault resistance is zero. The apparent impedance Z, seen by

the relay is:
E 1
7 =7=z,+n,(7w1) (229)
A Z F
=3 =

ET l I+1

Figure 2.8: Fault path resistance

The voltage drop in the fault from the remote source magnifies the fault resistance
as seen at the local bus and shifis the apparent impedance to the right in the R-X plane.
The total voltage drop in the fault will not be in phase with the local fault current and the

fault resistance thus becomes more reactive. This leads to possible overreach and

errors. In an error condition, the fault will be outside the zone, but

is seen by the relay as being inside the zone. Underreach error condition occurs when the
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fault occurs inside the protection zone, but the relay is not able to identify it. This type of
condition creates serious problem when heavy load flow and heavy fault resistance are

encountered.

2.6 Types of Relay

Distance relays are used for ission line ion, due to their
insensitivity to variations in fault current and their virtual immunity from operating on
normal load current. Over the years, distance relays have undergone changes leading to
improved relay performance. The earliest relays used for transmission line protection
were the electromechanical relays. They were later replaced by the solid-state relays. With
the advent of the digital technology, the solid state relays gave way to the relays based on
the computer relaying algorithms. The recent trend is to use Artificial Neural Network

(ANN) based relays.

2.6.1 Electromechanical and Solid-state Relays
These relays utilize the actuating forces produced by electromagnetic interaction
between a combination of the input signals and the stored energy in the springs. In an

1 ical relay, the is derived from a balance of magnetic or

mechanical forces within the relay by the operation of the electrical contacts. The most
cammon’e[ecrmmechmic&l relays are the magnetic attraction, magnetic induction, D'

Arsonval and the thermal units.
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In general, electromechanical relays respond to one or more of the conventional
torque producing input quantities: (2) voltage, (b) current, (c) product of voltage, current,
and the angle between them, and (d) a physical or design force such as a control spring.
‘When the current or voltage applied to the magnetic attraction unit exceeds the pick up
value, the operating coil will provide a force to overcome the restraint, causing the
contacts to change position. The magnetic induction units operate by torque derived from
the interaction of fluxes produced by an electromagnet with those from induced currents
in the plane of a rotatable aluminium disc. In the D'Arsonval unit, a moving coil is
energized by direct current, which reacts with the air gap flux to create rotational torque.
In a thermal unit, as the temperature changes, the different coefficients of thermal
expansion of the bimetallic strips cause the free end of the coil to move. A contact
attached to the free end will then operate based on the temperature change [1]. The

ofan ical relay are the simplicity involved and low cost.

The solid relays use inations of solid-st: which are
designed using dc voltage signals to perform the logic functions. In solid-state relays,
fault sensing and data processing logic circuits use power system inputs to determine if
any intolerable system conditions exist within the relay’s zone of protection. In this case,
the of electrical ities is by the static network. The output

signal operates a tripping device when the threshold condition is exceeded. Compared to

the ical relays, the of the solid relays is superior, it has

reduced size and is faster in operation. It has a longer life and offers high resistance to

shock and vibration [5]. Due to the absence of mechanical inertia, a high resetting value



can be obtained. Some of the di: iated with the solid- relay are the

low short-time overload capacity and voltage withstand capability.

2.6.2 Digital Relays

A digital relay has the remarkable capability of sampling voltages and currents at
very high speed, retaining fault information and performing self-checking functions. A
major requirement of a digital relay is to estimate precisely and quickly the elecuical_
distance to the fault. Some of the features provided by digital relays are good

ity, ic self-testing, fault locating, metering and load-

encroachment logic [7]. Many algorithms for digital distance protection have been
proposed [6, 19, 20] with the aim of improving the speed of the relaying decision. Among
them, the most common ones are the Fourier algorithm, Kalman filtering algorithm and

the Walsh algorithm. The of these algorithms depends upon the accuracy of

the of voltages and currents from a few

samples. Most of the existing algorithms in use for digital relaying are based on the

waveform itself, ie., the voltage or the current. The fundamental frequency voltage and

current phasors are used for the impedance relaying. A distance relay filter must save the

fundamental frequency components and reject the noise signals. The relay response to the
noise signals depends on the filtering process.

Usually, any signal i an error [6, 21]. The

relay voltage and current are full of harmonics and dc offset. The digital relays are

capable of filtering this noise by suitable i without
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transients. The filtering extracts the and the
magnitude and angle of the impedance is calculated. Based on these fundamental
frequency values, a tripping or no-trippirg decision is made.

In addition to the Fourier, Walsh and Harr filters, it is found that a sine-cosine
filter exhibits good response when dc offset is present in the current signal and the voltage

is i with high damped oscillations [19]. Al based on a

variable sampling frequency will be able to extract the fundamental frequency

components of the fault signals correctly, and at the same time, the burden of computation

is greatly reduced [20].
The di of the mi relays is that they cannot adapt
to the system i itions. If with a noisy signal, there is a
of an incorrect ion. A digital distance relay based on Fourier algorithm

was simulated, the results of which will be presented in chapter 3 of the thesis.

2.6.3 Recent Trends

Recently there has been considerable interest in ANN based protection relays [8-
12, 15, 16]. ANNs have the capability of leaming and self-organization [22]. ANNs are
being used for problem solving applications in fields related to power engineering. An
inherent advantage of using ANN based algorithm for protective relaying is the

of shorter trip decisions and to changing system conditions.

The motivation of using ANN based algorithms for transmission line relaying

stem from the fact that ANNs possess excellent noise immunity, robustness, fault-
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tolerance and izati ility. ANN icati in ission line relaying
are related to improvements in distance relaying. Conventional algorithms try to

the fault area ing to the relay by the estimation of impedance or

distance using current and voltage measurements. Algorithms based on ANN make use of
the pattern recognition capability. A detail review of some of the applications of ANN for

transmission line relaying will be presented in chapter 4.

2.7 Transmission Line Fault Locator
When a fault occurs on the transmission line, it is very important to find the
location of the fault, in order to clear the fault. Locating faults on transmission lines with

high accuracy the mait ion and saves time and effort. The

degree of accuracy required in clearing the faults is ever increasing. The fault location is

d ined by the of the i between the relaying location and the

fault.

Considerable work has been done in developing digital techniques for locating

faults on transmission lines. Fault location i that use

voltages and currents have been proposed [13, 14]. However, the effect of fault resistance
is not taken into account. Also, the algorithms fail to estimate the fault location during the
changes in the system configuration such as different fault resistance and loading
condition. ANN based protection schemes have showed encouraging results. To improve

the accuracy of fault locators, ANN based fault locators are recently proposed in [15, 16].
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Applications of ANN for fault location in transmission line will be presented more in

detail in chapter 4.

2.8 Summary

This chapter has explained the general operating principle of distance protection
of transmission lines. An overview of the three-phase distance relays and the performance
equations governing the sequence networks have been provided. Due to the presence of

the fault resistance, the impedance measured by a distance relay is different from the

actual i leading to or itions. The fault resi: has

to be for while designing an i for ission line

Distance relays for transmission line protection have evolved from electromechanical
relays to solid-state relays followed by microprocessor based (digital) relays. The recent

trend in the area of ission line ion is ANN based-relay. Relays based on

ANN algorithm show promising results. A review of the ANN applications for
transmission line relaying and the motivation for investigating an ANN based relay in this

research will be discussed in chapter 4.



Chapter 3

Digital Distance Relays for Protection of

Transmission Lines

3.1 Introduction

The availability of high speed, low cost microprocessors has led to the

P of digital ive relays for ission line ion. A digital relay, by
its very nature, makes a measurement of power system quantities of interest (i.e., voltages
and currents) and then makes a relaying decision based on these measurements. This is in
contrast to conventional relays, where the operating characteristic is inherent in the relay
design. Digital relays provide large setting ranges, high-speed operation, programmability
and are low in cost. Digital relays also provide communication capability. Due to these
advantages, digital relays find wide application in electric power utilities.

In this chapter, the block diagram of a typical computer relay architecture will be
described. As long as there is no fault, the voltage and current waveforms are purely

sinusoidal. When there is a fault, the post-fault voltage and current waveforms are
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distorted. Many algorithms are proposed to extract the fundamental frequency component
of voltage and current waveforms. A full cycle Fourier algorithm used in the digital relay is
presented in this chapter. The transmission line model used in the simulation will be
described in detail, followed by the EMTP procedure used to obtain the data for
simulation. The simulation results obtained for the transmission line model considered,

using Fourier algorithm will be presented.

3.2 Computer Relay Archi e

The basic tasks of a computer relay is accepting the inputs, processing the inputs,
giving an output representing a system quantity and making a decision. The inputs to the
relay are voltages and currents. To obtain a digital representation of these quantities, the
analog signals are sampled using suitable data acquisition systems.

Fig. 3.1 represents a configuration for a digital relay [2]. The current and voltage
signals obtained from current and voltage transformer must be scaled down. The current
and voltage signals are processed by the surge filters to suppress or remove the surge
present in them. Surges are usually created by faults and switching operations on the
have a low cut-off frequency. The Analog to Digital Converter (ADC) converts the analog
signals to digital form. The sample-and-hold circuit is used to obtain simultaneous
sampling of all signals. The sampling clock provides pulses at the sampling frequency. The

core of the digital relay is the algorithm used. The processor executes the relay programs,

‘maintains the various timing functions and i with the



32

The relaying algorithm processes the sampled data to produce a digital output. This output
will be used to give trip signals to circuit breakers, which will isolate the faulted

Control

Isolation

Filters

Figure 3.1: Block diagram of a computer relay
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3.3 Fourier Algorithm

A fault in a transmission line increases current magnitude and decreases voltage
magnitude and changes the phase shift between them. The fault also causes transients or
noise, such as dc offset and harmonics. Transients may lead to relay malfunction, where
the relay is assumed to be fed only with sinusoidal quantities. Thus, any event or fault
generated noise needs to be removed or filtered from the relaying voltages or currents and
then fed to the relay.

Full-cycle Fourier ithm is one of the used if for filtering

out the transients present in the post fault voltage and current waveforms [19, 20]. This
algorithm uses consecutive sampled values of voltage and current and evaluates the

fundamental frequency component of the voltage and current. These components are then

used to ine the apparent i Apparent i is the loop i
using the voltages and currents that the relay receives [1]. A digital relay based on full-
cycle Fourier algorithm was simulated as an initial part of the work. Full-cycle Fourier
algorithm is chosen for this study because of its good frequency response [21].

In the simplest form, a Fourier algorithm extracts the fundamental phasor from
samples of a periodic signal taken at equal intervals over a full period of the signal. Taken

over a full period, the Fourier ion rejects ics of the

Any periodic can be by a and series of harmonic

frequencies [1, 17). The n™ harmonic component of the signal is represented by the

Fourier series, given by equation (3.1).



Fa(0) = COS(® ) + By Sin(@ 1) €23}

where
2 B2
=7 | f(2) cos(nat)dt G2)
o -1,/2
2 B2
by=7 17 (O)sintac)dr (33)
o -1,/2

and £{f) = the original function

T, = the period of the waveform

n = the order of the harmonic

The sum of the product of the function and the sine of the frequency that is to be
extracted, taken over the period of the fundamental, produces a total that contains only the
desired frequency. This is the fundamental premise of Fourier analysis. The comparable

digital process involves the multiplication of individual samples by stored values from a

reference sis as by ions (3.4) and (3.6) and summing the products
overa full cycle.
N-L
Ac= Tfx@OCux G4
K=0
2 K
Car = yeod2n ) o2
N-L
As= Zfx@®Cpx 36
K=0
2. K
Cox = Wsm(Zn —A—,) X))

K = number of samples

N = samples per cycle
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Only the findamental frequency is required for line protection using the impedance
concept. Frequency response of the full-cycle Fourier algorithm is presented in Fig. 3.2,
which shows that the full-cycle Fourier algorithm filters out the dc offset and the non-
fundamental frequency components, upto half the sampling rate. The anti-aliasing filter
needs to filter out harmonics above N/2. The frequency response of the Fourier algorithm

is summarized in Table 3.1. For a pure si i only the

frequency component is present, as seen from Table 3.1.

o
@

Magnitude (p.u)
o
3

100 200 400 © 500 600

300
Frequency (Hz)

Figure 3.2: Frequency response of full cycle Fourier algorithm



Table 3.1: Frequency components of Fourier algorithm [17]

DC F 2nd 3rd 4th Sth 6th 7th 8th
0 100% 0 0 0 0 0 0 0

3.4 Description of the Transmission Line Model

A 345 kV, 160 mile ission line was sil using

Transients Program (EMTP), for various fault cases [23]. The purpose of this simulation
is to obtain the data needed for the design of the full-cycle Fourier algorithm. The single-
line diagram of the transmission line model is shown in Fig. 3.3 [24]. A generator is
connected through a step-up transformer to a 345 kV transmission line. A distance relay R
is assumed to be at this substation. The transmission line is 160 miles long and is

to a 400 MVA ing station at the sending end and an equivalent of a

large interconnected system at the receiving end. AB represents the transmission line, and
F is the fault point. It is customary to set zone 1 of protection between 85% and 90% of
the line length [2]. The zone of protection is selected to be 90% of the line. The details of

the transmission line parameters are given in appendix A.

