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ABSTRACT
Sy nanb

The main aim of this thesis is to investigate fixed and periodic
points under contraction or distance shrinking mappings in metric
spaces,

Various situations are explored where the motion of contraction
is relaxed and suitable modifications made on the metric space to
ensure fixed or periodic points for the contraction.

During the course of these investigations a few new results which
guarantee fixed or periodic points for contractions under suitably
weak conditions have been given for metric spaces.

A few fixed point theorems have been also given in generalized
complete metric spaces. Some of these are generalizations of well
known results in this space.

Convergence of a sequence of contractions and theif fixed points
have been studied briefly and a few mew theorems have been added.

In the end an attempt is made to apply the contraction mapping

principle to the theory of differential and integral equations.
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CHAPTER I .

INTRODUCTION

In 1922 S. Banach formulated his classical theorem commonly
called the Banach Contraction Principle which may be stated as
follows:=-

"A contraction mapping of a complete metric space into itself
has a unique fixed point.,"

This theorem was first applied to the proof of an existence
theorem by Cacciopoli in 1930 and still remains the most fruitful
means for proving and analysing the convergence of iterative
processes.

The contraction mapping principle has moviated a great deal
of research in the field of functional analysis, Extensions of the
theorem are of continuing interest and have been given by such
mathematicians as Rakotch (1962) and Chu and Diaz (1965).

Others such as Luxemburg (1958), Monna (1961), Edelstein
(1964) , Margolis (1967), and Diaz and Margolis (1967) have
generalized the contraction mapping principle to generalized metric
spaces,

These results have been further generalized to uniform spaces
by Davis (1963), Kammerer and Kasriel (1964), Naimpally (1965),
Edelstein (1967), and many others.

Still more results have been given on fixed point theorems
in ‘other spaces by such leading mathematicians as Brouwer (1912),

Schauder(1927) and Tychonoff (1935).




Many of these fixed point theorems have been used.to guarantee
existeénce and uniqueness to solutions of differemtial and integral
equations.

The main aim of this thesis is to study fixed and periodic
points under different contraction mappings restricted to metric
and generalized metric spaces.

Various fixed point theorems are developed by relaxing the
concept 6f contraction and at the same time modifying the metric space.

In Chapter I1I the Banach contraction mapping principle with
varioué modifications and generalizations is discussed. A survey
18 made of various types of contractive mappings which under suitable

conditions have fixed or periodic points.

- m e e ——— e

In Chapter II1I some new fixed point theorems have been given
for generalized complete metric spaces. These theorems include
generalizations of fixed point theorems of Luxemburg, Momna, Edelstein
and Margolis.

A brief study has been made of the convergence of sequences of
contraction mappings and their fixed points in Chapter IV, Sequences
of contraction and contractive mappings have been studied incomplete
metric, compact, and generalized complete metric spaces. A few new
theorems have been included.

In the final chapter, Chapter V, the contraction mapping:principle

is applied to the theory of differential and integral equatioms.




CHAPTER II

CONTRACTION AND CONTRACTIVE MAPPINGS IN

METRIC SPACES -~

2.1 Preliminary Definitions

Definition 2.1.1 Let X be any set and let Rf denote the positive
reals. We define a distance function d:X x X » R to be a metric
if the following conditions are satisfied:

(1) d(x, y) >0 ¥ x, y€ X

(i1) d(x, y) =0 <=> x =y

(1i1) d(x, y) = d(y, x)

(iv) d(x, 2) < d(x, y) + d(y, 2).
(i) and (ii) guarantee that the distance between any two points of
X is always positive and only zero when the points coincide.
(iii) assures that the order of measurement of distance between two
points is insignificant.
(iv) is a statement.of the familiar tr;angular inequality.
(X, d) with d defined as above is ;alled a metric space.
Actually with (ii) modified namely

d(x, yv9) =0 if x =y (i1)*

we define a more general space ealled Pseudo-metric Space.

Definition 2.1.2 A function f is said to satisfy Lipschitz condition

if d(f(x), £(y)) <K d(x, ) ¥ x, y€&€X.
In the special case when O <K <1 or K& [0, 1) f is said to be a

contraction mapping.




Remark 2.1.3 Every contraction mapping is clearly continuous.

Proof: To show continuity we need to Justify continuity at each

point xo € X. Given € > 0, choose § = {- >03

Then d(x, xo) < § => d(f(x) , f(xo)) < kd(x, xo))
< kg
<€ (0 < k < 1).

Hence f is continuous at x, which is arbitrary.

Therefore f is everywhere continuous.

Definition 2.1.4 A sequence {xn} is said to be a Cauchy sequence
if for € > 0 3 a number N(e) such that ¥ m, n >N
d(xm, X ) < e . In other words 1lim d(x_, xn) = 0,
n n,m + e
Definition 2.1.5 If for every e > 0,‘3 N such that @ > N =p

d(xn, x) <€ sthen {xn} is a convergent sequence and converges to x.

i.e. 1im X = x
n-+ow n

It is well known that every convergent sequence is a Cauchy sequence

but not conversely.

Definition 2.1.6 A metric space is said to be complete if every
Cauchy sequence converges in that space.

With the notion of complete metric space and contraction already
defined we are now ready to give the main theorem on contraction
mappings. In fact, all of the work that follows was motivated by
this well known result of S. Banach., More precisely most of the

intermediate results are developed by imposing certain restrictions

B8 S b O



on the contraction mapping or by modifying the space,

2.2 Banach Contraction Theorem

Theorem 2.2.1 Let X be a complete metric space. If f:X + X is a
contraction then £ has a unique fixed points In particular £(x) = x has
a. unique.solution.

Proof: Choose X, s any arbitrary point,in X .

Let x; = f(xo)

x, = £f(x;) = fi(xo) ;
- <
. ¥
L ) n‘ g
X, = =) = £, d

We now show that {xn} is a Cauchy Sequence.

i.e. lim d(x b4 = 0. !
n,m - o *o) t )

s~

From the definition of a contraction f,
d (£(x) f(y)) <k d(x, y) ¥ x, y€ X.

Therefore d(xn, xm) = d(fxn_1 fxm-l)

1 "m=1
< k2d(x 2 xm—2)
‘' .n
<k d(xo, xm—n) .

But d(xo, xm.n) i d(xo’ xl) + d(x1, xz) 4+ cesccesece + d(xm—n—l’ xm_n)'
Also d(x;, xp) = d(f(xo), f(xl)) _<_kd(x°, x1)»

and d(X2, X3) = d(f(xl) f(xz)) < kzd(xos xl) b

N

e e ¢ e ¢ e g T e



Continuing we can demonstrate that
. . - -

d(xo. x -n) _<- d(xo. X]_) + kd(xo. xl) + kzd(xo’ xl) + esacee

m

id(,‘o’ xl) [1 + k + kz + cececsecs + km-n-l

Hence d(xn, xm) < knd(xo, xm—n)’

< KMa(x, %) 1+ k+ K2+ el + FRL

<Walxg, 1) G
+ o (o <k <1).

Hence {xn} is a Cauchy Sequence -

Since X is complete {xn} converges to a point x € X.

Therefore 1l1lim X = X e
n -+ e n
Now f(x) = £(1lim xn) = 1im f(xn)
n -+ n <+ o

(f is continuous)

= lim (xn-!-l)
n -+ o

= X .

To show uniqueness choose x, x! two fixed points of £, x # x!

Then f(x) = x .
£(x!) = x!,
Now d(£(x), £(x1)) < kd(x, x!).
But d(£(x) £(x!)) = d(x, x1).
Hence d(x, x!) < kd(x, x!),
and 1 <k  (contradictionm),

Hence x = x!

d(xo, xl)
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Remarks 2.2.3
1) Both conditions of the previous theorem are necessary. e.g.
(1). the map £:(0,1] + (0,1] defined by £(x) = -’25 is a
contraction but has no fixed point since (0, ]J is not
a complete metric space.
(11) the map £ : R + R defined by f(x) = x + 1 is not a

contraction and has no fixed point although R is complete.

