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ABSTRACT

The main objective of this thesis is to give an up-to-date account

of several -dimension functions and relations that exist between them for

various spaces.

Chéptér i éontains a brief history of the development of the subject
as we know it today. In Chapter 2 we give definitions of the three basic
dimension functions 'ind', 'dim', and 'Ind' and a detailed survey of
the ‘known properties of these functions. Included is a proof of the famous

ééch Sum Theorem for dimension ‘'dim’'.

In Chapter 3 we investigate relations between 'ind', 'dim', and
'Ind' and mention some of the latest examples that have been given to
illustrate the gaps that exist between the various dimensions. Finally,

Chapter 4 contains a brief account of a relatively new dimension function

"Dim’' .
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Chapter One

Introduction

1. The Modern Concept of dimension.

In order to present the motivation behind the modern concepts of
dimension theory we can hardly do better than quote from Hurewicz and
Wallman [1 ]:

"... to divide spaces cuts that are called surfaces are necessary; to
divide surfaces, cuts that are called lines are necessary; to divide lines,
cuts that are called points are necessary; we can go no further and a point
can not be divided, a point not being a continuum. Then lines, which can
be divided by cuts which are not continua, will be continua of one
dimension; surfaces which can be divided by continuous cuts of one
dimension, will be continua of twd dimensionsg and finally space, which

- can be divided by continuous cuts of two dimensions, will be a continuum

of three dimensions."

These words were written by Henri Poincaré in 1912, Writing in a
philosophical journal [Revue de métaphySique et de morale], Poincaré
was concerned only with putting forth an intuitive concept of dimension
and not an exact mathematical formulation. Poincaré had, however,
penetrated verydeeply in stressing the inductive nature of the geometric
meaning of dimension and the possibility of disconnecting a space by
subsets of lower dimension. One year laterBrouwer constructed on Poincare's
foundation a precise and topologically invariant definition of dimension
which is essentially as follows:

(a) the empty set ¢ has dimension -1.

(b) the dimension of the topological space X is the least integer

n such that for any pair of disjoint closed subsets C; and Cjp, there




is a closed subset K separating C; and C, , where the dimension of
K is less than n.' | .
Brouwer's paper remained practically unnoticed for almost a decade.
Then in 1922, independently of Brouwer,and of each other, Urysohn and

Menger recreated Brouwer's concept in the following formulation:

(a) the empty set ¢ has dimension -1,
(b) the dimension of a space is the least integer n for which every
point has arbitrarily small neighbourhoods whose boundaries have dimension

less than n.

2. Previous concepts of dimension,

Before the advent of set theory mathematicians used dimension in only the
vaguest sense. A configuration wa§ said to be n-dimensional if the least
number of real parameters required to describe its points, in some unspecified
way, was n. The dangers and inconsistencies in this approach were vividly

brought into view by two celebrated discoveries of the last part of the
nineteenth century: Cantor's one-to-one correspdndence between the points
of a line and the points of a plane, and Peano's continuous mapping of an
interval on the whole of a square, The first exploded the feeling that a
plane is richer in points than a line, and showed that dimension can be

raised by a one-valued continuous transformation.

An extremely important question was left open (and not answered until
1911, by Brouwer): Is it possible to establish a correspondence between
Euclidean n;space (the ordinary space of n real variables) and Euclidean
m-space combining the features of both Cantor's and Peano's constructions,
i.e. a correspondence which is both one-to-one and continuous? The question

is crucial since the existence of a transformation of the stated type




between Euclidean n-space and Euclidean m-space would signify that

dimension (in the natural sense that Euclidean n space has dimension n)

has no topological meaning whatsoever! The class of topological trans-

formations would in consequence be much too wide to be of any real

geometric use.

3. Topological invariance of the dimension of Euclidean Spaces.

The first proof that Euclidean n-space and Euclidean m-space are not
homeomorphic unless n equals m was given by Brouwer in his famous paper:
Beweis der Invarianz der Dimensionenzah}g(Math;Ann.(1911) pp. 161-165).
However, this proof did not explicitly reveal any simple topological
property of -Euclidean n-space distinguishing it frem Euclidean m-space and
responsible for the non-existence of a2 homeomorphism between the two. More
penetrating, therefore, was Brouwer's procedure in 1913 when he introduced
his "Dimensionsgrad' and integer-valued function of a space which was
topologically invariant by its very definition. Brouwer showed that the
"Dimensionsgfad" of Buclidean n-#pace is precisely n (thereby justifying

its name).

Meanwhile Lebesgue had approached in another way the proof that the
dimension of a Euclidean space is topologicaily invariant. He had observed
[1] that a square can be covered by arbitrarily small ”bricks"'in such a
way that no point of the square is contained in more than three of these
bricks; but that if the bricks are sufficiently small, at least three have
a point in common. In a similar way a cube in Euclidean n-space can be
decomposed into arbitrarily small bricks so that not more than n + 1 of
these bricks meet. Lebesgue conjectured that this number n + 1 could

not be reduced further; i.e. for any decomposition in sufficiently small
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bricks there must be a point in common to at least n + 1 of the bricks.
The first proof of this theorem was given by Brouwer in the paper already
cited. Lebesgue's theorem also displays a topological property of

Euclidean n-space distinguishing it from Euclidean m-space and therefore
it also implies the topological invariance of the dimension of Euclidean

spaces.

Lebesgue's covering theorem thus motivates the following definition
of dimension:
(a) the empty set has dimension -1.

(b) a topological space X has dimension < n if given any

finite open covering U of X there exists a refinement V
[V is a refinement of the open covering U of X if
(i) each member Va € / is an open subset of X;
(ii) each member Va € | is contained in some member Ui € u;
(iii) Uva = X]
such that at most n + 1 sets of this refinement have a

non-empty intersection.

(c) the dimension of the space X 1is equal to n if (b) is true

and it is false that the dimension is less than n.

The formulation of Brouwer given above has the following equivalent
form, introduced by Edward Cech [1]:
(a) the empty set ¢ has dimension -1;
(b) the dimension of the topological space X 1is the least integer
n such that for any pair of a closed set F and an open set
G such that FC G €X there exists an open set V with
FCV C€G where the dimension of the boundary b(v) =V \V

of V is less than n.
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The definition of Urysohn-Menger, Brouwer-Cech, and Lebesgue are

respectively termed the 'weak inductive dimension', 'the strong inductive
dimension', and the 'covering dimension' and are denoted by 'ind', 'Ind', o

and 'dim' respectively.

Katetov [ 1], Morita [1], and Dowker and Hurewicz [ 2] have all ﬁ
published different proofs that for any metric space X

Ind X = dim X.

The notion of weak inductive dimension (or Urysohn-Menger dimension)
is no longer so important as the other two notions, because P. Roy [ 1] has
recently constructed a complete metric space A such that ind A = 0 but
Ind A = dim A = 1. However the weak inductive dimension still has its
uses, and we consider.it in some detail. The remainder of Chapter 1 involves

a detailed treatment of the dimension functions of Brouwer-Cech and Lebesgue.

In Chapter 3 we examine relations that exist between the functions ‘'ind',
'dim', and 'Ind' for various classes of spaces. We mention several of the
latest examples illustrating the gaps that exist between these functions,
including Nagami's example of a normal space Z with ind Z = 0, dim Z =1,

Ind Zz = 2.

Chapter 4 contains a brief account of the relatively new dimension
function 'Dim'. Attempts were made without success to extend certain of the
theorems given for perfectly normal spaces to more general spaces called
totally normal. It appears that great difficulties are encountered in trying

to extend the theory to more general spaces.



CHAPTER TWO

In this chapter the main results concerning the weak inductive
dimension 'ind', the covering dimension 'dim', and the strong inductive
dimension 'Ind' are presented together with relations between them for a
given class of topological spaces. The discussion in sections (i) and (ii)
on the weak inductive dimension 'ind' is similar to that given by Hurewicz
and Wallman [ 1], and unless otherwise stated in these sections, all spaces

referred to are separable metric.

(1) Weak inductive dimension 0

Definition 2.1. A space is connected if it is not the union of two non-empty
disjoint open sets. Equivalently a space is connected if, except for the
empty set and the whole space, there are no sets whose boundatries are

empty.

In this section we are concerned with spaces which are disconnected in
an exceedingly strqhg sense, i.e. have so many open sets whose boundaries
are empty that every point may be enclosed in arbitrarily small set of this
type.

Definition 2.2. A space X has weak inductive dimension 0 at a point
P € X, indPX = 0, if p has arbitrarily small (open) neighbourhoods with
4 empty boundaries, i.e. if for any neighbourhood U of p there exists a
neighbourhood V of p such that

pEVEU , bV =¢.

A non-empty space X has weak inductive dimension O, ind X =0

if indPX = 0 for each p €& X.



Clearly the property of being 0-dimensional at a point p is a
topological invariant. Also, for any topological space X, saying that
ind X = 0 1is equivalent to saying that X # ¢ and that there is a basis

for the open sets of X which consists of sets which are both open.and

closed.

