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(ii) 

ABSTRACT 

The main objective of this thesis is t~ give an up-to-date account 

of several dimension functions and relations that exist between them for 

various · spaces. 

Chapter 1 contains a brief history of the development of the subject 

as we know it today. In Chapter 2 w~ give definitions of the three basic 

dimension functions 'ind', 'dim', and 'Ind' and a detailed survey of 

the known properties of these functions. Included is a proof of the famous 

~ec~ Sum Theorem for dimension 'dim'. 

In Chapter 3 we invest.igate relations between 'ind', 'dim', and 

'Ind' and mention some of the latest examples that have been given to 

illustrate the gaps that exist between the various. dimensions. Finally, 

Chapter 4 contains a brief account of a relatively new dimension function 

"Dim'. 
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1. 

Chapter One 

Introduction 

1. The Modern Concept of dimension. 

In order to present the motivation behind the modern concepts of 

dimension theory we can hardly do better than quote from Hurewicz and 

Wallman [ 1 ] : 

"···to divide spaces cuts that are called surfaces are necessary; to 

divide surfaces, cuts that .are called lines are necessary; to divide lines, 

cuts that are called points are necessary; we can go no further and a point 

can not be divided, a point not being a continuum. Then lines, which can 

be divided by cuts which are not continua, will be continua of one 

dimension; surfaces which can be divided by continuous cuts of one 

dimension, will be continua of two dimensions; and finally space, which 

can be divided by continuous cuts of two dimensions, will be a continuum 

of three dimensions." 

These words were written by Henri Poincare in 1912. Wri ting in a 

philosophical journal [Revue de m~taphysique et de morale], Poincare 

was concerned only with putting forth an intuitive concept of dimension 

and not an exact mathematical formulation. Poincare had, however, 

penetrated verydeeP¥ in stressing the inductive nature of the geometric 

meaning of dimension and the possibility of disconnecting a space by 

subsets of lower dimension. One year laterBrouwer constructed on Poincare's 

foundation a precise and topologically invariant definition of dimension 

which is essentially as follows: 

(a) the empty set $ has dimension -1. 

(b) the dimension of the topological space X is the least integer 

n such that for any pair· of disjoint closed subsets C1 and C2, there 
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is a closed subset K separati.ng c1 and c2 , where the dimension of 

K is less than ri:' 

Brouwer's paper remained practically unnoticed for almost a decade. 

Then in 1922, independently of Brouwer,and of each other, Urysohn and 

Menger recreated Brouwer's concept in the following formulation: 

(a) the empty set ~ has dimension -1, 

(b) the dimension of a space is the least integer n for which every 

point has arbitrarily small neighbourhoods whose boundaries have dimension 

less than n. 

2. Previous concepts of dimension. 

Before the advent of set theory mathematicians used dimension in only the 

vaguest sense. A configuration was said to be n-dimensional if the least 

number of real parameters required to describe its points, in some unspecifi ed 

way, was n. The dangers and inconsistencies in this approach were vividly 

brought into view by two celebrated discoveries of the last part of the 

nineteenth century: Cantor's one-to-one correspondence between the points 

of a line and the points of a plane, and Peano's continuous mapping of an 

interval on the whole of a square. The first exploded the feeling that a 

plane is richer in points than a line, and showed that dimension can be 

raised by a one-valued continuous transformation. 

An extremely important question was left open (and not answered until 

1911, by Brouwer): Is it possible to establish a correspondence between 

Euclidean n-space (the ordinary space of n real variables) and Euclidean 

m-space combining the features of both Cantor's and Peano's constructions, 

i.e. a correspondence which is both one-to-one and continuous? The question 

is crucial since the existence of a transformation of the stated type 
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between Euclidean n-space and Euclidean m-space would signify that 

dimension (in the natural sense that Euclidean n space has dimension n) 

has no topological meaning whatsoever! The class of topological trans­

formations would in consequence be much too wide to be of any real 

geometric use. 

3. Topological invariance of the dimension of Euclidean Spaces. 

The first proof that Euclidean n-space and Euclidean m-space are not 

homeomorphic unless n equals m was given by &ouwer in his famous paper: 

Beweis der Invarianz der Dimensionenzahl~:· (Math;Ann. (1911) pp. 161-165). 

However, this proof did not explicitly reveal any simple topological 

property of Euclidean n-space distinguishing it frE>m Euclidean m-space and 

responsible for the non-existence of e. homeomorphism between the two. More 

penetrating, therefore, was Brouwer's procedure in 1913 when he introduced 

his "Dimensionsgrad" and integer-valued function of a space which was 

topologically invariant by its very definition. Brouwer showed that the 

"Dimensionsgrad" of Euclidean n-space is precisely n (thereby justifying 

its name). 

Meanwhile Lebesgue had approached in another way the proof that the 

dimension of a Euclidean space is topologically invariant. He. had observed 

[ 1 ] that a square can be covered by arbitrarily small "bricks" in such a 

way that no point of the square is contained in more than three of these 

bricks; but that if the bricks are sufficiently small, at least three have 

a point in common. In a similar way a cube in Euclidean n-space can be 

decomposed into arbitrarily small bricks so that not more than n + 1 of 

these bricks meet. Lebesgue conjectured that this number n + 1 could 

not be reduced further.;: i.e. for any decomposition in sufficiently small 
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bricks there must be a point in commori to at least n + 1 of the bricks. 

The first proof of this theorem was given by Brouwer in the paper already 

cited. Lebesgue's theorem also displays a topological property of 

Euclidean ·n-space distinguishing it from Euclidean m-space and therefore 

it also implies the topological invariance of the dimension of Euclidean 

spaces. 

Lebesgue's covering theorem thus motivates the following definition 

of dimension: 

(a) the empty set has dimension -1. 

(b) a topological space X has dimension < n if given any 

finite open coveri.ng U of X there exists a refinement V 

[V is a refinement of the open covering U of X if 

(i) each member V a V is an open subset of X; 
a 

(ii) · each member V E V 
a 

(iii) UV = X] 
a 

is contained in some member U. € U; 
l. 

such that at most n + 1 sets of this refinement have a 

non-empty intersection. 

(c) the dimension of the space X is equal to n if (b) is true 

and it is false that the dimension is less than n. 

The formulation of Brouwer given above has the following equivalent 
v 

form, introduced by Edward Cech [ 1]: 

(a) the empty set ~ has djmension -1; 

(b) the dimension of the topological space X is the 1 east integer 

n such that for any pair of a closed set F and an open set 

G such that F C G c X there exists an open set V with 

F C V c. G where the dimension of the boundary b (v) = V 'V 

of V is less than n. 
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"' The definition of Urysohn-Menger, Brouwer-Cech, and Lebesgue are 
· ;·, 

respectively termed the 'weak inductive dimension', 'the stro_ng inductive 

dimension', and the 'covering dimension' and are denoted by 'ind', 'Ind', 

and 'dim' respectively. 
,, .. 
;,·~~ 
•,1, 
1~;'( 
~. ~· 

~:;~ 
. ,.: 
; .. ~ Katetov [ 1 ] , Morita [ 1], and Dowker and Hurewi.cz [ 2] have all 
!d 
~::~ published different proofs that for any metric space X ;y!·i 

i.' ~~ 
Ind X = dim X. "' 

;~ 
l'~ 

The notion of weak inductive dimension (or Urysohn-Menger dimension) :.·_~·;_:_ •. !.:. 

is no longer so important as the other two notions, because P. Roy [ 1] has "' 

~ recently constructed a complete metric space ~ such that ind ~ = 0 but ~ 

~~ Ind ~ = dim ~ = 1. However the weak inductive dimension still has its -~ 

uses, and we consider it in some detail. The remainder of Chapter 1 involves ~ 
~ 
t.~ 

a detailed treatment of the dimension functions of Brouwer-Cech and Lebesgue. ~~ 

f)~ 
In Chapter 3 we examine relations that exist between the fUnctions 'ind', f~ 

'dim', and 'Ind' for various classes of spaces. We mention several of the ~ 
;~ 

latest examples illustrating the gaps that exist between these functions, ~j 

including Nagami's example of a normal space Z with ind Z = 0, dim Z = 1, ~~ 
~Ji 
[~ 

Ind Z = 2. ~ 

Chapter 4 contains a brief account of the relatively new dimension ~~ 
function 'Dim'. Attem. pts were made without success to extend certain of the r~.~ 

theorems given for perfectly normal spaces to ldore general spaces called ~ 
totally normal. It appears that great difficulties are encountered in trying ;{~ 

~:~ 
to extend the theory to more general spaces. .:;~ 

~ 

I 
; 
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CHAPTER TWO 

In this chapter the main results concerning the weak inductive 

dimension 'ind', the covering dimension 'dim', and the strong inductive 

dimension 'Ind' are presented together with relations between them for a 

given class of topological spaces. The discussion in sections (i) and (ii) 

on the weak inductive dimension 'ind' is similar to that given by Hurewicz 

and Wallman [ 1], and unless otherwise stated in these sections, all spaces 

referred to are separable metric. 

(i) Weak inductive dimension 0 

Definition 2.1. A space is connected if it is not the union of two non-empty 

disjoint open sets. Equivalently a space is connected if, except for the 

empty set and the whole space, there are no sets whose boundaries are 

empty. 

In this section we are concerned with spaces which are disconnected in 

an exceedingly strong sense, i.e. have so many open sets whose boundaries 

are empty that every point may be enclosed in arbitrarily small set of this 

type. 

Defjnition 2.2. A space X has weak inductive dimension 0 at a point 

p E X, ind X = 0, if p has arbitrarily small (open) neighbourhoods with 
p 

empty boundaries, i.e. if for any n~ighbourhood U of p there exists a 

neighbourhood V of p such that 

b(V) = <P • 

A non-empty space X has weak inductive dimension 0, ind X = 0 

if ind X= 0 for each p£ X. 
p 

,.' . 
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Clearly the property of being 0-dimensional at a point p is a 

topological invariant. Also, for any topological space X, saying that 

ind X = 0 is equivalent to saying that X ~ ~ and that there is a basis 

for the open sets of X which consists of sets which are both openand 

closed. 

EXAMPLES 

Example 2.1. If X is any non-empty finite or countable metrizable space, 

then ind X = 0. 

