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ABSTRACT 

A low-field (0.31 Oersted peak) a.c. susceptibility bridge 

has been built. Volume susceptibilities as low as 7 x 10-8 emu/cc are 

detectable. 

The bridge was calibrated over the range 10-6 - 10-2 emu/cc 

using two independent methods, namely (1) paramagnetic salts, and (2) a 

40- turn coil. The two methods gave very good agreement. 

A furnace, capable of attaining 800°C, was added to the bridge, 

so that susceptibility could be measured as a function of temperature. 

The furnace was made of non-magnetic Chromel-A heater wire and wound 

non-inductively. · 

Errors in room temperature susceptibility readings range from 

2% for k ~ 1 x 10-2 emu/cc to 20% for k ~ 1 x 10-7 emu/cc. At present, 

room temperature susceptibilities of less than 4 x 10-5 emu/cc cannot be 

measured to better than 20% as a function of temperature due to more 

serious restrictions during heating. 

Possible improvements in the equipment capable of reducing 

these errors, as well as alterations to extend the usefulness of the 

apparatus, are discussed. 

Specimens from several different rock types including lava 

flows, ignimbrites, red sandstones and dykes were subjected to high tem­

perature susceptibility measurements in air. Results from these measure­

ments generally confirm the results obtained from studies of Curie points 

and other rock magnetic properties by various authors. 
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CHAPTER 1 

INTRODUCTION 

1.1 Magnetic Susceptibility 

If a magnetic field, H, induces a magnetic moment per unit 

volume, j, in a materi.al, then these quantities are related by the 

equation 

-+ -+ 
J = kH (1.1) 

where k is called the magnetic susceptibility of the material in the case 

of paramagnetic materials. 
-+ 

For ferromagnetic materials k = k(H) and in 

general k is constant only over the initial portion of the magnetization 

curve. This initial (or 11 reversible 11
) susceptibility, k

0
, is defined as 

k - dJ I o - dH H=O ' (1.2) 

where the absence of vectors indicates that the magnetization is parallel 

to the applied field, i.e. perfect isotropy is assumed. Any further increase 

in the applied field produces an irreversible magnetization. 

The magnitude of susceptibility depends on the type of magnetism, 

and is generally in the ranges: 

k ~ -10-6 emu/cc for diamagnetic materials 

k ~ +10-6 -+ 10-4 emu/cc for paramagnetic materials 

k ~ 1 -+ 10+5 emu/cc for ferromagnetic materials. 

It should be noted that, in equation (1.2), k0 is the true 

volume susceptibility and H is an external applied field. However, the 

magnetic field acting in a ferromagnetic material may not be the same 
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+ as the applied field. In practice, the internal or effective field, Heff , 

is less than the applied field and is given as 

(1.3) 

+ 
where H0 is the applied field 

and N is the demagnetizing factor. 

The value of N depends on the shape of the ferromagnetic 

material. For a spherical ferromagnetic grain the value is 4~/3. The 

apparent susceptibility, ka , can then be written as 

k 
k = 0 

a 1 + Nk 
0 

(1.4) 

In natural rocks the susceptibility depends on a variety of 

factors, among them the composition of the actual rock, the shape and 

distribution of the ferromagnetic minerals, as well as possibly magnetic 

grain interaction and sample shape. 

Important factors other than those mentioned above are: 

(a) Magnetic Field Strength 

It has been found that the susceptibility of ferromagnetic 

materials increases with an increase in the applied field up to a point 

(typically ~150 Oe for magnetite-bearing rocks) and then decreases again. 
+ + 

This behaviour is expected from dJ/dH on the virgin curve of a typical 

hysteresis loop (Strangway, 1967). 

Worldwide measurements of paleointensities suggest that the 

amplitude of the Earth's magnetic field has not changed substantially 

over most of geological history (Tarling, 1971). Thus, any rocks which 

are used will have come under the influence of this field, and there­

fore it is advantageous to measure susceptibility in applied fields of the 
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order of magnitude of the present field. In such low fields susceptibility 

can be considered to be nearly, but not completely, independent of the 

field {Pandit, 1967). 

(b) State of Maqnetization 

Contradictory evidence has been published on the effect of 

the remanent magnetization of a sample on its susceptibility. However, 

it is found that, generally, the susceptibility decreases \Otith increasing 

remanent magnetization {Stranqway, 1958, 1967). 

{c) Grain Size 

For a given material the susceptibility tends to increase 

with increasing grain size. This is especially important for diameters 

less than 50 microns and the rate of increase of k is greatest \Afhen this 

size approaches a value determined by the transition from sinqle-domain 

to multi-domain structure, since single-domain grains are magnetically 

hard and so tend to have low susceotibilities. Multi-domain grains are 

easier to magnetize since it is easier to move domain walls than to ro­

tate magnetization vectors. 

(d) Stress 

Theory confirmed by experiments (See summary by Breiner, 1967) 

shows that susceptibility decreases \'/ith increasing stress in the direc­

tion of the applied stress. This susceptibility change is nearly linear 

with stress. Its magnitude depends on the rock type, but it is usually 

in the range of 1 - 3% in susceptibility per 100 kg/cm2 stress. For 

stresses applied perpendicular to the axis of measurement, the results 

quoted by Breiner were inconsistent. 
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(e) Temperature 

The changes in susceptibility produced by changes in the 

temperature depend on the type of material used. For diamagnetic ma­

terials there is no temperature dependence, whereas paramagnetic sub­

stances obey the Curie law x = CIT , where x is the susceptibility per 

mol, Tis the absolute temperature and Cis a constant. Ferromagnetic 

materials are strongly temperature dependent. For single crystals, the 

susceptibility generally decreases with increasing temperature until the 

Curie temperature, Tc· Above Tc the materials are paramagnetic, obeying 

the Curie-Weiss law x = C'/(T-Tc) where c• is a constant. 

Since rocks are much more complex than a single crystal, the 

susceptibility variation as a function of temperature fits no simple 

expression. It has been found, however, that susceptibility generally 

increases on heating, occassionally by a large factor, before falling off 

sharply at the Curie temperature. Generally, if this increase is rever­

sible, it will be due to the 'Hopkinson Effect• (Nagata, 1961 p.143). 

1.2 Importance of Susceptibility Measurements 

Both in geophysical prospecting and in its application to 

geological phenomena such as sea-floor spreading, knowledge of the 

initial susceptibility is necessary in the interpretation of anomalies 

in the Earth's magnetic field. Since susceptibility is field dependent, 

measurements should be made in fields on the order of the Earth's field, 

as pointed out previously. Since the origin of these anomalies may be as 

deep as some tens of kilometers below the surface, knowledge of the be­

haviour of the material as a function of temperature is of great importance. 



