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(i) 

Abstract 

Although the general principles of Monte Carlo and other simulation 

techniques have been known since the turn of the century, lack of efficient 

computational facilities has restricted their general application. The 

rapid advances in the field of electronic computing during the last three 

decades, however, have produced a new awareness of the potential of such 

techniques and as computing becomes even more sophisticated) such methods 

will no doubt play an increasingly important role in future scientific 

investigation. 

Effective application of Monte Carlo methods requires access to long 

sequences of random numbers. Since perfectly random numbers can not, of 

course, be obtained by practical means, all sets produced to date must 

properly be termed "pseudo-random". It is generally accepted, in the 

published literature, that such sets will be more limited in their 

application than perfectly random sets would be. Even though considerable 

research has gone into producing sequences for general application, such 

sequences produced to date are not equally satisfactory for all purposes and 

must be considered in the light of the particular problem under investigation. 

In this thesis, we consider the problem of finding sequences suitable for 

the Monte Carlo calculation of definite integrals. After a particular 

sequence is generated and tested for randomness, it is used in the evaluation 

of three definite integrals. The results of the statistical tests for each 

sequence are then compared with the values of the integrals produced by that 

sequence and an attempt is made to determine which properties a sequence 

should possess in order to produce good results in this application. Through­

out the thesis, several smallmnovations are introduced which, we believe, 

have not been reported by other authors. 
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1. 

CHAPTER I 

Introduction 

Most generally, the principles of Monte Carlo techniques rely heavily 

upon properties of random variables and their associated sampling distribut-

ions. In order that the user may make effective application of such tech-

niques, he must be able to observe values of a random variable, having a 

distribution relevant to the problem under investigation. This requirement 

has been facilitated by the construction of tables of "random numbers". 

Specifically, we define a random number as an observed value of a random 

variable. Since, theoretically, all distributions m~ybe derived from the 

uniform distribution by suitable functional relationships, we may, without 

loss of generality, redefine a random number as an observed value of a 

random variable uniformly distributed over the interval [0,1]. Of more 

practical value, however, is the following equivalent definition. A set of 

(i) s. '- D , where D = {0,1,2, ..• ,9}. 
1 

(ii) P[s. a] 1 for all a. E. D i = 1,2,3, ... = = 10 ' 1 

(iii) s. is independent of s. ' 
for all i < j. 

J 1 

We now define a random number as a subset of the elements of S. Good 

[ 13 has given an equivalent definition in which he also includes the case of 

binary sequences, however, his definition is not truly accurate as he regards 

a random sequence as being finite. 

Due to the limitations of the real world, it is not possible to produce 

even a single random number. However, it is possible by various classical ' . ' 

'. i 
' I 



. : .. ;_··: ...... :·_: . .... ... ·:. • • ' " • 0 ~ • ·:.!· . ...... 

2. 

methods, such as throwing dice or picking numbers out of a hat, to generate 

small sets of numbers that resemble, in their properties, a sequence of 

random numbers. 

... ·.~ . . · .,_,-· 

In order to obtain reasonable accuracy using the Monte Carlo technique, 

one needs a large supply of random numbers. In an investigation involving 

the evaluation of definite integrals, Powell and Swann [36] used sets of 

size 10, 100, and 1,000. The best results were obtained when 1,000 numbers 

were used while a set of size 10 gave very poor results. Since classical 

methods of generation could not produce such large sequences efficiently, 

the Monte Carlo method did not enjoy widespread popularity until more 

sophisticated methods became available. In the last three decades, 

deterministic methods employing the facilities of high speed electronic 

computers have made possible the generation of long sequences of numbers. 

Philosophical arguments have been raised against this procedure. Von 

Neumann [47], for example, has suggested that "anyone who uses arithmetical 

methods to produce random sequences is in a state of sin". We do not claim 

such sequences to be random in the sense defined above but, since many of 

them pass various statistical tests for randomness, they may, for practical 

purposes, be used in place of random sequences. Such sequences, possessing 

random-like properties and produced in a deterministic manner are more 

properly termed "pseudo-random" sequences. We shall, in this thesis, be 

concerned entirely with pseudo-random sequences but, for the sake of brevity, 

we shall use the term "random" throughout. 

No sequence produced to date has possessed all the various properties 

of a random sequence to a high degree, in fact, it has been found that such 

sequences vary widely in the degree to which they possess random properties. 
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3. 

The suitability of any particular generated sequence, therefore, has to be 

considered in the light of the particular problem under investigation [17). 

In this thesis, we attempt to determine which properties a generated 

sequence must necessarily possess in order to obtain reasonably good results 

in the Monte Carlo calculation of definite integrals. This we attempt to 

do by generating several sequences of numbers, testing them for randomness 

and then using them to evaluate three definite integrals. Conclusions are 

drawn from correlations worked out between the values of the integrals 

obtained and the results of the statistical tests applied. 

In Chapter II, we survey some of the popular methods of generation,both 

past and present,and we describe how our own numbers were obtained. In 

addition, we present a mathematical treatment of a bias that exists in certain 

generated sequences. 

In Chapter III, we discuss the six tests for randomness that were applied 

to each of the generated sequences. 

In Chapter IV, we give the details of the Monte Carlo calculations of 

three definite integrals. 

In Chapter V, all results obtained are presented and some conclusions 

are drawn. 



4. 

CHAPTER II 

The Generation of Random Variables 

1. Tables and Physical Methods. 

The idea of using random sampling methods in order to obtain a solution 

to a determinate mathematical problem must really be attributed to "student", 

who, in 1908, after theoretically predicting the "t" distribution and the 

distribution of the sample correlation coefficient, :tested his results 

empirically using random sampling methods. Much later, Von Neumann and 

Ulam [31] presented what is now commonly known as the "Monte Carlo" method . 

They suggested that an approximate solution to certain mathematical problems 

could be obtained by random sampling from probabilistic analogues. 

The only methods of obtaining random numbers in 1908, and for some time 

later, were by physical means such as drawing cards from a well-shuffled 

4_eck or by rolling dice. Not only were these methods extremely vulnerable 

to human bias, but it was practically impossible to get relatively large 

samples from them. 

The first major break through in the field of large-scale sampling 

occured in 1927 when Tippett [46] who, after .struggling with "ticket" 

sampling for some time, acted upon a suggestion from Karl Pearson that he 

replace his system of tickets by a single table of four digit numbers. 

Tippett formed his table of random numbers by taking 40,000 digits at 

random from census reports and combining them by fours to produce a set of 

10,000 numbers. In order to completely fill 26 pages each containing 1600 

digits, the published table actually contained 41,600 digits. Pearson [46] 

in his forward to the table, suggests further that even if certain applications 

demanded more numbers the table was still suitable as the numbers could be 

used over again. These digits were tested by Meyer, Gephart, and Rasmussen 

[32] who point out that the numbers should be used with caution especially 

,., : 
f·'-' 

··: · 



5, 

in small sampling surveys~ Their results, however, were not completely 

accurate as the "serial test" used, which was based on the one proposed 

by Kendall and Babington Smith [21], was subsequently shown by Good [1~ 

to be incorrect. 

Kendall and Babington Smith [ 23] point out that repeated sampling 

from the same set as suggested earlier by Pearson [46] causes serious doubt 

to arise in regard to certain random properties. Consequently, they prepared 

a larger table consisting of 100,000 digits [23]. These digits were produced 

by a machine which consisted essentially of a disc divided into ten equal 

sections containing the digits 0 to 9 inclusive. The disc was rotated in 

-/' 
/. 

; . 
I. ,. 

a dark room by an electric motor and was illuminated from time to time by the , 

flash of a neon lamp. At each flash, a fixed pointer selected a number from 

the apparently stationary disc. Four tests of randomness were applied to 

each block of 1,000 digits and of the hundred blocks tested, only five 

failed to pass all four tests. 

As the Monte Carlo method grew in popularity, the demand for more random 

numbers increased. Consequently, in 1955, the RAND Corporation produced a 

table of one million digits [37]. The "randomising machine" used in this 

case consisted essentially of a random frequency pulse source and a five-

place binary counter. Pulse standardization circuits passed the pulse through 

the counter and produced one number per second. Upon conversion to the 

decimal system the final digit only was retained and fed into an IBM punch. 

Standard tests of randomness were applied with satisfactory results. 

Several other authors have reported successful experiments with other 

methods. In particular, we mention the use of radioactive noise by Isida 

and Ikeda [18], the arranging of roulette wheels in series by Horton [IS], 

·,;: 
· .. , 

. :· 
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and ERNIE (Electronic Random Number Generator Indication Equipment) by 

Thompson [ 45] • 

2. The Middle-Square and Related Methods. 

6. 

