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Find out the cause of this effect • • • 

Shakespeare 



Abstract 

The oxygen consLUnption of the onunastrephid squid IUex 

illeceb4o4U6 from Newfoundland waters was determined by the flowing 

water method and the hyponamal tube implanation method. Using 

statistical analysis, the total oxygen consumption per hour was found 

to be related to body weight, but with no significant difference 

between the sexes. This relationship was found to be similar to that 

reported for Octopuo cya.ne.a. and Sep..i.a. o66i.c.ina£1..6. The rate of 

oxygen consLUnption does not show a significant relationship to body 

weight. 

IUex i.tteceb4o4uo shows no evidence of diurnal rhythm 

with ~egard to oxygen consumption under laboratory conditions. There 

is a significant decrease in oxygen consumption with decreasing 

salinity values. 

The effect of either raising or lowering the pH of the 

environmental medium causes irregular responses in oxygen consumption. 

These are discussed in detail, showing the sequence of alteration 

in the consumption through different ranges of pH. All of the increases 

in oxygen consLUnption may be explained as secondary effects of either 

physical (Chemical) stnnulation, or osmotic stress due to the addition 

of pH-altering chemicals (NaOH and HCl) or their dissociation products. 

Decreases in oxygen consumption with change of pH may be due to 



lessened oxygen-carrying capacity o£ haemocyanin, the Bohr Effect, 

or to acute shock When near~g the lethal ranges of pH. 

The absolute utilization of oxygen for 1. illeceb~o~U6 

was found not to be correlated with the body weight. The mean 

absolute oxygen utilization coefficient value was calculated to be 

19.53%. No correlation was found between body weight and volume of 

exhalent water per unit time. The mean exhalent water volume was found 

to be 35.62 litres per hour. 

All experiments were perfonned in the range of water 

temperatures 10-12°C. 
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INTRODUCTION 

Many of the investigations conducted on squid, have been 

physiological studies. However, relatively few of them have been 

concerned with oxygen consumption. Montouri (1913) worked on the 

oxygen consumption of several species of cephalopods (the octopods, 

OctopU6 vulg~ Lamarck,1798; Eledone mo~ehata (Lamarck,1798);and 

the sepioid, Sep.i.a. o66-ici..no.f...iA Linnaeus, 1761). His published data, 

however, did not provide sufficient infonnation with which to confinn 

the relationship between body weight and oxygen consumption of the 

animals. 

Winterstein (1925) reported 70% oxygen utilization by the 

octopus, 0. vulga/U.6. On the basis of his published data, it remains 

unclear as to the conditions under which the oxygen consumption of 

those animals was measured. More recently, Maginniss and Wells (1969), 

reported that the relationship between body weight and oxygen 

consumption of 0. c.yanea. Gray, 1849 was in agreement with that given 

by Zeuthen (1947), the slope of the regression line being b = 0.833. 

However, the majority of published data on the oxygen consumption of 

cephalopods have been restricted largely to representatives of the 

. genera OctopU6 and Sep.i.a.. Octopods and sepioids have rather 

different living habits than do the pelagic squids. The latter 

fonn living much more actively than the fonner two. Furthenno;re, the 
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squid is not as easy as the octopods and the sepioids to maintain 

under laboratory conditions. For this reason, experimental studies 

involving squid are scarce. 

It is well known that many environmental factors influence 

the oxygen consumption of aquatic animals. The salinity and pH of 

the media may be conceded as the main ellV'ironmental factors, in 

addition to the temperature, and to the partial pressures of oxygen 

and carbon dioxide. 

Same ichthyologists have pointed out the existence of diurnal 

fluctuation in oxygen consumption of same species of fish (e.g., Graham, 

1949; Clausen, 1936). It was thus deemed necessary to perfonn some 

experiments in order to determine whether or not the !£lex ~eeeb~o4U6 

(Lesueur, 1821) also exhibits this diurnal fluctuation. 

In general, there are three methods which have been used 

widely in determining the rat e of oxygen consumption o£ aquatic animals. 

These are (1) the flowing water method, (2) manometric method, and 

(3) the sealed chamber method. Each of these methods has certain 

advantages and disadvantages, and they are not always applicable in 

all situations. For example, the flowing water method, is . unsuitable 

for an:ilnals which naturally :inhabit stagnant water, while the manametric 

method is only suitable for studying small animals such as. guppies or 

small crustaceans. Therefore in selecting a method for the present , . 
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respiratory studies, the physiological and ecological characteristics 

of the squid had to be taken into consideration. 

Briefly, the three methods and the principles behind their 

use may be described as follows: 

A - The sealed chamber method 

The animal is placed in a measured volume of water which 

is sealed from atmospheric air. Over a given period of time, the 

difference between the initial and final oxygen content of the water 

is considered to represent the amount of oxygen taken up by the 

animal. The major advantage of the sealed chamber method is that 

it can be performed under a wide range of conditions and is especially 

suitable for field work in that it demands less elaborate equipment. 

However, the main disadvantages of this method are: 

(1) It is not suitable for actively moving animals, which 

in general have a high oxygen consumption rate,and requires a considerable 

space for their movement. Fry and Hart (1948) were able to overcome 

this difficulty. However, there are other problems presented by this 

method. 

(2) When the animal is placed in the sealed chamber for 

diurnal rhythm experiments, a large quantity of water is required. 

It builds up the stratification of oxygen concentration in the whole 

chamber (Keys, 1930). If a magnetic stirrer is used on the bottom of 

the chamber, this factor can be reduced, but the stirring movement 



CaUSeS the animal tO became excited, which mar a,ffect the anj)nal IS 

rate of oxygen consumption. 

(3) Carbon dioxide and feces accumulating in the chamber 

may affect the metabolic rate of the animal and the accuracy of the 

chemical determination of oxygen content. 

B - The manometric method 

This method is based on the physical properties of gaseous 

media. One can calculate the rate of oxygen constmlption from pressure 

changes in a closed container in which the experimental antmal is held 

at a constant temperature. The Warburg respirometer is the most widely 

used apparatus for this method. This method is most suited for small 

organisms and has the same weak points as mentioned above for the 

sealed chamber method. Oxygen can not be supplied continuously during 

the experiment, thereby obviating experiments of long duration. 

C - The flowing water method 

This method is used most extensively in studies :i."1volving 

larger aquatic animals. It is basically a simple method, and is one 

in which an animal is placed in a respiratory chamber through which 

the water flows constantly. The difference between oxygen content 

of inflowing and outflowing water represents the amount of oxygen taken 

up by the animal over a given period of time. This method has proved 

to be best suited for the purpose of studying aquatic animals which 

necessitate running water. Eliminated wastes, including carbon dioxide, 

are excluded easily by the continuous running water. Oxygen is 

I , 
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continuously replenished in this method. However, it also has 

some imperfections. Differences in the absolute values of oxygen 

content between inflowing and outflowing are small. Therefore, 

considerable error can be introduced, when calculating the rate of 

oxygen consumption (Winberg, 1956). The rate of water flow and size 

of the respirometer must be considered in experimental design for the 

particular organism under study. 

