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ABSTRACT

If R is a camutative ring and A and B are R-modules then
hon(a,B), Hom(A,B) and A @ B will denote the set of morphisms A -+ B,
the set of morphisms A + B regarded as a. R-module and the usual
algebraic tensor product of A and B, respectively. The R-module,

A 8 B can be defined by any of the following results:

(1) t:AxB » A@B; (a,b) |*a@b is a universal bilinear
function in the sense that any other bilinear function A x B -+ C
factors uniquely through t.

(ii) there is a natural isamorphism hom(a @ B, C) = hom(a, Hom(B,C)).

(iii) the functor - @ B is a left adjoint to the functor
Hom(B,-), i.e. the isamorphism of (ii) is natural in the variables A

and C.

(iv) there is a natural isomorphism Hom(A & B, C) x Hom (A, Hom(B,C)).

2 also has the property that:
(v) there exists natural isomorphisms:

AR (BR2C) = AQB) &C

i

r: AR R;' A where R is regarded as an R-module
e: RRAZA
c:ARB=B&A.

The existence of these isamorphisms does not constitute a

definition of ® since analogous iscmorphisms exist for the direct sum

A®B of R-modules A and B.
In this thesis we abstract the definitions (i), (ii), (iii)
and (iv) fram the category of R-modules to a general category C

calling the tensor products so defined the (i) Bimorphism Product

(ii)
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(ii) the Exponential Product (iii) the Adjoint Product (iv)
the Strong Exponential Product, respectively. The relation
between (ii), (iv) and (v) is discussed in (17); (i) is
related to these ideas in (24); (iii) does not seem to have
been discussed elsewhere.,

Our main purpose is to examine the conditions under which
the different products coincide and the extent to which the products
satisfy the conditions (v). The value of this theory lies in the
number and diversity of the examples.

Chapter I gives the necessary details about category
theory and defines many of the terms which occur in the main
discussion. In Chapter II the Adjoint Product and the properties
of associativity, commutativity and left and right identities
are introduced. The “"coherence" of the above isomorphisms forms
the content of the third chapter which is a survey of the works
of MacLane (21) and Kelly (17). Chapter IV gives the definition
of the Bimorphism Product as explained in Pumplun (24). 1In
Chapter V it is proved that any Bimorphism Product is an
Exponential Product and conversely any commutative Exponential
Product is a Bimorphism Product. In Chapter VI (sections 1 to 3)
the relationships between the natural isomorphisms a, r, e and c
and the Exponential and Strong Exponential Products are discussed;
in section 6.4 these natural isomorphisms and the Strong
Exponential Product are related to the Bimorphism Product. In
Chapter VII the Exponential Product and the Adjoint Product are
shown to be distinct, in general; conditions are given for their
equivalence. Chapter VIII is devoted to a selection of examples
from many branches of mathematics. The Appendix gives

necessary and sufficient conditions for the concepts of a
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morphism and bimorphism to coincide. The lengthy bibliography lists
papers related to the thesis.
Our results are proved in full detail (apart fram Chapter III
which is a survey of results fram (18) and (21), detailed proofs
being given in these papers, and two proofs involving trimorphisms in
section 6.4). Chapter VII and the Appendix are basically original work.

The proofs of the theorems in Chapter V are given in greater detail
than by the original authox.
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CHAPTER I

A .

BASIC CATBEGORY THEORY

§1.1 Ca@ries

The definition of a category was first given by Eilenberg
and Maclane in 1945.

Definition 1.1.1 Iet C be a class of "objects", AB, C .......
(denoted by ob C) together with two functions, as follows:

(1) A function assigning to each pair (A,B) of objects of
C aset C(A,B). An element f e C(A,B) in this set is called a
morphism £: A - B of C with damain A and codomain B.

(ii) A function assigning to each triple (A,B,C) of objects
of C a function C(B,C) x C(A,B) » C(C(A,C). For morphisms
g:B + C and f: A » B this function is writtenas (g,f)|> g o £
ard the morphism g o £: A + C is called the camposite of g with
f. The class C with these two functions is called a category when
the following two axiams hold:

(a). Associativity: If h: C - D, g:B +> C and
f: A » B are morphisms of C with the indicated domains and
codamains then ho (o f) = (hog) o £.

(b) Identity: For each object B of C there exists a

morphism lB: B -+ B such that

I
)

if £f: A > B thenlBOf

and if g: B > C thengolB

n
2
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Definition 1.1.2 The dual of a category C is denoted C*. The

objects are the same as the objects of C. A morphism A =+ B in

C* is amorphism B -+ A in C.

Definitign 1.1.3 For each pair of categories C, C', there exists a

product category C x C'. 2An object of this product is an ordered pair
(C,C') of objects of C amd (', respectively; a morphism (C,C') -
(D,D') with the indicated domain and codamain is an ordered pair (£,f')
of morphisms f: C - D, f£': C' =+ D'. The canposite of morphisms

is defined termwise; thus (£,£') as above and a second such ordered pair
(g,9'): (O,D') =+ (E,E') have the camposite (g,9') o (£,£') =

(o f',g' of'): (C,C') » (EBE'").

Definition 1.1.4 A morphism f: A -» B in a given category is called
an isamorphism if there is a morphism g: B + A in the category such

that foc_:;=1A and gof=lB.

1.2 Functors

Definition 1.2.1 ILet C and D be given categories and consider a
function 0: C -+ D which assigns to each object A € C an object
0@) ¢ P ard to each morphism f € C a morphism ©(f) € D. The function

0 is said to be a oovariant functor (or simply a functor) fram C +to

D if and only if it satisfies the following three corditions:
(i) If £: A + B then 0O(f): 6(a) -+ ©(B)
(i)  0@,) =1y
(iii) If f og is definéd then O(f o g) = O(f) o0 O(9).

L\ .
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Definition 1.2.2 A contravariant functor ¢: ? - C assigns to

each odbject A€ ? an object $(A) € C and to each morphism f € D
a morphism ¢(f) € C in such a way that:

(1) If £: A » B then &(f): ¢(B) - ¢(Q)

(i1) ©¢@,) =3, @)
(iii) If g o £ is defined then ¢(g o f) = ¢(f'od(qg).

Definition 1.2.3 Iet C and U be categories. A functor ¥: C »> D
will be said to be faithful if for each A, B € ob C the function
cCa,B) -+ DY@ ,¥®)); £ |>vy(f) is injective, i.e. ¥ preserves
distinctness of morphisms.

Definition 1.2.4 A functor Q: Cx D =+ E on a product category

C x D to another category E 1is called a bifunctoron Cx 0 to E.

If g: B + B' is a given morphism then we denote the
induced function C(A,B) + C(,B'); h |+ goh, he C@®,B) by
c@a,9).

Similarly, if £: A -+ A' is a given morphism then we denote
the induced function C(@',B) - C@,B); h |>» hof, he C@A',B)
by C(£,B).

If f and g are as given above then C(f,g) denotes the

induced function C(@A,B) -+ C(@',B').

One useful example of a bifunctor is the usual ham functor

to sets, i.e. C: C*x C »S; (a.B) |+ C(@,B); (£,9) [+ C(f,9)

where S represents the category of sets.



§1.3 Transformations of Functors

Definition 1.3.1 Iet 0 and ¢ be any two covariant functors from

a category C to a category 0 . By a natural transformation of

the functor 6 into the functor ¢, we mean a function v which
assigns to each object A of the category C a morphism U(A) of
the category 7 such that the following two conditions are satisfied:

(i) For every cbject A of C, we have u(d): 6(a) > &(a)
(ii) For every morphism f£: A - B of C we have
v(B) 06(f) ==¢(f) v(a), i.e. the following diagram cammutes:

0(a) 6 (£) >0 (B)

(1.3.1) v (Aa) v(B)

9 (£)

o (A) > (B)

A natural transformation v: 8 > ¢ is also called a

" morphism of functors ".

Definition 1.3.2 If each v(A) is an isamorphism in category 7

we call v: & - @ a natural isamorphism. We donote a natural

isomprphism by the symbol X,



§1.4 Universal Elements, Representability and Adjoint Functors

Definition 1.4.1 Iet ©: C » S be a functor to the category of sets.

A universal element for © is a pair (u,R) consisting of an object

R of C and an element ¢ e O(R) with the following property: To any

object C of C and any element c £ O(R) there is exactly one morphism
f: R + C with 09(f)u=c.

R ue O(R)

(1.4.1) h O(h)

C ce 0O().

Definition 1.4.2 A functor 0: C + S is representable if there

is a distinguished object K in C such that GA = C(K,A) vwhere A

is an arbitrary object of C. K will then be called a representing

object for 0(4, p.524).

Definition 1.4.3 An adjunction of the functor © to the functor ¢

where 0:C - D and ¢: D - C is a natural bijection

Y = ‘i’A B D(eAa, B) X C(a, ¥B). Given such an adjunction, the functor
14

© is called a left adjoint of &, while ¢ is a right adjoint of O.

The following theorem describes the sense in which adjoints

are unique.

THEOREM 1.4.1 1If a functor O0: C »+ D has a left (right) adjoint

¢ then any other functor which has ¢ as its left (right) adjoint

is naturally equivalent to O.



el
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Proof: The proof is immediate fram (4, Theorem 9, p.28) and

(4, Corollary to Theorem 6, p.533).

Fram these basic definitions and results,category theory
has followed an evolutionary pattern which occurs frequently in
mathematics. We begin by observing similarities and recurring arguments
in several situations which superficially seem to bear little resemblance
to each other. Then by isolating concepts and methods which are cammon
to the various examples we may find a theory containing many or all
of our examples, which in itself seems worthy of study. One of the
outstanding features of category theory is the unity it brings to
mathematics. Familiar, but seemingly quite different constructions
turn out to be versions of the same categorical construetions. For
exanple, the following three constructions are just coproducts in
different categories:

(1) XlU X, - disjoint union of the sets X

1andx

2

(ii) Gl * 62 - free product of the groups Gl and G,

(ii1) Al ® A2 - direct sum of the Abelian groups Al and Az
The following chapters are devoted to the development of

another product in category theory - the tensor product.




