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(i) 

ABSTRACT 

In 1930, F.P. Ramsay published a paper contain-

ing a combinatorial theorem which has since then become 

very well known and has given rise to an extensive litera-

ture. Most of the research which has arisen from Ramsay's 

Theorem, has dealt with the probl~m of finding upper and 

lower bounds for the so called Ramsay numbers. In addition, 

some exact values of these numbers have been determined 

and some applications . of Ramsay's Theorem have been given. 

In this thesis~ we survey some of the . research 

which has been done~ · In addition, some new results have .. 
l 

been obtained. These results yield a better lower bound 

for certain classes of Ramsay numbers, than any of those 

that have been· obtained up to the present time. 
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CHAPTER I. 

INTRODUCTION 

A very significant theorem in combinatorial 

analysis appeared in 1930 in a paper (7] by the English 

logician F. P. Ramsay. Before stating Ramsay's Theorem, 

the following terminology . used in formulating the theorem 

and throughout most . of this thesis, is explained: By an . 

a-set ip meant a set the number of whose elements is a. 

By a t-subset of a set S is meant a subset of S with 

t elements. The set of all t-subsets of a set S 

shall be denoted by Pt(S). 

Ramsay's Theorem in its most general form can . 

now be formulated as follows: 

Theorem 1.1 ••• , k and 
n · 

t be . positive 

integers such that ·.each ki ~ t • Then there exists a least 

positive integer • • • • k ;t) such that if 
n 

s 

is an a-set, s ~ R , and if Pt(S) is partitioned into n 

classes ..• , c • 
n 

then for some i, 1 ~ i ~ n 

The integers R.:. R(k1 , k 2 , ••. , kn;t) are 

r eferred to as the Ramsay Numbers. If k 1 = k2 = = k = k 
n 

in Theorem 1.1, th~n we shall denote Ramsay numbers . ~f this 

type of R (k,t). 
n 
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Perhaps the most interesting special cases of 

Ramsay's Theorem are the cases t • 1 and t • 2 A 

moments reflection shows that in the case t • 1, Ramsay's 

Theorem reduces to the well known pigeon hole principle. In 

In the case t ~ 2, Ramsay's Theorem can be 

for•ulated in the language ~f Graph Theory. If S is an 

s-set, then we can think of the elements of S as the 

vertices of a complete graph on s vertices, the 2-subsets 

of S as the edges of this graph and the partitioning of 

the 2-subsets of . S int~ n classes as coloring the edges 

of the graph in n colors. The · Theorem of Ramsay can thus 

be formulated as follows: 

If G is a complete graph on s vertices, 

s ~ R(k1 , k 2 , 

in ·. any way in 

•.• , k ;2), and if the edges of 
n 

G are colored 

n colors then for some . i, 

1 ~ i ~ n , there results a complete sub-graph of G with 

ki vertices all of whose edges are colored ci . 

In much of what follows, the language of graph 

theory shall be used. For notational convenience, 

1 .. h k ti or "k-gon" a comp e~e grap on ver ces shall 

b~ denoted by the symbol <k>. If a <k> is such that 

t 
! 

l . ~ 

-' l 
I 

~ ! 

, 
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all of its edges have the same color, then we shall refer 

to it as a monochromatic <k> or M.C.<k>. 

Since the appearance of Ramsay's Theorem in 

1930, several well known mathematicians have worked on 

problems arising from · it. Most of this research has 

dealt with finding bounds for the Ramsay Numbers 

R(k 1 , k 2 , ••• , k ;t) orR (k~t). Still, very little is 
n n 

known as to what is the order of magnitude of R (k,t) 
n 

for t ~ 2. Also, some exact values for . the Ramsay numbers 

have been given · for small values of n and · k, and t ~ 2. 

However, the values of R (k,2) are only . known for n ~ 4 
n 

and small values of k. In addition, other papers have 

been devoted to~e applications of Ramsay's Theorem. 

In this thesis, we give a survey of the · research 

which has gone into . some . of the above : me~tioned problems. 

Also some new results are obtained. 

In Chapter II, we shall develop a proof of the 

most general formulatiort of Ramsay's ~heorem. 

In Chapter III, ~e shall discuss · some of the 

existing recurrence inequalities and lower . bounds for the 

Ramsay Numbers. In addition, we shall prove a new result 

which yiel~ for fixed k and large . nl a better lower 

bound for R (k,2) than any of those . that have been obtained 
n 
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up to the preaent time. 

In Chapter IV, we shall discuss some of the 

known exact values of· the Ramsay Numbers. 

Finally, in Chapter V, some . of the · applications 

of Ramsay's Theorem · are discussed. 

z 



- 5 -

CHAPTER II 

PROOF OF RAMSAY'S THEOREM 

An exposition of the proof of RamsayJs Theorem 

is given . in · the book by Ryser [8] The proof · there is 

essentially due to G. S zekeres [ 11] . . However, in . this 

Chapter, we shall approach the proof of Theorem 1.1 from 

a . different point of vi~w. showing that . the main idea in 

' Szekeres argument is really contained in. ~e evaluation . o£ 

the simplest non-trivial Ramsay number R(3,3;2) or R2{3,2). 

We evaluate R(3,3;2) and then proceed to generalize the . 

argument until we finally reach the proof of tpe most 

getiaral form of Ramsay's Theorem. 

Theorem 2.1: R(3,3;2) = 6. 

Proof: Let v be a vert~x of . a <6>, and let· three·of the 

:five edges terminating at v have color c1 • · Consider . the 

three edges joining their farther ends in , pairs. If . neith~r 

of these three edges is colored c1 , then all three must be 

colored c
2

• In either. case, there does exist a mono-

chromatic trianale~ Thus R(3,3;2) ~ 6. 

To show that this .. result is . best . possible, we 

show that R(3,3;2) > 5. Color the edges of a <5> in two 

colors c
1 

and c
2 

as . follows: The interior diagonals of the 
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p~ntagon are colored c 1 and the remaining edges are colored 

c 2 • Clearly, this coloring scheme. does not force the 

appearance of a . M.C.<3> •. Thus R(3,3;2) • 6. 

