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(ii) 

ABSTRACT 

The main aim of this thesis is to investigate fixed and periodic 

points under contraction or distance shrinking mappings in metric 

spaces. 

Various situations are explored where the notion of contraction 

is relaxed and suitable modifications made on the metric space to 

ensure fixed or periodic points for the contraction. 

During the course of these investigations a few new results which 

guarantee fixed or periodic points for contractions under suitably 

weak conditions have been given for metric spaces. 

A few fixed point theorems have been also given in generalized 

complete metric spaces. Some of these are generalizations of well 

known results in this space. 

Convergence of a sequence of contractions and their fixed points 

have been studied briefly and a few new theorems have been added. 

In the end an attempt is made to apply the contraction mapping 

principle to the theory of differential and integral equations. 
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CHAPTER I . 

INTRODUCTION 

In 1922 s. Banach formulated his classical theorem commonly 

called the Banach Contraction Principle which may be stated as 

follows:-

"A contraction mapping of a complete metric space into itself 

has a unique fixed point." 

This theorem was first applied to the proof of an existence 

theorem by Cacciopoli in 1930 and still remains the most fruitful 

means for proving and analysing the convergence of iterative 

processes. 

The contraction mapping principle has moviated a great deal 

of research in the field of functional analysis. Extensions of the 

theorem are of continuing interest and have been given by such 

mathematicians as Rakotch (1962) and Chu and Diaz (1965). 

Others such as Luxemburg (1958), Monna (1961), Edelstein 

(1964), Margolis (1967), and Diaz and Margolis (1967) have 

generalized the contraction mapp~ng principle to generalized metric 

spaces. 

These results have been further generalized to uniform spaces 

by Davis (1963), Kammerer and Kasriel (1964), Naimpally (1965), 

Edelstein (1967), and many others. 

Still more results have been given on fixed point theorems 

in .·other spaces by such leading mathematicians as Brou.wer ( 1912), 

Schauder(l927) and Tychonoff (1935). 
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Many of these fixe~ point theorems have been used to guarantee 

existence and uniqueness to solutions of differential and integral 

equations. 

The main aim of this thesis is to study fixed and periodic 

points under different contraction mappings restricted to metric 

and g.eneral:.i zed metric s'Paces. 

Various fixed point theorems are developed by relaxing the 

concept of contraction and at the same time modifying the metric space. 

In Chapter II the Banach contraction mapping principle with 

various modifications and generalizations is discussed. A survey 

is made of various types of contractive mappings which under suitable 

conditions have fixed or periodic points. 

In Chapter III some new fixed point theorems have been given 

for generalized complete metric spaces. These theorems include 

generalizations of fixed point theorems of Luxemburg, Monn~, Edelstein 

and Margolis. 

A brief study has been made of the convergence of sequences of 

contraction mappings and their fixed points in Chapter IV. Sequences 

of contraction and contractive mappings have been studied incomplete 

metric, compact, and generalized complete metric spaces. A few new 

theorems have been included. 

In the final chapter, Chapter V, the contraction mapping.·. principle 

is applied to the theory of differential and integral equations. 



CHAPTER II 

CONTRAcriON AND CONTRACTIVE MAPPINGS IN 

METRIC SPACES 

2.1 Preliminary Definitions 

Definition 2.1.1 + Let X be any set and let R denote the positive 

reals. We define a distance function d:X x X ~ R+ to be a metric 

if the following conditions are satisfied: 

(i) d(x, y) > 0 '11 x, y E X 

(ii) d(x, y) = 0 <=> X = y 

(iii) d(x, y) = d(y, x) 

(iv) d(x, ~) < d(x, y) + d(y, z). 

(i) and (ii) guarantee that the distance between any two points of 

X is always positive and only zero when the points coincide. 

(iii) assures that the order of measurement of distance between two 

points is insignificant. 

(iv) is a statement of the familiar tr,angular inequili~. 

(X, d) with d defined as above is called a metric space. 

Actually with (ii) modified namely 

d(x, y) = 0 if x = y (ii)* 

we define a more general space ealled Pseudo-metric Space. 

Definition 2.1.2 A function f is said to satisfy Lipschitz condition 

if d(f(x), f(y)) < K d(x, y) '11 x, Y e x. 

In the special case when 0 ~ K < 1 or K ~ [0, 1) f is said to be a 

contraction mapping. 
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Remark 2.1.3 Every contraction mapping is clearly continuous. · 

Proof: To show continuity we need to justify continuity at each 

point X E X. Given £ > 0~ choose t5 • £ > 0; 
0 k 

Then d(x, x ) < t5 => d(f(x) ~ f(x )) _< kd(x~ x )) 
0 0 0 

<If 
< £ 

Hence f is continuous at x which is arbitrary • 
0 

Therefore f is everywhere continuous. 

(0 < k < 1). 

Definition 2.1.4 A sequence {x } is said to be a Cauchy sequence n 

if for £ > 0 3 a number N(£) such that 71 m, n > N 

d(x , ~ ) < £ • In other words lim d(x ~ x ) = 0 • m n m n n,m ~ oo 

Definition 2.1.5 If for every £ > 0 •'3 1f such. tha·t ii ~ N c:!) 

d(x , x) < £,then {x } is a convergent sequence and converges to x. 
n ' n 

i.e. lim 
n~oo 

It is well known that every convergent sequence is a Cauchy sequence 

but not conversely. 

Definition 2.1.6 A metric space is said to be complete if every 

Cauchy sequence converges in that space. 

With the notion of complete metric space and contraction already 

defined we are now ready to give the main theorem on contraction 

mappings. In fact, all of the work that follows was motivated by 

this well known result of s. Banach. More precisely most of the 

intermediate results are developed by imposing certain restrictions 

• 
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on the contraction mapping or by modifying the sp~ce. 

2.2 Banach Contraction Theorem 

Theorem 2.2.1 Let X be a complete metric space. If f:X ~ X is a 

contraction then f has a unique fixed pointa In particular f(x) = x has 

a. unique.solution. 

Proof: Choose x ~ any arbitrary point1 in X • 
0 

Let 

We now show 

i.e. 

Xl = f(x ) 
0 

X2 = f(xl) • f 2 (x ) 
0 

• 
• 
• 
• 

fn(x ) X = f(xn-1) ... 
n . 0 • 

that {x } is a Cauchy 
n 

lim d(x ~ x ) = Q. 
n~m ~ c» n m 

Sequence. 

From the definition of a contraction f~ 

d (f(x) f(y)) ~ k d(x~ y) "~~ x~ Y e x. 

Therefore d(x ~ x ) = d(fx 1 fx 1> n m n- m-

~ kd(xn-1 xm-1) 

~ k2d(xn-2 xm-2) 
• 
• 
• 
• n 
< k d(x ~ x ) 
- o m-n • 

But d(x ~ x ) < d(x. x 1> + d(xl~ x 2) + ••••••••• + d(xm-n-1~ xm-n>· 
o m-n - o• 

Also d(xh x 2) = d(f(x
0
), f(x J) ~ kd(x

0
, x1), 

and d(x2 , x 3) = d(f(x1) f(x2)) ~ k2d(x0 ~ x1) • 

. 
.J 

' 

' ) 

) 
\ 
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Continuing we can demonstrate that . . • 
( ( ) 2 m-n-1 d X t X ) < d X 1> Xl + kd(x • Xl) + k d(x, Xl) + •••••• + k d(x

0
,. Xl) o m-n - o o o 

< d(x • xl) [1 + k + k2 + •••••••• + km-n-1]. 
- 0 

Hence d(x ~ x ) < knd(x ~ x ) 
n~ m - o~ m-n • 

n < k d(x ,. 
- 0 

x1) ·-fl + k + k 2 + ••••••• + k~-.n.-.~.] 
n < k d(x , 

- 0 

1 
(1 - k) 

+ 0 

Hence {x } is a Cauchy Sequence • 
n 

(o < k < 1) • 

Since X is complete {xn} converges to a point x E. X • 

Therefore lim 
n+oo 

Now f(x) = f(lim x ) = n n+oo 

X = X • n 

lim f(x ) n n+oo 

(f is continuous) 

= X • 

To show uniqueness choose x, xl two fixed points of f,. x + xl • 

Then f(x) = x • 

f(xl) = x 1 • 

NOW d ( f ( x) , f (X 1) ) ~ kd (X, X 1 ). 

But d(f(x) f(xl)) = d(x, xl) • 

and 1 < k (contradiction). 

Hence x = xl • 

E 
;:J 
!.· 
j :: 

~ 
1 
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Remarks 2.2.3 

1) Both conditions of the previous theorem are necessary. e.g. 

(i) .. the map f:(O,l) -+ (0,1) defined by f(x) = ~ is a 

contraction but has no fixed point since (0, 1] is not 

a complete metric space. 

(ii) the map f : R -+ R defined by f(x) • x + 1 is not a 

contraction and has no fixed point although R is complete. 

2) The construction of the sequence {x } and the study of its 
n 

convergence are known as the method of successive approximations. 