- 5 -

Measuring susceptibility at high temperatures is an alternate 

way of obtaining a good estimate of Curie points (Chapter 3). In fact, 

the sharp decrease in susceptibility just below Tc may result in more accu­

rate values of Tc than are obtained at high fields (Nagata, 1961). Since 

susceptibility depends on the mineral content of a specimen, any chemical 

transformation due to heating (Chapter 3) will at once be noticed. 

The initial susceptibility is important to paleomagnetism be­

cause it enters the Konigsberger ratio, On , defined as 

Jn 
0 =-

n k H 
0 

(1.5) 

which is the ratio of the natural remanent magnetization (NRM), Jn, to 

the induced magnetization, and has been found to be a useful gauge of 

stability of the NRM. For ferromagnetic rocks, this ratio commonly lies 

between 1 and 10, but may lie outside these limits. For rocks of the same 

general composition, On generally tends to decrease with increasing age; 

being frequently less than 1 for rocks of pre-Tertiary age, even in the 

case of igneous rocks. 

1.3 Instruments for Measuring Susceptibility 

Methods of measuring susceptibility developed by various 

workers are summarized in Table 1.1, along with figures for their 

attainable sensitivity. The classical instruments ( e.g. balances by 

Kelvin, Curie and Gouy) were designed for high-field measurements of the 

weak paramagnetism or diamagnetism in various materials, but all methods 

listed are applicable to powdered or whole rock. The sensitivity require­

ments for measurements with ferromagnetic rocks tend to be as high as 
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Table 1.1 Some estab 1i shed methods of measuri no magnetic suscenti bi 1 i tv 

and anisotropy of suscentibilitv 

Method Developed By Field Temnerature Correlati on Sensitivity 
H (Oe) (OC) with k (emu/cc) 

Kelvin (1890) 103 -268 to Aonarent 
10-7 Curie (1903) to 104 1000 loss of 

Gouy (1889) aporox. mass 
Balance 

Chevallier (1925) Hiqh Room Measurement 
Ballistic Stschodro (1927) fields temp. of electric 

- - - - - - - - - - - - - - - - - - - - charoe 
Nagata (1940) 1-103 To 800 · 

-- -- -------- --------- ---- ------ --- - - -- --
Mutual 
Inductance Mooney (1952) 
Bridge 

Low Room 
temp. 

Imbalanced 
resistance 3 X 10- 6 

- --- --------- - -------- - ------ --- ------ -
A. C. Trans-
former Bridqe Graham (1964) 
(Anisotropy} 

Room 
temp. 

Unbalanced 
siqnal 

------------------------------ - - - ---- - -

Inductance 
Bruckshaw & Room Differential 1 x 10-5 
Robertson (1948) ~o.s temp. voltage 
- - - - - - - - - - - - - - - - - - - - measured by 

Bridge Radhakrishnamurty a potentia-
& Sahasrabudhe 0.5 To 700 meter 1 x 10-5 

(1965) 
-- ---- ------ - -- -- ---- - --------- - ------ -
D.C. Astatic Blackett (1952) 
Magnetometer Low Room 

temp. 

Varies wi t h 
Deflection maqnetometer 

sensitivity 

------ - - - ----- ------ - -- -------- - -------
Spinner 
Magnetometer Noltimier (1967) 
(Anisotropy) 

To 70 Room 
temp . Voltage 

----- - ---- -- ----- - ------ ---------- ---
Torsion 
Balance Stone (1962) 
(Anisotropy) 

To 40 Room 
temp. Deflection 
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those for purely paramagnetic materials, since the large susceptibility 

of the ferromagnetic materials in the rock is effectively reduced by their 

dissemination in a comparatively non-magnetic groundmass, and because of 

the desirability of making measurements in low fields (Section 1.2).· 

The methods used to measure susceptibility of rocks (Table 1.1) 

have been reviewed in Collinson et al (1967) and by Pandit (1967). Sub-

sequent to these reviews, some new susceptibility instruments have been 

reported in the literature. These include: 

(a) Pandit's (1967) a.c. inductance bridge. This was built 

according to the design by Bruckshaw and Robertson (1948), in which the 

detector is a concentric double coil arrangement connected in series 

opposition with a third coil consisting of a small number of turns being 

used as a fine balance. This bridge is capable of a high signal-noise 

ratio, but proved to be difficult to balance, so that in practice, low­

field (0.5 Oe) volume susceptibilities less than 5 x 10-5 emu/cc cannot 

be reliably measured with it. 

{b) Christie and Symons' {1969) solenoid transformer bridge, 

which will be further discussed in Section 2.1, is capable of detecting 

volume susceptibilities as low as 5 x 10-8 emu/cc in a field of 0.3 Oe. 

(c) Stephenson and de Sa's {1970) a.c. bridge, in which a 

furnace capable of reaching 700°C was incorporated, has a noise level 

equivalent to 1 x 10-6 emu/cc in a field of 2.5 Oe. 

1.4 Objective 

The aim of this investigation was to build an instrument for 

~ 
I 
I 
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measuring susceptibility of rock specimens in low inducing fields. The 

instrument had to be sensitive enough to measure weakly magnetic rocks 

(lo-7 - to-5 emu/cc). It had to include a furnace to allow the measure­

ment of susceptibility as a function of temperatures as high as 800°C. 

The objective also included the measurement of temperature­

dependence of susceptibility on a selection of rock specimens from dif­

ferent coastal areas across the North Atlantic. The purpose of this was 

two-fold: 

(1) To test the reliability of the instrument; and 

(2) To provide an important additional magnetic parameter for 

these rocks, which had previously been subjected to different kinds of 

magnetic measurements by other members of the geophysics group at 

Memorial University. 
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their instrument, while retaining high sensitivity. Furthermore, the 

stability of the system with respect to drift was satisfactory if certain 

precautions were taken as described later. 

2.2 The Susceptibility Bridge 

The theory behind the bridge is simple. It is made up of two, 

nearly identical, balanced assemblies, each consisting of a pair of 

Helmholtz coils coaxial with a pick-up coil. Fig. 2.1 shows the relative 

positions of the two assemblies. The two pick-up coils are subjected 

to the a.c. field produced by their respective Helmholtz coils. Since 

these fields are equal, and the pick-up coils are connected in series 

opposition, there is no signal from them until a magnetic sample is 

placed in one of the pick-up coils. The net emf output is due to the 

induced magnetization, which is a measure of the susceptibility of the 

sample. The actual construction of the bridge is more complex because 

of the difficulty in producing identical assemblies. 

2.3 The Bridge Construction 

A Princeton Applied Research (PAR) HR-8 oscillator and lock­

in amplifier provides a 1000Hz signal that is used to excite the two 

sets of Helmholtz coils, H1 and H2 (Fig. 2.2), which are connected in 

·series with a 0.038 uF capacitor for maximum current flow. The fields 

produced induce a voltage in the two pick-up coils, P1 and P2, which 

are connected in series opposition with capacitors C2, C3, C4 across P2. 