We now proceed to estAblish the existance of 

R(k 1 ,k2 ;2). If we assume that R{k 1 ,k2 ;2) ~xists, then it 

is clear from the symmetry of the problem that R(k 1 ,k2 ;2) = 

R(k 2 ,k 1 ;2). It is also clear that R(2,k2 ;2) • k2 for all 
. 
The existance of 

R(k 1 , k2; 2) can now be proved by induction. We take as 

-
our induction .hypothesis the existance of R(k 1 -1,~;2) and 

R(~,k2 -1;2) for all ~. In particular, the induction 

hypothesis insures the existance of R(k 1-lrk2 ;2) and 

positive integer and color ~e edges of ~s> in two colors 

c
1 

and ez . Following the idea used in · the proof · of theorem 

: 2 ~ 1, we select an arbitrary vertex v of ; <s> and let n 1 of 

the edges incident with v be colored ~1 and n 2 colored 

( n 1 +n 2 a s -1 ) • 

c • 
2 

Suppose n
1 
~ R(k

1
-l,k

2
;2) . Consider · the edges 

joining in: pairs the . farther ends of the n 1 edges incident 

with . v. 

edges in two colors ·c 
1 

and c 2 forces the appearance of . either 

a M . C . < k 
1 
-1 > o f co 1 or '1. or a M . C . < k 2 > o f co 1 or ci , and 

hence i n . G, either a M.C. <k 1 > of color t 1 or a M.C. <k 2 > 

of . color c-2 • Hence ·we may assume that n 1 < R(kl-l,k2; 2 ) · 

.. 
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Then n 2 ~ R(kpk2-1;2)., .and the same : argument applies. We 

have therefore proved the following theorem: 

Theorem 2.2 R(k 1 , k 2 ;2) exists and · satisfies 

(2.1) 

Proof: Let T(k1 ,k2) .(kl+k2-
2
). Clearly T(k 11 k2) satisfies 

\ k -1 . 
1 

the same recurrence · and : same boundary. condLtions as R(k 1 ,k2 ;2) 

If k~ = k
2

, then we have the special case 

The same type · of argument can be used to establish 

Theorem 2.3 R(k 1 , . k 2 , . o •• , 

n 

k ; 
n 

k ; 
n 

2) ·o We have 

2) . exists and satisfies 

L R(k
1
,k2 , • . • ,ki ,ki-l,k , ... ,k ;2) 

. -1 · - i+l · n . 
i=l 

satisfies the same recurrence 

" 
J 



It follows from (2.2) that 

(2.3) R (k,2) < 
n 

(nk-n) !. 
((k-1) !)n · • 

We mention in passing that in Ramsay's original 

paper [7] , it was proved that R (k,2) exists and that 
n 

Rn(k,2) ~ f(n,k) where f(l,k) = k by definition and 

f(i,k) a (f(i-l,k))! It is not difficult to check that 

this upper bound is much larger than (2.3). We also mention 

for the sake of completeness, that another proof of the 

existance of R (k,2) was given by T. Skolem in [10]. He 
n 

obtained the following upper bound. 

(2.4) R (k,2) < 
n 

kn-n+2 
n -1 

n-1 

It is not difficult to check that the upper bound given 

by (2.4) is roughly the same as that given by (2.3). 

The generalization of the argument to the case 

t > 2 is som~what more involved. We consider first the 

problem of ,~stablishing the existance of R(k 1 , k 2 ; t) · By 

theorem 2.2, we know that R(i,k;2) exists for all i,k~2. 

Also it is easy to - see that R(i,t;t)QR(t,i;t)=i for all 

i > t. We may therefore take as our induction hypothesis 
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the existance of 

(1) R(k,i;t-1) for All k,t~t-1 

(2) R(k,k2-l;t) for all k > t 

(3) R(k
1
-l,1;t) for .!.ll 1 > t. 

In particular, the induction hypothesis assures the existance 

of 

a partition of Pt(S) into two clases c
1 

and c
2 

If we 

can show that there e~ists a k 1-subset K1 C S such that 

Pt(K1 ) ~ c 1 or a k 2-subset K2 C S such that Pt(K2 )£C 2 , 

then the existence of R(k 1 ,k2 ;t) will follow. 

The argument used in the earlier theorems suggests 

that we select an arbitrary element a e S and consider the 

partition of the(t-1)-subsets of S*=S-(a] which is induced by 

the above partition of P (S) in the following natural way: 
t 

Partition P 1 (S*) into two classes B , and B2 by placing a t- ! 

member T of Pt_
1

(S*) in B1 if TU (a]' C1 a nd in B
2 

if TU[a] ( C2 • 

S* is an (s-1)-set . Since s-l~R-1, it follows from 

the definition of R· · tha~ either the~e is an · 



10 

there is an 1 • R(k ,k -l;t)- subset 1 2 of s* such that 
2 1 2 

P (L
2

)CB • 
t-1 - 2 

If the first alternative holds, then since 1
1 

has R(k1 -l,k2 ;t) elements, either there is a (k
1
-l)-subset 

K* such that P (K*) C c
1 

or there is a k~-subset K2 such 
1 t 1 - ~ 

that Pt(K2 ) C c2 , in which case we have finished. Hence 

* K such that 
1 

we assume that there is a (k
1
-l)-subset 

* Let K1 c: K
1 

U [a] . Let * P (K ) c c
1

. 
t 1 -

T be any t-subset 

* of Kl • If T C Kl , then T £ c
1 

. If T , then 

T • T*u [a] , where T* is a (t-a)-subset of Hen.ce 

T* is a (t-1)-subset of 1
1 

and hence 

the manner in which B
1 

was constructed, 

Leo T E c
1

• Hence Pt(Kl) C c
1 

* T c Bl . But by 

* T v [a] t c1 , 

If the first alternative does not hold, then the 

second must, and the same argument applies. We have there-

fore proved the following theorem: 

Theorem 2.4: exists and satisfies the following 

recurrence inequality: 

It is now easy to complete the proof of Theorem 1.1 

by induction on n . • We have just established the e.xistence 

of R(k
1

,k
2
;t). We take as our induction hypothesis the 

I 
I 

"· 
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existence of R(k1 ,k2 , .•. ,kn-l;t), n > 2 • Let R = 

R(R(k1 ,k2 , •••• kn_ 1 ;t) 1 kn;t) Let s be an s-set, s ~ - R, 

and let Pt(S) = c 1 u c 2 u ... u en be an arbitrary partition 

k 
n 

subset 

into n classes. Then either there exists a 

s such that P (K ) C C 
t n - n 

in which case 

we have finished. £.!.there exists an R(kl'k2 , ... ,kn_1 _;t)-subset 

L of s such that p (L) 
t c c

1
uc2 u ... ucn_ 1 . T~e 

induction hypothesis then implies that for some i , 1 < i < n-1 -
there is a ki-subset Ki of L (and consequently of s ) 

such that Pt(Ki) c c . - i 
This completes the proof of Theorem 1.1 

We have as a corollary 

We note in conclusion that if 

in Theorem 2.3, then this implies that 

k 1 = k 2 = ••• = kn = 3 

R (3,2) < nR (3,2) 
n - n-1 

and this leads to R (3,2) ~ 3(n!) 
n . 

A slight· improvement was 

obtained by Greenwood and Gleason in [5]. They proved that 

(2. 5) 

Their argument is as follows: 

Let T 
n 

be the sequence defined by Tl = 2; 

T Tn-1 + 1, for n > 2 By induction it is easy to = n . 
n 

prove that 

n .!. 
Tn = n! l: 

k=O k! 