The so-called "middle-square" method was proposed by John Von Neumann 

and N. Metropolis in 1946 and was the first attempt to produce randomlike 

numbers by a deterministic process . The following special case will serve 

to illustrate the method. Take a four-digit number 

and square it to obtain an eight-digit number, e.g., 

x , e.g., 
0 

X = 5392 
0 

x2 = 29073664. 
0 

The 

middle four digits are then recorded as the first random number in the 

sequence, i.e., x1 = 0736. Consequently xt = 00541691 and x2 = 5416. 

Continuing the process we have x3 = 3330, x4 = 0889, etc. 

This method is convenient for high speed calculations in a computer as 

it requires only one initial value and it has a very fast and short calculating 

procedure. A major weakness of the method is that all sequences ultimately 

degenerate into a cycle, usually small, or a sequence of zeros. In addition, 

it is very difficult to analyze important properties such as the length of 

the cycle. 

An alternative method was proposed by Von Hoerner [19] in which a 

number is obtained by the middle-square method and recorded as the first 

random number in the sequence. A constant is then added to this number and 

the resulting number is squared. The middle of thi s number is extracted 

and recorded as the second random number in the sequence and so on. This 

method is an improvement over the previous one in that it never degenerates 

into a sequence of zeros, however, it will always reduce to a cycle, generally 

small, and is therefore unsuitable. 

;:·. 

. ·. 

. .. 

' i 



7. 

Forsythe [12], after unsuccessful experiments with the middle-square 

method,and a similar method in which he extracted the middle from the 

product of two numbers, reported success with a method which generated a 

sequence {a } of eight-digit random numbers. If two eight-digit numbers n 

are chosen arbitrarily, the sequence· {a } may be defined 
n 

recursively as follows. From the eight-digit number a a five-d_igit . n 

j, : 

'. ··.'i 
I.·. 

. ; .. 

: . 

number al n is extracted. The eight-digit number an+Z is then extracted : . 

from the product aln • an+l' The actual run gave the values, a~ - = 34567, 

a2 = 98765432 and a~ = 76543. Since ai • a2 = 3414024687944, 

ag = 40246879. Also, since a~ • a3 = 3080616859297, a4 = 06168592, etc. 

The resulting sequence contained 12,500 numbers which had no cycle and did 

not degenerate. Furthermore, it fared reasonably well on certain tests for 

randomness. Unfortunately, the method had one serious defect in that the 

distribution of pairs of digits was not uniform. 

:·.". 

:-·. 

i :_ ; 

: ~: 

More sophisticated deterministic methods, free of the above disadvantages, 

have since replaced the middle-square type methods. 

3. Congruential Methods. 

These methods, based on congruence relations, lend themselves readily 

to use on high speed computers in that they are both easy to program and have 

a fast operating procedure. 

Some of the most widely used generators of this type are derived from a 

congruence relation of the form 

(2.1) x =Ax 
1 

+ c (mod M), 
n n-

where (mod M) with the congruence sign 11 = 11 means that 11>.x + c n-1 
is 

· .l. 

· .. · 
' 

. ' : 

I: 
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divided by M and X n is the remainder or residue". When A, x
0

, c, and M 

are chosen, the sequence {X } is determined recursively by (2.1). The n 
possible values of X n will be a subset of the set · {xn I 0 2.. x 2.. M - 1}. 

It has been shown, using number theoretic arguments [14,35 J, that 

all such sequences will repeat after a finite number of iterations. Further-

more, the number of terms obtainable before cycling begins is dependent upon 

the particular choices of A~ x , and c. 
0 

A particular aJ>plication involves 

choosing a fixed value for M, usually large, and suitable values for A, x , 
0 

and c that will produce a sequence of maximum length. The actual cycle 

of random numbers, distributed over the interval [0,1], is the sequence 

X 
{ -.!!.} 
M 

If c = 0, the generator is called "multiplicative", in which case the 

sequence will always repeat before M numbers are obtained. If c f 0, the 

generator is referred to as a "mixed" or "mixed congruential" generator with 

maximum possible period equal to M. 

The choice of M = 2k as a modulus is particularly convenient when 

the computer has a binary base. The calculation of a number N(mod 2k) 

involves simply retainingthe k least significant digits of the binary 

representation of N. 

E.g. To calculate 27(mod 24), 27(base 10) is represented in the 

binary base1 i.e. 

(2.2) 27 (base 10) 11011 (base 2). = ............. 

If the four least significant binary digits are retained, we have 

(2. 3) .•...... 1011 (base 2) = 11 (base 10) 27 (mod 16). 

'·.: 

'. 
L·· 
~ : 
:" ·.: 

: < 

I ·. 

·,. 

. · .... 

: .. : 

' ...... 

: . - ~ ' 



9. 

(a) The Multiplicative Generator. 

This generator was introduced by Lehmer in 1949 [43]. He used the 

values A = 23 and M = 108 + 1 and performed the calculations on 

ENIAC (a computer employing the decimal systelll). The resulting sequence 

produced eight-decimal digit numbers with period 5,882,352. He found 

that this value of A was the best possible for this value of M as no 

larger multiplier produced a longer period and no smaller multiplier produced 

a period more than half as long. The multiplicative generator has been 

discussed by many authors including Barnett [1 ], Bofinger and Bofinger [3 ], 

Certaine [4 ], Dowhham and Roberts [7 ], Greenberger [14]. Hull and Dobell 

[ 17], Taus sky and Todd · [ 43], Thompson [ 44], and Stoclanal [ 41] . 

Greenberger [14], using techniques of number theory, showed that the 

1 k-2 maximum period of such a generated sequence is of length 2 and can be 

obtained only when A is of the form 

(2.4) .... .:!:. 3 (mod 8) 

and the starting value of x
0 

is odd. Hull and Dobell [ 17] showed that the 

generated sequences failed certain tests for randomness when particular 

values of A satisfying (2.4) were used. Values that proved especially bad 

were those of the form 

(2.5) 

where a < 40 and p > 30. 

Our first set of random numbers was obtained by using the multiplicative 

generator 

(2.6) .... X 
n 

1one with modulus M = 2k. 

I :~: : 

i- ·, 

: ' 

' ,' 

' ' 
' j ·. · 
1 . ··. 

i . '· 

i. : 
i 
j• .· .. . 
: ·. , . 
; -~:: 

, .. _ .. 
: r:"> 

;·.o;: · 

·. ·.;. 

i ·:.~· 

,_ .. 

' -;c 



where the starting value x
0 

was chosen to be 15. This procedure is 

capable of producing 213, (8,192), distinct numbers which will aiways 

10. 

be a subset of the set · {xjo ~ x ~ 21s - 1, x is an integer}. Hence the 

largest value obtainable by this method is 215 - 1 = 32,767. The first 

8,000 numbers of this set were generated, normalized, and divided, for 

practical purposes, into 8 equal blocks. 

(b) The Mixed Congruential Generator. 

This generator has an advantage over the multiplicative one in that 

when M = 2k , the maximum period is of length 2k. To obtain this period 

it is necessary that the multiplier A be of the form 

(2.7) A _ 1 (mod 4) 

and c be any odd integer. This procedure will then generate all the integers 

k 
in the set {xjO ~ x ~ 2 - 1} in random order. In addition, the maximum 

period is independent of the choice of x 
0 

The proofs of these properties, using number theory arguments, are 

given by Greenberger [14] in the same paper in which the discussion of the 

multiplicativf. generator is presented. Peach (35], by using equations 

instead of congruence relations has presented an elegant discussion based on 

high school mathematics only and is particularly suited to those who in his 

own words, "are not at home in number theory". 

As a result of extensive experimentation with various values of A 

satisfying (2.7), Hull and Dobel1 [17] concluded that for practical applic-

ations there are various values that are unsuitable. Those that proved 

especially bad were A : 1 (mod 213), A< 30, and A = 212 + 1. A 

; . ~ 
~--. 

:. ·-. 

j: .. 
: -

' --: 

1-: · 

·' ! ~-= . ·: 

, __ .: 

~···· 1'-,'. 

::r. 
:·::--... 
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11. 

generally suitable value, A = 27 + 1, was proposed by Rotenberg [38] and 

substantiated by Hull and Dobell [17]. 

Very little attention has been given in the literature concerning 

suitable values for c. Hull and Dobell [17] suggested that any odd integer 

was suitable. Later on, we prove this statement to be false. 

Stockrnal 's paper [41] describes ' the problem of determining ,algebraic _,-...lly, 

xi from both the multiplicative and the mixed generators. The mixed generator 

has been discussed in detail by Coveyou [5 ], Jansson [19], MacLaren and 

Marsaglia [30], and Rotenberg [38]. 

