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ABSTRACT

The main objective of this thesis is to investigate fixed points
under non-expansive and some other types of mapping in metric spaces.
During the course of this dissertation, several new results have been
obtained. In order to illustrate some of the theorems proved, a few

interesting examples have been constructed.

Chapter I includes a brief survey of fixed point theorems for non-
expansive mappings. In the end & few theorems, which seem to be new,

have been added.

In Chapter II, a mapping considered by Kannaﬂ [20]has been
observed and by introducing some more genersl forms of this mapping,
a few interesting results on fixed points have been investigated.
Furthermore, giving a brief account of multi-valued contraction -
mappings and their fixed points, a search for extending some fixed

point theorems to their multivalued enalogues has been made.

Chapter III deals with the convergence of sequence of mappings
(contraction and Kannan type) and their fixed points. A few interesting

generalizations of some known results have been investigated.
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INTRODUCTION

S. Banach [ 2], in 1922, formulated a simple but quite striking

result known as Banach contraction principle which states:

"A contraction mapping of a complete metric space into itself has

a wique fixed point".

This theorem has been extensivelyv used in proving the existence
and uniqueness of solutions to various functional equations particularly
differential and integral equations. Because of its simpliéity and
usefulness, Banach contraction theorem has been generalized by
several mathematicians such as Chu & Diaz [12,13], Edelstein [1k,15],
Rekotch [31], Bailey [ 1], Boyd & Wong [6 ]}, Browder [7 ], Sehgal [3L4]

and others.

A mapping, called "Nonexpansive mapping" which is more general in
nature than a contraction mapping has been studied by Cheney & Goldstein
[11], Edelstein [L6], Belluce & Kirk [3,4)Kirk [¥ 23], KiWang Ng [ 29]
and others. They have tried to obtain fixed Ipoints for such mappings
in metric spaces. Browder [ 8,9 ] Kirk [24], Edelstein [17] and
others have considered nonexpansive mappings in Banach spaces and have

concluded the existence of fixed points.

In Chapter 1, we have given a brief survey of the fixed point

theorems proven for contraction and nonexpansive mappings in metric spaces




In the later portion of the chapter we have given a generalization of &
theorem of . :-%: [l ]for the fixed point of a continuous and
assymptotically regular mapping. Also wei have proved two more new
theorems giving fixed points for s continuous and densifying mapping

[b2] in complete metric spaces.

In Chapter II, some different types of mappings and their fixed
points have been studied. First section of this Chapter begins with
the mapping introduced by Kennan [20] i.e. T : X + X such that for
all x,yE€X,

(#).......4(Tx, Ty) < ofdlx, Tx) + dly, Ty)} ,

where 0 < a < %’- Some more general forms of this mapping have been
introduced and the fixed points are obtained under sufficiently relaxed
conditions. We have generalized a theorem of Kannan [20] and have
offered a simpie example for the illustration. Further, we have extended
our own theorem in the lines of Chu & Diaz [13] end have cited an
example also for the verification. In the same continuation five more
new theorems have been presented out of which the first two extend the
results of Singh [39)]respectively, and the remainingsbear a close

similarity with the resultsof Rekotch[31}, Belluce and Kizk [k ]Zend

Ki-Vang=Ng  [29)-respectively.

In the second section of Chapter II, we have given a brief account
of some results on multi-valued contraction mappings due to Nadler B8].

Also we have extended results of Kannan 0] 2ed Maia[26] respectively




to the multivalued mappings.

In Chapter III we have considered the convergence of sequences
of mappings and their fixed points. Besides a brief survey of the
works of Bonsall [5 ],Nadler [27], Singh [36] , and Singh & Russell [38],
we have extended the result of Bonsall to the sequence of mappings
satisfying the condition of Rekotch [31] . PFurther, a more general
theorem for the sequence of mappings satisfying a localized version
of the condition of Rakotch has been investigated. In addition,we |
have also given some new results for the sequence of mappings of
the type (H-:') . The last theorem of this Chapter generalizes a
theorem dué to Singh [37] » and we have constructed an example also .

to verify our generalization.
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CHAPTER I

NON-EXPANSIVE MAPPINGS

1.1. Preliminary Definitions:

Definition 1.1.1: Let X be a set and let R denote the positive

regls. We define a distance function d : X x X » R+ to be a metric

if the following conditions are satisfied:

(1) alx,y) >0 for all x, y € X.

(i1) alx,y) =0 ift x=y.

(1i1) a(x, y) = d(y, x).

(iv) da(x, z) <d(x, y) + dly, z) (triangle inequality).

IA

The set X with metrie d is called 2 metric space and is

denoted by a pair (X, d). We may denote the space by X alonewhen

the metriec 4 is understood with.

Definition 1.1.2: A sequence '{xn} of points of a metric space X is

said to converge to a point x and we write X + x, 1if corresponding
to each € > 0 there is a positive integer N such that for n > N,

one has d(x_, x) <e. In other words x -+ x if lim d(x , X) =0,

Definition 1.1.3: A segquence {xn} of points of a metric space X is

said to be Cauchy sequence if for each ¢ > O there is a positive

integer N such that for m, n> N implies d(xm, xn) <e .

Definition 1.1.4: A metric space (X, d) is said to be complete if

every Cauchy sequence of points of X converges in X.




Definition 1.1.5: Given a vector space E, a normon E is a mapping

x > Hxl | , from E into the set R of positive real numbers which

satisfies the following axioms:

(1) |lxll =0  if and only if x = 0.
(1) ||ax|] = |a] |Ixl] for &11 A€ F ana x € E, where
~ F is either the field of real numbers or the field of complex
numbers,

(ii1) ||x + yl| < xl] + |lyl] (the triangle inequality).

A vector space on which a norm is defined is called a normed

vector space, or simply a normed space.

(Every normed space is a metric space with a metric d defined as

alx, y) = [|x - yl]).

Definition 1.1.6: A normed vector space E is called a Banach space

if it is complete as a metric space.

Definition 1.1.7: Let T be a *mapping of a set X into itself. A

point x € X 1is said to be a fixed point of T if Tx = x. In other
vords, a point which remains invariant under a mapping is known as a

fixed point.

Definition 1.1.8: A topological space X 1s said to have fixed point

property (or X is a fixed point space) if each continuous function of

#Some authors have used the word "trams formation" in place of "mapping".



X into itself has at least one fixed point.

(Example: The closed interval [-1, 1] has fixed point property
for let T : [-1, 1] + [-1, 1] be a continuous function. Define a new
function F as F(x) = T(x) - x for each x € [-1, 1]. We see that
F(-1) >0 and F(1) < 0. Therefore by Weierstrass Intermediate-value
Theorem there exists a point x € [-1, 1] such that F(xo) = 0, This

gives T(xo) = xo).

Definition 1.1.9: Let X and X' be two metric spaces with the metrics-

d and 4' respectively. Let T : X+ X' be a bijection of X to X'.

Then T 1is called an isometry if and only if
a(x, y) = 4'(Tx, Ty) for all x, Yy € X.

In particular if X = X' and the metrics d and d' are the same

then T : X+ X is an isometry if

(1.14) a(Tx, Ty) = d(x, y) for all x, y€&€ X.

Definition 1.1.10: A mapping T of a metric'space X into itself is

said to be Non-expansive if for all x,y€ X

(1.18)  d(Tx, Ty) < a(x, y).

Definition 1.1.11: A mapping T of a metric space X into itself is said

to satisfy Lipschitz condition if there exists a real number k (known

as Lipschitz constant) such that,

(1.10) d(Tx, Ty) < kd(x, y) for all x, y€ X.

In the special case when 0 <k <1, we call asa contraction mepping.
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Remark: At a first glance to the mappings defined above one can say
that the Isometries (1.1A) and the Contraction mappings (1.1C) as
well,fall in the class of Non-expansive mappings (1.1B). Moreover,
all of the mappings (1.14), (1.1B), end (1.1C) are continuous on

x.
1.2. It is of great importance in the gpplications to find out if
non-expansive mappings have fixed points.

One of the best known theorems in connection with the fixed
point of a mapping in a metric space is that given by Banach [2 ] and

known as Banach's contraction mapping theorem.

The statement and proof of the theorem is given as follows:

Theorem 1.2.1. Let (X, d) be a complete metric space and T : X + X

a contraction mapping i.e. there exists a reel number k, 0 <k <1

such that,

d(Tx, Ty) < kd(x, y) for any two points x, y & X.

Then T has a unique fixed point (i.e. the equation Tx = x has
a unique solution).

Proof: Let X, be an arbitrary point in X. Set x; = Txo,

n

Xy = Tx; = T2xo , and in general let x =Tx , =Tx.

We shall show that the sequence {xn} is a Cauchy sequence. In

fact,




d(xn, xm) = d(Tnxo, meo)
crad )
=0

n
<k d(xo, xo)

4 4B
=kdx,x )

n
<E{dx, x)) + dlxy, xp) + oo # alx, )}
_<_knd(x°, X)L +k+ K2+ ..+ KO

n 1 :
ik d(xo, xl)m ® 90 60 59 9% 00 2O 8 SN e IO QO AN SEEDS (1).

Since k < 1, this quantity is arbitrarily small for sufficiently

large n.

Since (X, d) is complete, the sequence {x } converges in X.
Let 1im X, = u Then by virtue of the continuity of the mepping T,
n-»wo
Tu=7T 1lim x = 1lim Txn = lim x 41 = Thus, the existence of a fixed
N0 B n-»w n->0 i 3
point is proved. To prove its uniqueness let v be a point in x
such that
Tv=v. Then d(u, v) = d(Tu, Tv) < kd(u, v), where k <1;

this implies d(u, v) = 0, i.e. u=vwv.

Hence the theoren.

Remark 1.2.2: (i) The construction of the sequence {xn} and the

study of its convergence are known as the method of successive

approximations.

(i1) Banach's contraction theorem has been applied to

test existence and uniqueness of solutions to differential and integral




equations using the method of successive approximations.

(iii) The method of successive approximations can be used not
only for the proof of existence of wnigue fixed point u bdbut also
for finding an approximate value. MNamely, the points x, are the
successive approximations to u. The error of approximations may be

estimated by the inequality,

.
d(xn, u) syt d (xo, . T R ————— . 1 |

which is obtained by passing to the limit for m + = in the inequality

(1).