3) The contraction theorem has the advantages of being constructive, 

its error of approximation can be estimated, and it guarantees 

a unique fixed point. 

2.3 Some Modifications of Banach's Theorem 

By retaining the notion of a contraction in the sense of Banach 

and merely modifying the space we can obtain many modifications of the 

contraction principle. The theorems that follow deal with sucra·..:spaces 

as Pseudo-metric, and £-chainable metric spaces. A more general form of 

the Banach theorem, obtained by generalizing the contraction constant, 

is also discussed. 

Theorem 2.3.1 If f is a contraction self mapping on a complete Pseudo 

metric space X then f has a fixed poin~, »ot unique. 

Proof: Existance of a fixed point for f may be justified similiarly 

to the previous theorem. If X is a Pseudo-metric space then from 

(ii*) d(x, y) = 0 if x = y. 

Hence d(x, y) = 0 ~> x = y• 

- - ----- ---------------------·-- - ··· ··-···· . .. •' ... ·. 

' 

l 
' 
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Now referring to the d~scussi~~ on uniqueness in the ~revious theo~em1 
d(x, x1) 5_ kd(x, x 1) -> d(x, xl) - kd(x, xl) 5. 0. 

Suppose d(x, xl) - kd(x, xl) = o. 

Then (1- k) d(x, xl) = 0. But 1- k + 0 fork~ (0, 1). 

Therefore d(x, xl) • o. 

But this does not necessarily imply that x • xl. 

The following generalization of the Banach Theorem is very useful for 

certain applications. This theorem is due to Chu and Diaz [ 5]. 

Theorem 2.3.2 If fp (p positive integer) is a contraction self mapping 

on a complete metric space X then f . has a unique fixed point. 

Proof: Let fp = g : X~ x. 

Then fP c g has a unique fixed point x • 
0 

Now~ .. p+1(x
0

) c fp(f(x
0
)) = g(f(x

0
)) = f(g(x

0
)) = 

i.e. f(x
0

) is a fixed point of g. 

Since g has unique fixed point x
0

, 

f(x ) = x is unique. 
0 0 

f(x ) 
0 

Remarks 2.3.3 (i) The assumption that fp is a contraction is not 

strictly necessary. In fact if X is any non empty set of elements and 

f is a single valued function on X into itself, the assumption that fp 

has a unique fixed point will guarantee a unique fixed point for f. 

( ii) Another · · · result due to Chu and Diaz [ 4 ] 

may be formulated in the following way:-

Let f be a function defined on a non empty set X into itself. 

-1 
Let g be another function defined on X into itself such that gg = I 

where I is the identity function of X. Then f has a fixed point if and 

only if g-1fg has a fixed point. 

------r~.-.. , ......... , .. , . ., .......... ~,·- .. -·.·- .. -.· 

f 

~ ~ 
xr . ! 
(t 
~ I 
»!. .. 
J . 1 

~ 
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Observe (i) The previous case (Theorem 2.3.2) when p = 1 will give 

Banach's Theorem. 

(ii) In the case wnere X is complete Pseudo-metric space the 

previous theorem -Won'tgive a result similiar to that of 

Theorem 2.3.1. 

Definition 2.3.4: Let X be a metric space and e: > 0. Then a finite 

sequence x , x1, ••• , x of points of X is called an e:-chain joining o n 

x
0 

and xn if d(xi-! , xi) < e: (i • 1, 2, ••• , n). 

The space X is called e:-chainable if for every pair (x, y) of its points 

there exists an e:-chain joining x , y. 

Theorem 2.3.5 Let X be a complete e:-chainable metric space. 

Suppose fP:x ~ X is any mapping satisfying the condition that 

d(x, y) < e: => d(fPx, fpy) ~ ~ d(x, y) where A~ (0, 1). Then f has a 

unique fixed point. 

Proof: We have to show that fp is a contraction with respect to the 

metric de:; then the proof follows bynTheorem 2.3.2. Since (X, d) is 

e:-chainable, define de: (x, y) = inf ~ d(xi-l• xi) ~ e:-chains 
i=l 

X= xo• x 1' • • • • • • • • • • 

Now deis a distance function on X satisfying 

(1) d(x, y) ~ de: (x, y) 

(2) d(x, y) = de:(x, y) for d(x, y) < e:. 

From (2) it follows that a Cauchy sequence { x } in X is a Cauchy 
n 

sequence with respect to de: if it is a Cauchy sequence with respect to 

d, and is convergent with respect to de: if it converges with respect 

to d. Hence (X, d ) is complete whenever (X, d) is complete, Morepy~r, 
e: 

the mapping fp is a contraction with respect to de:• Given x, Y E X 

;;~ ,, 

1.· 
!.' 

L~ 
f:-
1'; 

~ : 

i-: 
'·' 

.. , 
i· 
( ~ 
,; 
! ·· 

, .. 

. 
:·; 

.... . . - --- -·-·· ·- ·····------ - · - ··· ····-· .... ·· · · .. ··· -. •<o• · ·:·. -:· · ::;.~• '"':"'c~·c::._;o~~~:.:C-'.:--:=;':':·:':·:~; ~::'.'''.-- "\ 
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and any e:-chain x , ••• , x with x • x, x '"" y we get o n o . n 

d(xi-l' xi) < e: J (i • 1, 2, ••• n). 

So that d(fpxi-l• fpxi) <A d(xi-l' xi)< e:~(! = 1, 2, ••• , n). 

f p P. p p Hence x , • • • • , f x is an e:-chain joining f x and f y and 
0 n . n n 

de:(fPx, fpy) ~ L d(fpxi-l• fpxi) ~A L d(xi-l' xi). 
i=l i•l 

Since x
0

, ••••• xn is an arbitrary e:-chain we get 

d (fPx, fpy) < A d (x, y) 
- e: 

and hence fp has a unique fixed point x 6 X. 

It follows from theorem 2.3.2 that f also has a unique fixed point x. 

Remark 2.3.6: If in the previous theorem p = 1, we get Edelstein's 

theorem ( 7 ]. A more general version of the Banach Theorem can be 

constructed as shown by Rakotch in [23], if A as previously defined 

is replaced by A(x, y), a member of the family of functions 

F • { A (x. y)}, satisfying the following conditions: 

(i) A (x, y) ~ A(d(x, y)), A depends only on the distance 

(ii) 

(iii) 

between x and Y• 

0 ~ A(d) < 1, for all d > 0. 

A(d) is a monotonically decreasin~ function of d. 

He gives the following theorem: 

Theorem 2~3.7: Let f be a contraction self mapping on a complete metric 

space X such that d(f(x), f(y)) ~ A(x, y) d(x, y) for every x, Y EX, 

where A (x, ·y) ~ F. 

Then f has a unique fixed point. 

A similiar result can now be proved for ano-chainable complete metric 

space (23 J. This theorem has been proved by Singh. 

~ 
::.! 
• . 

;:, 

I 
: '!'"! 

n ,. 
i' 

i . 

, .. 

. 
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Theorem 2.3.8: Let X be a complete £-chainable metric space. Suppose 

f: x~ X is any mapping satisfying the condition that 

d(x, y) < £ -> d(f(x), f(y) !. >.. (x, y) d(x, y) for all x, y ~X and 

>..(x, y) E F then f has a unique fixed point. 

Proof: Using exactly the same technique as in theorem 2.3.5 we can 

show that (X, d ) is complete. 
£ 

Now d(fxi-l, fxi) !_ A (xi-l, xi) d(xi-1' xi) 

= >..(d(xi-1• xi)) d(xi-1' xi) 

< A ( £) £ , ( i = 1, 2, • • • n) • 

But by definition >..(£) < 1. 

Hence f(x) • f(x
0
), f(x1), 

for f(x), f(y). 

..... , f(x ) = f(y) is an £-chain 
n 

And d (f(x), 
£ 

i=l n n 
< >..(L d(xi-1' xi)) L d(xi-1' 

i=l i=l 
Hence d£(fx, fy) < >..(d£(x, y) d£(x, y). 