Our first experimvnt with this procedure involved the generation of 

12,000 numbers, which were recorded as 12 equal blocks, using the generator 

(2. 8) ••. • • X 
n (28 + I) xn-l + 517 (mod 215). 

This sequence failed very poorly on our ·battery of tests, and, in 

particular, all blocks failed a particular test 1• Since the value of A = 28 + 1 

was in line with that suggested by the literature, it was evident that the 

value of c = 517 was not suitable. After carrying out considerable research, 

the best value that we found was c = 21 •. . We intend to do further 

study on this problem in order to classify c more generally. 

Our second set of random numbers was obtained by using the generator 

(2. 9) .... x _ (28 + l)x + 21 
n n-1 

This procedure is . capable of producing ·a ·set . of 215,(32, 768) · integers in the 

range 0 to 215 - 1. 

1This was the "runs test" which is dealt with in detail in Chapter III. The 

reported experiments in which good multipliers were sought did not involve 

the use of this test. The validity of this test as an indication of random-

ness, however, has been well established [7]. 

:· -·: 

: '··-~· 

l :.~~~--

i ~ -~ .. ·; 
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The first 10,000 elements of this set were generated, normalized, and 

recorded in 10 equal blocks. In order to observe elements in the upper 

half of the set, we used techniques of number theory and a bias (to be 

discussed in detail in Section 4 of this chapter) and computed the 26,384th 

element from the lO,OOOth element. Setting X = x26 384 ' we generated 
0 ' 

2,000 additional numbers which were recorded in two equal blocks. 

(c). Combination of Two Congruential Generators. 

MacLaren and Marsaglia [30] reported that random numbers generated by 

mixed congruential methods gave poor results in a number of Monte Carlo 

calculations, notably, those involving order statistics. As an improvement 

they proposed using two different generators .and having one shuffle the 

sequence produced by the other. The actual generators used were 

(2.10) 

and 

(2.11) ...... y = (27 + l)y + 1 (mod 235). 
n n-1 

Taking the initial valuesxD =~and Yo= O,a table of 128 locations 

in the core of the computer was filled with the numbers xl, x2, x3, •.. , x1 2a 

The kth random number to be used, i.e. Zk , was generated by using the 

first seven bits of yk as an index to select a value xi , i = 1,2,3, ..• ,128, 

from the table. The location of x. was refilled with the next number from 
l 

the generator (2.10). Even though the time required to generate a sequence 

by this method was double that required by a single generator, the authors 

accepted this penalty as the resulting sequence exhibited better statistical 

properties. 

Westlake [4~ attempted to eliminate the storage problem in the previous 

method by using a combination of two multiplicative congruential generators. 

. . 
;:;·· 
' ;t; 

!.• : -~ 
i·' ,. 
L 
r.: .., .. 

· .... 
;·· .. 

; ,. 
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The actual generators used were 

(2 .12) 

and 

(2.13) ...... 

The generated sequence was obtained by first generating the numbers x. 
. 1 

and y.. The bits of y. were then permuted and added to x .. The result-
1 1 1 

ing number was converted to decimal form, normalized, and recorded as the i th 

random number of the sequence. The results of tests on the individual 

generators were compared with those on the combined generator. Properties 

of non-randomness that were found to exist in the individual generators 

we:-e not evident in the combined one. 

Our third set of random numbers was obtained by using a combination 

of generators (2.6) and (2.8), i.e. 

(2.14) ...... 

(28 + l)yn-l + 517 

The same starting value x = 15 was used as in (2.6) to generate 
0 

the number x1 which was then recorded. This number was then fed into the 

second generator to produce the element y1 which was recorded and fed 

back into the first generator to produce a third number and so on. 

This procedure, using the constant values specified, is capable of 

producing 215 numbers in the range 0 to 215 - 1. However, all elements 

of the form 4n + 2, n = 0,1,2, ..• ,213- 1, are repeated while no elements 

of the form 4n appear. Hence, to obtain all the integers in the range 0 

to it is necessary only to subtract 2 from all elements of the 

., 
r: 

' · •· 

, . . 

;'•' 

l> 

i ·: ,., 
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14. 

form 4n + 2 when they occur in the sequence for the second time. The first 

10,000 numbers of. the sequence were generated, normalized, and recorded 

in 10 equal blocks. We discovered also that the same type of bias exists 

as in sequences obtained by. the. mixed generator, hence.-w~ generated . -2,000 

additional numbers by a method analogus .to· that· employed for (2.9). 

3. Digits in Irrational Numbers. 

Many authors have reported successful experiments with digits in the 

decimal expansion of irrational numbers. Reitweisner at the suggestion 

of Von Neumann computed the values of ~ and e to more than 2,000 

decimal places. The frequency distribution of these digits was consequently 

studied by Metropolis, Reitweisner, and Von Neumann. 

Pathria [34] conducted a study of randomness among the first 10,000 

digits_ of ~ . After these digits were grouped into ten blocks of 1,000, 

the four tests of Kendall and Babington Smith [21] and a fifth one due to 

Yule [ 49] called the "five-digit sum" test, were applied to each block. 

The results, on the whole, were satisfactory. 

At the same time, Dr. D.B. Gilles of the Digital Computer Laboratory, 

University of Illinois, had computed e to 60,000 places and was 

attempting to extend this to one million places. 

Shanks and Wrench [39]have extended both ~ and e to 100,000 

decimal places and have computed the frequency distributions of each with 

satisfactory results. 

Several experiments have been carried out on the decimal expansion 

of 1:2. Takahashi and Sibuya [42] computed the value of 1:2 to 14,000 
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decimal places and this result was extended by Lal [15] who achieved the 

expansion to 19,600 decimal places. A further extendion of these 

results was obtained by Lal [27] who, using the "Newton-Raphson111 method, 

performed the expansion to 39,000 decimal places. The above results were 

considerably improved by Lal and Lunnen [28] who achieved the exp~nsion to 

100,000 places. For this investigation, the Newton-Raphson method was 

again used and the computations were performed on the Atlas computer of the 

University of Manchester, England. Due to limited core size, the results 

could not be extended further. The chi-square values for the frequency of 

digits in consecutive blocks of 1,000 digits were computed and, of the 100 

blocks tested, only four fell outside the 1 to 99 percent range. 

We formed our fourth set of random numbers by grouping the digits of 

{2 into a sequence of 20,000 five-digit numbers. After each number 

was normalized, the sequence was recorded and divided into twenty equal 

blocks. 

!Briefly, the method is as follows. Let x1 be an approximate value of 1:2. 

A value of 1:2, accurate to twice the number of digits as x1 , is then 

_ given by 

1 -1 
x2 = zxl + xl 

In this case, x1 was known to 19,600 places. It was shown that the 

computed value x2 was actually accurate to 39,074 places although only 

the first 39,000 were recorded. 

;-. ,. 
!~:: 

:_,. 

2Dr. M. Lal of the Mathematics Department, Memorial University of Newfoundland ?.~': 
... 

had stored these digits on IBM punch car ds - 50 digits t o a card. Consequently, 

they were readily available for reuse. 
!.· 
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4 1s· · s . 1as 1n equences produced by Congruential Generators. 

In Chapter II, we noted that sequences generated by congruential methods 

are subject to the constraint that, in all cases, repetition occurs after a 

definite number (the period of the sequence) of elements are generated. This 

constraint however, does not seriously affect the variability of such 

sequences since different choices of constants will guarantee sufficiently 

long sequences before repetition~ We also note that proo~of these facts 

have been given by several authors using techniques of number theory. 

Peach [35] has observed further bias in these sequences, however, before 

investigating it we shall require the following definition. 

Definition 2.1. 

If the period of a sequence {x } generated by congruential methods is 
n 

M, then we define a "cycle of length M" to be a subset of M numbers of 

the sequence recorded in order of generation. 

lin this section the term "bias" shall refer to certain regular patterns and , . 

periodicities that have been observed in sequences produced by congruential 

generators. 

2 In theory, the period of the generated sequence can be made equal to any 

positive integer M, in practice, however, the value of M is limited by the 

capacity of the available computing machinery. 
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Given any cycle of length M, Peach observed that the difference 

between corresponding elements of the half-cyclesl is always ~ . He 

uses the following example to illustrate the bias. 

Consider the following sequence generated by 

(2.15) ...... X n - 9x n-1 + 13 (mod 32), 

0 13 2 31 4 17 6 3 8 21 10 7 12 25 14 

16 29 18 15 20 1 22 19 24 5 26 23 28 9 30 

0 13 2 21 

11 

27 

The first two lines comprise the two halves of a cycle of length 32. 