Due to its wide spread applicability, the Banach's contraction
theorem has been generalized by several Mathematicians., We qﬁote few

of these generalizations without going into detail.

Chu & Diaz [13] have given the following:

Theorem 1.2.3. If T : X+ X is a function defined on a complete
metric space X into itself such that the function ™ is a contraction

for some positive integer n, then T has a unigue fixed point.

Remark 1.2.4: The function T in the asbove theorem is not necessarily

contraction or continuous. The following example illustrates the

theorem:

Example 1.2.4k: Iet a function T : [0, 2] + [0, 2] be defined as,
o , x¢€][o,1]
XF Iy s, @ 4

\
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We see that T 1is discontinuous at 1 and therefore it is not
contraction on [0, 2] . But T2 is contraction as T?x = 0 for

all x € [0, 2] . The unigue fixed point of T is zero.

Few interesting examples to illustrate the above theorem are
also given in [ 13].

According to a remark due to the same authors, the conclusion
of the above theorem mey be obtained even without assuming that o

is contraction and X isa complete metric space. All that is needed

is that T has exactly one fixed point. Thus one has:

Theorem 1.2.5. Let S be any non empty set of elements and T be

a single valued function defined on § and with values in S. Suppose
that, for some positive integer n , the fumetion ™ has a unique

fixed point X, Then T also has a unique fixed point, namely X

The proof is guite simple and short. In fact Tnxc> =X, gives
T % = Tx
o o

i.e. T x = Tx
o

i.e. % Txo . Thus Txo is a fixed point of ™,

But T has only one fixed point namely X - Hence Txc> =X

i.e. X is a fixed point of T. For uniqueness of X, & a fixed
n

point of T, let y be a point such that Ty =y, then Ty =y and

hence y = X, » since ol has only one fixed point.

In another paper [12 ], Chu and Diaz have also given the following:
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Theorem ‘1.2.6. Let T be a function defined on a non empty set

with values in S. Let K be another function also defined on S to
S, such that K possesses a right inverse - (i.e. a function kL

1. I, vhere I is the identity mapping of S). Then

such that KK~
the function T has a fixed point if and only iftthe composite function
K—ITK has a fixed point. The theorem gives the following useful

. corollary.

Corollary 1.2.7: Let (X, d) be a complete metric space and T be a

self mapping of X into X. Suppose that there exists a self mapping
K of X into X which has. a right inverse Kml and which makes the
composite function K-lTK a contraction. Then T has a unique fixed

point.

This result follows directly from Banach's contraction theorem

and the preceeding theorem.

Edelstein [1}4] has extended Banach's contraction theorem introducing

the following definitions.

" Definition 1.2.8: A mapping T of a metric space X into itself is

said to be locally contractive if for every x& X there exist € and

A (e>0,0 <) <1) , vhich mey depend on x such that,

p, a€ slx, €) = {y : dlx, y) < e} implies

d(Tp, Ta) < Ad(p, q).

Definition 1.2.9: A mapping T of X into itself is said to be

(e - A\)-uniformly locally contractive if it is locally contractive and
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both € and XA do not depend on x.

Definition 1.2.10: A metric space X will be said to be e-chainable

if for every a, b€ X there exists an e-chain, that is a finite set
of points a = Xy> X1s X35 evoes X = b (n may depend on both a and

b) such that d(xi_l, xi) <e (i=1,2,...,n).
We state the theorem of Edelstein as follows:

Theorem 1.2.11. Let (X, d) be a complete e~chainable metric space

and T be a mapping of X into itself which is e-A 'uniformly
locally contractive then there exists a wnique point £ in X such

that TE = &.

Next, we define a mapping introduced by Edelstein [15]which is

more general than a contraction mepping.

Definition 1.2.12: A mapping T of a metric space X into itself is

said to be contractive if,

(1) a(Tx, Ty) < dlx, y) for x, y€X, x#7y.

It is to note that a contractive mapping of a complete metric space

into itself need not have a fixed point. For example, if
X={x:x€R, x>1) and T :X~+X is defined as Tx = x + = then

T hes no fixed point, although T 1is contractive and X is complete.

However,if a contractive mapping has a fixed point, it will

always be unigue.
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Edelstein [ 19 has given the following theorem for the existence

of a fixed point for a contractive mepping.

Theorem 1.2.13, Let X be a metric space and let T be a contractive

mapping of X into itself. If there exists a point xoe X such that
its sequence of iterates {Tnxo} has a convergent subsequence {Tnixo}
converging to a point € in X , then £ is a unique fixed point

of T.

A simpler proof of this theorem than that due to Edelstein may de

given as following:

n
Proof: Since 1T ixo} converges to E€ X and T , being a contractive
n,+1
mapping)is continuous on X therefore the sequence {T xo} converges
n.+2
to TE and consequently the sequence {T © xo} cénverges to T2¢ .

Consider the sequence {d(Tnxo, Tn+1xo)} of non-negative real
numbers. If for any n, d('l‘nxo, Tn+_1xo) = 0, there remains nothing
to prove as Tnxo comes out to be a fixed point of T. Thus we may
assume without loss of generality that each term of this sequence is
positive. Since T is contractive therefore for x # Tx , We have
d(xo, Txo) > d('l‘xo, T2x°)>....>.d(Tnxo, Tn+lx°)>... i.e.
{d(Tnxo, Tn+lxo)} is a decreasing sequence of positive real numbers
bounded by d(xo, Txo). Hence it converges together with all its

subsequences to some real number o .

Now, assume £ # TE ,

R
Y
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Therefore,
‘n, ni+1_
a(g, TE) = d(lim T x , l}m T xo)
ni ni"'l 1
= l.’itm a(T X 3 x02
= o
n,+l n,+2
=X i i
N Mhorre.. .-,C.lgm aT *x , T x)

ni+1 ni+2
d(l}mT X, » lim P xo)

d(Te, 72¢)

(g, Tt ) , a contradiction to the assumption.

A

Hence £ = T¢ i.e. E is a fixed point of T. For uniﬁueness g & 5
let £# ¢ be a point in X such that TE = £ . Then
a(g, €) = a(Tg, TE) < d(&, E), a contradiction. Thus £ is a unique

fixed point of T.

Hence the theorem.

Corollary 1.2.14: If X is a compact metric space and T is a

contractive mapping of X into itself then there exists a unique fixed

point.

The proof of this corollary follows from the theorem and the fact

that each sequence in a compact metric space has a convergent subsequence.

Remark 1.2.15: As pointed out by the author [15]. an extra conclusion

regarding the convergence of the sequence of iterates from the previous

theorem may be drawn as follows:

;
b o
o
-y
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Let all the assumptions of the theorem hold. If {Tnp} ,PEX,

n,
contains a convergent subsequence (T 1p} then 1lim Tnp exists and
Do
coincides with the fixed point ¢ .
%
Proof: By the previous theorem we have, 1lim T "p=£ . Then for ¢ >0
o n

there is a positive integer N such that i > N implies d(g, T 'p) < e.

If m=n, +1 (ni fixed, & varisble) is any positive integer > n,

then
n.+L n

L ale, ) =a(ts, T ) <ale, T ) <,

which proves the assertion.

Rekotch [3l]generalized Banach's contraction theorem by allowing

contraction constent A to vary in a restricted weay.

He has defined a family F; of functions A(x, y) satisfying the
following conditions:
(1)  Ax, y) = ralx, y)), i.e. A is dependent on the distance

between x and y only.
(2) 0 <A(a) <1 for every d > 0.

(3) A(d) is a monotonically-decreasing function of 4.

He gave the following result:

Theorem 1.2.16. Let (X, d) be & complete metric space and let T be

a mepping of X into itself such that,

(2) a(rx, Ty) < Alx, yla(x, y) , for all x, y&€ X, where

i

Mx, y)€ F; . Then T has a unique fixed point.
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Remark 1.2.17: The conslusion of the sbove theorem also holds when

the function A(x, y) is assumed to be monotone increasing and

0 <xd) <1 for d> 0. This may be seen as follows:

Let X, be an arbitrary point in X. Let x; = Txo,
Xp = Tx) = T2x_ and in general x =Tx , = Tnxo. Now by the
condition d&(Tx, Ty) < Mx, y), }/ x, Y€ X, one can easily infer for
X, # x; that, dlx, x3) > dlx, x2)>...2d(x ), x,)>..., and there-
fore, A(xo, x1) > Alxy, xp)>.03h(x 15 x )00, a8 X is monotone

increasing. Thus we have,

a(xy, xp) d(Txo, Tx;) < A(xo, xp)a(x , x1),

d(xy, x3) = d(Txy, Txy) < Alxy, xp)d(x;, xp)
< l(xo, xl)l(xo, xp)alx , x;)

ice. dlxz, x3) < [Mx, xl)]zd(xo, x1).
g .
In general, d(xn, xn+1) < [}\(xo, x1)] d(xo, x1).

Now, since O < A(xo, x;) <1, the sequence {x } is eesily
seen to be Cauchy. The rest of the proof goes parallel to that as in

the Banach's contraction theorem.




<A
In the end of this section we would like to have a look on the

following two general contractive meppings introduced by Bailey [1 ].

T XX,
(i) T is continuous and 0 < a(x, y) => there exists
n = n(x, y)€ 1! (set of positive integers) such that

a(™x, ™) < a(x, y).
(ii) T 4is continuous and there exists e > 0 such that
0 <d(x, y) < e => there exists n(x, y) €& T sueck that,
d(Tnx’ Tny') < d(x’ y)-
He has given the following results:

"Th.1.2.18: If a mapping T of a compact metric space X into itself

satisfies (i), then T has a unique fixed point.

Th.1.2.19: If a mapping T of a compact metric space X into itself

satisfies (ii), then T has finitely many periodic points.
1.3 1In this section we will study the various conditions under which a
non-expansive mapping (1.1.B) has fixed point in metric spaces.

Cheney and Goldstein [11] have given the following.

Theorem 1.3.1 . Let T be a mapping of a metric space X into itself

such that,

(i) T is non-expansive i.e. a(Tx, Ty) < d(x, y) for all

x, Y€ X.
(i1) if x # Tx then da(Tx, T%x) < d(x, Tx).

and (iii) for each x € X, the sequence {Tnx}n=l has a cluster point.
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Then for each x, the sequence '{Tnx}n=l converges to a fixed

point of T.

In [16] , Edelstein has defined the following terms.