2) The construction of the sequence {xn} and the study of its

convergence are known as the method of successive approximations.

3) The contraction theorem has the advantages of being constructive,
its error of approximation can be estimated, and it guarantees

a unique fixed point,

2.3 Some Modifications of Banach's Theorem

By retaining the notion of a contraction in the sense of Banach
and merely modifying the space we can obtain many modifications of the
contraction principle. The theorems that follow deal with such-spaces
as Pseudo-metric, and ec-chainable metric spaces. A more general form of
the Banach theorem, obtained by generalizing the contraction constant,

is also discussed.

Theorem 2.3.1 If f is a contraction self mapping on a complete Pseudo
metric space X then f has a fixed point; not unique.

Proof: Existance of a fixed point for f may be justified similiarly
to the previous theorem. If X is a Pseudo-metric space then from
(ii%) d(x, y) = 0 if x = y,

Hence d(x, y) = 0 #> x = yo

'
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Now referring to the discussion on uniqueness in the previous theorem,
d(x, x1) < kd(x, x!) = d(x, x!) - kd(x, x!) < 0.

Suppose d(x, x!) - kd(x, x!) = 0.

Then (1 - k) d(x, x!) = 0, But 1 -k ¥ 0 for k € [0, 1).
Therefore d(x, x!) = 0.

But this does not necessarily imply that x = x!.

The following generalization of the Banach Theorem is very useful for

certain applications. This theorem is due to Chu and Diaz [ 5].

Theorem 2.3,.2 if £P (p positive integer) is a contraction self mapping
on a complete metric space X then £ has a unique fixed point.
Proof: Let fP =g : X » X.
Then fP = g has a unique fixed point X .
Now BP*1(x ) = £P(£(x)) = g(£(x)) = £(g(x)) = £(x))
i.e. f(xo) is a fixed point of g.
Since g has unique fixed point Xy

f(xo) =X is unique.

Remarks 2.3.3 (i) The assumption that £fP is a contraction is not

strictly necessary. In fact if X is any non empty set of elements and

f is a single valued function on X into itself, the assumption that £P

has a unique fixed point will guarantee a unique fixed point for f.
(ii) Another - result due to Chu and Diaz [4 ]

may be formulated in the following way:-

Let f be a function defined on a non empty set X into itself.

Let g be another function defined on X into itself such that gg-l =1

where I is the identity function of X. Then f has a fixed point if and

only if g 'fg has a fixed point.

gt g1, e e e

e e wnrem g g iae s
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Observe (1) The previous case (Theorem 2.,3.2) when p = 1 will give i

-

Banach's Theoren.

f
{
(1i1) In the case wnere X is complete Pseudos=metric space the r
previous theorem. won'tgive a result similiar to that of ;

E

i

Theorem 2.3.1.

Definition 2.3.4: Let X be a metric space and €¢ >0, Then a finite

sequence X _, X1, s 5 X of points of X is called an e€~chain joining 5

X, and x if d(xi-i . xi) <g (1i=1, 2, see 5 M) )g
E

The space X is called e-chainable if for every pair (x, y) of its points %ﬁ
there exists an e-chain joining x , y. %%
|

Theorem 2.3.5 Let X be a complete e—chainable metric space. j%

L]
J—

Suppose fP:X + X is any mapping satisfying the condition that , ,?
d(x, y) <¢e => d(£Px, fpy).j A d(x, y) where A € (0, 1). Then f has a g
unique fixed point, | ag
Proof: We have to show that £fP is a contraction with respect to the %
metric d_; then the proof follows bynTheorem 2.3.2. Since (X, d) is
e=chainable, define de (x, v) = infizl d(xi-l' xi) ¥ e-chains
X = X, x]? ceccescsese 9 xn =Yy
Now qeis a distance function on X satisfying L
(1) dlx, y) <d_(x, y)
(2) d(x, y) =d_(x, y) for d(x, y) < E.
From (2) it follows that a Cauchy sequence{aﬂg in X is a Cauchy
sequence with respect to de if it is a Cauchy sequence with respect to
dy, and is convergent with respect to de if it converges with respect . __%

to d. Hence (X, de) is complete whenever (X, d) is complete. Moregver,

the mapping £P is a contraction with respect to de' Given x, Y€ X
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and a?:ty e-chain Xyr eee s X with x, = X, X = y we ggt

d(x:l-l’ xi) < g 1=1, 2, ... n).

’
So that d(fPx, ;, £Px) <A dlx;_;, %) <, (=1, 2, ... , m).
Hence fpxo, coes o fpx'n is an e=-chain joining £Px and fpy and
n . n
P P p P
d_(£x, £y) f_izld(f Xg_ps £7%) < Aizl d(xy_1, %)
Since Xyp eeees X is an arbitrary e-chain we get
a (£Px, £Py) 2rd (%9
and hence fP has a unique fixed point x € X.

It follows from theorem 2.,3.2 that f also has a unique fixed point x.

Remark 2.3.6: If in the previous theorem p = 1, we get Edelstein's

theorem [ 7). Amore general version of the Banach Theorem can be

constructed as showp by Rakotch in [23], if A as previously defined

is replaced by A(x, v), a member of the family of functions

F={21x (x, )}, satisfying the following conditions:

(1) A (%, ¥) = A(d(x, ¥)), ) depends only on the distance
between x and y.

(i1) 0 <A(d) <1, for all d > 0.

(iit) A(d) is a monotonically decreasing function of d.

He gives the following theorem:

Theorem 2,3.7: Let f be a contraction self mapping on a complete metric

space X such that d(f(x), £(y)) < A(x, y) d(x, y) for every x, y € X,
where A(x, y) € F.
Then f has a unique fixed point.

A similiar result can now be proved for an £-chainable complete metric

space [_23.], This theorem has been proved by Singh.

RERS %71
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Theorem 2.3.8: Let X be a complete €-chainable metric space. Suppose
f : X+ X is any mapping satisfying the condition that
d(x, y) < € = d(f(x), £(y) £ A(x, y) d(x, y) for all x, y € X and

A(x, ) € F then £ has a unique fixed point.

Proof: Using exactly the same technique as in theorem 2.3.5 we can
show that (X, de) is complete.
Now d(fxi-l’ fxi) < A(xi_l, xi)» d(xi-l’ xi)

= A(d(xi_l, xi)) d(xi-l’ xi)

< A(e) € ’ 1=1, 2, ... n)e
But by definition A(e) < 1.
Therefore d(fx, ,, fx;) < €,
Hence f£(x) = f(xo), f(xl), seees o f(xn) = f(y) is an e-chain
for £(x), £(y).

n

And d_(£(x), £(y) _<_i£1d(fxi_1, £x,)

i=1 n li
< A() dlx, ., %)) ) d(x, ., X)),
= 121 1-17 T177 L -1 T

Hence d_(fx, fy) =< A(d (x, ¥) d.(x, y).

The proof now follows by theorem 2.3.7.

2.4  _Contractive Mappings
Definition 2.4.1: A mapping £ : X + X is contractive if

d(f(x), £(y)) < d(x, y), for all x, y € X where x # y.
A contractive mapping on a complete metric space mneed not have a fixed

point as the following example demonstrates.

L
Example 2.4.2: The map £ : R - R defined by f(x) = x + 5 — arc tan X

is clearly contractive but has no fixed point.
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The following theorem is due to Edelstein [8'].

Theorem 2.4.3 Let f be a self coniractive map on a metric space X

and let x € X be such that the sequence of iterates {fn(x)} has a
n
subsequence {f i(x)]' convergent to a point x_ € X. Then x_ is a

undque fixed point of f.

Corollary 2.4.4 1If f is a contractive mapping of a metric space X i

into a compact metric space Y L X, then £ has a unique fixed point.

>

%

_ {

Definition 2.4.5 A mapping f of a metric space X into itself is an- b4
0

e~contractive map if O < d(x, y) < € => d(f(x), £(y)) < d(x, V) N
where € > O, 7 {
~ |

Two theorems due to Edelstein [8 ] for such a map are the following: ) i

-

Theorem 2.4.6 An €-contractive self mapping f on a compact metric

space X has at least one periodic point.