It is readily seen that the difference between corresponding numbers in the 

two half-cycles is always 16. This relationship is an inherent property 

of the generator and can not be eliminated by different choices of the 

constants. Peach, however, did not attempt to justify the existence of this 

bias nor could we find any other author who had done so. Consequently, we 

turned to number theory and derived the following results. 

Theorem 2.1. 

k 
If tr~ numbers x1 , x2 , x3 , ••• , x2k represents a cycle of length 2 

from the sequence generated by 

(2.16) 

then 

x = AX 1 + c(mod 2k) , 
n n-

lHe also observed that the difference between corresponding elements of quarter­

M cycles is always a multiple of 4 , however, we shall not investigate this 

particular bias at this time. 



(2.17) xj+JJ< - 1)- xj = 2k-l (mod l) , 

where A= l(mod 4), c is odd, and o ~ j ~ 2k-l. 

Proof. (2.16) may also be written in the form 

(2.18) X : AnX + (An - l)c ( d 2k) 
n o A - 1 mo · 

If i = 0,1,2, ... , then by repeated application, we have 

i+n 
(2.19) xi+n- Ai+nxo + (AA - ~ l)c (mod 2k) 

which reduces to 

(2.20) 

Since the period of the sequence is l ' 

(2.21) ...... x. 
2
k- x. :: 0 (mod 2k) 

l+ l 

18. 

k If we put n = 2 in (2.20), then (2.21) may be written in the form 

(2.22) 

k 
A2 - 1 k 

·· ·· ·· A_ 1 [(A- 1)xi + c] : 0 (mod 2 ). 

However, since (A - 1) is even and c is odd, the expression 

[(A - l)x. + c) is odd, so that 
l 

(2.23) 

k 
A2 - 1 k _ 0 (mod 2 ) , 
A - 1 

that is 

(2. 24) 

Also, 

2k k 
A _ 1 (mod 2 ). 

k is the smallest integer for which (2.24) is true. 

k-1 
Consider the difference xj+2k~i - xj , where 0 ~ j ~ 2 . 

(2.18) and (2.19), we may write 

(2.25) ...... 

From 

f• 
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For convenience, 

(2.26) ...... 6 

hence 

(2. 27) 

Since, 

(2.28) 

(2.29) 

set 
k-1 

~ 2 - 1 
= 

~ - 1 

k 
~ 2 - 1 k-1 
~ - 1 = 6 (1 + ~ 2 ) -

~ _ 1 (mod 4), 

~i- 1 (mod 4), 

where i is a non-negative integer. 

Therefore 

(2. 30) 
k-1 

~ 2 = 1 (mod 4) , 

for k > I. Consequently, we now put 

k-1 
(2.31) ...... ~ 2 = 1 + 2S, 

where 

0 (mod i). 

(2.32) = 1 + 4S (1 + S). 

Now, from (2.24), 

(2.33) 
k-2 

5(1 + S) = 0 (mod 2 ) 

. dd 2k-2 d . . d s and since (1 + S) 1s o , 1v1 es . 

(2.31) may now be written in the form 

k-1 
~2 = 1 + 2(2k-2 • p) ' (2. 34) 

for some p € ~ . Hence 

k-1 
(2.35) .. .. .. ~2 = 1 + 

k-1 2 p 

19. 
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From (2.27), we have 

(2.36) 

that is• 

(2.37) 

Since 

(2.38) 

hence 

(2. 39) 

is odd, we have 
k-1 

'
2 

- 1 k e = ~ = 0 (mod 2 - 1) 
h - 1 

k-1 
h 

2 
- 1 

h - 1 

for some 13 € 7Z. . 

(2.40) 

Now, 13 must be odd, since, otherwise 

k-1 
A

2 
- 1 k k 

--~ = 2 y ;: (mod 2 ) 
h - 1 

20. 

for some Y EZ:., which contradicts (2.24). (2.25) must now be written 

in the form 

(2.41) 
k 1 J k x. (k- 1)- x.:: 2- {13[(A- l)x

0 
+ c]A} (mod 2 ). 

J+t-: J 

Since the coefficient of 2k-l is odd, 

(2.42) [¥. 1:\ -- 2k-l + 2kw 
X. - LJ-X· 

J+ J 

for some w E: ~ , hence 

(2.43) 

Theorem 2.2 

li, :\ k-2 If x
1

, x
2

, x
3

, ••• , x~- 21 represents a cycle of length 2 from 

the sequence generated by 



(2.44) . . . . . . xn = AXn-l (mod 2k) , 

then 

(2.45) xi+.j. - ~- xi = l-l (mod l) , 

where A = +3 (mod 8), x is odd, and 0 < i < 2k-3. 
0 

Proof. Since A = ~3 (mod 8),it is easily established that -
(2.46) ...... A2t :: 1 (mod 4) , 

for t £ z:, hence 

(2.47) 
2k-3 

1 (mod 4) ...... A - , 

for k > 3. 

Now, the period of the sequence is 
k-2 2 , 

hence 

(2.48) 

21. 

and no smaller value of k will satisfy this relation. Using (2.47) and 

(2.48), the derivation of 

k-3 
A2 = 1 + 2k- l • b, (2.49) 

is analogus to that of (2.35). Also b is odd, otherwise 

k-3 k 
A2 = 1 + 2kh: 1 mod (2) , (2. SO) 

for some h £ Z , which contradicts ( 2. 48) . 

(2.44) may be written in the form 

(2. 51) 
n k X :: A X (mod 2 ) , 

n o 

therefore 

~· 
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(2. 52) 
. k-3 

X. -A\ (>, 2 
1 0 - 1) • 

From (2.49), we have 

(2. 53) - 3)- (AiX b)2k-1 k . . . . . . X. j X . - (mod 2 ) • 1+ 1 0 ; .. 

Since Ai' and b are odd, the coefficient of k- 1 
is odd, hence X 2 0 

i·'' 

(2.54) 6, ~ k- 1 k 
xi+~- 31 - xi= 2 (mod 2 ). 

;. __ 
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CHAPTER III 

Tests for Randomness 

We have defined a truly random sequence as one possessing two major 

qualities; 

(i) The numbers in the sequence are uniformly distributed over 

the interval (0,1]. 

(ii) Each element in the sequence is independent of any other. 

If an artifically generated sequence possesses these qualities to a 

reasonably high degree then, for practical purposes, it may be regarded as 

a random sequence. The degree to which a given sequence possesses these 

qualities is determined by specially designed tests that are referred to as 

"tests for randomness". 

Many authors including Edmonds [9] and Taussky and Todd [43]1 have 

pointed out that both the numbers and the digits must be tested separately. 

Consequently, our own battery of tests consists of three designed to test 

the randomness of the numbers and three to test the randomness of digits. 

(1) The Chi-5quare Test for Goodness of Fit. 

This test, the most widely used in the literature, is used to test the 

hypothesis that a given generated sequence has uniform distribution over 

the interval [0,1). 

1Taussky and Todd report that experiments carried out by M.L. Juncosa show 

that sequences which were verY good random numbers gave rise to sequences 

of random digits which could, at best, be classed as fair. 

. ' ' 

i / 



Suppose, in general, we wish to test the hypothesis that a given 

population is distributed according to the distribution function F(x). 

A random sample of n observations is drawn from the population and 

divided into k mutually exclusive categories. Karl Pearson, in 1900, 

suggested computing the statistic 

(3.1) ...... 
k 

l =I 
i=l 

(n. - np.) 2 
]. ]. 

np. 
1 

where n. denotes the number of observations in the ith category and 
]. 

p. is the probability that a given observation falls into the ith 
]. 

category. The exact probability distribution of the random variable x2 

is quite complicated but, as n + ~ , its distribution is approximately 

24. 

chi-square with (k - 1) degrees of freedom. A value r is then chosen 

and the hypothesis is rejected if the computed value of x2 exceeds r. 

In the case of random sequences, F(x) is the uniform distribution 

over the interval [0,1] and the categories consist of k equal subintervals 

of [0,1]. Since the measure of all categories is the same, pi= ljk and 

np. = n;k 
]. 

i = l,2,3, •.• ,k. Hence, for this application, the x2 

statistic (3.1) reduces to the simpler form 

k k 
(3.2) .... .. x2 = (- In. 2) - n ~ 

n . 1 J. 
l.= 

also with (k - 1) degrees of freedom 1• This statistic is more efficient 

for computation purposes than (3.1). The value r was chosen from the 

tables such that 

(3.3) ...... P[x2 > r] = o.os. 

1After we had derived (3.2), we received the work of Ne~~an and Odell [33]. 

They had also recognized the existence of a simpler statistic for this 

application. However, they gave the simplified statistic as 
k 

x2 = k( L n~ ) - n which is incorrect. 
. 1 ]. 
J.= 
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(2) The Kolmogorov-Smirnov Test for Goodness of Fit. 