Taking all these aforementioned factors into consideration, 

it was decided that the mos~ generally suitable method for studies 

involving r. illec.eblto.61L6 was the flowing water method. 

The main objective of this study is to gain some lmowledge 

of oxygen consumption of the squid in order possibly to understand 

better its habits and distribution in relation to salinity and pH. 

It is furthennore hoped that this work will provide some of the much 

needed infonnation on squid metabolism in general. 

,.· 



MATERIALS AND METHODS 

Method of Capture and Maintenance of Squid 

The squid used in this series of experiments were caught 

by: (1) the use of conventional Neyle patent hand j~ggers, (2) a 

mechanized Japanese jigging machine (Quigley, 1964), or (3) a standard 

squid trap. 

All specimens were captured at Portugal Cove, Conception 

Bay, Newfoundland, between July and November in 1968 and 1969. Upon 

capture, a maximum of eight squid were immediately introduced into 

each of several sea water filled plastic buckets and rapidly trucked 

to the Marine Sciences Research Laboratory at Logy Bay. Each bucket 

contained approximately 16 gallons of sea water. The trip could 

nonnally be completed in 30 minutes. Usually, some of the squid thus 

transported died enroute to the Laboratory. 

Upon arrival at the Marine Sciences Research Laboratory, 

the squid were immediately transferred to 275-gallon circular tanks 

provided with continuous running sea water at a temperature of 

10 - 12~c. This temperature closely approximated the water temperature 

of the squid jigging ground during the period of the study. An 

f acclimation period of at least one day under laboratory conditions 

was pennitted prior to experimentation. It was found that stocks of 

squid could be maintained at the laboratory in these circular tanks 

for a number of weeks, if the squid were adequately fed. 

----·-- ·--···-.,. . .... - .. ~ •. ~ · : ...... -·.: ':"""t-·" ···- ·· - · ;:.---:'".-;"',':"'.,~. •- ·' .. ' . . ·~ . . . . -· ~ 



The squid were fed with dead capelin IMa.U.o:tu.!l yiU.olllU> 

~ller 1776)] which were suspended in the tank by a very fine 

monofilament nylon line as described by Bradbury & Aldrich (1969a). 

Occasionally it was found that squid would feed on living material 

such as small Atlantic cod [Gadu.6 molthu.a. L.], small tom cod 

[AU.CJl.oga.du.6 .tomc.od (WalbaUm)] or three spined stickleback [GM.teJto.6.te.u..6 

ac.ule.a-tu..6 L.]. After some time in captivity a m.unber of individuals 

developed lesions and other abrasions. Whenever possible, these 

damaged individuals were not utilized for experimentation and only 

specimens in good physical condition were used. 

The experiments reported herein involved the use of 60 squid, 

which ranged in wet weight from 89.5 grams to 473.3 grams, with only 

two squid weighing less than 100 grams. Prior to exper:imentation, 

the selected squid were starved for a period of at least 12 hours. At 

the completion of metabolic studies, the squid were immediately weighed 

and dissected to determine sex and content of digestive tract, if 

any. Records were also kept with respect to internal parasites and 

morphological anomalies that were encountered. 

Chemical Determination of Dissolved axygen Content 

Since the water of Logy Bay is not polluted, the dissolved 

oxygen concentration could be determined by the Unmodified Winkler 

method (Barnes, 1959) • Standardization of soditun thiosulphate 

solution was performed every two days. A 10 ml automatic burette 

was used for titrations. 

' 
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Determination of Basal Metabolism 

A. Tube implantation method 

Twelve squid were studied for oxygen constml.ption using a 

tube fixed in the hyponome (or funnel) (Fig. 1) in such a way as 

to permit collection of all water expelled from the mantle cavity in 

the exhalent phase of a hydrojet cycle (Zuev, 1970). 

The implantation of surgical gum rubber tube followed, 

in principle, the procedures used by Johansen (1965) and Johansen and 

Lenfant (1966) in Oc.toplUJ do6£.e1.nl. (wlllker, 1910). 

After 12 hours of starvation, the squid were immersed in 

-1°C or -2°C sea water for anesthesia during the implantation of the 

rubber tube. The tube, with an internal diameter of 9 nnn, measured 

15 ans in length. It was inserted into the hyponome and fixed there 

by means of sutures. After this procedure, the squid were returned to 

sea water of normal temperature. Such animals were not able to 

maintain normal position and always turned upside down (i.e., ventrum 

uppermost); nevertheless, respiration still continued unobstructed. 

The squid were then placed into a respirometer and allowed 

to further recuperate; usually the squid recovered quickly (in about 

20 minutes) and could live at least two days without feed~g, although 

maintaining their upside down posture. 

From the respirometer, the distal end of the tube was 

inserted into a graduated container and it was thus possible to obtain 

' .c:;;;:::;;::;;; • 
-.., 



Figure 1. Drawing of head o£ 1U.ex W.e.c.ebll.o~u& indicating 

the method of implantation of tube into the 

hyponome and suturl;ng it into place. 

Legend: 

A - Rubber Tube 

B - Curved Needle with sterile silk threau 

C - Hyponome or Funnel 

D - Forceps 
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data on the total voltmle of exhalent water. Oxygen constmlption 

rates were obtained by a comparison of simultaneous dissolved oxygen 

determinations on (a) reservoir water samples, and (b) exhalent 

water samples delivered directly into B.O.D. bottles, again using 

the Unmodified Winkler method. 

B. Flowing water method 

(I) A description of the apparatus 

The respirometer (Fig. 2) employed in this study clos~ly 

followed that used by Keys (1930) but with one major modification. 

This was the incorporation of a magnetic stirrer at the bottom of 

the 16-gallon water reservoir which prevented oxygen stratification 

of the water either before or during the period of experimentation. 

The water from the reservoir was carried through transparent plastic 

tubing to the constant-level bottle which functioned to maintain a 

constant flow rate throughout the system. The water from the 

constant-level bottle flowed L~to one or both of the two respirometers. 

The respirometers were completely tmmersed in a sea water bath to 

maintain constant temperature. The tube entering the respirometer was 

wrapped with gauze, inducing an even exchange of water within the 

apparatus. 

Cole-Parmer Company flow meters were attached to the outlet 

of each respirometer so that the rate of flow of the water could be 

adjusted either by means of a clamp between the respirometer and the 
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Figure 2 •. Diagram of respirometer and associated apparatus 

used in measuring oxygen consumption by I.Ue.x. 

illec.ebJLo.6 U6 • 

Legend: 

A - Sea Water Reservoir 

B - Constant-Level Water Bottle 

C - Water Bath 

D - Respirometer with Squid in Place 

E - Flow Meter 

F - Source of Water Samples for Subsequent Oxygen 
.Analyses. . 
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flow meter, or by the constant-level water bottle. 

Water samples were taken slinultaneously from the constant­

level bottle and flowmeter outlet, using standard 250 ml B.O.D. 

bottles, following procedures recommended by Strickland and Parsons 

(1968). 

The respirometers were constructed of transparent glass, 

and were placed in a water bath which was completely covered by black 

plastic screens to prevent visual excitation of the squid during an 

experiment. 