• 

. 
... ... 

z 
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T = [n!e] 
n 

12 

We now want to show that if the edges of a 

< Tn . -+ 1 > are colored in any way in n colors c 1 ,f:!a~· .. ~en , 
then there results a monochromatic triangle. This is c~early 

true when· n = 1 . We assume that it holds for n - 1 • · Let 

There are v be a vertex of the < Tn + 1 >. 

edges incident with v and there are these 

edge.s with the same. color c (~fly) • n . . 

R. ~ Tn-l + 1 of 

Consider the ( 1) 
2 

edges · 

joining in pairs the farther ends of the R. edges incident with 

v and colored c If one. of these edges . is colored 
n · 

we have fipished. If none of these . edges are colored 

c 
n 

c ' n 

induction hypothesis implies that there is a monochromatic 

triangle colored one of c 1 ,c2 , •.. ,cn-l" This proves (2.5). 

the 7 .. 
"' J 
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C'S&:J?TER III 

LOWER BOUNDS FOR THE RAMSAY NUMBERS 

As we mentioned in the introduction, very little is 

known as to what is the order of magnitude of R (k,t) and 
n 

all existing upper and lower bounds are quite far apart. Ih 

this chapter we discuss the problem of finding lower bounds 

for R (k,t) n Some of the known results are presented and 

some new results are obtained. 

§3.1 Recurrence Inequalities 

In this section we prove some - recurrence inequalities 

and from these derive lower bounds for -R (k,t) 
n 

In [1], it is 

proved that 

For all positive integers n and m and. fixed k 

Proof ~ 

R + (k,2) > (R (k, 2 )-l)(R (k,2)-l) + 1 . n m - n m 

For no~ational convenience, let p = R . (k,2)-l, 
n-t-m 

q = R (k;2)-l and r = R (k,2)-l . We now have to show that 
n m 

p > qr . Let be the vertices of a <q > . Color 

the edges of t1\e <q > in · n colors c ,c
2

, .. . ,c 
1 n 

in such a 

way that there does . not result a M. C. <k > • This can be done 

by the definition of q . Let ~ r > 1 , 1 ~ i ~ q have vertices 

Color the edges . of each <r>i in m 
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colors cn+l' cn+2 ' • • • , cn+m without fore ing the appearance 

of a M.C. <k> • Let <qr> be the graph with vertices 

Pij , 1 ~ i < q , 1 < j < r • Let E = (P P ) be ari edg· e st' uv 

~f <qr> • If s + u , color E the same color as edg• 

(P ,P ) in <q> • If s = u , color E the same as it is s u 

colored in <r> 
s Suppose 

the vertices of a M.C. <k>. 

Case I~ If i 1 = i 2 = ••• = ik, then 

are the vertices of a M.C. <k> in 

contradiction. 

are 

pi j ' pi j 
1 1 2 2 

, which is a 

Case II: If i 1 , i2• .•• , ik are all different, then the 

edges of the <k> are colored the same as those of the <k> 

in <q> whose vertices are Pi , P1 , 
1 2 

again is a contradiction. 

, Pi . This 
k 

Case III: Then the edge (Pi j , Pi j ) 
8 s t t 

is colored one of , cn+m while the edge 

(Pi j P Pi j ) is colored one of c 1 , c 2 , 
s s u u 

also impossible. Hence p ~ qr . 

, c • This is 
n 

It follows easily from (3.1.1) and the fact that 

R
1 

(k,2) = k , tha~ 

(3.1.2) 
n 

R (k,2) > (k-1) . 
n -

This lower bound for Rn(k,2) is substantially smaller than 

the upper bound given by (2.4). We shall obtain some better 

7 .. 
... 
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lower bounds in sections 2 and 3 of this chapter. However, 

we can use theorem 3 .1.1 to · gain a little more . insight into 

the · behaviour of R (k,2) • We prove that for every fixed k , 
n 

lim 
n + oc 

exists. 

To prove this, let h(n) = R (k,2)-l • 
n 

we have by theorem 3.1.1, 

This implies 

(3.1.3) 

Let a = lim inf 
n + oo 

h(n+m) > h(n)h(m) . 

h(ab) > h(b)a. 

h(n)l/n ~ lim sup h(n)l/n = S • 
n + oo 

Then 

Suppose 

first S < oo Q Let E > 0 be given and let b be the 

least integer for which 

{3 cl n4) h(b)l/b > a - E • 

If n = ab n we have 

h(n)l/n = h(ab)l/ab > (h(b)a)l/ab = h(b)l/b > a - E ' 

d (3 1 3) d (3 1 4) Let n = ab + r where where we use • n e1n • • • 

1 ~ r < b-1 . Then 

h(n) = h(ab + r) > h(ab)h(r) > h(ab) 

7 .. 
... 
.I 
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and hence 

I . 1( 1) . 1 
h(n)l n ~ h(ab)l/ab+r • h(a')ab I+r/ab > <a _ &)l+r ab . 

Hence ~ ~ a - & • Since & is arbitrary , a a S • The 

case B • = can be disposed of in the same way. Let N be 

a positive number and let b be the least integer such that 

h(b)l/b > N • The argument used above then shows that 

~ ~ N and hence a • = . 

We cannot decide whether the above limit is finite 

or infinite. 

One can now ask whether R (k,t) satisfie~ the 
n 

same recu~r~p..ce inequality as R (k,2) 
n 

We cannot decide 

this, but we prove: 

Theorem 3.1.2: For all positive integers n and m 

R (k,t) > (R (k,t)-1) (R (k,t)-1) + 1 
n+m+l - n m 

provided k ~ (t - 1)
2 

+ 1 . 

Proof: For notational convenience, set R (k,t)-1 = h(n) n . 

We now have to prove that h(n+m+l) ~ h(n)h(m) . Let S be 

an h(n)-set with elements a 1 , a 2 , 

p ( s) 
t 

into i1. classes cl, c2' . 0
• 

' ah(n). Partition 

C in such a way 
n 

that if K is a k-subset of S , then not all t-subsets 

of K belong to the same class. This is possible by the 

7 .. 
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definition of h(n) For j = 1,2, ..• ,h(n) , let be 

an h(m)-set with elements a j ' aj ' ... a ' jh(m) 
. 

1 2 
Partition each Pt(Sj) into m classes cl ' c2 , ... c 

' mj j j 
in such a way that if K is a k - subset of s j' then not 

all t - subsets of K belong to the same class. Let 

R = Then R has h(n)h(m) elements. Partition 

into n+m+l classes B1 , B2 , .• • , Bn' Bn+l' •.• , 

B 
n+m' Bn+m+l as follows: Let T be a member of p t (R) . 

If T c s 
j • put T in B 

n+R. 
if T e c R,j . If T is 

distributed over exactly t of the sj ' say s j ' s j 2' 1 
. ·() .. s j • then T = {aj i ' aj i ' . .. , aj 1. } say • Put 

t •l 1 2 2 t t 
T in · BR, if the set T' = {a 

a j 2' .... aj } € CR. . 
jl ' t . 