EXAMPLES

Example 2.1. If X is any non-empty finite or countable metrizable space,

then ind X = 0.

Provide X with the metric p. For any given neighbourhood U of
any point p let r be a positive real number such that the spherical
neighbourhood of radius r about p is contained in U. Let Xj, Xp,...
be an enumeration of the points of X; then p(xi,p) is the distance from

X. to p. There exists a positive real number r' < r and different from

all the p(xi,p). The spherical neighbourhood of radius r' about p is

contained in U and its boundary is empty. Hence ind X = 0.

In partichlar the space R of rational numbers has ind R = 0.

Example 2.2. If I is the space of irrational numbers, ind I = 0.

For any given neighbourhood U of an irrational point p there

exist rational numbers p and o such that p < p < o and the set V of

irrational numbers between p and o is contained in U. In the space of
irrational numbers V is open and has an empty boundary because every

irrational point which is an accumulation point of V is between p and

o and hence belongs to V.

T
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Example 2.3. The Cantor discontinuum ( , the subspace of all real

numbers expressible in the form

a

3n
has ind C = 0.

Example 2.4. If A 1is any subspace of the space of real numbers which
contains no interval, then ind A = 0. (Example 2.3 above is a specific

case of this.)

Example 2.5. If I, is the subspace of points in the plane both of whosé

coordinates are irrational, then ind I, = 0. Clearly any such point is
contained in arbitrarily small rectangles bounded by lines having rational
intercepts with the coordinate axes and intersecting them at right angles,

and the boundaries of such rectangles contain no points of I, .

Example 2.6. ind R% = 0, where R% is the subspace consisting of points
of the plane exactly one of whose coordinates is rational. Clearly any such
point is contained in arbitrarily small rectangles bounded by lines having

rational intercepts with the coordinate axes and intersecting them at 45o s

and the boundaries of such rectangles do not intersect R% .

Example 2.7. The set Rn of points of Euclidean n-space all of whose

coordinates are rational and metrized by the usual Euclidean metric has

ind Rn =0 ( Rn is countable.)

Example 2.8. If I~ is the subspace of points of E_ all of whose

coordinates are irrational, ind In = 0. (A simple generalization of Ex. 2.5)




Remark. Suppose 0 < m < n. Denote by Rﬁ the subspace of En exactly
m of whose coordinates are rational. Then ind RE = 0. Examples 2.6, 2.7,
and 2.8 above are specific cases of this, but the proof of this more

general result depends on the '"Sum Theorem for ind = 0" (Theorem 2.3 ).

Example 2.9. ind R& = 0, where Ré is the subspace of points of the

Hilbert cube Iw all of whose coordinates are rational. (For the proof see

Hurewicz and Wallman).

Example 2.10. ind I& = 0, where Ié is the subspace of points of the

Hilbert cube Iw all of whose coordinates are irrational.

Example 2.11. ind Rw = 1, where Rw is the subspace of points of Hilbert

space E - all of whose coordinates are rational. (For the proof see
w

Hurewicz and Wallman [1 ] or P. Erdos [1 ].)

Theorem 2.1. A non empty subset X' of a 0-dimensional space is O-dimension-

al.
Proof: Let p € X' and U' any neighbourhood of p open in X'. Then
there exists a neighbourhood U in X of p such that
U = U NX'.
Since ind X = 0, there exists V open and closed in X such that
pEVELU.
Let V! =VNX'.

Then V' is both open and closed in X'
pevvsuv

ind X' 0.




Definition 2.3. If A;, Ay, and B are mutually disjoint subsets of a

space X, we say that A; and A, are separated in X by B if X\ B
can be split into two disjoint sets, open in X \ B and containing A,

and A, respectively, i.e. if there exists i} and A} for which

X\ B =ALUA}

AJC AL , A,C A

AN A =9

with A} and AL both open in X \ B (or what is the same, both closed

in X \ B).

If A; and A, are separated by the empty set we say they are

separated in X.

A; and A, are separated if and only if there exists a set Ai

such that

A G A

and Al NA, = ¢

1]

¢ .

where A] is both open and closed, i.e. b(A])

Then A} = X NA{ .

Definition 2.2'. Let X be a non-empty space. Then ind X = 0 if

every point p € X and every closed subset C of X with pé’.C can

be separated.

It is trivial to show that Definition 2.2. and Definition 2.2' are

equivalent.




Remarks
1) A conmnected space X with ind X = 0 consists of only one point.
2) If ind X =0 then X is totally disconnected.
3) It is obvious from Definition 2.2' that if X is a T;-space and
any two disjoint closed subsets can be separated then- ind X = 0.
We now prove conversely that if X has a countable base and

ind X = 0, then any two disjoint closed subsets can be separated.

Theorem 2.2. Let X be a topological space with a countable basis and

ind X = 0. Then any two disjoint closed subsets of X can be separated.

Proof. Since ind X = 0, by Definition 2.2' any point p € X can be
separated from any closed set not containing p. Let C and K be two

disjoint closed subsets of X. We have to demonstrate a separation of C

and K in X.

For each p€ X either p #C or p 4‘ K. Hence there exist

neighbourhoods U(p) for each point p which are both open and closed
and such that either U(P)NC=¢ or U(p) NK=¢ . Since X has a
countable basis there exists a sequence U;, Uy, ... of these U(p) whose
urion is X (Lindelgf's. theorem - see Kelley[l ], p. 49). We now define

a new sequence of sets Vi as follows:

Vi = U i

i-1
= = M U
v, = U\ kL=Jl Uy Uln(X\kL=J1 1)

Then we have

1)

(2)




(3) Vi is open
(4) either Viﬂc=¢ or VinK=¢ .

(1), (2), and (4) are obvious. To prove (3) we note that

is closed, so that

is open ;
hence V., . is open.
i 1 pe

Let § i such that Vinl( = ¢ .

K' = union of remajning v, .

X=Cc Ukt by (1)
C'NK' = ¢ by (2)
C' and K' are open by (3)

and (C'NK) U (CNK) = by (4).

It follows that C& C' and K& K' .

The desired separation is thus given by C' and K'

The sum or union of zero-dimensional sets need not be zero-dimensional

as we see from the decomposition of the real line into the rational numbers

and irrational numbers or into its distinct points. We have the following

theorem:

Theorem 2.3. (Sum Theorem for zero-dimensional sets).

A separable metric space X which is the countable union of zero-dimensional

closed subsets is itself zero-dimensional,

X,

i.e- if X =
1

o
i=1

where each Xi is a closed subspace and ind Xi

= then ind X = 0.




Proof: Let K and L be two disjoint closed subsets of X. We show

that K and L can be separated.

Clearly KNX;, and L NX; are disjoint closed subsets of the
space X,;, where ind Xy = 0. Hence by Theorem 2.3, there exist subsets

A; and B; of X, , closgd in X; and therefore in X, such that
KNX, A LNX, ¢ B
AfUB; =X; , A QB =¢.
The sets KUA; and L U B1 are closed and disjoint in X. By

the normality of X there exist open sets G1 and Hi1 for which

KUAL &G LUBI € H

Therefore

K &G

Now repeat this process replacing K and L by 51 and H; and

X, by X, . This yeilds open sets G, and H, for which

G, UH,2X,
G, €6, , HEH
G,NH, =4¢ .

By induction we construct sequences {Gi} and {Hi} of sets open in

X for which




Let G= L) G and H= J H, .

i=1 i=1
Then G and H are disjoint open sets,
cun2U x, =x
i=l

KeG , LEH ;

this is the desired separation.

Definition 2.4. By an Fo set in a space X we mean any countable union

of closed subsets of X. It can be shown that in a metric space any open

set is F .
o

Corollary 1.to Theorem 2.3. A separable metric space which is the countable

union of O-dimensional FC sets is O0-dimensional.

Corollary 2. The union of two O-dimensional subsets of a separable metric

space X, at least one of which is closed, is 0-dimensional.

Proof. Suppose ind A = ind B=0 and B is closed.

Then AU BB is open in A U B. As an open set in a metric space it is

Fo in A UV B. The result then follows from Corollary 1 and

AUB=[AUBNB]U B.

Coroliary 3. A O0-dimensional space remains O-dimensional after the adjunct-

ion of a single point (assuming that the enlarged space is separable metric).

Denote by 1{: the subspace of points

Example 2.12. Suppose 0 <m <n.

in Euclidean n-space El exactly m of whose coordinates are rational.

Then ind R'"n = 0.




For each selection of m induces 1i;, ..., im out of the range

1, 2, ..., n, and each selection of m rational numbers r;, ry, ..., T,

we have an (n - m) - dimensional linear subspace Eéf% of E determined

by the equations

X, =T =T veey X =T
iy 7! i 22 g T

The subspace of this space made up of points none of whose remaining
coordinates is rational we denote by Ci' Each Ci is congruent to
In-m and is therefore O-dimensional (Exmaple 2.8). It is clear that

. . m .
each Ci is closed in Rn since

Com o (1) (i) . .
C; = RnnEn-m and each E - is closed in E .