These capacitors are used to resonate the pick-up system. Since it is 

extremely difficult to build identical coils, an additional winding, H3, 
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PI 

--

P : , Pre - Amplifier 

HI, H 2: Helmholtz Coils - 1000 turns- No. 22 Copper Wire 
( 25 layers . of 40 turns each) 

H3 : Counterwound Coils- 50 turns -No. 22 Copper Wire 

Rl 

R2 

R3 

PI, P2. : . Pick-:-uP . Coils -1009 turns -No. 28 Copper Wire . 

CI:0.038fLF, C2:0.001-0.0ifLF, C3:0.0001-0.00ifLF, C4: 15-350PF 
(Air Capacitor) 

Rl: 1200 ll, R2: 500 n , R3: 10 ll 

Fiqure 2.2 Wirinq Diaoram for Susceptibili t y Unit 
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is added to one of the two assemblies. It is used to adjust the field 

slightly, and resistors R1 - R3 are used for fine balancing of the 

conductive component. The net output from the pick-up system is fed 

into a modified PAR Type B pre-amplifier. 

This pre-amplifier has a transformer input for low input 

impedances, with an initial gain of 100. The transformer connections 

were changed to reduce the gain to approximately 52, as this resulted 

in fewer long- and short-period drifts. The signal then passes through a 

linear amplifier, a narrow-band amplifier, a phase-sensitive detector, 

and a d.c. voltmeter. This voltage is simultaneously displayed on a 

Hewlett-Packard (Model 3430A) digital voltmeter and on a Hewlett-Packard 

(Model 71008) chart recorder. 

2.3.1 The Inducing System 

Since the bridge consists of two almost identical transformers, 

only one will be described. Fig. 2.3 shows a cross-section of the trans­

former. A uniform alternating magnetic field is produced by the pair of 

Helmholtz coils. Using the equation in Naqata (1961, p. 72), it can be 

shown that the maximum deviation from a uniform field over the space occu­

pied by a cylindrical specimen of diameter 2.22 em and height 2.54 em is 

less than 1%. Theoretically, the peak field produced by each pair of 

Helmholtz coils for a peak current of 1.9 rna is 0.30 Oe, and measurement 

with a small search coil gives a value of 0.31 Oe. 

2.3.2 The Pick-Up System 

The pick-up coil (Fig. 2.3) rests on three screws which are 
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used to center it. The inside dimension of the coil had to be made large 

enough to accomodate a furnace and cooling assembly designed to take 

cylindrical rock specimens of 2.22 em diameter. In the absence of the 

furnace, there is enough room to accomodate 3.5 em cubes or 5.0 em dia­

meter cylinders, increasing the sensitivity by a factor of about four, 

and facilitating measurement of the anisotropy of susceptibility. 

For the same current used previously, the field of the Helmholtz 

coils produces a peak voltage of 0.79 volt in each pick-up coil. In order 

to measure susceptibilities of the order of 10-7 emu/cc, it was necessary 

for the differential voltage between the two pick-up coils to be seven 

orders of magnitude less than the voltage of each coil. 

2.4 The Heating System 

In order to measure susceptibility of rocks as a function of 

temperature, it was necessary to build a furnace that could heat specimens 

up to 800°C. The furnace, which had to be non-inductive and non-magnetic, 

was built as described below. 

Thirty-four turns of size 22 Chromel-A heating wire were wound 

non-inductively, i.e. seventeen doubled back, on a quartz tube (Fig. 2.4; 

fewer than the actual number of turns are shown). The wire was cemented to 

the tube with a thin layer of high-temperature ceramic. This was necessary 

to avoid any slipping of the wires which would cause a short-circuit. 

The furnace was then placed inside a second quartz tube separa­

ted from it by a layer of magnesium oxide to insula~e the furnace and to 

hold it in place. The insulation is quite effective; it takes 15 - 20% 

more current to attain a given temperature without it. 
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This assembly is placed inside a third glass tube. Hater is cir­

culated in the space between the second and third tubes to provide cooling. 

To measure a soecimen, it is placed on a quartz samole cradle 

(Fig. 2.4) whi~h is then lowered into the furnace tube. There it rests 

upon a quartz pedestal in the center of the pick-up coil. 

At the beginning of an experiment a thermocouple is lowered 

into the tube and rests on top of the rock. In this way the surface-tem­

perature of the rock, rather than the temperature of the air, is measured. 

The thermocouple is connected to a Leeds and Northrup temperature poten­

tiometer. 

Since knowledge of the temperature distribution inside the 

furnace is essential, the thermocouple was lowered to the bottom of 

the furnace, and after the furnace had attained an equilibrium tempera­

ture, the thermocouple was slowly raised and the temperature measured 

at height intervals of the order of ~ em. The results of these measure­

ments, obtained at two different mean temoeratures (Fig. 2.5), indicate 

that the maximum temperature difference in the volume occupied by a 

standard specimen is 15°C. This difference probably is always further 

reduced during actual heating and cooling of a specimen , since thermal 

conduction within the rock would tend to decrease the temperature 

gradient. 

The furnace was used in only one of the transformer assemblies. 

This arrangement frees the second assembly for future use in anisotropy 

or low-temperature measurements. An identical furnace in each ·as.sembly 

(with the second furnace left empty) might have reduced some of the 

difficulties due to non-symmetry described in the next section. 
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2.5 The Cooling System 

Since the transformer assemblies are very temperature-sensitive, 

especially if only one of them is affected by the heat treatment, several 

possibilities for cooling the furnace were explored: 

(1) Air at room temperature, forced between the second and 

third glass tube, was not very effective in removing the heat produced 

by the furnace. 

(2) An attempt was made to cool the furnace by using tap 

water. This was tested with the furnace switched off. Since the tap 

water was much below room temperature and since only one of the two 

assemblies was cooled, the output of the bridge changed drastically. 

This drifting in the output voltage continued and no equilibrium was 

established after more than an hour•s run. Using two cooling systems 

in parallel, one for each assembly, might have achieved a satisfactory 

result, but it was not attempted. 

(3) A further alternative was a closed system. This was 

attempted using two 3-gallon containers of water. This method was satis­

factory except that the water temperature rose about 20°C over the 1~ hours 

required to heat a specimen. To eliminate this problem, the cooling system 

was expanded, using an SO-gallon capacity plastic tub as the main reser­

voir. The water was pumped from there into a large, plastic-coated wooden 

tray of dimensions 105 em x 93 em x 13 em, from which it flowed through 

the system (Fig. 2.6). The flow-rate is adjustable. Due to the large 

volume of water available, the temperature rose less than a degree Centi­

grade even when the furnace was in continuous use. 
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Since the water in the reservoir was about 2°C colder than 

were the assemblies, it cooled the one containing the furnace, causing 

a small drift in the differential output voltage. However, the bridge 

achieved equilibrium after about 20 minutes and the balance was not 

affected any further. This method of cooling the furnace was finally 

adopted, since it gave the most satisfactory results. 