Provide X with the metric P.' · For any given neighbourhood U of 

any point p let r be a positive real number such that the spherical 

neighbourhood of radius r about p is contained in U. Let x1 , x 2 , ••• 

be an enumeration of the points of X; then p(x.,p) is the distance from 
l 

x. to p. There exists a positive real number r' < r and different from 
l 

all the p(x.,p). The spherical neighbourhood of radius r' about p is 
l 

contained in U and its boundary is empty. Hence ind X = 0. 

In particular the space R of rational numbers has ind R = 0. 

Example 2.2. If I is the space of irrational numbers, ind I = 0. 

For any given neighbourhood U of an irrational point p there 

exist rational numbers p and a such that p < p < a and the set V of 

irrational numbers between p and a is contained in U. In the space of 

irrational numbers V is open and has an empty boundary because every 

irrational point which is an accumulation point of V is between p and 

a and hence belongs to V. 

I / . 



Example 2.3. The Cantor discontinuurn C , the subspace of all real 

numbers expressible in the form 

I 
n=l 

has ind C = 0. 

where a = 0 n or 2 

8. 

Example 2.4. If A is any subspace of the space of real numbers which 

contains no interval, then ind A= 0. (Example 2.3 above is a specific 

case of this.) 

Example 2.5. If I2 is the subspace of points in the plane both of whose 

coordinates are irrational, then ind I 2 = 0. Clearly any such point is 

contained in arbitrarily small rectangles bounded by lines having rational 

intercepts with the coordinate axes and intersecting them at right angles, 

and the boundaries of such rectangles contain no points of I 2 • 

Example 2.6. ind RJ = 0, where is the subspace consisting of points 

of the plane exactly one of whose coordinates is rational. Clearly any such 

point is contained in arbitrarily small rectangles bounded by lines having 

rational intercepts with the coordinate axes and intersecting them at 45° 

and the boundaries of such rect~ngles do not intersect R~ . 

Example 2.7. The set R of points of Euclidean n-space all of whose 
n 

coordinates are rational and metrized by the usual Euclidean metric has 

ind Rn = 0 ( Rn is countable.) 

Example 2. 8. If In is the subspace of points of En a:ll of whose 

coordinates are irrational, ind I = 0. (A simple generalization of Ex. 2.5) 
n 
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Remark. Suppose 0 < m < n. m Denote by R 
n 

the subspace of E exactly 
n 

m of whose coordinates are rational. Then ind R~ = 0. Examples 2.6, 2.7, 

and 2.8 above are specific cases of this, but the proof of this more 

general result depends on the "Sum Theorem for ind = 0" (Theorem 2. 3 ) . 

Example 2.9. ind R' = 0, where R' is the subspace of points of the w w 

Hilbert cube I all of whose coordinates are rational. (For the proof see 
w 

Hurewicz and Wallman). 

Example 2.10. ind I' = 0 where w • I I 
w 

is the subspace of points of the 

Hilbert cube I all of whose coordinates are irrational. 
w 

Example 2.11. ind R = l, where R is the subspace of points of Hilbert 
w w 

space all of whose coordinates are rational. (For the proof see 

Hurewicz and Wallman [I] or P. Erdos [1 ].) 

Theorem 2.1. A non empty subset X' of a 0-dimensional space is 0-dimension-

al. 

Proof: Let p £X' and U' any neighbourhood of p open in X'. Then 

there exists a neighbourhood U in X of p such that 

U' = U fl X'. 

Since ind X = 0, there exists V open and closed in X such that 

p ~ v ~ u. 

Let V' = V ~ X'. 

Then V' is both open and closed in X' 

and p £ V' S U' 

so that ind X' = 0. 

. < 
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Definition 2.3. If A1, A2, and B are mutually disjoint subsets of a 

space X, we say that A1 and A2 are separated in X by B if X ' B 

can be split into two disjoint sets, open in X \ B and containing A1 

and A2 respectively, i.e. if there exists 

X \ B = A~ U A2, 

A' 1 and A 2. for which 

with Ai and A2 both open in X ' B (or what is the same, both closed 

in X 'B). 

If A1 and A2 are separated by the empty set we say they are 

separated in X. 

are separated if and only if there exists a set 

such that 

A1 ~ Ai 

and Ai f'l A2 = cp 

where A{ is both open and closed, i.e. b(A}) = cp • 

Then A2 = X ' Af • 

A' 1 

Definition 2.2'. Let X be a non-empty space. Then ind X= 0 if 

every point p E X and every closed subset C of X with p ~ C can 

be separated. 

It is trivial to show that Definition 2.2. and Definition 2.2' are 

equivalent. 

. _·;_, ·: 
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Remarks 

1) A connected space X with ind X = 0 consists of only one point. 

2) If ind X = 0 then X is totally disconnected. 

3) It is obvious from Definition 2.2' that if X is a T1-space and 

any two disjoint closed subsets can be separated then ind X = 0. 

We now prove conversely that if X has a countable base and 

ind X = 0, then any two disjoint closed subsets can be separated. 

Theorem 2. 2. Let X be a topological space with a countable basis and 

ind X = 0. Then any two disjoint closed subsets of X can be separated. 

Proof. Since ind X = 0, by Definition 2.2' any point p £ X can be 

separated from any closed set not containing p. Let C and K be two 

disjoint closed subsets of X. We have to demonstrate a separation of C 

and K in X. 

For each p€ X either p ~C or p 4 K. Hence there exist 

neighbourhoods U(p) for each point p which are both open and closed 

and such that either U(p) () C = cp or U(p) () K = cp Since X has a 

countable basis there exists a sequence U1 , U2 , of these U{p) whose 
.. 

union is X (Lindelo f' s . theorem - see Kell ey[l ] , p. 49). We now define 

a new sequence of sets v. 
1 

as follows: 

Then we have 

(1) 

(2) 

v. = u.' 
1 J. 

00 

X = u 
i=l 

v. (\ v. = 
1 J 

i-1 

U. " (X '\ U Uk) 
J. k=l 

v. 
1 

cp if i I j. 

i = 2, 3, ... 



(3) V. is 9pen 
~ 

(4) either Vi () C = <P or Vi () K = <P 

(1), (2), and (4) are obvious. To prove (3) we note that 

i-1 
l_) uk is closed, so that 
k=l 

i-1 
X \ U Uk is open 

k=l 
i-1 

hence V. = U. fl (X ' U Uk) is open. 
~ 1 k=l 

Let C 1 = tJv . such that V
1
. ('\ K = <P • 

. ~ 

Then 

and 

K1 = union of remajning Vi . 

X = C1 U K' 

C1 11 K1 = <P 

C1 and K1 are open 

(C I 11 K) u (C (\ K I) = <P 

by (1) 

by (2) 

by (3) 

by (4). 

It follows that C ~ C 1 and K ~ K1 • 

The desired separation is thus given by C1 and K1 

The sum or union of zero-dimensional sets need not be zero-dimensional 

as we see from the decomposition of the real line into the rational numbers 

and irrational numbers or into its distinct points. We have the following 

theorem: 

Theorem 2.3. (Sum Theorem for zero-dimensional sets). 

A separable metric space X which is the countable union of zero-dimensional 

closed subsets is itself zero-dimensional, 

i.e. if 
00 

X= U 
i=l 

X. 
~ 

where each X. 
~ 

is a closed subspace and ind x. = o, 
~ 

then ind X = 0. 
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Proof: Let K and L be two disjoint closed subsets of X. We show 

that K and L can be separated. 

Clearly K n x1 and L n x 1 are disjoint closed subsets of the 

space X1 , where 

Al and 81 of 

ind xi = 0. 

x1 , closed in 

K f'l X1 ~ A1 

A1 u s1 = x1 

Hence 

x1 

by Theorem 2.3, there 

and therefore 

L l'l x1 ~ s1 

A1 fl 81 = q, • 

in X, 

exist subsets 

such that 

The sets K V A1 and L l) 81 are closed and disjoint in X. By 

the normality of X there exist open sets G1 and H1 for which 

Therefore 

Now repeat this process replacing K and L by G1 and H1 and 

X1 by X2 • This yeilds open sets G2 and H2 for which 

By induction we construct sequences {Gi} and {Hi} of sets open i n 

X for which 

G.vH.2X . 
l. l. l. 

G. 1 ~G. l.- l. 
H. 1 c H. 

l.- - l. 

G. n fi. = q, 
l. l. 



co 

Let G = U 
i=l 

G. 
1 

co 

and H = U 
i=l 

H. 
1 

Then G and H are disjoint open sets, 

co 

G U H ~ U X. =X 
1 i=l 

and K ~ G L ~ H 

this is the desired separation. 

14. 

Definition 2.4. By an F set in a space X we mean any countable union 
a .. 

of closed subsets of X. It can be shown that in a metric space any open 

set is F 
a 

Corollary l . to Theorem 2.3. A separable metric space which is the countable 

union of 0-dimensional Fa sets is 0-dimensional. 

Corollary 2. The union of two 0-dimensional subsets of a separable metric 

space X, at least one of which is closed, is 0-dimensional. 

Proof. Suppose ind A = ind B = 0 and B is closed. 

Then A U B ' B is open in A V B. As an open set in a metric space it is 

Fa in AU B. The result then follows from Corollary 1 and 

A U B = [A 1J B ' B] V B. 

Corollary 3. A 0-dimensional space remains 0-dimensional after the adjunct­

ion of a single point (assuming that the enlarged space is separable metric). 