The union of the Ci just fills out RE . Since the collection of

the C; is countable the sum theorem implies that ind RS = 0.

Example 2.13. Suppose 0 < m. Denote by RZ the set of points in the

Hilbert cube exactly m of whose coordinates are rational. Then
ind R" = 0.
w
Let i = {i, ij, ..., im} be a selection of m different integers

chosen from the set {1, 2, 3, ..., n, ...} . Such a selection can be

made in

. = 1
Xg * %o ttrrrr Xo T Xg ways (1)

m factors

Again for a given ik of this selection the number of different

rationals Ty such that
k
1
TS TS
k k 'k

is .y .. Thus for a given selection i we have




m factors

sets of rationals.

By (1) and (2) the number of different subsets Ci of Rz is
X~ * X~ = X.. Thus the set of C. is countable and just fills out ",
0 0 0 i W
Moreover each Ci is congruent to a subspace X' of IL in which
exactly m of the rational coordinates are fixed. Hence ind Ci = ind X' = 0
(because ¢ # X' & IL and ind I' =0 implies ind X' <0 while X' £ ¢
implies ind X' > 0). '

We now prove that“each C, 1is closed in Rz .

Let y € Ci where
yi1=r1 s yi2=r2,...-., yim-—rm

(the r's being rational, the rest of the coordinates of y being

irrational) define a C; in the space of the Hilbert cube and let

X = (X1, Xg, saveney xj, ....) Dbe a point of Im

Then if y € Ci we have

2 . 2 2
D(X,Y)Z = (Xil - r1)2 + (Xiz - 1'2) + oiaeese + (Xl - I‘m) + Z]’( (xk - yk)

where Zi denotes that k takes all values 1, 2, 3, .... except

We can always make Zi zero by choosing X, =y -

-r )4 we see that X € 1
m w

Choosing € = V(x; -1T1)%+ ... + (¥
1; -

does not belong to E& unless xil =r; , i.e. X ¢ Ci implies X # Ci'

is closed.

C.
i




Consider the following four properties of a space X :

(0) X 1is totally disconnected.

(1) Any two distinct points of X can be separated.

(2) Any point can be separated from any closed set C to which it
does not belong, i.e. ind X = 0 (Definition 2.2').

(3) Any two disjoint closed sets can be separated.

For T, -spaces (3) => (2) , (2) = (1) , (1) = 0. Conversely,
for separable metric spaces (2) => (3); for spaces without countable basis
(2) does not imply (3) as the 'Tychonov Plaﬂk' shows. (See Appendix).
Properties (0), (1), and (2). however are not equivalent, even for separable

metric spaces.

Example 2.14. Sierpinski [1 ] gives an example of a subset of the plane

satisfying (0) but not (1).

Example 2.15. By example 2.11, ind Rw =1, so that Rw does not satisfy

(2). On the other hand it does satisfy (1). For, let p and q be two

points of Rd. and let i be an index such that the i coordinate p;

of p differs from the ith coordinate a; of q p; and q; are,

of course, rational. Let p be any irrational number between P; and q; -
The decomposition of Rw into the closed and disjoint subsets determined

by X; £p 5 X; 20 gives the desired separation of p and q.
j= Kl

For compact spaces the conditions (0) - (3) are equivalent (see

Hurewicz and Wallman [11.)

Remark. It is not true, as is seen in the following two examples, that if

a space has properties (0) or (1) it will retain that property upon the

adjunction of a single point; compare with Corollary 3 to Theorem 2.3.




Hence the Sum Theorem would not be true for a theory of dimension in which

dimension 0 were either defined by total-disconnectedness or the separatiém

of pairs of points,

Example 2.16. Knaster and Kuratowski [1] give an example of a subset of
the plane which is totally disconnected but becomes connected upon the

adjunction of a single point.
Example 2.17. J.H. Roberts [ 1] gives another example of this phenomenon.
Example 2.18. Sierpinski [1] gives an example of a space which has

property {1) but loses it upon the adjunction of a single point.

Denoting the spacés investigated by Erdos, Sierpinski, Knaster and
Kuratowski, and Roberts by E, K, S, and R. T.H. Walton [1] has given

the following summary of the relationships of these various spaces to

one another:




A detailed analysis of these spaces shows that

ind E = ind K = ind (K \{a}) = ind S

ind R U{q} = 1.

ind (S U {p} = ind R

Thus E, K \\{a}, S, R all have weak inductive dimension equal to
unity although they are totally disconnected.

Moreover, Mazurkiewicz [1 ] has shown that for each finite n there

exists a space X for which ind X = n and X is totally disconnected.

Thus thic fact that a space has positive:weak inductive dimension

implies very little about its connectedness.

Finally Mazurkiewicz [ 1] proves the existence of a plane connected

set containing no bounded connected subset.

(ii) Weak Inductive Dimension n.

Roughly speaking, we may say that a space has dimension < n if an
arbitrarily small piece of the space surrounding each point may be delimit-
ed by subsets of dimension <n - 1., This method of definition is inductive,
and an elegant starting poin£ for the induction is provided by prescribing

the empty set ¢ as the (-1)-dimensional space.

Definition 2.4. (a) ind X = ~1 if and only if X = ¢

(b) A space X has weak inductive dimension < n (n > 0)

at a point p if p has arbitrarily small (open) neighbourhood whose

boundaries have weak inductive dimension < n - 1, denoted by indpx < n.
if

(¢) X has weak inductive dimension < n, ind X < n

indpx <n for each p € X.

FER LTSS
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(d) inde n if it is true that inde <'n and it is

false that indPX_<_ n-1.

(e) ind X = n if it is true that ind X < n and it is
false that ind X < n - 1.

if ind X 4 n is false for each n.

n
8

(£) ind X
It is obvious that the property of having weak inductive dimension
n (or having dimension- n -at - a point- p) is topologically invariant.
Dimension is not, however, an invariant of continuous transformations.
Projection of a plane into a line is an illustration of a transformation
which lowers dimension and Peano's mapping of an interval onto the whole
of a square is an illustration of a continuous transformation which raises

dimension.

Equivalent to the condition that ind X < n is the existence of a
basis for the topology of X made up of open sets whose boundaries have

dimension < n - 1.

It is clear that definitions 2.2 and 2.4 are equivalent for n = 0.

Proposition 2.1. If ind X = n, then X contains an m-dimensional subset

for every m < n.

Proof. Since ind X > n - 1 there exists a point P, € X and an open
neighbourhood Uo of Po with the property that if V 1is any open

set satisfying
poe Ve Uo ‘ then
ind b(V) > n - 1.
On the other hand, because ind X < n, there exists an open set

satisfying P, € Vo < Uo for which




ind b(V) < n - 1.

Hence b(Vo) is a subset of X of the precise dimension n - 1.

The rest of propesition 2.1 is now evident.

Remark. The statement of the above proposition cannot be extended to
infinite dimensional spaces. Indeed, under the hypothesis of the continuum
there even exist infinite dimensional spaces whose only finite dimensional

subspaces are countable sets. See Hurewicz [l ].

Example 2.19. ind E; = 1 and the dimension of any interval of the

Euclidean line E; 1is 1,

Example 2.20. Any polygon has dimension 1.

Example 2.21. Any 2-manifold has dimension < 2.

Example 2.22. ind E <nm (proof by induction).

The proof that the dimension of En is precisely n 1is given by

Hurewicz and Wallman [ ].

Theorem 2.4. A subspace of any topological space of dimension < n has

dimension < n.

Obvious for n = -1. Assume true for n - 1.

Proof.

Let ind X <n and X' be a subspace of X, p a point of X'. Let

U' be any open neighbourhood of p in X'. Then

U' = UNX' , where U is open in X.

Since ind X < n there exists V open in X such that

pevel

ind b(V) <n - 1.




Let V' =V NX'. Then V' is open in X' and

péVlgUI

Let bx (V) = boundary of V in X
and bx' (V') = boundary of V' in X'.
Then

V' \ V' (where V' is the closure of V' in X')

b, (V")
(V'N X')\ V' (V' -is the closure of V' in X)

ViNx\vax
cSvnx'\vax
={V\VAnXx
= bx(V) N X'

ie. b, (V) Cb V) NX

b, (V) b (V)

We are given that ind bx(V) <n -1,
By the hypothesis of the theorem, ind bx' (V) <n -1,
and the theorem is proved.

i.e. ind X' < n.

Definition 2.4'. ind X < n if every point p can be separated by a

closed set of dimension < n - 1 from any closed set not containing p.

Definitions 2.4 and 2.4' are equivalent.

(see Hurewicz and Wallman [1].)

Definition 2.5. A space X is hereditarily normal if every subspace of

X 1is normal.




Lemma. A space X is hereditarily normal if and only if given any pair
of disjoint subsets X; and X, satisfying

NX, =¢ =X;NX,
there exist open sets W; and W, such that

X1€W , X, &W, and Wy NW, = ¢ .