The proof now follows by theorem 2.3.7. 

~~~--- Contractive Mappings 

Definition 2.4.1: A mapping £ : X ~ X is contractive if 

d(f(x), f(y)) < d(x, y), for all x, y £X where x ~ Y• 

A contractive mapping on a complete metric space need not have a fixed 

point as the following example demonstrates. 

Example 2.4.2: The map f : R ~ R defined by f(x) 
tr = x + 2 - arc tan x 

is clearly contractive but has no fixed point. 

------- ----·--·--- ·----·-·----···- ··•· . .- • - . 
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The following theorem is due to Edelstein [ 8' ] • 

Theorem 2.4.3 Let f be a self contractive map on a metric space X 

and let x £X be such that the sequence of iterates {fn(x)} has a 
ni 

subsequence {f (x)} convergent to a point x eX. Then x is a 
0 0 

un~que fixed point of f. 

Corollary 2.4.4 If f is a contractive mapping of a metric space X 

into a compact metric space Y ~ X, then f has a unique fixed point. 

Definition 2.4.5 A mapping f of a metric space X into itself is an · 

e:-contractivemap if 0 < d(x, y) < £ •> d(f(x), f(y)) < d(x, y) 

where £ > o. 

Two theorems due to Edelstein [ 8] for such a map are the following: 

Theorem 2.4.6 An £-contractive self mapping f on a compact metric 

space X has at least one periodic point. 

Theorem 2.4.7 An £-contractive self mapping f on an £-chainable compact 

metric space X has a unique fixed point. 

Definition 2.4.8 A mapping f of a metric space X into itself is said to 

be locally contractive if for every x £X there exist · £ and A(e: > O, 0 <A< 1) 

which may depend on x, such that 

p, q€ S(x,~) = {y!d(x, y) < e:} => d(f(p), f(q)) <). d(p, q) , P :I q. 

Definition 2.4.9 A mapping f of a metric space X into itself is said to 

be (~, ).) uniformly locally contractive if it is locally contractive 

-J 
. 

7 .. 
) 

, 
) 
•. 
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and both £ and A do not depend on x. 

Sufficient conditions for a fixed point under mappings such as the 

above are given by the following theorem due to Edelstein [ 7]. 

Theorem 2.4.10 If f : X + X is an (€, A) uniform locally contractive 

self mapping on an £-chainable complete metric space X, then f has a 

unique fixed point xo~. i.e. f(x~ •x • 
0 

Definition 2.4.11 A self mapping f on a metric space X is said to be 

globally contractive if the condition d(f(x), f(y)) < A d(x, y) with 

). € [0, 1) holds for every x, y ~ X. 

Remark 2.4.12 Edelstein l :71. has shown that an (f; - A) uniformly 

contractive self mapping on a convex eomplete metric space X is also 

globally contractive. This suggests the following theorem: 

Theorem 2.4.13 If fn, where n is any positive integer, is an (£, A) 

uniformly contractive self mapping of a closed convex subset A of a 

complete metric space X, then f has a unique fixed point. 

Proof: Since A is a closed subset of a complete metric space X it 

follows that A is complete. Furthermore, since fn is (~, A) uniformly 

contractive on A, fn is also globally contractive on A (Edelstein). 

It now follows from Banach's theorem that fn has a unique fixed point 

in A. Hence f also has a unique fixed point in A. 
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Bailey[l] has studied two very general contractive mappings on . .. . 

compact metric spaces. Using the notions of proximality, distality 

and asymptoticness he has given suitable conditions under which 

these mappings have fixed or periodic points. The two mappings 

investigated were these:-

(1) f is continuous and 0 <-d(x, y) z> there exists n(x, y) £I+, 

(2) 

n n the positive integers, such that d(f (x), f (y)) < d(x, y), 

X f. y. 

f is continuous and there exists £ > 0 such that 

+ 0 < d(x, y) < £ a> there exists n(x, y) ~ I such that 

X r/> y • 

He gives the following results:-

a) If a mapping f on a compact metric space X satisfies (1), 

then f has a unique fixed point. 

b) If a mapping f on a compact metric space X satisfies (2), 

then f has periodic points. i.e. there exists K > 0 such that 

fK(U) = U. 

Using a result of Chu and Diaz [4] we can now give two simply proven 

theorems which modify results a) and b): 

Theorem 2.4.14 Let f be any self mapping of a compact metric space X. 
- 1 -1 

Suppose K : X ~ X is any mapping with a right inverse K such that KK = I, 

-1 K fK is continuous. If 0 < d(x, y) => d(K-lf~(x), K-lf~(y)) < d(x, y) 

Where x f. y and n(x, y) ~I+, then f has a unique fixed point in X. 

+ 
< d(x, y) , x + y , n(x, y) £ I • 

Hence by Bailey ( 1], K-lfK has a unique fixed point in X say n. 

-,J 

., 

... 

) 

" > 



i.e. 

Hence KK-1fK(n) • Kn 1 

and f(Kn) • Kn • 

- 15 -

Therefore Kn is a fixed point of f. 

Clearly Kn is unique. 

Theorem 2.4.15 Let f : X ~ X be any self mapping of a compact metric 

space X. Suppose K : X ~ X is any mapping with a right inverse K-l 

such that K-1fK is continuous. If 

0 < d(x, y) < £ ~ d(K-lf~(x), K-lf~(y)) < d(x, y) where x ~ y and 

+ n(x, y) • I , then f has a periodic point in X. 

Proof d(K-1f~(x), K-lf~(y)) = d((K-1fK)nx, (K-lfK)ny) 

< d(x, y) , x + y , n(x, y) ~ I+ 

-1 Hence by Bailey [l i], K fK has a periodic point U say. 

i,e. (K-1£K)Pu ... U for some positive integer P. 

Hence K-lfpK(U) ""' u, 

and KK-lfpK(U) = KU. 

i.e. fp (KU) • KU, 

and KU is therefore a periodic point of f. 

Replacing conditions (1) and (2) by either a contractive or an 

£-contractive mapping fn on the space X we obtain the following two 

theorems: 

Theorem 2.4.16 If fn, where n C:. I+, is a contractive self mapping 

on a compact metric space X, then any mapping f : X ~ X has a unique 

fixed point. 

... 

... 
J 

.,, .. . 
) 
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Proof: Since fD is contractive on a compact metric space X, then fD has 
- • 

a unique fixed point (Edelstein) 

i.e. fR(U) = U is unique • 

Hence ffR(U) = ~(f(U)) = f(U). 

Since fD has a unique fixed point U, then f(U) = U is Unique since each 

fixed point off is also a fixed point of fR. 

Theorem 2.4.17 If £0, where n & I+, is an £-contractive self mapping of 

a compact metric space X then any;~mapping f : X + X will have a periodic 

point i.e. fr(U) = U for some r &I+. 

Proof: Since ~ is £-contractive, then fn has a periodic point U 

(Edelstein). i.e. (fO)K(U) = U, for some integer K a I+. 

S . K If! I+ h K ~ I+ 1 1n ce n • ~ • t en n .::. a so • 

Let nK = r E I+. 

Then fr (U) = U • 

Remark::2.4.18: Converses to the Banach Contraction theorem have been 

provided by Bessaga •[2] • Meyers [17] • Janos [11] and Wong (25] • 

).. 

)!: . 
:; :·: 
~ · 

~ · 

O : ... 
J 

' ., 
' 

) 



CHAPTER THREE 

Contraction Mappings on a Generalized Complete Metric Space 

~e concept of a generalized complete metric space, first 

introduced by W.A. Luxemburg, has been of continuing interest in 

recent years. 

Two contraction mapping theorems were given by Luxemburg on 

such a space and then applied to the theory of ordinary differential 

equations. These theorems have since been generalized to a family 

of contractions by such mathematicians as Monna, Edelstein, and 

Margolis. Further modifications and generalizations will be given 

in this chapter. 

Definition 3.1 Let X be a non empty set. If there is defined on 

X x X a distance function d(x, y) (0 ~ d(x, y)~ ~)satisfying the 

following conditions: 

(Dl) d(x, y) = 0 iff X = y 

(D2) d(x, y) = d(y, x) (Synnnetry) 

'.OD3) d(x, y) ~ d(x, z) + d(z, y) (triangle inequality) 

(D4) lim d( X, x.n> = 0 •> lim (x, X ) ~ 0 
n n 