(II) Experimental method 

In this series of experiments, 48 squid were studied. The 

sea water temperature of the respirometer was maintained at ll°C ± l°C 

by adding either hot or ice water to the water bath. The sea water 

entering the reservoir was first filtered through gauze to prevent any 

debris or particulate matter from entering the system. The rate of 

water flowing through the respirometer was maintained at between 40 

and 50 liters per hour. 

It proved necessary to wait for five hours after the 

transfer of the squid to a respirometer for the squid to attain a 

state of basal metabolism (i.e., resting state). Therefore, the actual 

observations on oxygen consumption of the squid began when the repeated 

samples showed a fairly constant level (Fry, 1957). 
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In the respirometer, the squid was oriented so that the 

anterior end was placed fac:ing the incoming water current. If the 

water current was adjusted properly, the squid would became quiescent, 

and assume the resting position as described by Bradbury & Aldrich 

(1969b). 

Determination of Effect of Salinity on Basal Metabolism 

The effect of salinity on the basal metabolism was determined 

for eight squid. 

After measuring the basal metabolic rate using the flowing 

water method, the salinity was gradually decreased by the introduction 

of distilled water into the water reservoir of the apparatus. The 

altered salinity ranged from 16°/ to 31.18 °/ . Water sampling . 00 00 . 

procedures were the same as those described for ascertaining basal 

metabolic rate. Salinity and oxygen consumption rate of the squid 

were determined simultaneously at hourly intervals until the death of 

the squid. 

The salinity of the samples was determined usi:ng the silver 

nitrate technique as described by Smith & Kammer (1968). The silver 

nitrate solution was standardized against "Eau de Mer Normale". 

Determination of Effect of pH on Basal Metabolism 

As in the studies involving salinity variation, ·a series of 

experiments were conducted on 31 squid for which the basal metabolic 
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rates were known to determine the effects of altered pH on oxygen 

consumption. The pH of the water in the respirometer was altered by 

the addition of controlled amounts of either hydrochloric acid or 

sodium hydroxide solution. The latter gave rise to a certain amount 

of trouble in that precipitation of magnesium hydroxide occured at pH 

value's approaching 10. When this happened, the magnesium hydroxide 

precipitate was filtered out in another water reservoir prior to the 

water entering the experimental water reservoir and the respirometer. 

One further cause of trouble was .the precipitation of calcium hydroxide 

at pH 12. However, most experimental squid died before the pH value 

approached 12. 

The method of acidification and basification of sea water 

followed the techniques recommended by Kukubo (1962). In all instances, 

the pH of sea water was measured using a Corning pH meter (Model 7), 

compensated for temperature. 

' 
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RESULTS 

(I) The Effect of Sex and Size on Oxygen Consumption 

The oxygen consumption data were plotted arithmetically 

against body weight and were found to be of a curvilinear (parabolic) 

nature. It was subsequently found necessary to use logarithmic 

transformations for all analyses. The complete data are presented in 

Appendix A. 

The logari tlunic relationship between body we.ight and oxygen 

consumption was determined by linear regression, the equation for 

the line being Y ;:: a + bx (Figure 3). The relationship was calculated 

for each sex as well as for combined sexes, and is presented in 

Appendix A. 

In all cases the correlation coefficients were found to 

be significant (P .::_ 0. OS). 

In order to compare the correlation coefficients of the 

male and female lines, it was necessary to transform the coefficients 

using Fisher's Z transformation {Z = ~ [loge (1 + r) -loge (1 - r)]}. 

The Student's T test was then used to determine the significance of 

the two Z values. T was 0. 2427 which was found not to be 
zl - z2 

significant at 0. OS level. There is, therefore, no significant 

difference between the sexes in the relationship of body 

weight to oxygen consumption. Similarly, no significant difference 



~18-

Figure 3. Relationship between oxygen consumption and 
' ' 

body weight of ru.ex .ill.ec.eblt0.6U6 Cfemperature 

10-12°C). 

Legend: 

Ya - regression line for ~ n = 34 

Yb. - regression line for· r:! n = 26 

Yc - regression line for combined sexes n = 60 
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was found between the regression coefficients (r) of the male and 

female samples. It was thus justified to combine the samples. The 

regression line was calculated for the combined sexes and found to 

be: logY= 0.8738 log X -0.4584 (n = 60). The correlation coefficient 

(r = 0. 7524) was tested and found to be s.ignificant (P ~ 0.05). 

The relationship between the rate of oxygen consumption 

(ml/g/hr) and body weight (Figure 4) was also tested for the two sexes. 

The correlation coefficients (:~:r ·~ -0.05838; c!:r ~ -0.2723) were 

tested and surprisingly neither :was. found to be significant (P ~ 0.05). 

Thus there is no correlation between metabolic rate and body weight. 

Complete data are presented in Appendix A. 

(II) Diurnal Rhythm in Oxygen Consumption 

In an attempt to determine whether an endogenous cycle in 

oxygen consumption exists, five squid were maintained in the respirometer 

over 24-hour periods. Oxygen consumption values were obtained every hour 

over the entire 24-hours. 

The results are presented in Figure 5. 

At times, the experimental squid became active and swam 

about the respirometer. These periods of activity were reflected by 

marked increases (peaks) in the oxygen consumption and are identified 

by asterisks in Figure 5. Values obtained in this series of experiments 

are presented in Appendix B. 
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Figure 4. Relationship between rate of oxygen consl..D1lption 

to body weight of Illex illeeeb~o~U6 (temperature 

10°-12°C.) 

Legend: 

Ya - regression line for ~ n = 34 

Yb - ~egression line for c! n = 26 

Yc - regression line for combined sexes n = 60 
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Figure 5. Relationship between oxygen COI1S1.D1lption by 1Ue.x. 
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The plotted data reveal no apparent t·rends. 

(III) The Effect of Salinity on Oxygen Consumption 

Regression lines \vere calculated for the relationship 

between oxygen ~onsumption and salinity separately for each squid 

studied. These relationships are presented in Figure 6. The sample 

size, body weights, salinity regression lines and correlation 

coefficients are tabulated in Appendix C. 

The correlation coefficients of the regression lines were 

tested for significance and it was found that in all but two individuals 

(numbers 1 and 2) , they were significant at the 0. OS level. These data 

indicate a definite trend toward the reduction of oxygen consumption 

as the salinity of the sea water decreases. 

(IV) The Effect of Sea Water pH on Oxygen Consumption 

In Figures 7 through 10 are presented graphically the results 

of the pH experiments. The pH of the sea water was eithe~ gradually 

decreased from a pH of 8 (normal) to a terminal pH of 4.7 (Figures 7 

and 8) or increased to a terminal pH of 10.2 (Figures 9 and 10). 