CHAPTER IT

AN INTRODUCTION TO TENSOR PRODUCTS

§2.1 Categories with Multiplication

To define an abstraction of the usual algebraic tensor
product in a more general category, the method is clearly to list
same of the properties that the usual tensor product satisfies; the

problem then is to select a suitable set of properties.

MacLane (21) has introduced a category with multiplication

defining it as a category C and a covariant bifunctor ®: C x C +~ C,
(A,B) |> A®B. If & is to be a tensor product then there should
exist an object K e C such that for all objects A,B and C € C there

are natural isamorphisms:

(i) a=a(A,BC): A®B)&C ~ AR (BQC) .... associativity

(ii1) e=e(K,A): KQA>A c.ecveees ccececssssse ... left idéntity
(iii) r=r AK): AQK>A ccceeese ceccscnea ceevesa right identity
(iv] ¢c=c A,B): AQB+>BRA..... cececcsasansae camutativity

where A, B, C, K e C.
We also require that these morphisms are coherent in the sense
that any natural iscmorphisms defined by their repeated uses such as

-1
aes T 21, angraB—2>ae KeB) 12 ,2eB

is to be the identity. Chapter III deals with this more fully.
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Eilenberg and Kelly (11) have defined a monoidal category as
a category with a multiplication, the above natural iscmorphisms, apart
from commutativity, and a set of conditions ensuring coherence. They
defined a symmetric mw as a monoidal category with a

cammutativity isamorphism and a set of conditions ensuring coherence.

§2.2 The Tensor Product in Terms of Adjointness

The cuestion arises as to what properties ® should have in
order that we may reasonably call it a " tensor product ". One of
the most important properties a tensor product should have is that it be
the left adjoint of what is called a Hom functor. This Hom functor is not
the usual ham functor to sets but must be defined on C* x C and take

values in C. This we will denote by H and call an " internal Hom

functor " since when camposed with some functor P: C + S we have

the usual hom functor to sets. It is the existence of Hom together with

P that is important. This functor P is usually a forgetful functor, i.e.
an " underlying set " functor. The Hom functor is concerned with " function
constructions ". We should note however, that the requirement of merely
having a right adjoint is not sufficient since using that definition

A QB =A is a tensor product.

Definition 2.2.1 A semi-structured category (C,H,P,) consists of a category

C and functors H: C* x C -+ C and P: C ~ S such that PH = C.

Definition 2.2.2 If (C,H,P,) is a semi-structured category and ::
Q: Cx C > C is a bifunctor such that - @ B: C + C is a left adjoint

to H(@B,-): C » C then 8 will be called an Adjoint Tensor Product

(abbreviated to Adjoint Product for (C,H,P) and




A @B the Adjoint Product of A and B. Hence @ is an Adjoint
Product if and only if there is an isamorphism C(A 8 B, C) 2@, H(B,C))
natural in the variables A and C.

In Chapter V we require an Adjoint Product with the above

isamorphism natural in all three variables

Definition 2.2.3 If (C,H,P) is a semi-structured category then

the bifunctor ®: Cx C =+ C will be called an Exponential Tensor

Product (abbreviated to Exponential Product) for (C,H,P) if there

is a natural isamorphism C(A @ B, C) 2 C(,H(B,C)), i.e. natural in
all three variables.

We have chosen the name, Exponential Product fram the corresponding
result in the category of topological spaces which is usually called the
exponential law of spaces.

The relation between the Adjoint Product and the Exponential
Product will be further discussed in Chapter VII.

From Theorem 1.4.1 we see that a tensor product defined in

either of these senses is unique up to hatural iscmorphism.

PROPOSITION 2.2.1 If (C,H,P) is a semi-structured category w1th an

Adjoint Product ® and @ has a left identity K then C(a,B) = C(K, H(a,B)).

e

Proof: C(a,B) C(Ke A, B)

e

C(K, H(A,B)).
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Before introducing additional theory we should elaborate on
the isamorphisms in this chapter and it is for this purpose that we explore
the concept of "coherence" and its role in the theory of the tensor
product.



CHAPTER III

QOHERENCE IN CATEGORTES WITH MULTIPLICATION

§3.1 The Nature of Coherence

In this chapter we give a precise definition of coherence
and then give minimal conditions necessary for coherence of the natural
isgmorphisms of §2.1 .

Definition 3.1.1 An iterate of the bifunctor ®: Cx C~+ C is

any functor formed by repeated applications of @ - multiplication.

A functor ®: (® + C will be said to have miltiplicity p.

If 0 and & are functors of multiplicity p and ¢, respectively,
then 02 ¢ will be the functor of multiplicity p + g defined by

©8 %) (AB) =0(R) @ 6(B) vhereAeccb ® and B e ob 2

Definition 3.1.2 The set 1 of iterates of @ is the smallest set

of functors ® + C as the multiplicity p ranges over the positive
integer values, satisfying:

(i) the identity functor i: ¢ » C and the functor
j: Cx C + C defined by (3,B) |> B2 A belong to 1.

(ii) © and ¢ €1 implies 0@ ¢ e 1.

Example 3.1.1 The following functors clearly belong to 1 :

i) i@¥: ¢ » ¢ (aB) |+ AQB

(i) (i@i)@i:C +~ C (B0 |+ (AeB) &C
3

(iii) i@ (iei): ¢ ~ ¢ @&,B.C) |~ AR (BRC)
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(iv) iej: € + ¢; (a,B,C) |+ A@ (CeB).

Definition 3.1.3 If O and & are iteratesof & and a: O =+ &

is a natural isamorphism then o will be called an instance of 1.

The set of instances {al, Oy eeey an} determines a category
1= I(ozl, Oor eesy ozn) whose dbjects are the iterates of & and
whose morphisms are generated fram the instances {al, a;_l, cens Oy a;n}
and every identity natural transformation 1l: © -+ 0. © ranges over the
iterates of ® defined by one of the following methods:

(i) oomposition, i.e., if ¢: © = & and B: & -+ 0O are
morphisms in I then B a e I.

(ii) formming tensor products, i.e., if a: © =+ ¢ and

a': @' =+ &' aremorphisms in I thensois aRa': OR0' > 9 9,

Example 3.1.2 If ay ¢ pt (BRC)Q2D + B2 (C2D) is a natural
[And
isamorphism then the following natural isomorphisms are elements of
I1=1(a):
(i) lABaB'C’D:AQ((BQC)QD) - AQ (B& (CR2D))

(ii) a.t

A BCcgp A2 (B2(CED) ~ (A8B)Q(CAD)

TR | )
(i) ay s apla®ecp A8 (BEC)RD) > (ARE) @ (CeD)

Definition 3.1.4 If Qpr Oy eeey O are instances of I and the
category I(al, Ony sees ozn) has the property that for every pair
of objects © and &: ® + C there is at most one morphism

©@ » ¢ in the category, then {al, Oor ooer an} will be said to

be coherent.
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§3.2 Conditions Required for Coherence

It may easily be seen that the ocoherence of a, e, r and ¢
of §2.1 involwves an infinite number of conditions. Maclane (21), p. 33)
shows that this infinite list could be reduced to a finite sublist
without the loss of coherence. For ooherence of the natural associativity
isamorphism he requires that only one diagram be comutative while for
joint coherence of associativity and camutativity, three particular
diagrams must be cammtative. Ensuring the joint ocoherence of
associativity, comutativity and left and right identities requires
that a minimum of eight specific diagrams be cammutative.

Kelly (18, p. 40l1) also did same work on coherence conditions
and with regard to the conditions for coherence of the associativity
isomorphism and joint coherence of the associativity and commutativity
isamorphisms he arrives at the same conditions as required by MacLane.
However, for sufficient joint coherence of associativity, commutativity
and left and right isamorphisms he is successful in reducing the conditions.

We devote this section to the statement of those results.

THEOREM 3.2.1 In a category C with a multiplication, the natural

isomorphism a: (A2 B) 2 C+A® (BRC) is oocherent if and only

if the following pentagonal diagram is commutative:

((AQB) 2C) @p A2BCPnaop g (CQD)MAQ (B@ (C@D))

a 21 1@a; 0 p
(3.2.1) A,B,C r~r

(Ae BeC) eb__°“AB@CD ,A®Q((BRC) 2D

Proof: (21, p.33, Theorem 3.l).
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THEOREM 3.2.2 The natural isomorphisms a: (A2 B) & C > AR (BR2C)

ard c: A8B » B®A are jointly coherent if and only if the

pentagonal diagram (3.2.1) and the following diagrams are always

commutative:

AQB c A

v
w

B
Q

(3.2.2) 1

AR BRC)—2  ,(r@B @C—S—>CQ (AQB)

(3.2.3) l®c a

A2 C28B)—2 saec)eas—2L1 ,ceaes

Proof: (21, p.38, Theorem 4.2).

THEOREM 3.2.3 The natural isomorphisms a: A®2B) & C - A®@ (B2C),

c:AQB - BQA, e: KRC » C and r: AQK > A are jointly
ooherent if and only if diagrams (3.2.1), (3.2.2) and (3.2.3) with

the following diagram are commatative:

ARK) &C a »A® (K2C)

(3.2.4) rel 1@e
kA
e C

Proof: (18, p.400, Theorem 5')

e N e A TANI AT T

T P T R RN



e AL

Maclane has required for the previous theorem that the
following three commutative diagrams also exist:

(3.2.5) e=r: K K—3K
(KR BY 8 C a _>K® (BRC)
(3.2.6) el e

B®C

AQK c SKRA

.4
(3.2.7) l e
A

Kelly reduces Maclane's conditions by using, in addition, the

following diagram:

(A2B) &K

» AR (B ®K)
(3.2.8) l1e@r
ARB

Kelly proves that (3.2.1) and (3.2.4) imply (3.2.6) whence
by symmetry (3.2.1) and (3.2.4) imply (3.2.8). Also (3.2.4) and
(3.2.6) imply (3.2.5) whence by symmetry (3.2.4) and (3.2.8) imply
(3.2.5). Then since (3.2.2), (3.2.3), (3.2.4) and (3.2.8) imply
(3.2.5) the condition for joint coherence of a, ¢, e and r
reduce to the cammitativity of diagrams (3.2.1), (3.2.2), (3.2.3)
and (3.2.4).

b AL ST B

O R R e

51 T e ST T

LS



CHAPIER IV

TENSOR PRODUCTS ~ AN ALTERNATIVE APPROACH

§4.1 Structured Categories

In the category of R ~ modules the tensor product is defined
as the Exponential Product in that category. An alternative approach is
to define it to be the solution to a universal problem using bilinear
maps. An obvious question is whether this definition can also be extended
to a general category.