n,m-"'+oo n-+oo 
where x E X(n c 1, 2, •••• ) and xis unique • 

n 

Then X with the metric d, i.e. (X, d), is called a generalized complete 

metric space. Examples of such a space would be the extended real 

line and the extended complex plane with the usual metric-. 

Theorem 3.2 Let fp (p is any positive integer) be a mapping of the 

generalized complete metric space X into itself satisfying the following 

conditions : 

• 

.. 

.J . 

) 

, 
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(Cl) There exists a contant 0 (!C q < 1 such that d(fPx, fpy) < qd(x, y) 

for all (x, y) such that d(x, y) < ~ 

(C2) For every sequence of successive approximations 

x • fpx 1 2 h i bi 1 n n-l , n = , , ••• were x~ s an ar trary e ement 

of X, there exists an index •(x
0

) such that d(xN' ~N+!) < ~ 

for all J!. • 1, 2, ••• 

(C3) If x and y are two fixed points of fp 

i.e. fP (x) .., x and fpy • y, then d(x, y) < ~ • 

Then f has a unique fixed point x • lim 
n+oo 

X n 

Proof: Let x
0

E: X and form the sequence xn = fpxn-l (n = 1, 2, ••• ) 

By (C2) there exists an index N(x ) such that 
0 

••• 

Hence by (D3) we have d(xn, xn+l.> < eo for n ~ N and I. • 1, 2, • • • • 

Then (Cl) implies d(~+l' ~2) ~ qd(~, fp~) and generally 

n-N p 
d(xn' xn+J ~ q d(~, f ~) for n ; N. 

Since by (D3) we have d(xn' xn+1 ) <i~l d(xn+i' xn+i-1), 

we obtain by the above inequality 

· n-N t I P ) d(xn' xn+ ~ ~ {q (1 - q ) (1 - q)} d(~, f ~ , n > N and J!. = 1, 2, ••• 

Hence x is a d-Cauchy sequence. From (D4) it follows then that 
n 

there exists an element x e X such that lim d(x , x) = 0. For this n 
n+~ 

element x we conclude by (D3) that d(x, £Px) ~ d(fPx, xn) + d(xn' x) 

Hence d(x, fpx) = 0 and by (Dl) fpx ... x • 

~ qd(x, xn-l) + d(xn' x) 

for n > N - . 

Sox is a fixed point of fP. Assume now that f~y = Y with x + Y• 

Then by (D3) d(x, y)< oo and by (Cl) we obtain 
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0 ~d(x, y) • d(fPx, fpy) ~ qd(x, y). 

This impties that d(x, }') =·o and hence x ... y. 

Therefore xis a unique fixed point of fP, and hence a unique 

fixed point of f. 

Remark 3.3 If p ... 1, we get a well-known theorem of Luxemburg [14]. 

We generalize a theorem due to Luxemburg [14] for a family {fi} of 

contractions in the following way: 

Theorem 3.4 Suppose· {fi} (i • 1, 2, ••• ) is a sequence of self 

mappings of a generalized complete metric space X satisfying the 

following conditions: 

(1) There exists a constant 0 < p < 1 such that 

d(fi x, fiy) ~ p d(x, y) for all (x, y) with d(x, y) < co • 

(3) For every sequence x • fix 1 , n ... 1, 2, ••• where x is n n- o 

an ;arbitrary element of X, there exists an index N(K
0

) such 

that d(~, x&+t) <co for all ~ = 1, 2, ••• , and i = 1, 2, ••• • 

(4) If x, y are two fixed points of the mapping fi then 

d(x, y) <co (i = 1, 2, ••• ). 

Then the sequence {fi} haS a common unique fixed point. 

Proof: Conditions (1), (3) and (4) ensure that each mapping 

£1 (i = 1, 2, ••• ) will have a unique fixed point. 

Assume now fi(xi) =xi 

fj (xj) = xj • 

> 
' • 
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Since the family {f.} commutes we now have 
1 f.f.(x.) 

J 1 1 

= fj (xi) • 

Hence f. (x.) is a fixed point of f .• 
J 1 1 

But fi has a unique fixed point xi. 

Therefore f.(x.) = x. and x. is a fixed point of f .• 
J 1 1 1 J 

But fj has a unique fixed point Xj· 

Hence x. = x .• 
1 J 

Thus xl = x2 = ••••• =xis a common unique fixed point for 

all fi. 

We prove the following theorem which is more general in nature 

than the previous result. 

Theorem 3.5 Let (X, d) be a generalized complete metric space and 

fi (i = 1, 2, .• •• ) a family of self mappings of X closed under 

composition such that 

(1) There exist a constant 0 < p < 1 and an integer m ~ 1 such 

(2) 

that if (x, y) E X and d(x, y) < m then 

d(f.m(x) , f.m(y))< p. d(x, y), i = 1, 2, •••• 
1 1 -

f .• f . =f .• f. ti, j = 1, 2, ••• ). 
1 J J 1J 

(3) For every sequence of successive approximations 

m xn = f . x 1 , n = 1, 
1 n-

2, ••• where x is an arbitrary 
0 

element of X1 there exists an index N(x
0

) such that 

d(~, ~+!) < m • 

(4lif x, yare two fixed points of fim (i = 1, 2, ••• ), 

i. e . f.m(x) = X , f .m(y) = y => d(X, y) < m • 
1 1 

I 
i 
I 

. ! 
I 
I 
I 

i 

>-. ! 
:r:: .·.! 

{ l 
~ I 

~ I 
. j ., 
~ J 
) 
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Then there exists a unique y € X such that 

fi(y) = y for all i = 1, 2, : •• ~ 

Proof: Following the procedure of Luxemburg and using .conditions 

(1) and (3), it can be shown that each fim has a fixed point Ui (i = 1, 2, ••• ). 
m Assume now that f. (U.)= u. 

1 1 1 

m f. (U.) = U. 
1 ) J 

Since by (4) d(U. , U.) < ~ (i = 1, 2, ••• ),we have 
1 J 

0 < d(U. , U.) = d(f.mU. , f.~.) < pd(U., U.). 
- 1 J 11 1J- 1 J 

Hence d(U. ~ U.) = 0, which contradicts u. # u. 
1 J 1 J 

Thus the family {fim} have unique fixed points {Ui}
1
(i = 1, 2, ••• ). 

Since each unique fixed point of fim is also a unique fixed point of 

fi, it follows that the family {fi} have unique fixed points {Ui}. 

Using (2) we can show as in the previous theorem that U = U = ••• = y 
1 2 

is a common unique fixed point for all {f.}. 
1 

Remark. 3.6 If the familt {f.} reduces to f with m = 1 we get 
1 

a theorem of Luxemburg. 

The following is a "localized" version of theorem 3.~:. 

Theorem 3.7 Let fP be a mapping of the generalized complete metric 

space X into itself satisfying: 

(Cl) There exists a constant C > 0 such that for all (x, y) with 

d(x, y) ~ C we have d(fPx, fPy) ~ p d(x, y) where 0 < p < 1. 

(C2) For every sequence xn = fPxn_ 1,n = 1, 2, ••• , where x0 is 

an arbitrary element of X, there exists an index N(x0 ) such 

.. 
J 

. 
7 



- 22 -

that d(xn• xn+1 ) ~ C for all n ~ N and 1 = 1, 2, •••• 

• 
(C3) If fpx • x , fpy • y then d(x, y) ~ C • 

Then f has a unique 'fixed point X a lim X • 
n n+oo 

Remark 3.8 If p • 1 we get a "local" theorem of Luxemburg [15] • 

• Luxemburgs "local" theorem has been generalized by A.F. Monna [18] 

to a suitable family of operators as follows: 

Theorem 3.9 Suppose· {fi}' (i a 1, 2, ••• ) is a sequence of mappings \ 

of a complete generalized metric space X into itself satisfying the 

following conditions: 

(1) 

(2) 

(3) 

There exist C > 0 and p (0 < p <-1) such that 

d(fix , fiy) ~ pd(x, y) , (i • 1, 2, ••• ) , whenever .. 

d(x, y) < c. 

fifj a fjfi
1
(i, j = 1, 2, ••• ) i.e. any two mappings commute. 

If x E X then a positive integer N(x ) exists such that 
0 0 

n ~ N(x
0

) => d(fn+K(~), xn) ~ c, (K = 1, 2, ••• ). 

Then the sequence x where x = f
1
·x 1 , (n = 1, 2, ••• ) converges 

n n n-

and if y
0 

a lim xn' lim fKyo ~ Y0 • 
n+oo K+oo 

Edelstein [ 8 ] has shown that the assumptions of Monna' s theorem 

imply a much stronger theorem in the following way: 

Theorem 3.10 If all of the assumptions of Manna's theorem 

hold then a point y exists with the property that 

fu+K(y) = y. (K = 1, 2, ••• ) 

Assumptions (1) and (2) of Manna's theorem can be relaxed to obtain 

the following "existence" theorem: 

.. 
J 

) 

, 
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Theorem 3.11 Let (X, d) be a generalized complete ~etric space and 

{fi} where (i = 1, 2, ••• ) a family of self mappings of X closed 

under composition such that 

(1) There exist constants C > 0 , D ~ p < 1 such that if 

(x, y) E. X and d(x, y) < C then 

d(fK(x) , fK (y)) ~ pd(x, y) for a fixed K > 1. 

(3) For arbitrary x ~ X and every sequence of successive approximations 