In general, the oxygen consumption tended to decrease 

initially as the pH of the sea water decreased, with a further pH 

decrease the consumption tending to increase to a maximal level between 

pH 5. 0 and 6. 7. After the point of maximal oxygen consumption had 



Figure 6. Relationship between oxygen cons1.Ullpt:i::on and decreasing 

saUnity. (Temperature 1Q .. 12QC). (Each regression l:ine 

represents an individual specimen of IUex. ille.c.e.bM.6U6. 
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Figure 7. Relat:i:onsfu."p between oxygen COilSUillJ?tion by 

male TUe.x. ill.e.c.ebJr.o.&U() and decreas:i?J.g pH of 

the sea water. Cfemperature 1Q .. 12°C}, 

(Pach line represents a single individual}. 
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Figure 8. RelationshJ."p between oxygen con.sumption by 

female tUex. ili.ec.e.b!Lo!IU6 and decreasing pH 

of the sea water. Cfemperature ~Q ... ~2QC) • 

(Each line represents a single individual.) 
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Figure 9. Relationslup between oxygen consumption by 

male !Uex W.ec.eblto~IJ.6 and increasing pH of 

the sea water. Cfemperature 10 ... 12°C) • 

(Each line represents a single individual). 
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Figure 10. Relationship between oxygen consumption by 

female Illex itt~c~b~o~U6 and increasing pH 

of the sea water. (Temperature 10-12°C). 

(Each line represents a single individual.) 
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been reached, a further decrease in the pH resulted in a sharp 

decrease in consumption until death occurred. 

When the pH was increased above 8 (nonnal) the oxygen 

consumption tended to increase up to a pH of approximately 9. It 

then declined between pH 9 and 9. 5, again increasi:ng between pH 9. 5 

and 10. Thereafter it decreased sharply until death occurred at pH 

values between 10 and 10.2. 

Data on the pH expernnentation is tabulated in Appendix 

D. 

CV) The Absolute Utilization of axygen 

The absolute utilization of oxygen (Winterstein, 1925) 

was determined by calculating the difference in oxygen content between 

the inhalent and exhalent water. This was done for the ten squid 

studied by the tube implantation method. 

The results are presented in Appendix E. 

The relationship between the absolute utilization coefficient 

of oxygen and body weight was calculated. The correlation coefficient, 

however indicated that no significant relationship existed at ~e ' . 

0.05 level. The mean absolute oxygen utilization coefficient value 

\'laS calculated to be 19.53% ± 5. 66%. 
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(VI) Volume of Exhalent Water 

Absolute values for the volume of exhalent water were 

determined for the ten squid studied by the ~be implantation method. 

The values obtained indicated no apparent correlation 

between body weight and the volume of water expelled over one-hour 

periods. The mean volume of exhalent water was calculated to be 

35.62 litres per hour. The complete data are tabulated in Appendix F. 
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DISCUSSION 

The apparent parabolic relationsh1)? found between oxygen 

consumption and body weight confonns well to the views of Zeuthen 

(1947) who described this relationship as a general rule in aquatic 

animals. Maginniss & Wells (1969) using a sealed chamber method 

reported a parabolic respiration relationship for OctopU6 cyanea. 

They reported a slope of 0.833 for a temperature range of 24.5°C -

27. 5°C. The slope obtained in the present work for combined sexes is 

relatively similar (0.874) to that of Maginniss & Wells. However, the 

validity of this comparison could be rather dubious when the temperatures 

of the two experiments are taken into consideration. The temperatures 

for the experiments with 0. cyanea were 24.5°C - 27.5°C, while those for 

I. .i..U.ecebll.o.61L6 were l0°C - l2°C. The effect of temperature on the slope 

of the line for oxygen consumption and body weight for cephalopods is 

not known. 

For fish, however, there are conflicting views. Job (1954) 

reported that the relationship of body weight to standard metabolism could 

be discussed independently of temperature. On the other hand, Prosser & 

Brown (1961) state that in the tropical fish Etnoplu-6 sp. the slope of 

the line is higher at low temperatures (b = 1 at 0°C) and lower at high 

temperatures (b = 0. 67 at 35°C) • 

' 
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One surprising fact which has em~rged from this study is 

the fact that there is no correlation between total metabolic rate and 

body weight which is rather significant a departure from the expected 

inverse relationship. Maginniss & Wells (1969) reported a slope of 

0.167 and a highly significant correlation coefficient of -0.888 in 

this relationship for 0 cyanea. Further analysis of data presented by 

Montuori (1913) dealing with Sep~ o66~cl~ revealed a similar 

situation to that found in the present study in that the correlation 

between total metabolic rate and body weight was also not significant 

(P > 0 .OS). 

In both the present work and from the further analysis of 

data from Montouri (1913), although the regression lines are not 

significantly different from zero, the calculated slopes both tend to 

be ~egative. 

Up to the present time, no truly acceptable explanation has 

been brought forward to explain the general phenomenon of decreasing 

metabolic rate with increased body weight (Prosser & Brown, 1961). An 

explanation seemingly fitting one group of animals is not supported by 

that of another group, and thus several explanations have been put 

forward to explain this trend. Zeuthen (1953) states that animals 

are of two types : 
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(1) animals can be small, grow rapidly and live 

intensely; or 

(2) they can be large, grow slowly and metabolize 

slowly. 

Another explanation is that as an animal becomes larger, 

there is a disproportionate increase in the tissues with a low metabolic 

rate. Nevertheless, the most probable explanation to this observed 

lack of correlation is that the individual variation in metabolic rate 

of these squid is sufficiently large so as to effectively mask any 

real correlation with body weight. 

In order to properly study this relationship, it would be 

necessary to examine the rates of oxygen consumption of individual squid 

over a significant portion of their life cycle. Thus it would be 

possible to examine the true relationship between body weight and rate 

of oxygen consumption. At the present time, however, this is impractical 

since it has not been possible to date or maintain I. itieeeb~o~U6 over 

sufficiently long periods of time to attempt such a study. 

Within the invertebrates, the molluscs may be regarded as 

more diverse than others with regard to metabolic rate. Even within 

a single species it is known to vary greatly, especially in intertidal 

bivalves such as My~ call6o~nU6 Conrad in which metabolic rate 

has been demonstrated to be correlated to tidal rhythms, even when 

' 
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maintained under constant laboratory conditions throughout an 

exper:iment (Rao, 1953). IUe.x. ille.c.ebJto~IU) in fact probably like 

most cephalopods, is not influenced by this tidal factor. However, they 

are most likely influenced by other factors such as light, temperature, 

salinity, pH and other physical-chemical factors. 

Clausen (1936) stated that the fish with higher metabolic 

rates living in fast currents do not exhibit diurnal rhytluns and, 

conversely, those exhibiting diurnal rhythms in oxygen consumption are 

not found in fast currents. rru; situation found in 1. iUe.c.e.bJto~U6 

could tbus be interpreted as analogous to this • 

It is very difficult to compare the salinity~oxygen consumption 

relationships found in this study with those reported in the literature 

for other animals, due to the different methods employed. 

The majority of previous studies (Job, 1969; McLusky1 1969) 

have been concerned with the effect of salinity on oxygen consumption, 

however the animals were acclimated at each salinity level. This would 

be extremely difficult to accomplish with this squid due to its high 

oxygen consumption plus the problem of keeping salinity constant dur~g 

the acclimation of an extremely ~ctive pelagic species like 1. ille.c.e.bJto~U6. 