T is distributed over r(l < r ~ t-1) of the s j ' put 

in B • 
n+m+l 

The proof will b e complete if we show that 

there does not exist a k-subet K of R such that 

Pt(K) C Bi for some i , 1 < i < n+m+l • 

Case I ~ K C Sj 

result holds. 

It is then obvious that the desired 

Case II: I f K i s distributed over exactly t of t he 

Sj, th e n there is at leas t one t-subset T of K 

. distributed over exactly t of the sj • Then 

for some Jl. ~ ~ • Since k > t , there is a 

T e B Jl. 

t-subset 

If 

T 

Tl o f . K whic h has at least two eleme n ts i n one of th e 

s 
j 

and at least one element i n some st' t f j • Hence 

Tl c Bn+m+l . 

7 .. 

~ 

> ... 



18 

. Case III: If K is distributed over r(l < r < t-1) -
of the sj ' then since k > - (t-1) 2 + 1 ' there must be 

at least k/r > (t-1) 2 /r + 1/r > (t-1) + 1/r ' and hence 

at least t . elemen-ts of K in one. of the s j. Thus 

there is a t-subset T of K such that T C s j. Then 

T £ Bn+R. . • for some· R. , 1 < R. < m . However, there must - -
be another t-subset of K which belongs to Bn+m+l . 
This completes the proof of theorem 3.1.2. 

In . [1], it is proved that 

(3.1.5) R (kR.-k-R.+2,2) > (R (k,2)-l)(R (R.,2)-l) + 1 . 
n - n n 

One can now ask whether this result can be generalized to 

the case t > 2 . We have not been able to do this. However, 

we prove: 

Theorem 3 . 1.3: 

(3 . 1 . 6) R +l(kR.-k-R.+2.t) > (R (k,t)-l)(R (R.,t)-1) + 1 . 
n • - n n 

Proof: For notational convenience, put hn(k) = Rn(k,t)-1. 

We then have to prove . 

(3 . 1.7) 

Let S 

al,a2 ,.. ,..ah (k.) ~ 
n 

C so that if L n . 

h (kR.-k-£+2) > h (k)h (R.) . 
n+l - n n 

be an h (R.)-set with elements 
n 

Partition Pt(S) into classes c1 , c2 , · 

is an R.-subset of S , then not all 

... ' 

.. 

? -

.. 
> .. 
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t-subsets of L belong to the same class. For 

j • 1,2~on•,hn(i) ' let sj be an hn(k)-set with elements 

a j , a j , " . o , a j • Part it ion each P t ( S j ) into n 
1 2 h (k) 

n 

classes cl • c2 • • e • ' c t so that if K is a 
j j nj j 

k-subset of s j ) then not all t-subsets of K belong to 
j 

the class. 
h n<R.>s same Let w = u j. 

Note that w is an 

j=l 
hn(i)hn(k)-set o Partition Pt(W) into n+l classes 

as follows ~ Let T £ Pt(W). Firstly; 

if for some j , then T £ C
8 

for some s, 
j 

1 ~ s < n. Put T in B 
s 

Secondly, if T is distributed 

over exactly 

T = · {aj i , 
1 1 

belongs to 

t 

" • n t 

c • s 

of 

aj 
t 

put 

the s j' 

i . }say. 
t 

T in 

say sj , sj , 
1 2 

...• sjt' then 

If the set T' = {aj ,aj , .•• ,a . } 
i 2 jt 

B • s 
Finally, if T is 

distributed over r(l < r < t) of the T in 

The proof of (3.1.7) will be complete if we show 

that if M is a subset of w with kR.-k-9.+2 elements, then 

Pt(M) c Bi is false for all i ' 1 < i < n+l. - -

Case I : M is distributed over r > Jl, of the s j. Suppose -
p t (M) c B for some s, 1 < s < n . . Then M must contain - s 
an 9.-subset L which is distributed over exactly 9. of 

s j ' say s j ' s j ' s Let L = {aj i ,aj i ' ... ' e • n t 
j R. 1 2 1 1 2 2 

the 

} . Then the set L' "" {a. ,aj , ..• ,aj 
J i 2 R. 

} is a subset 

and the condition Pt(L) C B implies Pt(L') c c . 
s - s 

~ 

> .. 

' .. ' 
:~ 
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This is impossible. It · is also clear that Pt(M) c Bn+l 

cannot occur since there is at least one . t-subset of M 

which is distributed over at least t of the 

Case II: M is distributed over r < R.-1 of the s j , say -
sj , -sj • ••• I sj 0 Then there 

r 
is a subset K of M with 

l 2 
K c sj for some s , 

s 
at least k elements such that 

since otherwise the - number of elements of M 

would not exceed r(k-1) < (1-l)(k-l) < kR.-k-!+2 • Suppose 

Pt(M) C Bi , for some i, 1 < i ~ n • Then Pt(K) C Bi. But 

this implies Pt(K)"C Ci • This is a contradiction. Also 
jg 

it cannot occur that Pt(M) £ Bn+l' since this would imply 

Pt(K) C Bn+l. This is obviously impossible since it 

indicates that every t-subset of K is distributed over 

at least two of the Sj, contradicting the fact that 

This completes the proof of (3.1.7). 

§3.2 . Probabilistic Arguments 

II 

A lower bound for R (k,t) was obtained by Erdos 
n 

in [2] who proved by a probabilistic argument that: 

Theorem 3 . 2 . 1: 

(3 . 2 . 1) ) 

P.roof: Let S be an s-set and let f(s) be the number of 

ways of partitioning Pt(S) into n classes such that for 

.. 

? .. 

> .. 
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each such partitioping, there exists a k-subset K C S 

such that Pt{K) is contained in one of the n cl~sses. 

The total numbe-r of ways of partitioning Pt(S) into n 

classes is n<t>. Hence the probability that for a given 

partitioning there exists a k-subset K C S such that 

Pt(K) is contained in one of the n classes is f(s)/n (~). 

We need therefore 

(3.2.2) f(s) 

Since the number of k-subsets of an 
s 

s-set is (k), we have 

f(s) < 

where is the number of ways of partitioning the 

remaining t-subsets. Now (3.2 . 2) will be satisfied if 

< 

or if 

(3.2.3) 

If s is any integer satisfying (3.2.3), then 

there does exist some way of partitioning p ( s) 
t 

into 

classes such that no k-subset of S has all of its 

n 

t-subsets in one of the n classes. This completes the 

proof of (3.2 . 1). 

.. 

1 -

"" > .. 
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If n • t = 2 in (3.2.1), then we have 

(3.2.4) 

(3.2.4) yields 

(3.2.5) R
2

(k,2) > 

for some constant c and all sufficiently large k • 

It also follows from Theorem 3.1.1 that .. 
R2n(k,2)-l > (R

2
(k,2)-l)n 

(3.2.6) 
R (k,2)-l > 

2n+l 

It is not difficult to see that (3.2.6) and (3.2.5) 7 

yield a better lower bound for R (k,2) than that given 
n 

by (3.2 . 1) . 