Definition 1.3.2: Let T be a mapping of a metric space X into

itself. A point yeg Y€ X is said to belong to the T-closure of Y,
ye YT, if T(Y)C Y and there is a point n € Y and a sequence {n;}
of positive integers, (n; <njy<...< n, < ...), so that

Ly
lim T *(n) = y.

Definition 1.3.3 A mapping T : X + X of a metric space X into

itself is said to be e-nonexpansive if condition, a(Tp), Ta) < dlp, q)

holds for all p, q with 0 <d(p, q) <€ .

Definition 1.3. b : A sequence {xi} € X is said to be isometric

(e~isometric) if the condition, d(xm, xn) = d(xm-i-k’ xn-!-k) holds for all
m,n,k=1,2,..(forall mn,k=1,2,...,vwith a(;'cm, NELE
Apoint x €X is said to generate an isometric (e-isometric) sequence

under T, if {T"x} is such a sequence.
1

With these definitions, he [16] proved the following theorem.

Theorem 1.3.5. If T : X+ X is a non-expensive (e-nonexpansive)

mapping of a metric space X into itself then each x€ X  generates

an isometric (e-isometric) sequence.

Remark 1.3. 6: Although this theorem does not guarantee the existence
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of fixed*(periodic) points but it does generalize Theorem 1 [15]
(Theorem 2,[15]) for if T is contractive (e-contractive) and

T sy s '
x€ X then it is seen that x is a fixed (periodic) point of T.

In the same paper an interesting theorem giving a fixed point of
a non-expansive mapping is an Euclidean n-space o has teen proved.

The theorem is stated as follows:

Theorem 1.3.7 : Let T : E* + E° be a nonexpansive mapping and

(E“)T # ¢ . Then

(2) there is a point EE€ E® such that TE= £ .
T .
(b) if x € (E") end V is the linear variety of smallest

dimension containing {T"(x)} then V contains a unique fixed point.

As we have seen in [16] , & point of XT is fixed if T is g
contractive mapping of a metric space X into itself. A corresponding
statement for a non-expansive mapping does not hold necessarily unless
some further condition is imp0séd on T. With this motivation,

Belluee and Kirk [3 ] introduced the notion of "diminishing orbital
diameter! on T. To define this term they required another term

"limiting orbital diameter”of T as described below.

Diameter of a set A& X 1is defined as

6(A) = supfa(x, y) : x, y € AL

Let T be a mapping of a metric space X into itself. For each

. n -
x € X, let O(T"x) denote the sequence of iterates of T (x) i.e.,

-'-
*A point x € X is periodic if Tkx =x for some k€ I .
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. <0

ofx) = U 1'%} , n-= 0,1, 2, ..., where T°(x) = x. The
i=n

diameter 6(0(T")) of the sets O(Tnx), when finite, form a non-

increasing sequence of numbers. The limit r(x) = 1imé(0(?%%)) is
n->o

a non-negative real number and is called the limiting orbital diameter

of T at the point x.

Definition 1.3.8 : Let T : X+ X be a mapping of a metric space X

into itself. If for each x &€ X the limiting orbital diameter r(x)
of T at x is less than §(0(x)) when 6(0(x)) > 0, then T is

said to have diminishing orbital diameters.

(Contraction and contractive mappings are easy examples of the
mappings having diminishing orbital diameters. Another example of such a
mapping is the mapping T : X + X such that for each x &€ X there is

an a(x), 0 <a(x) <1 and a(Tx, Ty) < olx)a(x, y) for each y € X.).

Now we are in position to give the theorem of Belluce and Kirk [ 3]

which says:

Theorem 1.3.9 . Let X be a metric space and let T be a nonexpansive

mapping of X into itself which has diminishing orbital diameters.
Suppose for some x € X a subsequence of the sequence {Tnx}n=1 of

[>]
iterates of T on x has limit z. Then {T'x} _, has limit z and

2z 1is afixed point of T.

n
Proof: Suppose 1im T "x = z. Thus 2z € XT and therefore by Theorem

B

1.3.5 of Edelstein, z generates an isometric sequence. This means




. P

that for given positive integers m and n,
A, ™2) = a(m™z , 0™y) | k=1, 02, ... .
Therefore if k is any positive integer,

s(0(Tz))

sup d(Tz, T'z)
n>1

sup d(Tkz, Tn+k_lz)
nll

s(0(T*z)) .

This implies, lim 8(0(T"2)) = z(z) = 8(0(Tz)). But r(z) = r(Tz)),

)
therefore »(Tz)) = 8(0(Tz)) which gives due to the fact that T has

diminishing oribtal dismeters, 6(0(Tz)) = O and hence Tz is a fixed
n.+l
point of T. Continuity of T implies lim T ix =Tz, Thus € >0

o °°ni+l
there is a positive integer i such that a(T "x , Tz) < €. The

fact that T(z) is a fixed point and T is nonexpansive implies,

a(Tx , Tz) <e if n >n, +1. Thus linm ™x =Tz . But
o

since a subsequence of {T"x} hes limit z, 2z =Tz .

Hence the theorem.

A simple corollary to this theorem is as follows:

Corollary 1.3.10: If X is any compact metric space and T is a non

expansive mepping of X into itself which has diminishing orbital
diameters, then for each x € X the sequence {r%} of iterates

converges to a fixed point of T.

Further, Kirk [23] proved the following theorem:

|
3
1.
38
t

!

'
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Theorem 1.3.11. Suppose X is a compact metric space and T : X + X

is continuous with dinimishing orbital diameters. Then for each x € X,
n

@ o
some subsequence {T ix}i=1 of the sequence ‘{Tnx}n= of iterates

1

of x has a limit 2z which is a fixed point of T.
Browder and Petryshyn [10] have introduced the following definition:

Definition 1.3.12: A mapping T : X *X of a metric space X into

itself is said to be assymptotically regular on X if

lim (T, Tn+1x) =0 for each x € X.
n -+ o

Belluce & Kirk* have observed that if X is compact and T : X+ X
nonexpansive then the conditions, "T has diminishing orbital diameters
on X" and "T is assymptotically regular on X" are equivalent. But
this equivglence need not be true wvhen T is not nonexpansive (no

matter T is continuous and X is compact).

They [ 4]have given the following theorem along with other results:

Theorem 1.3.13 Let (X, d) be a compact metric space and let T : X > X

be a continuous mapping which is assymptotically regular on X. Then

every sequence ' {Tnx}n_l of iterates contains a subsequence which

converges to a fixed point of T.
We give a direct rather simple proof of this theorem.

Proof: (X, d) is compact, therefore it is sequentially compact. Thus

for any x€ X the sequence {T"x} has a convergent subsequence. Let

*[L]
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n [
i
{r x}i=l be such a subsequence converging to & point z€ X. Since T
ny 1
is continuous therefore the sequence {T *x }i-l converges to Tz. Thus,
n, ni+1
dlz, Tz) = a(lim T “x , Lim T ~ )
Y n n,+1

i

lin (T ‘x T "x ) *+0, since the assymptotic

-]
regularity of T on X gives that the sequence {d(T"x, ™ ly) }n-l and
n n,+l @ 2
consequently one of its subsequence {d(T ix, T 'x )}i=l converges to

ZeTr0.

Thus 2z is a fixed point of T. .

Hence the theorem.

As we see below,the existence of a fixed point in the above theorem ,
can also be insured by replacing the compactness of the space with a

weaker condition (condition(ii)in the following theorem).

Theorem 1.3.14. Let X be a metric space and T : X + X be a continuous o

H
mapping of X into itself. Suppose, .

(i) T is assymptotically regular on X, and

(i1) for some xoe X, the sequence '{Tnxo} of iterates has a convergent
n, :
subsequence {T xO} converging to some point z . i

Then 2z is a fixed point of T .

The proof follows in the same lines as in the previous theorem.

The theorem emits the following corollary:




) .

Corollary 1.3.15: Let X be a metric space and let T : X+ X be a

nonexpansive mepping of X into itself such that conditions (i) and
(ii) of the gbove theorem hold. Then 32 is a fixed point of T and

the sequence {Tnxo} converges to z.
n=1

Proof: T 1is nonexpansive and is therefore continuous. Thus it follows
from the theorem that 2z is a fixed point of T. The convergence of
the sequence {Tnxoc; to the fixed p_oint 2z follows easily from
condition (ii) and :;11. fact that T is nonexpansive, as has been seen

earlier.
Now, we give a few more interesting results which seem to be new.

Iet X be a metric space and A€ X be a bounded subset of X.
Denote by o(A), the infimum of all e > 0 such that a finite number

of open spheres of diameter less than ¢ cover A. [25] g

Definition 1.3.16: A mepping T : X+ X of a metric space X into

itself is said to be densifying if for each bounded subset A €X with

alA) > 0 we get afTA) < a(A). (k2]

. It is easily seen that
1) 0 <a(A) <68(A) vhere §(A) is the diameter of A. :
2) a{(A) =0 and X complete imply A is compact. '
3) If A is compact then a(4) = 0.
4) a(A U B) = max{a{a), o(B)} .
5) If A is the closure of A then

off) =0 <> a(a) =0 [k ].
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Theorem 1.3.17. Let (X, d) be a complete metric space and let

T : X »X be a mapping which is continuous’ densifying. If for all
X, Y€ X, x#y there is some n depending on x, y such that

-]
A%, ™) < d(x, y) and for some x€ X ,the sequence {'Tnx}n_l

is bounded then T has a unique fixed point.

-]

Proof: Let A = U ‘ {Tnx}, vhere Tox =x and A be the closure
=0
of A. Let us assume a(A) > 0 or equivaelently a(A) > 0. Then

@(TA) < a(A), since T is densifying. But A = TA U {x} , therefore

a(A) = max{a(TA), o {x})

mex{a(TA) , 0}

o(TA), a contradiction.

Thus o(A) = 0, Since X is complete, it foliows from property 2) that

A is compact. Now, by continuity of T we get T(A)C T(A) A . Let
F be the restriction of T on A. Then F : A+ A satisfies all
the assumption of Theorem 1.2.18 of Bailey giving that there is a

unique fixed point in A.

Hence the theorem.

Theorem 1.3.18. Let (X, d) be a complete metric space and let

T : X*>X be a continuous, densifying mapping which has dinimishing
Il :
orbital diameters. If for some x €& X, the sequence (T x} of t

iterates is bounded then T has a fixed point.