0 

xn = fixn-l (n • 1, 2, •••• ) there ex~sts an index N(X
0

) such 

that d(fn+j ~, ~) ~ C for n ~ N, j = 1, 2, ••• 

Then there exists an EX such that fn+i(n) = n for all i = 1, 2, •••• 

Proof: Consider an arbitrary fixed point x e. X. Let n > N(x ) 
0 - 0 

be fixed • 

Suppose Y is the set of ally £X such that a sequence 

C(y, x ) C X exists with the property that 
n 

C(y, xn) = {y = Po• Pp ••• , P,t = ·.xn} 

with d(pi, pi-l) ~ C , (i = 1, 2, ••• ,R.). 

Now Y is a closed metric subspace of X and fn+j (Y) C: Y • Also Y is complete. 

Thus Y and fn+j• for a fixed j, satify the assumptions of Edelstein's 

proposition [ 9 ] • 

Hence fn+j has a unique fixed point in Y, say nj• 

n. • 
J 

Using condition 2) with j fixed we have 

fn+j fn+i(nj) = fn+i fn+j(nj) = fn+i(nj). 

Thus fD+j has a fixed point fn+i(nj). 

But fn+j has a unique fixed point nj • 
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Henc~ fn+i Cn} _= nj and nj is a fixed point of_ fri:+i • . 

Continuing we can show that all of the family {fn+i} (i = 1, 2, ••• ) 

share the common fixed point n .• 
J 

With hypothesis 1) of Manna's theorem relaxed we have the following 

more general theorem: 

Theorem 3.·.12 Let (X, d) be a generalized complete metric space and 
. 

{f .. } where 
]. 

1 = 1, 2, ••• a family of self mappings of X closed 

under composition such that 

(1) There exist constants C > 0, 0 ~ P < 1 and an integer m > 1 

such that if x, y € X and d(x, y) ~ C then 
m m 

d(f K (x) ~ f K (y)) ~ Pd(x, y) 
I 

K = 

(3) Let x €, X be 
0 

arbitrary and define 

1, 2, ••• 

m x =f. x 
1 

(n = 1, 2, ••• ). Then there exists N(x) such that 
n 1. ~ o 

m 
d(fn+K x

0
, xn) ~ C for n ~ N , K = 1, 2, ••• 

Then there exists a unique n eX such that fn+i(n) • T1 , i = 1, 2, ••• 

Proof: Let x be an arbitrary fixed point of X • 
0 

Let n > N(x ) be fixed. 
- 0 

Using the procedure of the previous theorem it can be shown that 

fm n+K is a "local" contraction on a closed metric subspace Y of X. 

m 
Using a proposition of Edelstein [9 ] it follows that f n+K has a 

I unique fixed point ~ in Y • 

i.e. 

Using an earlier result (theorem 2.3.2) it foll ows that 

... 

.. 
J 

' ., 

1 
I 

.---J _ _ --
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Since the family {fi} commutes we Jlave 
-

fn+Kfn+j(~) = fn+jfn+K(~) = fn+j(~). 

By the uniqueness of nK it follows that'\{ is a fixed point of fit+j• 

Since fii+j is a "local" contraction on Y then ~ is a unique fixed 

point of fn+j• 

Continuing we can show that fn+i("K) = nK for all i = 1, 2, ••• • 

Moreover since each fn+i is a "1ocal" contraction, nK is unique. 

Remarks:3.13 

(1) B. Margolis [ 16] has given a similiar result to the above 

using an extra condition. · The above theorem shows that this 

condition is not essential. 

(2) If m = 1 in the above theorem we get a stronger form of 

Menna's theorem with Edelstein's completion of it. 

(3) If m = 1 and the family {fi} reduces to a single element 

f we get a theorem of w.A. Luxemburg. 

An alternative for any contraction mapping on a gen~ralized complete 

metric space X is provided by the following theorem due to Diaz and 

Margolis [ 6]. 

Theorem 3.14 Let (X, d) be a generalized complete metric space. 

Suppose that the function f : X + X is a contraction in the sense 

that f satisfies the condition : (c). There exists a constant A 

with 0 < A < 1 such that whenever d(x, y) < co then 

d(f(x), f(y)) ~ Ad(x, y). Let x ' X and consider the sequence of 
0 

successive approximations with initial element X i 
0 

xo •, f ·x -o t , .... , .... 
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The following alternative holds:· either 

(A) for every integer K = o, 1, 2, ••• one has 

d(flSt 
0 ' 

fK+l 
xo ) o:CX> or 

(B) f has a fixed point in X • 

Remarks 3.15 

1) Banach's contraction mapping theorem is a special case of 

the previous theorem since if X is a complete metric space 

alternative (A) is automatically excluded and hence f has 

a fixed point in X. Uniqueness is evident. 

2) Luxemburg's theorem [14] is also a special case of the 

above theorem. Observe that (C2) of [14] excludes 

alternative (A) and (C3) implies that the fixed point of 

f is unique. 

We would like to give the following : 

Theorem 3.16 Let X be a generalized complete metric space and 

K : X-+- X any mapping with a right 
-1 

inverse (i.e. KK = I, ~he 

identity).-· Suppose -1 g = K fK is a contraction in the sense that 

it satisfies the following condition:(£ is any self mapping of X). 

C) There exists a constant ~ with 0 < ~ < 1 such that 

whenever d(x, y) < oo then d(g(x), g(y)) ~ ~d(x, y). 

Let x E X; then the following alternative holds : either 
0 

A) for every integer 1 = 0, 1, 2, •••• one has 

) = 00 or 

B) f has a fixed point in X, 

-

..... 
~ ' 

:r ·.:· 
.;. ·-. 
~ ··.· -J · 

. 
'? · . . · 
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Proof: Consider the sequence of numbers 

d{x, gx- ) , d(gx - , g2x ) , · •••• - , d{g1x · R.+l ) 
0 0 0 0 • g xo , ••• 

There are two mutually exclusive possibilities: 

either A') for every integer R. = 0, 1, 2, ••• 

d(gtx , t+l ) 
0 g xo c 00 

which is precisely alternative A) 

or B') for some integer 1 = O, 1, 2, ... 
R. t+l d(g X , g X ) < oo 

0 0 
• 

It now remains to show that B') implies B). 

Suppose B') holds: 

Let N • N(x ) denote a particular integer of the set of integers 
0 

.1!. R.+l 
R. = O, 1, 2, •••• auch that d(g x , g x) < oo • 

0 0 

N N+l Then by C)since d(g x , g x ) < oo it follows that 
0 0 

d( N+l N+2 ) d( N N+l ) 
g XO ' g XO a gg XO ' gg XO 

( N N+l ) 
< Ad g xo ' g xo 

< co 

By induction it can be shown that 

d( N+l N+.l!.+l) < A R. d(gNx , N+l ) 
g xo , g xo - 0 g xo 

<co for all R. = 0, 1, 2, •••• 

In other words for any integer n > N 

< co • 

Using the triangular inequality it follows 

\ 
~ 



I 

.. .. 
I 
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that for n > N d( n n+1 ) , g X t g X 
0 0 

n+i-1-N N N+l 
d(g X t g X ) 

where t ... 1, 2, ... • 

< >. n•N 1 ). t 
~1--).-

0 . 0 

d(gNx N+l ) 
0 , g xo 

Since 0 < >. < 1, the sequence of successive approximations 

x , gx , g2x 
0 0 0 ' ... n , g x

0 
, ••• , is a d•Cauchy sequence, and 

since X is a generalized complete metric space~is d-convergent. 

i.e. lim d(gnx , x) "" 0 for some x 4! X • 
0 n-+"" 

We now show x is a fixed point of g. 

Whenever n > N it follows from (C) and the triangular inequality 

that 0 < d(x, gx) ~ d(x, gnx ) + 
0 

Taking the 4imit as n -+ "" it follows that d(x, gx) = 0 • 

Thus g(x) = x and x is a fixed point of g • 

Hence K-1fK(x) = x , 

and KK-1f(Kx) s Kx = f(Kx) • 

So Kx is a fixed point of f. 

Remark 3.17 A theorem of Chu and Diaz [4] is a special case of 

the above theorem since if X is a complete metric space alternative 

A) is excluded and hence K-1fK has a fixed point in X which is 

obviously unique. Hence f has a unique fixed point in X. 

A "local" version of the above theorem is the following: 

Theorem 3.18 Suppose X is a complete generalized metric space with 

-1 a "local" contraction g = K fK : X -+ X (i.e • 

.. 

... 
J 

. 
I' 
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d(g(x) • "(y)) ~ ~d(x, y) whenever d(x, y) ~ C where C is a positive 
. . 

constant and ~ e. (0, 1) ~.Then the following alternative holds: 

either 

A) 1 = o, 1, 2, ••• 

or B) f has a fixed point in X. 

Proof: Assume possibility A) does not exist, follow the proof of 

the above theorem and we get the following inequality. 