Raffy & Ricart (1939) found that S. o66i~ and 0. vulg~ 

apparently had no osmo~egulatory mechanism and that the oxygen consumption 
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rate was constant in both high and low salinities. UnfortlUlately, 

their experimental method and the physical conditions under which their 

studies were conducted were not reported. The duration of their 

experiments was six days and thus some acclimation would probably be 

involved, hence the validity of comparison with the results reported 

herein would be at best dubious. 

Kawamoto (1969) investigated 14 species of fish and concluded 

that on the basis of oxygen consumption in relation to salinity, the 

fish, could be divided into two major groups: one euryhaline, the 

other stenohaline. The euryhaline forms were those inhabiting brackish 

or coastal waters, or were anadromous or catadromous. The stenohaline 

forms were those which in general are totally oceanic throughout their 

life cycle. He also pointed out that the oxygen consumption of oceanic 

species would decrease after exposure to less saline water for varying 

periods of time, whereas in coastal forms oxygen consumption would 

decrease during the reduction of salinity. There was, however, no effect 

on brackish water fonns. Maloeuf (1937) reported that the oxygen 

consumption of stenohaline antmals decreases with an abrupt decrease 

in salinity. 

In general, cephalopods are regarded as being strictly 

stenohaline £or.ms, the majority of which are nektonic and generally 



highly mobile, thus hav~ the ability to avoid areas or zones that 

have llllfavourable salinity conditions. fil.ex .ill.ec.ebll.C.6U6, however 
1 

presents a somewhat different picture in that presumably it ~igrates 

from oceanic areas to coastal areas, especially around insular Newfoundland 

(Squires, 1957, 1959). This area has a relatively lower salinity (31 -

32 ° I 00) , when the squid are in Newfoundland embayments dum adjacent 

oceanic areas (33- 34°/
00

). They could thus be ~egarded as an 

intermediate form between the truly oceanic (stenohaline) and coastal 

( euryhaline) animals • Bearing this in mind, the results of this study 

indicate a directly proportional relationship between oxygen consumption 

and salinity. Those results would thus support the findings of Kawamoto 

(1969) and Maloeuf (1937). 

It is nevertheless still difficult to explain the decrease in 

oxygen conslDllption with decrease ·in salinity. As has previously been 

mentioned, the squid have little osamoregulatory ability. Therefore, it 

would seem probable that, if the salinity is decreased this would result 

in some form of osmotic stress to the animals, hence causing a degree of 

excitation and thus increase oxygen consumption. If, however, an osmotic 

stress had a narcotizing effect, oxygen consumption would be predictably 

reduced. This situation would, upon cursory examination, appear to put 

the animal in a very unfavourable position from the point of view of 

survival and natural selection. 
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It would thus appear obvious that muc..lt work has yet to 

be accomplished in order to glean an adequate understanding of both 

the mechanisms involved in regulating metabolism in relation to salinity 

change and also the energetics of ion transportation and the physiological 

effect of osmotic change in forms which are capable of only very limited 

osmoregulation. 

Kawamoto (1969) reported the effect of pH on the respiration 

of various species of fish. He found that oxygen consumption exhibited 

irregular patterns with increasing pH, a finding similar to that of 

this study. He concluded that there was no specific pattern or trend 

relating oxygen constunption to increasing pH. It must be pointed out 

at this juncture that .he increased the pH by adding anunonium hydroxide 

solution to the sea water. The addition of this chemical solution, which 

has a low coefficient of · .. :dissociation, would act as an irritant to the 

experimental subject and be a causal factor in the initiation of 

numerous abnormal behavioural or physiological responses resulting in 

the irregular patterns reported. 

In the results reported herein, there was an initial period 

of increase in oxygen consumption with increasing pH and an initial 

period of decrease with declining pH. The initial increase with 

increasing pH could be explained by the fact that the sodium ion 

concentration was increasing due to the addition of the sodium hydroxide 
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solution. This could be a cause of osmotic stress which might serve 

to excite the squid and thus cause an increas~ ~ oxygen consumption. 

However, as the pH increases, the oxygen-carrying capacity of the 

squid's hemocyanin would be reduced. 

Since Robertson (1964) considers that the in~egument of 

cephalopo~~ is probably permeable to water to a considerable degree it 
. ' 

is not beyond speculation that changes in the external pH would bring 

about changes in the pH of the internal circulating medium. It must 

be pointed out that to date, no experimentation on this aspect has 

been undertaken. However, such a mechanism would be of great significance, 

since according to Redfield & Goodkind (1929) haemocyanin is so sensitive 

to pH change that an increase in acidity of 0.13 pH units causes the 

release of from one-quarter to one-third of the total oxygen carried 

by the pigment in Lo-U.go pe.alu Lesueur. 

If the foregoing can be considered to be valid; such an increase 

in pH would tend to lower the oxygen conslDllption, unless there was a 

corresponding increase in the squid's ventilation rate. The latter 

would require more energy and could thus , in fact, increase the oxygen 

consumption. This initial increase is followed by a general decrease 

and then by another peak, followed by a sharp decline. The second peak 

corresponds rather closely to the point during the experiments at which 

magnesitun hydroxide was observed to be precipitated. This could 
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possibly account for the final decrease due to osmotic stress caused 

by the removal of Mg++ from the squid's environmental media. 

When pH was decreased the general initial decrease in oxygen 

consumption might be expected also on the basis of the altered oxygen­

carrying capacity of the haemocyanin, again referring to the work of 

Redfield & Goodkind (1929) on L. pe.a.te.i. The increase may be either 

a mechanical (chemical) response to the hydrochloric acid or, possibly 

as osmotic response to increasing Cl- concentrations, both of which 

could cause excitation and a subsequent increase in oxygen const.Dilption. 

The final rapid decline leading to death could have been caused when 

the pH reached, or was near, the lethal point. This would be supported 

by observations on the ventilation rate, which became increasingly 

rapid during the period of oxygen consumption increase and was maintained 

at that rate until immediately prior to death. 

Another explanation might be advanced to explain the initial 
+ 

decrease and the following rise with decreasing pH. When the H 

concentration in the blood was increased, oxygen consumption would 

initially decrease due to the Bohr Effect. During this period there 

would be an accumulation of co
2 

which would stimulate respiratory centres 

and cause an increase in oxygen consumption. This explanation would, 

however necess1tate a threshold stimulus level of sensitivity of the 
' 

respiratory centre and not a ·continuously compensating system as is 
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foWld in vetebrates. The existence of such respiratory centres in 

the central nervous system of cephalopods has not as yet been demonstrated. 

However, in octopods there is a centre controlling inspiratory and 

expiratory phases of the mantle in the visceral ganglion Qianstrom 
. . ' 

1928; Kuhlenbeck, 1967) and in the motor fibres of the magnocellular 

lobe of the central nervous systems in Loii.go vu£.gcvr..L6 Lamarck (YoWlg, 

1936, 1938, 1939). 

The utilization coefficient of oxygen of I. ilteeeb~o~U6 is 

much lower than the values given by other authors working on octopods. 