Before discussing this approach, we require the concept of a
structured category as defined by Pumplin (24).

Definition 4.1.1 A structured category (C,H,P,K,i) consists of a

semi-structured category (C,H,P), a distinguished object K in C
and natural isomorphism i(A): A » H(K,A) such that:

(i) P 1is faithful
(ii) the function hc: c(a,B) > C(H(B,C), H(A,C)) defined
by hc(w) = H(w,C), we C(a,B), can be lifted to a morphism in C

in the sense that there is a morphism Hg: H(A,B) - H(H(B,C), H(A,Q))

such that PHC = hC'

for all objects A,B, C in C.

(iii) the function Ch: c(a,B) -~ C(H(c,A), H(C,B)) defined
by J(w) =H{CwW), we C(a,B), can be lifted to a morphism in C
in the sense that there is a morphism H: H(A,B) -+ H(H(C,A), H(C,B))

such that P(CH) = Ch' for all objects A, B, C in C.

-16-
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The structured category considered by Pumplun does not have
the same stringent conditions as the autonamous category defined by
Linton (19, p.322). However, the requirement that P be faithful

makes it stronger than the semi-structured category of Kelly (18, p.21).

§4.2 M’ hisms

In a structured category (C,H,P,K,i), Pumpllin defines an
n-linear map. For this thesis, it will suffice to define a 2-linear

or bilinear map which has alrady been referred to as a bimorphism.

Definition 4.2.1 If A, B and C are objects of a structured
category (C,H,P,K,i), then a bimorphism f: AxB =+ C isa
function f: PA x PB + PC such that:

i) f(-,b): PA + PC is P<I>1 (b) for all b € PB where
<I>1: PB » C(a,C) is Pml for same my 3 B » H(QA,C).

(ii) f(a,-): PB > PC is P<I>2(a) for all a ¢ PA where

?,: PA = C(8,C) is Pm, for some m,: A > H(B,C).

The definition may be rephrased in the following more concise

form:

Definition 4.2.2 Given a structured category (C,H,P,K,1i), a
bimorphism f: Ax B + C is a function f: PAXFB =~ PC where
A,B and C are objects of C such that there exists morphisms

m:B + H@AC) and my: A > H(B,C) with (P(Bmy) (b)) (a) = £(a,b)

= (P(Pm,) (a)) (b) -
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LEMMA 4.2.1 Iet A, B, C and D be objects in a structured category
(C,H,P,K,i). If f: AXxB ~ C is a bimorphismand g: C + D is

a morphism then (Pg) f: Ax B + D is a bimorphism. This bimorphism
AxB + D will be denoted by g f.

Proof: f is a bimorphism if there exists m,, m, such that m, :

B + H(A,C) and m,: A > H(B,C). Also if g is a morphism it induces
morphisms H(B,g): H(B,C) - H(B,D) and H(A,g): H(@A,C) -+ H(A,D). By
camposition, H(B,qg) m,: A -+ H(B,D) and H(A,qg) m, : B =+ H(a,D),

thus giving the morphisms required to prove (Pg) f: AxXx B -+ D is

a bimorphism.

ILEMMA 4.2.2 Iet A, A",B and B' be objects in a structured

category (C,H,P,K,i). If f: A ~ A' and g: B - B" are morphisms
and h: A' xB' -+ C isabimorphism then h (PExPg): AxB > C

is a bimorphism.

Proof: h is a bimorphism if there exists morphisms m, m,, such that
ml: B' >~ H(@A',C) ad m,: A' -+ H(B',C). By composition

H(g,C) m, £: A + H(B,C) and H(£,C)m g: B > H(A,C),

giving the morphisms required to prove h (Pf x Pg): AxB =+ C

is a bimorphism.

§4.3 The Bimorphism Product

Definition 4.3.1 Iet A and B be cbjects in a structured
category (C,H,P,K,i). If T(a,B) is an object of C and

t(A,B): AxB - T(a,B) is a bimorphism with the property that
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if C isany objectof C and f: AxB =+ C is any bimorphism and
if there exists a unique morphism h: T(A,B) + C in C such that
h t@&,B) = £,

AxB t(A,B)

(4.3.1) f h

then t(A,B) will be called a universal bimorphism for A x B ard the

ordered pair (t(A,B8), T(A,B)) a Bimorphism Tensor Product (abbreviated to

Bimorphism Product) of A and B.

This definition of T(A,B) generalizes the standard
definition of the tensor product of R-modules by means of a universal
bilinear map.

Iet (C,H,P,K,i) be a structured category. A Bimorphism

Product for the category is a rule which associates a Bimorphism

Product (t(a,B), T(A,B)) with each ordered pair (A,B) of objects of C.

Iet T(A,B) be a Bimorphism Product of A and B and
T(A',B') be a Bimorphism Product of A' and B'. If we have morphisms
f: A > A' and g: B + B' then there exists a unique bimorphism

T(f,g): T(A,B) -+ T(A',B') such that the following diagram cammutes:

PA x PB Pf x Pg > PA' x PB'
(403-2) t(A'B) t(A' IB')
PT(A,B) PT(f,9) s PT(A',B')
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This result follows from Lemma 4.2.2 ard the definition of t(A,B).

PROPOSITION 4.3.1 1f (C,H,P,K,i) is a structured category with

a Bimorphism Product then T: CxC -+ C; (A,B) |+ T@®,B);

(£,9) |+ T(f,9) is a bifunctor.

Proof: We must show that T satisfies the two conditions necessary
for a functor.

(1) Consider the following diagram:

PA x PB P(f'f) P(g'g) » PA" x PB"
PEN (1) /'. x Bg'
PA' x BB'
(4.3.3) t(a,B) (ii) t(@',B") (iv) t@",B")
PT(d',B')
PT(f, (1ii) Pr(£',g") L
PT(A,B) = STEE 5G] PT(A",B")

T(f,g), T(E'g"), T(E'E, g'g) are the unique morphisms whose images
under P make quadrilateral (ii), quadrilateral (iv) and the outer

rectangle camute. Hence T(f'f, g'g) = T(f', g') T(£,9).

(ii) t@&,B) 1‘PA X PB = P(lT(A,B)) t(@,B). Hence

I, = Tl Ip)-

Thus T is a bifunctor.

If we let bimorph(A x B, C) denote the set of all bimorphisms
h: AxB » C and if k: C + C' is a morphism then by Lema 4.2.1

the camposite k h: AxB ~» C' is a bimorphism. For fixed A amd
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B in C, O(C) = bimarph(A x B, C) with O(kk)h=k h, h e 0(C)
thus define a functor © = bimorph(A x B, -) fram ¢ - S.

Our definition of t(A,B): Ax B -+ T(A,B) is simply that
(t(A,B), T(A,B)) is a universal element with respect to
bimorph(A x B, -). Hence by uniqueness of universal elements,

t(A,B): Ax B + T(A,B) is unique up to isomorphism, i.e

PROPOSITION 4.3.2 If t(A,B):AxB -+ T(A,B) and

t'(A,B): AxB - T'(A,B) each satisfy Definition 4.3.1,
then there is a unique morphism g: T(A,B) -+ T'(A,B) such
that g t(A,B) = t'(A,B).

AxXB

(4.3.4) t(a,B) t'(a,B)

N
T(a,B)-2T' (A,B)

Proof: The proof is immediate fram (4, p.28, Theorem 9).
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CHAPTER V

THE REIATIONSHIP BEIWEEN THE BIMORPHISM AND EXPONENTIAL PRODUCTS

§5.1 The Bimorphism Product is an Exponential Product

Before we proceed to prove the main results of this section
we must introduce same preliminary details. We define an evaluation

function in a structured category (C,H,P,K,i) and prove that it is
a bimorphism.

Definition 5.1.1 For fixed B € ob ¢ we define for each C e ob C

the evaluation function ‘PB ct cC(B,C) xPB - PC by
I

\PB C(u,b) =P(u)(b) forall ueC(B,C), bePB.

PROPOSITION 5.1.1 ‘The evaluation function C(B,C) x PB - PC is

a bimorphism ‘PB ct H(B,C) x B =+ C.
r

Proof: We must show that ‘PB c is a function such that:
I
(i) ‘i’B'c(—,b): c(B,C) =+ PC is P<I>l(b) for same
¢ (b) € C(H(B,C), C) for all bePB and &:PB > CEH(BC), O

is Pml for some m:B. > H(H(B,C), C).

(ii) ¥, .(u,~): PB + PC is P<1>2(u) for same
B,C

?,(u) € C(B,C) for all ue C(B,C) and 9,: c@E,c) + C(B,LC) is

sz for same my: H@B,C) -+ H(B,.C).

Fram the definition of a structured category, b € PB can be
represented uniquely in the form b = P(i*(8)) (w) with w e C(K,B)

so- that Y. _(u,b) = P(a) (P i T (B)) )

B,C(
P i T (B)) W)-

-22-
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Bat u i T(B) = i"M(C) H(K,u) and therefore ¥, ,(u,b) = P(i"1(0)) (u w)

= p(iY () HW,Q)) ().
Hence Yp o(-/b) is P (b) for ¢,(b) =i 1) Hw,C): HEB,C) - C.

If we take hc: C(k,B) - C(d(B,C), H(K,C)) then this lifts
to Hc: H(K,B) -+ H(H(B,C), H(K,C)) in the sense that P Hc = hC

fram the definition of a structured category.

We define m, = H(H(B,C), i'l(C)) H, i(B). Then
Pm, = PH(H(B,C), i™1(C)) PH, Pi(B)
- cm®,0, i) h. Pi(B).