[+ -]
Proof: Denote (J {I"(x)} by the set A. Exactly as in the above
n=0

theorem it is seen that the closure A of A is compact and




4 -

X.

-26-

and hence in

Thus it follows from the Theorem 1.3.11 of Kirk that T has
Iy

c A

a fixed point in

<
~
=3}




CHAPTER II

SOME DIFFERENT TYPES OF MAPPINGS AND THEIR FIXED POINTS

2.1 We recall Banach's contraction theorem which states ¢
Let (X, d) be a complete metric space and T:X + X be

a mepping of X into itself satisfying,

(2.14) a(Tx, Ty) <edlx,y), “x,yex,

where 0 < a < 1.

Then T has a unique fixed point.

Recently, Kannan [20] gave the following:

Theorem 2.1.1: Let (X, d) be a complete metric space and

T:X + X be a mapping of X into itself satisfying,
(2.1B) a(Tx, Ty) < afd(x, Tx) + dly, Ty)},¥x, vy € X,
where o is a real mmber such that 0 <a <.
Then T has a unique fixed point.
The condition (2.1A) implies the continuity of the mapping in
the whole space but the condition (2.1B) does not necessarily.
The following two examples illustrate thatconditions (2.14)
and (2.1B) are in&ependent.

Example 2.1.2: Let X = [0, 1]. Define T:X + X by




Tx = , for xe [0,%)

viH e

» for xe€ [k, 1.].

The distance function 4 is defined in the usual way by
alx, y) = lx - yl. Here T is discontinuous at x = %; consequently
condition (2.1A) is not satisfied. But it is easily seen that condition

(2.1B) is satisfied by taking o = g- 21,

Example 2.1,3: Let X = [0, 1], T:X+X be defined by Tx = %.

The distance function is the usual distance. Here condition (2.1A) is
satisfied but the condition (2.1B) is not satisfied for x =% and
y =02 ],

However, if o <% then (2.14) implies (2.1B).

The condition (2.1B) motivates to give a similar condition for

the existence of fixed points of two mappings T; and T, simultaneously. i

The following theorem due to Kannan [20] is worth mentioning.

Theorem 2.1.4: Let (X, d) be a complete metric space. If Ty ""
and T, are two mappings of X into itself satisfying '
(2.1¢) a(Tx, Toy) < afd(x, T1x) + aly, Toy)}, Vx,y€ X,
where T;, T, are two mappings of X into itself and o is a real
number such that 0 < a < -;-‘-, then T; and T, have a unique common
fixed point.
The proof follows from successive iteration procedure. (Taking
Xy € X and setting x) = Tyxg, X2 = Toxy, X3 = TiXx2, X4 = Toxs

and so on, the sequence '{xn}:_l so obtained, is shown to be Cauchy,




-29-

which, due to completeness of (X, d) converges in X, giving the

unique common fixed point of T; and T,).

Remark 2.1.5: If in the above theorem, mappings T; and T, fail

to satisfy condition (2.1C) but, however, the condition (2.1D) (appearing
in the next theorem) is satisfied, still the conclusion of the theorem
holds.

Thus we give a modified version of the preceding. theorem as

follows :

Theorem 2.1.6: Let T; and T, be two mappings of a complete metric

space (X, d) into itself. If there exist two positive real numbers
« and B such that a+ B <1 and, ' .
(2.1p) a(Tyx, Toy) < ad(x, Tyx) + Bdly, Toy), VX, ¥ €KX,

then Ty and T, have a unique common fixed point.

Proof: Let xg be an arbitrary point in X. Set a sequence

.{x }Q

' n=1 of points in X as x; = Tixp, Xp = Tpx;, x3 = Tixz,

xy = Tyx3 and so on,

't
|

Then, a(xy, x2) = d(T]_xo, T2x1)

< ad(xg , TIXO) + Bd(xls |I'2x1)

ad(xg, x;) + Bd(x;, x;)
;[T x3) < ‘1—_0_'—8‘ d(xg, x1).
d(xp, x3) = d(Toxy, Tix2)
< cﬁ(Xz, Tixp) + Bd(xy, Tox1)

= ad(x,, x3) + Bd(x;, )
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% B
v Az, x3) < 7o dlxy, xp)

8

2ig 1 A%, x).
Similarly, d(x3, xy) <=3 ¢ £ . 2% a(x,, x9).
1-8  1-a 1 ‘X0 X1
In general,
n
d(xn,xn_'_l)i(-l%s-)z ( )2 d(xg, x;), when n 1is an

even positive integer.
n+l n-1

a . ;
and, d(xn, xn+1) < I_—B-) 2 ( ) 2 d(xg, x;), when n is an 6dd

positive integer.
- a.8 - - .
For simplicity, put l-B k and -8 (=a) Y and rewrite
the gbove two inequsalities as:

n
d(x s Xy ) < vZ a(xg, x1), when n is an even positive integer....(i)

n-1
and d(x g B +1) ky 2 4a(xp, x;), when n is an odd positive

integer. weilld)

Now, for m > n; m, n both even, we have

d(x,x)<d(x,x )+d(x l,x )+d(x 427 Zars )+d(x +3 n+h)+

e0cseacesosoee + d(x

\
n-2° *n-1’ ¢ d(xm—l’ xm)'

7 7 Z+1 )
<vy?  dlxg, x3) + k v* dlxg, x1) + v alxg, x;

n m n
" <
"'kyr“l d(xo s Il) + s0ssa0 e |+ Yz- 1 d(xo » x1) + kY.z- d(xo » x1)o

n . ) m-n_l
= yfd(xo,xl)‘{l+y+yz+.......+ }.
n ——

+ k7 dlxg, x1) {14+ 2 + coveeeen 4y 2 0L




..For m>n and n-even, we have:

n n
z z
Y K.y
d(xn, xm) S d(xg, x1) + T d(xg, %) oo (238)

Similarly for m > n and n;odd, we can have:

d(xn, xm) LIy Y d(xq, xp) + - Yy 2 . alxg, x;)

Since a, B >0 and a+ B <1, it follows that

a<18

18 } T @ 1 and consequently vy < 1.

.- for large n the terms on right hand sides of both the

eeo(iv)

inequalities (iii) and (iv) become arbitrarily small. Thus {xn}n_

is a Cauchy seyuence. Since the space X 1is complete, the sequence

"{x_¥_. converges to some point ug& X.
n'n=1

Now, d(u, Tqu) < d(u, xn) + d(x s Tqu)
= d(u, X ) + d('.l‘ X 1 Tyu),
where n 1is chosen to be even positive integer.

-+ d(u, Tqu) < d(u, X ) + ad(u, Tyu) + gd(x X 1> Tox n-l)

or, (1l-a)d(u, Tqu) < d(u, X ) + Bd(x 10 % s

d(u, x ) d(x x.)
or, d(u, Tqu) <1—a- (u, n 1_—- 1 0B
2 odalu,x) ¥ kYT d(xg, x1),
<
s l-a k
(By inequelity (ii))
n
1
E e a(u, X ) + Y a(xg, x1).

Therefore (u, Tju) + 0, as n + =, which gives Tju=u

i.e., u is a fixed point of T;.

'
.
l
i
1,
H
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In the similar way, taking the triangle inequality

d(u, Tou) < da(u, xn) + d(xn, Tou), and n an odd positive integer,
we can show that u is a fixed point of T,.

Thus u 1s a common fixed point of T; and T,. To show that
u is a unique common fixed point of T; and T,, let v be a point
in X such that Ty;v=v and Tv=v.

Then, d(u, v) = d(Tqu, T,v)

od(u, Tqu) + ga(v, Tov) = 0

A

Hence the theorem.

To illustrate the gbove Remark 2.1.5 and Theorem 2.1.6,

we give g simple exsmple as follows:

Example 2.1.7: Let T;, Tp: [0, 1] —— [0, 1], be defined

respectively as,

Tix =

HH W

and sz =

The distance function d is definedin the usual way as
a(x, y) = |x - y|. The space X = [0, 1], being a closed subset of

a complete space R (set of reals) is complete.

It is easily seen that condition (2.1C) is not satisfied by

these mappings for any a < %, ifwe take x =1 and y = 0. But

11

on taking a=% and B=—3-5 so that o + B <1, we see that




condition (2.1D) is satisfied for all the points in [0, 1], end

the unique common fixed point of T; and T, is seen to be zero.

Remark 2.1.8: The conditions of the above theorem also imply that

both T) end T, have only one fixed point, namely wu. For, if u
is a point in X such that Tyju=1u then,

a(Tu, Tou)

d(ﬁ-, u)

ad(u, Tyju) + B(u, Tou) = 0

A

Lu= u, i.e., u is a unique fixed point i
of Ty. Similarly it caen be shown that u is a unique ﬁxe& point
of T,.
Thus in the enunciation of the theorem "unique common fixed point"

msy be replaced by "common unique fixed point".

Remark 2.1.9: In the previous theorem, i

(1) If o =8, we obtain Theorem 2.1.4 as a corollary to our
Theorem. . . ,
(i1) If Ty =T, =T , we get a similar generalization of Theorem -

2.1.1.

T and a =8 , we get Theorem :2.1.1 as a

(ii1) I£ T =1Tp

simple corollary.

Next, if the condition (2.iD) in the last theorem, is not

satisfied by T; and Ty, but it is satisfied by some iterates Tlp

and sz (p is a positiye integer) of T; and T, respectively,
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even then the conclusion of the theorem holds.

Thus we have,

Theorem 2.1.10: Let T; and Ty be two mappings of a complete

metric space (X, d) into itself. If there exist positive reals «o

and B, a+ B <1 and a positive integer p such that,

(2.1E) a(mx, y) < d(x, ™x) + saly, y), vx, ye X,
where TIf and TIZJ stand for pth iterates of T; and T,

respectively, then T; and T, have a unigue common fixed point.

M: By the previous Theorem 2.1.6 and the Remark 2.1.8, we
conclude that TII’ and Tg have a common unique fixed point. Let u
be such a point. It follows from a theorem of Chu and Diaz [13]

that u is a unique fixed point of T; as well as of Tj.

Hence the theorem.