For any integer n > N = N(x
0

) such that d(gnx
0

, gn+Kx
0

) ~C, 

K 
< I 

i=l 
K 

~ l 
i=l 

K = 1, 2, •••• 

' 

< ~n-N l _ ~K 
1 - K 

d( N N+l ) 
g xo ' g xo 

Hence since 0 < ~ < 1 , xn 
n = g x

0 
is a d-Cauchy sequence in X 

i.e. n lim d(g x
0 

, x) = 0 
n+.., 

n n n+K ) d( n+K ) Now d(g x
0 

, x) ~ d(g x
0 

, g x
0 

+ g x0 , x 

n+K 
< C + d{g x

0
,, x) 

It follows by letting K + .., that d(x, gnx
0

) < C for all n > N 

Then d(gx , x) ~ d(gx , gnx
0

) + d(gnx0 , x) 

~ ~d(x, gn-lx
0

) + d(gnx
0 

, x) for all n > N 

Hence d(gx, x) = 0 • i.e. gx = x 

K-lfK So x is a fixed point of g = 
Hence x is a fixed point of f. 

The only· remaini~g possibility is A) • 

Remark 3.19 A "localizeJ'version of a theorem of Chu and Diaz [4] 

is a special case of the above theorem. 



CHAPTER IV 

Sequences of ContractioA. Mappings 

The main objective of this chapter is to study the convergence 

of a sequence of contractions in metric space. More specifically we 

investigate the following question: 

~If a sequence of contractions {f } with fixed points 
n 

Un (n = 1, 2, •••• ) converges to a mapping f with fixed point: :U, 

under what conditions will the sequence U converge to U?" 
n 

F. F. Bonsall [ 3 p. 6] has provided a partial answer in the 

following theorem: 

Theorem 4.1 Let X be a complete metric space and f and f (n = 1, 2, ••• ) n 

contraction mappings of X into itself with the same Lipschitz constant 

K < 1 and with fixed points U and U respectively. Suppose that 
n 

lim fn~ = fx for all x fi. X. 
n-+ao 
Then lim U • U. 

n-+aon 
This result has been improved by Russell and Singh ~1] who showed in the 

following theorem that the condition that f be a contraction is not 

essential. 

Theorem 4.2 Suppose f (n = 1, 2, ••• ) is a family of contractions 
n 

of a complete metric space X into itself with the same Lipschitz 

constant K < 1 and with fixed points Un (n = 1, 2, ... ) . Let 

lim f n(x) = f(x) for all x £X where f is any self mapping of x. 
n-+ao 
Then f has a unique fixed point U = lim u • n n-+ co 

Proof: Since K < 1 is the same Lipschitz constant for all n, 
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lfx-fyj= lim jf x- f Yl < Kjx- Yl n n - • 
n~oo 

Thus f is a contraction mapping and hence has a unique fixed point 

u. 

By the contraction mapping inequality(Theorem 2.~we have for 

each n = 1, 2, ••• 

d(U 
n 

Putting m = 0 , x = U we get 
0 

d(f U, U) 
n 

1 =-1-K 

But d ( f U, fU l ~ 0 as n ~ oo • 
n 

The~efore lim d(U , U) = 0 • 
n 

n~oo 

X E X • 
0 

The above theorem can be generalized to a generalized complete 

metric space X making use of an inequality of Luxemburg [14]. 

Theorem 4.3 Suppose f (n = 1, 2, ••• ) is a family of self mappings 
n 

of a generalized complete metric space X satisfying the following: 

(1) d(f (x), f (y)) < pd(x, y)(O _< p < 1) for all (x, y) in X 
n n -

with d(x, y) < oo • 

(2) The family of contractions f have fixed points U (n = 1, 2, ••• ) , n n 

(3) lim f (x) = f(x) for all x€ X where f is any self mapping 
n 

(4) 

n ~ oo 
of X. 

Let x ~ X be arbitrary and define x = fX 1 • Then there exists 
o n ~ 

an index N(x
0

) such that d(fxN' ~) 

Then f has fixed point U = lim u 
n 

n~oo 

< OD 

. • 

• 

Proof: Since p < 1 is the same Lipschitz constant for all fn' 

d(f x· , fY) = lim d(fn (x), fn (y)) ~ Pd(x, y) 
n~oo 
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for all (x, y) in X with d(x, y) < m • 

Hence f is a contraction -on X. 

Using property (4) we can show f has fixed point U say. 

By the inequality of 
n-N 

d(U , f nx ) < P 
r r o --

1 - p 

Luxemburg [14], we have for each r = 1, 2, ••• 

d(f Nx , f N+l ) 
r o r xo 

where N(x
0

) is an index, n ~N. 

Put n • N = 0 and x • U • 

Then d(U , U) 
r 

But as r + m 

0 

< 1 
-1-p 

d(fU, 

lim (U , U) • 0 
r + m r 

Hence 

.. 1 
d(u, f tn ... ~-

r 1- p 

f U) + 0 • r 

d(fU, f U) • . r 

.. 
Remarks 4.4 J 

(1) A local version of the above theorem can be similiarly 

proven using Luxemburgts "local" theorem [15]. 

(2) The condition that all of the mappings have the same 

Lipschitz constant is rather stringent. For example, one 

can easily construct a sequence of contraction mappings from 

the reals into the rea·ls which converges uniformly to the zero 

mapping but whose Lipschitz constants tend to one. 

The following theorem has been given by Russell and Singh [21]: 

Theorem 4.5 Let f (n = 1, 2, ••• ) be a family of contraction·:self 
n 

mappings of a complete metric space X with Lipschitz constants 

Kn (n- 1, 2, ••• ) such that K~l ~ Kn for each nand with fixed 

points U ( n = 1, 
n 

2, ••• ). Suppose that lim f x- fx:.yx E.X 
n 

where f is any self mapping of X. 

U • lim 
n+ 

n+co 
Then f has a unique fixed point 
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Proof: Since If x- f yj < K lx- Yl n n - n ~ 

lim lfnx- fnyl ~lim Knlx- yj • · 
n-+oo n-+co 

Since Kn+l ~ Kn for each n~ it follows that lim K < 1. 
n 

Hence 

lim fnx • fx is a contraction mapping on X, and hence has unique 
n-+oo 
fixed point U. Moreover K1 will serve the purpose of a Lipschitz 

constant for f (n a 1, 2, ••• ). 
n 

By the contraction mapping inequality of Theorem 2.2.1, 

m Km 
d(U ~ f x ) < 1 d(f x , x ) , x € X for each n = 1, 2, ••• 

n no-
1 

no o o 
Kl 

Putting m • 0~ x • U we get 
0 

1 
d(Un~ U) ~ l d(f u~ u) = 1--=-1

-
K1 n K 1 

Since d(f U, fU)·-+ 0 as n-+ co~ we have n 

lim d(U ~ U) a O. n n-+co 

d(f U, fU) • 
n 

Example 4.6 Let f n 
: [0~ 2] ... [0~ 2) such that 

f X = 1 + illL ) (n = 1~ 2~ ... ) . n 
n+l 

Now lim f (x) = 1 -f(x) V x e. [0, 2] • 
n n-+ CD 

1 
The Lipschitz constants are Kn ... ~ ~ n • 1~ 2~ • • • 

Thus K1 • ~ will make all mappings contractions • 

n+l ( 1 2 ) The fixed points are U = 1 n = ~ ~ • • • • n n 

Now lim U = 1 and 1 is the unique fixed point for f. 
n n-+CD 

A result analog ous to the above theorem can be proved using a 

theorem of Chu and Diaz [ ,4 ] • 

Theorem 4.7 Suppose the following conditions hold for a complete 

metric space X~ 
-1 

(1) K : x -+ x is any mapping such that KK = I~ the identity. 

( 2) 1 }CD of contractions on X with 
{K- fiK is a sequence 

i = 1 

~ -... ., . 
: ... ,. '. 

... 
• .. .. 

. :" . 

) ; 
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Lipschitz constants Ki such that Ki + K < 1 and with fixed 

points ui (i- 1, ~. -~·>· 

(3) {f }
00 

i 
converges uniformly to any mapping f 

i•l 
X -+X • 

Then f has a unique fixed point u. 

Also {U }00 converges uniformly to U. 
i i•l 

-1 -1 
Proof : Since f i -+ f , K f i K + K fK • 

Now d(K-lfiK(x) , K-1 £
1
K(y)) ~ K

1
d(x, y) for any i and x, y £ X • 

Hence lim d(K-1£
1
K(x) , K-1 f

1
K(y)) ~lim K1d(x, y). 

i-+oa i-+oo 
-1 -1 Thus d(K fK(x), K fK(y)) ~ Kd(x, YV.. < 1 • 

i.e. K-lfK is a contraction on X and hence has unique fixed point 

u. 
It follows by a theorem of Chu and Diaz [ 4] that f has unique fixed 

point U. 

Since {£ }
00

· converges uniformly to f, then 
i ial 

{K-1£ Kloa converges uniformly to K-
1

fK. 
i ial 

Now given £ > 0 there exists a positive integer N such that i > N 

imp lies that 

d(K-lfK(U) , K-lfiK(U)) < (1 - Ki) • £ • 

Thus for i ~ N 
1 -1 d(U, Ui) = d(K- fK(U) , K fiK(Ui)) 

1 -1 < d(K- fK(U) , K fiK(U)) 

+ d(K-lfiK(U) , K-1f 1K(Ui)) 

< (1 - Ki) • e + Ki • d(U, Ui) • 

i.e. (1 - Ki) d(U, Ui) < (1 - Ki) • £ • 

Since 0 < Ki< 1 we have d(U, Ui) < e fori· ·. > N • 

i.e. lim ui = u 
n-+oo 
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We give the following two theorems for sequences of mappings in 