Winterstein (1925) reported a mean value for OetopU6 vulg~ of 70%, 

whereas Hazelhoff (1939) foWld that the same species had values of at 

least SO%, but could exceed 80% in case of partial asphyxiation. 

Johanson (1965) reported a value of 35% for 0. donleini (Wtllker, 1910), 

but in 1966 he reported for the same species an average utilization 

coefficient of 27%. He indicated that the lower oxygen extraction 

could most likely be related to a difference in temperature. 

The temperaturesat which the present experiments were performed 

were in the same ranges as those used by Johanson. The squid are, however, 

generally much more active animals than are octopods and thus it might 

be expected that the absolute oxygen utilization would be higher. The 

lower value obtained is probably due to a much more rapid ventilation 

rate in the squid than in the octopods, enabling the maintenance of a 

relatively higher activity. 
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CONCLUSIONS 

1. The oxygen consumption of I.U.ex i.ll.ec.eblt0.6U4 in captivity 

(10 - 12°C) is significantly proportional to body weigh~ of 

the squid. 

2 · There is no significant difference between the sexes in regard 

to oxygen consumption and body weight relationships. 

3. The rate of oxygen consumption is not significantly correlated 

with body weight. 

4. There is no evidence of a diurnal rhythm in oxygen consumption. 

5. There is proportional relationship between oxygen consumption 

and decreasing salinity values. 

6. Increased pH values cause either directly or indirectly, an 

initial increase in oxygen consumption. 

7. Decreasing pH values cause either directly or indirectly ,an .initial 

decrease in oxygen consumption. 

8. The pH values of 5 and 10 appear to be lethal. 

9. The relationships between body weight, muscular development of 

the mantle, the ventilation rate and the oxygen.,.carrying capacity 

of haemocyanin and oxygen consumption shoudl be further researched. 



10. Although the mean volume of exhalent water was calculated to 

be 32.62 litres per hour, the squid apparently utilizes only 

19.53% of the available dissolved oxygen in the sea water. 

~ 
1 

I~ 
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APPENDIX A 

Oxygen Consumption, Oxygen Consumption Rate, and Body Weight (~) 

Oxygen Consumption (Y 'b) Oxygen Consumption Rate (Y'a) Body Weight (X) 

(m1/hr .) (ml/g/hr.) (g.) 

16.3068 0.1527 106.80 
20.4949 0.1573 130.30 
16.1944 0.1178 137.50 
36.2029 0.2502 144.70 
41.0429 0.2690 152.60 
32.4107 0.2046 158.40 

35.3068 0.2006 176.00 

25.2857 0.1422 177.80 

36.9143 0.2045 180.50 
38.0919 0.1889 201.55 

41.0305 0.1965 208.80 

40.0000 0.1889 212.99 

49.3772 0.2318 213.00 

72.1458 0.3355 215.05 

34.5555 0.1592 217.00 

36.5983 0.1614 226.75 

56.1689 0.2279 246.50 

86.2456 0.3478 247.95 . 

42.7187 0.1711 249.70 

53.2721 0.2131 250.00 

31.0925 0.1216 255.60 

48.4507 0.1883 257.35 

36.7669 0.1411 260.55 . 

47.7884 0.1817 263.00 

62.0687 0.2347 264.50 

66.4494 0.2510 264.70 

34.6359 0.1307 265.05 

40.7129 0.1532 265.70 

42.6467 0.1495 285.30 

52.5711 0.1431 367.50 

59.7229 0.1584 377.10 

61.0416 0.1456 431.20 

64.1611 0.1408 455.80 

108.9232 0.2301 473.30 

Regression Line: Log Ya = 0.9136 Log X -0.5312 r=0.7650 

Log Y'a=-0.0820 Log X -0.5414 r::~0.05838 

· · L y - 0 8738 Log X -0.4584 r = 0.7524 
Regression Line for comb1n1ng sexes: L~~ Y~c: o:l238 Log X -0.4640 
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APPENDIX A 

Oxygen Consumption, Oxygen Consumption Rate, and Body Weight Cl") 

Oxygen Consumption (Yb) Oxygen Consumption Rate (Y'b) Body Weight (X) 
(m1/hr.) (m1/g/hr.) (g.) 

24.6869 0.2758 89.50 
36.8379 0.3991 92.30 

~5.8209 0.1311 120.70 
17.7557 0.1188 149.40 
20.6054 0.1245 165.45 

·25.5404 0.1527 167.30 

27.1722 0.1604 169.40 

30.4246 0.1760 172.90 

36.2388 0.2009 180.40 

41 . 6075 0.2088 199.30 

23.8913 0.1190 200.70 

22.3482 0.1110 201.30 

28.0477 0.1326 211.60 

33.5657 0.1546 217.50 

34.1864 0.1558 219.40 

40.6168 0.1727 235.20 

48.2487 0.1969 245.00 

30.9134 0.1162 266.10 

42.1067 0.1577 267 . 00 

51.8862 0.1926 269.40 

55.5242 0.204] 272.00 

43.7736 0.1423 307.55 

56.0223 0. 1787 313.50 

55.4035 0.1737 319.00 

64.6135 0.1830 353.15 

62.0749 0.1723 360.20 

Regression Line: Log Yb = 0.7755 Log X -0.2582 r=0 . 7358 

Log Y'b =-0.2243 Log X -0.2587 r=0.2723 



~s5-

APPENDIX B 

Diurnal Rhythm Data 

Body Weight Sex Time Oxygen Consumption 
(ml/hr.) 

180.40 g. M. 00:40 
01:40 22.8877 
02:40 23.8413 
03:40 20.0267 
04:40 20.0267 
05:40 22.8877 
06:40 24.7949 
07:40 24.2228 
08:40 25.1764 
09:40 27.3614 
10:40 28.6096 
11:40 29.5632 
12:40 27.3614 
13:40 28.9136 
14:40 25.1764 
15:40 26.3412 
16:40 29.5632 
17:40 29.5632 
18:40 27.6559 
19:40 23.2691 
20:40 22.1247 
21:40 20.7896 
22:40 22.1247 
23:40 23.8758 
00:40 22.8877 

201.30 g. M. 20:45 
21:45 20.3081 
22:45 22.5646 
23:45 24.0689 
00:45 25.3072 
01:45 27.8297 
02:45 24.0689 
03:45 22.5646 
04:45 21.6244 
05:45 22.5646 
06:45 21.2484 
07:45 23.1287 
08:45 22,0005 
09:45 20.6842 , 10:45 22,1885 
11:45 22.5646 
12:45 22.0005 
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APPENDIX B (continued) 

Body Weight Sex Time Oxygen Co1151.Dllption 
(rnl/hr .) 