Figure 3.3: Single line diagram of the transmission line model
(Voltage at substation A = 1.02 p.u, Voltage at substation B = 0.97 p.u)

(AB = length of transmission line, R = relay, F = fault)
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Four types of faults namely, single-line-to-ground fault (between phase a -
ground), phase-to-phase fault (between phases a - 5), two-phase-to-ground fault (between
phases a - 5 - ground) and three phase fault (between phases @ - 5 - ) are simulated using
the EMTP program. The sampling rate is chosen to be 16 samples/cycle. For a sampling
rate of 16 samples per full-cycle window of the input signal, the sampling instants will be
for every 360°/16 = 22.5°. For each cycle, there will be 32 multiplications and the number
of additions/subtractions will be 32.

The location of the fault point is selected at 40%, 60%, 80% and 95% of the
transmission line. The data for various fault types is generated for a fault resistance R¢ of 0
Q and 10 Q in the fault path. The instant of fault occurrence ¢ is chosen to be at an angle
of 0° and 90°. The fault switch is suddenly closed when the voltage waveform just crosses
the time axis scale, to represent the fault occurring at 0° and the fault switch is closed
when the voltage waveform has reached its peak to represent the fault occurring at 90°
case. Five cycles of data are obtained, with 2 cycles of pre-fault condition and 3 cycles of

post-fault condition.

3.5 General Procedure for EMTP Simulation

EMTP software is used to simulate the transmission line model shown in Fig 3.3,
to obtain the voltages and currents. EMTP is a computer program for simulating
electromagnetic, electromechanical and control system transients on multiphase electric
power systems. The EMTP was developed in the late 1960’s by Dr. Hermann Dommel, as

a digital computer counterpart to the analog Transient Network Analyzer (TNA) [23).
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Distributed parameter model of the high voltage transmission line is considered for this
study. This EMTP code is written in FORTRAN language, with every node represented
by a name and the component values indicated between these node names. EMTP
provides provision to change the time step accordingly, so as to obtain the desired

sampling rate. To simulate the condition of faults occurring at different lengths of

line, the ing i is selected and the desired fault resistance

is inserted at that point. For the si ion of faults ing at a i angle, the

angle is converted to the corresponding time and the fault switch is closed at that instant
of time.

MWluymoflMMMuthmhmsionﬁneml,
for an a phase to ground fault at 80% of the transmission line from the relay location,
with fault resistance of 0 Q and the fault inception angle @ at 0° is shown in Fig. 3.4. As
seen from Fig. 3.4, the post-fault voltage has decreased in magnitude and is highly
distorted. The post-fault current has increased in magnitude and contains a dc-offset. The
voltage and current waveforms obtained from the EMTP are exported to an Excel file and
later converted into a text file. This text file contains the voltage and current data at the
required sampling rate.

For obtaining the data to design the ANN based algorithm, many cases of fault are
simulated and the details will be presented in chapter 5.
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Figure 3.4: Voltage and current of the faulted phase
(Phase a to ground fault at 80% of the line, Re=0 Q, ¢ =0°)



3.6 Simulation Results

A digital relay based on full-cycle Fourier algorithm is simulated. The aim is to
extract the fundamental frequency components from the fault signals and then to evaluate
the impedance. Few typical fault cases were considered, and the response of the Fourier
algorithm for the faults was obtained using MATLAB [25].

The performance of this algorithm for the single-line-to-ground fault at phase a at
40%, 60%, 80% and 95% of the transmission line and with fault resistance R of 0 Q and
fault inception angle @ of 0°, is plotted in the impedance trajectory, as shown in Fig. 3.5.
In Fig. 3.5, AC represents 90% of the line, which is taken as the zone of protection, and
PF represents the pre-fault loading condition. The line AC is drawn at an angle of 75°,
which is taken as the standard impedance angle, to the x-axis represented by the resistance
[2]. Since the sampling rate is taken as 16 samples/cycle, the first 16 points are

at a point by PF in Fig. 3.5) comresponding to the pre-fault

impedance. The trajectory moves from the point corresponding to the pre-fault loading to
a point inside the relay operating characteristics. The time taken to reach this point is
around 24 points, which corresponds to about 1% cycles. As seen from Fig. 3.5, for the
case of fault occurring at 95% of the line, the trajectory never reaches a point inside the
circle. A trip signal is issued for faults occurring at 40%, 60% and 80% of the

transmission line, whereas for the case of fault ing at 95% of the line,

no trip signal is given.
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Figure 3.5 Distance relay trajectory for phase a to ground fault, Rr=0Q
(Fault at 40%, 60%, 80% and 95% of the transmission line, @ =0°)

AC — 90% of the line, PF — Pre-fault loading condition
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Figure 3.6 represents the impedance trajectory for the single-line-to-ground fault
at phase @ with fault resistance Ry of 10 Q and @ of 0°. Line AC in Fig. 3.6 represents
90% of the line and line AD represents 80% of the line. As seen in Fig. 3.6, for the case of
fault occurring at 95% of the line, the trajectory has moved inside the circle, which should
not have been the case. As discussed in chapter 2, the effect of fault resistance present at
the fault location is generally to reduce the effective reach of the measuring element.
Hence for the fault occurring at 95% of the line, which is outside the zone of protection,
the Fourier algorithm fails to identify it correctly. Also, though the trajectory reaches the
zone of protection described by the circle, it fails to reach the exact operating line AC. In
order to accommodate the effect of fault resistance, the trip zone is shaped in the form of
acircle so that for faults occurring within the zone of protection, the impedance trajectory
falls inside the circle.

In case the zone of protection is selected to be 80% of the line from the relay
location, then for the case of fault occurring at 95%, the Fourier algorithm will be able to
identify it clearly as fault occurring outside the trip zone, as seen from Fig. 3.6. The
smaller circle in Fig. 3.6 is for the case when the zone of protection is considered as 80%
of the line. The results have been verified for faults occurring at different lengths of the

transmission line. Thus, for the Fourier algorithm to work accurately, the zone of

protection will be limited. Error i iques are available to the
possible overreach condition and thus provide accurate relaying [26].
Figure 3.7 represents the impedance trajectory for the single-line-to-ground fault

at phase a with fault resistance R¢of 0 Q and fault inception angle of 90°. For this case,
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the Fourier algorithm identifies the faults correctly. The response is similar to the one

obtained in Fig. 3.5.
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Figure 3.6: Distance relay trajectory for phase a to ground fault, Re=10 Q
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Figure 3.7: Distance relay trajectory for phase a to ground fault, Re=0Q
(Fault at 40%, 60%, 80% and 95% of the transmission line, ¢ = 90°)

AC — 90% of the line, PF — Pre-fault loading condition
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The distance relay trajectory for the three phase fault (a-b-c) at 40%, 60%, 80%
and 95% from the relay end of the transmission line is as shown in Fig. 3.8. The fault

resistance Ry is 0 Q and fault inception angle @ is 0°. As in the case of phase a - ground

fault, the Fourier if lassifies the faults ing within the trip region
(faults at 40%, 60%, 80% of the line) and outside it (fault at 95% of the line).

The response of the Fourier algorithm for the three phase fault (a-b-c) at 40%,
60%, 80% and 95% of the transmission line and with R¢of 10 2 and ¢ at 0° is shown in
Fig. 3.9. Since a fault resistance of 10 Q is included in the fault path, an overreach
condition as explained in chapter 2 is encountered and the Fourier algorithm fails to
identify the fault case at 95% of the line to be outside the trip region. The circle with
diameter AD represents the case of 80% zone of protection. As explined above, the
Fourier algorithm identifies all the fault cases accurately for a smaller zone of protection.

For the case when the fault occurs at R of 0 Q and ¢ of 90°, the distance relay
trajectory is as shown in Fig. 3.10. As seen from the figure, a trip decision is given after
around 24-25 points corresponding to about 1% cycles for faults occurring at 40%, 60%
and 80% of the line. For the fault occurring at 95% of the line, no trip signal is given.

Similar results are obtained for the phase-to-phase fault and two-phase-to-ground

faults. Since the equati of the seqy networks for two-phase-to-
ground fault are similar to that for phase-to-phase fault, the impedance trajectories for

these two cases resemble each other.
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The simulation results indicate that the Fourier algorithm is quite accurate when

the fault resistance is zero. In the presence of a fault resi: the Fourier ithm will

be able to classify the faults clearly into trip/no trip region when the zone of protection is
limited to a smaller portion of the line. A smaller zone of protection compromises in
speed. The reliability and the speed of the Fourier algorithm depends on the efficiency
and accuracy of extracting the power frequency components. This algorithm does not
have the ability to adapt dynamically to the system operating conditions. Many other

algorithms are available which can give a faster trip decision [6, 19, 20].

3.7 Summary

This chapter has described typical digital distance relays for transmission line
protection. EMTP was used to simulate the transmission line model used in this study. A
digital relay based on Fourier algorithm was simulated. This algorithm used the
consecutive sampled values of voltage and current and evaluated the fundamental

freq Y These were then used to determine the apparent

impedance. The digital relay based on Fourier algorithm is found to be accurate for
shorter zones of protection. The results obtained using Fourier algorithm will be

compared with that obtained using the proposed ANN based algorithm in chapter 6.



Chapter 4

Artificial Neural Network for Transmission Line

Relaying

4.1 Introduction

The potentials of Artificial Neural Networks (ANNs) have attracted researchers to
solve problems related to various fields such as control systems, robotics, and recently in
power systems engineering. ANNs are powerful in pattern recognition and classification,

and possess izati ilities. The application of ANN to power systems became

well established in the late eighties and have been tried as well as implemented in the areas
of power system monitoring, control and protection. This chapter presents the basic
concepts of ANNs and their lication to ission line ion. A review of the

existing literature on ANN approach to distance protection and fault location in a
transmission line indicates that the results are encouraging. The proposed ANN based

algorithm for transmission line relaying will be presented in this chapter.
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4.2 Artificial Neural Networks

A neural network is a i paraile] di that has a natural

for storing ienti: dge and making it available for use at a later
stage [22]. It is an information processing system that extracts information from the input
and produces an output corresponding to the extracted information. ANNs are inspired by
the biological brain in hopes of achieving human-like performance in solving certain
difficult problems. An ANN consists of a large number of processing units analogous to
neurons, joined to each other by some form of linkage analogous to the synapses from the
biological counterpart. The presence of high degree of connectivity between neurons
gives neural networks an enormous parallel structure with significant fault tolerance.
Artificial neural networks provide the method of mapping a set of input and output
variables by learning the weights associated with the interconnections of the neurons and

the thresholds which activate the neuron [22].

4.2.1 Neuron Model

A neuron is an i i ing unit that is to the operation of

a neural network. The inputs to a neuron include its bias 5 and the sum of its weighted
inputs. The output of a neuron depends on the neuron’s inputs and on its transfer function.
A single neuron with x, inputs is shown in Fig. 4.1. Each input is weighted with a weight
w. The sum of the weighted inputs and the bias forms the input to the transfer function ¢.
In mathematical terms, the output y of a neuron k is described by equation (4.1).

Ye=V (U + be) (CY]
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u; is the linear combiner output, b; is the bias, v is the activation function and y; is the

output signal of the neuron.
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Figure 4.1: General Neuron Model

The activation function defines the output of a neuron in terms of the activity level at

its input. The used activation or transfer functions are:

1. Hard limit transfer function
2. Linear transfer function

3. Sigmoid transfer function



The hard limit transfer function depicted in Fig. 4.2(a) limits the output of the neuron to

either 0 or 1. The hard limit transfer function is mathematically represented as:

_[tirv=0
“'(V)_{o v<0

where v=u; +b;

()

0 v
Figure 4.2(a): Hard limit transfer function

The linear transfer function represented by Fig. 4.2(b) takes linear values between 0 and
1. The linear transfer function can be mathematically expressed as:

1 if  v205
Y@ ={05+v  05>v>-05
0 v<-05

-0.5 0 0.5 v
Figure 4.2(b): Linear transfer function
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The sigmoid transfer function is differentiable. The sigmoid function can be either log-
sigmoid or tan-sigmoid. The log-sigmoid function assumes a continuous range of values
from 0 to 1, while a tan-sigmoid function assumes a continuous range of values from -1 to

+1. The log-sigmoid and tan-sigmoid transfer function are mathematically represented as:

W) = logsig(v) = —— @3)
l+e

w(v) = tansig(v) = “4)

l+e

The log-sigmoid transfer function is shown in Fig. 4.2(c). The slope parameter n can be
varied to obtain different shapes of the log-sigmoid transfer function. A proper decision
has to be made while selecting the transfer functions for the neural network structure. If
the output of the ANN is to be limited between 0 and 1, log-sigmoidal transfer function
should be chosen and if the ANN output is a continuos range of values between +1 and -1,

tan-sigmoidal transfer function should be selected.