metric spaces: . . 

Theorem 4.8 Suppose X is a metric space and (1) fn: X + X is a sequence 

of continuous mappings with fixed points Un (n = 1. 2. ---). 

(2) {fn} converges uniformly to f : X+ x. where f is any self mapping 

of X. 

(3) · {~} has a convergent subsequence . · {Uni} whose limit is u. 

Then u is a fixed point of f. 

Proof: Since fn converges uniformly to f. therefore1 d(fn· U;·. • fu .. ) 
1 

< £ and d(un. ,u) < t;/2 . i .>, N-• 
'T.. ' 1 ' 

Now d(fu. ~.) = d(fu, fn· Un . ) • 
1 1 1 

< d(fu. fn· u) + d(fn.u, fni uni). - 1 1 

e + e: 
< 2 2 

= £ • 

Thus fu = }im ~- • Hence fu = u. 
i + 00 1 

REMARK 4.9 In case the sequence {fn} is not conti nuous then ~he 

continuity of f will serve the purpose of the theorem. 

Unlike the previous theorems, the above theorem does not assume that the 

family {f } be contraction or that the space X be complete. 
n 

--- .. 

; .. 
t+ . 
I ... ,. 
M 

J 

. . 

I , 
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Theorem 4 .10: Let ( X,d) be a t."'etric space and fn:X-+X a family of continuous 

mappings with fixed poin\s Un.(n = 1,2, ---). 

Let f: X +X be a map with fixed point: u. If the sequence {fn} converges 

pointwise to f and if {Un} has a convergent subsequence {Uni} with limit 

u0 , then u0 = u. 

Proof: Let E>o. Then there exists a positive integer N such that i > N 

implies d(uni,u0 ) < E 
2 

Therefore, d(Un- • fu0 ) = d(fn·lln·, fu0 ) 
1 1 1 

~ d(fniUni' fniuo) 

+ d(fni u0 • fu0 ) 

< E for all i > N • 

This proves that the sequence {un_} converges to f(u0 ). Hence fu0 = u0 • 
1 

and it follows that u
0 

= u. 

In the next two theorems we will consider the question posed at the 

beginning of this Chapter as applied to a sequence of contractive mappings 

on compact and locally compact metric spaces. 

Theorem 4.11: 
Let (X,d) be a compact metric space and fi: X +X a sequence of 

contractive self mappings of X. Suppose the sequence {fi} converges uni

formly to f. a contraction -self mapping of X. Then the sequence {fi} has 

unique fixed points{ui} (i = 1,2, ••• ) and the sequence ui converges to u, 

a unique fixed point of f. 

•-----

... 
,r ... . 
.. , .. 
.r 

. . 

' 
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Proof: Since f 1. contractive for eaCh i = 1 2 J , ••• and X is compact, 

each fi has unique fixed po~nt ui (Edelstein). 

Also since f is a contraction and X is complete then f has unique 

fixed point u. 

Let f have contraction constant K-<:1. S1"nce· {.r: } ~i converges uniformly 

to f then for £ >0 3 N suCh that n >N implies 

d(fix• fx) < e.(l - K)V x £ X • 

Now d(ui•u) = d(fiui,fu) 

< e (1 - K) + Kd(ui,u). 

i.e. (1 - K) d(ui,u) < (1 - K) • £ .• K < 1. 

i.e. lim ui = u • 
io+oo 

The following theorem for a locally compact space is due to Singh ~4); 

Theorem 4. 12 
Let (X.d) be a locally compact metric space. Let f. • X + X 1 • • 

be a sequence of contractive mappings with fixed points ui (i = 1, 2, ••• ). 

Let f : X -+ X be a contraction self mapping of X with fixed point u. 

If the sequence {fi} converges pointwise to f, then {ui} converges point-

wise to u. 

Remark: One might conjecture that if the mapping f of the last two theorems 

is contractive the conclusions of the theorems are still valid. 

1---

~ -.. .. ,._ 

... ··, . ' 
l 



CHAPTER FIVE 

. . - . 
Applications of the Contraction Mapping Principle. 

The earlier pages of this work have been devoted ~o a . 

discussion of some fixed point theorems in. metric spaces~ The 

follawing illustrations will serve to give · some _ intuiti~e idea of 
·-

haw these fixed point theorems can be c:pplied to .:various . e_veryday._ 

situations • . · These .illustrations are due to Shinb~ot ·· [ 22 ] .. 

L__ __ 

. . . . ,. 

·:- : ..._. , . p .... -- -- · - ·- - ·....:.- : __ 

· , 
--~~ · ..... 
~ -

... 
·; 

. . . .. -- -- - ---- --- ... - ---·· - -· --- -- - - ------ -· ----------·· -· - .. - ----.···-·-· 
---:---~ 

.. ·- - ·-~··· -. ~ •• • • p .. . - - • • • • - - -- - - -- - - · -· · · · •••• 

FIXED· POIN'r T.HEOREM states thst. no matte~h:~: !~~ls:~!:;: 
of the coffee is continuously :efo_rmi:lon it .occupied at . the 
be a point on ·the surface in t etipo~ate which point . is fixed 
~ta!'~-·- .. Th~$ .. t\l~Q~-?·111 .. 9~es . not s pu . 
'at arrv instay,_t in ·time·. : 
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F'EASIBH.ITY OF AN ORIHT l1y wllich a snlcllite wonltl re\'oh·c: cromul e:.lflll nnd moon 
is 1:1e l)"lle ol question :o wl1ich m:~tllcmnticinns npx>ly lixccl·point theorems !or infinite• 
climcn~ion::.J GUr!uccB, '.l'hc clement o( tizne in any CI}U:llion' (or tbe o:-}Jitmal;cs the prolJ!cm 
infinilc-dimcn~ion::J. rcnclcr~nt; .6uch aim!'lc tiJcorcma aa Dt·ouwcr•a th~orem innpplicr.~~c. -

. .. . , 
-------- ·--·- - ~ .... -.. ~..:..._.-.:.:. .... -·· _.,.;.~-=--,..._...,.__ ... ...... _ .... - ·- . ~ ....... :--!· "': ··-·.~·--.. -__.._~ 

The applications that follow, apply the con~ra·c~~~~ mapping 

principle to test existence and uniqueness of solutions. to algebraic., . .. . ... .. -. . . 

differential and integral equations using the method of successive . 

approximations. 

' 5 • 1 ~ S i"'"" le Mt:••'lications ~ ~.!! in one dimensional space 
. . . 

~uppose y • f(x) is a given mapping of. ~he closed interval fa, b] into . 

itself satisfying · the. ·Li~schitz c~ndition .that ·1. f(lr2) :.. f(Xr) I ~ >-l~2 -~il 

where 0!.). <.1.. Now f is a coritract~on mapping ·and hence the s~quence . . · 

X t Xl • f(x) X2 • f(Xl) X · = f(x ·
1

) ~re' the SUCCeSSiVe o o ' ••••• ' n n-
·. 

approximations of the root of the eq·uation f(x) -= x and · will converge 

to the one and ~ne ro~t. 

Since f f(x2) - f(xl) I ~ >. I· x2 - x1 

then it follows that I f(x2) - f(x.l) I 
lx2 - xtl · 

\. 

i.e. I f"'(x) I < >. will guarantee f to be .a contraction 

... 
FY.'E!'\2C!i~~~~.~~-,_~:.;rr.~~.!:;;;._-.;~!~;~,a1~:. ..... ·.·::. 

. . :. 

.. 

... 
" 

I 

-i 

:· ~ .. 
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There are thus two possibilities for a contraction: 

0 < f~(x) < 1 and -1 < f~(x) < 0 • 

The successive approximations of the true root of f(x) • x in 

case 0 < f~(x) < 1 are illustrated below : 
Y. 

b~------------~~ 
y=f(x) 

a X b X 
Example 5.1.1 Suppose f : [-1, 1]~ [-1, 1] is defined by 

f(x) a x 2 + 1 • 
3 

Now f is contraction if lf,.(x)l < J. < 1 V xfi[-1, 1] • 

Clearly lf~(x)l .,. j2x I 
3 

. . 
N~w max. I f '(x) I 2 .. -

3 

min• I f ' ( x) I D 0 • 

Therefore 0 ~ I f"(x) I ~ ; < 1 • 

Therefore jf'(x)l ~A< 1 • 

Therefore f is contraction • 

Therefore f(x) = x2+ 1 - (1) 
3 

Y = X (2) 

have unique solution in [-1, 1] • 

Suppose x • -1 is the initial approximation of the true sulution. 
0 

Then ~ = f(x
0

) = ; is the second approximation. 

X2 = f(xl) = ~~ is the third approximation. 

Continuing the process these successive approximations will 

eventually approach ~ which is the approximate root of the 

.a:: ••.•• - ·. --.~~·-: "':"' •. ':" ' . 

~ -.. ... 

u . 
• I 

\ 
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equation f(x) = x2 + 1 
3 = X • 

Suppose we require to find the roots of the polynomial 

~x) • 0 where F(a) < 0, F(b) > 0 and 

0 < a1 ~ F#(x) ~ a2 on [a, b]. One widely used method for finding 

the roots of F(x) • 0 is to put f(x) = x - e F(x) and we get the 

required result by solving the equation f(x) = 0 • Since 

lole can apply the method of successive approximations again for 

the appropriate choice of 8 • 