12:45 22.0005 
13:45 21.4364 
14:45 20.3081 
15:45 20,3081 
16:45 22.1885 
17:45 24,0689 
18:45 22.5646 
19:45 23.5048 
20:45 19.7440 

313.50 g. M. 18:00 
19:00 56.0761 
20:00 56.8098 
21:00 54.0938 
22:00 53.4607 
23:00 56.4253 
24:00 57.6915 
01:00 59.8927 
02:00 59.1590 
03:00 56.9933 
04:00 56.4961 
05:00 56.4961 
06:00 56.4961 
07:00 58.697.3 
08:00 59.8927 
09:00 60.1647 
10:00 60.5315 
11 :00 60.5315 
12:00 58,8807 
13:00 57.4133 
14:00 56.8630 
15:00 55.9458 
16:00 59.2476 
17:00 57.0522 
18:00 55 .7505 

264,70 g. F. 19:45 54,3067 20:45 
21:45 60.2862 

22: 45 66.3803 

' 
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APPENDIX B (continued) 

Body Weight Sex Time Oxygen Consumption 
(m1/hr ,) 

22:45 66.3803 
23:45 62.6169 
00:45 59.1709 
01:45 52.6632 
02:45 53.3693 
03:45 94.9129 * 
04:45 74.9389 
05:45 73.0916 
06:45 72.7410 
on45 70.5242 
08:45 67.8979 
09:45 68.0332 
10:45 67.2971 
11:45 64.2559 
12:45 61.5799 
13:45 65.6846 
14:45 72.4523 
15:45 55.7258 
16:45 66.0335 
17:45 81.8351 * 
18:45 74.5832 
19:45 70.4551 

377.10 g. F. 17:50 
18:50 42.2346 
19:50 43.1332 
20:50 44,3912 
21:50 40.4373 
22:50 38,2807 
23:50 53,0178 * 
00:50 53.9165 * 
01:50 42,2346 
02:50 45,8290 
03:50 44.7507 
04:50 49.6031 
05:50 48,8842 
06:50 39,5387 
07:50 37,2024 
08:50 36,3037 
09:50 56.6123 * 
10:50 65.2389 * 



APPENDIX B (continued) 

Body Weight Sex T:ime 

11:50 
12:50 
13:50 
14:50 
15:50 
16:50 
17:50 
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Oxygen Consumption 
(ml/hr.) 

48.5248 
39.8982 
37.3821 
41.8751 
46.7276 
47.6262 
49.4234 

* Denotes that the squid was moving in the respirometer during this 
period. 
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APPENDIX C 

Salinity Of Sea Water, Body Weight and Oxygen Consumption 

No. of Squid Body Weight Sex Oxygen Consumption (Y) Salinity (X) 
(g.) (m1/hr.) o/ .. 

00 

1. 200.70 M. 20.5779 30.95 
21.4498 29.47 
21.4498 27.92 
27.0303 25.93 
30.3437 22.48 
19.0084 19.89 

2. 212.99 F. 34.3115 31.11 
35.7562 29.00 
33.7698 27.48 
28.3522 25.50 

3. 235.20 M. 37.9090 31.18 
34.2986 30.93 
33.3960 30.68 
32.4934 30,25 
34.2986 30.25 
35.2012 29.99 
33.3960 29.47 
33.3960 28.10 
32.4934 25.07 
28.3415 20 .75 
17.5103 16,00 

4. 247.95 M. 85.7487 31.11 
85.3876 29.00 
83.4019 27 .48 
82.4992 26.36 

5, 264.50 F. 57.8907 30.95 
58.7925 29.47 
58.7925 27.92 
53.7428 25.93 
46.8897 22,48 
27.0518 20.23 

319,00 M. 58.4337 30.95 
6. 62,9565 29.81 

60.6047 28.10 
47.9410 27.23 
23.5182 22,92 
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APPENDIX C (continued) 

No. of Squid Body Weight Sex Oxygen Consumption (Y) Salinity (X) 
(g.) (ml/hr .) · 0 .. 

100 
7. 431.20 F. 58.6966 31.73 

60.4229 29.38 
56.1070 27.92 
53.5175 25.41 
52.6543 23.51 
50.9279 20.93 
50.9279 18.86 
47.4752 17.12 

8. 455.80 F. 56.4546 31.73 
55.5585 29.38 
51.0779 27.92 
49.2858 25.41 
48.3897 23.51 
42.1169 20.93 
25.9870 18.86 

The regression line and correlation coefficients for oxygen 
consumption and salinity of sea water. 

No. of Squid Regression Line Correlation Coefficient (r) (p>0.05) 

1. ¥=29.7818-0.2479 X 0.2396 

2. Y= 3.9231+1.0655 X 0.7803 

3. Y= 4.6943+0,9948 X 0.9212 

4. ¥=63.8339+0.7170 X 0,9434 

5. Y=-19.3476+2.6707 X 0.8939 

6. Y=-84.8460+4.875 X 0.9277 

7. Y= 34.4965+0.7942 X 0,9524 

8, Y=-4.5250+2.0285 X 0.9009 
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APPENDIX D 

The Decreasing pH Of The Sea Water and Oxygen Consunption 

No. Body Weight sex Oxygen CollSUI'I'ption pH 
(g.) (ml./hr.) 

1. 120.70 M. 16.7904 8.10 
16.7904 7.30 
17.5450 6.90 
14.9319 6.35 
13.9986 6.15 
15.6705 6.08 
17.1717 5.89 
19.5981 5.60 
22.3979 5.00 
11.7581 4.69 

2. 149.40 M. 20.8565 8.00 
19.5645 7.35 
18.0879 6,90 
18.4571 6.50 
26.3936 6.30 
29.1621 6.15 
25.8399 5.90 

3. 167.30 M. 29.2230 8.00 
27.7975 7.50 
31.8958 6.90 
33.4995 .6.50 
31.7176 6.10 
26.7284 5.75 
15.1461 5.45 

4. 199.30 M. 34.3021 8.00 
28.3688 7.48 
30.2229 7.00 
33.0042 6.70 
30.0376 6.55 
21.1375 6.30 
09.6417 6.15 
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APPENDIX D (continued) 

No. 1bdy Weight sex OXygen Consunption pH 
(g.) (rnl/hr .) 

5. 211.60 M. 28.6924 7.80 
26.6909 7.10 
24.0290 6.75 
30.2507 6.60 
33.4499 6.40 
32.2166 6.25 
32.3956 6.00 
34.1746 5.80 
32.5726 5.40 
20.8251 5.20 

6. 217.05 M. 25.8884 8.00 
22.8532 7.35 
24.6387 6.75 
25.5314 6.40 
26.9597 6.00 
22.8532 5.65 
ll.6052 5.15 

7. 219.40 M. 34.6679 8.00 
31.7789 7.00 
27. 9269 6.60 
34. 6679 6. 20 
33. 7049 5.80 
1: .4080 5.40 

8. 269.40 M. 59.1628 7.80 
41.1339 7,20 
43.4094 6.80 
76.6666 6.60 
89.2694 6.40 
63.8889 6.25 
46.2100 6.05 
41.8341 5.80 
39.2085 5.50 
25.0304 5.30 



APPENDIX D (continued) 

No. 

9. 

Body Weight 
(g.) 

307.55 

Sex 

M. 
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OXygen Consumption pH 
(ml/hr.) 

42.1784 8.00 
40.7606 7.35 
36.3301 7.00 
38.9884 6.55 
53.6977 6.30 
60.7865 6.15 
58.4826 5.90 
64.6853 5.50 
59.3687 5.40 
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APP~D 

The Decreasing pH Of The Sea Water and Oxygen Constnnption 

No. Body Weight Sex Oxygen COnstnnption pH 
(g.) (ml/hr.) 