Figure 4.2(c): Log-sigmoid transfer function
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4.2.2 Network Architecture

The most important class of neural networks is the feedfoward neural networks. In
a feedforward neural network, the input signal propagates through the network in a
forward direction, on a layer-by-layer basis. A layered neural network is a network of
neurons organized in the form of layers. In its simplest form, a single-layer feedforward
network consists of an input layer of source nodes that projects onto an output layer of

neurons. Figure 4.3 illustrates the structure of a simple two layer network.

Input layer  Output layer

Inputs Output

Figure 4.3: Feedforward network with two layers

Multilayer feedforward neural networks (FFNN) are widely used in power system

applications [8-12, 15, 16]. i neural have one or more

hidden layers, whose ion nodes are i called hidden neurons or

hidden units. Figure 4.4 shows a three layer fully connected feedforward neural network
in which each node represents a single neuron. Neurons in a given layer receive inputs
from neurons in the layer immediately below it and send their outputs to neurons in the

layer immediately above it. The function of hidden neurons is to intervene between the
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external input and the network output. By adding one or more hidden layers, the network
is able to extract higher order statistics, for the network acquires a global perspective
despite its local connectivity by virtue of the extra synaptic connections and the extra

dimension of neural interactions.

Input layer Hidden layer Output layer

Outputs

Inputs
3 XN
N\

I
\V/

Figure 4.4: Structure of a three layer feedforward network

4.2.3 Backpropagation Algorithm

The most popular method of training a layered perceptron neural network is
through error backpropagation [8-12, 15, 16]. These networks leamn from examples by
constructing an input-output mapping for the problem at hand. Backpropagation is an
example of supervised learning ~Whex:. in order to learn, the network requires a set of
examples consisting of the input values and target output values. These target output

values are then used as a basis for correction of weights and biases. The sigmoid transfer
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function is used in ion networks [8-12]. The backpropagation

algorithm consists of several forward and backward passes through the different layers of

the network:

e Forward pass: In this, the input vector is applied to the nodes of the network and its
effect propagates through the network layers in the forward direction until it reaches
the output layer. Finally, a set of outputs is produced as the actual response of the
network_ During this pass, there is no change in the weight and the bias.

« Backward pass: During this pass, the weights are all adjusted in accordance with the
error correction rule. An error is the difference between the target and actual response.
The target is known as it is specified before training the ANN and the actual response
is obtained through the forward pass. The error signal is propagated backward through
the network. The weights and biases are adjusted so as to make the actual response of

the network closer to the desired response.

4.2.4 Training Issues in Applying Backpropagation Algorithm
Trained backpropagation networks tend to give reasonable answers when
presented with inputs that they have never seen [22, 27]. But, backpropagation algorithm
depends upon a number of training issues, some of which are training functions,
initialization, stopping criteria, number of hidden neurons used and so on. To make use of
the MATLAB neural network toolbox, a program is simulated that includes the input
data, the corresponding target outputs and the associated training functions. The training

process is a means by which the network adapts itself to the desired output and thus
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organizes the information within itself. The neural network toolbox of MATLAB
provides provision to change the training parameters on which the backpropagation

algorithm depends, so that a good neural network can be designed [27].

4.2.4.1 Training Functions

The MATLAB neural network toolbox is used for training and testing the
network. Some of the training functions available in the MATLAB neural network
toolbox, for the design of the network are trainbpx, trainbpm and trainim [27].
Truinbpx
Simple backpropagation (trainbp) is very slow because it requires small leaming rates for
stable learning. Trainbpx uses techniques called momentum and an adaptive learning rate
to increase the speed and reliability of backpropagation. rainbpx is much better than

trainbp in terms of speed as well as reliability. ion as i in

trainbpx is based on gradient descent, in which the parameters such as weights and biases,
are moved in the opposite direction to the error gradient. After each step, the gradient
results in smaller errors until an error minimum is reached.

Trainbpm

The function frainbpm is similar to trainbpx, but has more training parameters. It is used
so that the network would not get stuck in a shallow minimum. It acts like a low pass

filter and allows the network to ignore small features in the error surface.



Trainlm
The function trainlm gives better performance since it uses an approximation of Newton’s
method called L b This optimizati ique is more powerful than

gradient descent, but requires more memory.

4.2.4.2 Initialization

Every network is iated with a set of weights and

biases. Weights and biases should be initialized to small, random values, usually between
0.5 [22, 27]. A good choice of initial values for the weights and biases will lead to a

successful network design. The wrong choice of initialization values can lead to a

condition called pi ion, where the i sum of squared errors

remains almost constant for some period of time during the learning process. There is a

choice for initializing the weights and biases using one of these three functions available in

the neural network toolbox:

(a) nwlog — This function uses the Nguyen-Widrow random generator for logsig
neurons.

(b) nwtan — This function uses the Nguyen-Widrow random generator for fansig
neurons.

(c) rands — This function is used in the generation of symmetric random numbers.



4.2.4.3 Stopping Criteria

The i ithm is consi to have ‘when the absolute

rate of change in the average squared error per epoch is sufficiently small. Each epoch or
training iteration represents the presentation of the set of training vectors to a network and
the calculation of new weights and biases. The error goal to be achieved is pre-defined in
the code for designing the neural network. In a well designed network, with increasing
epochs, the error starts decreasing.

4.2.4.4 Hidden Neurons

Networks are quite sensitive to the number of neurons in their hidden layers. If too
few neurons are selected, the network will not be able to learn all of the patterns correctly.
Too many neurons will result in the network tending to memorize the patterns instead of

learning to detect the global features of the pattern.

4.3 Applications of ANN to Tr ission Line Pri

ANN based algorithms have given encouraging results in the area of transmission
line protection [8-12, 15, 16]. Most of the reported literature using ANN are aimed at

in the ing areas of ission line

* Distance Relaying

*  Fault Classification

Fault Location

* Fault Direction
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The present area of work focuses on distance relaying and fault location. A review of the

earlier work using ANN in these areas is presented in the following sections.

4.3.1 ANN Approach to Distance Protection

Distance relays are widely applied to protect transmission lines. ANN, being a
relatively new branch of artificial intelligence with promising results, are being adopted in
the relays for distance protection of transmission lines.

ANN based distance relay is found to keep the reach accuracy, even with the
changes in the network configuration [8]. The overreach trend of the half-cycle Discrete
Fourier Transform (DFT) is canceled out by the proposed scheme. The study concentrated
on phase a to earth faults with backpropagation algorithm used for the training. The
magnitudes of the voltage and current phasors corresponding to the post-fault fundamental
frequency formed the inputs. The learning process converged in about 80,000 cycles and
took 2 hours of computing time. The algorithm is found to be reliable and about 95% of
the test cases estimated the expected answer for the ANN distance relay.

ANN can also remove dc-offset from the corrupted voltage and current signals and
provide a quick operating decision [10, 11]. The proposed ANN based algorithm is trained
with the input patterns of distorted signals within a quarter cycle data window and with the
target patterns of real or imaginary values of power frequency components of the signals.
Four artificial neural networks having the same structure with different weights are used in
the distance relaying algorithm. Two of them are for the real and imaginary values of the

current phasors and the other two for voltage phasors respectively. Each input pattern
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consists of eight samples of a quarter cycle of the power frequency. The first hidden layer
has 20 units and the second has 4 units. The error backpropagation method is used to train
the algorithm. Each current neural network required about 200 hours of training time and
about 6 hours for each voltage network. The impedance locus is found to have good
convergence characteristics for various settings.

An ANN based distance relay shows good performance in detecting a single-line-

to-ground fault with nonlinear arcing resi: along the whole ission line [12]. A
| nonlinear arc resi: model is used in the study. A three layered neural
network with back- “leuming ithm is used, with S units in the hidden

layer. The input signals to the network are the measured impedance of the faulted

transmission line, the apparent i angle of the ission line and the system

equivalent reactance. The ANN relay adapted to source impedance changes and
responded correctly.

A neural network fault area estimator that determines the fault area directly is
found to give reliable results indicating whether a fault is inside or outside the protection

area [9]. A feed-forward multi using ion method is used,

with 3-phase voltages and currents as the input. The time needed to train the network is

about 12 hours. A ison of i i and the ANN based approach

using different fault data showed that the ANN classification is faster and has better

lassification qualities to the i i The obtained results

indicate that noise and harmonics do not impair the classification quality, but the
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classification is not perfectly clear for fault location at the boundary of the zone of
protection for the transmission line.

In the preliminary case study of the ication of ANN in ission line

protection, single-phase-to-ground faults are examined [28]. The input of the ANN of the
Multilayer Perceptron (MLP) type consists of the criterion signals positive sequence
impedance components (R, X) seen from the relaying point and the zero-sequence current

bya The ANN decided whether the input

data indicates an internal fault or not, after 10 ms from fault inception.

An adaptive digital distance relay that maintains the reach accuracy of the
transmission line is proposed [29]. An ideal trip region is selected for a given fixed
system conditions. Four feedforward neural networks are designed for trip region

The values of resi: and i as seen by the relay

forms the inputs. The output accurately identifies whether the fault is inside or outside the
protection zone. However, when there is a change in the power flow or source capacities,

the relay operating region has to be updated.

4.3.2 ANN Approach to Fault Location
Accurate estimates of the fault location are desirable for inspection, maintenance
and repair of the actual fault. Locating faults on transmission lines with high accuracy

the mais ion and saves time and effort. Fault location also

enables fast restoration of the transmission to service.
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A feedforward neural network that estimates the fault location in a series
compensated line, has provided encouraging results [15]. The network consists of three
layers, the input layer with 10 inputs and the hidden layer with 9 neurons. The algorithm
is found to provide accurate results, half cycle after fault inception. The initial data
window after the fault contains pre-fault data only. It is justified that in practice, a

transient fault detector would start the data window after fault inception with the

not crossing th ing zone for the faults outside the zone.

A fault locator proposed in [16] using backpropagation algorithm and learning
vector quantization has been able to locate faults with reasonable accuracy. The fault
locator consists of two networks, a main network and an auxiliary network. The output of
the main network indicates the fault location in per unit (p.u) of the length of the line. The
output of the auxiliary networks representing the time reference points of the input wave
forms the inputs to the main network. The auxiliary network consists of 400 input nodes,
18 nodes in the hidden layer and 18 output nodes. The results indicate that ANNs could
be used as a pattern recognition tool to estimate the fault location.

A fault locator for series lines has been i i [30] and the

results demonstrates the feasibility of the proposed approach. This scheme employed 8
samples of instantaneous voltage and current as the inputs. The feedforward neural
network has 16 input neurons in the input layer, 12 neurons in the hidden layer and 2
output neurons indicating the fault and its location. Fault points are identified through
directly analyzing the type of fault [31]. Post-fault voltage and current are used as inputs,

and both supervised and non-supervised methods of training are adopted. It is found that
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when a fault occurs at any node of the power system, the current patterns of the
transmission line connected to that fault are similar. The fault at that node is determined
by referring to its voltage pattern.

An accurate fault locator based on the integrated approach of fuzzy logic and
neural networks has been proposed in [32]. The neural network is used in the input-output
mapping to extract the rules and to learn the membership functions. This learning is
employed in the fuzzification of the network. The input to the ANN is the frequency
components of the voltages and currents. The test results shows high accuracy and

robustness under a vast majority of different system and fault conditions.

4.4 Proposed ANN-based Algorithm for. Transmission Line

Relaying
An overview of the earlier work demonstrates the use of ANN based algorithms in

the area of distance protection and fault location. The main aim of the work reported was

to improve the relaying i used in ission line ion. In some cases, it
was found that the time taken to give a trip decision corresponds to half cycle of the
power system frequency [15]. The reported work in the application of ANN for

line relaying either on distance protection or on fault location,

but not on both. The work has been reported only for the case of single-line-to-ground
faults. Other fault cases are not considered. Some of the other drawbacks are that the

network structure is big in size and the training time is too long. In case of a big network
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structure, the hardware implementation will be more complicated. Longer training’ times
will become an obstacle when the network has to be re-trained for certain critical
cenditions such as reversal of load flow.