Example 2.12. Suppose 0 < m < n. Denote by ~ the subspace of points 
n 

in Euclidean n-space 

Then ind R" = 0. 
n 

E 
n 

exactly m of whose coordinates are rational. 
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For each selection of m induces il, ... , i out of the range m 

1, 2, ... ' n, and each selection of m rational numbers rl' r2, ••• J r m 

we have an (n - m) - dimensional linear subspace E(i) of E determined n-m n 

by the equations 

... , 

The subspace of this space made up of points none of whose remaining 

coordinates is rational we denote by c .. 
~ 

Each C. 
~ 

is congruent to 

I and is therefore a-dimensional (Exmaple 2.8). It is clear that n-m 

each C. 
~ 

is closed in Rm since 
n 

and each E(i) 
n-m 

is closed in E . 
n 

The union of the C. just fills out Rm • Since the collection of 
~ n 

the C. 
~ 

is countable the sum theorem implies that ind Rm = 0. 
n 

Example 2.13. Suppose 0 < m. Denote by ~ the set of points in the 
(I) 

Hilbert cube exactly m of whose coordinates are rational. Then 

m ind R = 0. 
(I) 

Let i = {i1, i 2,_ ..• , im} be a selection of m different integers 

chosen from the set {1, 2, 3, ... , n, . .. } . Such a selection .can be 

made in 

~0 
m factors 

= x
0 

ways (1) 

Again for a given ik of this selection the number of different 

rationals r. such that 
~k 

Thus for a given selection i _we have Xo· 
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X0 • x0 ~.i •• x = x
0 ' 0 - · 

~ m factors 

(2) 

sets of rationals. 

By (1) and (2) the number of different subset s C. of Rm is 

Thus the set of C. 
l 

1 w 

is countable and just fil l s out 

of I' in which 
w 

Moreover each Ci is congruent to a subspace X' 

exactly m of the rational coordinates are fixed. Hence ind C. = ind X' = 0 
l 

(because cp t X' ~ I' w 
and ind 

implies ind X' ~ 0). 

We now prove that"each c. l 

Let y €. C. where 
1 

I' = 0 implies 
w 

is closed in 

= r2 ' . . ••• ' y. 
lm 

= r . 
m 

ind X' < 0 while -

rtt w 

(the r' s being rational, the rest of the coordi nates of y being 

irrational) define a C. in the space of the Hilbert cube and let 
1 

•••••• J 

Then if y € C. we have 
1 

x.' .. . . ) 
J 

be a point of 

+ • • •••• 

where Lk denotes that k takes all values 1, 2, 3, .. . . except 

We can always make Ik zero by choosing xk = Yk · 

Choosi ng ~ = l(x. - r1F + ... + (x . r ) 2 we see that m 

X' + cp 

x €. I 
w 11 1m 

c. unless x. = r l ' 
i. e. X q. C. i mplies X+ C . . l l does not belong to 1 l l 

ci is closed. 
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Consider the following four properties of a space X 

(0) X is totally disconnected. 

(1) Any two distinct points of X can be separated. 

17. 

(2) Any point can be separated from any closed set C to which it 

does not belong, i.e. ind X = 0 (Definition 2.2 1 ). 

(3) Any two disjoint closed sets can be separated. · 

For ~ -spaces (3) => (2) (2) => (1) (1) => 0 • Conversely, 

for separable metric spaces (2) => (3); for spaces without countable basis 

(2) does not imply (3) as the 'Tychonov Plank' shows. (See Appendix). 

Properties (0), (1), and (2) . however are not equivalent, even for separable ~ 

metric spaces. 

Example 2.14. Sierpinski [1 J gives an example of a subset of the plane 

satisfying (0) but not (1). 

Example 2.15. By example 2.11, ind R = 1, . w so that R does not satisfy 
w 

-
(2). On the other hand it does satisfy (1). For, let p and q be two 

points of R. and let i be an index such that the i~? coordinate p. w 1 

of p differs from the . th 
1 

of course, rational. Let p 

coordinate and q. 
1 

are, 

be any irrational number between p. and q . . 
1 1 

The decomposition of R into the closed and disjoint subsets determined 
w 

by X. < p 
1-

X. > p 
1-

gives the desired separation of p and q. 

For compact spaces the conditions (0) - (3) are equivalent (see 

Hurewicz and Wallman [1 ].) 

Remark. It is not true, as is seen in the following two examples, that if 

a space has properties (0) or (1) it will retain that property upon the 

adjunction of a single point; compare with Corollary 3 to Theorem 2.3. 

·.:•: 
~ 
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Hence the Sum Theorem would not be true for a theory of dimension in which 

dimension 0 were either defined by total-disconnectedness or the separation 

of pairs of points. 

Example 2.16. Knaster and Kuratowski [ 1] give an example of a subset of 

the plane which is totally disconnected but becomes connected upon the 

adjunction of a single point. 

Example 2.17. J.H. Roberts [ 1] gives another example of this phenomenon. 

Example 2.18. Sierpinski [ 1] gives an example of a space which has 

property (1) but loses it upon the adjunction of a single point. 

Denoting the spaces investigated by Erdos, Sierpinski, Knaster and 

Kuratowski, and Roberts byE, K, S, and R. T.H. Walton [ 1] has given 

the following summary of the relationships of these various spaces to 

one another: 

E K: K \ . {a} s s '\ {p} R R '{q} 

(0) + - + + + + -

(1) + - - + - + -

(2) - - - - - - -

(3) - - - - - - -
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A detailed analysis of these spaces shows that 

ind E = ind K = ind (K \{a}) = ind S 

= ind (S U {p}) = ind R = ind (R Li {q}) = 1. 

Thus E, K '{a}, S, R all have weak inductive dimension equal to 

unity although they are totally disconnected. 

Moreover, Mazurkiewicz [1 ] has shown that for each finite n there 

exists a space X for which ind X = n and X is totally disconnected. 

Thus the fact that a space has positive: weak inductive dimension 

implies very little about its connectedness. 

Finally Mazurkiewicz [ 1] proves the existence of a plane connected 

set containing no bounded connected subset. 

(ii) Weak Inductive Dimension n. 

Roughly speaking, we may say that a space has dimension ~ n if an 

arbitrarily small piece of the space surrounding each point may be delimit-
~ ,'\ 

ed by subsets of dimension ~ n - 1. This method of definition is inductive, ~~· 

and an elegant starting point for the induction is provided by prescribing 

the empty set $ as the (-I)-dimensional space. 

Definition 2.4. (a) ind X = -1 if and only if X = $ . 

(b) A space X has weak inductive dimension ~ n (n ~ 0) 

at a point p if p has arbitrarily small (open) neighbourhoo~whose 

boundaries have weak inductive dimension~ n - 1, denoted by indpX ~ n. 

(c) X has weak inductive dimension ~ n, ind X < n 

1.nd X < n for each p e X. 
p -

if 

·.,.:: 
·t. 
\} 
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(d) ind X = n if it is true that ind X < ·n and it is p p -
false that ind X< n - 1. p -

(e) ind X = n if it is true that ind X< n and it is 

false that ind X<n-1. 

(f) ind X = CX> if ind X .f n is false for each n. 

It is obvious that the property of having weak inductive dimension 

n (or having dimension · n ·at ·a point' p) is topologically invariant. 

Dimension is not, however, an invariant of continuous transformations. 

Projection of a plane into a line is an illustration of a transformation 

which lowers dimension and Peano's mapping of an interval onto the whole 

of a square is an illustration of a continuous transformation which raises 

dimension. 

Equivalent to the condition that ind X < n is the existence of a 

basis for the topology of X made up of open sets whose boundaries have 

dimension < n - 1. 

It is clear that definitions 2.2 and 2.4 are equivalent for n = 0. 

Proposition 2.1. 

for every m < n. 

If ind X = n, then v 
A contains an m-dimensional subset 

Proof. Since ind X > n - 1 there exists a point p £ X and an open 
0 

neighbourhood U
0 

of p
0 

with the property that if V is any open 

set satisfying 

Po€ Vf Uo then 

ind b(V) ~ n - 1. 

On the other hand, because ind X ~ n, there exists an open set 

satisfying for which P €.VCU 
0 0- 0 

v 
0 
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Hence b(V ) is a subset of X of the precise dimension n - 1. 
0 

The rest of proposition 2.·1 is now evident. 

Remark. The statement of the above proposition cannot be extended to 

infinite dimensional spaces. Indeed, under the hypothesis of the continuum 

there even exist infinite dimensional spaces whose only finite dimensional 

subspaces are countable sets. See Hurewicz [I ]. 

Example 2.19. ind E1 = 1 and the dimension of any interval of the 

Euclidean line E1 is 1. 

Example 2. 20. Any polygon has dimension 1. 

Example 2.21. Any 2-manifold has dimension~ 2. 

Example 2.22. ind E < n (proof by induction). n-

The proof that the dimension of En is precisely n is given by 

Hurewicz and Wallman [1 ]. 

Theorem 2.4. A subspace of any topological space of dimension~ n has 

dimension < n. 

Proof. Obvious for n = -1. Assume true for n - 1. 

Let ind X < n and X' be a subspace of X • p a point of 

U' be any open neighbourhood of p in X'. Then 

U' = u nx• , where u is open in X. 

Since ind X < n there exists V open in X such that 

pt:Vf;U 

ind b(V) ~ n - 1. 

X'. Let 

.) 
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Then 

Let V' = V A X'. Then V' · · X' d •• 1s open 1n an 

p G V' ~ U' 

Let bx(V) = boundary of V in X 

and bx' (V') = boundary of V' in X'. 

bx' (V') = V' \ V' (where V• is the closure of V' in X') 

= (Y' f\ X') ' V' (V:• .·is the closure of V' in X) 

= V• () X' 'v n X' 

i .. e. 

~ V ll X' ' V n X' 

= (Y \ V) ('\ X I 

= bx(V) (\ X' 

b I (VI ) c b (V) f) X I 
X - X 

We are given that ind b (V) < n - 1. 
X 

By the hypothesis of the theorem, ind b ,(V) < n- 1, X -

and the theorem is proved. 

i.e. ind X' < n. 

22. 

Definition 2.4' . ind X< n if every point p can be separated by a 

closed set of dimension < n - 1 from any closed set not contai ning p. 

Definitions 2. 4 and 2.4' are equivalent. 

(see Hurewicz and Wallman [ 1 ] . ) 

Definition 2.5. A space X is hereditarily normal if every subspace of 

X is normal. 



Lemma. A space X is hereditarily normal if and only if given any pair 

of disj.oint subsets x1 and x2 satisfying 

xl , x2 = <I> = xl " x2 

there exist open sets w1 and w2 such that 

X1 f: w1 , x 2 s;; w2 and w1 f'\ w2 = 4> • 

Moreover it is clear that Wi A W2 = <1> = W1 ~W2 • 

Proof. See Walton [1 ]. 