Therefore (Bmy) (b) = (C(H(B,C), i (C)) hy Pi(B)) (b)

C@EE®,0), ite) h (W)

= i) HW,C)
= <I>l (b).
Cordition (ii) for a bimorphism is trivial since m, is the

identity on H(B,C), i.e. P(sz) (u) (b) = P(u) (b) = ‘I’B’c(u,b).

IRMA 5.1.2 Given sets X, Y, 2, X', ¥', 2' and functions A: X -+ X',
u:' ¥ -+ Y', p: 2 + 2'; Fn(Y,z) denotes the set of functions Y
into 2. ILet a:XxY + Z and a': X -+ Fn(Y,2) be functions
related by a(x,y) = o' (x)(y).

(1) If B: XxY - 2' and B': X » Fn(Y',2') are
functions related by B(&',y') = 8'(x")(y') then diagram (5.1.1)

cammtes if and only if diagram (5.1.2) canmites:
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XxY XXM ,xxy
= (5.1.1) \ o 8
/ P — 2'
i X B — Fn(Y',2')
(5.1.2) o Fru,z')
Fn(Y,2) 0, en,z')

(i1) If vy:X'xY¥ » 2' ad vy': X' > Fn(Y,2') are
functions related by v(x',y) = v' (') (y) then diagram (5.1.3) cammutes
if and only if diagram (5.1.4) camutes.

XxY AxY »X' x Y
(5.1.3) a v
Z P —>2'
X A — X'
(5.1.4) o' v
Fn(Y,32) Fn(Y¥,p) >Fn(Y,2')

Proof: The proof is immediate fram the relations between the given

functions.

Note: Although we would not normally express the cordition fg=hk
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in the form that the diagram
M S

camutes, we sametimes find it convenient to do this below as this

technique makes clear the damain and codamain of each morphism involved.

THEOREM 5.1.3 If the structured category (C,H,P,K,i) has a Bimorphism

Product then the Bimorphism Product is an Exponential Product.
Proof: Let us denote the Bimorphism Product of A and B by (t(A,B), T(A,B))

We use my .(A) to demote the morphism A + H(B, T(A,B)) corresponding

B
14
to the bimorphism A x B = T(a,B). Also since WB,C: H(B,C) xB = C
is a bimorphism, it factors uniquely through the universal bimorphism
H(@B,C) x B - T(H(B,C), B) thus defining a morphism

m, B(C): T(H(B,C), B) - C natural in C.
4

Given g: T(A,B) = C, we define &(g) = H(B,q) ml,B(A)'

Given f: A > H(B,C), we define 0O(f) = mO,B(C) T(£,B).
Thus we have the required functions

OA,B,C: C(, H(B,C)) =+ C(T(A,B), C))

q)A,B,C= c(r(a,B), ) - C(a, H(B,O)).

We prove below that:

(i) ¢ is natural in A, B and C (Lemmas 5.1.4, 5.1.5
A,B,C

ard 5.1.6 respectively).

i1 = 1; =1 (Proposition 5.1.7).
(i) 8, 5 c%,3,c= 1 %,B,C %,B,C PO

P Iy LN S PPN

SR s 4t
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Therefore q’A,B,C is bijective. Hence q’A,B,C: C(T(a,B), C) -+
C(A, H(B,C)) 1is a natural isomorphism with inverse natural isamorphism

OA B.C (4, p.519) and the theorem is proved.
1<

ILEMVA 5.1.4 q’A,B,C is natural in A.

Proof: We assume h: A + A' is a morphism in . Then we must

show the following diagram camutes:
o

c(r@a',B) ,C) A',B,C S C@', HB,C))
q)A,B,C

c(r(@,B), C) »C(A, H(B,C))

i.e. C(h, H(B,C)) o ',B,C(g) = ¢A,B,C C(T(h,B), C)(g) where

g € C(T(A',B), C). Examining this relation we see that it has

L.H.S. = C(h, H(B,C)) &y, 5 (@) = H(B,9) m A h  .eoevnnn (5.1.6)
RH.S = 9 o C(T(1,B), C)(g) = H(B,9) T(R,B) m 5(2)

H(B,g) H(B, T(h,B)) mllB(A) .. (5.1.7)

(by definition of H).

Hence it is enough to show the following diagram cammutes:

A h —»A'

(5.1.8) (a) ml,B(A')

B

H@, T(,B)) BB TOB) g, T@ar,B)

If we define the natural injection e y,z° c(xX, T(Y,2)) ~

Fn(PX, PT(Y,Z)) where X, ¥, 2 € ob C then we may set up
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the following diagram:

PA Eh —» PA'

P{Pm) 5 (R) ()}
P{Pm (a") ()}

(5.1.9)
N i
pr(a,) —En(EB PT(M,B)) | oy pp priat,p))
Py g ) YB,a,B (i) Pm) 5(a')
C(B, T(,B)) (B, T(h,B)) »C(B, T(A',B))

The rectangle is cammtative by Lemma 5.1.2 (ii) and camponents
(i), (ii) and (iii) are camutative from the definitions of the
functions involved.

It follows that the diagram boundary is commutative and since
P is faithful its lifting diagram (5.1.8) is also cammtative and

the lemma is proved.

Igma 5.1.5 q)A,B,C is natural in B.

Proof: We assume j: B -+ B' is a morphism in C. This will induce
the following diagram which we must show cammutative:

q)A,B' ,C

c(r(,B'), C) —C(a, H(B',O))

(5.1.10) C(T(@A,j), C) c@, H(3,C))

¢
c(T(@a,B), C) A.B,C s C@, H(B,C)
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ie. C@A, HG,C) 8 ni o(g') =8 o CTA,I), O (') where

g' € C(T(A,B'), C). Examining this relation we see that it has

L.H.S. = C(A, H(J,C)) &, pi o(9') = H(,C) HEB',g") my 5, (A)

= H(B,g') H(j, T(A,B')) m B Aa) .... (5.1.11)

(by the naturality of H).

RH.S. = & o CT(,3), C)(g')

" H(B,g') T(a,]) "‘1,B(A)

H(B,g') H(B, T(A,3 )) ml,B(A) ..... (5.1.12)

(by the naturality of H).

Fram (5.1.11) and (5.1.12) it is enough to show the following diagram

A m,pr ® SH(B', T(A,B') s
(5.1.13) ml,B(A) H(3, T(A,B"))
H(B, T(a,B)) —28. T@I) __, u, 1(a,8")

If we define the natural injection Uy v gt C(x, T(Y,2)) -
r=r
Fn(PX, PT(Y,Z)) where X, Y, Z € ob C then we may set up the following

diagram:




c@', T(a,B"))

Pm

By o, () ()

(i) Yg',a,B

PA »Fn(PB', PT(A,B'))
(5.1.14)
P{ (A) (")} : [
Pmer Fn(Pj, PT(a,B')) (iv) C(Jr T(a,B'))
P, (3) . v
' Fn(PB, PT(A,3))
Fn(PB, PT(A,B)) »Fn(pPB, PT(A,B'))
.. (iii)
(ii) YB,a,B ¥g,a,B'

C®, T@A,3))

C(B, T(A,B)) > C(B, T(2,B"))

It follows fram the definition of a universal bimorphism that
Pt(A,B') PA x Pj = PT(A,j) Pt(a,B). Hence by Lemma 5.1.2 the rectangle
in the above diagram camutes.

The commutativity of the camponent diagrams (i), (ii), (iii) and
(iv) is immediate fram the definitions of the functions involved.
Cammtativity of the boundary then follows from the commtativity
of the rectangle and of the component diagrams. The boundary is the
image of diagram (5.1.13) and hence we conclude (5.1.13) is commutative

and the lemma is shown.

1 i i c.
ILEMMA 5.1.6 QA,B,C is natural in

Proof: We assume k: C + C' is a morphism in (. Then we must show

the following diagram cammtes:

Y

AT AT T v, g e

S ) e

Foowmgermr FopzE el




o}
C(T(a,B), C) A,B,C —»C(a, H(B,C))
(5.1.15) c(r@,B), k) Cc(a, H(B,k))
q)A B,C'
C(T(a,B), C') By > C(a, H(B,C'))

i.e. C(a, H(B,k)) QA,B,C(g") = q)A,B,C' c(T(a,B), k) (g") where
g" € C(T(AIB)I C).

Then C(A, H(B,k))

%) p,clg") = C(A, HBK)) H(B,g") my ;(R)

H(B,k) H(B,g") “‘1,B(A)

H(B, kg") m) 7 )

2y B,cr K"

- n
= QA,B,C' c(T@A,B), k) (@)
Hence ‘DA,B,C is natural in C.
PROPOSITION 5.1.7 If GA B C: c(@, #(B,C)) - C(r(A,B), C) amd
[ A
QA B.C° c(T(a,B), C) -+ C(a, H(B,C)) are functions as defined in
[ A 4

Theorem 5.1.3 then

(i) ¢ e =1
B,C
aBCABC ~ (5.1.16)
(11) A’B'c A’B’ : l

Proof: If f: A - H(B,C) and a € PA then we may set up the

following diagram:



(1)
\va/
Pf x PB . (B,C) x PB

(iii) Pm, _ (C)
Pt(H{B,C), B) 0,8

PT(f,B) » PT(H(B,C), B)

The camponents (i), (ii) and (iii) and the rectangle cammite
fran the definitions involved (i.e. of my B(A) and the Bimorphism
r
Product) .