2.6 Calibration 

Several possible ways exist to calibrate a susceptibility 

bridge. 

One of the most widely used methods appears to be the one 

where the susceptibility of several specimens, usually rocks also carrying· 

a remanence, is determined using an astatic magnetometer (Pandit, 1967). 

The specimens, ranging over several orders of magnitude, generally 

10-4 - lo-2 emu/cc, are then measured in the bridge and the calibration 

is achieved in that manner. 

A second method is to use paramagnetic salts (Collinson et al, 

1963). This method is useful for all ranges up to about 2 x 10-4 emu/cc. 

It was used in the present calibration to give values in the lower ranges 

and to confirm the calibration procedure adopted below. 

A third method was also employed. It uses the principle of 

modelling induced magnetization of a sample by passing an a.c. current 

through a coil. A single turn of wire produces a magnetic dipole moment, 

m, which is given as 

-+ i -+ 
m = rods (2.1) 

where i is the current in amperes and dt is the mean cross-sectional area ~ 
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of the loop in cm2. 

The magnitude of the total dipole moment/unit volume, J, for a coil of 

N turns, height h em and radius r em, is 

i 2 
N 10 nr N" 

J = = l~h h nr2 
(2.2) 

........ .... 
Since the susceptibility is k = J/H, where H is the applied field along 

.... .... 
the axis of the coil, then, assuming that His parallel to J, 

_ Ni 
k - lOhH (2.3) 

Forty turns of number 32 copper wire were wound evenly on a 

lucite rod of diameter 2.22 em and height 2.54 em. The dimensions were 

chosen so that the coil would closely resemble the shape of a standard 

specimen. 

This coil was connected to a Hewlett-Packard (Model 6824A) 

Power Supply-Amplifier, which was operated in the Amplifier mode. It was 

fed from the PAR HR-8 oscillator and was therefore operating at the same 

frequency as the bridge. The current passing through the coil was deter­

mined by measuring the voltage drop across a standardized resistor 

using a Philips (Model 2403) Voltmeter. 

The bridge was then calibrated by measuring the current, 

converted into volume susceptibility, and the corresponding voltage from 

the pick-up coils. Fig. 2.7 shows the calibration curve. 

Three salts were prepared to confirm this calibration. They 

were (Collinson et al, 1963) 

1) Manganese Sulphate 

2) Cobalt Nitrate 

3) Nickel Nitrate 

(x = 6.46 x to-5 emu/g) 

(x = 3.31 x to-5 emu/g) 

(x = 1.36 x to-5 emu/g) 
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The salts were powdered and then placed in containers having the same 

inside dimensions as the calibration coil. If the volume of the containers 

and the mass of the salts are known, the susceptibility/unit volume of 

the salts may be calculated. The three points are shown in Fig. 2.7 and 

confinm the coil calibration. 

Since a number of specimens were less than 2.54 em in height, 

a correction factor had to be applied to the bridge output readings. 

This factor was obtained by shortening the calibration coil and recali­

brating. This was achieved by 10 successive removals of 2 turns each from 

the 40-turn coil and performing mini-calibrations at each stage. This 

procedure resulted in the correction curve {Fig. 2.8) for samples of 

height from 1.27 em to 2.54 em. 

For any specimen in this height range, the output voltage of 

the system has to be multiplied by the correction factor for the corres­

ponding height. This corrected voltage is then used to determine the 

susceptibility of the specimen. 

The bridge calibration indicates a linear relationship between 

susceptibility and voltage output. The minimum detectable signal, which 

is 1 ~V, corresponds to a susceptibility of 7 x 10-8 emu/cc. This high 

sensitivity makes the bridge suitable for measuring most rocks useful for 

paleomagnetic studies as well as for measuring susceptibility anisotropy 

of the relatively more magnetic rocks. 

2.7 Errors 

Uncertainties in the susceptibility measurements may be broken 

into two main categories - those present in 
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(A) the room-temperature measurements, and 

(B) the high-temperature measurements. 

There are several sources of errors which contribute to (A). 

Some of these are minor errors like: 

(i) The error involved in the calculation of the specimen 

height. By making several height measurements, this error can be reduced 

significantly. 

(ii) Axial positioning of ·the specimen. The error involved 

here is minimal, since the specimen always rests on the pedestal. Even as 

much as a 1 mm positioning error along the axis causes only a 0.5% error 

in susceptibility, and the error resulting from a lateral offset of the 

same amour.t would be negligible. 

(iii) Short-term drift. This can be greatly reduced by taking 

•zero• readings before and after the specimen has been measured, as well 

as by repeat measurements. The measurement may be made with one of the 

longer time constants available on the HR-8, in order to reduce short-term 

fluctuations. 

(iv) Errors in determining the inducing magnetic field were 

small since accurate electronic measuring instruments were used. 

(v) Frequency drift . The frequency of the inducing field fluc­

tuates by ±0.1% over short periods and even less~ when short periods are 

averaged, over periods of hours. 

The two major sources of errors are in (vi) the measurement of 

the output voltage of the system and in (vii) the susceptibility determi-



- 27 -

nation. 

(vi) The lock-in amplifier (PAR) has a gain accuracy, after 

calibration, of 1% on the range calibrated and 2% on all other ranqes. 

This accuracy was confirmed by switchinq ranges and measurin9 the same 

output on the different ranges. Since the voltage readings are displayed 

on a digital voltmeter, there is no error involved in reading the meter 

scale on the amplifier. 

(vii) The error in the susceptibility calibration is difficult 

to estimate. Both N and h in equation (2.3) contain neqlioible errors. The 

error in i will certainly be less than 1% in the three higher ranges 

{i = 0.002 rna to 2 rna) and better than 5% in the lower range. 

Errors in the susceptibility determination, usin9 the salts, 

arise from errors in the measurements of the internal volume of the 

containers and the weight of the salts. The volume is determined to better 

than 1% and errors in weiqhino are neqliqible since they were performed 

on a Sartorius (Model 2600) single-pan balance with an accuracy of better 

than 0.05%. Impurities in the salts (the manufacturer states a purity of 

greater than 97.5%) may represent the iargest error in this determination. 

Besides the above-mentioned errors there are two additional 

sources of error in the high temoerature measurements; 

(viii) Long-term driftinq of the brid~e outnut ~ of a period of 

approximately one hour, represents a major problem for \AJeak rocks. The • zero • 

measurement is taken at the start and at the end of the run , which generally 

takes two to three hours. Any change in this •zero• is interoolated linearly 

over the run. However~ it was found that the •zero• would oscillate about this 
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line with a period of about one hour, and that the amplitude of the oscil­

lation represents a susceptibility variation of about ±7 x 10-6 emu/cc. 