5.2 Solution of a System of Linear Algebraic Equations by the 

Method of Successive Approximations 

Consider the mapping f : Rn ~ Rn given by the system of 

linear algebraic equations 

n 
y = L 

i j=l ' 
i = 1, 2, •••••• ,n • 

If f is a contraction mapping it follows that the equation 

f(x) = x may be solved by the method of successive approximations 

and we have a unique solution. 

Let ...... t X ) • n 

Y = (Ylt Y2t · •••••• ' yn) • 

Set d(x, y) = maxi lxi - Yil • 

We can show that Rn with the above metric is a complete metric space. 

L - - - ---

.. 
• t : 
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d(yl, Y2) • maxi IY1 - Y2 I 
i .· i ' 

IL mij (xl - X2 I 
j j j 

-

- ~ lmijl l<xlj- X2/l 

• max 
i 

n 
The assumption L jmijl ~a< 1 where a is contraction mapping 

j•l 

constant is sufficient to show that f has exactly one fixed point. 

n 
Theorem 5.2.1 If L lmijl ~a< 1 holds for a matrix (aij) w i 

j•l 

then the system of equations 

y - ~ mij xi = bi i = 1, 2, •••••• ,n has exactly one 
i j=l 

solution (xl 
0 0 X 0) for arbitrary b1, b2, , b • X - ' x2 ' . . . , ... n 0 n 

The solution can be found by successive approximations 

beginning with x • (xt, x2, ••• , xn). 

Ifx1 •f(x), 
0 

and ~ a (x 1 (K) , 

then x
0 

= iim xn • 
n-+co () 

i e x ... lim x n • • i • i • 
n-+co 

By the proof of the contraction mapping theorem we have 

maxi lxi(K)- xil = d(~, x0)~~~~~ d(x, f(x) • 

The condition of the theorem is now sufficient to establish convergence. 

Example 5.2.2 Consider the two linear equations 

y = m1x + b 1 

·s._ _ _ 

u . 

~ : 



- 43 -

A unique solution of the system now exists if lm1 1 < 1 

and lm21 · < 1 

In particular if m1 • ~ • b1 = 2. m2 = ~ • b2 = 3 we have a unique 

solution given by x • 6 • y = 5. 

5.3 Ordinary Differential Eguations (Picard's Theorem) 

As an example of the applications of the contraction mapping 

principle to ordinary differential equations we shall quote 

Picard's Theorem. 

Theorem 5.3.1 Let f~(x) 2 f(x. y) (i) be a given differential 

equation with initial condition y(x) • y (ii). Suppose G is 
0 0 

an open region of R containing the point (x • y ) and satisfying 
0 0 

the Lipschitz condition lf(xl• Yl)- f(xl• Y2>l ~MIYl- Y21• 

Then there exists a t > 0 and a function g(x) continuous and 

differentiable in [x 
0 

t. x + t] such that y = g(x) is a unique 
0 

solution of equation (i) with initial condition (ii). 

Remark 5.3.2 The successive approximations of the above solution 

have the form 

yn(x) • y
0 

+ Jx f(t. Yn_1 (t)) dt. 
xo 

Example 5.3.3 Consider the boundary value problem 

~ • ; = f(x. y) with boundary condition x = 1. when Y = 1 

(i.e. x
0 

• y 
0 

• 1) • 

The successive approximations of its solutions are given by 

... 



Y1(x) = Y
0 

+ Jx f(t, y
0
)dt 

xo 

• 1 + f X t dt 
1 

• 1 + 1n x 

Y2(x) a Y
0 

+ Jx f(taY1)dt 
X 

• 
• 
• 
• 
• 
• 

0 

= 1 + I x 1 + t 1n t dt 
1 

• 1 + 1n x + ( 1n x) 2 
2! 

n 
yn (x) = 1 + l 

K=1 

(1n x)K = 
K! 
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1n x e 

H h 1 ln x ence t e true so ution is given by y = e = x 

Remark 5.3.4 The above method can be employed in a more general 

sense to justify the existance of solutions of a system of ordinary 

differential equations of the form 
.. 

fi(x) = fi(x, Y1• •••• , yn) , (i = 1, 2, ••• ,n) with initial 

condition yi(x
0

) = y
0

, where the functions fi(x, Yl, ••• , yn) are 
N+l 

defined and continuous over the region G of the space R such that 

G contains the point (x , y , ••• 
0 01 

condition 

Y ) and satisfies a Lipschitz 
' 0 n 

lfi(x, Yl(l)' •••• 'Yn(1)) fi(x, Yl(2), •••• 'Yn(2)>1 

< M max(jyi (l) - yi ( 2) I ; 1 .=: i .=: n} • 

It may be proved that on some closed interval I x - x
0 
I < d there exists 

a unique system of solutions yi = ~i(x) to the above equations. 

" ... *' ... 

I . 

i ·., 



- 45 -

5.4 Integral Equations 

An integral equation is one of the form · 

f(x) = cf>(x) + Jb K(x, y) f(y)dy 
a 

where cf>(x) and K(x, y) (called the Kernel) are known and a, b are 

either constants or functions of x; the function f(y) appearing 

under the integral sign is to be determined. 

If a, b are constants the equation above is called a Fredholm 

integral equation. If a is constant and b = x, it is called a 

Volterra integral equation. 

S.S Fredholm Integral Equations 

Consider the Fredholm non homogeneous linear integral equation 

of the second kind 

' Jb f(x) = 1\ 

a 
K(x, y) f(y)dy + cf>(X) 

where A is any arbitrary constant. The contraction mapping theorem can 

again be applied in the case of small values of A to test existance 

and uniqueness of a solution. 

Assume K(x, y) and cf>(X) are continuous functions for x, y G [a, b] 

and consequently jK(x, y) I ~M. 

Denote the space of all continuous functions on the closed interval 

[a, b] by C[a, b] with the metric d(g1 , g2) =max lg2(x) - g2(x)l· 

C[a, b] with the above metric, is a complete metric space. 

Consider the self mapping g = Tf of C[a, b] defined by 

g(x) = A Jb K (x, y) f(y) dy + cf>(x) • 
a 

Now d(g 1, g2) =max lg1 (x)- g2(x)l 

~ I >-I M (b - a) max If 1 - f 2l • 

Providing 1>-1 < M{~-a) , the mapping T is a contraction 

I . 
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Hence the Fredholm equation has a un1·que solution for every 

I A I < M cl-a) whose 

fn (x) = >. 

successive 

Jb K (x, y) 
a 

approximations are given by 

fn-1 (y)dy + ~(x) • 

Example S.S.l ~onsider the values of >. for which the Fredholm equation 

f(x) = x2 
+ >. J sin (x - y) f(y)dy has solution. According to the 

0 

foregoing, above equation has solution for all >. such that 

I >.I < 

Since 

1 
M(b-a) • 

IK(x, y)l 

Hence M = 1. 

< M we have lsin (x- y)l < 

Also b = 1 , a = 0 • 

Hence 1 = 1. 
M(b-a) 

M, so that 

Therefore above equation has solution if 1>.1 < 1. 

5.6 Volterra Tyee Integral Equation 

We shall reiterate for clarity a more general form of the 

contraction mapping principle stated earlier which will be utilized 

in the '~ork that follows:-

"If Tn is a contraction self mapping of a complete metric space X 

then the continuous mapping T : X -+ X has a unique fixed point". 

It was earlier declared that the contraction mapping principle in 

the above form is very useful for certain application~. One such 

application is to test existGnce and uniqueness of a solution of 

the Volterra type integral equation. 

f(x) = A Jx K(x, y) f(y)dy + ~(x) • 
a 

Actually a unique solution exists to the above equation for all 

·~..__ __ 
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values of the parameter A • 

Consider the- mapping h(x) =A Jx K(x, y)f(y)dy + " cf>(x) = Tf(x). 
a 

If fl12 are two continuous functions defined on · [a, b] 1 then 

lh1(x) - h2(x) I • ITf1(x) - Tf2(x) I = I A Jx K(x, y)fl(y) - f2(y)dyl. 
a 

If d(f1,f2) • max I f1 (x) - f2(x)l defines the metric on C [a, b], then 

C[a, b] is again a complete metric space and 

ITft(x)- Tf2(x)l < IAt • Jx I<K(x, y))(fl(y)- f2(y))ldy 
a 

< IA.I M • m(x - a) 

where M =max IK(x, Y>l 

m "" max I f 1 - f 21 • 

IT2ft(x)- T2f 2 (x)l ~ A2 Mm (x ;:a)
2 

1 

and 1Tnf1 (x)- Tnf2(x)l ~An Mm(x -
1
a)n < 

n. 

n n 
A Mm(b - a) • 

n! 

For any arbitrary A we can choos~ n in such a way that 

A n (b - a)n < 1 J 

n! 

and hence the mapping Tn is a contraction. So Tf =h has a unique 

solution. 

Hence the Volterra type equation above has unique solution for all A ••• 

, . 
' · ... 
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