1. 106.80 F. 14.7769 8.10 
13.5600 7.60 
15.6461 6.80 
18.2538 6.50 
22.9477 6.30 
22.2523 6.15 
20.1661 5.90 
14.7769 5.70 

2. 176.00 F. 32.4621 8.10 
28.7092 7.45 

·29.0845 6.60 
34.7138 6.45 
40.3430 6.25 
36.7778 6.10 
29.2722 5.90 
18.7642 5.70 

3. 215.05 F. 58.2476 7.95 
64.0723 6.80 
57.2768 6.15 
32.0362 5.05 

4. 226.75 F. 42.2678 8.00 
39.9831 7.40 
36.7463 6.80 
41.5062 6.45 
50.4548 5.80 
31.4153 5.60 

5. 249.70 F. 40.2402 8.00 
32.0755 7. 40 
30.1315 7.00 
32.4643 6.70 
34.7971 6.50 
38.6850 6.30 
39.2682 6.10 ., 39.2682 6.00 
32.8531 5.80 
16.9125 5.30 
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APPENDIX D (continued) 

No. Body Weight sex OXygen CoilSUill>tion pH 
(g.) (mljhr.) 

6. 257.35 F. 42.1331 8.00 
42.1331 7.20 
40.8781 6.65 
45.3603 6.35 
39.4437 6.00 
17.0330 5.70 

7. 260.55 F. 36.9089 8.00 
37.8553 7.80 
36.9089 7.30 
36.9089 6.70 
37.8553 6.40 
38.4231 6.20 
42.7765 6.10 
31.7985 5.90 
21.7668 5.70 

8. 265.05 F. 30.2606 7.95 
32.0946 6.60 
36.6795 6.05 
25.6757 4.80 
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APPENDIX D 

111e Increasing pH Of The Sea Water and OxyR~n Consumption 

No. Body Weight Sex Oxygen Consumption pH 
(g.) (rnl/hr .) 

1. 165.45 M. 20.1349 8.10 
23.5221 8.70 
23.5221 8,90 
22.5812 9.10 
21.6400 9.35 
19.7585 9.35 
18.8177 9.55 
24.4629 9.80 
25.4038 10.00 
20.6994 10.00 
17,3122 10.00 
11.6669 10.20 

2. 169.40 M. 25.9778 8.00 
27.2319 a.5o 
27.7694 8.70 
26.8736 8.93 
26.8736 9.20 
25.4404 9.30 
26.8736 9.60 
29.7401 9.68 
30.8151 9.90 
23.2905 9.90 
15.2284 10.00 

3. 172.90 M. 33.6981 s.oo 
39.7069 8.70 
37.5493 9.20 
37.5493 9,60 
37.3567 9.70 
29.6543 9.80 
17.3304 10.00 
07 .3173 10.20 

' :i 
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APPENDIX D (continued) 

No. Bcxly Weight Sex Oxygen ConsUl'l'ption pH 
(g.) (mljhr.) 

4. 201.30 M. 21.0325 8.10 
20.0936 8.20 
17.6524 8.30 
17.6524 8.70 
18.7791 9.25 
15.9622 9.50 
17.2768 9.60 
15.3989 9.70 

5. 245.00 . M. 57.2764 7.95 
57.6557 8.55 
45.8969 8.80 
40.8142 9.00 
39.8279 9.20 
38.8797 9.50 
29.7761 9.70 
16.5002 10.10 
13.2760 10.20 

6. 266.10 M. 32.5853 8.00 
34.2611 8.70 
34.0749 9.15 
33.5163 9.20 
38.1713 9.40 
43.1907 9.70 
36.3093 10.00 
31.5000 10.20 

7. 353.15 M. 57.9829 8.00 
57.4342 8.5o 
61.6412 8.80 
68.5918 9.00 
69.5064 9.20 
60.3608 9.40 
51.9469 9.65 
42.8013 10.00 
28.3513 10.20 
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APP~IX D 

The Increasing pH Of The Sea Water and OXygen Consumption 

No. Body Weight Sex OXygen Consunption pH 
(g.) (ml/hr.) 

1. 130.30 F. 25.5006 8,10 
27.3895 8,90 
19.8338 9.55 
21.7227 9.75 
22.2894 10.10 
15.6781 10.10 
07.5557 10.20 

2. 137.50 F. 17.5668 8.10 
17.7498 8.60 
16.4689 8,90 
16.8348 9.10 
15.3710 9.30 
13.1751 9.35 
15,0050 9.50 
20.4947 9.75 
19.2137 10.00 
10.0640 10.00 

3. 177.80 F. 25.2857 8,10 
22.4123 8.20 
20.1136 8,30 
21.8377 8.85 
23.7532 9,30 
26.8182 9,60 
34.8636 9.70 
30.0747 9.70 
16, 6660 10.10 
10.9188 10.20 

4. 201.55 F. 37.6217 8.10 
36.1168 8.50 
37.9979 8,80 
38.5622 9.00 
36.6812 9.20 
32.5428 9.30 
28.7806 9.40 
25.9589 9.80 
20.8800 9.90 
12. 4152 10.15 

' 1 
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APPENDIX D (continued) 

No. Body Weight Sex OXygen COilSUil"ption pH 
(g.) (mljhr,) 

5. 208.80 F. 35.1433 8,10 
38.2071 8.45 
45.4159 8,75 
42.3522 8.99 
38.2071 9.20 
38.7477 9.30 
38.3873 9_.40 
34.7828 9.75 
43.4335 9.90 
13.6969 10.10 

6. 265.70 F. 34.6493 8.10 
33.7374 8,75 
36.8376 9.35 
40.1202 9.65 
34.2845 10.00 
26.4429 10.15 
19.5130 10.20 

7. 367.50 F. 51.3403 8.10 
59.7798 8,40 
57.3183 8.60 
53.0985 8.70 
54.1535 8.80 
49.5821 9.15 
40.9668 9.28 
35.1646 9.58 
29.3624 9.62 
30.7690 9.90 
33.4064 9.90 
27.2526 10.00 
15.9999 10.00 
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APPENDIX E 

Utilization Coefficient and Body weight 

Utilization Coeffici~!t (Y) Body Weight (X) 
(%) (g.) 

11.31 158.40 
26.03 263.00 
23.94 273.00 
19.21 267.00 
12.27 217.30 
18.07 144.70 
23.88 285.30 
27.18 250.00 
19.02 152.60 
14.35 246.50 

average 19.53 + 5.66 225.78 

average 

Correlation coefficient between body weight and 
utilization coefficient r=0.559 (n=lO) 

APPENDIX F 

Voluma Of Exhalent Water and Body Weight 

Body Weight Volume 
(g.) (l,lhr .) 

144.70 29.0200 
152.60 34.5140 
158.40 40.9230 
217.30 39.8600 
246.50 53.4360 
250.00 32.0008 
263.00 29.9220 
267.00 34.8600 
272.00 34.2500 
285.30 27.4300 

225.68 35.62158 