(ix) A second limitation placed on high-temperature measurements 

is due to the effect of heating the furnace, as the wiring may not be per­

fectly non-inductive or may contain small ferromagnetic traces. This 

effect was observed during an empty-furnace run and found to be appreciable 

only for rocks in the range of 10-5 emu/cc and less. Since the effect is 

reproducible to about 10% for all temperatures up to 800°C, these empty­

furnace readings are subtracted from the total output. 

The effects due to (viii) and (ix) represent a susceptibility 

of about 4 x 10-5 emu/cc at high temperatures and thus place a lower limit 

on the susceptibility which may be measured reliably as a function of 

temperature. 

The expected errors in the determinatfon of susceptibility 

may be summarized as follows: 

Susceptibility Total Expected Error in Bridge Measurements 

(emu/cc) At Room Temperature At High Temperature 
(%) (%) 

> 1 X 10-2 2 3 

> 1 X 1o-3 3 5 

> 1 X 10-4 5 10 

> } X to-5 7 20% at 4x10-5emu/cc 

> 1 X 10-6 10 Bridge should not be used 

> 1 X 10-7 20 in these ranges 
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Errors in the temperature determination are two-fold: 

(i) Uncertainties in the thennocouple voltage output. Since 

this was checked against a standardized thermocouple, the error is less 

than 1°C. 

(ii) The furnace temperature distribution. The maximum tem­

perature variation over the volume occupied by a specimen is 15°C at 

high temperatures and may thus be taken as the maximum error in the 

temperature determination. Because of the reduction of this temperature 

gradient by the thermal conductivity of rock specimens, an estimate of 

the maximum error in any quoted high-temperature value on the average 

is about ±10°C. 

, 
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CHA~1!R 3 

RESULTS AND INTERPRETATION 

3.1 Introduction 

The thermal dependence of susceptibility has been investigated 

for several different rock types. To determine consistency and reproduc­

ability of results for these rocks, at least three specimens were pro­

cessed from each of the different areas. Heating of the specimens, which 

was carried out in air, proceeded until their susceptibility dropped to 

nearly zero. The temperature was raised an additional 50 - 70°C and 

maintained at that level for several minutes before the specimens were 

slowly cooled. The susceptibility-vs.-temperature curves were generally 

recorded on a Hewlett-Packard (Model 7100B) strip-chart recorder. One of 

the typical runs is shown in Fig. 3.1. The zero level is interpolated 

between the start and the end of the run. The output is measured from 

this level and, after correction for specimen height, is converted into 

susceptibility from the calibration curve and is replotted. The rates of 

heating and cooling may be observed from the figure and correspond to 

about 100°C per 15 minutes. This rate was chosen after subjecting some 

specimens from the Wabana red sandstones (Section 3.6) to varying rates 

of heating. It was found that specimens would explode if heated more 

rapidly. Unfortunately further experimentation concerning the rate of 

heating was not carried out until after the conclusion of the present 

investigation. These experiments showed that the rate of heating could 

be increased substantially without breaking specimens other than those 

from Wabana. 
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However, as the rate is increased, a question on thermal lag 

in a specimen arises. Specimens from several localities were reheated, 

reaching 625°C in about 20 minutes compared with the previous 90 minutes 

required to reach the same temperature. The apparent Curie temperatures 

obtained for the fast heating were between 8°C and 15°C above those 

obtained usinq the slow heating. This increase was attributed to thermal 

lag, which was greater in the case of the fast heating. This difference 

in observed Curie temperatures can be eliminated by heating the specimen 

rapidly to just below its Curie temperature, leaving it at this tempera­

ture for several minutes to reduce the thermal gradient in the specimen~ 

and then heating the specimen more slowly until just above the Curie 

point. This procedure, apart from greatly reducing thermal lag, allows 

measurements to be made much more quickly than by slow heating over the 

whole temperature range. 

When the heating and cooling curves of Figs. 3.2 - 3.8 were 

plotted, it was found that for all the specimens the steep portion of the 

cooling curves was between 15°C and 40°C below the steep portion of the 

heating curves. To determine the cause of this discrepancy, a small hole 

was drilled axially to the center of one of the specimens from Henley 

Harbour (Fig. 3.2) and the thermocouple lowered into this hole. When the 

heating and cooling curves were plotted, there was no difference between 

the two curves. Hence the reason for this apparent phase lag between the 

original heating and cooling curves must be due to the fact that during 

heating the thermocouple reads above, and during cooling it reads below, 

the average specimen temperature. This procedure was adopted for at least 

one specimen from each site, and the proper correction made on the dia-

grams for all other specimens. 



- 33 -

On each curve the susceptibility, k, is expressed in electro­

magnetic units (emu/cc) as obtai~ed from the calibration curve in Section 

2.6 and is the apparent rather than the true susceptibility (Section 1.1). 

3.2 Specimens from: Henlex Harbour 

Several specimens from a single lava flow near Henley Harbour 

on the south coast of Labrador were subjected to susceptibility measure­

ments. The specimens are fine-grained black basalts of presumed Lower 

Cambrian age. Murthy (1967) measured the natural remanence (NRM) intensi­

ties of 20 samples (155 specimens) and obtained values in the range 

0.13 - 2.5 x 10-3 emu/cc. The NRM intensities of the three fresh specimens 

chosen for the present study varied between 0.92 - 1.23 x 10-3 emu/cc, 

which gave On-values (equation 1.5) between 0.41 - 0.65. On-values less 

than unity are not unusual in such old rocks, even those of volcanic ori­

gin, because of the relative long time availab.ie for randomizing domain 

alignments contributing to the remanence. However, these low On-values may 

indicate the significant presence of an unstable remanence component in 

these rocks. Murthy inferred such a component in his specimens from the 

fact that the observed mean NRM direction was not very different from that 

of an axial dipole field computed for present time. He confirms the pre­

sence of some instability in the otherwise quite stable NRM of these rocks 

by alternating field (AF) demagnetization. 

Murthy (1967) further suggests that 11 the relative inhomo-

geneity in the magnetization may be a reflection of partial chemical alter­

ation in the rock11 • This suggestion may give a clue to the hump found in 

the susceptibility heating curves (Fig. 3.2), whereas it is absent in the 

cooling curves. In all three cases, this hump is superimposed upon a 
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gradual increase in susceptibility on heating to near the curie point, 

(Tc), followed by a sharp susceptibility drop, giving Tc = 577°C. This 

temperature corresponds to the Curie point of magnetite. The fact that 

the hump did not reappear during cooling suggests that the chemical 

change which produced it was irreversible. 