This is the most important of th~ general tests of fit alternative 

to chi-square [24] and is also used to test the hypothesis that a given 

sequence is uniformly distributed over the interval [0,1]. The chi-square 

~st tends to be rather insensitive and also depends upon the arbitrary 

division of [0,1] into subintervals. The Kolmogorov-Smirnov test requires 

no such division as the test statistic is computed over the whole of the 

interval [0,1]. However, it is more difficult to apply than the chi-

square as all observations must be ranked. 

The mathematical basis for the test is as follows. Suppose that an 

ordered sample x1 ,x2 ,x3 , ••• ,x, where x. < x. 1 has been drawn from a 
n . 1 1+ 

sequence with distribution function F(x) -uniform on the interval [0,1] . 

The observed cumulative relative frequency Sn(x) 

function 

(3. 4) 
k 

S (x) = -n n 

where xk ~ x < xk+l and k = 1,2,3, ••. ,n. 

is defined as the step 

From the following theorem we will expect that S (x) 
n 

will be a 

reasonably good approximation to F(x). In addition, this approximation 

should improve as n increases. 

Theorem 3.1. 

If F(x) is the uniform distribution on the i nterval [0,1] and if 

S (x) is defined as in (3.4), then 
n 

(3.5) limit P [IS (x) n 
n-+c:o 

for all ( > 0. 

F (x) I < E] = 1, 

~ : ·:: 
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Proof: 

Suppose that Yl,y2,y3, .•. ,yn are the unranked values of the generated 

sequence. Define 

f' if y. > X 

(3. 6) z. = 1 ...... 
1 1, if y. < X 

1-

where i = 1,2,3, ... ,n and z. 
1 

are all independent. 

Define 

(3. 7) G (Z) = z1 + z2 + z3 + ••• + z n n 

then 

(3.8) ...... 
Gn (Z) k 

S (x) =- = -
n n n 

From (3.6) it is clear that 

(3.9) ...... E (Z.) = F (x). 
1 

Now, the strong law of large numbers states that 

(3.10) ...... limit P[jn-lG (z)- E(Z.)j < ~] = 1, 
n+oo n 1 

for all € > 0. 

Hence (3.5) is verified. 

The test statistic, D n 
is the least upper bound of the absolute 

deviation of S (x) from F(x), i.e. 
n 

(3.11) ...... D = ~.u.hjS (x)- F(x)j. 
n (x) n 

The distribution of Dn is completely distribution-free when the null 

hypothesis holds provided that F is continuous [24]. Kendall and 
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Stuart [24] have given a very terse justification of this fact in the follow-

ing .way. If Sn(x) and F(x) are plotted as ordinates .against x 

as abscissa, D is simply the largest vertical difference between them. 
n 

Clearly, if we make any one-to-one transformation of x, this will not affect 

the vertical difference at any point and, in particular, the value of D n 

will be unaffected. Hence we can take 

(3.12); .•..• F(x)=x O<x<l. 

Kolgomorov [25] proved that, for any E > 0, 

(3.13) 

where 

limit P[n1/ 2o > E] = L(~), n-
n+oo 

co 2 2 
(3.14) .•••.. L(€) = 2 I (-l)n+le-2n E • 

n=l 

We shall choose the value ~ = 1.36 so that, 

(3.15) ...•.. P [D > \/~] = 0. OS. 
n n 

L(E) = 0.05. Therefore, 

Since we shall take n = 1000 for each sequence, (3.15) becomes 

(3.16) ..•.•. P[D > 0.043007] = 0.05. 
n 

The statistic o is computed from the observed data and the hypothesis 
n 

is rejected if the computed value exceeds 0.043007. 

3. The Runs Up and Down Test. 

This test is used to test the hypothesis that the elements of a 

generated random sequence are independent. 

Consider a sequence 

subsequence 

{x . li = 1,2,3, . .. ,n} 
1 

of random numbers. A 

1': , .. 
f·. · u: 
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(3.16) X. l , X., ••• ,X. , X. l 1- 1 1+r 1+r+ (2 ~ i ~ n - r - 1) 

of (r + 3) consecutive nwnbers is said to form a "run up" of length r 

if 

(3.17) ..... . x . 1 > x. < x. 1 < ••• < x. > x1.+r+l 1- 1 1+ 1+r 

If all the s.igns in (3.17) are reversed, then a "run down" of length 

r is defined. 

The "runs up and down" test is based on a comparison of the expected 

and actual numbers of runs of various lengths under the hypothesis of 

independence. All the relevant results that are necessary to derive the 

test statistic have been given in detail by Downham [7 ]. A summary of 

these results now follow. 