In order to illustrate this theorem we take the following example:

Exemple 2.1.11: Let Ty, Tp: [0, 1] — [0, 1] be defined respectively

as f['1x=E and Tyx = X for xe¢ [0, 1]. The metric d is defined

3 2
as d(x, y) = |x - y|. It is easily seen that condition (2.1D) is not

satisfied by T; and T, for x =0 and y = 1. But it is satisfied

=1 =2
by T¢ and T§ for all the points in [0, 1], when o=§ and B =
The common unique fixed point of T; and Ty is 0.

A generalization of Theorem 2.1.6 in the lines of Chu and Diaz




may be given as follows:

Theorem 2.1.12: Let T; and T, be two mappings of a complete metric

space (X, d) into itself. Suppose that T, and T, are such that
there exists a mapping K of X into itself which has a right inverse

K1 and that the composite maps K_lTlK and K-szK satisfy,

a(K™17 K (x) , K™1ToK(y)) < ad(x, K~IT1K(x)) +8(y, K~ ITK(y))

for a1l x,y€ X, vhere a>0,8>0 and a+ B < 1.

Then T; and T, have a unique common fixed point.

Proof: That K MK and K 1T,k have same unique fixed point, is
implied by Theorem (2.1.6) and Remark 2.1.8. If .u is such a point
then by & corollary to a theorem of Chu and Diaz f12] , 0 is a unique
fixed point of T; and T,. Hence the theorem.

We give another extension of Theorem 2.1.4 by permitting a

to be equal to %

Theorem 2.1.13: Let (X, d) be a metric space and T;, T, be two

continuous mappings of X into itself. Suppose,

(1) a(Tyx, Toy) < %- {a(x, Tqx) + d(y, Toy)} Yx,ye X

and (i) there is a point x, € X such that the sequence

xy = Tyxg, Xg = Tox;, x3 = T1x; and so on with x # x_ vhen

@

r # s, has a convergent subsequence {x_} , converging to
=1

aboint £ in X.

!
i
8
|
i
!
i
i




36~

Then T; and T, have & as a unique common fixed point.

-]

Moreover, the sequence {x }
n

=1 also eonverges to the point E.

Proof: We see that,

a(xy, xp) = a(Txg Tyx1)
1
< > {d(xO, TIXO) + d(xls II|2x1)}

1
3 d(xo, xl) + %d(xl, xz)

A

1l
i.e., Ed(xl, X5) %d(xo, x;)
e dlxy, xp) < dlxg, xp) .

d(TzXl 9 Tl]‘[z)

d(x,, x3)

%
‘é’ {d(xl, szl) + d(xz, T1x2)

A

1 1
5 a(xy, xp) + 5 d(xz, x3)
i.e., dalxp, x3) <adlxy, x;)

o d(X2, X3).< d(xl, x2) < d(xo, xl).
Proceeding in the same way we have in general,

...-...d(xn, xn+l) < d(xn-l’ xn) € sevesnsses < d(xl, x2) < d(XO, xl)o

)} is a monotonic decreasing sequence of

Thus {d(xn ;X -

n+l
non-negative real numbers, moreover it is bounded sbove by d(xg, x1).

Therefore the sequence {d(xn, xn+l)}n=1 converges to some non-negative

real number.

Let, lim d(xn, ) =n

nie

X
nt+l

Now, 1im x = (by condition (ii))

ke Tk




and T) is continuous.

o T lim =1lim Tyx = 1lim x where is chosen to be
- - e E

even positive integer.¥

i.e. T =11‘.iglxnk+1 PR . |

T, 1is also given to be continuous,

o.- TZ(TIE) =T2 limx =1imT2x =1imx ..nn--u-o-.(II)
ko nk+1 koo nk+1 ko nk+2

Assume £ # Ti& i.e. da(g, Ty&) > o.

lim d(x_ , x

O nkﬂ)

= 1lim d(xn, xn+l) =
n-re

Now,  d(g, Ty¢)

= lim d(x p'e )
koo nk+l’ nk+2

= d(Ty&, T,T18),  (By (I) and (II))

< d(g, Ty¢), for

ATy, To1E) < 3 {alg, TiEM A(TyE, TpT15)}
or % a(myg, ;1E)< 7 alE, TE)

i.e., da(Ty&, T,ME) < d(g, T1E).

Hence the contradiction to our assumption.

AT d(E, TIE) =0 i-e-g TIE =g

% Had the subsequence {xnk} not contained, for large k, the terms xnk,

=1

with n_ even, we would have chosen n,, an odd integer and have operated

x by Tz.

x
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Also, the relation d(g, Ty) = d(Tq&, ToT1£) wmder TyE = ¢
gives 0= d(g, TpE) i.e., Ty =f. Thus £ is a common fixed point of
Ty and T,. For uniqueness of &, let E be another common fixed point
of T; and T,.

Then, d(g, £) = d(T1&, THE)

< %{a(e, T,€) + d(E, To£)} = 0, a contradiction.

Thus & is a unique common fixed point of T; and T,.
[+ -]

Next, we have to show that the sequence x} (%7 = T1xp,

Xy = Tpxy, X3 = T)Xp, .....) converges to &£. |
©

Since the subsequence {x_} converges to E, given € > 0,
k=1

there is a positive integer N such that, for all k > N,

alx_ , E) <e.

"k

If m=n +14 (nk fixed, £ varisble), is any positive

integer > then,

d(x , £) = d(x £)

a(Tyx +9-1 To£), 1if n, +4 is even.
o, ’
< d(xnkﬂl-l £), (By condition (i)

A
N
—
]




< d(xnk, E) <€, which proves that .{xn}n=1

converges to &.
Hence the theorem.

Corollary 2.1.1k: Putting T; =T, =T , we get the result due

to Singh [39 ] , as follows:
Let (X, d) be a metric space and T:X+ X be a mapping of

X into itself. If
(1) a(Tx, Ty) <% {a(x, Tx) + a(y, Ty)}, Vx, yex,

end  (ii) there is a point xy € X such that a subsequence

n
] ® .
{? “(x9)},_, of the sequence {Tn(xo)Lﬂ of iterates of T on xg

converges to a point & € X, then '{Tn(xo)}nﬂ converges to £ and

T has £ as its 'unique fixed point.

Remark 2.1,15:  The mapping satisfying condition (i) and the above

Corollary under this mapping may be considered as respective analogues
of the contractive mapping and the corresponding result due to Edelstein
[ 5] .

For the mappings satisfying condition (i) of the above Corollary
a simple and interesting result similar to that due to Rakotch [ 31,

Theorem 1] for the contractive mappings may be given as follows:

‘Theorem 2.1.16: Let (X, d) be a metric space and T:X+ X be a

mepping of X into itself satisfying,
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(a) d(Tx, Ty) < %{d(x, Tx) + d(y, Ty)}, V x, y€ X.
If there exists a subset M<C X and a point xg € M such that
(v) a(x, xg) - d(Tx, Txg) > 2d(xy, Txg) 'V x € XM,
and T maps M into a compact subset of X, then T has a unique
fixed point.
Proof: Suppose Txg # xp. and let,
X =T%,0=1,2,3, ceorrs »
i.e. X1 = T, (n=0,1,2, ¢..) (1)

Since T maps M into a compact subset of X, it suffices

to show that xne; M, n=1,2, ... , for then the theorem follows

directly from the previous Corollary.
a(Txq, Tx;)< ¥*{d(xg, Txq) + d(x;, Tx;)}

Now, a(x1, x2)

% d(xo, x1) + %d(xl, x2)

i.e., d(x;, x3) < d(xg, x;), since xp # x1.

d(Txy, Txp)< %{a(x;, Tx;) + dlxy, Txp)}

d(x;, X3)

Yd(xy, xp) + %d(xz, x3)

or  d(xp, x3) < dlx;, x3)

e dxy, x3) < dlxy, x2) < dlxq, x1).

Continuing in the same way we can show that,

d(xn, xh+l) < d(xq, x1), (m=1,2,...) (11)

|
I
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By triangle inequality ve have,
d(xq, xn) < d(xg, x1) + a(x;, xn+l) + d(xn, xn+1)

< 2d(xq, x)) + d(Tx,, Txn); (By (I) and (II)).

i.e. d(JCo, xn) - d(Txn, Txo) < 2&(1{0, TXO),

which, in light of condition (b) gives that x €M forall n=1l,2, ...

Thus the theorem.

The next theorem gives a generalization of Theorem 2.1.13

by relaxing condition (i) to replace the strict inequality '<' by '<'.

Theorem 2.1.17: If T;, Tp are two continuous mappings of a metric

space X into itself such that,

(i) d(Tlx, T2Y) i;i{d(x, T]_x) + a(y, sz)}a x, y € X.
(i1) if x# T;x them,  d(T;x, T,P;x) < d(x, T1x).
and (iii) there exists a point xy&€ X such that the sequence

X) = TiXg, xp = Tpx3, X3 =TXp, .... with x # x_ when r# s,

has a subsequence '{xnk} , converging \o a point £ in X.

k=1
Then £ 1is a wnique common fixed point of T; and Ty and

sequence {xn}n=l converges to E.

Proof: As in previous theorem, we can easily show with the help of
[~ ]

condition (i) that {d(xn, xn+1)}n=1 is a monotonic nonincreasing

sequence of non-negative real numbers and is bounded above by alxg, x5).

Therefore it converges to some non-negative real number.




Let 1lim d(x §x
N

1) =N

Since 1lim xnk =¢ and T; is continuous .

ke
we have,
e =Ty 1i
18 1 lim 11m lxﬂk llm X, +l §

ko

(vhere By is chosen to be even).
Ty 1is also continuous.

e DT ) =T, 11m xnk+1 11m sznk.,.l = lin x40
=»C0

k

Then,

a(g, TyE ) = lim d(xnk . xhkfl)

koo

lim d(x ,xﬂ) n
noo

= lim d(xnk.,.l s Xnk+2)

ko>

= a(Ty&, ToTy£) , which is contrary to condition (ii
unless £ = Ty, and then , 0 = d(g, To¢) i.e. £ =Ty ,

Thus ¢ is a common fixed point of T; and T, .

The uniqueness of & follows easily from condition (i). Also the

[+ ]
convergence of the sequence {x_} to & can be easily shown with

the help of condition (i) as in Theorem 3.1.13. Hence the Theorem.

Corollary 2.1.18:

Further, we prove the following:

In case T, =T, =T, ve get a result due to Singh[39].