Moreover it is clear that W; N W, = ¢ = W; NT,.
Proof. See Walton [1 ].

Theorem 2.5. A subspace- X' of an hereditarily normal space X has
dimension < n if and only if every point of X' has arbitrarily small

neighbourhoods open in X whose boundaries have intersections with X'

of dimension < n - 1,

Proof. (Sufficiency). Let p & X' and U'(p) = U' be open in X'.
Then there exists U(p) = U oben in X such that U' = U NX'. Hence
there exists, by hypothesis, . V open in X such that
peEVCU
and ind X' Nnb(V)) <n-1.

Let V! =V AX'. Then V' is open in X', peV'cU' and

bx.(V') C bx(V) N X'. Hence ind bx,(V') <n -1, so that ind X' < n.

(Necessity). Suppose ind X' < n. Let p € X' and U(p) = U

open in X.

Then U' = U AX' is a neighbourhood of p open in X'.

Hence there exists V' open in X' such that

pEV & and

ind bx,(V') <n- 1.




Neither of the disjoint sets V' and X' \ V' contains an accum-
ulation point of the other, so by the hereditary normality of X there

exists an open set W satisfying V'C W and WNAX'\V') =4 .

Replacing W if necessary by W N U we may assume that

W U.

The set W \ W = b(W) contains no point of X' N\ V' and no point
of V'. It follows that
b(W) A X'C b, (V).
Hence by theorem 2.4,

ind (b(W) N X') <n -1 as 1_‘equired.

Theorem 2.6. For any two subspaces A and B of an hereditary normal

space X

ind(A UB) < ind A + ind B + 1,

Proof. The theorem is true for

ind A = ind B = -1.
Suppose ind A ind B = n, and assume true for the cases

(1) ind A<m , ind B<n-1

(ii) ind A<m-1 , ind B<nmn

Let p& A {B. As a matter of notation take p € A.

Let U be a neighbourhood of p open in X.

By Theorem 2.5 there exists an open set V such that

p&v&U and

ind (b(V) NA) <m - L.

b(V) N B &B

ind (b(V) N B) <




Hence by hypotheses (i) and (ii) of the induction
ind[b(V) N (A VB)] <m + n.
Hence by Theorem 5
ind(A UB) <m+n+1 , as required
n

Corollary. Let X = L_} X; where ind X, <0, 1=0,1,
i=o

Then ind X < n,

Example 2.23. Suppose 0 < m < n. Denote by Mﬁ the set of points of

En at most m of whose coordinates are rational and by LE the set of

points of En at least m of whose coordinates are rational.

Then ind M

ind L

Evidently -M:

m—

and Ln

The assertion then follows from the Corollary to Theorem 2.6 and the

fact that each summand is O-dimensional. (Example 2.12).

Example 2.24. Suppose 0 < m. Denote by ME the set of points in the

Hilbert cube I at most m of whose coordinates are rational.
[i\]

Then

For

The assertion then follows from the Corollary to Theorem 2.6 and the

fact that each summand is O-dimensional.(Example 13).




The Sum and Decomposition Theorems for n-dimensional Sets.

Theorem 2.7. (Sum Theorem for Dimension n).

A separable metric space which is the countable union of closed

subsets of dimension < n has dimension < n, i.e.

if X = Uxi where each Xi is a closed subset of X and
1

ind )(i < n, then

ind X < n.

Proof. (by induction). Denote the sum theorem for dimension n by Zn.
Clearly Zn is-equivalent to the statement that for any space which is
the countable union of 1:-‘(J sets of dimension < n has dimension < n.
Z-l is trivial. We now deduce Zn from J , by making use of Zo,

which is Theorem 2.3.-

We first prove that Zn—l implies the following proposition A ¢
Any space of dimension < n is the union of a subspace of dimension < n -1

and a subspace of dimension < 0.

Then

Proof of a: Let X be a separable metric space of dimension < n.

by a condition equivalent to ind X < n (p. ) there exists a basis

for the open sets of X made up of sets whose boundaries have dimension

<n - 1. Since X is separable metric there exists a countable basis

{U;} , 1i=1, 2, .... made up of sets whose boundaries {B.} have
i
dimension < n - 1. From zn—l it follows that

(J B; has dimension <n - I,

We assert that (1) ind (X \ B) < 0.




For obviously the boundaries of the sets Ui do not meet X \B

and hence the condition of Theorem 2.5 (with n = 0 and X'replaced by

X\ B) - is satisfied.
An then follows from the equation
X =BU(KXN\B).
We now combine Zn-l and A to prove b
Suppose X =X; UX, U ... UK, Uerer = k?xi

indXi_<_n i=1, 2, 3,

and each Xi is closed.

We wish to prove that ind X < n.

Let K; = X;
i-1. i-1
K, = xi\ L_J xj = xif‘\(x\ L_j X5]
i=1 j=1
i=1,2, 3,

Then (2) X = L:)Ki-

(3 ¥ Nk =9 if i43.
e | E ) Ki is an Fo in X.
(5} ind K, <n

(2) and (3) are obvious. To prove (4) note that

i-1
U X, is closed.
=1 !
: i-1 -
Hence x\ U xj is open, and any open set in a metric space
j=1
is Fc'

K. , as the intersection of this F0 with the closed set Xi is
i

thus also F .
g
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(5) holds because l(i is a subset of Xi (Theorem 2.4).

(5) enables us to apply An to each Ki ; we have

where ind M, <n -1 and N. < 0.

Denote UMi by M and UNi by N.

From (2) X = MUN.

Each Mi is an Fo set in M, since

M.
i

M, AK
MU MU oeee UM U )N K

1

I

M N K,
i
(since M, C K, and K, N Kj =¢ for i$3j by (3)).

Hence Mi’ as the intersection of M with Ki’ which is an Fo set
by (4), is itself F_ in M, .Therefore we may apply zn—l to conclude
that

ind M<n - 1.

By a similar argument each Ni is an Fo set in N and therefore

ind N<0 by } -
Tﬁus we have
X =MUN with

ind M<n -1 and ind N<O.
From Theorem 2.6 we conclude that ind X < n.

Corollary 1. The union of two subspaces each of which has dimension <n

and one of which is closed has dimension < n.




Proof. As in Corollary 2 to Theorem 2.3.

Corollary 2. The dimension of a non-empty space cannot be increased by

the adjunction of a single point.
Proof. Obvious from Corollary 1.

Corollary 3. If a space X' of dimension < n is contained in an arbitrary
space X, then every point of the containing space has arbitrarily small
neighbourhoods (in X).whose boundaries have intersections with X' of
dimension < n - 1. (Compare with Theorem 5 and observe that Theorem 5

imposes a condition on the neighbourhoods of points of X' only.)

Proof. For each point p & X, X' U {p} has dimension < n by Corollary

2; the proof then follows from Theorem 5.

Corollary 4. If a space has dimension < n it is the union of a subspace

of dimension < n - 1 and a subspace of dimension é_O.

Proof. This is A, which in the proof of Theorem 2.7 is shown to be a

consequence of Zn—l'

Theorem 2.8. (The Decomposition Theorem for Dimension n). A space has

dimension < n, n finite if and only if it is the union of n+ 1 sub-

spaces of dimemnsion < 0.

n
i.e. ind X <n <= X = ) X;

1=
where ind xi <0 for i=0, 1, veees , .

Proof. Follows from repeated application of Corollary 4 above and the

Corollary to Theorem 2.6.
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Corollary. If ind X =n and p, q are two integers > - 1 such that
P+q+1=n , then

X=PUQ

where ind P =p and ind Q = q.

Proof. Directly from Theorem 2.8.

Theorem 2.9. (Dimension of a topological product)

If A x B - denotes the topological productof two spaces A and B,
at least one of which is non-empty, then

ind (A x B) < ind A + ind B.

Proof. (by induction). The proposition is obvious if either ind A = -1

or ind B = -1.

Let ind A =m, ind B =n and assume the preposition for the cases
(1 indAém, ind B<n-1 and

(2) ind A<m-1, ind B < n.

Each point p.= (a,b) in A x B has arbitrarily small neighbour-

hoods of the form U x V, U being a neighbourhood of a in A and V

a neighbourhood of b in B and we may assume that

ind b(U) <m - 1, ind b(V) <n - 1.

Now b(U x V) = (U-x b(V)) U (b(V) x V)
(Kelly [1], p-. 103)

Each summand is closed and by hypotheses (1) and (2) of the

induction has dimension < m + n - 1.

Heace by the Sum Theorem,
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ind (U X V) <m + n - 1

jA

ind A + ind B

whence ind (A X B) m+n

Corollary. If ind B = 0 then

ind (A x B) = ind A + ind B

Proof. Since B § ¢ ; A x B contains homeomorphs of A.

Therefore ind (A x B) > ind A = ind A + ind B.

Combining this with Theorem 2.9 gives the Corollary.