Taking into account the above concems, a novel feedforward neural network for
distance protection of transmission lines is proposed. The technique has been extended to
locate the distance of the fault location. The aim of the work is to develop an ANN based
algorithm for the distance protection and fault location in transmission lines that is
reliable, fast, accurate and small in size. The ANN based algorithm is designed for single-
line-to-ground fault and three-phase fault cases. The single-line-to-ground fault is chosen
as it is the most common type of fault. The three-phase fault is found to be the most
severe type of fault. Four neural networks, one each for single-line-to-ground fault
indication (to indicate whether the fault is inside or outside the protection zone), single-
line-to-ground fault location (for exact location of the fault), three-phase fault indication
and three-phase fault location are designed.

In the proposed scheme, the frequency spectrum of voltages and currents is
utilized to make a decision. The data is obtained from the Electromagnetic Transients
Program (EMTP) simulation. The main work is undertaken in two parts. In the first part,
one-cycle of post-fault information is used as the input to the ANN based methodology
for transmission line relaying. To improve the speed of the relaying decision, half-cycle
pre-fault and half-cycle post-fault information of the voltage and current signals are used

in the proposed ANN based relay. This forms the second part of the work. The specific
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design details of the neural network and the simulation results of the proposed ANN

based relay will be presented in Chapters 5 and 6 respectively.

4.5 Summary
This chapter has reviewed the applications of ANN in the area of distance
protection of transmission lines and fault location. In most of the cases, multilayer
feedforward network is used. ANN based algorithms have given encouraging results in
the area of transmission line protection, but have some limitations in the design and in the
application aspects. Some of the drawbacks of the proposed ANN based relays are
The ivation for ing the present research work has been

described.
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Chapter 5

Design of a Novel Artificial Neural Network Based

Relay for Transmission Line Protection

5.1 Introduction

This thesis has discussed the principle of transmission line protection and the

used for the ive relaying of ission lines in digital relays. The

application of Artificial Neural Network (ANN) based algorithms has also been successful
in the areas of distance protection and fault location. Most of these applications in
transmission line protection use voltage and current samples as inputs. A new approach for
transmission line protection using the frequency spectrum of the voltage and current
signals and training an ANN is investigated in this thesis.

An ANN based methodology for transmission line relaying is presented in this
chapter. Two neural networks are designed: one to indicate whether the fault is inside or
outside the protection zone (fault indication) and another neural network to precisely
indicate the location of the fault (fault location) from the relay location. The reasons for

selecting the frequency components of the voltage and current as the inputs to the ANN,
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and the simulation procedure to obtain these frequency components are explained. The

ANN algorithm for single-li ground faults and three-phase faults are discussed. The

simulation results based on the proposed method will be presented in chapter 6.

5.2 Choice of the Inputs to the ANN-based Relay

A number of neural network structures have been suggested in the literature and
each structure is specifically suited for solving a particular type of problem. Most of the
transmission line relaying methods based on neural networks use multilayered perceptron.
In this research, a feedforward neural network for transmission line protection is designed.
Any design process for a feedforward ANN based transmission line relaying consists of the
following steps [33].
® Preparing suitable training data
(i) Proper selection of the ANN structure
(iii)  Training of the ANN

(iv)  Evaluating the trained network



Training of the ANN

Performance of the

ained ANN? P
oor

Terminate the process
Figure 5.1: Design process for a typical ANN structure
The design process is iterative as illustrated in Fig. 5.1. The first step of the design

process is to select suitable and meaningful data for training. It is important to give

meaningful training patterns, which contain all the necessary information to generalize the
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problem. Special care must be taken to include boundary patterns. It is possible that a
particular ANN structure with the given training data may not train properly, Ze., the
training process takes too long. The structure and/or parameters must be changed and the
network retrained. Also, a trained network might not perform satisfactorily because of
inadequate training data, or due to the structure of the network. In that case, the structure
of the network should be re-designed and the process should be repeated. Structural
differences arise on account of the number and type of inputs, number and type of outputs
and complexity of the application, which would govern the number of layers and the
number of neurons in different layers. These parameters of the network are decided by
experimentation, which involves training and testing a number of network configurations.
The process is terminated when a suitable network with satisfactory performance is
established. The process of the neural network training must be quite efficient and
straightforward [33, 34].

are based on the

Many of the i on ission line
instantaneous values of the current and voltage waveform [12, 28]. These algorithms use a
pre-processor to obtain resistance and reactance, which are given as inputs to the ANN.
Another approach is to use the magnitude of the voltages and currents [8]. Inputs with
consecutive samples of voltage and current data, is yet another approach to design the
ANN [9]. As mentioned in chapter 4, though these algorithms are found to be reliable and
accurate, one of the drawbacks is that the training times are quite long.

Prior to using the frequency components as the inputs to the ANN, three cases of

possible inputs to the neural network are considered, namely:



1. Instantaneous values of voltages and currents without removing the noise
2. Magnitude of voltages and currents

3. Instantaneous values of voltages and currents after filtering the noise

Using instantaneous values of voltages and currents as the inputs proved to be a wrong
decision, as it leads to long hours of training times. The instantaneous values of voltage
and current contain lot of harmonics, as is observed in Fig. 3.4. The ANN is not able to
extract any meaningful information from these patterns. Similarly, providing the
magnitude (RMS value over one cycle) of the voltage and current components as the
inpulsmlheANmeitsintheszmcsaback_Themngnimdsoﬁhevolugamdumem
are represented by points which are very close to each other and hence the ANN is not
able to leam when provided with these type of inputs. Considering the third case, the
instantaneous values of the voltage and current after filtering away the noise resemble a
sinusoidal wave; no matter at what point the fault has occurred. There is no significant
variation in these patterns, except an increase in voltage with increasing distance of fault
location. This can be clearly seen from Fig. 5.2 which illustrates the filtered phase a
voltage for a single-line-to-ground faut occurring at 20%, 50%, 90% and 95% of the line
from substation A. The ANN takes a long training time. Even after long training times,
there is every possibility that the ANN algorithm would fail, as it might lead to

memorization of the patterns rather than learning [27, 33].
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Figure 5.2: Filtered post-fault voltage at phase a for the single-line-to-ground fault

occurring at 20%, 50%, 90% and 95% of the line.
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As a first step in any pattern classificati ique, feature ion is used to
reduce the dimension of the raw data and extract useful information in a concise form [32].

For the ANN considered here, this process leads to a considerable reduction in size of the

network, thereby signil improving the and speed of the training process
[35]. The technique adopted here for feature extraction is the one based on time domain
frequency decomposition of voltage and current waveforms using Fast Fourier Transform
(FFT). A one-cycle window is employed for this purpose. The work presented here has
two main parts based on the input data of the one-cycle window. In the first part of the
work on the proposed ANN based algorithm, this one cycle window consists of purely the
post-fault voltage and current signals. It is found that inputs given in this way results in
shorter training times. The trip decision is obtained after a cycle but the results obtained

are ing. This the author to i i the ibility of reducing the

response time. To achieve this, in the second part of the work, half-cycle pre-fault and

half-cycle post-fault information of the voltage and current signals are used as the inputs.

5.2.1 Simulation Procedure to Obtain Frequency Components

The sample power system model as shown in Fig. 5.3 is simulated using EMTP to
obtain the voltage and current data [23]. The data is generated for the following fault
locations, instant of fault occurrence (fault inception angle) and fault resistance.

« Distance of fault (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 87,

89, 90, 91, 93, 95% of the line length)
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e Fault resistance (R¢= 0, 10 Q for single-line-to-ground fault, R¢= 10, 50 Q for three-
phase fault)

*  Fault inception angle (0°, 90°, 180°, 270°)

A total of 184 cases are simulated for single-line-to-ground fault and for three-phase fault,
to train and test the ANN based on one-cycle post-fault information. For the ANN based
algorithm using half-cycle pre-fault and post-fault information, a total of 344 fault cases
are simulated. Different fault inception angles are selected, as in a practical situation, a
fault can occur at any point of time.

AR F B
Ooro0——x— o+ 3+
Figure 5.3: Single line diagram of the power system model
(Voltage at substation A = 1.02 p.u, Voltage at substation B = 0.97 p.u)

(Length of the line = 160 miles, Rating of the line =345 kV)

In the si i here, the frequ Y of one cycle post-
fault voltage and current signals are obtained using FFT. Since a sampling rate of 960 Hz

has been used, the frequency components up to the eighth harmonic (480 Hz) are used.

The are ized with respect to the 60 Hz component. The

values of the are used as inputs by the ANN algorithm,

to give the appropriate relaying decision. The frequency spectrum of the input current and
voltage meet the sampling theorem which states that the sampling frequency should be at

least twice the highest frequency in the spectrum. The highest frequency is thus 480 Hz in
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the presented work. In the hardware implementation of this concept, a low pass filter with

a cut off frequency lower than 480 Hz must be included.

5.2.2 Frequency Spectrum Using Post-fault Information

The frequency spectrum of the phase a voltage and current for a single-line-to-
ground fault occurring at 20% and 75% of the line from substation A (Fig. 5.3) are shown
in Fig. 5.4 and Fig. 5.5 respectively. The frequency spectrum is obtained using one-cycle
of post-fault voltage and current signals. The Total Harmonic Distortion (THD) indicates
that there is an unique relationship between the frequency spectrum of the voltage and
current and the fauit location. The THD is a measure of closeness between a waveform

and its fundamental component [36]. The THD in the voltage waveform is defined as

5
JZv’(/,)
THD, =1=l__+100% G-

V fundamentot

with v ing the voltage, f; ing the dc /> the second

and 5o on. Similarly, the THD in the current waveform is defined as
T
Y20

A=t «100%
Ja—

with 7 representing the current. The THD for some of the fault cases is indicated in Table

THD, G2

5.1. The THD in voltage and current is found to decrease with increase in the fault

location from the generating end, as seen from Table 5.1.
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Figure 5.4: Frequency spectrum of phase a voltage and current for single-line-to-ground
fault at 20% of the line

(One-cycle of post-fault, ¢ =0° Re=10 Q)
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Figure 5.5: Frequency spectrum of phase a voltage and current for single-line-to-ground
fault at 75% of the line

(One-cycle of post-fault, @ = 0°, Re=10 Q)
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Table 5.1: THD for single-line-to-ground faults using one-cycle of post-fault data

Fault location (%) THD. (%) THD: (%)
15 51.6458 93.8510
20 428878 902335
40 36.7637 76.2179
50 33.7611 70.6993
75 28.2200 56.9498

The study indicates that the frequency components of voltages and currents
provide good information for the neural network to learn about the fault conditions. The
ANN design is based on mapping the data of frequency spectrum to the relay decision for
fault location.

Similar conclusions are drawn for the frequency spectrum of the voltages and
currents for three-phase faults. Fig. 5.6(a) and Fig 5.6(b) respectively illustrates the
frequency spectrum of the voitage and current of all the three phases, for a three-phase
fault occurring at 20% of the transmission line. The frequency spectrum of the voltages
and currents for a three-phase fault occurring at 60% of the line from substation A is

shown in Fig. 5.7(a) and Fig. 5.7(b) ively. Though a three-phase fault is

symmetrical, the frequency spectrum reveals that the harmonic components for the
voltages and currents in the three phases are quite different. For a three-phase fault, the
frequency components of voltage and current in all the three phases should be used as the

inputs to the neural network.
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Figure 5.6(a): Frequency spectrum of phase voltages for a three-phase fault
at 20% of the line

(One-cycle of post-fault, § =0°, Re= 10 Q)
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Figure 5.6(b): Frequency spectrum of phase currents for a three-phase fault
at 20% of the line

(One-cycle of post-fault, @ =0°, Re=10 Q)
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Figure 5.7(a): Frequency spectrum of phase voltages for a three-phase fault
at 60% of the line

(One-cycle of post-fault, =0, Re=10 Q)
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Figure 5.7(b): Frequency spectrum of phase currents for a three-phase fault

at 60% of the line

(One-cycle of post-fault, ¢ =0°, Re=10 Q)
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The THD for the phase a voltage and phase a current for some of the fault cases is
represented in Table 5.2. The THD in the voltage and current is found to decrease with

increasing fault location from the substation A.