Theorem 2.4.7 An €-contractive self mapping f on an €-chainable compact

metric space X has a unique fixed point. ;

Definition 2.4.8 A mapping f of a metric space X into iti€lf is said to !

be locally contractive if for every x € X there exist € and A(e >0, 0 <A <1)
which may depend on x, such that

Py € S(x,€&) = {yld(x, y) < €} => d(£(p), £(q)) <X d(p, @) » P # q.

Definition 2.4.9 A mapping £ of a metric space X into itself is said to

be (€, A) uniformly locally contractive if it is locally contractive

By SR I SRR it SeigdSSog i)
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and both € and A do not depend on =x.

Sufficient conditions for a fixed point under mappings such as the

above are given by the following theorem due to Edelstein [7].

Theorem 2.4.10 If f ¢ X » X is an (£, A) uniform locally contractive

self mapping on an €=chainable complete metric space X, then f has a

unique fixed point x,. i.e. f(xz =X -
Definition 2.4.1l1 A self mapping f on a metric space X is said to be
globally contractive if the condition d(£f(x), f(y)) < A d(x, y) with

A € [0, 1) holds for every x, y& X.

Remark 2,4.12 Edelstein | ‘7] has shown that an (€ - 2) uniformly

contractive self mapping on a convex eomplete metric space X is also

globally contractive. This suggests the following theorem:

Theorem 2.4.13 If £, where n is any positive integer, is an (€, 1)

uniformly contractive self mapping of a closed convex subset A of a

complete metric space X, then f has a unique fixed point.

Proof: Since A is a closed subset of a complete metric space X it
follows that A is complete. Furthermore, since £2 is (e, A) uniformly
contractive on A, £2 is also globally contractive on A (Edelstein).

It now follows from Banach's theorem that f* has a unique fixed point

in A. Hence f also has a unique fixed point in A.

et doos Syri
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Bailey[1l] has studie? two very general cpntractive mappings on
compact metric spaces. Using the notions of proximality, distality
and asymptoticness he has given suitable conditions under which
these mappings have fixed or periodic points. The two mappings
investigated were these:-

(1) £ is continuous and O <.d(x, y) => there éxists n(x, y) € I,

the positive integers, such that d(fn(x), fn(y)) < d(x, V),

x#y.

(2) f is continuous and there exists € > 0 such that >
0 < d(x, y) < ¢ => there exists n(x, y) € I+ such that E
d(f"(x), 1) <dlx, V), xF Y. X

He gives the following results:- :

a) If a mapping f on a compact metric space X satisfies (1), f
then £ has a unique fixed point, ;

b) If a mapping £ on a compact metric space X satisfies (2),

-
>

then f has periodic points. i.e. there exists K > 0 such that
£y = vu.
Using a result of Chu and Diaz [4 ] we can now give two simply proven

theorems which modify results a) and b):

Theorem 2.4.14 Let f be any self mapping of a compact metric space X.

1

-1 -
Suppose K : X + X is any mapping with a right inverse K ~ such that KK "= I,

- - - =1
Kl is continuous. If O < d(x, y) => d(K 1an(x), K fUR(y)) < dlx, ¥)

where x ¥ y and n(x, V) E.I+, then f has a unique fixed point in X.

Proof a(K-lePK(x), K-1EK(y)) = d((K )"z, (K EO"Y)

< d(x, Y) sx#}'9n(x9y)el+-

Hence by Bailey [1], K-lfK has a unique fixed point in X say n.
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i.e.. K L1eR(n) = n.

Hence KK-]‘fK(n) = Kn,

and £f(Kn) = Kn ,

Therefore Kn is a fixed point of £,

Clearly Kn is unique.

Theorem 2.4.15 Let £ : X + X be any self mapping of a compact metric
space X. Suppose K : X *+ X is any mapping with a right inverse K-1

such that K.l

fK is continuous. If
0<dlx, y) <€ = d& L"R(x), K 1E'R(y)) < d(x, y) where x # y and

n(x, y) & I+, then f has a periodic point in X.

Proof 4K 1EK(x), KER(Y)) = d(K ) x, (KTIEKOTY)
<d(x, ¥) , x#y , n(x, ¥) er

Hence by Bailey [1:], K 1fK has a periodic point U say.
i,e. (K-lfK)pU = U for some positive integer P,
Hence K 1£PR(U) = U,
and KK 1£PR(U) = KU.
i.e. £P(KU) = KU,
and KU is therefore a periodic point of f.

Replacing conditions (1) and (2) by either a contractive or an
e=contractive mapping f® on the space X we obtain the following two

theorems:

Theorem 2.4.16 If fn, where n € I+, is a contractive self mapping
on a compact metric space X, then any mapping £ ¢ X * X has a unique

fixed point.

LIiBDIKAVY
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Proof: Since £" is contractive on a compact metric space X, then £ has

i.e. fn(U) = U is unique .

Hence ££f7(U) = £(£(U)) = £(U).

Since £" has a unique fixed point U, then £(U) = U is unique since each

fixed point of f is also a fixed point of £,

Theorem 2.4.17 If fn, where n € I+, is an e-contractive self mapping of

a compact metric space X then any:mapping £ : X + X will have a periodic

point i.e. £T(U) = U for some r € 1",

Proof: Since f" is e-contractive, then f* has a periodic point U
(Edelstein), i.e. (fn)K(U) = U, for some integer K & 1.

Since n, K € I*, then nk € 1" also.

Let nk = r €17,

Then £T(¢U) = U.

Remark.:2.4.18: Converses to the Banach Contraction theorem have been

provided by Bessaga {2], Meyers [17], Janos [11) and Wong [25].
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CHAPTER THREE

Contraction Mappings on a Generalized Complete Metric Space

Fhe concept of a generalized complete metric space, first
introduced by W.A. Luxemburg, has been of continuing interest in
recent years.

Two contraction mapping theorems were given by Luxemburg on
such a space and then applied to the theory of ordinary differential
equations. These theorems have since been generalized to a family
of contractions by such mathematicians as Monna, Edelstein, and
Margolis. Further modifications and generalizations will be given

in this chapter.

Definition 3.1 Let X be a non empty set. If there is defined on

X x X a distance function d(x, y) (0 < d(x, y)< »)satisfying the

following conditions:

(p1) d(x, y) = 0 iff x = y
(D2) d(x, y) = d(y, x) (Symmetry)
¥D3) d(x, y) < d(x, z) + d(z, y) (triangle inequality)
(D4) lim d(x, x)) = 0 => lim (x, x ) * 0
n,m>>o n>eo

where X € ¥(n =1, 2, ....) and x is unique .
Then X with the metric d, i.e. (X, d), is called a generalized complete
metric space. Examples of such a space would be the extended real

line and the extended complex plane with the usual metric.

Theorem 3.2 Let fF (p is any positive integer) be a mapping of the

generalized complete metric space X into itsalf satisfying the following

conditions:

LIDIKAVNY

I
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(Cl) There exists a contant 0 £ q < 1 such that d(fpx, fpy) < qd(x, y)
for all (x, y) such that d(x, y) < = )
(C2) For every sequence of successive approximations

x, = fpxn-l s =1, 2, ... where X, is an arbitrary element

of X, there exists an index H(xo) such that d(xN, .?‘N"‘B

) < o

for all % = 1, Z, eoe
(c3) If x and y are two fixed points of £P

i.e. fp(x) = x and fpy = y, then d(x, y) < o«
Then f has a unique fixed point x = 1lim x

n-+o
[ 3 = p =
Proof: Let xoe X and form the sequence x, b X -1 (n=1, 2, ...)
By (C2) there exists an index N(xo) such that
d(xN, xN"_z) < o » L= 1, 2, eoe
Hence by (D3) we have d(xn, xn+!.) <o forn>Nand £ =1, 2, ... &
N P

Then (Cl) implies d(xN+1, xN+2) =< qd(xN, f xN) and generally

n=N P
dlx s %9 <4 “dlxy, f'x) for n > N.