II 

Probability arguments have been used by Erdos to 

obtain lower bounds for other classes of Ramsay numbers, 

especially the numbers R(3,k; 2). 

The best result that has been obtained up to the 

present time is 

2 2 ck I (log k) > -
for some constant c and all sufficiently large k . For 

the proof of this result and further references to the 

literature see (12]. 

"I 

J 

.. 
> .. 
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§3.3. An Algebraic Approach 

In this section we obtain by an algebraic method 

a lower bound for R (k,2) which is better than that given 
n 

by (3.1.2), and also better than that given by (3.2.1) 

provided k is small. and n is large compared to k . 

Consider the following system (S) of 

equations in unknowns: 

k-1 . 

Suppose there exists some way of partitioning 

the n.mbers 1,2, ••• ,m into n sets A1 , A2 , ..• ,An, 

no set containing a solution of (S). Let G be the 

complete 

the edges 

coloring 

In order 

pi • pi • 
1 2 

of a <k> 

graph with vertices PO' Pl' p2' ... ' p Color 
m 

of G in n colors cl, ca· ... ' en by 

the edge pipj color c if li - j I € Ar . 
r 

to see that G contains no M.C. <k>, let 

••• , Pi , i
1 

> i
2 

> ••• > ik , be the vertices 
k 

in G , and suppose all interconnecting edges 

are colored c 
r 

But (it - i ) + (i - i ) = ( i - i ) 1' < t < s _< k-1. 
s+l t s+l ' -s s 

Hence we have a solution to system (S) in A • 
r 

contradiction. Hence G contains no complete 

This is a 

M.C. <k> • 

It follows from the above argument that 

(3.3 . 1) 

... 
J 

.. 
> .. 
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If we define t(n,k) to be the largest integer for which 

there exists some way of partitioning the numbers 

1, 2, •.• , t(n,k) into n sets, no set containing a 

solution of (S), then by (3.3.1) we have 

(3.3.2) R (k,2) > t(n,k) + 2 • 
n 

We have thus translated the problem of finding lower bounds 

for R (k,2) into the problem of finding lower bounds for 
n 

t(n,k). 

We define a function ( g as follows: If 

t(n-l,k) < m ~ t(n,k), then g(m,k) = n. g(m,k) is thus 

the smallest number of sets into which the integers 

1, 2, " " "' m can be partitioned, no class containing a 

solution of (S). 

In [1] it is proved that g(m,3) < log m for . all 

sufficiently large m . Since g is a decreasing function 

of k , we have 

(3.3.3) g(m,k) < log m . 

In fact, one can show that g(m.k) < (1 + E) 
log m 
log k 

for 

every E > 0, m > m (E) , but (3.3.3) is sufficient in 
- 0 

what follows. 
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Now we ·prov~ 

Theorem 3.3.1. For all positive integers p and q 

(3.3.4) t(pq + g(pt(q,k),k),k) > (2t(q,k) + l)P- 1 

Proof: For notational convenience, let X = 2t(q,k) + 1. 

Write the numbers 1, 2, •.. , xP-1 in base X . We distinguish 

these numbers as follows: The set of numbers each of whose 

digits~ t(q,k) is denoted by N
1

• The set of numbers, 

each of which has at least one of its digits at least 

t(q,k) + 1 is denoted by N2 • We shall split the set N
1 

into g(pt(q 1 k),k) sets and the set N2 into pq sets, 

no set containing a solution of (S). The proof of the 

theorem shall then be complete. 

Let cl, c2 •.•. , cg(pt(q,k),k) be sets containing 

1, 2, C'l • 0 , pt(q,k), no set containing a solution of ( s) • We . 

partition - the set into sets Al, A2' •••' Ag(pt(q,k),k) 

by putting a number in Aj if the sum of its digits belongs 

2 + a xP-1 in to cj' i.e. put a = al + a 2x + a 3x + ... p 

Aj if r ai £ c j • This can be done since r a < pt(q,k). 
i-

i=l i=l 
Then Aj _contains no solution of (S) because cj does not. 

For 1 · ~ r ~ p let Br be the set of all numbers 

+ arxr-1 + a= a 1 + a 2x + . . . . .. + a xP-1 
p 

for i = 1, 2, .•• , r-1 and 

satisfying 

a > t(q,k) + 1. 
r -

The set N
2 

has thus been partitioned into sets 

"' 
J 

.. 
> .. 
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We now partition each B " 
p 

B 
r 

into q sets 

as follows: Let n
1

, n2 , .•• , Dq be disjoint sets con~ 

taining 1, 2, ••• , t(q,k), no Di containing a solution 

to (S). Let a € B • 
r 

1 
Then ar = X - (ar) where 

1 < (ar)
1 ~ t(q,k). Put a € Er .:., .f (a ) 1 € D . Then r m m 

B is partitioned in.Co q sets Er, Er, .•• , 
r 1 2 

Hence the set N
2 

has now been partitioned into sets. 

Suppose Er 
m 

there are numbers zi,j 

(3.3.5) 

Let 

(3.3.5) implies that 

and th~s in turn implies 

1 
(3.3.6) X - (ai j) + 

• r 

contains a solution of (S), i.e. 

in . Er such that 
m 

X -
1 

(aj,j+l)r = X -

. 1 

+ • . • + 

(a ) 1 
i,j+l r 

+ X 

1 1 from whe·re (ai,j)r' (aj,j+l)r, (ai,j+l)r € D . But 
m 

(3.3.6) we have 

1 
(ai,j)r + 

1 
(aj,j+l)r 

1 = (ai,j+l)r 

That is, we have a solution of (S) in D m 
This is a 

.. 
> .. 
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contradiction. Hence E does not contain a solution 
r m 

of (S). This completes the proof of Theorem 3.3.1. 

If we set q = l in (3.3.4) and use the 

easily established fact that t(l,k) = k - 2 we get 

(3.3.7) t(p + g(p(k-2),k),k) > (2k- 3)p- 1. 

Let k be arbitrary but fixed. Then it follows from (3.3.7) 

(3.3.3) and (3.3.2) that 

for every e > 0 and n ~ n 0 (k,e) . This result is clearly 

better than (3.1.2) . 

In the immediately preceding argument we chose 

q a l • However there is nothing to prevent us from choosing 

larger values of q to get stiLl better results for certain 

values of k • We illustrate this in the cases k • 3, 4. 

(3 . 3.9) 

If k = 3 in (3.3.8) we get 

R (3,2) > 3n(l-E) , 
n 

Let k ~ 3 and q = 4 in (3.3.4). This gives 

(3.3.10) t(4p + g(pt(4,3),3),3) ~ (2t(4,3) + l)p- 1. 