The expected number of runs of length r is given by 

+ 3r + l)n - (r3 + 3r2 - r - 4)] 
~~~~~~~~~~--~--~~~~ , r < n - 1 

(r + 3)! 
(3.18) •..•.. E(r) = 

2 r = n - 1 

where n is the number of elements in the sequence. 

The expected number of runs of length r or greater is given by 

n-1 
(3.19) . . . . . . E1 (r) = I E(a). 

a=r 

The well known Pearson chi-square statistic now takes 
n-1 

r-1 
(3. 20) ..... . I 

i=l 

(N - E(a)) 2 
a 

E(a) + 

(I N - El(r))2 
i =l a 

El(r) 

the form 

which is assymptotically distributed as chi- square with (r - 1) degrees 

of freedom. N is the ~bserved number of runs of length a and E(a) 
a 

and El(r) are computed from (3.18) and (3.19) respectively. The value 
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of r is usually taken to be 5, in which case, the critical value at the 

0.05 percent level is 9.490. 

4. Frequency Test. 

If a sequence is truly random, each digit should occur an equal number 

of times. The frequency test is used to determine whether or not a generated 

sequence possesses this property to a reasonably high degree. If a particular 

sequence is composed of m digits 1, the expected number of occurances of 

each digit is m/10. The observed frequencies m. of the digits are obtained 
1 . 

the 
from A row or column totals in a table of digital pairs. An example of such 

a table is shown in fig. (3.1). 

Now, the statistic 

10 
I (3. 21) ...•.• 2 

X·. = 
i=l 

(m. - m/10) 2 
1 

m/10 

which, for computational convenience, reduces to 

(3.22) ...... 

is asymptotically distributed as cbi-square with 9 degrees of freedom. 

Also, if r = 16.92, 

(3.23) ...... P[X 2 > r] = 0.05. 

The test is applied by computing the value of X2 in (3.22) and 

comparing it with the value r = 16. 92. 

lThe generated random· numbers x. , distributed over the unit interval are 
1 

worked out to five significant digits, hence m = 5n, where n is the number 

of random numbers in the sequence. Since we are testing all numbers in 

blocks of l,OOO, m = 5000. 
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5. Serial Test. 

In a sequence of truly random numbers no digit in any given number 

will show a tendency to be followed by another particular digit. The 

serial test is used to determine whether or not a generated sequence 

possesses this property to a reasonably high degree. 

In the sequence of digits 

(3. 24) 00.00. 

we consider the (m- 1) pairs of the form (sn,sn+l)' (n = 1,2,3, ... ,m- 1) 

and the pair Under the hypothesis of independence, each pair 

has an expected frequency of 1~0 . A table, such as shown in fig. (3.1) 

is constructed by observing the number m .. (i,j = 1,2,3, •.. ,10), of the 
lJ 

digit pairs (i - 1, j - 1) and entering this number in the cell determined 

b th . . f h . th d h . th 1 y e 1ntersect1on o t e 1 row an t e J co umn. 

Kendall and Babington Smith [21] proposed the statistic 

10 · '10 (m - .2!!....) 2 

(3.25) . 00 00. 

ij 100 xf = I .I m/100 
i=l J=l 

which, they claimed, is approximately chi-square with 90 degrees of freedom. 

However, it was pointed out by Good [13J that 

(3. 26) 00 . .. .. 

hence the random variable xt cannot have an approximate cdhi-~quare 

distribution with 90 degrees of freedom. He then proceeds to show t hat i f 

(3 . 27) ...... m. 
1 

then the statistic 

10 
= I 

i =l 
m .• 

lJ 

i· r.: 
l·' 
r~ 
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2 100 10 10 2 10 
(3.28) ...... x2 = (-) L L (m .. -...!!!....) - (10) L (m. -~)2 

m i=l j=l lJ 100 m i=l 1 10 

is distributed~proximately as chi-square with 90 degrees of freedom. 

For computational convenience, (3.28) reduces to 

1 10 10 1 10 
(3. 29) .. .. .. x~ = 50 () ) mf.) - c500 ) mt) 

l=l J =1 J l=l 

Also, if r = 113.14, 

(3.30) .. .. .. P[X~ . > r] = 0.05. 

The serial test is applied by computing the statistic x~ in (3.29) 

and comparing the result with the value of r in (3.30). 

Table of Digital Pairs 

(First block of generated numbers) 

Second digit 

0 1 2 3 4 5 6 7 8 9 TOTAL 

0 55 44 75 57 47 52 50 38 51 54 523 

1 48 50 49 42 40 51 41 59 47 58 485 

2 54 45 40 49 51 44 64 44 52 54 497 

3 54 52 45 44 49 58 48 49 51 52 502 

.~ 4 44 48 50 55 47 51 52 47 53 57 504 
bO 

:a 5 47 47 35 55 55 42 47 49 so 56 483 

~ 6 59 49 56 55 54 47 48 46 45 55 514 
Ill 
f.! 

·1"'1 7 52 50 56 39 52 46 39 44 48 47 473 
1.1.. 

8 52 48 48 49 56 47 65 41 46 43 495 

9 58 52 43 57 53 45 60 56 52 48 524 

Total523 485 497 502 504 483 514 473 495 524 5,000 

fig. (3.1) 
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6. The Poker Test. 

The combination of digits in each generated number corresponds to a 

combination similar to that which occurs in poker. Under the hypothesis 

of independence, the probabilities of all possible combinations are readily 

computed using the multinomial theorem. The table, fig. (3.2), showing 

the various combinations and their corresponding probabilities is taken 

from Jansson [ 19]. 

Combination Probability 

Bust (abcde) .3024 

Pair (aabcd) . 5040 

2 pairs (aabbc) .1080 

3 of a kind (aaabc) .0720 

Full house (aaabb) .0090 

4 of a kind (aaaab) .0045 

5 of a kind (aaaaa) .0001 

fig. (3.2) 

The statistic 

(3.31) 

where w is the total number of combinations, wi is the observed number 

of the ith combination, and p. is the probability that the 
1 

ation occurs, is distributed approximately as chi-square with 

degrees of freedom. 

Since, in this case , k = 7, 

.th b' 1 com 1n-

(k - 1) 

i 



(3.32) P[x2 > r] = 0.05 

for r = 12.59. 

The poker test is applied by computing the statistic x2 in (3.31) 

and comparing the result with the value of r in (3.32). 

~I 
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CHAPTER IV 

Methods of Monte Carlo Integration 

In this chapter, we examine how simulation techniques may be used to 

evaluate definite integrals. The basic technique is straight forward · but, 

unfortunately, requires an excessively large supply of random numbers to 

produce a reasonable degree of accuracy. However, this difficulty has been 

partially aleviated by the introduction of various refinements of the basic 

technique. We examine the basic method and two popular refinements of it. 

1. The Crude Estimator (The Basic Method). 

The Monte Carlo calculation of a definite integral may be considered 

as a statistical problem of estimating the parameter e , where 

(4.1) ..... . e -- Jl f(x)dx. 
0 

We may estimate e in the following way. 

Consider a sample x1 ,x2 ,x3 , ••• ,Xn of n independent random variables 

uniformly distributed over the interval (0,1]. Then the random variable 

e defined by 

(4. 2) ..... . 
1 e =-
n 

is an unbiased estimator of e . Furthermore, the variance of e is given 

by 

(4. 3) Var(e) = 
n 
r 

n i=1 

1 Var(f(X.)). 
1 

From the Chebychev inequality, we have, for any estimator 

mean e and variance cr 2 , 

e with 



(4. 4) P[je - al ~ c cr] 
1 

<-
- c2 ' 

for c > 0. Hence if we put 
1 

a = Nar(e) and c = 1€ 

(4.4) takes the form 

(4.5) ...... 

n 
L Var(f(X.))) 

" . 1 1 1-P[Ia - al > - < ~ 
- /En -
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, £ > 0 , then 

" Hence the expression, le a! , which is the error of the method, is 

Since this error can be relatively large1 , . 1 1 proport1ona to -- . rn 
often referred to as the "crude" estimator of 9 

(4. 6) 

Consider the integral 

1 

a1 = J [x3 + l]dx . 
0 

We may evaluate this integral by the estimator a1 , where 

(4. 7) 

(4. 8) 

• • • • • • 91 

n 
=! L [X~+ 1]. 

n . 1 1 
1= 

The variance of this estimator is given by 

var(e 1) = l[var x? + 1] n 1 

= !rvar x~] n 1 

9 
= Ii2i1 

9 is 

1 4. reduction of this error to even io of its former size would require a 

sample 100 times as large. 
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2. The Importance Sampling Estimator. 

The main weakness of the previous method is that the variance of 

6 can not be reduced without a significant increase in the sample 

size. To overcome this difficulty, other estimators have been developed 

" 
which, for a given n, have smaller variances than e One such estimator 

may be developed as follows· 

Let X be a random variable with probability density function g(x) 

defined on the interval [0,1]. The integral (4.1) may now be rewritten 

in the form 

(4.9) ...... 

1 

f 
f(x) 

62 = (g(x))g(x)dx. 
0 

f(X) 
Since the mathematical expectation of the function g(X) is equal to e2 , 

it follows that (4.9) may be estimated from 