Remark. One might expect that the logarithmic law in the above Corollary
be true in general. Unfortunately, this is not so, for Rw , the set
of points in Hilbert space ail of whose coordinates are rational, is
homeomorphic to Rw X Rw, while Example 2.11 shows that ind Rw = 1.
The result of the Corollary does not even hold if both A and B are

compact. This is shown by Pontryagin's example of two compact 2—dimensional

spaces whose product is 3-dimensional. It can be shown that the result

does hold if B is one-dimensional provided A is compact. It is an

open problem to characterize the spaces B for which the result holds

for arbitrary A.

(iii) The Lebesque Covering dimension 'dim'.

Definition 2.6. A covering of a space X is a collection U of subsets

of X satisfying the condition

U{ujueu} =X

Definition 2.7. A collection U is a refinement of a collection u if

for each VEU there exists U& U for which V &U, and

U{vive v} = Xx.
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Definition 2.8. A covering U has order <mn if and only if at most n + 1

iy members of V have a non-empty intersection.

Definition 2.9. A space X has covering dimension < n, denoted by

dim X < n, if given any finite open covering U of X there exists an open

refinement V whose order is <n, If dim X <n and the statement

- dim X < n - 1 is false, we say that dim X = n. For the empty set,

dim ¢ = -1. If the statement dim X < n is false for all n, then

[{}
8

dim X

Clearly if Y is a topological space homeomorphic to X, then

dim Y = dim X.

Theorem 2.10. For any space X, dim X < n if and only if for each finite
open covering U = {U;, Uy, Ug, +evnes Uk} there exists an open refinement

' ) V= {Vi, Vo, vevns, Vk} of order < n satisfying

V.e U, for each i=1, 2, ...... , k.
i="i

Proof, The condition is clearly sufficient.

Conversely, suppose dim X <n and U = {Uy, Uz, ... Uk} is any

“ g finite open covering of X. Then there exists an open refinement
W = {W} of order < n such that
[+
weu, for some i , 1 <icz<k.
Q

One obtains the desired finite refinement -V of U by defining

= : : . for 1 <jl}.
Vi = U, g Uy and Wod U

It is easy to show that the order of V- is < n.
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Theorem 2.11. If dim X <n and X' is a closed subspace of X then

dim X' < n.

Proof. Let U' be a finite open covering of X'. For each U'€ U' we

have

U' =UNX'" for some U open in X.

These open sets U, together with X \ X' form an open covering of
X. Since dim X < n, there exists a system U of sets open in X

satisfying the conditions in Definition 2.9.
Let V' = VA X' where V&V, giving the desired refinement V' of

the open covering U' of X',

Hence dim X' < n.

Note: The above theorem is not true if X' is not closed; see Tychonov

Plank (Appendix).
The following theorems (Theorem 2.12 - 2.19) are stated without proof.

For proofs, the reader is referred to Walton [1 ].

Theorem 2.12. Let X be a normal space and Fy, Fp, ... F~ be closed subsets

of X, finite in number. Then each Fi (1 < i < m) can be associated with

U; 2F, , U, open in X such that for any arbitrary combination
= 1 1

(i1, .., 1)), where 1< k <m, of indices 1, 2, ..., m if
k —
no, 1
then
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Theorem 2.13. Let X be a normal space. Let Uy, Uy, ..., Um be

L .';- finite in number, open in X, and cover X. Then for each Ui 1<iz<m

we can find a Vi open in X such that

(1) V.EU. for 1 <i < m.
i i - =

(2) Vi, Vo, vou,y Vm cover X,

Theorem 2.14. Let the topological space X have the following property:
Each finite open cover U of X can be associated with a finite closed

cover F such that each F € F is a subset of some U€ U. Ther X is

normal.

Theorem 2.15. Let X be a normal space and A,B be F0 sets in X

satisfying

ANB=ANB=2¢

Then there exist U,V open in X such that
ACU,BEV,UNV=y¢.

Theorem 2.16. Let X be a normal space and Y a subspace of X, where Y

isan F -set in X. Then Y is normal.
o ,

Theorem 2.17. Let X be a normal space and dim X < n. Let {U1,U2,---Un}

B ) .
ot be a finite open cover of X. Then there exists another finite open cover

{Vy,V,, ...,Vn} of X such that

(1) V.cu, for 1 <ic<m
i="i

(2) order of {Vl,vz,..., Vm} is < n.
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Theorem 2.18. Let n = -1, 0, 1, 2, .... and let the topological space
X have the following property: For each finite open cover U of X
there exists a finite closed cover F of X such that

(1) each FE& F is a subset of some UE€ U

o

(2) F has order < n.

Then X is normal and dim X < n.

Theorem 2.19. Let X be a normal space, A a closed subset of X and
dim A <n. Let U,U,, ..., Um be finite in number, open in X, and
cover A. Then there exist V., V,, ..., Vm open in X such that
V. €&
(1) Vi < Ui
(2)  Vi,Vy, oovy Vm cover A
(3) order of '{VI,V?_, ..} <n.
v .
The following theorem was first proved by E. Cech in 1933. The

theorem is not true if the space X is not normal; see 'Tychanov plank

(Appendix).

Theorem:2.20. Let X be a normal space and
x={Ja
v=]1 v

where A, is closed in X and dim A, <n for v=1, 2,3, ...

Then dim X < n.

t Vv,
Proof. Let U. (1 <j <m) be a finite open cover of X. We construct ¥y
Proof. ; A<z

(1 <i<m) open in X such that
v_} covers X and has order < n.
>'m

(1) the system V = {V},Vp,eevree
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{ii) vig Ui 1< i< m).

By Theorem 2.19 there exists a system V' of Vi (1 < i< m) open

in X such that

i V. C
(1) Vi [ Ui

(ii) the system V' covers A
(iii) the system V' of sets Vi has order < n.

Assume now that the system VW of V\; (1< i< m) openin X has

been constructed such that

. v

@ V.ey ;

(ii) the system W covers UA\)
A=l

(iii) the system ™ of V: has order < n.

+1
We now show that the system y¥*1  can be constructed.

Since VYV 1is a finite system of order < n of sets closed in X ; then
such that

by Theorem 2.12 there exist S; (1 <1 <m) OPen in X

=V
i Cc
i) Vv, & S,
i order < n.
(ii) the system S1,52,.--:"°» S, has <

. 3 <
Since V. ¢ U, , by the normality of X there exist T a<izm
i i

open in X such that

—V -
. u. .
= T.
Let W, S5 AT,
i finite system of
Then the system W of sets Wp,W2, «oeo Wy *° a i

order < n of open sets of X and

7 W.eU; .
v,ew e el




By normality there exists Pi (1<i<m) open in X

V'EP. CP. Cw.
1 1 1~ 1

For 1 <i <m let:

1) Mi mean the system of binary cpen coverings
P, , X \V;’} .

2) Ni the system of binary open coverings

{W,

1,x\Pi}.

the system of m.4" open sets of X formed by

m m
U, NAMN NN (1 <i, 5,k <m
j=1 3 k=1

Mjg Mj ; Nké. Mk

closed in X and since dim Av+1 < n, by Theorem 19 there exi

m.4™ of X such th

system Z of open sets Z, (ls<rst

(i) each frC some element of H;

(ii) Z covers A,

(iii) Z has order < n.

From (i) it follows by definition
. - =V T .
(iv) zrnvi+¢-> Z,C P
) zrnpi+¢=>zrgwi.

v . We divide the sets Z (1 <T <t) into three kinds, A

zr € A if there exists

Z €&€B if 1Z ¢ A and if there exists
T T

Then H is a finite system of open sets covering X. Since A .,

of the systems Mi s Ni

37.

such that

Clearly each of the 2m systems Mi s Ni cover X. Let # denote

is
sts a finite

at

, H that

B, C;

. L
i (1 <i<m) such that zrnvi+¢.

i(1<i<m such that
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z€c if z ¢ AUB.

With each Zr € A we associate each index i such that

TV
z.NV; 6.

With each Z. € B we associate a single index i so chosen that
z, NP, $ 9.

With each Zr € C we associate a single index i so chosen that
ZC Ui' (This is possible by definition of H and condition (1) for the
system Z.)

For 1 <i<m let Wi = V:\.L) vz, summed over all zreA U B
associated with index 1.
1

v = vl on
Clearly Vi c Wi and by (5), W{ c Wi. Further let Vi Wi V) Zr

summed over all zrec associated with the index i.

.'( ] Clearly \/\i)"'1 is open in X and

Y Y S S s RS AV T T V5 LA Lo o B e e g

o Wewlewl cu
- s &V eV ¢ Uy
\) . 3
Since VY covers L)1A>‘ and since Z covers A\)+1 ,v:; is clear
)\=
+1 v+l
that the system VV+1 of sets VU, ...... s Vm covers )\L__{ Ay-

has order < n, i.e. that each

v+l
elements of the system U~ ~. We

: .
It is still to be shown that V"
point a €X belongs to at most n + 1

distinguish two cases.