L2
Since by (D3) we have d(xn, xn-H;) iizl d(x i xn+i-1)’

we obtain by the above inequality

n=N
d(x“, x“_,_z) < {q

(1-q9|1 -} dlxg, Px), n>Nand2=1,2, ..
Hence x is a d-Cauchy sequence. From (D4) it follows then that
there exists an element x € X such that lim d(x , X) = 0. For this
o
element x we conclude by (D3) that d(x, Ifll";) < a(fPx, x x )+ d(x, x)
< qd(x, x_ ;) + d(x , %)
forn > N
Hence d(x, fPx) = 0 and by (D1) fPx = x,
So x is a fixed point of fP, Assume now that f?y = y with x # y.

Then by (D3) d(x, y)< = and by (Cl) we obtain
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0 <d(x, y) = d(£Px, £Py) < qd(x, y).
This 4implies that d(x, y) = 0 and hence x = y;

Therefore x is a unique fixed point of fp, and hence a unique

fixed point of £,

Remark 3,3 If p = 1, we get a well-known theorem of Luxemburg [14].
We generalize a theorem due to Luxemburg [14] for a family'{fi} of

contractions in the following way:

B W

Theorem 3.4 Suppose'{fi} (i =1, 2, ...) is a sequence of self
mappings of a generalized complete metric space X satisfying the

following conditions:

PRI N LN

(1) There exists a constant 0 < p < 1 such that

d(fix. fiy) < pd(x, y) for all (x, y) with d(x, y) < -
(2) fifj = fjfi i.e. any two mappings commute.

(3) For every sequence X, = fixn-l =1, 2, ... where X, is
an‘arbitrary element of X, there exists an index N(Ko) such

that d(xg, Xg,,) <= for all 2 =1, 2, «c. , and i =1, 2, ... .

(4) If x, y are two fixed points of the mapping fi then
d(x, y) < o (i = 1, 2, soe ).

Then the sequence {fi} has a common unique fixed point.

Proof: Conditions (1), (3) and (4) ensure that each mapping
fi (i =1, 2, .es ) will have a unique fixed point.
Assume now fi(xi) = x5

- x; 7 x
fj(xj) e i 3
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£, (x;)

Since the family {fi} commutes we now have - Ei(fj(xi))
fj(xi) .

Hence fj(xi) is a fixed point of fi'
But fi has a unique fixed point X5
Therefore fj (xi) = x; and x; is a fixed point of fj.
But fj has a unique fixed point Xj o
Hence x. = x..
1 J
Thus x3 = x3 = .... . = x is a common unique fixed point for
all f£..
i

We prove the following theorem which is more general in nature

than the previous result,

Theorem 3.5 Let (X, d) be a generalized complete metric space and

fi (i=1, 2, ...) a family of self mappings of X closed under
composition such that
(1) There exist a constant 0 < p < 1 and an integer m > 1 such
that if (x, y) € X and d(x, y) < « then
d(fim(x) R fim(y))_<_p e d(x, V), i=1, 2, cou
(2) fi - fj = fj . fi)(l’ J = 1, 2, ooc)o
(3) For every sequence of successive approximations
X, = fimxn_1 s, n=1, 2, ... where X, is an arbitrary
element of X,there exists an index N(xo) such that

d(xﬂs xN+£) < ® .
(4Xf x, y are two fixed points of fim i=1, 2, ...),

i.e. fim(x) =x, fim(y) =y =>d(x, y) <® .

i m———— = o, A1 ] AT T ST T e S

PUATD SN 4y s

.

LiIiDIRKAKY

:



- 21 -

Then there exists a unique y € X such that

£, (y) =y for all i=1,2, ....

Proof: Following the procedure of Luxemburg and using conditions

(1) and (3), it can be shown that each £." has a fixed point u; (=

m
Assume now that fi (Ui)- Ui

m
£.(U;) = U, u. .
1 ( J) J 1 # UJ

Since by (4) d(Ui R Uj) <eo (i=1, 2, ...), we have
m

0 < d(y; , Uy = d(£;"y; , fi"‘uj) < pd(Ug, U;).

Hence d(Ui . Uj) = 0, which contradicts Ui # Uj

Thus the family {fim} have unique fixed points {U.},(i =1, 2, ...)

Since each unique fixed point of fim is also a unique fixed point of

fi’ it follows that the family {fi} have unique fixed points {Ui}.
Using (2) we can show as in the previous theorem that U = U2 = eee

is a common unique fixed point for all {fi}.

Remark.. 3.6 If the family {fi} reduces to f with m = 1 we get

a theorem of Luxemburg.

The following is a '"localized" version of theorem 3 2:

Theorem 3.7 Let £f be a mapping of the generalized complete metric

space X into itself satisfying:

CCl) There exists a constant C > O such that for all (x, y) with
d(x, y) < C we have da(Px, fpy)'i p d(x, y) where O < p < 1.

(C2) For every sequence x = fpxn_l,n =1, 2, «.. , Where x is

an arbitrary element of X, there exists an index N(xo) such

1, 2,

y

TS AAIKY

~N.



- 22 =

that d(xn, xn+2)': Cfor alln>Nand £ =1, 2, ... .

(c3) 1If fPx = x . fpy = y then d(x, y) < C.
Then f has a unique fixed point x = 1lim x .
n-—o
Remark 3.8 If p = 1 we get a "local" theorem of Luxemburg [15].
Luxemburg’s "local" theorem has been generalized by A.F. Monna [}18]

to a suitable family of operators as follows:

Theorem 3.9 Suppose {fi}’ (1 =1, 2, ...) is a sequence of mappings
of a complete generalized metric space X into itself satisfying the
following conditions:
(@)) There exist € > 0 and p (0 < p <1) such that

d(fix . fiy) < pdix, y) , (1 =1, 2, ...), whenever.

d(x, y) < C.

(2) fifj = fjfi ,(i, j=1, 2, +..) i.e. any two mappings commute.

3 If X € X then a positive integer N(xo) exists such that
n 1 N(xo) => d(fn+K(¥h)’ xn) __<_ C, (K = 1’ 2, oon)o
Then the sequence X where x, = fixn—l s, (n =1, 2, ...) converges

and 1if Yo © lim X s 1im nyo =¥, e

n <> o K> om

Edelstein [ 8§ ] has shown that the assumptions of Monna's theorem

imply a much stronger theorem in the following way:

Theorem 3.10 If all of the assumptions of Monna's theorem
hold then a point y exists with the property that
£ag =vy. (R=1,2, ...)

Assumptions (1) and (2) of Monna's theorem can be relaxed to obtain

the following "existence" theorem:

\

LEL P Ay fg T
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Theorem 3.11 Let (X, d) be a generalized complete metric space and
{fi} where (i =1, 2, ...) a family of self mappings of X closed
under composition such that
(1) There exist constants C >0 , D < p <1 such that if

(x, y) € X and d(x, y) < C then

d(fp(x) , f (¥)) < pd(x, y) for a fixed K > 1.
(2) fifK = fo1 where K is fixed and 1 = 1, 2, ....

(3) For arbitrary xOE. X and every sequence of successive approximations
x, = fixn-l (n=1, 2, ....) there exists an index N(xo) such
that d(fn+j X, » ;S_l) <Cforn>N, =1, 2, ...

Then there exists a n € X such that fn+i(n) =nforalli=1, 2, ... .

Proof: Consider an arbitrary fixed point xoé_ X. Llet n _>_N(xo)

be fixede
Suppose Y is the set of all y € X such that a sequence
C(y, xn) Q X exists with the property that

Cc(y, xn) = {y = Pys Pys === » Py ='.xn}

with d(pg, py_1) <€ , (=1, 2, .co ,0).
Now Y is a closed metric subspace of X and fn+j (Y)& Y. Also Y is complete.

Thus Y and £ for a fixed j, satify the assumptions of Edelstein's

nt+j’?
proposition [9 ].

Hence f has a unique fixed point in Y, say n,e
n+j h|

i.eo f = . @

Using condition 2) with j fixed we have

Freg Tnrs (0g) = Frpg Froag(ng) = Fopy(ngd-

Thus f‘i;+j has a fixed point fn+i(nj)'

But f
n

t N, e«
+ has a unique fixed poin 3
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Hgncf fn+i(nf_= "y and ny ié a fi*ed point of»fﬁ+i.’