(4.10) ...... 
,. 1 n f(Xi) 
6z =- l -) n . 

1 
g(X. 

1= 1 

h X X X X are values of the random variable X with density were 1' z, 3, ... , n 

function g(x). 

f(X) 
The variance of g(X) is given by 

Var(f(X) = Jl f2(x) dx - 6~ . 
(4.11) ... ... g(X) g(x) 

The 

0 

. b . d 1 
minimum variance 1s o ta1ne 

when X has the distribution given by 

1using elementary techniques of the calculus of variations[!]. 



(4.12) .. .. .. g(x) = LfCxJ I r lf(x) ldx 
0 

Hence, (4.11) may be rewritten in the form 

(4.13) 

( 4.14) 

1 

[J lfCx) ldx]
2 

- e~. 
0 

If the function f(X) does not change sign then 

Var(f(X)) = 0 g(X) . 

Since the evaluation of the integral 

1 

(4.15:) .. .. .. J lf(x) ldx 
0 
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is almost equivalent to evaluating e2, this is of theoretical interest only. 

The practical alternative is to choose the distribution of X such that 

(4.16) .....• ~ ~ constant. 

If f(x) has a power series expansion,then g(x) can take the form 

(4.17) g(x) = 
lh(x)l r lh(x) ldx 
0 

Where h(x) is a function, preferably linear, composed from the first few 

terms of the expansion. 

Consider the integral 

1 

(4.18) ...... e2 = foexdx . 



.... ·- · ·· ~ ·"-· _ .. ____ .-. - .. - .. -.-:----..:.....---·-~ 

Since 

(4.19) ex = 1 + x + x2 + 

we may consider the random variable X with probability density 

( 4. 20) 
2 g(x) = 3(1 + x) O<x<l. 

Hence, by (4.10), e2 may be estimated by 

(4.21) 
3 n 

82 =- L 2n . 
1 1= 

X. 
l e 

1 + X. 
l 

The variance of e2 is given by 

(4. 22) J
l 2x 

~ .!- dx 
= 2 O 1 + X 

= 0.0269 
n 

n 

e2 
2 

38. 

If X1 is uniformly distributed on the interval (0,1], the values 

of X may be obtained from the formula 

(4.23) X = /1 + 3Xl - 1. 

Hence (4.21) becomes 

n /1 + 3X! - 1 

(4.24) .. .. • . 62 = ~n i~l ~ + 3X! l 

l 

where x! is uniformly distributed on [0,1]. 
1 

When g(x) is chosen according to (4.16), sampling from X will 

insure that the larger values of f(x) will have a higher probability of 

occurance. Since these values will make a greater contribution to the 

integral, this method is referred to as "importance sampling". 
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3. The "Weighted Uniform Sampling" Estimator. 

Since the "importance sampling" technique usually requires the user 

to sample from a random variable X with non-uniform distribution, it may 

be difficult to devise. a practical method of generating these values. If, 

as in (4.24), a transformation is used to derive X from x1 , uniformly 

distributed on [0,1], then the evaluation of the estimator could be quite 

complicated. The "weighted uniform sampling" method, introduced by Hands-

comb [50] and analysed by Powell and Swann[3~, allows the user to apply 

samples from the uniform distribution directly to the estimator. 

The estimator employed is 
n 
I f(\) 

(4.25) 
i=l e 3 = ~n,;;_ __ _ 

I 
i=l 

g(X.) 
1 

where X. is uniform over the interval [0,1]. The function g(X) has 
1 

the property that 

(4. 26) ..•.•. 

1 

J g(x)dx = 1, 
0 

although its values are not necessarily all non-negative. 

Furthermore, if g(X) is chosen so that 

(4. 27) constant, 

then the variance of e3 will be relatively small. 

The estimator 63 
is, of course, biased however it was shown by 

Powell and Swann [3~ that 

(4. 28) = 

,_ - . .. L 
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where a is the bias and o is the mean square error of e3 • They also 

note that the magnitude of a depends upon the variance of . g(X). 

Consider the integral 

10 

(4.29) ...... e3 = fo [x + cos2x]dx 

and the corresponding function g(x), where 

(4. 30) () = 57.7(x + cos2x) 
g X X+ 0.77 

then the estimator e3 is given by 

(4. 31) e3 = 
57. 7~I X. + cos2xJ . 1 1 l l= 

n 
LX. + 0.77 

. 1 l l= 

where X. is uniformly distributed over the unit interval. Powell and 
l 

Swann [36] showed that, in general, the accuracy of this method is comparable 

to importance sampl ~ng: and the bias . a . is· riot da.magi_ng. 
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CHAPTER V 

Results and Conclusions 

A total of fifty-two blocks, each consisting of one thousand random 

numbers, were generated using the methods described in Chapter II. Each 

block was tested for randomness and applied to the evaluation of the three 

definite integrals (4.6), (4.18), and (4.31) described in the previous 

chapter. 

Since we were interested mainly in investigating randomlike properties 

of the generated sequences, no attempt was made to evaluate the various 

methods of integration used. The rationale of choosing three entirely 

different integrals, .each computed by a different method, was to obtain 

results that were independent of a particular type of integral or a 

particular method of computation. 

The generation and testing were programmed in Fortran IV languc:ge and 

executed using an IBM System 360/40. 

1. Results of Tests. 

The results of the six tests for randomness for each block of generated 

random numbers are given in Tables 5.1 to 5.4 inclusive. All tests, except 

the Kolmogorov-Smirnov test for goodness of fit, involve either the direct 

application of the Pearson chi-square statistic or some variation of it. 

After each table, we note the cases where the 95% level was exceeded 

k ttf • 1 II t • 1 
and we refer to these as instances where particular bloc s al par lCU ar 

tests. 



Chi- square 

Block Test 

1 9.920 

2 17.952 

3 12.480 

4 10.080 

5 9.568 

6 14.880 

7 13.472 

8 13.664 

Critical 
value at 25.000 
95% level 

TABLE 5.1 

The Multiplicative Generator 

Kolmogorov­
Smirnov 
Test 

0.022 

0.033 

0.022 

0.028 

0.017 

0.036 

0.022 

0.294 

0.043 

Runs Frequency 

Test Test 

2.311 5.196 

4.247 3.072 

0.448 3.464 

3.352 3.572 

1.552 3.036 

3.569 2.204 

8.918 2.220 

3.907 8.416 

9.490 16.920 

Serial Poker 

Test Test 

71.044 2.416 

60.808 5.334 

63.536 20.690 

57.868 6.272 

63.444 5. 919 

51.716 2.091 

50.740 4.547 

68.104 3.977 

124. 34 12.590 

Of the eight blocks tested, block 3 failed the poker test and block 8 

failed the Kolmogorov-Smirnov test. 



TABLE 5.2 

The Mixed Congruential Generator 

Chi-square 

Block Test 

1 7.232 

2 4.768 

3 8.672 

4 5.504 

5 7.136 

6 5.728 

7 5.952 

8 6.656 

9 7.456 

10 6.592 

11 6.880 

12 5.440 

Critical 
Value at 25.000 
95% level. 

Kolmogorov-
Smirnov 
Test 

0.010 

0.012 

0.014 

0.014 

0.013 

0.012 

0.015 

0.019 

0.014 

0.010 

O.Oll 

0.015 

0.043 

Runs Frequency 

Test Test 

41. 251 11.120 

38.612 2.528 

33.831 2.428 

58.214 2.252 

44.020 2.012 

41.793 1.692 

48.949 1. 708 

40.654 2.004 

41.056 1.080 

38.768 2.660 

40.213 2.048 

45.161 2.260 

9.490 16.920 

43. 

Serial Poker 

Test Test 

60.728 6.983 

63.992 17.290 

54.612 3.785 

63.108 2.203 

45.068 7.257 

53.308 4.164 

59.812 4.164 

47.596 8.009 

62.400 4.419 

51.580 3.063 

67 .l12 2.362 

64.500 10.430 

124.34 12.590 

Of the twelve blocks tested, block 2 failed the poker test and all 12 

failed the runs test. As noted in Chapter II, section 3(b), this generator 

generally performs badly on this test and this performance seems to depend 

upon the value of c used. We tried the values c = 21, 517, 17,005 and 

29,001 and of these c = 21 and c = 29,001 gave the best results. The 

:·----~---~· ·· -· 
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results in Table 5.2 are for c = 21. 

We feel that the best values for c may be those near o or 2k 

and we intend to further investigate this matter at a lateT date. 

TABLE 5.3 

The Combination of Two Congruential Generators 

Chi-square 

Block Test 

1 10.944 

2 12.864 

3 12.288 

4 16.544 

5 12.832 

6 8.768 

7 13.920 

8 17.408 

9 13.760 

10 15.072 

11 21.056 

12 15.072 

Critical 
value at 25.000 
95% level 

Kolmogorov-
Smirnov 
Test 

0.021 

0.030 

0.037 

0.019 

0.026 

0.023 

0.024 

0.040 

0.021 

0.034 

0.034 

0.024 

0.043 

Runs Frequency Serial 

Test Test Test 

8.457 3.404 69.196 

1.329 4.700 55.220 

4.478 4.620 63.020 

4.094 1.224 69.816 

3.035 7.840 67.680 

0.601 6.324 75.656 

3.826 5.292 69.468 

4.664 2.312 76.648 

1. 226 3.368 72.592 

2.865 7.900 69.740 

0.739 4.404 67.676 

2.648 7. 772 78.868 

9.490 16.920 124.34 

Poker 

Test 

2.059 

5.285 

15.860 

12.620 

4.'992 

17.210 

3.644 

3.481 

8.793 

4.480 

5. 294 

15.860 

12.590 

Of the twelve blocks tested, blocks 3, 4, 6, and 12 failed the 

poker test. 

I 

i 
' ' 1 ' .. 