Lifting the outer edges to C we have
mO,B(C) T(f,B) (Pml,B(A)) (a) = (Pf) (a)
i.e. (PH(B, mo,B(C) T(£,B)) ml,B(A))(a) = (Pf) (a)

Therefore H(B, m, B(C) T(E,B)) = £

l.e. QA,B,C QA,B,C(f) =f

Next if we are given g: T(3,B) - C then

®(g) = H(B,9) m) ,(@A): A > H(B,C) ard

= : aA,B) > C
%,B,c %a,8,c(@) =my g TEBG) m p(A), B) T(a,B)

= my (C) T(HB,9), B) Tm g@), B)

i = i.e. the following diagram commutes:
We will show GA,B,C QA,B,C(g) g, i.e e fo ing gr
T(a,B) g > T
(5.1.18) T(m.l B(A) , B) mO,B(C)

T(H(B, T(A,B), B) T(H(B,g), B) 3T (H(B,C), B)
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Consider the faithful functor P acting on the diagram and then

using the definition of the Bimorphism Product, set up the following

diagram:

Pm, B(A) x PB C(B,9) x PB

PA x PB L » C(B, T(A,B)) x PB »C(B,C) x PB
(1) (ii)
5.1.19) t(a,B) t(H(B, T(A,B)), B) t(H(B,C), B)
(iii)

PT(m p(3), B) PT(H(B,q), B)

PI‘(AIB) L > PI‘(H(BI T(AIB))I B)_-—iPT(H(B,C), B)
‘*'B,c
Pg

If we let g-= WB,C C(B,g) X PB Pml,B(A) x PB and
s = PmO,B(C) PT(H(B,g), B) P'I‘(ml’B(A) , B) then g is a bimorphism
since the composite of a bimorphism with the product of morphisms
is again a bimorphism (Lemma 4.2.2). Also s t(A,B) =q since
rectangles (i) and (ii) commte fram Definition 4.3.1 and triangle
(iii) commtes since bimorphism WB,C factors uniquely through
the corresponding universal bimorphisms.

We conclude by showing (Pg) t(A,B) =q. We need the
camutativity of the following diagram where ‘PB,C is the
evaluation function:

CB.g) Py g XPB

PA x PB

(5.1.20) t(a,B) ‘PB,C

Pg —
PT(a,B) BC
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By Lemma 5.1.2(ii) this is equivalent to proving the camutativity

of:
Pm (a)
PA 1,8 »C(B, T(3,B)) C(B,g) +C(B,C)
(5.1.21)
P{PmllB(A) (=)} P P
) Fn(PB, Pg) N
Fn(PB, PT(A,B)) _5 Fn(PB, PC)

Since the functor P preserves camposition this diagram
camutes and we necessarily have (Pg) t(A,B) =g.
Then we can conclude

GAIBIC ¢AIBIC(g) = g
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§5.2 A Camutative Exponential Product is a Bimorphism Product

This section will conclude the relationship between the
Exponential Product and Bimorphism Product. Certain results must,
however be introduced before we can prove the main result.

We will assume our category has an Exponential Product A @ B
and use it to define morphisms ml,B(A): A - H(B,A®B) amd
mO,A(C) : HA,C) ® A + C. The morphisms of the same name in Chapter
IV were defined using the uvniversal bimorphism. Since our category has
an Exponential Product there exists natural isomorphisms C(A, H(B, A @ B))

2 cag@B, ARB) and C(H(A,C) & A,C) = C(H(A,C), H(A,C)).

Definition 5.2.1 Iet (C,H,P) be a semi-structured category with an
Exponential Product. We define my B(A): A -+ H(B, A 2 B) as the morphism
14

corresponding to the identity on A 2 B.

Definition 5.2.2 ILet (C,H,P) be a semi-structured category with an
Exponential Product. We define m, A(C): H(@A,C) 8 A » C as the morphism
’

corresponding to the identity on H(A,C).

Definition 5.2.3 Let (C,H,P) be a semi-structured category with an
Exponential Product A @ B; this product being commutative in the sense
that there is a natural iscmorphism c(3,B): A® B - B A with the
property that c(A,B) c(B,A) is the identity morphismon B® A for
all choices of objects A and B in C. We define the function t(a,B}:

PAxPB - P(A®B) by t(aB) (a,b) =P{P[HE®,c(BA) ml,A(B)] (b) } ().
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THEOREM 5.2.1 I1f (C,H,P,K,i) is a structured category with an

Exponential Product then t(A,B): PAX PB + P(A R B) is a bimorphism.

Proof: We will define m, = H(@, c(B,a)) my A(B): B - H(A, A @ B).
7

If <I>1 = Pml then it is immediate by the definition of t(A,B) that

t(a,B) (a,b) = {P(®;(b))}(a), aePA, be PB.

In the argument below we use the morphism
Hy, g gt HKA) ~ H{H(A, A@B), HK, A®@B)} of Definition 4.1.1 and
the morphism w: K - A defined by w= (Pi(d))(a) where a is an
arbitrary element of PA. Let m, = H{H(A, c(B,A)) ml'A(B) ' it (A 2 B) }% g pi®):
if <I>2=Pm2 then it is clear that
2,(a) = C{H(@, c(BA) m ,(B), i (A8 B)} hy g plw) as Plas) = Pq Pr Bs

= {i'l(A [ B)}{hA e B(w)} {1(a, c(B,a)) ml'A(B)} as C(£,g) (0) = gof

Hence
(20,()) () = P{i " (a @ B)} P{hy o (W)} (8;(0)) Dy the definition of o)
=pit@a@B)} 0,0 W by the definition of hy o o
= p{il@a 2 B)} C(K, & (D)) W) as C(X,£)(g) = fg
= p(ila @ BYHEK, o () o) as Plqr) = Bq Pr
= P{o, (b) i 1(A)} (W) by the naturality of i
= {p <I>1(b)}(a) by the definition of w

t(a,B) (a,b)-

Hence t(A,B)(a,b): PAXPB - PARB) isa bimorphism.

IFMMA 5.2 2 If (C,H,P) is a semi-structured category with an
Exponential Product and £: A + A' and g: C ~ C' are morphisms

between objects of C, then the morphisms ml,B(A): A - H(B, A2B)
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and mO,A(C)= H(A,C) @A + C are natwal in A and C respectively.

Proof: Immediate from (11, p.477, 3.3).

IEMMA 5.2.3 Iet f: AxB + C be a bimorphismand u: AB ~+» C

be a morphism in the semi-structured category (C,H,P). If

¢lf :PB » C(A,C) is the function associated with £ by virtue of

1t‘ PB + C(A, AR B) is

the definition of a bimorphism and ¢
the analogous morphism for t as defined in Theorem 5.2.1 then

diagram (5.2.1) camutes if and only if diagram (5.2.2) commutes.

t
%
PB >C(a, A QB)
(5.2.1) c(a,u)
C(a,c)
PA x PB t(2,B) » P(A 2 B)
(5.2.2) f u

Proof: From the definitions involved we have
p@,f(b))(a) = £(a,b) and P(8,°®))(a) = t(A,B) (@/D).
First we assume diagram 5.2.1 camutes, i.e.

Cau) P@,5m) (@) = 2(&,"®) @.

LS. (Cau) B(e;5®)) (@) = PHAEW 2,5 0)) (@)

t
P(u ¢ (b)) ()

u t(a,B) (a,b)

R.H.S. (cplf(b))(a) - f(a,b) and therefore diagram (5.2.2) commites

The converse follows similarly.
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THEOREM 5.2.4 If the structured category (C,H,P,K,i) has an

Exponential Product that is cammtative in the sense of Definition 5.2.3

then the Exponential Product is a Bimorphism Product.

Proof: We have shown in Lemma 5.2.1 that t(A,B): AxB > A @B

is a bimorphism. We proceed to show that any bimorphism f: AxB + C
factors through t(A,B) and the factoring morphism u: PA 2 B) » PEC
is uniquely determined.

For a bilinear map £: PA x PB > BC, we have £(-,b) = P(2,"(b):

A+ PC and there exists m’:B - H@A,0 with ¢ =pm"):

PB > C(A,0).

If we assume that for a given bimorphism £, there exists

f=
1

t t
PB » C(A,C) and m1f=H(A,u) my where m, : B > H(A, A 2 B).

t
let g= mO,A(C) mlf ®A c(A,B). Since mlf = H(A,u) my

H(A,u) ml'c ea

c(a,u) 8,

a ueC with f= (Pu) t(aA,B) then it follows that & ik

then mlfQA

(H(A,u) 2 A) (mlt @a)

and g =my,(C) BB @A mteA c@B)

= A @ B) and therefore
But mO,A(C) H@,u) 2 A umO'A( 2 B)

q=u mO,A(A @ B) m:l_t @ A c(aB).

Mso m°@a=H® c(BA) @A=m ,(B) @A by definitionof t(a,B)

m
and mlt,
Thus q=u my ,(A 8 B) H@, c(B,A)) 2 A ml’A(B) ® A c(A,B)

_ then
and since m ,(A@B) H(A, c(BA) 8A= c(B,2) m, (B8 A)

]

qg=u c(B,A) mO,A(BQA) mllA(B) @A c(pB)

u c(B,A) c(aB) by (11, p.478, 3.7)
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c is commtative and so g =u; hence if u exists then it is uniquely

determined.

Conversely we must show that given
- f -
us= mO,A(C) ml A c(A,B) then f = Pu t(a,B).
It is enough to show mlf = H(A,u) m]_t since by applying
the functor P we have tblf =(C(@A,u) ¢1t and Lemma 5.2.3 will give
the required result.

Fram (11, pp. 477-478) we obtain the following commtative

diagrams:
B 1,2 >H(A, B 8 A)
(5.2.3) o, H(A, u c(B,A))
(a,C)
B2A mlf =2 —H(2,C) 2 A
(5.2.4) u c(B,A) mO,A(C)
C
Next we must show that
B m:Lt > H(A, A @ B)
(5.2.5) H(Au)
H(a,C)

camutes.
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This amounts to showing that triangles (i), (ii) and (iii) of the

following diagram cammute:

f

H@A, m,” & A)
H(a, A @ B)—BB CAB)  pn g a 1 »H(A, H(A,C) 2 A))

t (iii)

™

(5.2.6) H@A, mO,A(C))

ml,A(B) H(A, u c(B,A))

» H(A,C)

Triangle (ii) commtes from diagram (5.2.3).
Triangle (iii) commutes from diagram (5.2.4).