Continuing we can show that all of the family {fn+i} 1=1, 2, ...)

share the common fixed point nj.

With hypothesis 1) of Monna's theorem relaxed we have the following

more general theorem:

Theorem 3.12 Let (X, d) be a generalized complete metric space and

E ace”

'{f‘i} where 1= 1, 2, ... a family df self mappings of X closed

under composition such that
(1) There exist constants C> 0, O <9 <1 and an integer m > 1
such that if x, y€ X and d(x, y) < C then

m m
d(f ¢ (x) 4, £ g (¥)) < pd(x, ¥) K = 1, 2, «so

(2) fif = fjfi s 1,3 =1, 2, ...

3
(3) Let x € X be arbitrary and define
m
*n = fi *n-1

,xn)inorn?_N, K=1, 2, oee

(n=1, 2, «s« )o Then there exists N(xo) such that

n+K xn

Then there exists a unique n € X such that fn+i(n) =n,1i=1, 2, ...

Proof: Let x, be an arbitrary fixed point of X~
B let n > N(x) be fixed.

Using the procedure of the previous theorem it can be showm that

K is a "local" contraction on a closed metric subspace Y of X.

. m
B Using a proposition of Edelstein [9 ] it follows that f 4K has a

unique fixed point T, in Yo

m =
i.e. £ n+K(nK) "K'

Using an earlier result (theorem 2.3.2) it follows that

Frtk () = Mg -

(RSN W

~N .

~— .

el
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Since the family {fi} commutes we have

fn+Kfn+j(nK) = frrifnex(ng) = £y (g e
By the uniqueness of g it follows that % is a fixed point of fh+j'
Since fﬁ+j is a "local” contraction on Y then N is a unique fixed

point of fn+j'
Continuing we can show that fn+i(nK) = e for all 1 =1, 2, ... o

Moreover since each f .4 1sa "l1ocal" contraction, Ny is unique.

Remarks:3.13

(1) B. Margolis [16] has given a similiar result to the above
using an extra condition. ' The above theorem shows that this
condition is not essential,

(2) If m = 1 in the above theorem we get a stronger form of
Monna's theorem with Edelstein's complétion of it.

(3) " If m= 1 and the family {fi} reduces to a single element
f we get a theorem of W.A. Luxemburg.

An alternative for any contraction mapping on a generalized complete

metric space X is provided by the following theorem due to piaz and

Margolis [ 6].

Theorem 3.14 Let (X, d) be a generalized complete metric space.

Suppose that the function £ : X + X is a contraction in the sense
that f satisfies the condition : (c). There exists a constant A
with O < A <1 such that whenever d(x, y) < « then

d(£(x), £(y)) < Ad(x, y). Let x € X and consider the sequence of

successive approximations with initial element xoé

' K
Xo ” fxb ’ fzxo 9 cseae fxo 9 ecee
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The following alternative holds; either

(A) for every integer K = 0, 1, 2, ,.. one has

d(f‘&o , 551

)=eo or

(B) f has a fixed point in X .,

Remarks 3.15

1) Banach's contraction mapping theorem is a special case of
the previous theorem since if X is a complete metric space
alternative (A) is automatically excluded and hence f has
a fixed point in X. Uniqueness is evident.

2) Luxemburg's theorem [14] is also a special case of the

LE P AR T

above theorem. Observe that (C2) of [14] excludes

.

alternative (A) and (C3) implies that the fixed point of

f is unique.

)

We would like to give the following 2

Theorem 3.16 Let X be a generalized complete metric space and

-1
K ¢ X+ X any mapping with a right inverse (i.e. KX © = I, the

1fK is a contraction in the sense that

identity) .~ Suppose g = XK
it satisfies the following condition:(f is any self mapping of X).
() There exists a constant A with O < A < 1 such that
whenever d(x, ¥) < « then d(g(x), g(y)) < Ad(x, e
Let x_ € X; then the following alternative holds : either

A) for every integer & = 0, 1, 2, ..., One has

2 L+4+1 o
) = or
d(g xo s 8 xo )

B) f has a fixed point in X,
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Proof: Consider the sequence of numbers

- - L SR TS |
d(x’ gxo)’ d(gxo » gzxo) 9 eoee 9 d(g xo s B xo)’ PR,

There are two mutually exclusive possibilities:
either A') for every integer 2 =0, 1, 2, ...

1

A 24+
d(gxo » B xo) = ®

which is precisely alternative A)
or B') for some integer ¢ =0, 1, 2, ...

2+1

d(g"xo p e k) <. .

It now remains to show that B') implies B).
Suppose B') holds:

Let N = N(xo) denote a particular integer of the set of integers

2+l

£ =0, 1, 2, .... 3uch that d(g!'xo s B xo) < o =

Then by C)since d(ng° R gN+1x°) < o it follows that

4 N
d(gN 1. gN+2x ) = d(gg x_ , 88

N+1x )
o? o o o

N+1
j_xd(ngo s 8 X))

< ® .

By induction it can be shown that

N N+1
d(gm'lxo , gN"'%:l) <atagx, . 8 %)

< o for all 2 = 0, 1, 2, o0
In other words for any integer m > N =

N N+1 n~N_, N N+1
dg'x  , g8 x) <A “dlgx, , 8 x )

< o

Using the triangular inequality it follows
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L
L -
that for n > N ,d(gnxo . gn+x°) :_2 d(gn+':ico1 gn+§°)

_i-l‘
: .
n+i=-1-N N N+1
iizl d(g'x, , &8 X))
_ %
<A™ N1 oA ax , &)
1 - © ©

where 2= 1. 2, seo

Since 0 < A <1, the sequence of successive approximations

X x 2x nx
:gotgot'Ooog

o ese » 1s a d=Cauchy sequence, and

o »
since X is a generalized complete metric space,is d-convergent.

i.e. 1lim d(gnxo s X) = 0 for some x€ X .

n-o+ow
We now show x is a fixed point of g.

Whenever n > N it follows from (C) and the triangular inequality

[ WY 3 5 Y AN i"g'ﬂ 7

that 0 < d(x, gx) < d(x, gnxo) + d(gnxo . EX)

< dlx, g% ) + 2™ x , 0 .

— [} o
Taking the 1imit as n + « it follows that d(x, gx) =0 .
Thus g(x) = x and x is a fixed point of g

Hence K-lfK(x) =x 3

and KK L1f(Kx) = Kx = £(Kx) *

So Kx is a fixed point of f.

Remark 3.17 A theorem of Chu and Diaz [4 ] is a special case of

the above theorem since if X is a complete metric space alternative
A) is excluded and hence K~ 1fK has a fixed point in X which is
oBviously unique. Hence f has a unique fixed point in X.

A "local" version of the above theorem is the following:

Theorem 3.18 Suppose X is a complete generalized metric space with

1

a "local" contraction g = K fK : X + X (d.e.
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d(g(x) , g(y)) < Ad(x, y) whenever d(x, y) < C where C is a positive
constant and A & (O, 1))}.Then the fbllowing alternati§e holds:
either

A) ag*x, , 8% > c 2=0,1, 2, ...

or B) f has a fixed point in X.

Proof: Assume possibility A) does not exist, follow the proof of

the above theorem and we get the following inequality.
For any integer n > N = N(xo) such that d(gnxo R gn+Kxo) <c,

K = 1, 2’ eoe o

K . .
. ) 1 +
agx, , ") < 1 ag™ M z) L g tx))
i=
K .
-1-N, N N
< z i 1 Nd(g X, s 8 +1x°)
i=1
n-N K
A 1 -2 N N+1
= Tox dEx . g Tx)

Hence since 0 <A <1, X, gnxo is a d-Cauchy sequence in X

i.e. 1lim d(gnx , X)) =0
n > o °

n+K
Now d(ghx_ , x) < d(g"xy » g™ x) + alg" %G, ®)

< <C+ d‘Cngxo,. x)

It follows by letting K -+ « that d(x, gnxo) <C for all n >N
Then d(gx , x) < d(gx , gnxo) + d(gnx° » X)

< Ad(x, gn-lxo) + d(gnx° , x) for alln >N
Hence d(gx, x) = 0 . i.e. gx = X
So x is a fixed point of g = K~1eK

Hence x is a fixed point of f.