Table 5.2: THD for three-phase faults using one-cycle of post-fault data

Fault location (%) THD, (%) THD; (%)
5 56.5090 51.5090
20 53.0610 48.9555
40 3 404395 43.8008
50 39.0470 40.9711
60 37.6993 37.5972

An obvious question arises as regards to the exact selection of one-cycle of post-
fault data. Many algorithms are available which can indicate an abnormal behaviour when
a fault occurs. These algorithms indicate the possible occurrence of a fault. At the
occurrence of a fault, the voltage decreases and the current increases (Fig. 3.4). A simple
algorithm can be implemented using a sliding window to obtain the FFT of the signal.
The initial values of the frequency components will have a low value. The frequency
components will have a larger value when one cycle of post-fault data is selected. A
threshold can be selected, so that the values above this threshold contain the frequency

to ycle of post-fault data. It is assumed that such an

algorithm will be used prior to the ANN algorithm. At the instant of a possible fault

the ithm selects le of the data that represents the data pertaining

to pure fault.
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5.2.3 Frequency Spectrum Using Pre-fault and Post-fault

Information

Using only post-fault frequency components of the voltage and current signals the
trip decision can be obtained only after a cycle. To improve the speed of the protective
relay, a one-cycle window consisting of half-cycle pre-fault and half-cycle post-fault
information is used as the inputs. At this stage it should be mentioned that a suitable logic
should be developed that will exactly use half-cycles of pre-fault and post-fault information
as the inputs to the ANN. This work is carried out under the assumption that such a
suitable logic is available.

‘When there is no fault, only the fundamental frequency component is present and
the selection logic should reject those cases. At the inception of the fault, the voltage and
current signals are distorted. The FFT of the initial samples of voltage and current have
small magnitudes. A threshold should be selected, such that when the FFT of voltage and
current signals reaches the half-cycle condition, those values are taken as the inputs to the

ANN. This could be one of the possible methods to design the logic for selecting the

quency of half-cycle pre-fault and half-cycle post-fault data to be used as

inputs to the neural network.

Fig. 5.8 and Fig. 5.9 represent the frequency spectrum of the phase a voltage and
current for a single-line-to-ground fault occurring at 20% and 85% of the transmission line
from substation A of Fig. 5.3. Table 5.3 represents the THD for some of the fault cases.

between the and the fault

The THD indicates a unique

location. The THD decreases with increasing fault location from substation A.
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Figure 5.8: Frequency spectrum of phase a voltage and current for single-line-to-ground
fault at 20% of the line

(Half-cycle of pre-fault and post-fault, ¢ =0° Re=10 Q)
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Figure 5.9: Frequency spectrum of phase a voltage and current for single-line-to-ground
fault at 85% of the line

(Half-cycle of pre-fault and post-fault,  =0° Re=10 Q)



Table 5.3: THD for single-li -ground faults using half-cycle of pre-fault

and post-fault data

Fault location (%) THD, (%) THD; (%)
15 54.7077 56.8875
20 45.8847 53.0572
40 413847 40.4175
50 33.2791 35.8135
85 30.0624 24.8446

88

The frequency spectrum of the voltage and current for a three-phase fault

occurring at 20% of the line are illustrated in Fig. 5.10(a) and Fig. 5.10(b) respectively.

Fig. 5.10(a) and Fig. 5.10(b) are obtained with a fault resistance R¢ of 10 € and the fault

inception angle @ being 0°. Fig. 5.11(a) and Fig. 5.11(b) represent the frequency spectrum

of voltages and currents for a three-phase fault occurring at a fault distance of 90% of the

line, with Reof 10 Q and ¢ of 0°.

The THD for phase a voltage and current for some of the fault cases is indicated in

Table 5.4. As seen from Table 5.4, the THD in the voltage and current is found to

decrease with increasing fault location, from substation A.
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Figure 5.10(a): Frequency spectrum of phase voltages for a three-phase fault
at 20% of the line

(Half-cycle of pre-fault and post-fault, ¢ =0°, Re= 10 Q)
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Figure 5.10(b): Frequency spectrum of phase currents for a three-phase fault
at 20% of the line

(Half-cycle of pre-fault and post-fault, ¢ =0°, Re=10 Q)
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Figure 5.11(a): Frequency spectrum of phase voltages for three-phase fault
at 90% of the line

(Half-cycle of pre-fault and post-fault,  =0°, Re= 10 Q)
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Figure 5.11(b): Frequency spectrum of phase currents for three-phase fault
at 90% of the line

(Half-cycle of pre-fault and post-fault, ¢ = 0°, Re=10 Q)



Table 5.4: THD for three-phase faults using half-cycle of pre-fault

and post-fault data
Fault location (%) THD, (%) THD; (%)
] 52.5295 58.4573
20 44.2288 512110
30 42.1474 46.7250
65 35.5611 32.6927
90 319178 24.4897

5.3 Artificial Neural Network Design

The block diagram of the proposed scheme for transmission line relaying is shown
in Fig. 5.12. The required sampled values of voltage and current, representing the faults
are obtained. In a power system environment, the data acquisition system provides
sampled values of voltage and current signal from the power system. This data is fed to the
FFT filter to obtain the frequency components of voltage and current signals. The ANN
uses the frequency components as the inputs, for fault indication (distance protection) and
fault location. It is assumed that signals are filtered to satisfy the sampling theorem.

A feedforward neural network is used in the work. The proposed ANN is trained
using the backpropagation algorithm, which is an iterative gradient descent approach that
minimizes the mean square error between the actual output of the neural network and the
target output. The MATLAB Neural Network Toolbox is used for training the networks
[27). The function ‘trainlm’ explained in chapter 4 is used, which converges in lesser time

as well as in few epochs compared to the training function ‘frainbpx’ of the neural
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network toolbox. Though the training function ‘trainlm’ requires significant memory,

with today’s technology this is unlikely to be a drawback.

ANN Algorithm
Fault Indication l Fault Location |

Outputs
Figure 5.12: Block diagram of the proposed scheme

For each fault case considered, two neural networks are designed, one to indicate
the fault and the other for the precise location of fault [35]. The general design structure is
quite similar for the cases considered. Any neural network should have inputs and
corresponding target output for training purposes. As indicated earlier, the frequency
components of the voltage and current are the inputs to the ANN. The error goal is kept
below 0.001% for all the cases. The learning rate is the same for all cases considered. For
fault indication purpose, the output is either 0.9 or 0.1 indicating respectively whether the
fault is inside the zone of protection or outside it. In practice, there will be small

fluctuations in the ANN output and hence the values 0.9 and 0.1 are chosen as threshold
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values. For fault location purpose, the output indicates the per unit (p. u) distance of the
line length. A detailed explanation of the network inputs and outputs for the individual
cases are explained in the following sections.

The neural network has to be trained for all possible conditions so as to generalize
properly. Among the 184 cases of varying fault location, fault resistance and instant of
fault occurrence, 130 cases are used to train the network and the rest of the cases are used
for testing. This is for the case when only post-fanit frequency components are used as
inputs. It is found that for the case when the frequency components of half-cycle pre-fault
and half-cycle post-fault voltage and current data are used as the inputs, few cases are

needed to train the network. The details of this will be presented in chapter 6.

5.3.1 ANN Relay for Single-line-to-ground Faults
For the case of single-line-to-ground fault, it is found that only the voltage of the
faulted phase and all three phase current information are able to classify faults [37]. All

the harmonic are ized to the and the is not

included as an input. During training process contradicting targets will be given as output
to the fundamental component if it had been included. For example, for the case of fault

indication, the having unity value, would have a target output as

0.9 for faults occurring inside the trip region and the same fundamental component would
have a target output of 0.1 for faults occurring outside the trip region.
The number of inputs for the single-line-to-ground fault is thus 32, namely:

Va£), va(B), i), - ValfD)




ia(f), 18, (B, -

WELREL Y, s esssasssisismsnis W)
i(f), i), i(B), --- i)
fi. b & fy indicate the with £, oz thes il

component, f, the second harmonic and so on.

For the fault indication case, the target outputs are 0.9 or 0.1 depending on
whether the fault is inside the protection zone or outside it. The target output is selected as
the per unit distance for the case of fault location. The relay should send a trip signal for
faults located within the protection zone.

The number of hidden layers and the neurons are selected by extensive
experimentation. The process of choosing the optimal structure of the network is iterative
and the approach adopted in the work is as follows. A single hidden layer is chosen first.
The number of neurons is gradually increased. Each time, the network is trained and then
tested with the 54 patterns not seen before. If the network is able to identify the test
patterns accurately, the structure is taken as the optimum one, otherwise two hidden
layers are selected and the process is repeated. This process of trial and error can be
termed as ‘fine tuning’ of the neural network. It is suggested in [27] that adding more
layers gives the network more degrees of freedom to leam, thus resulting in a greater
potential at solving the problem. The MATLAB Neural Network Toolbox can support
only two hidden layers.

For the ANN methodology to indicate the faults, using one-cycle of post-fault

information, 3 neurons in the first hidden layer and 2 neurons in the second hidden layer
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are selected. For fault location purposes, the first hidden layer has 4 neurons and the
second hidden layer has 2 neurons. All the hidden neurons have log-sigmoidal transfer

function to [imit the output between 0 and 1.

ANN based relay for single-line-to-ground fault indication using half-cycle pre-
fault and post-fault data has 4 neurons in the first hidden layer and 2 neurons in the
second hidden layer. The network for fault location has 5 neurons in the first hidden layer
and 3 neurons in the second hidden layer. The details of the inputs, number of neurons in
the hidden layers and the output for the proposed ANN using one-cycle post-fault
information and half-cycle pre-fault and post-fault information are summarized in Table

5.5 and Table 5.6 respectively.

Table 5.5: Structure of the ANN using one-cycle of post-fault data

Type Inputs Number of neurons in hidden Output
layers
Layer | Layer2
Single-line-to- 32 3 2 1
ground fault
Single-line-to- 32 4 2 1
ground fault
location
Three-phase fault a8 3 3 T
Three-phase fault 48 5 3 i3
location
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Table 5.6: Structure of the ANN using half-cycle pre-fault and post-fault data

Type Inputs Number of neurons in hidden Output
_layers
Layer | Layer 2
Single-line-to- 32 4 2 1
ground fault
indication
Single-line-to- 32 5 3 it
ground fault
location
Three-phase fault 48 3 3 1
indication
Three-phase fault a3 5 4 i
location

5.3.2 ANN Relay for Three-phase Faults

All the three-phase currents as well as the voltages are chosen as the inputs to train
the algorithm for a three-phase fault. Thus for the case of a three-phase fault 48 inputs i.e.
each sensing point having 8 frequency components are selected for the ANN algorithm to
identify and locate the fault. The main difference in the network structure for the case of a

three-fault and the single-line-to-ground faults is in the number of inputs. The inputs to the

ANN algorithm for three-phase fault indi and fault location are as follows:
Va(f0), Va(E), Va3, --eovoeeneneneennn Va(f)
Vo(ED, VBB, VBCE), v o)

ve(f1), ve(fa), velfs), e Velfs)

(6, W), B(B), o i(fs)
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G R R () A . )
i(f), ie(fa), (), )
fi, B B, e fy indicate the frequency components, with f; representing the dc

component, ; the second harmonic and so on.
Regarding the outputs for fault indication and fault location, it remains the same as

in the case of the algorithm for single-lit -ground fault. The sir ion results obtained

will be presented in chapter 6.
Table 5.5 summarizes the network architecture for the fault cases using one-cycle

post-fault data. The number of neurons used for three-phase fault indication are similar to

that of the single-line-to-ground fault indication. For three-phase fault location purposes, 5
neurons in the first hidden layer and 3 neurons in the second hidden layer are chosen.
‘When half-cycle of pre-fault and post-fault data is used, the network architecture slightly
changes, as indicated in Table 5.6. In this case, the neural network used for three-phase
fault indication has 3 neurons each in the hidden layers. For fault location purposes, 5

neurons are present in the first hidden layer and 4 neurons in the second hidden layer.



5.4 Summary

The frequency components of voltages and currents are found to be distinct for
different faults. The frequency components can be used as pattern recognition by the
ANN. Neural networks have been designed to map the relationship between frequency

and the i it iated with the fault. The simulation procedure used

to obtain these frequency components is explained. The main difference in the ANN
based fault indication and fault location algorithm is the target outputs. In the former case,
the target outputs are either 0.9 or 0.1 depending upon whether the fault is inside or
outside the protection zone, whereas in the latter case, the target output is the per unit
distance. The two ANN based algorithms have been designed for single-line-to-ground
fault and three-phase faults.