To prove triangle (i) commites we must prove H(A, c(a,B)) mlt = ml,A(B) .
. t _
Since m - = H(A, c(B,3)) ml’A(B) we have

H(A, c(a,B)) mlt = H(A, c(A,B)) H(A,c(B,A)) ml,A(B)

= H(A, c(A,B) c(B,A)) ml,A(B)

H(A, B ® A) ml’A(B)

=m. a®)
and hence diagram (5.2.5) camutes and the required result follows

from Iemma 5.2.3 .

L LT SIS

% badees

ENCTIRIPLS

Tt P

D B KA i s Lol




CHAPTER VI

THE IDENTITY, ASSOCIATIVITY AND COMMUTATIVITY ISOMORPHISMS

§6.1 Identities and Representability

We will assume in sections 6.1 to 6.3 that (C,H,P) is a semi-
structured category with an Exponential Product ®. We will discuss the
relationship which exists between properties which have been mentioned

previously.

Definition 6.1.1 We will say that L € cb C is a left identity

for 2 if there is a natural isamorphism e: L&A > A. Ina
similar way, R € ob C will be called a right identity for & if

there is a natural isamorphism r: AR > A.

THEOREM 6.1.1 If P is representable by means of an object

Keob C then K is a left identity for ®.

e

Proof: Given PA = C(K,A), then C(K @ A, B) = C(K, H(A,B))
DH(A,B)
X C(a,B)

' A
and by Theorem 1.4.1 we conclude that K 8 A = A.

THEOREM 6.1.2 K is a right identity with respect to @ if and

n
only if K is a left identity with respect to H, 1.€., AQK=A
if and only if H(K,A) = A.

Proof: We assume K is a right identity with respect to &.

e

Then C(a,B) = C(A.® K, B)

e

c(a, H(K,B)). !

-40-
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e

Therefore by Theorem 1.4.1, B = H(K,B).

Next we assume that K is a left identity with respect to H.
Then C(A,B) = C(A, H(K,B))
Zc@aek, B).

Therefore by Theorem 1.4.1, A=A 8 K.

The question of whether or not H has a right identity is
not valid since if we assume there exists such an identity J, then
we reach a contradictory situation, i.e. A |+ A is covariant

whereas A |» H(A,J) is contravariant and obviously A?H(A,J).

THEOREM 6.1.3 If R has a right identity K then P is

representable by means of the object K.

Proof: There is a natural isamorphism r: B® K + B which belongs
to C(B @K, B). This gives rise, by Theorem 6.1.2, to the natural
isamorphism v: B -+ H(K,B) which belongs to C(B, H(K,B)). Fram
the definition of an Exponential Product we have C(B, H(K,B)) =

C(B @ K,B). Therefore we have the following natural isamorphism
where H is an internal Hom functor:

PB = PH(K,B)

ite

C(K,B).

Thus PB = C(K,B) and P is representable.

THEOREM 6.1.4 If @ has a right identity K then K is a unique

right identity ard also a unique left identity.
Proof: K is also a left identity fram Theorem 6.1.1 and 6.1.3.

. . v R
If R is also a right identity then R=K®

e -

K‘
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Similarly, if L is also a left identity then L 210K
X k.

Hence the identities are unique.

The converse of Theorem 6.1.1 is false. To illustrate this
we use the category L of finite simplicial complexes (17, p.28)
understood as finite sets with distinguished (spanning) subsets, any
subset of a spanning set spanning but not all the points in the camplex
necessarily belonging to spanning sets; and simplicial maps, understood
as those set maps that take spanning sets to spanning sets. Iet F
be the forget functor to sets. Two different internal Hom functors on
L are given by M(A,B) = L(A,B) as a set with the structure of a
camplex given by fl = f2 = ieeeees = fn. This example has a left
identity and even though it is associative the identity is not unique
since every connected camplex is a left identity for the tensor product.
The existence of a unique left identity even together with
associativity does not imply the existence of a right identity. This
is demonstrated by again using the example of the category L with
the same set maps. However, in this case there is no condition given

and all subsets span.

§6.2 Associativity and the Strong Exponential Product

Definition 6.2.1 If ®&: Cx C - C is a bifunctor then we say
that ® is associative if and only if there exists a natural

n
isomorphism a: (A®@B) 2C=A8 (BR2C).
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It is possible to define 2 as being an Exponential Product
relative to the semi-structured category ( C,H,P) in the stronger
sense that there is a natural isamorphism ao: H(A ® B, C) = H(a, H(B,C)).
Definition 6.2.2 If @ is an Exponential Product in this stronger sense

we call it a Strong Exponential Product; then P a: C(A® B, C) ¥

C(a, H(B,C)) and it is an Exponential Product in the usual sense.

THEOREM 6.2.1 Iet @ be an Exponential Product relative to the

semi-structured category (C,H,P). 2 is associative if and only if it
is a Strong Exponential Product.

Proof: Given a: (AQB)ﬁCgAQ(BQC). We have

Cc(A & B, H(C,D))

lie

c((ae@B) & C, D)

te

C(a, H(B, H(C,D))
and C(A® BRC), D) = C(A, HBRC, D)). Since we are given the
natural isomorphism a then C((A®B) C, D) = CAR (B&C), D).
Therefore there is a natural isomorphism C(a, E{2, H(C,D) = C(A, H(B 2 C, D))
and by Theorem 1.4.1 we have the required natural isamorphism,
H(B, H(C,D)) ~ H(B & C, D).

To prove the converse we are given H(B, H(C,D)) = H(B 2 C, D);
then fram Theorem 1.4.1 C(A, H(B, H(C,D)) = C(A & B, H(C,D))

2c(aeB) 2C, D)

and C(A, HB®C, D)) 2 C@A R (B2C), D) and again from Theorem 1.4.1

the result follows.
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§6.3 Camutativity and the Exponential Product

Definition 6.3.1 A bifunctor ®: ¢ x (¢ =+ (¢ is camutative if and

only if there exists a natural isamorphism c: A @ B=B®A.

THEOREM 6.3.1 Iet (C,H,P) be a semi-struccured category with-an

Exponential Product 2. Then @ is comutative if and only if there

exists a natural iscmorphism C(a, H(B,C)) % C (B, H(3,C)).

Proof: If we assume @ is cammitative then C (A, H(B,C)) z CAeB, O

e

CBeaaA, Q)

ne

C(B, H(A,Q)).
Proving the converse, we have C(A @ B, C) g c@, H(B,O)

2 c(@, HEA,C)

2c@ea, 0.

Therefore AR B~ B @ A by Theorem 1.4.l.

§6.4 Properties of the Bimorphism Product

Tn this section we assure (C,H,P,K,i) is a structured category

with a Bimorphism Product T(A,B).

THEOREM 6.4.1 The Bimorphism Product is camutative.

Proof: We define a function d(a,B): AxB > BXA; (aby |+ (bsa).

Then consider the following diagram:

AxXB d(a,B) sBx A
(6.4.1) t(a,B) t(B,A)
T(3,B) J(,B) > T(B,A)

initi 4,2.2;
t(B,A) d(A,B) is a bimorphism by Definition 4.2.2, not Lemma
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hence there exists morphism j(A,B): T(A,B) + T(B,A) such that

Pj(a,B) t(A,B) = t(B,A) d(A,B). In a similar way there exists a

morphism j(B,A): T(B,A) =+ T(a,B) such that Pj(B,A) t(B,A) =

t(A,B) d(B,A). We have Pj(B,A) Pj(A,B) t(a,B) = Pj(B,A) t(B,A) d(A,B)
= t(a,B) d(B,A) 4(A,B)
= t(a,B).

Now by the uniqueness in the definition of a Bimorphism Product,
P(j(B,A) j(a,B)) = ]‘PI‘(A,B)' Since P is faithful, j(B,A) j(A,B) = lT(A,B)'
Similarly 3j(a,B) j(B,A) = lT(B,A) and therefore j(A,B) is an
isomorphism. The naturality of j(A,B) is easily verified. Hence
j(A,B) is a natural isomorphism.

THEOREM 6.4.2 There are left and right natural identiy isamorphisms

e: T(X,A) - A ad r: T(A,K) =+ A.
Proof: In a structured category we have A= H(K,A). Hence K is

a right identity by Theorem 6.1.2 and the result follows by Theorem 6.1.4.

THEOREM 6.4.3 The Bimorphism Product is associative.

(Note — This is proved on pp. 254-256 of (24); we give an outline of the
method) .

Proof: The concept of a bimorphism leads to the idea of a trimorphism
AXBXC + D as a suitable function PAx PBx PC + PD where
A, B, Cand D are objects of C. t(a, t(B,C)): PAXPBx PC =
Pr(a, T(B,C)) and t(t(a,B), C): PAXPBX BC ~+ PT(T(3B), C) are
trimorphisms with the universal property that all trimorphisms on

Ax B x C factor uniquely through them. The result follows by the

theorem for trimorphisms analagous to our Proposition 4.3.2 -for

bimorphisms.
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QOROLLARY 6.4.4 The Bimorphism Product is a Strong Exponential Product.

Proof: This is immediate from Theorems 6.2.1 ard 6.4.3 .

if (C,H,P,K,i) 1is a structured category with a Bimorphism
Product T(A,B), then we have shown in Theorems 6.4.1, 6.4.2 and 6.4.3
that natural isamorphisms c, e, r and a are defined. If we assume
that the correspording diagram (3.2.4) cammutes then we may show that
c,e r and a are coherent; for (3.2.1) comutes by the first
statement after Theorem 11 in (17), (3.2.2) by an easy extension of
Theorem (6.4.1) and (3.2.3) by an argument that defines trimorphisms
AxBxC -+ T(A, T(B,C)) amd AxBxC - T(T(C,A), B) and shows
that the two paths in (3.2.3) are the unique morphism by which the
second trimorphism factors uniquely through the first. The details
of this argument will not be given in this paper but will be given
elsewhere. It follows that C, with the associated structures, is a

symmetric monoidal closed category in the sense of (11).




CHAPTER VII

EXPONENTIAL PRODUCTS AND ADJOINT PRODUCTS -

The concepts of the Exponential Product and the Adjoint
Product were defined in Chapter II. The Exponential Product is
often described in the literature as a tensor product defined
by adjointness. We discuss the Adjoint Product to illustrate
that this last statement is slightly misleading. Clearly any
Exponential Product is an Adjoint Product; we show by a counter-
example that even in a structured category these two concepts

are distinct.