L e

H
i
1
i
.
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Theorem 2.1.19: Let (X, d) be a metric space and let T be a

continuous mapping of X into itself such that,
] l'
(i) a(Tx, Ty) <5 {a(x, Tx) + dly, Ty)} for all x, y& X.

(1i) T is assymptotic regular on X i.e.,

n+l

lim a(T®x, T" "x) = 0 for each x € X.

N-poo ©
and (iii) for some X, € X the sequence '{Tnx& < of iterates has
n=

o

.. n
a convergent subsequence (T kxo} converging to some point 1z & X.
k=1

Then 1lim Tnxo =2z and 2z is a unique fixed point of T.‘
N

Proof: Continuity of T with condition (ii) and (iii) gives that 3z is
a fixed point of T (see Theorem 1.3.14 of previous chapter). The
uniqueness of the fixed point 2z is given by condition (i) for, it z

is another fixed point of T then,

alz, 7) = A(Tz, T2) < Ha(z, Tz) + d(z, T2)} = 0.

Now it remains to show that 1lim Tnxo =3z,
N>

It is given that 1lim Tnixo z3 therefore for € > 0 there is a positive

i+ ny
integer N ‘such that for i >N , a(T X z) < € .

Let m=n, +2 (n:.L fixed, § varisble) be any positive integer
greater than n, " and therefore greater than N (as n; > 1> N} then
d(meo, z) = d('I'mxo, TE) i%‘{d(‘l‘m'lxo, meo) + d(z, Tz)} . (By condition
(1)).

But d(z, Tz) =0 as z is a fixed point of T,

: m 1 m-1 m
e AT X z) _<_§-d(T X, by xo)




=l
i%{d(Tm-lxo, z) + d(z, meo)} .
d(meo"Z) id(Tm-lxo s Z),

Continuing in the same way we have,
3 sl / B
d(meo, z) id(Tm 1xo, z) __<_d(TI'l 2x°, 9 & coenoe @ AT ixo, z) < ¢,

which proves the assertion.

Remark 2.1.20: Since the condition (i) and the condition of non-

expansiveness are independent of each other, the sbove theorem is different

from Corollaryl.3.15,previous chapter (an alternative result to Theorem

1 of Belluce & Kirk [ 3]).

The indepencency of these conditions is seen by the following

examples.

Let T : [0, 1) » [0, 1] be defined by Tx =§ for each

x €[0, 1] . The metric is the usual distance. We see that T 1is

contraction and therefore it is non-expansive. But it can be easily

seen by teking x =0 and y = :-2L- that T does not satisfy condition

(i) of the sbove theorem.

X
Next, let T : [0, 1] > [0, l] be defined es T™x = -3— for

xe[o,§)

and Tx = £ for xe[%,ll g

Clearly condition (i) is satisfied for all x € [0, 1) ,but T

wir

is not non-expansive as it is discontinuous at the point

f
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In the end of this section we give a similar result analogous to

a theorem of Ki Wong Ng[ 29] as follows:

Theorem 2.1.21: Let T be a continuous mapping of a metric space X

into itself.

Suppose,

(i) a(rx, Ty) é%{d(x, Tx) + d(y, Ty)} for all x, y in X.

(ii) for «x + y, there is some n depending on x, y such
that a(T%x, T'y) < d(x, y).

N n ®
(iii) there exists some X in X such that the sequence {T xo}
' n=1

(- ]

N
. . 1 .
of iterates has a convergent subsequence {T xo} converging
i=l

to some point 2z in X.

. n
Phen 2z is a unique fixed point of T and lim T X, = z.
e

Proof: We have by condition (i),
1 2
d(Txo R szo) _<_§-{d(xo, Txo) 4 d(Txo , '; xo)} .
or d(Txo . szo) < d(xo , Txo).

] 2
Similerly, d('r2xo , T3xo) <d(rx , T x))

+1 n-1 n
and in general, d(Tnxo , T xo) <dlTx  , T xo).

2 4] n+l . >
Therefore d(x_ , Tx,) > d(Tx, T x,) >a(Tx  , T x,) >

«©
n+lx )} is a monotone nonincreasing sequence

: n
Thus {d(T X, T o=

of reals and therefore it converges along with all its subsequences to |

some non negative real a .




Now, for some n depending on ( z, Tz) we have by condition (ii),

d(z, Tz) > a(T"z, Tn+lz) if z4 Tz .

Also 1lim Tnix =z
i+ 2

Thus we have,
ni n.,+l
AlimT "x_, Wm T *x )
i ] °

. o.my  Dytl
l;m a(r x5 T xo)

a(z, Tz)

= @

n{hil ni+n+l
limd(T ~ x, T x )
i [o] [o}

a(r%z, ;)

giving a contradiction unless z = Tz .

Thus 2z 1is a fixed point of T. Uniqueness of z as a fixed point of

T is obvious by condition (i).

-]
The convergence of the sequence {Tnxo} . to z can be shown
n:

exactly as in the previous theorem.

2.2 Multi-valued contraction mappings.

A multi-valued function F : X+ Y is a correspondence which to

each x in X assigns one or more points of Y. For every x in X,

Fi{x) will denote the set of all "images" of x.
A point x 1is said to be a fixed point of F if x &€ F(x).

Several interesting results on fixed points of multi-valued

functions have been given by various mathematicians. In 941,

Kakutani [19] proved that if M is a compact convex subset of

Euclidean n-space and F : M+ M, a continuous multi-valued function




g

such that for every x in M, the set F(x) is convex, then F has

a fixed point. This result may be considered as an extension of
Brouwer's fixed point theorem for Euclidean n-space from single-valued
to multi-valued function. In 1946, Eilenberg and Montgomery [L8]
generalized Kekutani's result to acyclic absolute neighbourhood retracts*
and upper semi-continuous mappings F such that F(x) is non-empty,

compact and acyclic** for each x.

Strother [U1], in 1953 showed that every continuous multi-valued
mepping of the unit interval I into the non-empty compact subset of I
has a fixed point but that the analogous result for the.square Ial
is false.

Plunkett [30],Ward [43] and others have studied the spaces having

fixed point property for continuous, compact set valued mappings.

Recently Nadler Jr. [28] introduced the notion of multi-valued
contraction mappings and gave some interesting results on existence of

their fixed points. He has used the following notations and definitions:

2.2.1. If (X, d) is a metric space, then

(1) cB(x) = {¢|¢ is a non-empty, closed and bounded subset

of X} .

(i1) 2x = {c|c is & non-empty compact subset of 4

* See page 15, T. Van Der Walt, "Fixed and Almost Fixed Points",
Mathematical Centre Tracts, 1967.

#%pAs above.

I
!
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(i11) N(e, C) = {x € X|d(x, ¢) < ¢ for some ¢ in & .

vhere ¢ >0 and C € CB(X).

(iv) H(A, B) = inf { ¢/Ac N(e, B) and BC N(e, A)} ,

vhere ¢ >0 ; A and B € CB(X).

The function H is a metric (see [22] ) , called the Hausdorff
metric. It is to notice that the metric H depends on the metric for
X and that two equivalent metrics for X may not generate equivalent

Hausdorff metriec for CB(X).

Definition 2.2.2. Let (X, 4;) and (Y, d,) be two metric spaces. A

multi-valued mapping F : X + CB(Y) is said to be continuous at a point
xin X, if a sequence {xn‘;n:l in X, converging to x (with
respect to metric A) implies the convergence of the sequence

{F(x )°}° to F(x) (with respect to metriec H for CB(Y)). F is

0 e
n=1 '
sald to be continuous in X if it is continuous at each x in X.

Definition 2.2.3. Let (X, d;) and (Y, d)) be metric spaces. A

function F : X -+ (B(Y) is said to be multi-valued Lipschitz mapping
of X into Y iff H(F(x), F(z)) < adj(x, z) , for all x, z in X,
where o > 0 1is a fixed real number. If ¢ <1, then F is called a

multi-valued contraction mapping (abbreviated as m.v.c.m).

Since the mapping i : X + CB(X), given by i(x) = {x} for each

x in X , is an isometry, the fixed point theorem for the multi-valued

mappings are generalizations of their single-valued analogues.
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Nadler Jr. [28] gave the following theorem as a multi-valued

analogue of Banach's contraction theorem.

Theorem 2.2.4. Let (X, d) be a complete metric space., If F : X » CB(X)

is a multi-valued contraction mapping, then F has a fixed point.

Proof: Let a <1, a positive real number, be a contraction constant
for F and 198 be an arbitrary point in X. Choose a point
Prin Fp,). Since F(p), F(p)) € CB(X) end ), € F(P),
there is a point p, in F(p;) such that,

* a(py, o)< H(F(p ), F(py)) + a .
Now, since F(p,), F(p,) € CB(X) and p, e F(p,), there is a
point pj3 in F(p,) such that,

d(p, , p3) < H(F(p;), Flpy)) + o2.

Proceeding in the same way we get a sequence {p:l }i " of points

of X such that p; € F(pi—l) end
i P

Now, a(p;, py,;) <H(F(p, ), F(p,)) + o

i
_<_ ad(Pi_]_’ Pi) + a .

*If A,Be& CB(X) eand a € A, n > 0, then it is a simple consequence

of the definition of H(A, B) that there exists b in B such that

i
d(a, b) < H(A, B) + n. Here o and subsequently o« play the role

of such an n .
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< alf(Flp, ), Flp, ) + o]+ o

< °2d(p1-2’pi-1)+2°‘i-<-

i .
< ad(po, Pl) + iai , forall i=1,2, ..... .

R ) d o - o
(Pys Pyyg) < a(pgs Byyy) + Alpyyys Piag) * HPyey s Pyag)

i

i . i+ i
< oalp_, py) + dab + o alp,, py) ¢ (L4 DT

. o ot dlp,, py) + (L +§ - 1)t L,

i -
Gd(Po, pl+ataZ+ ... 4 a‘j 1}

iai{l +a+taZt ...+ a'j—l}

+

+ aiﬂ{l + 2+ 302+ ...+ (3-1) a‘j-z} .

ai il Jtl
_<_1 - ad(pO’ pl) +"l'__ a""(_l_ 0)2 .

For large i, the quantities on right hand side of the above

inequality are sufficiently small.

0o
Therefore {pi}i is a Cauchy sequence. Since (x, ) is
=] o
complete, the sequence {Pi} _ converges to some point X in X.
i=1 ©
F being m.v.c.m. is continouos. Therefore the seguence {F(pi)}
i=l

converges to F(xo) and since p; € F(pi-l) for all i =1,2, «ves

it follows that x & F(xo), i.e. x js a fixed point of F.