In the initial part of the work, the frequency components of voltages and currents
corresponding to one-cycle of post-fault are used as the inputs to the ANN based
algorithms. Even though the FFT is taken over one complete cycle after the inception of
fault, the voltage and current signals are found to have different patterns at different fault
inception angles. ANN is basically a pattern recognizer and hence it is necessary to
include the cases of different fault inception angles in the training/testing set. To obtain a
better response in terms of speed, it is proposed to use half-cycle pre-fault and half-cycle
post-fault data as the inputs for the ANN based algorithm. The same ANN can be used
for indicating (or locating) faults under different fault conditions, such as change in the
fault location, fault resistance and the fault inception angle. The simulation results for the

two cases are presented in chapter 6.
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Chapter 6

Simulation Results

6.1 Introduction

Motivated by the fact that Artificial Neural Networks (ANN) can be used as an

alternative computational concept to the ional approach in ission line
relaying, a novel feedforward network for fault indication as well as for fault location

purposes has been proposed. The proposed neural network is trained by a set of

input/output patterns using ion learning algorithm. Chapter 5 the
structure of the proposed ANN.

This chapter presents the simulation results using the proposed ANN algorithm.
The study is divided into two main parts. The first part presents the results of the ANN-
based algorithm using post-fault information only. The second part of the work deals with
the ANN-based algorithm using both pre-fault and post-fault information. The proposed
neural network is designed using the MATLAB Neural Network Toolbox. A typical

learning process of the network in converging to the specified error goal is shown in Fig.
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6.1. As seen from Fig. 6.1, the network is able to leamn quickly. In Fig. 6.1, every epoch is
an iteration in which the input is mapped to the output and the error is calculated. With
increasing epochs, the error decreases and when the specified error goal is reached. the
weights and biases of that epoch are stored. The trained ANN stores these weights and

biases. The simulations are done on a ‘DEC Alpha” WorkStation.

‘Sum-Squared Network Error for 24 Epochs.

Sum-Squared Error
3

Figure 6.1: Learning process of the neural network
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The simulation results obtained for fault indication and fault location for a single-
line-to-ground fault and a three-phase fault are presented in this chapter. A comparison of
the proposed ANN-based algorithm with a few existing ANN-based algorithms and also
with the Fourier algorithm is provided. All these simulations are done off-line. A possible

on-line implementation using the proposed algorithm is suggested.

6.2 ANN-based Algorithm Using Post-fault Information

All weights and biases of the neural network are initially set to random values.
The input vaiues and the desired output values are specified to the network. Then the
network is used to calculate the actual output by the backpropagation method. In the
training process, the ANN based algorithm does not explicitly use the voltage and current
information as the basis of the decision making. It learns from experience gained during
the training and recognizes the hidden relationship that exists in the patterns observed
during the learning phase. In the first part of the research, one-cycle of post-fault data is
considered [35]. In practice, a transient fault detector would start the one-cycle data
window after the fault inception [15]. The training pattems are chosen randomly. The
training process is repeated until the sum square of error (SSE) between the actual output

and the desired output reaches the specified error goal of 0.001%.

For the case of the i using ycle of post-fault i ion as the
inputs, the network is trained with 130 patterns and tested with 54 patterns that the

network has not seen earlier. But these 54 test patterns have the same fault distance, fault
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resistance and angle of fault occurrence as that of the training pattems. The objective is to
obtain a network that is able to give correct results for the patterns not seen before. In
practical situations, there is every possibility that the network will experience different
conditions. Hence, in the next part of the research, which uses half-cycle pre-fault and
half-cycle post-fault information, additional testing patterns that are different from the

training patterns are presented to the network.

6.2.1 Single-line-to-ground Fault Indication

There are 32 inputs to the neural network for the purpose of fault indication in a

ingle-lis d fault ition. The details of the ANN structure are given in Table
5.5. A two hidden layer network was found to be accurate in performance. There are 3
neurons in the first layer and in the second layer, 2 neurons are selected. The hidden layer
units have the log-sigmoidal transfer function. The output is taken as 0.9 if the fault is
within the trip zone, else it is taken as 0.1.

It is found that for the case when the fault resistance is 0 Q and the distance of
fault is near the sending end of the power system, the DC component has the maximum
value. As discussed in Chapter 5, all the harmonic components are normalized to the
fundamental and hence cases where the DC component has the maximum value are not
considered in the training as well as in the testing set. These cases are found in the single-
line-to-ground fault cases. '

The training time for this neural network is 180 seconds and the network reached
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the error goal in 24 epochs. The training process is represented in Fig. 6.1. 54 fault
patterns that are different from the training set are used for testing. The network is able to
identify 96% of the tested cases correctly [35]. The incorrect answers are mostly confined
to the boundary region. The results obtained are shown in Fig. 6.2. The output of 0.9
given by the neural network indicates that the fault has occurred within the protection
zone, and 0.1 represents fault occurring outside zone 1. The ANN correctly identifies the
faults occurring in the trip/no trip region in the presence of a fault resistance of 10 Q. The
ANN does not suffer from the overreach condition that occurs in the Fourier algorithm

based relay.

1 TripZone  No Trip Zone

o
®

ANN output
o
a

o
>

02
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Figure 6.2. R of ANN ithm for fault indication using ycle post-faul

information



Table 6.1 provides a comparison of the proposed feedforward network with a few
feedforward networks available in the literature. As seen from Table 6.1, the proposed
structure has a smaller size compared to the other neural networks. However, the number
of inputs required for the proposed network is 32, compared to 5-8 inputs required by the
other networks. The number of training patterns needed for the proposed network to learn
is comparatively reduced. Also the training time of the proposed network is found to be
significantly less. For on-line implementation, the run-time is an important measure.
From Table 6.1, it can be seen that the proposed method features a slower run-time
compared to two other methods. The limitation of the proposed method is the slow run-
time, which is beyond the scope of the thesis to be investigated.

The response of the network for different loading conditions is not considered in
the present study. But including the training patterns for different loading conditions is

not expected to affect the overall performance of the neural network.

Table 6.1: Comparison of different neural networks for single-line-to-ground fault

using yele of post-fault i

Neural Network Proposed Ref. [8) Ref [12] Ref (11
Structure 32-3-2-1 6-6-2-1 5-6-1 8-20-4-1
Tnputs Frequency | Magnitude | Measured Real and
components | of voltage apparent | imaginary values
of voltage | and current | impedance of voltage and
and current current
No. of training patterns 130 1144 512 Not documented

Training time (minutes) 3 120 Not > 12000




6.2.2 Single-line-to-ground Fault Location

The number of inputs for performing the task of fault location remains the same as
in the earlier case. The only difference is in the output. The output in this case is taken as
the per unit (p. u.) distance of the transmission line. Even for the case of locating the
points of single-line-to-ground fault, it is found that a network with 2 hidden layers gives
good performance. The first hidden layer has 4 log-sigmoidal neurons and the second
layer has 2 log-sigmoidal neurons, as indicated in Table 5.5.

The network reaches the error goal in 10 minutes and this convergence is achieved
in 196 epochs. When tested with 54 cases not seen earlier, it is able to correctly locate the
fault for about 92% of the testing data. It is to be noted that although the ANN locates the
fault accurately, there are small fluctuations in the ANN output and in practice this cannot
be avoided. The error in locating the exact fault can be expressed as a percentage of the
length of the transmission line and is given by equation (6.!). The maximum error in
locating the exact fault is found to be less than +2.5%.

% . actual location —desired location
£ length of the line ©n

The proposed network employs only 32 inputs and is found to be an accurate fault locator.
The protection zone is chosen to be 90% of the line, and the results given by the ANN
algorithm have been found to be reliable. The results are found to be accurate even at the

boundary location. The results for some of the tested cases are shown in Fig. 6.3.
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Distance In p.u

Figure 6.3: Response of the ANN algorithm for single-line-to-ground fault location using

one-cycle of post-fault information

6.2.3 Three-phase Fault Indication

For three-phase fault indication, a neural network with 3 neurons in the first hidden
layer and 2 neurons in the second hidden layer was found to give a reliable trip/no trip
decision. The structure of the network is similar to the one used for identifying faults in a
single-line-to-ground fault case, except for the increased number of inputs. The structure
of the neural network for three-phase fault indication is 48-3-2-1. The selection of the

with different ions. The

hidden layers is done by trial and error
network reaches the error goal in 184 epochs and 180 seconds of training time.
The network tests correctly for 98% of the cases, which is not seen by the ANN

before. The results are similar to those shown in Fig. 6.2, and are found to be accurate for



different fault conditions.

The basic structure of the neural network remains the same for both fault
indication and fault location purposes. Since the network has to perform different tasks of
either giving a trip/no trip decision or point of fault, the optimum neural network has been

selected for the two different ANNs.

6.2.4 Three-phase Fault Location

The difference in the case of the ANN for three-phase fault location algorithm is
the number of hidden neurons. The first hidden layer has 5 neurons and the second hidden
layer has 3 neurons. The output of the neuron is the per unit distance of the fault from the
relay location. The network reaches the error goal in 218 epochs and the training time is
15 minutes. The test results for few test cases are shown in Fig. 6.4. The results show that
the ANN output accurately locates the fault. The percentage of correct answers is 89%
(maximum error being +2.5%). The ANN output is termed incorrect if the maximum error
is greater than #2.5%. For the incorrect answers, the maximum output is found to be less
than +5%. The correct percentage of the tested cases is slightly less compared to that for

the single-line-to-ground fault location case.
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Distance In p. u,

Figure 6.4: R of the ANN algorithm for three-phase fault location using one-cycle

of post-fault information

Table 6.2 presents a summary of the convergence time, number of epochs used and
accuracy of the designed neural networks. There is every possibility that the four ANNs
indicated in Table 6.2 might not test accurately when tested with data, which are entirely
different from the training patterns. But the ANNs based on the one-cycle post-fault
information have demonstrated the ability to train in a short time, and give the decision of
trip/no trip and locate the fault in about a cycle after the fault inception. The research

results at this stage form the basis for the next phase of the ANN design.



n

UOHE30[ 1[Ny
%68 | 81T st £ 1 % 8% bs 01| aseyd-sany
[EIEe
ney
%86 b8l € z € 8 b Otl oswyd-oasyy,
UoRuO0|
ey punosd
%6 961 01 T 14 (4 bs 0¢€L oo
UoTeoIpuU
yney punosd
%96 ¥T € (1 € 143 bs 0€1 -0j-aur]
4 1
Jakey | 10key JL
Syooda | (seynupua) sindur | sose0 9500
1591, J0 J own suomau Jo | Supsarjo | Sumen
Kowsnooy | sequnN | Sumresy, | josequnN | JsoqunN | JoqunN | jo sequinN | ynej o adAy,

ejep 1nej-150d Jo 9[oA2-au0 Fuisn NNV 9yi Jo 3oueuuiopad pue ainjonng z'9 Jqe),




1z
6.3 ANN-based Algorithm Using Pre-fault and Post-fault

Information

Using only post-fault information of voltage and current frequency components as
the inputs to the neural network provided good results, but the decision is obtained after
one-cycle of fault inception. [n order to improve the speed of the relaying decision, half-
cycle pre-fault and half-cycle post-fault information of voltage and current frequency
components are taken as the inputs to the ANN. This method can provide a relaying
decision in about half-cycle after fault occurrence. As observed from the frequency
spectrums of voltage and current signals, half-cycle pre-fault and post-fault data contain
sufficient information regarding the fault.

In addition to the 184 fault cases used earlier in the training and testing of the
ANN based on one-cycle post-fault information, another 160 fault cases are simulated for
testing the network. These 160 test patterns are simulated for faults with different fault
location. fault inception angle and fault resistance compared to that of the training
patterns. Also, for the case when half-cycle pre-fault and post-fault information are used,
the DC component is found to be less than the fundamental component and hence all the
344 fault cases generated are used either in the training set or the testing set. Out of these
344 test cases, about 100 cases are used in the training set for fault indication purposes
and the rest are used in testing the ANN. For fault location purposes, more fault cases are
needed in the training set and the details are explained in the sections to follow.

Table 6.3 represents the combinations of different system conditions for which the
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fault data are generated, to be used in the ANN algorithm for fault indication and fault

location purposes. For example, a single-line-ground fault is si with a fault
resistance of 5 €, with fault location at 80% of the line from the substation A (Fig. 5.3)

and the fault inception angle of 0°. Similarly, faults for other combinations are simulated.

Table 6.3: Combinations for which fault data is simulated

Fault resistance Location of fault (%) Fault inception
Re(Q) angle
0,10 31,83 0°, 45°, 90°, 180°,
270°
5 (Line-to-ground) 80, 81, 85,90, 95 0°,45°,90°, 180°,
25 (Three-phase fault) 270°

5, 10, 15, 20, 25, 30, 35, 40, 28°, 40°, 45°, 95°
10 45, 50, 55, 60, 65, 70, 75, 80,
85, 87, 89, 90,91, 93,95
0 (Line-to-ground) 5, 10, 15, 20, 25, 35,40, 282, 40°, 45°, 95°
50 (Three-phase fault) | 45, 50, 55, 60, 65, 70, 75, 80,
85, 87, 89, 90,91, 93,95

6.3.1 Single-line-to-ground Fault Indication

Fine tuning procedure is adopted to design the neural network. Only 100 cases are

found to be sufficient to train the network for single-li ground fault

indication. These 100 cases included the pattems for faults occurring at different fault
location, with a fault resistance of 0  and/or 10 Q, and the fault inception angle ¢ of 0°,
90°, 180° and/or 270°. The testing is first done only with the 84 test cases having the

same fault distance, fault resistance and the fault angle as that of the training patterns. The
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fine tuning method, as explained in chapter 5, results in a two hidden layer network with 4
neurons in the first hidden layer and 2 neurons in the second hidden layer to give the best
result. The convergence to the error goal is obtained in 5 minutes and in 146 epochs.