. . . é,—_.
(a) Suppose there exists an index ] (1 <j <m) such that a PJ

vil W,
Then ae'.zr=> zrnffj+¢,i.e. Zr¢C. Hence .'=1€Vi => aewi_ 5

. he
Since ( is of order < n, the point a belongs to at most n + 1 of t

yv*l
i

(b)  Suppose aé-;Pi , i=1,2, ceeeee, M

By (4)a(—:zr=>z NV, =¢ .
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Hence on the one hand a ¢. any V‘i) and on the other hand a 4: any

Zr € A. Hence a €& W{ => a & Zr where Zr € B and is associated with
the index 1i.

Since each ZrG.B is associated with a single index i, the point a

is in at most as many Wi as in Zr € B. Similarly a is in at most as

+ . . o
many V\i) 1 \ W; as in ZrE.C. Hence the point a is in at most as many
V;.Hl as Z_ ; since I 1is of order < n the point a belongs to at most
n + 1 of the sets V\i)+1.

Thus it is shown by recurrence that we can construct systems v
(v=1,2, 3, ...) of open sets V\i) (1 <i<m) in X such that
* v v+l
Cc
a v,cv. o,
VvV
<
2 vjecu,,
(3) V¥’ covers A
(4) V° has order < n.
= l1<i=<nm
Let V, = L{Ui Q=<1z
v= 3
Then the Vi are open sets of X. By (2) Vi c Ui' Since :;;
X = U Av , by (3) the system UV of sets VI,VZ,...,Vm covers X. %
v=1 ) . :
Suppose, on the contrary, that there were n + 2 different induces .3
L . . t ;
i1,i0,0000. » in42 and a point a X such tha %
hY
¥
a€ Vv, (1 < s < n+2). 3
ig |
But this contradicts (4).
Let A (v =1,2,3,....: ) be [
Corollary. Let X be a normal space. L€ v 32
Then dim Av < n.

F -sets in X and let dim A <n.
o v v=1

VRN
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Defimitiom 2.18. A topological space X 1is perfectly nommal i

(1) X is mormal,
(£i) each opem set of X is am Fm—set in X, or eguivelently, each
closed set of X is g G&—sert: in ¥ (i.e. the coumtasble imtersection

ef opem sets).

Thearem 2.21. ((Yech”s Subpset Theorem). Let X he a perfectly normal

space znd let dim X < n. Them if ¥ is amy subspace of L, &im Y < n.
C.H. Dowker has extended Eeadm"s subset theorem to z class of spaces

called totally norm=l.

Definition 2.11. & family U of subsets of a tepological space is locally
finite if esch poimt of the space has a neighhourhoed which intersects only

tinitely many members of .

I

Definition 2.12. A normal space X is totally nermal if each open set

SRS AT

G of X has a locally fimite coverimg by subsets each of which is an open

E -set of X. Totally mexmal spaces imclude hereditarily paracompact
T

Bamsdorff as well as perfectly merxmal spaces.

Theorem 2.22. (Rowker). If ¥ is a subspace of & totally normal space X,
‘h
them dim ¥ < dim X.

Cinition 2.33. A collectiom ¢ of subsets of a space X is called

star-fimite if evenry olement of (I imtersects at most & finite number of

other elements of W . (& stax-finite openm covering is of course locally

finite).
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Definition 2,14. A space is said to have the star-finite property if

every open covering can be refined by a star-finite open covering.

Definition 2.15. A topological space is paracompact if each open cover of

the space has an open locally finite refinement.

Definition 2.16. If U is a family of subsets of a set X and x€ X,

then the star of U is the union of the members of U to which x belongs.
A cover B is a star-refinement of U (or A-refinement) if the family of
stars of U at points of X is a refinement of U . A topological space

is fully normal if each open cover has an open star refinement.

A.H. Stone- [1 ] has proved the following important result:

Theorem 2.23. A Hausdorff space is fully normal if and only if it is para-

compact.

Corollary: Every metric space is paracompact.

We now state without proof several results about the covering dimension
of a topological product.

In 1946 Hemmingsen showed that if X and Y are both compact Hausdorff

spaces then

dim(X x Y) < dim X + dim Y.

i
1
{
H

This result was sharpened by Miyazaki in 1951.

1and Y is paracompact normal, then

Theorem 2.24. If X is compact norma

dim(X x Y) < dim X + dim Y.

Morita [ 2] proved the following three theorems:

= . i e

e ey T R T T e P e
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Theorem 2.25. Let X and Y be Hausdorff spaces such that X x Y has the

star-finite property (S-space) then

dim(X x Y) < dim X + dim Y.

Theorem 2.26. If X is a fully normal space and Y is a locally compact

fully normal space, then

dim(X x Y) < dim X + dim Y.

Theorem 2.27. If X is a countably paracompact normal space and Y is a
locally compact metric space, then

dim(X x Y) < dim X + dim Y.

In the same paper Morita proves the following stronger relation

between the covering dimension of X x Y and those of X and Y.

Theorem 2.28. The relation

dim(X x Y) = dim X + dim Y

holds for the following cases:

(i) X is locally compact fully normal space of dimension > 0 and
Y is a fully normal space of dimension 1.
(ii) X is a fully normal space of dimension > 0 and Y 1is a

locally finite polytype of dimension > 0.

We end this section on the covering dimension by quoting the following

theorem, analogous to Theorem 2.6.

Theorem 2.29. If X =Y UZ is a normal space and dim Y < m, dim Z < n,

then dim X <m + n + 1.

Ve D et easre e

g e
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Vv
(iv) The Cech strong inductive dimension 'Ind'

Definition 2.17. If X=¢ , Ind X=-1. For n =0,1,2,..., a space

X has strong inductive dimension Ind X <n if for every pair of a

U such that
FEUEG , 1Indb(U)<n-1.

Ind X = n if it is true that Ind X < n and false that Ind X < n - 1.

[~

1

..., then we say that Ind X

If Ind X <n is false for n = -1,0,1,2,

Clearly if X* is any homeomorph of X, then Ind X* = Ind X.

C.H. Dowker [1 ] has established the following results:

Theorem 2.30. If X' is a closed subset of any space X, Ind X' < Ind X.

Note: The theorem is not true if X' is not closed; see the *Tychonov

Plank. (Appendix).

N

Ind X < n is equivalent to the following condition on X:

i

Theorem 2.31.

closed and G open, then X is the union of three

FcUcG and Ind C<n - 1.

If FEG&EX with F

disjoint sets U, V, C with U, V open,

k:
ki
1
i

Theorem 2.32. If X 4is normal, Ind X <n is equivalent to the following

If E and F are disjoint closed subsets of X, then X is

condition:
C with U and V open, EC U,

the union of disjoint sets U, V, and

FC V, and Ind C <n - 1.

1,2, ....) be open sets in a hereditarily

Theorem 2.33. Let Y, ¢!

normal space Y such that
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o0
Y=¥12Y, 2, MY, =4
i=1

1=
and, for each i, Ind (Yi\Yi+1) <n. Then Ind Y < n.

A particular case of the above theorem is obtained by putting
Yy =Y, Y= Y'\NA, Yg=Y,=...=¢. If A is a closed subset of
a hereditarily normal space Y and if Ind A<n and Ind (YN A) <n,
then Ind Y < n. Lokucievski; has produced an example to show that this

special case of the theorem does not hold for arbitrary normal spaces.
We consider the following conditions which a space X may satisfy:

(an) If BEACX and Ind A <n, then Ind B < n.

-~

(b.) If GE€ACX with G open in A and Ind A < n, then

n
Ind G < n.
(cn) If A=BUCSX with B closed in A, Ind B <n and

Ind C <n, then Ind A < n.

[=°]
= < i A, closed in A and
(dn) If A 1L={ Ai" X with each i e
Ind A; 2 m, then Ind A < n.

Dowker [ 1] has proved the following theorem:

Theorem 2.34. If X is a hereditarily normal space satisfying condition

(b)) for all n, then X also satisfies (a ), (c))> (d,) for all n.

Dowker concludes the paper with proofs of the following theorems:

Theorem 2.35. Let AS X with X totally normal and Ind X < n. Then

IndA_<_n.

IR
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Theorem 2.36. Let a totally normal space X be the union of two sets A and

B with A closed and Ind A <n and Ind B <n. Then Ind X < n.

Theorem 2.37. Let {Ai} be a sequence of closed sets in a totally normal

space and let Ind Ai < n. Then

Ind {J A; <n
i=1

These last two theorems are extensions of theorems given earlier by

Y
Cech for the case of perfectly normal spaces,

Product Theorems.

Katetov [2 ] and Morita [1 ] gave different proofs of the following

theorem:

Theorem 2.38, If X and Y are metric spaces, at least one of which is non-

empty, then
Ind (XxY) <Ind X+ IndY.

Nagami [ 1] extended the result as follows:

Theorem 2.39. Let X be a perfectly normal space and Y a metric space.

If at least one of X and Y . is nonempty, then

Ind (X x Y) <Ind X + Ind Y,
We now state a Theorem analogous to Theorems. 2,6 and 2.29.