Pandit (1967) measured room temperature susceptibilities of 

some Henley Harbour specimens and obtained average values of 3.7 x 10-3 

and 3.8 x 10-3 emu/cc for samples HH24 and HH26 respectively. Considering 

the inhomogeneity of these rocks, these values compare well with the 

present single-specimen values of 4.4 x 10-3 and 4.5 x 1o-3 emu/cc. 

Somayajulu (1969) thermally demagnetized several Henley 

Harbour specimens. The intensities decreased sharply to 350°C, remaining 

nearly constant between 350 - 450°C and increased again above 450°C. The 

temperature range 350 - 450°C is marked by a fairly sharp drop in suscep­

tibility which may indicate removal of a magnetic component in the 

specimens. Somayajulu suggests that the stable component (with Tc greater 

than 500°C) may be due to magnetite or titanomagnetite. This seems to be 

confirmed by the susceptibility curves. 

3.3 Table Head 

Table Head is located about 15 km north-east of Henley Harbour, 

still on the Labrador coast. There appears to be only one basalt flow 

present, which is poss·ibly the same flow as at Henley Harbour and hence 

is also of presumed Lower Cambrian age (Murthy, 1967). The NRM intensities 

of the specimens measured by Murthy had a fairly wide spread, about 

0.33 - 6.2 x lo-3 emu/cc; the majority of the Table Head specimens being 
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more magnetic than those from Henley Harbour. This is certainly confirmed 

by the susceptibility measurements (Fig. 3.3). Pandit (1967) obtained a 

value of susceptibility of 10 x 10-3 emu/cc as the average of three 

specimens from TH6, compared with 11.5 x lo-3 emu/cc for the single speci­

men TH6C2 in Fig. 3.3. The higher susceptibilities for Table Head compared 

with Henley Harbour probably are due to a greater percentage of magnetite 

in the Table Head specimens. The On-values are below 1, with TH6C2 giving 

a value of 0.23. 

Except for their larger NRM- and k-values, the Table Head basalts 

show very similar behaviour to the Henley Harbour basalts; the susceptibi­

lity curves (Fig. 3.3) also give an indication of a hump, though it is not 

as pronounced as in the Henley Harbour basalts. The mean Curie temperature 

for the three specimens is about 571°C, compared with 577°C for Henley 

Harbour. The cooling curves for specimens TH20B and TH16bi are fairly 

typical for basalts and their shape points to the removal or destruction 

of an intermediate-temperature (300- 450°C, approx.) magnetic component. 

TH6C2 shows an anomalous behaviour, particularly in its cooling curve where 

the usual 11 Hopkinson 11 peak is replaced by a gradual increase in k on cooling 

from 500 - 400°C. To test this feature, the specimen was taken through a 

second heating-cooling cycle which gave reversible curves close to the 

cooling curve of Fig. 3.3. The much lower susceptibility value after cooling 

may indicate that a large percentage of the magnetite may have changed to 

some other mineral such as hematite. Hematite had been found associated 

with skeletal titanomagnetite in a polished section from sample TH6 ana­

lyzed by Dr. N. D. Watkins, then at Florida State University, who comments 

(Somayajulu, 1969 p.179): aThis is an unusual example of coexisting low 

and high oxidation states, respectively~~. 
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Stepwise thermal demagnetization (Somayajulu, 1969) of several 

Table Head basalt samples showed results similar to Henley Harbour basalts, 

except that in the former case the intensities did not fall off as sharply 

with increasing temperature. This is probably correlated with the much 

smaller hump on the Table Head heating curves, and suggests greater stabi­

lity on the part of the Table Head samples. 

3.4 Cloud Mountain 

There is only a single lava flow exposed on Cloud Mountain near 

Roddickton on the Northern Peninsula of Newfoundland. It is believed to be 

of Lower Cambrian age and may have erupted about the same time as Henley 

Harbour and Table Head. Some measurements on this flow are reported in 

Somayajulu (1969). The intensities of the specimens he measured range from 

1 x 1o-3 to 7 x 10-3 emu/cc and the On-values for the three specimens in 

Fig. 3.4 range from about 1.5 to 4. These values are significantly higher 

than either the Table Head or the Henley Harbour values. 

The susceptibility-vs.-temperature curves (Fig. 3.4) look very 

similar to those from Henley Harbour and Table Head. There is again an in­

dication of a hump, but not as pronounced as in the Henley Harbour basalts. 

The Cloud Mountain basalts have a very noticeable rise just before falling 

off very steeply towards the Curie point close to 570°C. This is a typical 

feature in susceptibility curves for basalts (Radhakrishnamurty and 

Likhite, 1970). The Curie point is similar to that of both Henley Harbour 

and Table Head values and is just below that of pure magnetite. Polished 

sections of a specimen examined by Dr. N. D. Watkins (See section 3.2) 

(Somayajulu, 1969 p.179) showed the presence of titanomagnetite containing 

exolution lamellae. 
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In summary, the measurements of temperature dependence of 

susceptibility for the three basalt localities, Cloud Mountain, Table 

Head and Henley Harbour have shown considerable similarities in their 

thermomagnetic behaviour. This lends support to the view of geologists 

(Clifford, 1965; Strong and Williams, 1972), that all three basalts origi­

nated under similar conditions during Lower Cambrian times. 

3.5 Kfllary Harbour 

The three specimens that were measured came from the lower-

most two of six bands of ignimbrites(welded tuff) from outcrops of mid­

Jrdovician age near Killary Harbour, Eire (Murthy and Deutsch, 1971). 

Magnetic results from a preliminary collection of these rocks 

have been reported by Somayajulu (1969) and Deutsch and Somayajulu (1970). 

As in the case of the specimens from the sites discussed previously 

(Sections 3.2 - 3.4) much of the magnetic material was in the highest state 

of oxidation (N. D. Watkins, reported in Somayajulu, 1969), pseudobrookite 

and hematite frequently being found associated with titanomagnetite. NRM 

intensities ranging from 0.01 x 10-3 to 6 x 10-3 emu/cc probably indicate 

wide variations in ferromagnetic mineral content between different samples. 

The three specimens in Fig. 3.5 had On-values between 1 and 6, indicating 

a stable remanence which confirmed the results of the detailed AF and ther­

mal demagnetizations and of a positive fold test reported by the above 

authors. 

During thermal demagnetization in air most of the remanence 

was lost below 600°C, leaving less than 20% above this temperature. This 

suggested that the main magnetic component in these specimens was magnetite 

or titanomagnetite and that the high-Curie point component may have been 
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hematite. This would be consistent with the above-mentioned results from 

polished sections. 