Theorem 2.5. A subspace X' of an hereditarily normal space X has 

dimension < n if and only if every point of X' has arbitrarily small 

neighbourhoods open in X whose boundaries have intersections with X' 

of dimension < n - 1. 

Proof. (Sufficiency). Let p £X' and U'(p) = U' be open in X'. 

Then there exists U(p) = U open in X such that U' = U AX'. Hence 

there exists, by hypothesis, .· V open in X such that 

pG.V~U 

and ind (X' ~ b(V)) < n - 1. 

Let V' = V fl X'. Then V' is open in X', p C:. V' ~ U' and 

Hence ind b ,(V') < n- l, 
X 

so that ind X' < n. 

. d X' Let p € X' and U(p) = U (Necessity). Suppose 1n < n. 

open in X. 

Then U' = U tl X' is a neighbourhood of p open in X'· 

Hence there exists V' open in X' such that 

p E v' S. u' and 

ind b ,(V') < n- 1. 
X -



Neither of the disjoint sets V' and X' 'V• contains an accum-

ulation point of the other, so by the hereditary normality of X there 

exists an open set W satisfying V'f W and i()(X''-.Y') = ~ 

Replacing W if necessary by W n U we may assume that 

w ~ u. 

The set W' W = b(W) contains no point of X' 'V• and no point 

of V'. It follows that 

b (W) n x' s b x, cv' ) . 

Hence by theorem 2.4, 

ind (b(W) A X') < n - 1 as ~equired. 

Theorem 2.6. For any two subspaces A and B of an hereditary normal 

space X 

ind (A U B) < ind A + ind B + 1. 

Proof. The theorem is true for 

ind A = ind B = -1. 

Suppose ind A = m, ind B = n, and assume true for the cases 

(i) ind A < m ind B < n - 1 

(ii) ind A < m - 1 ind B < n 

Let p 6 AU B. As a matter of notation take p 6 A. 

Let u be a neighbourhood of p open in X. 

By Theorem 2.5 there exi sts an open set v such that 

pE.V~U and 

ind Cb cv) n A) < m - 1. -

But b (V) 1'\ B ~ B 

ind (b(V) f) B) < n 

(i\ 

.:·"t! 
:> :~·J 

:~::.~· 
;:;{1 

'~~~ 

~11 
II 
'''''I 

I,. 
:;:;;)¥-1·· 

II 
r·'' 1 

:·~w . 

:"-;! 
: ~;: 
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Hence by hypotheses (i) and (ii) of the induction 

ind[b(V) f' (A VB)] < m + n. 

Hence by Theorem 5 

ind(A U B) < m + n + 1 as required 

n 
Corollary. Let X = u X. where ind X; < 0, i = 0, . 1' n . 

1 1-
. . . , 

i=o 

Then ind X < n. 

Example 2.23. Suppose 0 < m < n. Denote by Mm the set of points of 
n 

E at most m of whose coordinates are rational and by Lm the set of n n 

points of E at least m of whose coordinates are rational. 
n 

Then ind Mm < m and 
n-

m ind L < n - m. n-

Evidently Mm = R0 U R 1 U ...... U Rm 
n n n n 

and Lm = m U m+l n R R U ...... UR n n n n 

The assertion then follows from the Corollary to Theorem 2.6 and the 

fact that each summand ' is 0-dimensional. (Example 2.12). 

Example 2.24. Suppose 0 < m. 
m Denote by M the set of points in the 
w 

Hilbert cube I at most m of whose coordinates are rational. 
w 

Then 

For 

ind Mm < m. 
w-

~ = R0 U R 1 U • • . • . • U Rm • 
w w w w 

The assertion then follows from the Corollary to Theorem 2.6 and the 

fact that each summand is 0-dimensional.(Example 13). 



The Sum and Decomposition Theorems for n-dimensional Sets. 

Theorem 2.7. (Sum Theorem for Dimension n). 

A separable metric space which is the countable union of closed 

subsets of dimension < n has dimension~ n, i.e. 
go 

if X = U X. where each X. is a closed subset of X and 
1 1 l 

ind X. < n, then 
1-

ind X < n. 

Proof. (by induction). Denote the sum theorem for dimension n by I . n 

Clearly Ln is equivalent to the statement that for any space which is 

the countable union of F sets of dimension < n has dimension < n. 
a 

~ is trivial. We now deduce ~ from ~ by making use of ~ , L-1 Ln Ln-1 . Lo 

which is Theorem 2. 3. · 

We first prove that implies the following proposition 8 : 
n 

Any space of dimension~ n is the union of a subspace of dimension < n , .1 

and a subspace of dimension < 0. 

Proof of 8 : Let X be a separable metric space of dimension ~ n. Then 
n 

by a condition equivalent to ind X~ n (p. ) there exists a basis 

for the open sets of X made up of sets whose boundaries have dimension 

< n - 1. Since X is separable metric there exists a countable basis 

{U.}, i = 1, 2, ...• made up of sets whose boundaries {B.} have 
1 1 

dimension < n - 1. From ~ it follows that Ln-1 
go 

B = U B. has dimension < n - 1, 
i=l 1 

i.e. ind B < n - 1. 

We assert that (1) ind (X 'B)< 0. 



·_· · ./~ fH.n~:-~; · ..... ... ....... ,,, .. , 

. ' ... · ·. :...' ... ··. 

.. . ~ -·.~·~ :f 

, ·,.··. :· 

... . ... .. ; .·. : 

.. · ... 

27. 

For obviously the boundaries of the sets U. do not meet X \ B 
l. 

and hence the condition of Theorem 2. 5 (with n = 0 and X' :\l'eplaced by 

x·., B)· is satisfied. 

~ then follows from the equation n 

X = B U (X' B). 

We now combine Ln-l and -~ to prove Ln. 
Q) 

Suppose X = X1 U X2 U ... U X. U .... = U X. 
l. 1 l. 

ind X. < n 
l. -

i = 1, 2, 3, .... 

and each X. is closed. 
l. 

We wish to prove that ind X < n. 

i-J. 
K. =X.' U X. 

l. l. j=l J 

Then (2) 

(3) 

Q) 

X= UK .. 
1 l. 

K. () K. = cp 
l. J 

i-1 
= X. n (X' U X·;) 

l. j=l J 
i = l, 

if i 1 j. 

(4) K. is an F in X. 

(5) 

J. a 

ind K. < n 
l. -

2, 3. . . . . 

(2) and (3) are obvious. To prove (4) note that 

i-1 
l_} X. is closed. 
j=l J 

i-1 
Hence X\ l_) X. is open, and any open set in a metric space 

j=l J 

is Fa' 

K. , as the intersection of this F with the closed set Xi 
J. a 

is 

thus also F • 
a 



(5) holds because K. 
l. 

is a subset of Xi (Theorem 2.4). 

(5) enables us to apply ~n to each 

K. = M. UN. 
l. l. l. 

where ind M. < n - 1 and N. < 0. 
].- ].-

Denote U Mi by M and U Ni by N. 

From (2) X = M UN. 

Each M. is an F set in M, since 
l. cr 

M. = M. n K. 
l. l. l. 

= M (\ K. 
l 

K. ; 
l. 

(since M. C. K. 
l. - l. 

and K. (l K. = $ 
l. J 

for i f j 

we have 

by (3)). 

28. 

Hence M., as the intersection of M with K., which is an F set 
l. l. cr 

by (4), is itself F in M._. ·'fherefore we may apply \' to conclude cr Ln-1 

that 

ind M < n - 1. 

By a similar argument each N. is an F set in N and therefore 
l. cr 

ind N < 0 by I . 
0 

Thus we have 

X =MUN with 

ind M < n - 1 and ind N < o. 

From Theorem 2.6 we conclude that ind X < n. 

Corollary 1. The union of two subspaces each of which has dimension ~n 

and one of which is closed has dimension < n. 

.·~ .. : . 
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Proof. As in Corollary 2 to Theorem 2.3. 

Corollary 2. The dimension of a non-empty space cannot be increased by 

the adjunction of a single point. 

Proof. Obvious from Corollary 1. 

Corollary 3. If a space X' of dimension < n is contained in an arbitrary 

space X, then every point of the containing space has arbitrarily small 

neighbourhoods (in X).whose boundaries have intersections with X' of 

dimension < n - 1. (Compare with Theorem 5 and observe that Theorem 5 

imposes a condition on the neighbourhoods of points of X' only.) 

Proof. For each point p G; X, X' U {p} has dimension < n by Corollary 

2; the proof then follows from Theorem 5. 

Corollary 4. If a space has dimension ~ n it is the union of a subspace 

of dimension < n - 1 and a subspace of dimension ~ 0. 

Proof. This is 8n which in the proof of Theorem 2.7 is shown to be a 

consequence of \ Ln-1' 

Theorem 2.8. (The Decomposition Theorem for Dimension n). A space has 

dimension ~ n, n finite if and only if it is the union of n + 1 sub-

spaces of dimension ~ 0. 
n 

i.e. ind X < n <=> X = u X. 
i=O 1 

where ind X. < 0 
1-

for i = 0, 1 , . . . . . . , n. 

~· Follows from repeated application of Corollary 4 above and the 

Corollary to Theorem 2.6. 
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Corollary. If ind X = n and p, q are two integers~ - 1 such that 

p + q + 1 = n then 

X = p \JQ 

where ind p = p and ind Q = q. 

Proof. Directly from Theorem 2.8. 

Theorem 2.9. (Dimension of a topological product) 

If A x B denotes the topological productof two spaces A and B, 

at least one of which is non-empty, then 

ind (A x B) ~ ind A + ind B. 

Proof. (by induction). The proposition is obvious if ei~her ind A= -1 

or ind B = -1. 

Let ind A = m, ind B = n and assume the pr0position for the cases 

(1) ind A ~ m, ind B < n - 1 and 

(2) ind A < m - 1, ind B < n. 

Each point p = (a,b) in A x B has arbitrarily small neighbour­

hoods of the form U x v, U being a neighbourhood of a in A and V 

a neighbourhood of b in B and we may assume that 

ind b(U) ~ m - 1, ind b(V) ~ n - 1. 

Now b (U x V) = (iT·x b(V)) U (b(U) X V) 

(Kelly [1 ] , p. 103) 

Each summand is closed and by hypotheses (1) and (2) of t he 

induction has dimensi on < m + n - 1. 