Theorem 2.40. Let X =Y UZ where X is totally normal and Ind Y < m,

Ind Z <n, then Ind X<m+n+ 1L
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CHAPTER 3

Relations between the dimension functions 'ind', 'Ind', and 'dim'

In this Chapter we summarize various relationships between the three

dimension functions introduced in Chapter 2.

Hurewicz and Wallman [1 ] completed the theory for separable metric
spaces and proved the equivalence of the three ideas for such spaces. P.

Roy [ 1] in 1962 showed that the three dimension concepts are not equivalent

for general metric spaces by producing a metric space X for which ind X =0

but Ind X = dim X = 1. Kat&tov [1 ], Morita [1 ] and Dowker and Hurewicz

[2 ] have all published different proofs that for any metric space X,
Ind X = dim X.
We now present several results on relationships between the dimension

functions for spaces subject to various conditions.

Theorem 3.1. If X is a T;-space then ind X < Ind X, i.e.

Ind X <n =>ind X <mn.

Proof. The theorem follows immediately from the definitions of the two

dimension functions and the fact that singleton sets are closed in T;-spaces.

Theorem 3.2. If X is a compact normal space,

ind X 5_0 => Ind X 5_0

Proof. Let F and G be closed and open subsets respectively in X and
let FC G. Since ind X < 0, for each point p € F there exists an open

and closed set V in X such that

pevV Q(L

is a closed subset of a compact space X, it also is compact,

Since F

)

b1
B




ol : and a finite collection
£, F
I {vl :v2) sesee ,Vk} covers F.

Then ng V. ¢ G , where ﬂ‘_; V., is
=1 % o b
| : closed and open. :

: ¢
;i : Hence Ind X < 0. '
HE -_— ;
i ,f We have the following counter-example to show that the implication in
Q- ﬁ Theorem 3.2 cannot be reversed.
d? E Counter-example. Let X = {a,b} and the open sets be {a}, X, ¢; then
i? é the closed sets are X, {b}, ¢. X 1is trivially compact and normal but not
T, and Ind X = 0, while ind X = 1.
i_ ? Theorems 3.1 and 3.2 together imply ;
I ;
: % Theorem 3.3. If X is a compact Hausdorff space, §
ind X < 0 <=> Ind X < O. 1
g - ,‘
;f i Theorem 3.4. Ind X <:0 => X is normal.
B E Proof. This follows immediately from Definition 2.17.
3  . Theorem 3.5. For any space X, dim X <0 <= Ind X < 0.

The proof of Theorem 3.5 follows readily from the definitions of the

i two dimension functions.
g,

Theorem 3.6. dim X < 0 <= Ind X< 0 X is normal.

ediate consequence of the previous two theorems.

Proof. This is an imm
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However, dim X = n does not imply that X is normal if n < 1, as

A
iH

is illustrated by the following example.

Example. Let X = {a,b,c} with open sets ¢, {b}, {a,b} ,{b,c} , and X.

Given the open covering {{a,b}, {b,c}} , both {a,b} and {b,c}

must occur in any refinemant and they intersect in the point b ; hence

the order of this covering is 1. Every covering of X by open sets has

a refinement of order < 1. Hence dim X = 1. However X 1is not normal

because {a} , {b} are disjoint closed sets and every two open sets both

0 : contain the point b.
?. Theorem 3.7. If X 1is a compact Hausdorff space, ind X < 0 <= Ind X< 0 5
g <=> dim X < 0. 3

Proof. Combine Theorems 3.1, 3.2, and 3.5.

?*. ; N. Vedenissoff [ 1] has proved the following theorems.

Theorem 3.8 . If X is a normal space, dim X < Ind X.

-  § Theorem 3.9 . If X 4is a compact normal space, then dim X < ind X.

Lokucievski¥ [1 ] has given an example of a compact Hausdorff space

&‘ 'é S with
‘dim §=1 , ind S=1Ind S = 2.

This shows that strict inequality can occur in the above theorems 3.8

P R %

and 3.9.

Theorem 3.10. If X is a compact totally normal space, then Ind X < ind X.

Proof. follows easily by induction.

] - m—— : : . N
PO e S A R S e AR AR R )
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We state without proof the following theorems on relations between the

various dimension functions for metric spaces.
Theorem 3.11. If X is a separable metric space, then ind X = Ind X.

Theorem 3.12. For any metric space X, dim X = Ind X.

As was mentioned earlier, Katgtov, Morita, and Dowker gave independent

proofs of this theorem.

Theorem 3.13. For any separable metric space X
dim X = Ind X = ind X.

P. Roy [1] showed that Theorem 3.13 is not true for arbitrarily metric

spaces by constructing a space complete metric space s for which

ind S = 0, but dim S = Ind S = 1.

Dowker [2] has also given an example of a normal space M with
ind M =0 and dim M = l.

In Chapter Two we proved that the sum theorem for dim holds for

Y .
normal spaces. Lokucievskii [1] ccastructs a compact space R for which

the sum theorems for ind and Ind are not true.

In the same book Nagami gives an example of a normal space with

ind = 0, dim =1, and Ind = 2.
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Thus, we see that basic gaps exist between the various dimension

Led
o
%

functions, and that normality and even compactness do not effect the

equalities between the dimensions.

ST AR
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CHAPTER 4

The Dimension Dim

Definition 4.1. The dimension DimXof a topological space X is the least

integer n(n = -1, 0, 1, 2...) for which

n
Xx=1J X;
i=0
where each subspace Xi of X has dim.")(i <0,

Dim ¢ = -1,

Theorem 4.1. If X is a topological space with Dim*X<n and A is a

closed subset of X, then Dim:A <n.

Proof. The theorem is clearly true if n = -1.

We consider two cases : (1) n=0 , (ii) n> O.

Case (i) n = 0. Let '{Vl,Vz,..., Vk} be any finite open covering of A.

Then V. = AN Ui’ where Ui is open in X. The sets Ul,...,Uk, together
i

with X \ A form an open covering of X. Since dim:X<0 there is a disjoint

refinement {W,,.. .,W } where W, g Uy for some i or W, CX\A. The
system {W. N A} forms a disjoint open covering of A which is a refinement
J

of {V.}. Hence dim A < 0. Since dim A < 0 <=> Dim A < 0, we have
1 —

Dim A<o0.

n
Case (ii) n > 0. Let X = _oni , where dim X, < 0.
i=

n . .
Then A= (Y Ai , where Ai =A/\xi (i=0,1,...,0}.

i=0
(Some of the A; may be empty).

i X..
Since A is a closed subset of X, each Ai is a closed subset of i

Therefore by Case (i) dim Ai < 0.

Since A:b A and dim Ai-<—0 , Dim A < 0.

i=0
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is not closed; see Tychonov Plank

Note: Theorem 4.1 is not true if A

(Appendix).

If A and B are subspaces of a topological space X and

Theorem 4.2.

Dim A < m, Dim B < n, then

Dim(A UB) < Dim A + Dim B + 1.

Proof. By definition

m n
A=A and B= U Bj
i=0 j=0

where dim Ai <0 and dim Bj < 0.

Define Ci = Ai (i
(j =0,1, ..., n)

Cmetej =%

m+n+l .
Then AUB = k-LoJ C, where dim C, < 0

Hence by definition

Dim (A UB) <m + n +1
i.e. Dim (AUB)iDimA+Dim B + 1.
Lemma. Let A be any subset of a topological space X where dim A < 0.
if  {Up,...,U0} is any finite open covering of A by open sets of X, there
r
exists a system {V,Vp,. -Vt of open subsets of X such that

@ v,y
'{Vi} covers A

vinvjnA'=¢ if i%j.

(i1)

(iii)
of A has an open refinement

dim A < 0 the covering (AN U}
=¢ if i#]

=AN zi for some Zi

Proof. Since
where wi

i W. W.
WiCANUi with 1f\ 3

Then

3
"1.‘
oy
i
A
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2
5
s

o

open in X. Let Vi=ZinUi. Then VigUi and VinvjnA= ¢. Since

Vi N V._i is open, no point of it is an accumulation point of A; hence

T L LT T s e i £
2 TR AR N AT e

N ‘= . . .
Vian A ¢ if i % j.

Theorem 4.3. If X is a normal space, dim X < Dim X.

Proof. We show that if X is normal then Dim X < n implies dim X < n. The
result is true for n = -1, 0. Assume it true for n =m - 1. Let

- m
Uy,...,U, be any finite open covering of Xo s where x.= iL—'{) X; dim Xi < 0.

k
Since dim Xc> < 0, by the lemma there exists a system {Vl,...,V'k} open
in X such that V, €U, and {V;} covers X, and v.n Vj NX, =9 i+3).

Let V = b V.. Put S =X \V. Then S is closed in X and sCcXx\ Xo.
=1t °
Hence dim S < m - 1 by the hypothesis of induction.