The susceptibility curves (Fig. 3.5) confirm the above conclu­

sions, giving a mean value for the main Curie point of 567°C. Room temper­

ature susceptibility values of several specimens not shown in Fig. 3.5 

cover a range of over two orders of magnitude. This is consistent with the 

large variations of NRM intensities. The heating curves show irregularities 

in the intermediate temperature range similar in magnitude to those from 

Table Head and Cloud Mountain. The cooling curves are very similar to those 

obtained for all three previous localities (Sections 3.2 - 3.4), indicating 

a removal or destruction of some of the magnetic material, although in the 

case of KH51 only, the hump observed during heating reappears on cooling at 

a somewhat lower temperature; this might be due to a low-temperature titano­

magnetite component. The susceptibility curves did not fall completely to 

zero, which may confirm the presence of some hematite in the specimens. 

Contra~y to the specimens in Sections 3.2 - 3.4, the susceptibi­

lity curves for Ki 11 ary Harbour specimens do not show prominent "Hopkinson" 

peaks, nor do they resemble the typical "single-domain (SD)"-type curve of 

Radhakrishnamurty and Likhite (1970), which are reversible and fall off 

much more gradually towards the Curie point than do those in Fig. 3.5. How­

ever, six Killary Harbour polished sections examined by Dr. G. S. ~lurthy 

(private communication) showed that the main ferromagnetic mineral in these 

ignimbrites is magnetite or titanomagnetite, present in grains of size less 

than 5 microns, i.e. a significant part of the magnetization may be carried 

in single domains, and the relatively high On-values would bear this out. 

A final conclusion regarding single- versus multi-domain state in the pre­

sent specimens cannot be made on the basis of the results in Fig. 
3
·
5
· 
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3.6 Wabana 

Wabana is one of several red sandstone formations of Lower 

Ordovician age on Bell Island, Newfoundland. The rock is an oolitic iron 

ore, believed to be of primary origin. The major minerals contained in 

these rocks are hematite (a-Fe2o3), chamosite ((Fet2Al 2)(si2Al 2)o10(oH)8) 

and siderite (Feco3), all of which contain iron, although only hematite 

is ferromagnetic at atmospheric temperatures and is believed to be the 

only significant carrier of the NRM. Rao (1970) has made a detailed 

thermomagnetic study of these rocks. The NRM intensities of his specimens 

ranged from 3.5 x to-5 to 10 x 10-5 emu/cc, and stepwise thermal demag­

netization showed a general increase in the intensity of magnetization, 

measured at room temperature, when the specimens had been heated to 

temperatures close to their Curie point; this \oJas followed by a steep 

decrease after further heating to 685°C. Heating above 690°C and then 

coolinq produced an intensity increase of one to two orders of magnitude. 

High-field susceptibility measurements on ten Bell Island 

specimens, carried out in air using a Curie point balance built by 

L. G. Kristjansson (Deutsch et al., 1971), had shown a gradual increase 

in magnetic moment (M) up to 600°C and then a sharp drop near 685°C. How­

ever, M never dropped to zero , and upon cooling these specimens from 685°C 

or higher temperatures, M was observed to increase by one to two orders 

of magnitude, similar to the case of thermal demagnetization. This beha­

viour .. is also exhibited by the 1 ow-field susceptibility curves shown in 

Fig. 3.6. The susceptibility remains almost constant to about 550 - 600oC, 

then increases rapidly up to about 640°C , with a subsequent drop correspon-
o f. · that the ding to a mean Curie temperature of about 670 C, con 1rm1ng 
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mineral is probably hematite. Magnetite, if at all present, could be 

available in only very small amounts since no drop in susceptibility was 

observed near its Curie temperature. Cooling of the specimens to S00°C 

resulted in enormous increases in susceptibility. Further cooling to room 

temoerature decreased this susceptibility by about 20%. The large increase 

suggests a physical or chemical change in the magnetic mineral present. 

Additional susceptibility runs on a series of fresh specimens showed that 

this change takes place over a temperature range from about 570 - 700°C. 

These temperature values were determined ~Y several consecutive reheatings 

of a specimen to successively higher temperatures. This procedure showed 

that, for maximum temperatures less than about 570°C, the heating curves 

were reversible on cooling, whereas above 570°C, the susceptibility values, 

obtained on cooling, increases sharply with increasing maximum temperature 

to \t~hi ch the specimen had been heated. 

To test the stability of the new mineral that seems to have 

been produced by the initial heating, each specimen in Fig. 3.6 was sub­

jected to a reheating. The curves obtained are shown in Fig. 3.7. Three 

interesting features are noticeable: 

(1) The susceptibility generally increases to about 520°C before 

dropping off sharply to near zero at about 570°C. 

(2) There is a second rise in susceptibility to about 640°C 

followed by a drop indicating a second Curie point at 670°C. This latter 

rise is the same as the one shown in the original heating and is certainly 

due to hematite. Comparison of these high-temperature rises in Figs. 3.6 

and 3.7 shows that a major part of the original hematite is still present, 

indicating that the enormous susceptibility increase is not mainly due to ~ 
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any alteration of the hematite. Rao (1970) carried out a second and a 

third heatin9-cooling cycle in air, measuring a powdered Wabana specimen 

with the Curie point balance. All three curves had Curie points between 

610°C and 620°C, and the third heating-cooling cycle was reversible with 

the second cooling curve. Some additional specimens used in the present 

analysis, but not shown in Fig. 3.7, also exhibited high Curie points, 

ranging from about 580- 615°C, i.e. a fairly broad spectrum of Curie 

points is involved. Since heating of whole specimens in the present appa­

ratus was much slower than that of powders using the Curie balance, an 

investigation into the effect of a change in the rate of heating and 

cooling of specimens may clear up some of these inconsistencies. 

(3) The second cooling curves show a significant reduction in 

the susceptibility at 520°C as compared with the original cooling curves. 

A third heating and cooling (not shown in Fig. 3.7) showed an even further 

reduction in the susceptibility at that temperature. However, in all cases 

the room-temperature susceptibility remains essentially unchanged from 

its value after the initial cooling, even at the end of the third heating­

cooling cycle. Several more heatings of a given specimen may be necessary 

to stabilize the susceptibility curves. 

It is not clear what causes the large increase in both the low­

field and high-field susceptibility curves. In discussing his results, 

Rao (1970) suggests that the new material may be maghemite {y-Fe203), 

which is strongly ferrimagnetic. The presence in the rock of considerable 

siderite could have played a significant part in producing such maghemite, 

though the former is paramagnetic. Because of the metastable behaviour of 

maghemite, its Curie point has not been definitely established, but a 
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re-value in the neighbourhood of 620°C is possible (See summary in Rao, 

1970, p.147). The conclusion regarding maghemite can be neither verified 

nor disputed by the results obtained during the present investigation. 