H~nce by the Sum Theorem, 

- - f '' ~ .. ~. ~ ~ 

. - · · ~ ~ . . -· . 
;, , _ . ; .. . 
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ind b(U x V) ~ m + n - 1 

whence ind (A x B) m + n = ind A + ind B 

Corollary. If ind B = 0 then 

ind (A x B) = ind A + ind B 

Proof. Since B + ~ ; A x B contains homeomorphs of A. 

Therefore ind (A x B) ~ ind A = ind A + ind B. 

Combining this with Theorem 2.9 gives the Corollary. 

Remark. One might expect that the logarithmic law in the above Corollary 

be true in general. Unfortunately, this is not so, for R , the set 
Ill 

of points in Hilbert space all of whose coordinates are rational, is 

homeomorphic to R 
Ill 

x R , while Example 2.11 shows that 
Ill 

ind R = 1. 
Ill 

The result of the Corollary does not even hold if both A and B are 

compact. This is shown by Pontrragin's example of two compact 2-dimensional 

spaces whose product is 3-dimensional. I.t can be shown that the result 

does hold if B is one-dimensional provided A is compact. It is an 

open problem to characterize the spaces B for which the result holds 

for arbitrary A. 

(iii) The Lebesque Coveri.ng dimension 'dim' . 

Definition 2.6. A covering of a space X is a collection U of subsets 

of X satisfying the condition 

U{UjU e. U} = X 

Definition 2.7. A collection V is a refi nement of a collecti on U if 

for each ve V there exists U t: U for whi ch V ~ U, and 

U{ VjV E. V} = X. 

, 
I 
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..•. 
Definition 2. 8. A covering U has order < n if and only if at most n + 1 

members of V have a non-empty intersection. 

Definition 2.9. A space X has covering dimension~ n, denoted by 

dim X~ n, if given any finite open covering U of X there exists an open 

refinement V whose order is < n. If dim X < n and the statement 

dim X < n - 1 is false, we say that dim X = n. For the empty set, 

dim ~ = -1. If the statement dim X < n is false for all n, then 

dim X = <XI • 

Clearly if Y is a topological space homeomorphic to X, then , 

dim Y = dim X. 

Theorem 2.10. For any space X, dim X~ n if and only if for each finite 

open covering U = {U1 , u2 , u3 , ••••• , Uk} there exists an open refinement 

V = {V 1 , V 2 , ••••• , V k} of order < n satisfying 

v. e u. 
1- 1 

for each i = l, 2, •••... , k. 

. Proof. The condition is clearly sufficient. 

Conversely, suppose dim X < n and · :U = {Ul• Uz. · • · • Uk} is any 

finite open covering of X. Then there exists an open refinement 

(IJ = {W } 
a 

of order ~ n such that 

w cu. a- 1 
for some i 1 ~ i ~ k. 

One obtains the desired finite refinement · V of U by defining 

V. = U {W. I W <: U. and W "- U. for i < j } 
J a a- . J a~ 1 

It is easy to show that the order of V is < n. 

~ 

~: 
~ 

,

i 
. 

. 

• . 

:~~ 

~ 
~'?-
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Theorem 2.11 . If dim X< n and X' is a closed subspace of X then 

dim X' < n. 

Proof. Let U' be a finite open covering of X'. For each U' £ U' we 

have 

U' = U 1\ X' for some U open in X. 

These open sets U, together with X' xr form an open covering of 

X. Since dim X ~ n, there exists a system V of sets open in X 

satisfying the conditions in Definition 2.9. 

Let V' = V (l X' where V £ V, giving the desired refinement v• of 

the open covering U' of X' . 

Hence dim X' ~ n . 

Note: The above theorem is not true if X' is not closed; see Tychonov 

Plank (Appendix). 

The following theorems (Theorem 2.12- 2.19) are stated. without proof . 

For proofs, the reader is referred to Walton [1 ]. 

Theorem 2.12. Let X be a normal space and F1 , F2 , ••• Fm be closed subsets 

of X, finite i n number. Then each F. (1 < i < rn) can be associated with 
1 - -

U. ~F. , U. open in X such that for any arbitrary combi nation 1- 1 1 

(il, ... , ik), where 1 < k ~ m, of indices 1, 2, • • • ' m if 

k 
n u. + cp 1 r=l r 

then 
k 
n F. t. cp 
r=l 1r 
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Theorem 2.13. Let X be a normal space. Let ul, u2, . .. ' u m be 

finite in number, open in X, and cover X. Then for each u. (1 ~ i ~ m) 
1 

we can find a v. 
1 

open in X such that 

(1) for 1 < i < m. 

(2) ... , v 
m 

cover X. 

Theorem 2.14. Let the topological space X have the following property: 

Each finite open cover U of X can be associated with a finite closed 

cover F such that each F SF is a subset of some U~ U. Then X is 

normal. 

Theorem 2.15. 

satisfying 

Let X be a normal space and A,B be F sets in X a 

Then there exist U,V open in X such that 

A£ U , B S V, U n V = cp. 

Theorem 2.16. Let X be a normal space and Y a subspace of X, where Y 

is an F -set in X. Then Y is normal. 
a 

Theorem 2.17. Let X be a normal space and dim X~ n. Let {Ul,U2•···Un} 

be a finite open cover of X. Then there exists another finite open cover 

{V1,V2, ... ,V} of X such that 
n 

(1) V. cu. 
1 - 1 

for 1 < i < m 
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Theorem 2.18. Let n = -1, 0, 1, 2, and let the topological space 

X have the following property: For each finite open cover U of X 

there exists a finite closed cover f of X such that 

(1) each F €. f is a subset of some U € U 
••I' 

(2) f has order < n. 

Then X is normal and dim X < n. 

Theorem 2.19. Let X be a normal space, A a closed subset of X and 

dim A < n. Let u 11 u 2' • • • J um be finite in number, open in X, and 

cover A. Then there exist v 1' v 2' ... , v open in X such that 
m 

(1) - c. v. - u. 
1 1 

(2) v 1, v 2' ••• J v m 
cover A 

(3) order of {V 1,V2, ... } < n 

"' The following theorem was first proved by E. Cech in 1933. The 

theorem is not true if the space X is not normal; see 'Tychanov plank 

(Appendix). 

Theorem::2. 20.o Let X be a normal space and 
co 

X= UA 
\1=1 \) 

where A" is closed in X and dim Av ~n 
for v = 1 , 2 , 3, . . . . 

Then dim X ~ n. 

~· Let U. (1 < j < m) be a finite open cover of X. 
1 - -

We construct V. 
1 

(I~ i ~m) open in X such that 

(i) the system V = {V 1 , V 2 , • . • ••• , V rn} 
covers x and has order < n. 
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(1 ~ i ~ m). 

i _ _ m open By Theorem 2.19 there exists a system V1 of V (1 < 1· < ) 

in X such that 

(i) vi f ui 

(ii) the system V• covers A 

(iii) the system V• of sets V. has order < n. 
1 

Assume now that the system Vv 

been constructed such that 

(i) v.ve: u . 
1 1 

(ii) the system vv covers 

(iii) the system T? of -v v. 
1 

of v~ 
1 

v 
UA 
).=1 v 

has order 

We now show that the system vv+l can 

(1 ~ i ~ m) open in X has 

< n. 

be constructed . 

Since vv is a finite system of order ~n of sets closed in X then 

by Thecrem 2.12 there exist s. (1 < i < m) open in X such that 
1 - -

(i) 
-v v. ~ s. 

1 1 

Since 
-v V. ' U. , by the normality of X 

1 1 

open in X such that 

Let W. = S. f'T . 
1 1 1 

Then the system W of sets W1,W 2, 

order ~ n of open sets of X and 

v~ ~ w. ~ w. c;. U1. 
1 1 1 

there exi st Ti (1 ~ i ~ m) 

w is a finite system of 
m 
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By normality there exists Pi (1 ~ i ~ m) open in X such that 

-v C -V. _ P. ~ P. c. W. 
l l l - l 

For 1 < i < m let : 

1) Mi mean the system of binary open coverings 

{P. , X' V~} . 
l l 

2) Ni the system of binary open coverings 

{W. , X 'P. } . 
l l 

Clearly each of the 2ni systems M. , N. 
1 l 

the system of m.4m open sets of X formed by 

cover X. Let H denote 

(1 ~ i, j,k ~ m) 

Then H is a finite system of open sets covering X. Since Av+l is 

closed in X and since dim A 
1

: n, by Theorem 19 there exists a finite 
v+ 

system Z of open sets Zr (1 < r < t = m.4m) of X such that 

(i) 

(ii) 

each Z C some element of H; 
r 

Z covers AV+l 

(iii) Z has order ~ n. 

From (i) it fol lows by definition of the systems Mi , Ni , H that 

(iv) 

(v) 

z n v~ + 4> => z ~ P. r 1 r 1 

z n 'P. ' 4> => z c. w . • r 1 r- 1 

We divide the sets zr (1 .5.. r ~ t) into three kinds, A, B, C; 

z E: A if there exists i (1 ~ i ~ m) such that Zr f"l V~ of $ • 
r 

zr E. B if zr ~ A and if there exists i (1 < i ~ m) such that 

z () 'P. ' q, • ,.. 
r 1 ·~ ~ , 



38. 

With each Zr E A we associate each index i such that 

"-vv l z I I • T ~ • r ~ 

With each Zr € B we associate a single index i so chosen that 

zr "Pi t ~. 

With each Z €. C · • · r we assoc1ate a s~ngle ~ndex i so chosen that 

Zr ~ Ui. (This is possible by definition of H and condition (1) for the 

system Z.) 

For 1 < i < m let W! = v~ u z 
1 1 r 

summed over all Z '-.AUB 
r 

associated with index i. 

Clearly V~ C W! and by (5), W! ~ W.. Further let V~+l = W! U Z ~- ~ ~ 1 1 1 r 

summed over all Z € C associated with the index i. 
r 

Clearly v~+l is open in X and 
~ 

v~ c. v~+l c. v:'+1 c. u .. 
~- ~- 1 - ~ 

\) 

Since vv covers UAx and since z 

vv+l 
).=1 

vv+l, 
that the system of sets ...... , 

covers Av+l 

Vv+l covers 
m 

, it is clear 
v+l 
U A>.. 