Since X; is closed in X, X; is normal, so that by Theorem 2.19

(Sechy there exists (Wy,...,W} open in X with W € U;, W= UW S5

and order of {W.} is <m - 1. Thus {V.,, W.} is an open covering of X;
i = i? i

which forms a refinement of {Ui} and is of order < m. Hence dim X < m.

Similarly dim X; <m, where i=1,2, ..., M

Then X i_nj X. , and by the ¥ech Sum Theorem,
i=0 *
dim X < m.

Then if

Theorem 4.4. Let X be an hereditarily normal space.

AysAy,... ’Ak are closed subsets of X for which Dim Ai <n, then Dim A < n,

where A = (k} Ai'
i=1l

Proof. We first prove the theorem for the case when k = 2.

Let L, M be closed subsets of the hereditarily normal space X, and
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Let Po = Lo U(Mo\ L).

Then Po is normal and Lo = Po NL, i.e. Lo is closed in éo'

Let Fo be a closed subset of Po such that Fo n Lo = 6.

Then Fo = F nMo where F 1is closed in X, i.e. Fo is a closed
subset of Mo’ so that dim Fé < 0.

By a lemma of Dowker ("If H 1is closed in the normal space S and if
dimH<n and dim F < n for each closed set F such that FNMH =4 ,

then dim S < n") for the case n = 0, we have dim P < 0.

Let Py = Ly U (M; \ L). Then, as before, dim Py < 0, etc.

Now LUM = 0 P, where dim P, < 0. Hence Dim (L UM) < n.
i~-0
The theorem now follows directly for the union of a finite number of

closed subsets of X.
Theorem 4.5. If X is an hereditarily normal space, then Ind X < Dim X.

Proof. We show that Dim X < n implies Ind X < n. The result is true for

m :
n = -1, 0; assume true for n =m - 1. Let X= UO X, » where X 1S
1=

hereditarily normal and dim X; < 0. "By a theorem of Walten [1 I, p- 81,
given F closed in X and G open in X with F GG ther_e exists a set

V open in X with F € VCG such that b(V) does not meet X ,

m-1
ie. bWIC U X
i=1

0
!
&
3

Ein
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Hence by the inductive hypothesis,
Ind b(V) <m -1, and Ind X <m.
Corollary. For antereditarily normal T, space X, ind X < Dim X.
However, if X is.hereditrarily normal, but not T; , the result is

not true, by an example of Dowker [1].

Theorem 4.6. Let X be a hereditrarily normal space, A a closed subset

of X, and Dim A <n, Dim (X \ A) < n.. Then Dim X < n.

Proof. If a normal space X is the union of two sets A and B with A

closed and dim A < n and dim B <n, then dim X < n. Hence the result

is true for n = -1, 0. Assume it is true for the case n=m - 1. Let
A=A0UPn-l , B= Xm\A=BoUQn_1 where dim Ao_<_0, dim BoiO,
m m . .
= = 3~ -1
and Pm-l = iL—Jl Ai , Qm_1 };)1 B, » where Dim Pm-l <m ,

Dim Qm—l <m - 1.
Let - Co=AoUBo'
and Gy = Py Vg
Then A0 = AN (Ao V) Bo), i.e. A0 is closed in AOU B, = Co and

C is normal so dim C_ < O.
(o] 0o —

Similarly P, = AﬁCm_l is closed in C_, and C _, 18

hereditarily normal. Hence Dim C
ach of which has covering

subsets €

X 1is the union of at most m + 1

dimension < 0 , i.e. Dim X <m.

<m- 1. Therefore since X =C U Cp ;1 »

SRR AU A M S SR
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Corollary. If A 1is a closed subset of a hereditarily normal space X,

then

Dim X < max (Dim A, Dim X \ A).

Theorem 4.7. If A is any subset of a totally normal space X, then

Dim A < Dim X.

Proof. Let Dim Xin. Then

n
X = _Uxi , where dim X; < 0.
i=0
n
Now A= iL=JoAi , where A, =ANX, .

Then by Theorem 2.22, dim Ai < 0,

since total normality is a hereditary property.
Hence Dim A < n.

Theorem 4.8. Let X be a perfectly normal space and Y = UlFi , where
1=

each Fi is a closed subset of X and Dim F, <. Then Dim Y & n.

Proof. Since Dim Fi <n
n
= dim F.. < 0
Fi U Fij where ij <
j=0 "
for j = 0,1,...,n for each i =1,2,...
= ¢ for each

and where without loss of generality we can take Fij N F.

if j ¥ k.
m-1
= F..
Let K, =F, , K =Fa\Fr ) Fm\iL=J1 1

(] C
Then K = F,OF D ... NE

[+]
is an F -set in X and Y=UKi.
c i=1

i
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SRkt PR e el g RS F"

. n
Thus K. = - .
i jl'=)0K13 , where l(ljg Fij .

Since X 1is perfectly normal dim Kij < 0.

Hence Dim Ki < n.
Let H = gll(io. Then K =H, NFp.

Now X\ F; isan F_-set.

R G W)

Let Dz = (X \Fl) an.

Then DzhHo = Kzo .

Let D3 = (X\ F1\ F2)N F3. Then D3 NH, =X, , etc.

RS TS

. - i and since dim K. < 0 we
Hence each K, =~ is an F -set in H, an 0 S

have by Theorem 2.20 (&ach) that

dim H) < 0.
Similarly dim Hi <0 i=1,...,n
h
and since Y= JH,
i=0

we have Dim Y < n as required.

An interesting question is whether Theorem 4.8 holds for totally normal

spaces as well.
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APPENDIX

The Tychonov Plank

Let Wy be the first infinite ordinal and w; the first uncountable

ordinal. Provide each of the sets

N

{k|k is an ordinal, 0 <k <w}.

P={a|c is an ordinal, 0 <a < wy}

with the order topology.
Then both N and P are compact Hausdorff spaces. Hence the

topological product
X = P x N

is a compact Hausdorff space and consequently a normal space, called the

'Tychonov Plank'. X, however, is not hereditarily normal, since the

subspace
Y = X\ {(0), wo)} is not normal.
. %
Let A= {(o, wo)| 0<ao < W} é‘
B = {(u,k)| 0skc wo}. %
Then A and B are disjoint closed subsets of Y. Hence U = YNA %
Now let V be any g

e closed subset B.

is an open subset of Y containing th
open set in Y containing B. Each point (wp,k) of B has a neighbourhood

n V. This means that for each k there exists an ordinal

(x,k) € V.

contained i

such that X > o4 implies

ak<w1

S

t a countable collection of ordinals each of which is less than )

i.e., there exists an ordinal B < w1

Bu
such

has its supremum less than w; >
t for each k = 0,1,2,... the point (8,k) € V; therefore

roving there there exists
(8,0,) € A, proving

that oy < B so tha

V must contain the point (B,wo)- But

no open set V satisfying
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BCvecVecu f

i.e. Y 1is not normal (and not closed). é
4

It can be shown that ind X = Ind X = dim X = Dim X = 0. ﬁ

Al = |

so Y U Y, 4

k=0 i

where L {(@,kK)] 0<a<wlNny :
1

|

Then each Yk is closed in the completely regular non-normal Hausdorff b
space Y, and dim Yk = 0, yet dim Y > 0. This shows that the sum theorem 4

is not true for 'dim' for all completely regular Hausdorff spaces. :

Now dim A = 0, where

A= {(a,wo)l 0<a<uwpl.

Let C =Y \A.

Then dim C = 0, for every finite open cover of C has a disjoint

refinement. Hence Dim Y < 1. But also DimY > 1. Hence DimY = 1.

It can also be shown that dim Y = 1.

To show that Ind Y =1, let F, G be closed and open subsets of Y

respectively, with FC G.

Consider the statements:

. "
A : "there exists an ordinal a <wy such that (a,wo) é-F for «a 25“

B : '"there exists an ordinal ko < W, such that (k,uw;) #.F for k z_ko".

We now distinguish four cases:
(i) A,B both true.
(ii) A,B Dboth false.

(iii) A false, B true.

(iv) A true, B false.
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In cases (i), (ii) it is not difficult to see that there exists an

open set U satisfying

FCUCG N b(U)=¢)'

In case (iii) for every open set U DF, b(u) D {(k,w1)| k0 <k<w

for some ko <ug. Hence Ind b(u) > 0 in this case. However, we can

[o]

}

build up U from basic open sets so that b(U) C.{(ml,k)| 0<k g_wo} = B.

Hence Ind b(U) = 0.

The analysis of the 'Tychonov Plank' to show that Y 1is not normal

shows that in this case there exists an open set U such that F CuUcgG
where
¢+ b(CA-= {(a,wo)l 0 <a<uw} .
Thus again Ind b(U) = 0. Hence in all cases Ind b(U) < 0 and
Ind‘Y < 1. .

Since Y is not normal, Theorem 3.6 => Ind Y > 1.

Hence Ind Y = 1.

Then ind X =ind Y =

dimY =DimY=Ind Y = 1.

T e

A,
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