Hence the theorem.

Remark: The theorem does not guara.nt'ee the uniqueness of fixed point.

A localized version of the above theorem, as 2 generalization of

the theorem of Edelstein [14] to multi-valued mappings has also been

glven by Nadler Jr. [28]




First he gives the following definition which was modeled after

Edelstein's definition for single-valued mapping.

Definition 2.2.5. A function F : X + CB(X) is said to be (e - A)-

uniformly locally contractive multi-valued mapping (where € > 0 and
0 <X <1) provided that if, x,y in X and d(x, y) < e, then,

H(F(x), F(y)) < ad(x, y).

Theorem 2.2.6. Let (X, d) be a complete e-chainsble metric space.

If F: X~ 2x is an (e - A)-uniformly locelly contractive multi~

valued mapping, then F has a fixed point.

n
Proof: For (x, y) in X x X, define, de(x, y) = inf{] d(xi-l’ xi)} .
i=1
where infimum is taken over all e-chains x = Xos X1y Xpy voe 5 Xy =y,

Joining x and Y.

It is easily seen that dE is a metrie for X satisfying,

(1) a(x,y) <d(x,y) forall x,yinX

end (ii) d(x, y) de(x, y) if dlx,y) <e .
(X, 4) is complete, from (i) and (ii) it follows that

. X
Let He be the Hausdorff metric for 2

Since

(x, de) is complete.

. X
obtained from d . It can be easily seen that if A, B€ 2 and

H(A, B) <&, then H_(A, B) = H(A, B).

Now, let x,ye X and x = Xy Xps Xps coes X, = y be an
g-chain joining x to y. Since d(xi—l’ xi) <e foralli=1,2, ..., 0,




H(F(xi-l)’ F(xi)) < Ad(xi_l, xi) sesforalli=1, e, ...,n

n
Thus H_(F(x), F(y)) < izl H (F(x;_,), F(x,))

n
i:z.l H(F(xi_l) . F(xi))

n
<2 ] alx, ., x,)
= L .

Since x = Xys X15 Xp5 one,y ey is an arbitrary e-chain jJoining x
to y , it follows that,

HE(F(x), F(y)) < Ade(x, y). This proves that F is a m.v.c.m.
with respect to de and HE . Then by previous theorem F has a
fixed point.

Thus the proof.

Let us recall a theorem of Kannan [20] , which says that if
(X, d) is a complete metric space and f, = mapping of X into it-
self, satisfying,

d(e(x), £(y) < ofa(x, £(x)) + aly, £(y))} ,¥ x, y € X,
where 0 < a <-2]= 5

then f has a unique fixed point.

We have been successful in generalizing this theorem to multi-
valued mappings, under the similar notion of CB(X), Hausdorff metric

H, ete. as used by Nadler.

We denote the distance of a point x € X, fromaset ACX by

6(x, A) which is defined as
8(x, A) = inf{d(x, y)ly € A} .

Thus we give:
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Theorem 2.2.7: Let (X, @) be a complete metric space and let

F: X+ CB(X) be a continuous multi-valued mapping satisfying,
(a) H(F(x), Fly)) < a{s(x, F(x)) + s(y, Fiy)1 ,
for all x, y € X, vhere 0 <o <%—.

Then F has & fixed point.

Proof: Let P be an arbitrary point in X.
Pick up & point P1 € F(po). Since F(po) F(p;) € CB(X) and
P € F(po) , there exists a point D, € F(p;) such that,

d(py» Py) < H(F(p,), F(py)) + ﬁ—; (see foot note page49; ve

have taken =——%— and subsequently (1——‘:"'—&-)1 in place of n ).
> - a -

Again since F(p1), F(p,) € CB(X) and P2€ F(p1), there exists

& point p3 € F(py) such that

alpy, p3) < H(F(py), Fp2)) + (1 2 m)2

©0
Continuing in the same way we get a sequence {pi}_ of points

i=1
of X such that, pie F(pi-l) and,

i
alp;» pyyp) SHF(Ry ) Fp) + (gog) o veeeen(T),

for a1l i =1,2, «0 -

Now for all 1, 8(p;, F(p;)) = infldlp;. y)ly € Fp;)}

The inequality (I) in light of condition (a) gives, .
i
P -
Aoy ypg) < 62y g P2y y) ¥ 67 FED * (0 )
o 1
)} + (1 - a) 2

< afalp; ;> ) * UPys Piny
(By (II)).
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' [

or, (1 - G)d(Pia pi+l) < ad(pi_l’ pi) + (1 f a)

. e T———“i i
l.€. d(Pi, Pi+1) i T - & d(Pi_la Pi) + 1 - q)l"‘l
i-1
o o

Similarly, d('pi’ Pi-l) 1 d(pi_e’ p]'_—l) * Zl - Gsi

i

2
) ‘i(l f a) d(pi-2’ P ) + 2( )]+1 .

v d(pi’ Piy1

Proceeding in the same way, W€ have,
i

[} i . o .
d(pi’ pi+l) hY (l — G) d(poa Pl) +1 ‘(’1—:_3)1"'1

i ( 1 i a i+l
i.e. dip;, Piyy) S (= =) dlp,» p1) *+ 3 e
Now,
i i+l i+l + i+2
< (=2 & - B e S -
Sy ale 0P ¥ —( =)+ =) a(p,sP1) (1-13“)
1+}1 . i
i+ 3-1 o
+ .00 F (i—jfzﬂ a(p, s p1) + =3 (1= =)

Since o < %—, therefore i—%—; <1l; and putting for simplicity,

= y( < 1) we have,

l1-a
3 2 3-1}
alp; s Byyy) SV ARG pp) L+ Y+ Y2+ ceee ¥
¢ Lyt L+ + Y+ oens VAR
a
.+ B
+ %-Yl 2 qaeoy+ 3P+ (0 1)~}
. . 40
T apl o) o Y,
<7y Upe PV T a-y o (1- N° .
the above

Since Y <1, the quantities on right hand side of

Therefore {pi} is

inequality are sufficiently small for large i- -
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a Cauchy sequence.

Since (X, d) is complete, the sequence { p;} converges
i=1
to some point X, € X. According to our assumption F 1is continuous
[- -}
in X , therefore the sequence {F(pi} converges to F(xo). Since
i=1

Py C—‘,F(pi_l) for all i=1,2, ... , it follows that xoeF(xo)
i.e. X, is a fixed point of F.

Hence the theorem.

We generalize the result of Maia [26] also, to multi-valued

mappings as follows:

Theorem 2.2.8. Let X be a set and, d; and dp be two different

metrics on X (i.e. xdl and xdz be two metric spaces). If,

(1) F: Xdl > CB(Xdl) is a continuous mapping of Xdl into Xdi'

and X4 is complete.
1

(1i) F : X, > CB(X3) is = multi-valued contraction mapping of
2

dz
Xa, into Xq with contraction constent a0 <a <1).
2

and (iii) dp(x, y) <dao(x,¥) , V x. V€KX

then F has a fixed point.

Proof: Let x €& X. Pick up any point x € F(xo). Since F(xo) and

F(x;) are non-empty closed and bounded subsets of Xdz and x € F(xo) ,

there exists a point x € F(xj) such that,

da(x1, x2) < H(F(x ). F(xp)) + @

Similerly F(x1), F(xy) € CB(Xdz) and x2€ F(x]) , there is a

2
point x3 € F(x,) such that, dy(xg, X3) < H(F(x), F(x,)) + a* -
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Continuing in the same way, we get a sequence {xi} in X
i= .
i
such that x; & F(x, ,) end dp(x; 5 %, ,4q) <H(F(x, ), F(x;)) + o
The sequence {xi} can be shown to be Cauchy with respect
i=1
to d, as in Theorem 3.2.k. By condition (iii) of the theorem it

follows that {xi} is also Cauchy sequence in Xd . Since Xd is
i=l © 1 1
complete, therefore the sequence {xi} is dl-convergent to a point
-3=1 ©

a € X. Since F is continuous on Xg, , the sequence {F(x;)}

, i=1
converges to F(a.o) and since xie F(xi_l) for all 1i=1,2, «euy
it follows that aoe- F(ao), ie. & is a fixed point of F.

Hence the theorem.




CHAPTER III

SEQUENCES OF MAPPINGS AND FIXED POINTS

3.1 The main objective of this chapter is to investigate the conditions

under which the convergence of a sequence of contraction mappings to a

mapping T (these mappings may &lso ve of the type (2.1R),Chapter II)

of a metric space into itself implies the convergence of their fixed

points to the fixed point of T.

A partial solution to this problem has been given by Bonssll (5]

as follows:

Theorem 3.1.1: Let (X, d) be a complete metric space. Let

Tn(n =1,2, ...) and T De contraction mappings of X into itself

with the same Lipschitz constant k <1, and with fixed points u,

and u respectively. Suppose that 1lim Tnx=Tx for every x€ X.
n-+o

Then 1lim L = U.
n-»wo

As pointed out by Nadler (271, gll contraction

the restriction that

mappings have the "same Lipschitz constant k < 1" is very strong for

one can easily construct a sequence of contraction mappings from the
reals into the reals which converges uniformly to the zero mapplng but

whose Lipschitz constants tend to one-

Considering separately the uni form convergence and the point-
. . S [27
wise convergence of a sequence of contraction mappmgs,lladler ra7)

gave the following two theorems which modify the above result.
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Theorem 3.1.2. Let (X, d) be & metric space, let T, :X>X be a

function with at least one fixed point vy foreach 1i=1,2, ...,

and let To . X > X be a contraction mapping with fixed point u . If

-]

the sequence {Ti} converges uniformly to To , then the sequence
o i=1
{ui} of fixed points converges to u_ .
i=]1
Q0
Proof': {Ti} ccnverges uniformly to T, therefore for € > 0, there
i=1

is a positive integer N such that i > N implies d(Tix, Tox) < E(l-ao)

for all x € X, where Go <1 is a Lipschitz constant for To.