/..=1 

It is still to be shown that Vv+l has order~ n, i.e. that each 
v·~l 

point a e. X belongs to at most n + 1 elements of the system V • We 

distinguish two cases. 

Then 

(a) Suppose there exists an index j (1 ~ j < m) such that a ~ Pj · 

I!!" z "' -p l "' . Z A C Hence a E V v1. + 1 => a € W1! ~ W1 .. 
a ~ z => 1 1 • r ., , ~. e. 'T • 

r r J r 

S 
· W h · t a belongs to at most n + 1 of the 
~nee is of order ~ n, t e po1n 

v~+l. 
~ 

(b) Suppose 

By (4) a € Z r 

a 4: P. 
~ 

i = 1, 2, ...... , m. 

=> z "v~ = cp r 1 
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Hence on the one hand 

z c; A. Hence a E. W! => a E. 
r 1 

a 4:; any 

z where r 

v~ 
1 

and on the other hand a f any 

Z € B and is associated with 
r 

the index i. 

Since each ZrE. B is associated with a single index i, the point a 

is in at most as many W! as in Z e B. Similarly a is in at most as 
J. r 

many V~+l \. W! as in Z E. C. Hence the point a is in at most as many 
J. J. r 

v~+l 
]. 

as Z ; since 
r 

z is of order < n the point a belongs to at most 

n + 1 of the sets V~+l. 
]. 

h Vv 
Thus it is shown by recurrence t at we can construct systems 

(v = 1, 2, 3, ... ) f Vv. o open sets (1 ~ i ~ m) in X such that 

00 

]. 

(1) v~ ~ v~+l 
]. ]. 

(2) v~ ~ ui ' ]. 

(3) v" covers A . 
\) 

(4) v" has order ~ n. 

00 

Let v. 
]. = 1{ u~ 

Then the V. are open sets of X. 
]. 

(1 ~ i ~m) 

By (2) v. cu .. 
]. - 1 

Since 

v1 ,v2 , ••. ,vm covers X. 
X = U A , by (3) the system V of sets 

v=l v 
Suppose, on the contrary, that there were n + 2 different induces 

a X such that 

(1 < s ~ n+2). 

But this contradicts (4). 

Corollary. 

F -sets in 
cr 

Let X be a normal space. Let A (v = 1,2,3, ••... ) 
\) 

X and let dim A < n. v -

00 

Then dim 
v=l 

A < n. v-

be 
i 
; 

' I 

., 

. ";: 

,

·i 

' 
. 

. 
. 
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(ii) each o:pem set: Olf .I is at Fa; -set m .I .. or equivalently, each 

dosed sct of X is m G_-set m .! [i.e. tine ~umt:able intersection 
CL 

af open sets)l. 

O'ef:furition 2. U. A. fam:H:r 111! QJf Slllil>sets QJf a t~.n.ogical space is locally 

f:furite if ea.clh point of tile sp:ac:e has a neigaoo~ lllhic..h intersects only 

fiirn:iiteJ!.y- urany members ~ 111! • 

Ilrefilrition 2.12. A. ~ sp:a.ce .! is 1t!ilit&U.lf nonnal if each open set 

G of l bas a l~~ .. U . .lf finite ~'iie'Jrilnlg; b}· sl!WJsets each of tdtich is an open 

Fa; -set of .!... '!otr:aU.lf' ~ sp:ac~ il!tcl~e hereditarily pa:racompact 

HR:msdorl:f as ~las ~~U~ ~ s~c~. 

~ 2.22. {IIZQld~). I.f 'f is & stt.b>Sface Ci2lf a totally normal space X, 

~ dim Y" «: dim. ~-

ID.efmti~ l.lS... A ~.b.~tioo: 1!Ji ~ stt.~et:s of a space · X is called 

.star-:fi:ai'te if e~lt~"' d~~ltt: Q-f (!/! i~te-Jr'Sect:s at mQ>st a. finite number of 

~~ e:b:ul~:ats of ~a ... ~.\\. st:~~-fi~~it~ Q>pe".tt c:QW.l.'ing is of course iocally 
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Definition 2.14. A space is said to have the star-finite property if 

every open covering can be refined by a star-finite open covering. 

41. 

Definition 2.15. A topological space is paracompact if each open cover of 

the space has an open locally finite refinement. 

Definition 2.16. If U is a family of subsets of a set X and x£ X, 

then the star of U is the union of the members of U to which x belongs. 

A cover 8 is a star-refinement of U (or A-refinement) if the family. of 

stars of U at points of X is a refinement of U . A topological space 

is fully normal if each open cover has an open star refinement . 

A.H. Stone [1 ] has proved the following important result: 

Theorem 2.23. A Hausdorff space is fully normal if and only if it is para-

compact . 

Corollary,; Every metric space is paracompact. 

we now state without proof several results about the covering dimension 

of a topological product. 

In 1946 Hemmingsen showed that if X and Y are both compact Hausdorff 

spaces then 

dim(X x Y) ~dim X + dim Y. 

This result was sharpened by Miyazaki in 1951. 

Theorem 2.24. If x is compact normal and Y is paracompac~ normal, then 

dim(X x Y) ~dim X + dim Y. 

Morita [ 2] proved the following three theorems: 
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Theorem 2.25. Let X and Y be Hausdorff spaces such that X x y has the 

star-finite p:operty (S-space) then 

dim(X x Y) < dim X + dim Y. 

Theorem 2.26. If X is a fully normal space and Y is a locally compact 

fully normal space, then 

dim(X x Y) < dim X + dim Y. 

Theorem 2. 27. If X is a countably paracompact normal space and Y . is a 

locally compact metric space, then 

dim(X x Y) ~dim X + dim Y. 

In the same paper Morita proves the following stronger relation 

between the covering dimension of X x Y and those of X and Y. 

Theoreln 2.28. The relation 

dim(X x Y) = dim X + dim Y 

holds for the following cases: 

(i) X is locally compact fully normal space 9f dimension ~ 0 and 

Y is a fully normal space of dimension 1. 

(ii) X is a fully normal space of dimension ~ 0 and Y is a 

locally finite polytype of dimension ~ 0. 

we end this section on the covering dimension by quoting the following 

theorem, analogous to Theorem 2. 6 · 

Theorem 2.29. If X= Y UZ is a normal space and dim Y ~m, dim Z ~ n, 

then dim X < m + n + 1. 

-

,

• j 

' . 
. 
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" (iv) The Cech strong inductive dimension 'Ind' . 

- ~ , n =- . or n = 0,1,2, •.• , a space Definition 2.17. If X - ~ I d X 1 F 

X has strong inductive dimension Ind X < n if for every pair of a 

closed set F and an· ·op·en.' ·set ·. 'G · · wit·h· · ·F· f · ·G· ·.there · exist·s ·an · open · set 

U such .that 

Ind b(U) < n - 1. 

Ind X = n if it is true that Ind X < n and false that Ind X < n - 1. 

If Ind X < n is false for n = -1,0,1,2, then we say that Ind X = co, ... ' 

Clearly if X* is any homeomorph of X, then Ind X* = Ind X. 

C.H. Dowker [1 ] has established the following results: 

Theorem 2.30. If X' is a closed subset of any space X, Ind X' < Ind X. 

Note: The theorem is not true if X' is not closed; see the '·Tychonov 

Plank; (Appendix). 

Theorem 2. 31. Ind X < n is equivalent to the following condition on X: 

If F ~ G ~ X with F closed and G open, then X is the union of three 

disjoint sets U, V, C with U, V open, F ~US G and Ind C < n - 1. 

Theorem 2.32. If X is normal, Ind X~ n is equivalent to the following 

condition: If E and F are disjoint closed subsets of X, then X is 

the union of disjoint sets U, V, and C with U and V open, E ~ U, 

F ~ V, and Ind C < n - 1. 

Theorem 2.33. 
Let Y. (i = 1,2, •.•. ) be open sets in a hereditarily 

l 

normal space Y such that 
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co 

n Y. = cp 
i=l ~ 

and, for each i , Ind (Y. 'Y. 1) < n. Then IndY< n. 
~ ~+ -

A particular case of the above theorem is obtained by putting 

= cp If A is a closed subset of 

a hereditarily normal space Y and if Ind A< n and Ind (Y' A)~ n, 
v 

then Ind Y < n. Lokucievskii has produced an example to show that this 

special case of the theorem does not hold for arbitrary normal spaces. 

We consider the following conditions which a space X may satisfy: 

(a) If B ~A~ X and Ind A~ n, then Ind B < n. 
n 

(bn) If G ~A ~X with G open in A and Ind A < n, then 

Ind G < n. 

(en) If A = B U C ~X with B closed in A, Ind B < n and 

Ind C ~ n, then Ind A < n. 
CD 

(dn) If A = ~ Ai S X with each Ai 
~=1 . 

Ind A. < n, then Ind A ~ n. 
~-

closed in A and 

Dowker [ 1] has proved the following theorem: 

Theorem 2.34. If x is a hereditarily normal space satisfying condition 

(bn) for all n, then X also satisfies (an)' (en)' (dn) for all n. 

Dowker concludes the paper with proofs of the following theorems: 

Theorem 2.35. 
Let A~ x with X totally normal and Ind X~ n. 

Then 

Ind A < n. 

, . - . . 
·· -·.:. 
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Theorem 2.36. Let a totally normal space X be the union of two sets A and 

B with A closed and Ind A < n and Ind B < n. Then Ind X < n. 

Theorem 2.37. Let {Ai} be a sequence of closed sets in a totally normal 

space and let Ind A. < n. 
l. -

Then 
co 

Ind U 
i=l 

A. < n. 
].-

These last two theorems are extensions of theorems given earlier by 

v Cech for the case of perfectly normal spaces . 

Product Theorems. 

Katetov [2 ] and Morita [1 ] gave different proofs of the following 

theorem: 

Theorem 2.38. If X and Y are metric spaces, at least one of which is non-

empty, then 

Ind (X x Y) ~ Ind X + Ind Y. 

Nagami [ 1] extended the result as follows: 

Theorem 2.39. Let X be a perfectly normal space and Y a metric space. 