In order to make the ANN more generalized in nature the ANN algorithm is
presented with 160 fault data that has entirely different pattems from the training data. as
explained in the previous section. The neural network never saw these patterns, and its
task is to classify new patterns based solely on the previous experience ie., using the
information leared during the training. The ANN is found to test accurately 97% of the
different fault patterns. The correct testing indicates that the ANN has generalized and not
just memorized the patterns. The trip decision in this case is obtained in just half-a-cycle
after the fault inception. This is clearly an advantage over the same algorithm when one-
cycle of post-fault information is considered. The response of the ANN algorithm for the

single-line-to-ground fault indication purposes is shown in Fig. 6.5.
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Figure 6.5: Response of the algorithm for single-line-to-ground fault indication using

half-cycle pre-fault and post-fault information
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The ANN does not suffer from the reach accuracy that was present in the Fourier
algorithm. The Fourier algorithm was not able to classify the fault occurring at 95% of the
line and with a fault resistance of 10 Q as being outside the protection zone (Fig. 3.6),

whereas the ANN based ithm has ized it (Fig. 6.5). While training.

the neural network, 85 of the 100 cases represented the faults lying inside the trip region
and the remaining 15 cases represented the faults lying outside the trip region. Even
though the training patterns are not symmetrically distributed between the trip and no trip
region, the network is able to learn all the cases well. The first zone of protection can be

safely set to 90% of the transmission line.

6.3.2 Single-line-to-ground Fault Location

With the fine tuning procedure, the network structure of 32-5-3-1 is found to be
accurate for the single-line-to-ground fault location case. In this case, 125 training cases
are found to be sufficient for the network to learn the patterns. These 125 training patterns
included the cases for faults occurring at different fault location, with a fault resistance of 0
Q and/or 10 €, and the fault inception angle @ of 0°, 45°, 90°, 180° and/or 270°. To
converge to the error goal, 242 epochs are needed for the chosen network structure and
this is achieved in 37 minutes of real time. The algorithm locates 92% of the faults
accurately when presented with the 84 test patterns that are similar to the testing patterns.
When tested with different test data, the neural network identifies 84% of the cases

accurately. When presented with test data of faults occurring at a different fault resistance
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of 5 Q, the network is able to accurately identify the location of the fault, as illustrated in
Fig. 6.6. The decision of the ANN algorithm is obtained in half a cycle after fault
inception.

Figure 6.7 illustrates the response of the network in the presence of different fault
distances not used earlier. The results show that the ANN algorithm accurately locates the
faults. The results are shown for faults occurring at 81% and 83% of the transmission line,

with the fault resistance of 0 Q.

o8 uTﬂJ
BANN |
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Figure 6.6: Response of the ANN algorithm for single-line-to-ground fault location in the
presence of a 5 Q fault resistance

(Distance of fault = 80%, 85%, 90% and 95%, ¢ = 0°, 90°, 180° and 270°)
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Figure 6.7: R of the ANN ithm for single-1i -ground fault location

(Distance of fault = 81% and 83%, @ = 0°, 90°, 180° and 270°, R;=0 Q)

The network is tested with cases of faults occurring at the fault inception angle @
of 28°, 40° and 95°, not seen by the ANN before. These test pattems are entirely different
from the training patterns. Figure 6.8 illustrates the results for few cases, for faults with @
of 95°. As seen from Fig. 6.8, the network is able to identify the faults accurately. The

same is found to be true for the fault angle of 28° and 40°.
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Figure 6.8: Response of the ANN algorithm for single-line-to-ground fault

location in the presence of fault inception angle of 95°

During training of the neural network for fault location, patterns with fault
inception angle of 0°, 45°, 90°, 180° and 270° are presented. The ANN output in this case
is the per-unit distance of fault and since the distances are chosen to be about 1% apart in
few cases, more training pattems representing all possible cases of fault should be
included to train the network properly. For the case of fault indication, patterns with fault
inception angle of 0°, 90°, 180° and 270° are sufficient. The network output in this case
has to be either 0.1 or 0.9 and the distinction between these fault pattemns is easily
obtained by the ANN algorithm.

The research is undertaken for only one loading condition. A neural network
should be trained for all possible conditions to be able to generalize properly. To obtain a

more accurate fault locator, it is important to include more training patterns representing
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all possible cases of fault. Since the learning rate of the network is fast, including more

training patterns will not pose difficulty in re-training of the network.

6.3.3 Three-phase Fault Indication

For the three-phase fault indication, 100 cases are i for training and 84
cases for fine tuning the network. The 100 training cases represent the faults occurring at
various fault locations, with fault resistance of 10 Q and 50 Q and the fault inception
angles at 0°, 90°, 180° and 270°. A network structure of 48-3-3-1 is able to classify the

faults in the region of trip/no trip for the case of three-phase faults using half-cycle pre-

fault and post-fault i jon. The network to the error goal in about 42
epochs and 3 minutes.
As in the case of single-line-to-ground fault indication, 160 fault patterns that have

different fault resistance, fault distance and fault angles are tested. The response of the
ANN output for few cases is illustrated in Fig. 6.9. The network is able to identify 97% of
the 160 test cases presented to it. The incorrect answers are mostly in the boundary
region. It is to be noted that the testing patterns are different from the training patterns.
Also, as indicated earlier, there are small fluctuations in the ANN output. For practical
applications, small threshold levels have to be built onto the ANN algorithm in order to

the degree of inty [8, 32]. In this ication, for most of the cases, the

output is either 0.9 or 0.1 depending on the fault cases and the deviation from this value is

observed only in few cases. In such a case, if the output falls in the interval 0-0.499, it is
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classified into the no trip region and if it falls in the interval 0.5-1, it is classified into the

trip region.
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Figure 6.9: Response of the ANN algorithm for three-phase fault indication using

half-cycle pre-fault and post-fault data

Similar to the case with single-line-to-ground fault indication, the neural network
for three-phase fault indication is found to maintain the reach accuracy. Further, though
the testing patterns using different fault distances are spaced by only about 2% apart, the

network is able to classify it properly.
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6.3.4 Three-phase Fault Location

For this case, 170 training patterns are needed for the network to leamn the
patterns. The training patterns represent the faults occurring at different fault locations,
with the fault inception angle of 0°, 45°, 90°, 180° and 270°, the fault resistance being 10
Q and 50 Q. Fine tuning the network with 54 test patterns that are similar to the training
patterns, a network structure of 48-5-4-1 is found to be accurate. The network trains in 76
epochs and the training time is 24 minutes.

Similar to the case of the single-line-to-ground fault, the response of the ANN
algorithm for three-phase fault is accurate for faults occurring in the presence of different
fault distances, fault resistance and different fault inception angles. 160 patterns are tested
and the network is accurate for 85% of the cases. It is to be mentioned that further work
can be carried out to improve the percentage of correct testing.

Figure 6.10 illustrates the response of the ANN for three-phase fault location in
the presence of a fault resistance of 25 Q. As seen from Fig. 6.10, the faults have been
located accurately. It is to be noted that the ANN algorithm is tested for cases not seen by
the ANN at any point of time, and these test cases are quite different from the training
cases, as the fault resistance is entirely different. The ANN based algorithm is found to be
an accurate fault locator in the presence of different fault distances, as indicated in Fig.
6.11. Taking into account that in some cases, the distances are spaced just by 1% apart,
the ANN-based algorithm has been able to identify the faults accurately for the cases not

seen before. Hence the neural network can be considered as accurate.
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Figure 6.10: of the ANN algorithm for three-phase fault location in the presence

of a 25 Q fault resistance

(Distance of fault = 80%, 85%, 90% and 95%, @ = 0°, 90°, 180° and 270°)

Distance In p.u

Figure 6.11: Response of the ANN algorithm for three-phase fault location at different

fault distances (81% and 83%) , Re= 0Q
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The behaviour of the ANN based algorithm for three-phase fault location, in the
presence of different fault angles is found to be similar to the single-line-to-ground fault
location case. The ANN output for some of the test cases when the fault inception angle is
95° are shown in Fig. 6.12. As seen from the results, the ANN based algorithm has
located the faults accurately, even though the test patterns are different from the training
patterns. Hence generalization of the algorithm has been achieved. The maximum error in
locating the exact fault is less than + 2.5% even for the testing patterns not seen by the
network before. The percentage of correct testing is 85%. Similar to the testing for ¢ of
95°, the network is found to locate the faults accurately in the presence of different fault

inception angle of 28° and 40°.

H oAca]
g i 1
=
a
Figure 6.12: R of the ithm for three-phase fault location in the presence of

fault inception angle of 95°
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6.4 Performance Analysis of the ANN for Transmission Line
Relaying

The optimum structure chosen for the ANN based algorithm (using half-cycle pre-

fault and half-cycle post-fault data) for transmission line relaying in case of single-line-to-

ground faults and three-phase faults is shown in Table 6.4. For the cases of single-line-to-

ground fault indication and three-phase fault indication, the of correct testing
is found to be 97% and 96% respectively. For fault indication, it is found that only 100
cases are sufficient for training and the network is able to identify the faults lying in the
trip/no trip region for cases that are different from the training patterns and not seen by
the network before.

For fault location purposes, the percentage of correct testing is 84% in case of
single-line-to-ground faults and 85% in case of three-phase fault. The response of the
neural network for different loading conditions is not considered in the present work. The
ANN should be trained with a wide range of data to obtain an accurate fault locator.

The proposed neural network is small in size, robust and accurate. The learning
time is less in comparison with that of [8, 11, 12]. The maximum training time, in the case
of single-line-to-ground fault location is 37 minutes. For on-line implementation, a
shorter training time is definitely an advantage. The trip decision is obtained in about
half-cycle after the fault inception. The neural network tests accurately for faults

occurring at different location, fault inception angle and fault resistance.
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6.4.1 Comparative Analysis

With the proposed scheme, the trip decision is obtained in about half-cycle after
fault inception, in comparison with the trip decision obtained after one-cycle in [9] and
[15]. Also, the proposed method has a small network size and is able to leam the patterns
in a short interval.

This research has shown that an ANN-based method for transmission line relaying
has the potential to provide more accurate results compared to the Fourier algorithm. The
reach accuracy of the Fourier algorithm based distance relay is affected by the different
fault conditions. This problem has been overcome in the proposed ANN method for the
distance protection of transmission lines. The time taken for the trip decision in case of
full-cycle Fourier algorithm is found to be approximately 1% cycle after the fault
inception. The ANN based algorithm arrives at a decision in half-cycle after the fault
inception.

It is seen that the ANN method based on one-cycle of post-fault information and
on half-cycle of pre-fault and post-fault information are both reliable. The main difference
in these algorithms is the time taken to give a decision. In the former case, the trip
decision is obtained after one cycle of fault inception, whereas in the latter, the decision is
obtained in just half a cycle after the fault inception. Both algorithms are found to be
reliable in all the cases considered, ie., single-line-to-ground fault indication, single-line-
to-ground fault location, three-phase fault indication as well as three-phase fault location.

The ANN method using half-cycle pre-fault and post-fault information needs lesser
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number of training sets compared to the one using only post-fault information. From
Table 6.2 and 6.4, it is seen that the number of neurons are only slightly different and
hence the training time and number of epochs needed are different for the algorithms
based on post-fault information only and based on using both pre-fault and post-fault
information. But this difference is due to the design process adopted in modifying the
structure so as to obtain a good network.

This study has shown that an ANN based algorithm using half-cycle pre-fault and

half-cycle post-fault i ion gives a better in terms of speed as well as

accuracy compared to the one based on the post-fault information only. The results
presented in Table 6.4 are for the test cases that are different from the training cases and

are not seen by the ANN before.