Example 7.1 If we have the ring of integers, (Z,+,x), then we

consider a category C with one object 2 and morphisms, the
group-endomorphisms of (Z,+). Composition in € is simply
the usual composition. We define P(%Z,+) =Z and if £ 1is an
endomorphism of (2,+) then Pf: Z2 -+ 2 is the underlying
function.
¥ have bifunctors:
(a) @: Cx C + C such that 2 @ 2=2 and f @ g=£f g.
(b) H: C* x C + C such that H(zZ,2) = 2 and H(f,g9) =f g

. n .
The natural isomorphism -~ (2 & 2 , z) = C(z, H(Z,z)) with

a(f) = f implies @ 1is an Exponential Product. We define
= i, = = the identity endomorphism of

K= (z,+4) and i, = Hg = (H as y

(z,+). (C,H,P,K,i) 1is then a structured category. We also

i i ism
define the functor ©0: ¢ -+ C such that if fi is a morphi

+> 2 and

P

zZ > Z; fi(x) = ix, x € 2 then O(f;) = £.2: 2

= = . = £,2.2 = £,2.2 = 0(£;) O(£.).
Olf; £5) = O(f;4) £i9)2 £i25 i%3 i 3
Then we require the bijection

B: C(Z & 0(Z), 2) = C(z & 2z, Z) with B(f) = £

—46_
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and define Yy = a 8: C(z2 @ 0(2), 2) -+ C((z, H(Z,2)).

a, B and therefore ¥y are natural in the first and third

variables; a 1is also natural in the second variable; therefore

Yy is natural in the second variable if and only if B is natural
in the second variable.
Consider the following diagram:

Z 80
—————

Z 8 2 Z 2 0(2) lm———— 1
(7.la) le f2 1@ @(fz) (7.1b)
=18 f4
7 @ 0
20 7 ~————==272 8 0(2) 2— 2 # 4

This diagram obviously does not commute and therefore the

following induced diagram is not commutative:

C(z @ 6(2), 2) 8 +C(z @ 2, 2)

(7.2) C(z @ 0(f2), Z) C(z & f2' 7)

B

C(z @ ©6(2), 2) — C(2 & 2, Z)

Therefore B is not natural in the second variable and hence Y
is not natural in the second variable. Hence the bifunctor
CxC~+ C; (2,2 |~ zez=2; (£9) |- £f£&06(g isan
Adjoint Product and not an Exponential Product.

thder suitable conditions we can ensure that the
naturality of the isomorphism & in the first and third

variables is equivalent to naturality in all three variables.
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THEOREM 7.1 If (C,H,P) is a semi-structured category with a

cammitative Adjoint Product 8, then the Adjoint Product is an
Exponential Product if there exists a natural iscmorphism

‘i‘A B.C° c@A, H(B,C)) =+ (C(B, HA,C)) natural in all three variables
r r

such that the following diagram cawmtes:

Q
C(a@B, C) AB.C__ 5ca,H(B,C))
(7.3) C(c, C) %) nc
CBRA, C) BAC @, HAL,C)

Proof: Since C(c, C) is nmatural in A, B and C, aB,A,C is

natural in B and C, \PABC is natural in A, B and C and the
=2

diagram is cammtative then %A B,C must be natural in all three

variables and the theorem is proved.




CHAPTER VIII

EXAMPLES

In this chapter we have chosen different categories and
illustrated the theory of the preceding chapters by the following
examples in which the Adjoint Product, the Exponential Product the
Strong Exponential Product and the Bimorphism Product coincide and are
simply referred to as the tensor product. In each example we shall

define and explain the following:

(@) the functor H: C*xC -+ C

(b) the functor P: C > S

(c) the distinguished object K e C

(d) the natural isomorphism i

(e) the mappings h., H., v A

(f) bimorphism f: AxB > C

(g) the tensor product

(h) the exponential law and the strong exponential law, i.e.
the natural iscmorphisms that define the Exponential Product and

the Strong Exponential Product.

1. Iet M be the category of R-modules where R is a

camutative ring. Iet A, B, C ¢ M.
(a) H@,B) = Hm(a,B), i.e. the set M(a,B) of homorphisms
of A into B regarded as an R-module in the usual way

(b) P: M - S is the forgetful functor (or underlying set

functor) .
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(€) K is the ring R regarded as an R-module.

@ i(@a): A= Hm(R,A) such that {i(d) @)} (r) =ra, a e R,

(€) h,: M(a,B) + M(Hm(B,C), Hom(a,C0)); h(f)(g) =g £
where f e M(A,B), g € Ham(B,C).

Ho: Hom(@,B) -+ Hom(Hm(B,C), Hm(a,0). H,(f) £ h (f),
f ¢ Ham(a,B).

ch: M@A,B) + M(Hom(C,A), Hom(C,B)); Ahf)@ =£fg
where f € M(a,B), g £ Hom(C,3).

cH: Hm(a,B) > Hom(Hm(C,A), Ham(C,B)). H(E) £ h(D),
f € Hom(A,B).

(f) A bimorphism f: AxB + C is a function such that if
™: B + Hm(,Q), m,: A + Hom(B,C), then m, (b)(a) = f(a,b) and
m, (@) (b) = £(a,b), i.e. a bimorphism is simply a bilinear function.

() T(A,B) =A®@B ad t(A,B):AxB + A®B; (ab) [+a®Db
where t(A,B) is the function on the underlyj.ng set.

(h) Exponential law a: M(A 8 B, C) = M(a, Ham(B,C));
{a(f)@1}@m®) =faeb), fecMareB C), ach bebB

Strong exponential law B: Hom(A & B, C) = Hom(a, Hom(B,C)):

B(£) = a(f).

2. Iet S be the category of sets and A, B, C € S.
() H(A,B) = S(a,B), i.e. the set of all functions A =+ B.
(b) P=1: S - S.

(¢) K = {x}, a singleton set.
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@ i():a=S(x}, A) suh that i@ {(a){x}} =a, acA.

(¢) h, =H.: S(&,B) + S(S$(B,C), S(A,0)); B.(£)(9) =g £,
feS(AB), gceS(B,CQ).

A=l S@&,B) » S(S(EC,n), S(C,B)): HE) (@ =£g,

feS@A,B), ge S(C,A).

(f) A bimorphism f: Ax B -+ C is any function such that
m:B +>S@AC), my:A >S(B,C; mb) (@) =£(ab), m@)b) =f,b)
are functions, i.e. a bimorphism is any function £: AxB =+ C.

(g0 T(@A,B) is the Cartesian product A x B and t(a,B):
AxB + AxB is the identity function.

(h) The exponential law and strong exponential law coincide as

a=R:S@AxB,C) =+ S@A, SBL).

3. Iet Six be the category of sets with base points and let
A, B, C & Sk.

(a) H@,B) = Sx(A,B), i.e. the set of base point preserving
functions A -+ B.

(b) P: Sx + Si (X% |+ X

(€) K = {{x,+}, =}

@ i@):AY Sx(KA) such that i(@){(@)(x)}= i
i@ {@ ®} = a.

(e) h.: S@A,B) ~ S(S%(B,C), S+(A,C)); h.(f) @ =9%
feS@AB), ge Sx(BC).

Hy Sx@B) > Se(Sk(B,C), S+ HE () =g £

feSx(@,B), g e Sx(BC)-
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e S(a,B) -+ S(S«(C,n), S«(C,B)); @) ==fg,
feS@,B), ge Sx(C,A).
JH: Sx(@,B)  + Sx(Sx(C,B), Sx(C,B)); SE)g) = £ g,
f € Sx(A,B), g € Sx(C,a).
(f) £: Ax B -+ C is a bimorphism means that f is a function of A x B
into C: such that f£(a,x) = x, £(x,b) = x.

() T@A,B) = AXxB =A # B (the smashed product
AX*JxXB

of A and B) aad t(d,B):AxB - A # B is simply the bimorphism
(@) |+ [(a,b)].
(h) Exponential law a: S(A # B, C) = S(A, S%(B,C)) vhere
a(f) (@) ) = £[(a;b)], aed, beB, feS@A#B O
Strong exponential law B: S#(a # B, C) = Sx(a, Sx(B,C))

where B(f)(a)(b) = £[(a,p)], aeA, beB, feS«A#B, C.

4. Iet U be the category whose cbjects are the subsets of a
given set U and whose morphisms are all inclusion functions.
Hence U(A,B) is a set of one element if A > B and is an ampty
set otherwise.

(a) H(@A,B) =A'U B where A' is the cawplement of A.

(b) PA=UU,A) =(@ if A#U
the singleton set whose element is the

inclusion UC U, if A= U.

() K=T.
@ i@): A ¥ H(K,A) is simply the identity function on

A since H(K,A) =U'UA=gUA=A.
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(¢) h.: u(amB) -+ u((BC), HAC)). If U@RB) =¢

then hc is simply an empty function. If U(A,B) has one element
then h, must take this one element to the one element of
um@e,C), H(A,C)). For this to make sense we require that U(A,B)
has one element shall imply that U(H(B,C), H(A,C)) has one element,
i.e. AC B must imply B'U C< A'\U C, which it clearly does.

HC: H(a,B) -+ H(H(B,C), H(A,Q)). HC is a morphism in
the category of subsets of U, i.e. it is the inclusion
H(A,B) € H(H(B,C), H(A,C)) or A'UBC(B'UCO)'VU (A'U Q).
This is obviously true since (B'U CO)'U (A'U C)

(BNC'YU @'V Q)

BUGAUO)NI(C YURUQC)
=B\UA'U C)NU

=A'"UBUL

2 A'U B.

cht umB) > " u(s(c,n), H(C,B)). If U@AB) =0
then h is simply an empty function. If U(A,B) has one element
then _h must take this to the one element of U(H(C,A), H(C,B)).

G is the inclusion H(A,B) - H(H(C,A), H(C,B)).