If at least one of X and Y . is nonempty, then 

Ind (X x Y) ~ Ind X + Ind Y. 

We now state a Theorem analogous to Theorems, 2.6 and 2.29. 

Theorem 2.40. Let X= Y V Z where X is totally normal and IndY ~m, 

Ind Z ~ n, then Ind X ~m + n + 1. 

, ' , 

-. 

. 

. 
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CHAPTER 3 

Relations between the dimension functions 'ind', 'Ind', and 'dim' 

In this Chapter we summarize various relationships between the three 

dimension functions introduced in Chapter 2. 

Hurewicz and Wallman [1 ] completed the theory for separable metric 

spaces and proved the equivalence of the three ideas for such spaces. P. 

Roy [ 1] in 1962 showed that the three dimension concepts are not equivalent 

for general metric spaces by produci.ng a metric space X for which ind X = 0 

but Ind X= dim X= 1. Kat~tov [1 ], Morita [1] and Dowker and Hurewicz 

[2 ] have all published different proofs that for any metric space X, 

Ind X = dim X. 

We now present several results on relationships between the dimension 

functions for spaces subject to various conditions. 

Theorem 3.1. If X is a T1-space then ind X < Ind X, i.e. 

Ind X < n => ind X < n. 

Proof. The theorem follows immediately from the definitions of the two 

dimension functions and the fact that si.ngleton sets are closed in T1-spaces. 

Theorem 3.2. If X is a compact normal space, 

ind X < 0 => Ind X < 0 

Proof. Let F and G be closed and open subsets respectively in X and 

let F ~ G. Since ind x ~ o, for each point p € F there exists an open 

and closed set V in X such that 

p E V ~G. 

Since F 
f t ace X. it also is compact, 

is a closed subset o a compac sp 

, . . . 
' .--.... 
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and a finite collection 

. {Vl,V2, ..... ,Vk} covers F. 

Then F ~ 
4
tk= J Vi ~ G where CJ V is 
l"=! i=l i 

closed and open. 

Hence Ind X < 0. 

We have the followi.ng counter-example to show that the implication in 

Theorem 3.2 cannot be reversed. 

Counter-example. Let X= {a,b} and the open sets be {a}, X, ~; then 

the closed sets are X, {b}, ~· X is trivially compact and normal but not 

T
1 

and Ind X = 0, while ind X = 1. 

Theorems 3.1 and 3.2 together imply 

Theorem 3.3. If X is a compact Hausdorff space, 

ind X < 0 <=> Ind X < 0. 

Theorem 3.4. Ind X <<0 => X is normal. 

Proof. This follows immediately from Definition 2.17. 

Theorem 3.5. For any space X, dim X~ 0 <=> Ind X~ 0. 

The proof of Theorem 3.5 follows readily from the definitions of the 

two dimension functions. 

Theorem 3. 6. dim X < 0 <=> Ind X < 0 ~ X is normal. 

Proof. This is an immediate consequence of the previous two theorems . 

·. ·_.~- :•:.: . "~ .. 
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However, dim X = n does not imply that X is normal if n ~ 1, as 

is illustrated by the followi.ng example. 

Example. Let X= {a,b,c} with open sets ~~ {b}, {a,b} ,{b,c} , and X. 

Given the open covering · {{a,b}, {b,c}} , both · {a,b} and · {b,c} 

must occur in any refinemant and they intersect in the point b hence 

the order of this cover~ng is 1. Every cover~ng of X by open sets has 

a refinement of order < 1. Hence dim X = 1. However X is not normal 

because · {a} , {b} are disjoint closed sets and every two open sets both 

contain the point b. 

Theorem 3.7. If X is a compact Hausdorff space, ind X< 0 <=> Ind X~ 0 

<=> dim X < 0. 

Proof. Combine Theorems 3.1, 3.2, and 3.5. 

N. Vedenissoff [ 1] has proved the follow~ng theorems. 

Theorem 3.8 . "If X is a normal space, dim X< Ind X. 

Theorem 3.9 . If X is a compact normal space, then dim X~ ind X. 

Lokucievskii [1 ] has given an example of a compact Hausdorff space 

S with 

dim S = 1 ind S = Ind S = 2. 

This shows that strict inequality can occur in the above theorems 3.8 

and 3.9. 

Theorem 3.10. 
If x is a compact total ly normal space, then Ind X ~ ind X. 

Proof. follows easily by induction. 



49. 

We state without proof the following theorems on relations between the 

various dimension functions for metric spaces. 

Theorem 3.11. If X is a separable metric space, then ind X= Ind X. 

Theorem 3.12. For any metric space X, dim X= Ind X. 

As was mentioned earlier, Kat~tov, Morita, and Dowker gave independent 

proofs of this theorem. 

Theorem 3.13. For any separable metric space X 

dim X = Ind X = ind X. 

P. Roy [1) showed that Theorem 3.13 is not true for arbitrarily metric 

spaces by constructing a space complete metric space S for which 

ind S = 0, but dim S = Ind S = 1. 

Dowker [2] has also given an example of a normal space M with 

ind M = 0 and dim M = 1. 

In Chapter Two we proved that the sum theorem for dim holds for 

normal spaces. Lokucievskii [1] cm1structs a compact space R for which 

the sum theorems for ind and Ind are not true. 

In the same book .Nagami gives an example of a normal space with 

ind = 0, dim = 1, and Ind = 2. 

~ • • • " p o • of' ' : : .. • '' ,•:, -: •,_. ··: . - .... ~---:- .:. ,:',•, _,'\. _,:~•• '' •' 

. · .. -. .. -..; ·-
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Thus, we see that basic gaps exist between the various dimension 

functions, and that normality and even compactness do not effect the 

equalities between the dimensions. 

...,._ .....,.':"" .. r~~-;-:;:!·:'-\·7.l'ii':'?"'~:·~~~:;::,.l.'·:.: ;}4:i::-:,·.:->.:: ·. ·:~~··- ~·~ ·. -~ . ·'· .......... ... ·- . :,,, • .. . . 
. ·· ··· -·- . ··-· 
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CHAPTER 4 

The Dimension Dim 

Definition 4 .1. The dimension Dim ·X of a topol_ogical space x is the least 

integer n(n = -1, 0, 1, 2 ... ) for which 

n 
X= U X. 

i=O 
1 

where each subspace X. 
1 

of X has dim :·JC. <'. 0. 
.1 .... 

Dim <P = -1. 

Theorem 4.1. If X is a topological space with Dim ·X <n and A is a 

closed subset of X, then Dim .A < n. 

Proof. The theorem is clearly true if n = -1. 

We consider two cases : (1) n = 0 (ii) n > 0. 

Case (i) .n = 0. Let {V
1
,v2 , ... , Vk} be any finite open covering of A. 

Then V. = Af'lU., where U. is open in X. The sets U1 , ••• ,Uk' together 
]. 1 1 

with X ' A form an open coveri_ng of X. Since dim ::X < 0 there is a disjoint 

where W. CU. for some i or W. C X'\. A. 
1 

The 
refinement · {W1 , ••• ,W} n J - 1 

forms a disjoint open covering of A which is a refinement 
system {W. ()A} 

J 
of · {V.}. Hence dim A< 0. Since dim A< 0 <=> Dim A~ 0, we have 

1 

Dim A < 0. 

Let 
n 

X= U X. , where dim X. < O. 
1 ]. -Case (ii) n > 0. 

n 
Then A= U A. , 

i=O 
1 

of the A. may be 
]. 

i=O A.= Af\ X. (i = 0, l, ... ,n). 
1 ]. where 

(Some empty). 

Since A is a closed subset of X, 

Therefore by Case (i) dim A. < 0. 
1-

Since A~U A. 
i=O 

1 
and dim A. < 0 1-

each A. 
1 

Dim A ~ 0. 

is a closed subset of x .. ]. 
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1s not closed; see Tychonov Plank Note: Theorem 4.1 is not true if A · 

(Appendix). 

Theorem 4.2. If A and B are subspaces of a topological space X and 

Dim A~ m, Dim B ~ n, then 

Dim (A U B) ~ Dim A + Dim B + 1. 

Proof. By definition 
m n 

and B = U B. 
j=O J 

where 

A= U A. 
i=O 1 

dim Ai ~ 0 and dim Bj < 0. 

Define C. = A. 
1 1 

cm+l+j = Bj 

m+n+l 
Then A U B = U Ck 

k=O 

Hence by definition 

(i = 0, l, 2, ... m) 

(j = 0, 1, • .. , n) 

Dim (A U B) ~ m + n + 1 

i.e. Dim (A I.J B) ~Dim A + Dim B + 1. 

Lemma. Let A be any subset of a topological space X where dim A~ 0. Then 

if · {U
1

, .•• ,U} is any finite open coveri ng of A by open sets of X, there 
r 

exists a system {V
1
,v2 , ••• ,Vr} of open subsets of X such that 

(i) v. c. u. 1- 1 

(ii) {V.} covers A 
1 

(iii) v.nv.nA - if i + j. = cp 
1 J 

Proof. Since dim A ~ 0 the cover~ng · {An Ui} of A has an open refinement 
for some z. 

1 
W. C A fl U. with W. fl W. = cp 1 1 1 J 

if i + j W. = Af'IZ . 
1 1 where 

;~ 
·:. 
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open in X. 

Vi n Vj is open, no point of it is an accumulation point of A; hence 

if i + j. 

Theorem 4.3. If X is a normal space, dim X < Dim X. 

Proof. We show that if X is normal then Dim X < n implies dim X < n. The 

result is true for n = -1, 0. Assume it true for n = m - 1. Let 
m 

U1, ... ,Uk be any finite open covering of X~, where X = .U X. , dim X. < 0. 
1=0 1 1 -

in X 

Since dim X
0 
~ 0, .by the lemma there exists a system {V1, •.• ,Vk} open 

such that V. S U. and {V.} covers X
0 

and V. () V. f"' X- = cp (i J. j). 
1 1 1 1 J o T 

k 
Let v = u v .. 

i=l 1 
Put s = x- \ v. 

0 
Then S is closed in X and S ' X \ X • 0 

Hence dim S < m - 1 by the hypothesis of induction. 