6.4.2 Advantages of the Proposed ANN Scheme

Some of the advantages of the proposed ANN based algorithm are:
*  The trip decision is obtained in half-cycle after fault inception
* The results obtained are reliable and accurate
* The neural network employed is small in size
«  The proposed neural network has fast learning capability
e Fault indication and fault location are achieved simultaneously
o The proposed algorithm is able to give an accurate decision in the presence of fault

resistance and thus not suffer from the reach accuracy
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* The performance of the ANN is not affected by the changes in the fault conditions
such as different fault resistance, fault inception angle and fault location
These advantages are true both in the case of single-line-to-ground fault case as well as in

the three-phase fault case.

6.4.3 Limitations of the Proposed ANN Scheme

The design process is basically a trial and error method [33, 38]. This is one area
in which research work is yet to be undertaken for a proper method to be adopted for
designing the neural network. The study did not consider the different loading conditions
of the power system. This may be one of the reasons why the proposed neural network
gave incorrect answers for some of the test cases. A possible approach to overcome this

problem is to include more data to train the network.

6.5 Proposed Scheme for On-line Implementation

The performance of the trained neural network shows promise and has the
potential for implementation in a digital relay for transmission line protection. The work
was done off-line, using data generated by EMTP [23]. Figure 6.13 shows the complete
block diagram for a possible on-line implementation of the ANN based relay. One end of

the ission line is to the ing station through a high voltage bus and

the other end is connected to the remote power system. The voltage and current signals

are taken from the transmission line by the voltage transformers and the current
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transformers respectively and passed on to the anti-aliasing filters that have a low cut-off
frequency. The anti-aliasing filter should behave as a low pass filter with a cut-off
frequency lower than 480 Hz. The data at the required sampling rate is obtained and
passed on to the Fast Fourier Transform (FFT) filter. The frequency components of the
voltage and current signals are obtained for consecutive samples, till the selection logic
identifies that there is sufficient information regarding the fault, ie., the selection logic
chooses patterns containing half-cycle pre-fault and half-cycle post-fault information.

The results of this research are based on the assumption that the frequency
components of half-cycle pre-fault and half-cycle post-fault voltage and current signals
are available. However, in the real environment it is very difficult to exactly know the
point of fault occurrence. But different methods can be investigated and included as a pre-
processor for the proposed ANN based relay.

A one-cycle sliding window of voltage and current signals can be used. This will

d ine the of voltage and current signals using the FFT

algorithm during each sampling interval. Before the occurrence of the fault, only the

fund: will be signi After the fault occurs, the non-

fundamental frequency components will also become non-negligible. As the data window

moves, the will contain ient i i ing the fault.
The ANN trained using a fixed type of data window will not give accurate results
when provided with frequency components information obtained from a different type of

data window. If the time of fault occurrence is known, the data window that is specific to



130

the ANN can be used. Also, a sliding window of one cycle can still be used. In this case,

the fre should be contis stored. Once the possibility of a fault is

known, the frequency components can be retrieved and given to the ANN.

Many ANN based fault classification algorithms are already available [9, 32, 39].
The purpose of the fault classification algorithm is to utilize the respective fault data in
the proper ANN based algorithm for the fault indication and fault location. For the single-
line-to-ground fault case, the present study considered the fault occurring at phase a of the
transmission line, and hence the inputs used are the frequency components of the voltage
at phase a and the current at all the three phases. For single-line-to-ground fault occurring
at other phases, the corresponding phase voltage is to be selected to obtain the off-line

weights and biases. In the on-line i ion, the fault i i ithm would

indicate the phase in which the fault has occurred in a single-line-to-ground fault.

The weights and biases obtained in the off-line process for fault indication and

fault location purposes are stored in the mi for the on-line ication. The

procedure to obtain off-line weights and biases involves three main tasks:

& EMTP simulation — To obtain the fault data

ii. FFT computation — To obtain the frequency components of voltage and current
signals

iii.  Training of the ANN — To map the input-output pairs and thus obtain the weights

and biases.
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Figure 6.13: Block diagram for the on-line implementation using the proposed scheme
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In the off-line training, the neural network learns and generalizes the different fault
patterns. This learning is basically stored in the form of weights and biases that represents
the mapping between the input-output patterns. In the on-line process, the neural network
recognizes any fault pattern by comparing the inputs with this mapping and thus provides a
corresponding output.

In the off-line training, the hidden layers have neurons with log-sigmoidal transfer
function. The /logsig transfer function is so chosen, as it limits the output to a continuous
value between 0 and 1. The output needed for the proposed scheme is also within 0 and 1.
For the on-line scheme, this /Jogsig transfer function is implemented in the hardware.

For fault indication, the trip decision is obtained as either 0.9 or 0.1 and this is
relayed to the circuit breaker. For fault location purposes, the exact location of fault is
conveyed to the power system operator, so that the necessary maintenance can be
undertaken. The decision in both the fault indication and fault location cases is arrived in
about half a cycle after the fault inception.

Many transmission line fault locators indicate the location of the fault using the
post-fault processing features of the digital relay. Using the ANNs proposed in this
research, the location of the fault can be known as soon as the circuit breakers open the

faulted line based on the trip signal received from the relay.
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6.6 Summary

The concept of utilizing the frequency components of the voltage and current
signals as inputs to the neural network has resulted in a neural network that is small in size,
robust and accurate. The time taken to give a trip decision is around half a cycle after the
fault inception. In comparison with the neural networks available in this area, the proposed
neural network has the advantages of being small in size, accurate, faster learning rate as
well as accurate relaying decision.

This chapter has presented in detail the simulation results obtained for the
proposed ANN scheme for transmission line relaying. The algorithm based on the post-
fault information is found to be accurate both in the case of fault indication and fault
location purposes. The neural network employed is small in size and reliable. The trip
decision is obtained after one-cycle of fault inception.

In order to improve the speed of the relay, half-cycle pre-fault and half-cycle post-

fault information of the voltage and current frequency components are used as the inputs

for the algorithm. In all the four cases i ie., single-line-to-ground fault

igle-line-to-ground fault location, three-phase fault indication and three-ph
fault location, the results are found to be accurate and reliable. The trip decision is given in
about half a cycle after the inception of the fault.

In the cases considered, the basic structure of the neural network is similar, ‘e.,

each of them have two hidden layers. The number of epochs needed to converge to the

error goal is quite less. One of the advantages of the proposed algorithm is that the
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network learns fast, thus significantly reducing the training time.

For fault indication purposes, the network is able to identify all the fault cases and
generalize well. The proposed neural network fault locator shows good performance with
changes in fault resistance as well as in fault distance. In the presence of a fault resistance,
it is seen that the neural network is able to identify the cases correctly, thus maintaining the
reach accuracy of the relay.

A comparative study indicates that the neural network based on half-cycle pre-fault
and post-fault information, shows better performance in comparison with the neural
network based only on the post-fault information. A scheme is proposed for the on-line

implementation of the proposed algorithm.
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Chapter 7

Conclusions

7.1 Contributions of the Research

The rapid progress in electrical power technology has made it possible to construct
economic and reliable power systems capable of satisfying the continuing growth in the
demand for electrical energy. Power system protection plays a significant part and progress

in the field of power system ion is a vital isite for the efficient ion and

continuing development of power supply systems as a whole. Fast and accurate location of

faults in an electrical ission line has become i i i as
lines are a vital link between the generating system and the distributing system.

A protective relay responds to abnormal conditions in an electrical power system
and controls the circuit breaker so as to isolate the faulty section of the system, with
minimum interruption to service. With artificial intelligence becoming popular in the area

of power systems, ive relays are iencing impi related to shorter

decision time, as well as in being accurate. The research demonstrates the use of an
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Artificial Neural Network (ANN) as a pattern izer for ission line p
relaying.

An ANN relay for the transmission line protection has been proposed and
simulated in the present research work. The feedforward neural network employed
indicates whether a fault is within or outside the protection zone and also identifies the
exact location of the fault. Data obtained from the EMTP is used to train and test the
neural network. Faults at various locations in the transmission line, with different fault
inception angle and fault resistance are simulated.

The proposed ANN relay utilizes the frequency components of voltage and current
signals as the inputs. The frequency components are obtained by passing one cycle of
fault data through a Fast Fourier Transform (FFT) filter. In the earlier part of the research,
this one-cycle of data consisted of pure post-fault information. The results of the ANN of
this case are found to be accurate. The next part of the research concentrated on
improving the speed of the relaying decision. To achieve this objective, the one cycle of
fault data consisted of half-cycle of pre-fault and half-cycle of post-fault information.

The sampling frequency is 960 Hz and the frequency components up to the eighth

b ic are found to be ient. A unique i ip is found between the fault and

the frequency components of the voltage and current. The Total Harmonic Distortion
(THD) in voltage and current decreases with increase in the fault location, from the

generating end. The design of the ANN for ission line ion can be

treated as a pattern recognition problem. The ANN identifies the patterns of the associated
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voltage and current frequency components and gives a relaying decision. The proposed
ANN uses the backpropagation algorithm.

Four neural networks are designed for the following cases: single-line-to-ground
fault indication, single-line-to-ground fault location, three-phase fault indication and
three-phase fault location. The single-line-to-ground fault at phase a is considered and the
frequency components of voltage at phase a and frequency components of currents in all
the three phases form the 32 inputs to the ANN. For the case of three-phase fault, the
frequency components of all the phase voltages and currents are used, thus forming 48
inputs to the ANN. The output of the ANN for fault indication case is either 0.9 or 0.1
depending upon whether the fault is inside the protection zone or outside the protection
zone. For fault location purposes, the ANN gives an output that indicates the per unit
distance of the transmission line.

The neural network structure is found to be small in size. The existing ANNs in
the concemed area of study are found to have long training times. Utilization of the
frequency components of the voltages and currents resulted in the proposed neural
network with fast learning capability. Shorter learning time is an advantage for the on-line
implementation schemes.

The performance of the proposed ANN has shown promising results. The decision
to give a trip/no trip signal as well as the exact location of fault is obtained
simultaneously in about half a cycle of the fundamental frequency, after the fault
inception. The results of the ANN output are found to be accurate under different fault

conditions. In the presence of fault resistance, the network is able to maintain the reach
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accuracy of the relay, which is set at 90% of the transmission line. Thus, with the use of
the ANN relay, it is possible to extend the first zone reach of the relays, enhancing system
security. The main advantage of the ANN relay in comparison with the conventional relay
is the ability to maintain this reach accuracy. For the case of fault location, the maximum
error is found to be within +2.5%. In practice, the exact location of fault will significantly
reduce the span of the line length that would have to be inspected.

The existing work is mostly concentrated on the single-line-to-ground fault case.
The present research has been carried out for both the single-line-to-ground fault case as

well as the three-phase fault case. The results are found to be accurate in both the cases.

7.2 Suggestions for Future Work
The work reported in this thesis can be extended in the following areas:

«  The design process for selecting the optimum neural network is through trial and error
procedure. The methodology for the training sequence and selection of the optimal
training conditions are issues of concern while designing the neural network. Further
work can be carried out in this area to select the ANN based on certain fixed
guidelines.

* Different ANN algorithms like Self Organizing Maps, Radial Basis Network and
Leamning Vector Quantization can be studied for suitability of application to

line ion. These i are self-learning and have the potential

to be itive with i ion algorithm. Radial Basis

Networks lead to smaller ANNs.
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The research work is carried out only for one loading condition. The power system is
prone to different loading conditions and hence to obtain a more accurate ANN relay
for transmission line protection, more patterns that are representative of the various
faults should be used in the training set.

The results obtained by the proposed ANN scheme shows promise and has the
potential for the on-line implementation in a digital relay. Further investigation can be

carried out to improve the run-time of the proposed method.
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Appendix-A

Transmission Line Parameters

A 345 kV, 160 mile transmission line is simulated using EMTP [23]. Figure A.1

represents the sample power system used in the sis ion. AB the

line and F represents the fault. It is assumed that the relay R is located at substation A. On
345 kV base, the voltage at the sending end of the line represented by A is 1.02 p.u and
the voltage at the receiving end of the line represented by B is 0.97 p.u. The simulations

are carried out for a loading condition of 520 MW and 245 MVAR at the receiving end.

Figure A_1: Single line diagram of the sample power system

The line of the ission line are in Table A1 [24]. Ro,

Lo and Co represent the zero seq of resi i and

capacitance respectively. Ry, L, and C, represent the respective positive sequence

of resi s and i The negative sequence parameters

(R, L2 and C,) are the same as the positive sequence parameters.



45

Table A.1: Line parameters of the transmission line

Ry = 0.461 mile R, = R, = 0.0614 mile
L, = 5.9944 mH/mile L, =L, = 1.7344 mH/mile
Co=0.015 uF/mile C, =C, =0.01856 uF/mile

The system frequency is 60 Hz.

Ratings of the generator G: 400 MVA, 15 kV, wye grounded

Ratings of the transformer T: 400 MVA, 15 kV/345 kV, wye grounded-wye grounded
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