3.7 Indian Harbour 

Several specimens from a Precambrian swarm of gabbroic dykes 

near Indian Harbour on the Labrador coast were measured. From one of these 

dykes, Grasty et al. (1969) had obtained a whole-rock age of 2080 ± 42 m.y., 

but they believe that this date might be anomalously high, possibly through 

argon addition. The NRM intensities varied between 0.03 x to-3 and 

9.5 x to-3 emu/cc, although most specimens were in the range of 1 - 2 x to-3 

emu/cc (Murthy, private communication). The results of AF and thermal de­

magnetization obtained by Murthy and Deutsch (1972) indicated high stabi­

lity of these specimens. For the three specimens chosen in Fig. 3.8, the 

Qn-values lie between 0.55 and 0.75, which is relatively high for such old 

rocks. 

The high-temperature susceptibility curves (Fiq. 3.8) for L6a 

and LlOA are nearly reversible. The curves differ from the usual curves 

for basalts in that the susceptibility-did not increase just below the 

Curie point, but rather the susceptibility decreases at first slightly 

and then rapidly towards the Curie point. This is similar to the trend of 

the susceptibility curves for single-domain (SO) rock as discussed by 

Radhakrishnamurty and Likhite (1970). A predominantly single-domain be­

haviour of the Indian Harbour specimens would be compatible with the ob­

served high stability of the NRM, but further study, particularly of 

polished sections, is needed. The simple trends of the three heating curves 
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in Fig. 3.8 indicate that the measured susceptibility is due to a single 

component of titanomagnetite with a mean Curie point of 557°C. Similar 

simple trends and Tc-values had been obtained from the thermal demagne­

tizations (Murthy and Deutsch, 1972). Specimen L7b showed a slightly 

different behaviour from the other two specimens during both its heating 

and its cooling portions. Possible changes of grain-size distribution in 

L7b during heating may have been responsible for the irreversible trend 

observed on cooling. 
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CHAPTER 4 

SUMMARY AND SUGGESTIONS 

4.1 Sununary 

An a.c. magnetic susceptibility bridge has been built similar 

in design to that of Christie and Symons (1969}, which is designed for room 

temperature only. The present instrument was enlarged to permit the measure­

ment of susceptibility as a function of temperature; or to measure larger 

specimens in the absence of the furnace. The bridge consists of two nearly 

identical Helmholtz coil and pick-up coil assemblies. The Helmholtz coils 

produce a peak field of 0.31 Oe at 1000 Hz and induce a corresponding 

voltage of 0.79 volt in each pick-up coil. Once the system is nearly 

balanced, there is a •zero• output; a magnetic specimen placed into the 

field of one assembly causes the system to be unbalanced. The difference 

in the output is proportional to the magnetic susceptibility. 

The instrument is very sensitive; an output of 1 ~V, which is 

just detectable, being equivalent to a volume susceptibility of 7 x 10-8 

emu/cc. 

The bridge was calibrated using ~o independent methods: 
-5 -4 (a} Paramagnetic salts were used in the range of 10 - 10 emu/cc, and 

(b} a 40-turn coil was used to calibrate the bridge over the ranges from 

10-6 - 10-2 emu/cc. 

A correction curve for specimens departing from standard height 

was obtained. This increases the versatility of the instrument, permitting 

specimens of heights 1.27 em to 2.54 em to be measured. 
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Chromel-A heater wire was used to build a non-inductive, non­

magnetic furnace capable of producing temperatures as high as 800°C. 

Circulating water provided effective coolinq for the system. 

At room temperature about one specimen can be measured per 

minute. When measurements are made as a function of temnerature, a heating 

and cooling cycle will take about one and a half hours. 

Errors in the susceptibility values are mainly due to short­

and long-term fluctuations in the bridge, and to errors in the voltmeter 

and in the calibration of the bridge. Estimated total errors in a room­

temperature measurement range from 2% for k > 1 x 10-2 emu/cc to 20% for 

k > 1 x 10-7 emu/cc. Since these errors are for single measurements and 

since systematic contributions to them are minor or absent, the error 

may be reduced si~nificantly by performing repeat measurements. 

Errors in the temperature determination are mainly due to the 

furnace temperature distribution and amount to about ± 10°C. 

The susceptibility of specimens from half a oozen localities 

bordering the North Atlantic was measured in air as a function of temper-

ature. 

It was found that Lmo.Ter Paleozoic specimens from Henley Harbour 

and Table Head, Labrador, and Cloud Mountain, northern Ne\'lfoundland, ex­

hibited very similar behaviour. The heatin·g curves for all three areas 

showed the presence of some alteration in the ferromagnetic material, and 

the cooling curves indicated the destruction of a ferromagnetic component. 

The specimens were cooled from above their Curie points, \·rhich were all 

in the range 570 - 580°C, close to that of ma~netite. 

The susceptibility curves for Ordovician ignimbrites from 

Ireland showed large variations in ma9netic mineral content between speci-
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mens with the main component being magnetite or titanomagnetite. Hematite 

may also be present since the susceptibility did not drop completely to 

zero even at 625°C. 

Oolitic sandstone of Ordovician age from Bell Island indicated 

hematite as being the main magnetic component with a Curie temperature of 

about 670°C. The specimens exhibited extraordinary behaviour upon cooling, 

producing susceptibility increases of from one to two orders of magnitude. 

The newly formed mineral seems to have a fairly broad range of Curie 

points (570 - 620°C) and is possibly maghemite. Reheating the specimens 

shows that most of the original hematite is still present. 

Two of the three Precambrian gabbroic dyke specimens from 

Indian Harbour, Labrador, suggest a simple, predominantly single-domain 

structure, which is consistent with their observed highly stable NRM. The 

Curie points had a mean value of 557°C, indicating titanomagnetite as the 

main ferromagnetic component. 

4.2 Suggestions 

Since one of the major problems in measuring high-temperature 

susceptibility is the long-term drift in the zero, steps should be taken 

to eliminate this problem. 

One possible way is to use a much shorter time to complete a 

heating-cooling cycle than was the practice in the present investigation. 

A second way would be to redesign the furnace in such a way 

that the specimen could be removed from its center while remaining at a 

given temperature. This would require increasing the length of the furnace­

winding at least three-fold. The removal of the specimen would permit 
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checking the zero at any time. Presently, this can only be accomplished 

by completely removing the specimen from the furnace, consequently 

causing a large drop in the specimen temperature before the specimen can 

be recentered in the furnace. 

Due to the high sensitivity of the bridge it will be possible 

to investigate some interesting relationships, such as: 

·Remanent magnetization and susceptibility. 

Thermal dependence of coercivity and susceptibility. 
~ 

Variation of susceptibility with H in very low a.c. fields. 

The empty assembly may be used to measure the anisotropy of · 

susceptibility on larger than normal specimens. 

Some other improvements of the apparatus would consist of 

additions to the equipment. For example, the bridge could be used for 

measuring low-temperature susceptibilities if the furnace were replaced 

with a properly designed coolinq assembly. 

Another change in design of the furnace would permit high 

temperature measurements in vacuum. This is especially important to 

reduce effects due to oxidation. 
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