Since X - is closed in X, X is normal, so that by Theorem 2.19 
0 0 

(~ech) {Wl, ... ,Wk} in X - with w~ f u., w = u w. ::> s 
open 1 there exists 0 1 1 

-
{W~} Wi} is an open covering of X 

and order of is < m - 1. Thus {Vi' 0 

-1 
is of order < m. Hence dim X and 

< m. 
which forms a refinement of {Ui} 

Similarly 

Then 

dim X~< m, where i = 1, 2, ... , m. 
1-

X LJ X~ and by the ~ech Sum Theorem, 

i=O 
1 

dim X < m. 

Theorem 4.4. Let X be an hereditarily normal space. Then if 

are closed subsets of X for which Dim Ai ~ n, 

A •• 
1 

Proof. We first prove the theorem for the case when k = 2. 

o-

then Dim A ~ n, 

Let L, M be closed subsets of the hereditarily normal space X; 
and 

. 

I . I 

' ' . 

. 

. 

. 
. 

1 ...... 



let 

i.e. 

Dim L < n Dim M < m. 

n n 
L = U L . 

i=O 1 
, M = U M. 

i=O 1 
where dim L. < 0 

1-

Let 

Then 

Let 

p 
0 

and dim M. < 0. 
1-

is normal and L
0 

= P
0

f'l L, i.e. L
0 

be a closed subset of P such that 
0 

is closed in P . 
0 

F f)L =cj>. 
0 0 
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Then F = F f'\ M where F is closed in X, 
0 0 

i.e. F is a closed 
0 

subset of M
0

, so that dim F < 0. o-

By a lenuna of Dowker ("If H is closed in the normal space S and if 

dim H < n and dim F < n for each closed .set F such that F f'l H = cp , 

then dim S ~ n") for the case n = 0, we have dim P < 0. o-

Now 

· Let P
1 

= L
1 

U (M
1 ' L). Then, as before, dim P1 ~ 0, etc. 

n L U M = U P. where dim P. < 0. Hence Dim (L U M) ~ n. 
. i-0 1 1 -

The theorem now follows directly for the union of a finite number of 

closed subsets of X. 

Theorem 4.5. If · X is an hereditarily normal space, then Ind X < Dim X. 

Proof. We show that Dim X < n implies Ind X < n. The result is true for 
m 

n =· -1, 0; 
assume true for n = m - 1. Let X = U X. , where X is 

i=O 
1 

· By a theorem of Walton [I ] , p. 81, 
hereditarily normal and dim X. < o: 1-

given F closed in X and G open in X with F ~ G there exists a set 

such that V open in X with F ~ V ~G 
m-1 

b(V)' U 
i=l 

i.e. 

b(V) 

x .. 
1 

does not meet X , 
m 



·'.· 

( . 

55. 

Hence by the inductive hypothesis, 

Ind b(V) < m - 1, and Ind X < m. 

Corollary. For an re~editarily normal T1 space X, ind X < Dim x. 

However, if X is hereditrarily normal, but not T1 , the result is 

not true, by an example of Dowker [1 ]. 

Theorem 4.6. Let X be a hereditrarily normal space, A a closed subset 

of X, and Dim A ~ n, Dim (X \ A) < n. Then Dim X < n. 

Proof. If a normal space X is the union of two sets A and B with A 

closed and dim A < n and dim B ~ n, then dim X < n. Hence the result 

is true for n = -1; 0. Assume it is true for the case n = m - 1. Let 

A = A
0 

U P ri-l , B = Xm' A = B0 U ~-1 where dim A < 0, dim B < 0, 
0- 0-

m m. 
and p 1 = U A. ~-1 = Ql Bi 

. m- i=l 1 1= 

Dim ~-l ~ m - 1. 

c 
0 

Let 

and 

Then 

C
0 

=A U B 
0 0 

c m-1 = Pm-1 U ~-1 

A = A fl (A V B ) , 
0 0 0 

is normal so dim C < 0. o-

Similarly p =AilC l m-

i.e. 

is 

where Dim P 1 < m - 1, 
m- -

A is closed in A U B = c and 
0 0 0 0 

closed in c m-1 
and c m-1 

is 
m-1 

hereditarily normal. 
· c 1 Therefore since X = C0 U Cm_1 Hence D1m m-l ~m- · 

x is the union of at most m + 1 subsets each of which has covering 

dimension < 0 , i.e. Dim X < m. 

~ . -
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Corollary. If A is a closed subset of a hereditarily normal space X, 

then 

Oim X< max (Dim A, Dim X\ A). 

Theorem 4.7. If A is any subset of a totally normal space X, then 

Dim A < Dim X. 

Proof. Let Dim X < n. Then 
n 

X = U X. , where dim X. < 0. 
i=O 1 1 -

Now 
n 

A = U A. , where 
i=O 1 

Then by Theorem 2.22, dim A. < 0, 
1-

A. = A (l X. 
1 l. 

since total normality is· a hereditary property .. 

Hence Dim A < n. 
00 

Theorem 4.8. Let X be a perfectly normal space and Y = lJ F. , where i=l l. 

each Fi is a closed subset of X and Dim Fi ~ n. Then Dim Y ~ n. 

Proof. Since .Dim F. < n 
--- 1-n 

F. = L) F . . where dim F .. < 0 
l. j=O 1J 

1J -

for j = O,l, •.. ,n for each i = 1 ,2, ... 

and where without loss of generality we can take 
F .. nF.k=$ 

l.J 1 

if j t k. 

Then Km = F fl Fe f'l .n Fe m 1 m-1 
00 

is an F -set in X and Y = UK. · 
C1 i=l 

1 

m-1 

Km = F ' L) F i. m i=l 

for each i 



Thus where K .. C F .. 
1J- 1J 

Since X is perfectly normal dim K •• < o. 
~J -

Hence Dim K. < n. 
1-

Let H
0 

=UK .. 
i=l 10 

Now X \ F1 is an 

Then K . = H
0 

() F 1 • .}0 

F -set. 
0 

Then D2 () H = K . 
0 20 

Then Dg f) H = K , etc. 
0 30 
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Hence each K. is an F -set in H and since dim K. < 0 we 
10 (J 0 10 -

have by Theorem 2.20 ((rech) that 

Similarly 

and since 

dim H < 0. o-

dim H. < 0 
~-

h 
y = UH. 

i=O 1 

we have Dim Y < n as required. 

i = l, ••. ,n 

An interesting question is whether Theorem 4.8 holds for totally normal 

spaces as well. 

l~ 
:_:: 

-·-..,---~·=· · ·· ... ·.::.:. :. ;::.~ ...... . ..:· 
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APPENDIX 

The Tychonov Plank 

Let w
0 

be the first infinite ordinal and w1 

ordinal. Provide each of the sets 

the first uncountable 

N = {k I k is an ordinal, 0 < k <. w } . 
- - 0 

P = {ala is an ordinal, 0 ~a~ w1} 

with the order topology. 

Then both N and P are compact Hausdorff spaces. Hence the 

topological product 

X = P X N 

is a compact Hausdorff space and consequently a normal space, called the 

'Tychonov Plank'. X, however, is not hereditarily normal, since the 

subspace 

Y = X\ { (w1 , wo)} is not normal. 

Let A= {(a, w )I 0 < a < wl} 
0 

B = {(w1,k)l 0 < k < w } . 
0 

Then A and B are disjoint closed subsets of Y. Hence U = Y' A 

is an open .subset of Y containing the closed subset B. Now let V be any 

open set in Y containing B. Each point (w1 ,k) of B has a neighbourhood 

contained in V. This means that for each k there exists an ordinal 

ak < w
1 

such that x > ak implies (x,k) ~ V. 

But a countable collection of ordinals each of which is less than w1 

has its supremum less than w
1 

, i.e. there exists an ordinal e < w1 such 

the point ce.k) €. v; therefore 

that 
so that for each k = 0,1,2, .•. 

V must contain the point (e,w
0
). But (e,w0 ) €. A, proving there there exists 

no open set V satisfying ,': . 
. 

. 

·~~! 
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scvcVcu 

i.e. Y is not normal (and not closed). 

It can be shown that ind X = Ind X = dim X = Dim X = o. 
co 

Also y = u yk 
k=O · 

where Yk = · {(a,k)l 0 ~a~ w1} n Y. 

Then each Yk is closed in the completely regular non-normal Hausdorff 

space Y, and dim Yk = 0, yet dim Y > 0. This shows that the sum theorem 

is not true for 'dim 1 for all completely regular Hausdorff spaces. 

Now dim A = 0, where 

Let C = Y \A. 

Then dim C = 0, for every finite open cover of C has a disjoint 

refinement. Hence Dim Y < 1. But also Dim Y > 1. Hence Dim Y = 1. 

It can also be shown that dim Y = 1. 

T h th t Ind Y 1 let F' G be closed and open subsets of Y 
0 S OW a = , 

respectively, with F C G. 

Consider the statements·: 

A "there exists an ordinal ao < lilt 

B "there exists an ordinal ko < 11)0 

We now distinguish four cases: 

(i) A,B both true. 

(ii) A,B both false. 

(iii) A false, B true. 

(iv) A true, B false. 

such that (a,w
0

) ~ F for a> a "· 
- 0 

such that (k,w1) ~ F for k > k " · - 0 
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In cases (i), (ii). it is not difficult to see that there exists an 

open set U satisfying 

F C U CG b(U) = $. 

In case (iii) for every open set U :> F, b(u) :> { (k,wdl k
0 

,::. k ,::. w
0

} 

for some k
0 

< w
0

. Hence Ind b(u) ~ 0 in this case. However, we can 

build up U from basic open sets so that b(U) C {(w1,k) l 

Hence Ind b(U) = 0. 

0 < k < w } = B. 
- - 0 

The analysis of the 'Tychonov Plank' to show that Y is not normal 

shows that in this case there exists an open set U such that FC U CG 

where 

Thus again Ind b (U) = 0. Hence in all cases Ind b (U) ~ 0 and 

Ind Y ~ 1. 

Since Y is not normal, Theorem 3.6 => Ind Y ~ 1. 

Hence Ind Y = 1. 

Then ind X = ind Y = dim X = Dim X = Ind X = 0, but 

dim Y = Dim Y = Ind Y = 1. 
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