The only-remdining possibility is A).

Remark 3.19 A "localized'version of a theorem of Chu and Diaz [41]

is a special case of the above theorem.

SRR {4



CHAPTER IV

Sequences of Contraction Ma.ppings

The main objective of this chapter is to study the convergence
of a sequence of contractions in metric space. More specifically we
investigate the following question:

YIf a sequence of contractions {fn} with fixed points
U (n=1, 2, .ece ) converges to a mapping f with fixed point::U,

under what conditions will the sequence U converge to U

F.F. Bonsall [ 3p.6] has provided a partial answer in the

following theorem:

Theorem 4.1 Let X be a complete metric space and f and fn (n=1, 2, ¢e0)
contraction mappings of X into itself with the same Lipschitz constant

K <1 and with fixed points U and Un respectively. Suppose that

lim fnag = fx for all x & X.

n = o
Then 1im U = U,
n -
This resuit has been improved by Russell and Singh [21] who showed in the
following theorem that the condition that f be a contraction is not

essential,

Theorem 4.2 Suppose fn n=1, 2, «.. ) is a family of contractions
of a complete metric space X into jtself with the same Lipschitz
constant K < 1 and with fixed points U (n=1, 2, oos ). Let

lim £ (x) = f(x) for all x € X vwhere f is any self mapping of X.

n->o

Then f has a unique fixed point U = 1lim U

n-+o

Proof: Since K < 1 is the same Lipschitz constant for all m,
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[£x - fy| = 1im |fnx - £ vl < K|x - y|,

n <> w© -

Thus £ is a contraction mapping and hence has a unique fixed point
U.
By the contraction mapping inequality(Theorem 2.2)we have for

eachn=1, 2, ...

Km

m
d(Un » fn xo)i 1=% d(fnxo . xo), xoé X .

Putting m = 0 , X, = U we get

1
1-K

1

d(Un, U) <
But d(fnU, fy) » 0 as n + o

Therefore 1lim d(Un, U) =0

n <+«

The above theorem can be generalized to a generalized complete

metric space X making use of an inequality of Luxemburg [14].

Theorem 4.3 Suppose fn(n =1, 2, ...) is a family of self wmappings
of a generalized complete metric space X satisfying the following:
(D af_(x), £ () < pdx, VIO <p < 1) for all (x, y) in X

with d(x, v) < e o
(2) The family of contractions f have fixed points U (n =1, 2, oes)

(3) 1im £ (x) = f(x) for all x € X where f is any self mapping
n
n -» o

of X.

= : ists
(4) Let x_ & X be arbitrary and define x = ®__1- Then there ex

an index N(xo) such that d(fx.ﬂ, x,N) <o .

Then f has fixed point U = lim Un 3

n -+

Proof: Since p < 1 is the same Lipschitz constant for all fn’

d(f x , £y) = Lim a(E,(x), £,(»)) 2 Pd(x, ¥)

n-+

N R AN FUR AN 1
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for all (x, y) in X with d(x, y) < = ,
Hence £ is a cogtraction‘on X,
Using property (4) we can show f has fixed point U say.

By the inequality of Luxemburg [14], we have for each r = 1, 2, ...

n=N
n N N+1
d(Ur’ fr xo): _?l_-_p d(fr xo » ft xo)

where N(xo) is an index , n > N,

Put n = N =0 and xo =,

1
1 -

But as r + » d(fu, frU) -0 ,

1
1 -

Then d(U_, U) < d(u, frU) = d(fu, £U),

Hence 1lim (Ur’ U) =0

r = o

Remarks 4.4

(1) A local version of the above theorem can be similiarly

proven using Luxemburg's "local" theorem [15].

(2) The condition that all of the mappings have the same
Lipschitz constant is rather stringent. For example, one

can easily construct a sequence of contraction mappings from
the reals into the reals which converges uniformly to the zero

mapping but whose Lipschitz constants temd to one.

The following theorem has been given by Russell and Singh [21]:

Theorem 4.5 Let fn(n =1, 2, «..) be a family of contraction self

mappings of a complete metric space X with Lipschitz constants
R (n =1, 2, ...) such that Ko 2K, for each n and with fixed

points Un (n=1, 2, ...). Suppose that lim fnx = fx: ¢ x €X
n =+ o«

where f is any self mapping of X. Then f has a unique fixed point

U= 1im U_,
n

n-+ o

ey a TR AT R TR
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Proof: Since |fnx - fnyl _:Knlx - vyl R

‘Um |f x - £ y]| < x];im K lx-y| .

n -+ o -> o

Since K < K_ for each n, it follows that 1lim K_ <« 1. Hence
o+l — n N>l

1im fnx = fx is a contraction mapping on X, and hence has unique
n -+ o

fixed point U, Moreover Ky will serve the purpose of a Lipschitz
constant for fn (n=1, 2, coe)s

By the contraction mapping inequality of Theorem 2,.2.1,

Since d(fnU, ¥U) + 0 as n + «, we have

m
m Kl =

d(Un, fn xo) < d(fnxo, xo) . xoe X for each n = 1, 2, ...
l - Kl LI
Putting m = 0, x_ = U we get <
<
1 = 1 . g
a , V) < 7= X, d(f U, V) = ,—= X, d(f_u, fU) g
3

lim d(U_, U) = O.

Nn - o

.
»

Example 4.6 Let fn : [0, 2] + [0, 2] such that
fnx=1+nx ,(n‘l,z,--0)°

o+l
Now 1lim fn(x) =1=f(x)VY x €fo, 2] -

n => oo

1
The Lipschitz constants are Kn ==g’0n" 1, 2, ees

Thus Ky = -]2-'-w111 make all mappings contractions e
n+ 1

The fixed points are U = dn =1, 2, «02) *

Now 1im U =1 and 1 is the unique fixed point for f.
n - o

A result analog ous to the above theorem can be proved using a

theorem of Chu and Diaz [4].

Theorem 4.7 Suppose the following conditions hold for a complete

.' metric space Xi

-1 .
(1) K : X X is any mapping such that KK = = I, the identity

ractions on X with

(2) '{K'lfix}w is a sequence of cont
i=1
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Lipschitz constants Ki such that Ki» K <1 and with fixed

points Ui (i - 1. 2‘. .wu). -

(3 {fi}w converges uniformly to any mapping f : X + X,
Then f has a unique fixed point U,
Also {U:l}"° converges umiformly to U.

i=1

Proof: Since £, » £ , Kl K > KUK
Now d(K.lfiK(x) R K-lfil((y)) iKid(x, y) for any i and x, YE X o

Hence lim d(K-lfiK(x) . K'lfiK(y)) < 1lim Kid(x, ¥)e

{ @+ i > =

Thus d(R™LER(x), K~ ler(y)) < Rdlx, y)K < 1.
i.e. K-lfK is a contraction on X and hence has unique fixed point

u.

It follows by a theorem of Chu and Diaz [ 4] that f has unique fixed

point U,

Since {fi}m- converges uniformly to f, then
i=1

{K-lfik}w converges uniformly to K_lfl(.
i1=]

Now given € > O there exists a positive integer N such that 1 > N
implies that
Ak Ler () . K-lfiK(U)) <(1=-K) .€ o
Thus for 1 > N
a(u, 1) = a ter(u) , KHEKU,D)
< aw k) , KTERD)
+ak ek K" le,k(U,))
< (1-K) - e + Ky o a(u, Uy) .
l.e. (1 -K,)) d(u, Uy) < Q- Ki) c E e
Since 0 < Kj< 1 we have d(U, Ui) ¢ g fori. > N o

1.e. 1im Ui = U

n-<> o

e o e ¢ U~ R\ -
T SRR Fst e A

L A T e e S Rt gt e e 2
SR TN s e e e T T T
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We give the following two theorems for sequences of mappings in

metric spaces:

Theorem 4.8 Suppose X is a metric space and (1) f,: X X is a sequence

of continuous mappings with fixed points u, nh=1, 2, -=-).
(2) {fh} converges uniformly to £ : X + X, where f is any self mapping
of X.
' o Auy,. } limit is u.
(3) {un} has a convergent subsequence Ung whose limit is u

Then u is a fixed point of f.