(f) Iet A, B, C be subsets of U satisfying the condition that
if A=B=U then C=U. Then f is a bimarphism means that if
A=B=C=0U then f takes the one element of PA x PB, i.e.

(A} x {\} where A: U - U is the identity function, over to A e PC.
Otherwise PAx PB =@ and £ isan errpty_function g -~ PC.

(g) T@,B) =ANB. t(AB):PAX pg > P@ANB). If
A=B=U then t@B): (\,\) |> A. Otherwise t(B): g |~ o

(h) Exponential law o: UA OB, C) X u@, B'U O, i.e. the
conditionthat ANBQC if and only if AC B'U C.

Y ' ' )
Strong exponential law B: (AN B)' Jc=2a'\U (B .u C)
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5. Let B and C be topological spaces, map(B,C) will denote
the sst of maps B + C and Map(B,C) will denote the set, map(B,C)
topoldgised with the compact open topology. Define the function
a: mp(A x B, C) -+ map(A, Map(B,C)) as al(f)(a) () = f(a,b)
where f e map(Ax B, C), a €A, beB. a is a natural bijection
if either B is locally campact and Hausdorff or if A and B
both satisfy the first axiam of countability (15). It is shown in
(25, Lemma 5.5) that there exist spaces such that o is not a
homeanorphism. Hence the category of all spaces with H(B,C) = Map(B,C)
and T(B,C) = Bx C does not have a satisfactory exponential law for
the application of the preceding theory.

It is proved in (6, p.240) that the strong exponential law
is satisfied if we take the category of Hausdorff spaces and define
H(B,C) = Map(B,C) and T(B,C) =B x_C where B x_C is the
set B x C with a certain weak topology (7, p.309). The product
Bx_C is not comutative, i.e. B X C and Cx B are not in general
hamecmorphic, (C x, B is homeamorphic to the weak product C x , B and
it is shown in (7, p.315) that these products are distinct). Hence
these last definitions of H(B,C) and T(B,C) do notmake the
category of Hausdorff spaces into a category in which our full theory
can be applied.

There are however, certain categories that are closely
related to the ususal category of spaces and maps in which our full theory
can be applied, e.g. the category of campactly generated spaces (26)
and the category of quasi-topological spaces described in (25). We
will assume that we are working in one of these categories which

we call C.
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In category C, the product space B x C has the Cartesian
product of the sets B and C as its underlying set; map(B,C) is
the set of maps of B into C and Map(B,C) is the set, map(B,C)
topologised (or quasi-topologised) in a suitable fashion such that
there is a natural bijection, map(A x B, C) -+ map(A, Map(B,C)).

(@) H(B,C) ¥ Map(B,C).

(b) P: ¢ > § is the forgetful functor.

(¢) K 1is a singleton space.

d) i(@a): a 2 Map(x,A) is the continuous map defined by
i@) (a) (x) = a.

(e) hC: map (A,B) - map(Map(B,C), Map(A,C)) where
hc(f) () =g f for f ¢map(d,B), g ¢ Map(B,C).

HC is simply the function hC made into a continuous
map by giving its domain and codamain the Map topology.

ch: map(a,B) -+ map(Map(C,A), Map(C,B)) where
AE)(g) =fg for f ¢ map(A,B), g e Map(C,A).

cH is simply the function Ch made into a continuous
map by giving its domain and codamain the Map topology.

(f) bimorphism £: Ax B » C is easily seen to be simply
amp AxB » C.

(g9 T(a,B) =AxB and t(A,B): AX B =+ T(A,B) is simply
the identity map.

(h) the exponential law is given above; the strong expon-
ential law asserts the existence of a natural hamecmorphism

Map(da x B, C) + Map(a, Map(B,C)).

A well known example in topologdy is the following: if R is

the real line with the usual topology then the function B: RxR > R,
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defined by (x,4) = ¥ is continuous in each variable but is
2, 2
not itself continuocus.® R s a k- space but this " bicontinuous "

function is clearly not a bimorphism in our sense.

6. Iet C be a category of quasi - topological spaces with base
points and base point preserving quasi - continuous maps in the sense of
the latter part of the above example. Then take H(A,B) as the space of
base point preserving continuous maps of A + B and T(A,B) is the
smashed product of A and B. Results analoguous to those in the category

of sets with base points may be obtained.

7. Iet C be the category whose objects are the elements of a
chain (sometimes called a simply ordered set or a linearly ordered set)
with a greatest element 1, and whose morphisms are the valid 3, i.e.
if a amd b are ocbjects and a S b then there is a unique morphism
a »> b.

c if b

: : < < =
Iet a, b, c e C. min(a,b) =c<=>a=b (hc—{

>
] if b=

i.e. Cminab), o) ¥ C@b A o).

. < _ .
Therefore C(a,b) is a set of one element if b=c and @ otherwise.

(a) H(blc) =b {h Ce.
(b) Pa=C(,a) =(@ if a# 1

the singleton set whose element is the

inequality 151 if a=1.
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(c) K=1.
@) i(a) is the equality a = a.

(e) hC is an empty function if a > b since C(a,b) = @.

A

If a bthenhc takes the inequality a<p to the inequality
brhe 2 ad\c.

H, is the inequality aff\b 2 brheo) A (arho).

ch is an empty function if a > b since C(a,b) = @.
If a=b then _h takes the inequality a =b to the inequality

Cc

cha s ehb.
J is the inequality afib = (ceha) rh (echb).
(f) If min(a,b) 2 c then the unique function Pa x Pb =+ Pc
is a bimorphism; otherwise there are no such bimorphisms.
(g) T(a,b) = min(a,b).
(h) Exponential law o: min(a,b) = ¢ if and only if
as bAec.

Strong exponential law B: min(a,b) (hc = arh (bho).

8. Iet (a,+) be an Abelian group with the structure of a

<
pre—ordered set such that xéy implies x+z=y+2, X,Y 2Z€A
e.g. the additive group of all real numbers or the multiplicative

group of all positive reais.
let A be the category whose objects are the elements of

the set A and whose morphisms are the valid =. Ilet a, b, c € A.
If we define T{a,b) =a+b ad H(a,b) = -a + b then

we have the following explanation of (a) - (h):
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(a) H(a,b) = -a + b,
(b) Pa = A(0,a).
() K=0.
(@ i(d) is the equality a = a.
() h, isanemptymap if a>b. If a<b then h
takes this inequality to the inequality -b +c = -a + c.
Hc is the inequality —a+b§-(—b+c) + (-a + C).
Ch is an empty map if a > b. 1If a<b then Ch
takes this inequality over to the inequality c+as=-c+b.
i is the inequality —a+bS-(-c+a)+ (—+b).
(f) If a+b<=c then the unique function Pax Pb + Pc
is a bimorphism, otherwise there are no such bimorphisms.
(g9 T(a,b) =a+b. t(ab): PaxPb » P(a+Db).
(h) Exponential law. a: A(a + b, ¢) = A(a, -b +c), i.e.
the assertion that a + b <c if and only if a = -b+c.

Strong exponential law B: -(a+b) +c=-a+ (-b + o).




APPENDIX

In Examples 2 and 5 of Chapter VIII, the concepts of morphism
ard bimorphism coincide. Our aim in this appendix is to clarify this
relation ard give a necessary and sufficient set of corditions for this
relation to hold.

The concept of a Cartesian closed category was introduced
in (11); it has been pointed out by Lawvere that a category C is
Cartesian closed if and only if it has finite direct products (the
product of A and B will be written A xB); AXB is an

Exponential Product for C and C has a terminal object.

In a Cartesian closed category we may campare the concepts
of a morphism h: Ax B » C and a bimorphism AxB = c, i.e.
a function f: PAx PB + PC. We cannot ask whether Ph =f since
Ph: P(A x B) - PC, but if we have a natural isamorphism

@A,B: PA x PB + P(A x B) we can ask whether f = Ph @A,B'

Tt is now clear that morphism and bimorphism coincide in

Examples 4 and 7 as well as 2 and 3.
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THEOREM A.1l If

(i) (C,H,P) 1is a semi-structured category with P a faithful
functor;

(ii) € has finite direct products (we write A x B for the
direct product of the objects A and B) such that there is a natural
isamorphism

d=4d@A,B): AxB + BxA
and a natural bijection

0= OA,B: PAXx PB + P(A X B)
such that the camposite function

PA X PB —m— P(AxB)—-—-—bP(BxA)—_l-——»PBxPA

eA,B Pd(A,B) © A,B

is simply the function (a,b) |+ (b,a), a € PA, b € PB;
and (iii) there is a natural bijection
o= aA,B,C‘ caxB, c) + C(, H(B.C))
defined by ((Pf) OA,B) (a,b) = P{(P o(f)) (a)}(b) for all a € PA,
bePB and c € PC;
then if g: PAXPB > PC isa function then g is a bimorphism

if and only if g = (Pf) GA,B where f € C(A x B, O).
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Proof: We first assume that g = (Pf) OA,B where f € C(A x B, C)
and prove that g satisfies the two conditions that are regquired
for it to be a bimorphism.

If f:AXB » C and dBA): BxA » AxB thenwe
define m, = of(f d(B,A)): B - H(A,C). Then

gl(a,b) = (Pf) OA,B(a,b)

= (Pf) (PA(B,A)) OB,A(b,a) fram assumption (v)

= P(f d(B,A)) OB,A(b’a) fram assumption that P is a functor
= P{Pa(f d(B,A)) (b) }(a) fran assumption (iv)

= P{Pm, (b) } (a).

Also if we define m, = a(f): A -+ H(B,C) then

g(ab) = (B£) 0, p(ab)

P{Pa(f) (a) } (b) fram assumption (iv)

1}

P{Pm2 (@)} ().

Hence g is a bimorphism.

Next we assume g: PAXPB + PC is a bimorphism. Then

there exists my: A ~ H(B,C) such that g(a,b) = P{sz(a)}(b)

and we define £: AxB - C such that £=o ~(n). Then
g(a,b) = P{Pm2 (@) } (b)
= (P Ot—l (mz)) O, B(a,b) fram assumption (iv)

. -1
= (f) & p since £= o ().
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