It is known (L. D. Baumert, unpublished, see [1]) that 

t(4,3) = 44. This with (3.3.10), (3.3.3) and (3.3.2) 

yields 



for every 

(3.3.11) 

e: 

R (3,2) 
n 

> 0 and 

28 

> 89n/4(1-e:) 

If k = 4 in (3.3.8) we get 

R (4,2) > 5~(1-e:) . 
n 

This can be improved by taking k = 4 and q = 2 in 

(3.3.4) 0 

We observe first that t(2,4) ~ 16. This follows 

from the fact that the numbers 1, 2, ... , 16 can be split 

into two sets 

c
1 

= {1, 2, 4, s, 9, 13, 15, 16} 

c2 = {3, 5, 6, 7, 10, 11, 12, 14} 

neither of the sets containing a solution of the system 

c X 
13 

X 
14 

Thus from (3o3 o4), (3.3 . 3) and (3.2.2) we get 

for every 

R (4,2) · > 
n 

33
n/2(1-e:) 

e: > ·0 provided n ~ no(e:) . 

Other results of this type can be obtained 

but we do not discuss thes e any further here. 

·-··------------

~ 
., 
,. 

1 •: 

~ ,. ... .. 
., .. 
... 
~ 

,.. ,. -
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CHAPTER. IV 

SOME EXACT VALUES FOR THE RAMSAY lfUMBERS 

The problem of determining RaR.(k
1

,k
2

, ••• ,kn;t) 

appears to be a very difficult one. No value of R is 

known for t>2. In fact, the values of R1=R(k 1 ,k2 , ••• ,k ;t) 
n 

are not known for n~4. Even for n<4, the values of R1 

have only been established for small values of ki. 

In this chapter, we shall give some of the 

techniques used in - evaluating the known values of the 

Ramsay numbers. 

For notational convenience, in this chapter we 

shall denote a monochromatic <k> of color ci' by the symbol 

The first evaluation we give is the following: 

Theorem 4.1: 

(4.1) R(3,4;2)=9 

Proof: We prove first that if the edges of a <9> are 

colored arbitrarily in two colors c
1 

and c
2

, then there 

will result either a c
1

<3> or a c
2

<4> " This will show that 

R(3,4;2)~9. 

~et v be a vertex of the <9> . Let n 1 of the 

-------·------ -- ----------

.. ,. 

------- --· - -
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edges incident with v have color c
1 

and n
2 

of these 

edges have color c
2

. (n +n =8). 
I 2 

We suppose first that 

n ~ 4. lf one of the edges joining in pairs the farther 

ends of these n edges incident with v, is colored c
1

, 
l 

then we have a cl <3>" Otherwise, we have a c 2 <4>. 

Hence we may assume that n 1~ 3 , 

Suppose that n . = 3 at every vertex of the <9>. 
l 

Then the number of edges colored c . is (9)(3)/2 which is 
' 

impossible. Hence without loss of generality we may assume 

Consider now the edges jcining in 

pairs the farther end of these n 2~6 edges incident with v. 

By Theorem 2.1, these must yield either a c < 3 '> 
1 

or a 

Hence in the <9> , there is either a 

Therefore, R(3,4;2)~9 . 

c < 3 > 
l 

or 

That R(3,4;2)/8, follows from the fact that in 

the graph sketched below, there is no 

Hence R(3,4;2)=9. 

c <3> 
1 

and no 

.. ,. 
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We now prove 

Theorem 4.2 R(3,5;2),.14. 

Proof: From (2.1) and (4.1), and the fact that R(2,k;2)=k 

for all k ~ 2, we have 

( 4. 2) R(3,5;2) < R(2,5;2) + R(3,4;2) = 14, 

Hence we need to show that R(3,5;2)>13 . To do this we 

must show how to color the edges of a . <l3> in two colors 

c1 and c 2 without forcing the appearance of c
1 

<3> or a 

c 2 <5> • 

Consider the field F of residue classes modulo 

13. Fa{O,l,2, . • . ,12}. Let H={l,5,8 1 12}. His a subgroup 

of the multiplicative group of F. The cosets of H are 

H
1
a{2,3,10,ll} and H 2 c{4,6,7~9} . Let the vertices of the 

<13> be P
0

, P
1

, • • • , P
12

• The edge PiPj is colored c 1 

if i-j £H, and colored c 2 if i-j EH 1UH
2

• Suppose there re

sults a c 1 ~ 3>, with vertices Pi,Pj,Pk . Then i-j,j-k,i-ktH. 

But (i-j)+(j-k)~i-k. This is a contradiction since the 

sum of any two elements of H is not in H. Henc e there is 

Suppose there result s a c 2 <S > with vertices 

·---~ - ........ ·:-.. ~..,..,.,.-,....,-,-
' •, - :-::-::;::.:-:· ·..-... • .. .. ' : .. 

,, 
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wi-wj are all in H1 u H
2 

• Consider w
1

,w
2

,w
3

,w
4

• The 

3-subsets of H1 are (2,3,10),(2,3,11)p(2al0,11),(3,10,11). 

In each of these there is a difference equal to 8, i.e. 

there is a difference in H. Hence at most two of w
1

,w2 ,w3 ,w
4 

belong to H1 • 

Similiarly, at most two of w
1

,w
2

,w
3

,w
4 

belong to 

Hence exactly two (say) w ,w belong to H and the 
1 2 1 

other two, w
3

,w
4 

belong to H
2

o Now (w 1 ,w 2 )~(2,3),(2,10), 

(3,11) or(lO,ll) since 3-2=10-ll=l&H and 10-2=11-3=8&H. 

Hence (w
1

,w
2
)a(2,ll)or(3,10) . Suppose (w

1
,w

2
)=(2,11). Then 

w
3 

and w
4 

are different from 6 since ll-6=5&H; also 

w
3 

and w
4 

are different frum 7 since 7-2=5&H. Hence 

(w 3 ,w4 )~(4;9). But this contradicts 9-4=5&H. Hence 

(w 1 ,w 2 )~(2,11). The same argument shows (w
1

,w
2
);(3,10). 

Hence there is no c
2

<5>. R~uce R(3,5;2)>13 and thls with 

(4.2) completes the proof of,the theorem. 

Another evaluation is given by the _ following theorem: 

Theorem 4.3: R(4,4;2) =18 . 

Proof: From (2.1) and (4.1) we have 

(4.3) R(4,4;2) < R(3,4;2) + R(4,3;2) = 18. 

To show tha t R(4,4;2)>17 we mdst show how to color the 

edges of a <17> in two colors c and c , without forcing 
1 2 

... 
• J 

·-- --- ----------

·: 
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the appearance of either a c <4> or a 
1 Consider 

the field F of residue classes modulo 17< Let 

H•{l,2,4,8,9,13,15,16}. H is a subgroup of the multiplicative 

group of F. (H is in fact the set of quadratic residues of 

17.) The coset of His H
1
•{3,5,6,7 1 10,11,12,14}. Let the 

vertices o~ the <17> be labeled P
0

,P 1 , .•• ,P
16

• The edge. 

is colored c 1 if i-j£H and colored c..2 if . i-j.£11 . 
1 

Suppose there results a c
1 

<4> with vertices P ,P ,P ,P 
ul u2. u3 u4 

Then u -uj£H,l<i<j<4c Set v =u -u4 o 
i - - . i i 

vi-vj£H 1 and v 4 =o~ Set xi=(l/v3)vi. 