Proof: Since f,, converges uniformly to f, therefore,d(f i u. ., fu. )

< £ 4 and d(uni,u) < ¢&/2; i 2 N.
Now d(fu, uni) = d(fu, fhi uni).

< d(fu, fni u) + d(fniu, fni 'I.lni).

+

€
¥

e
2

= €

Thus fu = lim u, _ . Hence fu = u.
jo>reol :

REMARK 4.9 In case the sequence {fn} is not continuous then zhe

continuity of f will serve the purpose of the theorem.

Unlike the previous theorems, the above theorem does not assume that the

family {f } be contraction or that the space X be complete.
n

L-l?{!\l"\!\. ," o

AR
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Theorem 4.10: Let (Xd) be a metric space and f,:X-»X a family of continuous

mappings with fixed points w, (n = 1,2, ---). N
Let f: X +X be a map with fixed point.u. If the sequence {f;} converges
pointwise to f and if {u,} has a convergent subsequence {u,.} with limit

ug, then ug = u.

Proof: Let e>o. Then there exists a positive integer N such that i > N

implies d(uni'“o) < €
2

and d(fj ug, fug) < €
2.

Therefore, d(uni, fuy) = d(fniuni, fuo)

= d(fniuni » fniuo)

+ d(£n,Uos fu,) .

< efor all i > N,

This proves that the sequence {u _} converges to f(up). FHence fu, = ug,
1 .

and it follows that u, = u.

In the next two theorems we will consider the question posed at the
beginning of this chapter as applied to a sequence of contractive mapplngs

on compact and locally compact metric spaces.

Theorem 4.11:
Let (X,d) be a compact metric space and f;:

X +X a sequence of

contractive self mappings of X. Suppose the sequence‘ {£fj} converges unz-

formly to £, a contraction self mapping of X. Then the sequence {f;} has

unique fixed points {“i} (i=1,2,c04) and the sequence u; converges to u,

a unique fixed point of f.

el B FUS RRY T




| J——

- 37 -

Proof: Since fi contractive for each i = 1,2,... and X is compact,
each f; has unique fixed point u; (Edelstein).

Also since f is a contraction and X is complete then f has unique
fixed point u,

Let f have contraction constant K-<:1. Since {f;} converges uniformly
to £ then for € >0 3 N such that n >N implies

d(fjx; fx) <e.(1 - K)V xe X,

Now d(u;,u) = d(fju;,fu)
< d(fiui,fui) + d(fuj,fu)

<eg (1 - K) + Kd(u;,u).

ie. (1 -K) d(u,u) < (1-K) .e, K<l

WAl RS O BIN S

Hence d(u;,u) < e .

ioeo lim ui = U
i-hco

The following theorem for a locally compact space is due to Singh [24}:

Theorem 4,12
Let (X,d) be a locally compact metric space. Let fi s X » X.

be a sequence of contractive mappings with fixed points u; (i =1, 2, ...).
Let £ : X + X be a contraction self mapping of X with fixed point u.

If the sequence {f;} converges pointwise to £, then'{ui} converges point-
wise to u.

Remark: One might conjecture that if the mapping f of the last two theorems

is contractive the conclusions of the theorems are still valid.

\




CHAPTER FIVE

Agglications.of the  Contraction Magging Princigiéf

The eafliet.pages of this work have been dethed_to a.’
discussion of some fixe&_point theorems'in‘metric'Spaées;' The

following illustrations will serve to give some intuitive idea of v'

- .
: -

how these fixed point theorems can be zpplied to wafiods1€verydaY{;'f

situations.. - These illustrations are due t;o' S'hinbfot”. ['22 ] P

~ T

o BeTASENL YR S

s that no matier how the surfacg

usly deformed, there will always

in ‘the position it .occupied at the
not stipulate which point is fixed -

FIXED POINT THEOREM state
of the coffee is continuo
be a point on the surface
start. .This theorem does.
‘at anv instant in ‘time..

o

R Rt AN o i T TP SR B o o -




- 39 -

T 0e s m—— a— .

-
-
\--——‘

FEASIBILITY OF AN ORBIT by which a sstellite would revolve around carth and moon
is thie type of question to which mathematicians apply fixed-point tl:icorcins for infiniter - - S
dimecensional surfuces, The clement of time in any cquation for the orbit malkes the problem -
infinite-dimeasionz], readering such simple theorems as Brouwer's theorem inapplicsble.

#

g o

’

sk n et ey 4 LA 3PS ety B o e o

e - bt Sk i
.
Pt el

The applications that follow apply the congraction mapping

3
i

Principle to test existence and uniqueness of solutions to g_'l"gr_e'_b_raic'.,.
differential and integraltequations using the method of succeésiva

aI’Pro:':imat: ions o

5.1 ° Simple 22 lications in one dimensional 'sgace

s“Ppose y= f(x) is a given mapping of. the closed interval [a, ] into’
itself satisfying the Lipschitz condition that . |f(:q) - f(xl,l < A lxz -X ]

Wher? 0<XA <1, Now f is a contraction mapping and hence the sequence.

Xy X) = f(xo) s X2 = 2 £(X]) cesee 5 X_ 3 £(x__,) aelre_~ the successive -

approximations of thé root of the eq’uation f(x) = x and will converge
to the one and o one root, '
Since [f£(x2) - f(x1)| < A | x2 - x l - .. ‘

then it follows that |f(x3) = £(x3)] . -
. R

[x2 = x| -

y e

f.e. [£2(x)] < A will guarantee £ to be a _contréction
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on [a,b].

There are thus two poséibilities for a contraﬁtion:
0 < £f°(x) < 1 and =1 < f°(x) <0 .

The successive approximations of the true root of f(x) = x 1in

case 0 < f°(x) < 1 are illustrated below :

Y, yex
b
y=£(x)
/
) £(x))
o= ) b J)x

Example 5.1.1 Suppose f : (-1, 11-» [-1, 1] is defined by

f(x) = x2 4+ 1
3

y
-
4
-
rd
-
3'
u
*®
¥

Now f is contraction if If"(x)l A1V xgl~-1, 1] »

Clearly | £ (x)] = |_2_;£[ .

win

Now max-lf'(x)l =

mine lf'(x)l =0 ,
Therefore 0 < | f{x)| < % <1l.
Therefore [f£°(x)| <X < 1+
Therefore f is contraction .
Therefore f£(x) = 2+1 (1)

y=x > - (2)
have unique solution in [-1, 1] .

Suppose x = =1 is the initial approximation of the true sulution.
o

Then x = f(x ) = % is the second approximation.
°
x2 = f(x) = -;—% is the third approximation.

Continuing the process these successive approximations will

eventually approach % which is the approximate root of the Y
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equation f(x) = x2 ; 1_ ..

Suppose we require to find the roots of the polynomial
Kx) = O where F(a) < 0, F(b) > 0 and
0 <ay < F°(x) < ag on [a, b]. One widely used method for finding
the roots of F(x) = 0 is to put £f(x) = x - 8 F(x) and we get the
required result by solving the equation f(x) = 0 . Since .
£2(x) =1-8F(x), 1-8a; <£(x) <1-28a,.
We can apply the method of successive approximations again for

the appropriate choice of B .

5.2 Solution of a System of Linear Algebraic Equations by the
Method of Successive Approximations

Consider the mapping f : R® + R" given by the system of

linear algebraic equations

n
Z mijxj + bi ’ is= 1’ 2, -oo.o-’n L4

y =
1 35

If f is a contraction mapping it follows that the equation
f(x) = x may be solved by the method of successive approximations
and we have a unique solution.
Let  x = (X), X35 eceees 5 X ) o
Y = (F1s Y25 eceeee 5 V),

Set d(x, y) = max, |xi - yi' .