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TABLE 5.4 

Expansion of 1:2 to 100,000 places 

Chi- square 

Block Test 

1 2.192 

2 7.300 

3 7.500 

4 13.240 

5 14.040 

6 4. 720 

7 15.940 

8 6.340 

9 7.840 

10 11.900 

11 8.400 

12 7.740 

13 6.700 

14 11.563 

15 10.600 

16 4.320 

17 8.140 

18 9.760 

19 3.820 

20 9.260 

Critical 
value at 25.000 
95% level 

Kolmogorov-
Smirnov 
Test 

0.051 

0.038 

0.037 

0.032 

0.050 

0.020 

0.032 

0.034 

0.034 

0.040 

0.020 

0.021 

0.019 

0.032 

0.034 

0.032 

0.024 

0.025 

0.015 

0.022 

0.043 

Runs Frequency 

Test Test 

2.954 9.732 

1.548 4.292 

11.695 4.340 

5.488 6. 720 

4.119 11.732 

5.875 7.192 

7.145 14.100 

5.402 8.136 

13.779 8.856 

2.631 8.120 

1.247 4.312 

2.593 11.044 

9.764 5.336 

5.906 8.092 

7.683 11.856 

7.268 14.876 

3.439 15.832 

6.088 2.444 

1.941 3.340 

1.541 10.824 

9.490 16.920 

45. 

Serial Poker 

Test Test 

101.670 4.566 

91.348 10.430 

108.900 1.205 

83.960 2.037 

106.150 6.505 

76.008 4.268 

80.500 18.630 

91.824 3.140 

84.984 0.649 

77.800 5.410 

94.288 2.952 

102.400 19.510 

83.584 1.364 

104.030 1.996 

79.024 3.064 

110.600 3.760 

100.810 14.000 

78.516 7.517 

73.340 4.398 

102.940 13.940 

124.34 12.590 



In general, the performance of these numbers on the tests for 

randomness was comparable to those generated by congruential methods. 

Table 5.5 indicates the blocks that failed certain of the tests. 

TABLE 5.5 

TESTS FAILED BLOCKS 

Kolmogorov-Smirnov 1, 5 

Runs 3, 9, 13 

Poker 7, 12, 17, 20 

Even though no block actually failed the frequency or the serial 

tests, the chi- Square values were generally higher than for the 

congruential generators. 

2. Results of the Monte Carlo Integration 

In Tables 5.6 to 5, 9 inclusive, the results of the Monte Carlo 

46. 

integration are presented. Each block of ge.nerated numbers is regarded as 

a random sample from the distribution uniform on [0,1] and the integrals 

are evaluated in accordance with the methods described in Chapter IV. 

The true value of each integral is given in each of the tables. 

PJ:A;.... . • :~· ... .f 
!....~ .•• L ' 

' ' . i 
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TABLE 5.6 

The Multiplicative Generator 

1 1 10 

Block J (x3 + l)dx Joexdx fo (x + cos2x)dx 

0 

1 1. 2614 1. 7236 55.4403 

2 1. 2574 1. 7254 55.3463 

3 1.2444 1. 7170 55.8706 

4 1.2380 1. 7108 56.1970 

5 1.2456 1. 7165 55.8766 

6 1.2421 1. 7130 56.0851 

7 1.2561 1. 7191 55.6904 

8 1.2560 1. 7222 55.5221 

True 55.2282 
1.2500 1. 7183 

Value 
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TABLE 5.7 

The Mixed Congruential Generator 

1 1 10 

Block f (x 3 + l)dx foexdx fo (x + cos2x)dx 
0 

1 1.2518 1. 7195 55.6906 

2 1. 2495 1.7182 55.7778 

3 1. 2488 1. 7169 55.8316 

4 1.2536 1. 7206 55.6276 

5 1. 2542 1. 7207 55.6214 

6 1.2468 1. 7166 55.8614 

7 1. 2470 1. 7160 55.8883 

8 1.2565 1. 7226 55.5140 

9 1. 2483 1.7171 55.8362 

10 1. 2514 1. 7190 55.7124 

11 1. 2495 1. 7162 55.7736 

12 1. 2441 1. 7201 55.9525 

True 
1. 7183 55.2282 

1.2500 
Value 

. ·-·· ~- .. . ·- . .- -. ·-- ·--- ·--- -~..:.: __ ,._. , :· 
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TABLE 5.8 

The Combination of Two Congruentia1 Generators 

Block 

10 

Jo (x + cos2x)dx 

1 1. 2494 1. 7192 55.7160 

2 1.2560 1. 7230 55.5113 

3 1. 2383 1. 7111 56.2038 

4 1.2564 1.7226 55.5103 

5 1.2522 1. 7180 55 . 7611 

6 1.2394 1. 7137 56.0486 

7 1.2508 1. 7203 55.6495 

8 1. 2377 1.7083 56 .3510 

9 1. 2467 1.7157 55.9100 

10 1. 2495 1. 7159 55.8586 

11 1. 2553 1. 7089 55.4851 

12 1. 2407 1. 7244 56 .0950 

True 
1.2500 1. 7183 55.2282 

Value 
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TABLE 5. 9 

Expansion of 1:2 to 10,000 places 

Block 

1 

J
0

cx3 + l)dx 

10 

fo (x + cos2x)dx 

1 1.2662 l. 7289 55.1283 

2 l. 2342 1.7093 56.3216 

3 1.2430 1. 7122 56.1043 

4 l. 2470 l. 7170 55.8033 

5 l. 2258 1.7033 56.6743 

6 1.2430 1. 7150 55.9713 

7 1.2596 1. 7245 55.4146 

8 1.2638 1. 7254 55.3264 

9 1.2637 1.7258 55.2972 

10 l. 2416 1. 7130 56.1010 

11 1.2544 1. 7191 55.6929 

12 1. 2493 1. 7187 55.7585 

13 1. 2517 1. 7184 55.7439 

14 1.2394 1. 7151 55.9908 

15 1.2604 1. 7257 55.3548 

16 1. 2574 1. 7236 55.4538 

17 1. 2423 1. 7137 56.0388 

18 1. 2509 1. 7167 55 . 8332 

19 1. 2516 1. 7195 55.6938 

20 1.2455 1. 7154 55.9140 

True 1.2500 1. 7183 55.2282 

Value OH·-· · -

.,.· ··:··. 
_;;~~r.:_-.:-o---~----·;·""'' - ····- ·-"''···· -:;·:~::;~7~ <~- .. ~ .. - . . 

. . ::::.::- - .. : • ' ·.· . . .. 
-· : : ;. ·-''. . .. ,_ __ ~·..;.__.:._ ____ . 

. · . 
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3. Correlations and Conclusions. 

Several authors, including Hull and Dobell [17] and Jansson [19], 

have stated that no finite class oftests can guarantee the general suit­

ability of a finite sequence of numbers. Therefore, to determine the 

suitability for a particular application, the generated sequences have to be 

studied in the light of that application. 

To the computed data, we applied the "Descriptive Statistics Package 

with Data Transformations" [11] provided by the Division of Educational 

Research Service, University of Alberta. The correlations between the 

test scores and the absolute error in ·the .computed values of the integrals are 

summarized in Tables 5.10 and 5 .11. The actual values of . the coi·i.·ela tion 

coeffici~nt are given in Appendix 1, page 54. 

I 1 -

I2 -

I 3 -

The following legendis used in Tables 5.10 and 5.11 and Appendix 1. 

1 

J (x3 + l)dx 
0 

1 

J exdx 
0 
10 

J (x + cos2x)dx 
0 

G1 - The multiplicative generator 

G
2 

- The mixed generator 

G
3 

- The combination of two generators 

G4 - Digits in II. 

T
1 

- The chi-square goodness of fit 

T
2 

- The Kolmogorov-Smirnov test 

T3 - The runs test 

T4 - The frequency test 

Ts - The serial test 

T6 - The poker test 
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TABLE 5.10 

Most SignificantL Tests for each Integral 
Highest Frequency of 

G 1 G2 G3 G4 Occurance 

I 1 T 3• T 6• T 1 T2,T3,T5 T 2• T 6• T 5 T 2• T 6• T4 T6 and T2 

I2 T 6• T l ,T 4 T 2• T 5• T 3 T3,T1,T4 T 2• T 3• T 4 T3 and T4 

I3 T 5• T 4• T 1 T 5• T 4• T 2 T 5• T 2• T 6 T1,T3,T5 T4 and Ts 

From these results, we make the following conclusions: 

(i) When employing the crude estimator, the Kolmogorov-Smirnov and 

poker tests appear to be the most 11sefuJ.. 

(ii) When employing variance reducing techniques the runs, frequency, 

and serial tests appear to be· the most u,seful. 

(iii) Although most authors regard the chi-square goodness of fit 

test as basic when testing fvr randomness, it does not appear to be ' useful 

for this application. 

TABLE 5.11 

Most Significant Tests for each Generator 

G 1 T 1• T If• T 6 : 

G2 T 2• T 5• T 3 

G3 T 2• T 5• T 6 

G4 T 2• T 3• T If 
1 a partl'cular integral eva_lu.ation is conveniently 
The significance of a test for f t 
measured by the absolute value of the correlation coef lClen . 
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We conclude from these results that 

(i) When testing the randomness of numbers, for this application, 

the Kolmogorov-Smirnov test is more useful than the chi-square good-

ness of fit test or the runs test. 

(ii) When testing the randomness of digits it appears tnat, generally, 

no one test is more useful than the others. We suggest that, for this 

aspect of testing, each generator has to be considered individually. From 

our investigation it appears that 

(a) for congruential generators, the serial and poker tests are the 

most useful . 

(b) for the digits in li , the frequency test is the most useful. 

. .-~ 
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APPENDIX 1 

Values of the Correlation Coefficient 

T 1 T 2 T3 T4 Ts T6 

11 - 0.2650 -0.2135 -0.3576 -0.0523 0.0918 -0.3223 

G1 12 0.2128 0. 0115 -0.0988 0.1007 0.0716 -0.4217 

13 -0.3862 -0 . 2980 -0.1861 -0.4254 0.5123 0.1944 

11 -0.2257 0.7357 0.3973 -0.1745 -0.3938 0.0984 

G2 12 0.0924 0.7458 0.3178 - 0.2148 -0 . 3989 -0.2505 

13 -0 . 1320 -0.1707 -0.1309 -0.1936 0.5072 0.0233 

11 0.0259 0.3964 -0.1812 -0.1919 0. 2234 0.6425 

G3 12 0.5733 0.6568 -0. 2320 -0.3063 0.1277 0.2377 

13 -0.2166 0.4036 -.1188 0.1274 0.5316 0.3752 

11 0.1392 0.8250 0.4073 0.3030 0.2912 -0. 1186 

G4 12 0.1154 0.8706 0. 7883 0.3424 0.2900 -0.0545 

13 0.3051 0.1396 -0.3108 -0 .1698 0.2332 0.1274 
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