Then vi-vj=ui-uj, 

Then x 3 =1 and 

x
1
-x ,x -l,x ,x -l,x 1 1£H. Now x

1
,x 1-l£H implies that 

2 1 1 2 2 

x 1 ~ 1,4,8,13,15, and x
2

,x
2
-l£H implies that x 2~1,4,8,13,15. 

Hence {x
1
,x

2
} C {2,9,16}. But since 9-2=7, 16-2=14 and 

16-9•7, this contradicts the fact that x 1-x 2 £H. Hence there 

is no c <4>. 
1 

Now we assume that there exists a c 2 <4>, with 

vertices P ,Pu ,P ,P • Then u -u_£H1 ,l<i<j<4. Let a£H 1 u 1 2 . U3 U4 i j - -

and let vi=a ui. Then vi-vj=a(ui-uj)£H. Hence Pv
1

'Pv
2

'Pv
3

'Pv
4 

are the vertices of a c <4~. But this contradicts the first 
1 

.part - of the proof and hence there is no c 2 <4>. Hence 

R(4,4;2)>17 and this with (4 . 3) proves the theorem. 

Using an argument similar to that used in the proof of 

theorem 4.3, we have obtained the following: 

:f. 

.... . ~ 

... ,.. . -

' , . 

' · 
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Theorem 4.4: R(5,5;2) > 38; R(6,6;2) > 90 and R(7,7;2) > 110. 

Proof: To show that R(5,5;2) ~ 38, we let G be a complet. 

graph with vertices P
0

,P
1

, ••• , P 36 • Color the edges of G 

in two colors c 1 and c 2 by coloring the edge P1 Pj color c
1 

if i-j is a quadratic residue of 37, and color c 2 if i-j is 

a quadratic non-residue of 37 . Then it is not difficult 

to check that G contains no monochromatic <5>. The same 

type of argument using the p~imes 89 and 109 can be used 

to show R(6,6;2) ~ 90 and R(7,7;2) ~ 110 but the details 

are naturally fOmewhat more involved. 

Finally we prove 

Theorem 4.5: R (3,2) = 17 
3 

Proof: From (2 . 5) we have R (3,2) ~ [n~e] + 1. Hence 
n 

R
3
(3,2) < [3!e] + 1 = [6e] + 1 = 17. To show that R3 (3,2)>16, 

we use the following argument Let F be the field of residue 

classes modulo 2. Adjoint to F the indeterminate t satisfy

ing · the equation t 4 = t+l. This yields the field F[t] con-

sisting of the elements: 

{O,l,t,t+l,t2,t2+l,t2+t,t 2+t+l,t3gt 3+l,t 3+t,t 3+t+l, 

t3+t2,t3+t2+l,t3+t 2+t,t3+t 2+t+l}. 

Let H be the multiplicative group o f F[t] . 

H • {l,t3,t3+t 2 ,t3+t,t3+t 2+t+l} i s a subgroup o f H. 
1 

1. 
·' .. 
A 

... 

... 

' \ 
_ __ _,.,.,..,.,...,......,....,,..,..,..~~~ ... ·.·:::-... 7.·.·~- ''T."·\.~ .. ~,,.,. .. ~.,.,..~------
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H3• {t 2 ,t 2+t,t 2+l,t3+t 2+t,t3+1} are the cosets of Hi in H. 

Consider a <16> with vertices labeled v v v 1' 2' ••• , 16 

where vi E H. 

1 • 1,2,3. If v ,v ,v are the vertices of a M.C <3>, 
i j k 

then vi+vj,vi+vk,vj+vk all belong to one of H1 ,H2 or H3 . 

But (v +v ) + (v +v )a v + v • This is a contradiction 
i j j k i k 

since the sum of ·any two elements in either H1 ,H2 or H3 

is not in the same set. Hence there does not exist a 

M. C. <3>. Hence R3 (3,2) >16 and the theorem is complete. 

All of the above results were obtained by Greenwood 

and Gleason [5]. Other values of the Ramsay numbers 

have been obtained by Kalbfleisch [6]. His arguments d~ 

not involve finite fields, and it seems ~~likely that arty 

new results can be obtained using the methods used above. 

; . 
.f 

' .. 
,J 
~ .. 

.. 

.J 

... 

' 
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CHAPTER V 

SOME APPLICATIONS OF RAMSAY'S THEOREM 

In this Chapter we discuss some of the 

applications of Ramsay's Theorem to various problems, in 

particular, to a problem in Set Theory1 to a problem in 

Geometry, and to a problem in Matrix Theory. 

§5 .• 1 An application to a problem in Set Theory. 

A family 3- of sets is said to p~ssess property _, 

6 if for every F £1 t there exists a set BC v t:F 
'~ 

such that 

F ¢ B and Ff'\ B ,. $. 

Er4!ji and Haj .n:al in [4] asked the following 

question: What is the smallest integer m(n) for which 

there exists a family 3-n of sets A1 , A2 , ••• , Am(n) such 

that jA. I a n for l<i<m(n) and which does not possess 
i --

propertyB? They observed that m(l)=l, m(2)""3, m(3)=7 

and . that m (n) ~ en~l) • The value of m(n) is not known 

for n~4, and the problem of determinihg m(n), even for 

n~4 appears to be difficult. 

(5.1.1) 

Erd~s proved in [3], that for all n > 2 

n-1 m(n) > 2 

Various improvements in the upper and lower bounds for 

; . 
' I .. 
.. 

q 

) 

' .. .• 
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m(n) have been given, but we do not discuss these here. 

We meution only that the best known 
T lower bound for m(n) 

is 

.... , 
I 

which was obtained by Schmidt [9). 

" In [41 Erdos and BajnaL also asked: Does 

there exist for every p~sitive integer k ~ 2 a finite 

family 1 k of finite sets satisfying: 

(1) IFI ... k for each F e: :J . 
k 

(2) IF (\ G I ~ 1 for F,G e: '} k' F r/: Gp 

(3) J- k does not possess property d3 • ? 

They observed that such families do exist for k=2,3. 

Abbott proved in [1] that such families exist for every 

positive integer k~ - by . making use of a special case of 

Ramsay~s Theorem. 

Theorem 5.1.1: Let S be an s-set, s_::R2(k,t) and let K 

be a k-subset of s . Let F denote the set of all t-subsets 

of K and let 1 denote the fa~~ly of all possible sets 
k,t 

constructed in this way. Then"] does not possess 
. k,t 

property 13 . 