We can show that R® with the above metric is a complete metric space.

[ S

e
£
-~
-
5
-
2
s
x
T .
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Now d(y1, ¥2) = max; |y =y, |
< max, |§ ™4 (xlj = xzjl
cmax, T fmy,| G - xp)
15 iy T '

< max, 2|m1|max|xl - x, |
(A R T

= max, § |m13| d(xy,x2) ,

n
The assumption z |mijl < a < 1 where g is contraction mapping
j=1 -

constant is sufficient to show that f£f has exactly one fixeél point,

lmij' < a <1 holds for a matrix (aij) vy

n
Theorem 5.2.1 If )
j=1

then the system of equations

vy - R Wiy Xy < by 1i=1, 2, ¢esecesyn has exactly one

solution x, = (xlo, x2°, seey xno) for arbitrary by, bz, ««. , Do

The solution can be found by successive approximations

beginning with x = (X1, X2, eee 5 X )o

n
If x; = f(xo), X5 ;: £(xy), -;{- k x; = f(x!(-l) ’
and !CK = (X1(K), X2( ).oo. xn( )) 9

then x = 1im x_ .
o T

n > ©
i.e, x, = 1lim x (n)

i . 1 .
n > o«
By the proof of the contraction mapping theorem we have
(K)

- xi| = d(xg, xo)iiﬁ.i d(x, £(x) «

The condition of the theorem is now sufficient to establish convergence.

max, Ixi

Example 5.2.2 Consider the two linear equations

y =mix + b

y = mox + b2 .

L

| S

-
.
n
-
-
M
z
4
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A unique solution of the system now exists if |my| < 1

and [mp] <1 ’ ' ‘
In particular if m =-% s D1 = 2, my =-% s b2 = 3 we have a unique

solution given by x = 6 , y = 5.

5.3 Ordinary Differential Equations (Picard's Theorem)

As an example of the applications of the contraction mapping
principle to ordinary differential equations we shall quote

Picard's Theorem.

Theorem 5.3.1 Let £°(x) = f(x, y) (1) be a given differential
equation with initial condition y(xo) =7, (ii). Suppose G is

an open region of R containing'the point (xo, yo) and satisfying
the Lipschitz condition |f(x3, yv1) - f£(x1, v2) | E.MIYI - v2le
Then there exists a t > O and a function g(x) continuous and
differentiable 1n.[xo - t, x_ + t] such that y = g(x) is a unique

solution of equation (i) with initial condition (ii).

Remark 5.3.2 The successive approximations of the above solution
have the form

X
V() =y, + [x £(t, y,.;(t)) de.
o

Example 5.3.3 Consider the boundary value problem

& _x. f(x, y) with boundary condition x = 1, wheny = 1
dx x ’

(i.eo xo - yO = 1) -

The successive approximations of its solutions are given by

Q
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X
y1(x) =y + I £(t, y)at
xd ) .
X
= i
1+Iltdt

= 14+ 1In x

X
ya(x) =y  + I £(tyyy)dt
X

(o]

x
-1+ I 1 *int g

1
2

[ 2 ] [ [ ) e @
R L 2 Y

n K
y (o =1+) dox _ Inx
n k=1 X

——. e

Hence the true solution is given by y = eln ¥ o x

Remark 5.3.4 The above method can be employed in a more general
sense to justify the existance of solutions of a system of ordinary
differential equations of the form

E/(X) = £,(X, Y1, eeee » ¥) » (1 =1, 2, «o0,n) with initial
condition y, (x ) =y, where the functions £,(%5 Y15 ooe 5 ¥,) are

N+1
defined and continuous over the region G of the space R such that

eee 5 Y ) and satisfies a Lipschitz

G contains the point (x , y__ »
o’ ‘01 n

condition

2 2
Ifi(x’ }'1(1)’ cece o yncl)) - fi(x’ YI( )’ sose yn( ))l

<M maxuyi(l) - yi(z)l 3 1 <i <nle

It may be proved that on some closed interval |x - x°|<:d there exists

a unique system of solutions y; = Qi(x) to the above equations.

\
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5.4 Integral Equations

An integral equation is one of the form -
b
£(x) = ¢(x) + I K(x, y) f£(y)dy

where ¢(x) and K(x, y) (cal?ed the Kernel) are known and a, b are
either constants or functions of x; the function f(y) appearing
under the integral sign is to be determined.

If a, b are constants the equation above is called a Fredholm

integral equation. If a is constant and b = x, it is called a

Volterra integral equation.

5.5 Fredholm Integral Equations

Consider the Fredholm non homogeneous linear integral equation P

of the second kind
b

£f(x) = 2a I K(x, y) £(y)dy + ¢(x)
a

where A is any arbitrary constant. The contraction mapping theorem can
again be applied in the case of small values of ) to test existance
and uniqueness of a solution.

Assume K(x, y) and ¢(x) are continuous functions for x, y @ [a, b]
and consequently |K(x, y)| <M. |
Denote the space of all continuous functions on the closed interval
[a, b] by C[a, b] with the metric d(g;, 82) = max lgo(x) - g2(x) .

C[a, b] with the above metric, is a complete metric space.

Consider the self mapping g = Tf of C[a, b] defined by
b

gx) = A J K(x, y) £(y) dy + ¢(x) »
a

Now d(g;, g3) = max g1 (x) - g2(x) |
< [A| M (b - a) max|£, - £2]-

. ge 1 i is a contraction
Providing |A| < ey the mapping T i

e, EHP ER s ey E S, v
TR e e e e M M v Gy e Y




Hence the Fredholm equation has a unique solution for every

, . R . S
|*"‘ﬁt5233 whose successive approximations are given by

b
£.(x) = 2 L K(x, y) £,_,()dy + 6(x) .

Example 5.5.,1 Consider the values of A for which the Fredholm equation
1

£(x) = x2 + A j sin (x - y)} £(y)dy has solution. According to the
o

foregoing, above equation has solution for all A such that

R g—
M(b-a) °
Since IK(x, y)l < M we have |sin (x - y)l,j M, so that
0 < |k(x, | =21.
Hence M = 1,

Alsob =1, a = 0,

Hence 1 = 1.
M(b-a)

Therefore above equation has solution if Al <1,

5.6 Volterra Type Integral Equation

We shall reiterate for clarity a more general form of the
contraction mapping principle stated earlier which will be utilized
in the Work that follows:-
"If T" is a contraction self mapping of a complete metric space X
then the continuous mapping T : X = X has a unique fixed point",
It was earlier declared that the contraction mapping principle in
the above form is very useful for certain applications. One such
application is to test existence and uniqueness of a solution of
the Volterra type integral equation.

£(x) = A fx K(x, y) £(y)dy + ¢(x) o

a

Vv i all
Actually a unique solution exists to the above equation for

Q



values of the parameter A .

X
Consider thé& mapping h(x) = A f Rix, y)E{y)dy + ¢(x) = T£(x) . o ' - -
a

If f),f, are two continuous functions defined on ' [a, b],then

x
[hy(x) = ha(x) | = [T£1(x) - TE(0) | = IAJ K(x, y)£1(y) - £2(y)dy],
a |

If d(f3f5) = max |£;(x) - £,(x)] defines the metric on C [ a, b]’then

C[a, b] is again a complete metric space and

X
|TE1(x) - TE2(x)| < |A} f | R(x, )L - £2(3)) |dy
a

<Al M. m(x - a)
where M = max |K(x, y)| ' -
m = max |f; - £5] o

- 2
|T2£,(x) - T2£,(x)| < A2 Mm ﬂTﬁL P

n n
and |Tnf1(x) - Tnfz(x)l :_Xn Mm(x —'azn < 2 Mm(b -'az .
ne

For any arbitrary A we can choose n in such a way that

AT b -a)" <1,

nt

and hence the mapping ™ is a contraction.So Tf =h has a unique
solution,

Hence the Volterra type equation above has unique solution for all A...

s R T T
D A DAL Syt e M Y
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