Proof: Assume that J- does possess property 8. 
k,t 

-Then there exists a set B c: U J such that B n F rf 4> 
k,t 

' J . 
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and F ¢ B for each F E: 'J- • Partition ·p t (S) into two 
k,t 

classes A1 , A2 by placing a t-subset T of S in A
1 

if 

T £ B and in A2 if T ~ B. Let K be any k-s~bset of s 

and let 3- k • , t 
Then F be the corresponding member of 

since B n F ~ ~. there is a t-subset of K which belongs 

to B and hence to A1 , and since F ¢ B, there is at-subset 

of K which does not belong~ to · B and ~ hence - bel~~gs to A
2

• 

However ·, since · .s2:_. R.2 (k, t), there must exist · some k-subset 

of S all of whose ~ t~subsets belong · to either A1 or A2 • 

This i~ a corttradict{ori ; and the proof . of the theorem is 

complete_. 

Since~ satisfies conditions (1),(2) and 
. k,k-1 , 

(3), therefore the !.question o£ ErdBs & ·.Haj~al is settled. 

If we · choose s~ R2 ~k,t) · in · the · above theorem, 

then the number of sets - in ' the f\>lilily J k, t is · (R2 :( ~, t )) 

and the number · of · elements · in• .each · set · is ·{~)'· Therefore 

we must have: 

Hence by (5 . 1.1) we have: 

(5.1.2) 2 
(~)-1 

-This is the same result · as · was obtained · in Theorem 3.2.1 for 

., 
,I 

' .. 

' \ 
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the case n=2. 

§ 5. 2 An application·to a·problem in Geometry 

In this section; · we show that Ramsay's Theorem 

can be used to settle a problem in geometry. The problem 

can be formulated as follows: Let k~3 be a · positive integer. 

Does there exist a least integer f(k) with · the property 

that among every set of f(k) points in a plane, no three 

collinear, there are k points which form the vertices of 

a convex k-gon? 

We prove; 

Theorem 5.2.1: f(k) exists and satisfies 

f(k) < R(5,k;4). 

Before we prove theorem 5.2.1, we introduce the 

following lemmas, the proof of the first of which is not 

difficult. 

Lemma 5.2.1: Among any five points in the plane, no three 

collinear, there are four points which are the vertices 

of a convex quadrilateral. 

lemma 5.2.2: If the{t)quadrilaterals formed from k 

points in the plane, no three collinear, are all convex, 

then the k points form the vertices of a convex k-gon. 
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Proof: 

convex cover of the set of 

P be the vertices of the 
t 

k points. If t=k ., we have 

finished. Suppose !<k. Then there is a point P which 

must lie in the interior of some triangle, say p p p 
1' i-1' i" 

Then Pl• Pi-l' Pi, P is non convex, and this is a contra-

diction. Hence t=k. 

Proof · of Theorem 5~2.1: Let R=R(5,k;4). LetS be a set 

of R points in the plane. Partition P 4 (S) into two classes 

cl and c2 by placing a 4-subset in cl if these points form 

a non-convex quadrilateral, and in c 2 if these points form 

a convex quadrilateral. By Ramsay's Theorem, either there 

is a 5-subset of S all of whose 4-subsets belong to c 1 , 

or a k-subset all o~ whose 4-subsets belong to c 2 • By 

lemma 5.2.1, the first alternative is impossible. Hence 

the second alternative must hold. But by lemma 5.2.2, 

the k points form the vertices of a convex k-gon. Hence 

f(k)<R(5,k;4). 

It is easy to show that f(3)=3, f(4)=5 and it is 

known that f(5)=9. The values of f(k) are not known for k~6. 

k-2 However, it is conjectured that f(k)=2 +1. 

§5.3 An application to a problem in Matrix Theory: 

Another application of Ramsay's Theorem is to 

mitrices of zeroes and ones . We define an A matrix to x,y 

' 
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be a matrix in which all entries above the diagonal 

are x and all entries below the diagonal are y. The 

diagonal may have both.x and y entries. 

Theorem 5.3.1: Let k be a positive integer. Then 

there exists a least integer g(k) such that if A=[aij] 

is an arbitrary g(k) x g(k) matrix of zeroes and ones, 

then A contains either an A , AO,l' A or A , 
0,0 1,0 1,1 

k x k submatrix. 

Proof: Let RaR 4 (k,2) and let A=[aij] be an RxR matrix 

of zer~es and oneso Let S be the set whose elements 

are the rows of A. Let R , R be elements of S, i<j. 
i j 

We now associate with {Ri,Rj} the vector (aji'aij). Hence 

{Ri,Rj} corresponds to one of (O,O),(l,O),(O,l) or (1,1). 

Partition P
2

(S) into four classes C
1 

,C
2

,c
3

,c
4 

by putting 

{R R }in c 1 if {R R} corresponds to (0,0); in c
2 

if 
i, j i, j 

it corresponds to (1~0); in c
3 

if it corresponds to (0,1) 

and in c4 if it corresponds to (1,1). However, since S 

is an R-set, then by Ramsay 9 s Theorem, there exists a k-subset 

K of S such that P 2 (K)~Ci for some i, l~i~4. Hence there 

exists a kxk-submatr.ix in A,which is of the form A ,A , 
0,0 0,1 

A or A 
1,0 1,1 

The above argument can be generalized to the case 

where A is a matrix whose elements are 0,1,2, .~.,r-1. It 
~ 
~ 
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can be shown that if k is a positiv~ integer, then there 

exists a least integer g(k,r) such that if A is an arbitrary 

g(k,r)xg(k,r) matrix whose elements are 0 1 2 1 h , , , •.. , r- , t en 

A contains a kxk submatrix A for some p and q, ~p~r-1, 
pq 

O~q~r-1. Moreover, g(k,r) satisfies 

g(k,r) ~ R 
2 

(k,2). 
r 

Using an argument similar to ~at used in Theorem 

3.2.1, we have obtained the following, 

k 
Theorem 5.3 . 2: g(k) > c k 2'2 for some constant c and all 

sufficiently large k. 

Proof: Let S(N) be the number of NxN matrices A of 
N 

zeroes and ones which contain at least one kxk submatrix 

of the form A , A , A or A 
0,0 0,1 1,0 1,1 

The probability 

that a matrix A . chosen at random contains a A , A , 
N 0,0 0,1 

A or A - kxk submatrix is ~. since the number 
1,0 1,1 N2 

'2 

of NxN matrices of zeroes and ones is 2N
2

• Hence the 

probability that a matrix AN chosen at random . does not con-

tain a kxk-submatrix of the desired type is 1-S(N) . Now 
2N2 

since the number of ways of choosing k rows and columns 

from N rows and columns is(:)
2 

and since the remaining 

entries can be filled in 2N2- (k2-k) ways, we h a ve 
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< 

Hence, 1-~ > 0 or S(N) < zN 2 
will hold if 

2N 

or if 

N < 

1 
2 

ck 2 

for some constant c and all sufficiently large k. 

k 
Hence g(k) > ck2~ . 

fixed r>2. 

The same type of argument yields, for each 

k 
g(k,r) > Ckr"T 

for some constant C and all sufficiently large k. 

I 

· ' 

' 
----~~- ---·-·-·-.. -·---------
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