We have,
= m
auy, uo) (T, v, Touo)
<a(Pu, Toui) +a(T v, Touo)

hs d(Tiui’ Toui) + Olod(ui, uo)

ie. (1- “o)d(ui’ uo) h d(Tiui' lToui)

co 4w, (L= agalug, ) < el =)
i.e. d(ui, uo) <€ , since 0 <o, < 1.
-]
This proves that {u} converges to U,
i=1

+ t
Theorem 3.1.3. Let (X, d) be a Jocally compact metric Space, le
’ . . . 3 . for each
Ai . X > X be a contraction mapping with fixed point 2; °
h fixed

= : ontraction mapping wit
i=1,2, ... andlet A :X +mx be & ¢ .
intwise to s
point a,- If the sequence {Ai}j,:l converges poin 0
w

the sequence {ai} . converges to &,
. i=
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Proof: Let € >0 be a sufficiently small real number so that

K(ao, e) = xe de(ao, x) < e} is a compact subset of X.

-]
f.Ai} , being a sequence of contraction mappings,is an equi-
i=1
continuous sequence of functions converging pointwise to Ao’ and
[ ]

K(ao, €) is compact therefore the sequence {Ai} converges
i=1l
uni formly* on K(a.o, €} to A Thus for € > 0, there is a positive

integer N such that i3> N implies d(A,(x), A< (1-ae for

all x€ K(ao, €), where a <1 is Lipschitz constant for A . Now,

for 12 N and x€ K(ao,E),
d(Ai(x), a.o) = d(Ai(x), Ao(ao))
< a(a,(x), A (x)) + a(a_(x), A ()
<e(1 - ao) + aod(x, a.o)

< € -Q + Q€ =€
ce(l-a)rag=c

vhich proves that A, maps K(a,,€) into itself for 1> N. Let

B; be the restriction of A; to K(a,,€) for each i> N. Thus B

is a contraction mapping of K(ao, €) into itself for i> N. Since

K(a ,€) is compact, 5% is a complete metric space. Therefore B, has

a unique fixed point for each 12 ¥, which must be a; because

on K(ao,e) for iz_'N and &, is a fixed point of Ai'

Tt follows that the sequence

Bi=Aj_

Hence &, € k(a, €) for each 12 N.

{e,} converges to &, -
Via °

Hence the theorem.

. . { onS
* The pointwise convergence of an equicontinuous sequence of functio

ce of the sequence. See

on a compact set implies the uni form convergen

Rudin [ 32 ].
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Note: A similar theorem for a sequence of contractive mappings con-

verging pointwise to a contraction mapping has been proved by Singh

[36].

Remark 3.1.4: In the above theorem the condition of locally compactness

on the space is necessary. An example has been cited in[27] to show

that in non-locally compact spaces, & sequence of contraction mappings

may converge pointwise to a contraction mapping without the sequence of

their fixed points converging.

Another approach to modify Theorem 3.1.1 of Bonsall is due to

Singh [40) where the restriction that all the contractions have the same

Lipschitz constant has been relaxed in the following way:

Theorem 3.1.5. Let (X, d) be a complete petric space and let

T, ¥ X be a contraction mapping with Lipschitz constant ko and

with fixed point u, for each n=1,2, coo v Furthermore, i f

and lim T x = Tx for every X e X,
—
g of X into itself.

k k for n=1,2, ¢
n

G
where T is a meppin Then T hes a unique fixed

m .
point gng .Sequence {un} of fixed points converges to the fixed
n=1

point of T.

Proof: Since T 1is contraction with Lipschitz constant K. »

d(Tnx, Tny) _<_knd(x, y), for all X, vy € X.

and thus 1im a(T_x, Tny) < lim knd(x, y) .
n-roo n n->-e .
i that lim k_ < -
Since kn+l :kn <1 for each N, it follows tn& un n
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Hence 1lim Tnx = Tx is a contraction mapping. Moreover k; serves

n->o
the purpose of a Lipschitz constent for all Tn(n =1,2, .0 ).

Thus the proof follows from Theorem 3.1.1 on replacing k by kj .

The theorem may be {1lustrated by teking the following example.

Exemple 3.1.6: Let T = [0, 1] » [0, 1] be defined by,

Tnx=1-n}_lx for 11 x @ [0,1] 5 n=1,2,3, co0 -

Obviously Tn is a contraction mapping of [0, 1] into itself,

for each n =1, 2, «o. . Aswe

with Lipschitz constant kn = oF

1 .
observe k <k <1 for each n, ky = 5 will serve the purpose
ntl — n

of Lipschitz constant for all the mappings. The unique fixed point for

The limiting function

3 - n = 2 ses ¢
Tn is w =57 for each n=1, 2,

T is given by,
Tx = lin Tnx =1 for every x € fo, 1] .
n+e

Now, limu = lim _n =1 ’
e n+ n+ 1

point for T.

vhere 1 is a unique fixed

Remark 3.1.7: (i) 1If the Lipschitz constants are such that kn+13_ kn

for each n, the theorem is, in general false. Russell {33] has given

the following example to justify this remark.

Let T : E1 -+ E1 be defined as
n .

Tx:p..._x_l_n——-x (n=l,2, cee) ,P>0’

for all x ¢ El , where El = (=

; i i i onstant
We see that T is @ contraction meppings with Lipschitz ¢
n

for each n =1, 2y oo

k = —D _ and with fixed point U, = (n+1)p
n n+1l
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Now Tx = lim Tnx =p+ x for every X € E! . Thus under the
n-)d-‘l

mapping T, every point of E! has been translated by & distance D

and therefore T has no fixed point. Moreover,

limun=lim (n+1)p=oo¢E1_ !

n-)@ n.)m

Remark 3.1.7: (ii) Singh [36] has further modified the last theorem

‘b s a .
y replacing the condition kn+1 f_kn <1l by kn +k <1.
Further Singh and Russell [38] proved the following theorem for a

sequence of uniformly locally contractive mappings.

Theorem 3.1.8. Let (X, d) be a complete e—chainsble metric space and

let T (n=1, 2, ... ) be a napping of X into itself such that
a(x, y) < e => alT x, Tny) <kd(x, ¥),

where k is a resl number such that 0<k <1l. If u is the fixed

and 1im T x = Tx for every x € X,
we

o itself, then T has a wnique fixed

point of Tn, for N =132y ecv s

where T is a mapping of X int
® :

point and sequence {uh} s to the fixed

of fixed points converge
n=1l
point of T.

Now we want to extend the result of Bonsall to the sequence of

mappings satisfying the condition of Rakotch [31] .

Theorem 3.1.9. Let (X, d) be a complete metric space and let

into itself satisfying,

T (n=1,2, ... )be mappings of X

(1) d(Tnx, Tny) < ax, ¥) - a(x, y) for all x, Y€ X.
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vhere A(x, y) = Ald(x, ¥)) is a monotonic decreasing real valued
function such that 0 < Alx,y) <1l. If u 1is the fixed point of

T (n=1,2, ...) and lUmT x=1Tx for every x € X, where T is
n¥>®

a mapping of X into itself, then T has a unique fixed point and

sequence {un} of fixed points converges to the fixed point of T.
n=1

Proof: Since 1lim Tnx = Px for each x € X and the sunetion A(x, ¥)
n-*o
in condition (i) is the same for all n, We have

a(?x, Ty) = d(1im T x, lim T y)= lim &(T x, T v)< Alx, yal(x, y)
n n n n n n n

for all x, y € X. Since (X, d) is complete, it follows from a result
of Rekotch [31] that T has a unique fixed point U (say).

Now 1im T x = Tx for every X € X, therefore for € > 0, there
n

n-)-@

is a positive integer N such that n > N implies d(Tnu, Tu) <€n

where n = min {(1 - Mu, u))}, obviously n is @ resl number such that
n>N
0<n <l

Now for amy n, d(un, u). d(Tngn, Tu)

d(Tnun . Tnu) + d(Tnu, Tu)

IA

A(un’ U)d(un, u) + d(Tnu, Tu)

IA

iA

i.e. (1 - )\(un, u)) d(un, u) d(Tnu, Tu)

e For n> N , (1- Mu s u))a(u , u) <en
and therefore min{(l - X(un, u))} d(un, u) <e€n
n>N

i.e. nd(un, u) <€

i.e. a(u , u) <€ ,since 1 > 0.
n

Hence 1lim u = u.
n—)@

This completes the proof.




Remark 3.1.10: As discussed in Chapter I (Remark 1.2.18), the result

of Rakotch holds also when the function a(x, y) 1is taken to be
monotonic increasing on &x, y) in place of monotonic decreasing.
Thus the preceeding theorem will remain true, without loss of

generality, when the monotonicity of the function A(x, y) teken is

reversed.

The next theorem deals with a sequence of mappings satisfying the

localized version of the condition of Rakoteh. In this case we will

assume the usual function A(x, y) to be monotonic increasing.

The notion of Jocalization and that of c-chainability of a metric

space which we use is the same &8s mentioned earlier..

Theorem 3.1.11. Let (X, d) be a complete, c-chainable (e being a

positive real number) metric space and let T (n=1,2, ... ) bea

mapping of X into jtself such that,

alx, y) <e = d(Tnx, Tny) < Alx, y)alx, ¥)s

al valued monotonic increasing

vhere a(x, y) = Ald(x, y)) isare
[0,1). If u is

function of the interval (0, ] into the intervz?l
= ;o x = Tx for every

the fired point of Tn forn =1, 2, ¢¢» and iL;I: 1 '

£ X into itself, then T has a uniqueé

x€ X where T is & mapping?
@

{un} of fixed points of T,
n=1

converges
fixed point and the sequence

to the fixed point of T.




Proof: For (x,y)€ X x X define,

——————

de(x, y)

gall e-chains x

Obviously,

(1) alx, y) <d (% ')

(1)  dlx, y) = d(x, ¥)

Since

d

€

= xo’ x1’ xZ’ s 00

2

= inf { E d(xi—l’ xi)} , vhere infimm is taken over
i=1

xp=y Joining x and Y.

is a metric for X satisfying,

(x, d)

is complete,

that (X, de) is complete.

Now, for any x, y &€ X and any e-chain X = X, X Xps <00 3 0

joining x eand y Ve have,

d(xi-l’ xi) <€

gll n=1, 2, cov >

for a11 x, Y€ X, and

for alx, y) <€ .

from (i) and (ii) it follows

(i=1,2, ¢ p). Therefore for

d(Tnxi-l’ Tnxi) < A(xi_l, xi)d(xi-l’ xi) <€

Hence Tn(xo), Tn(xl), vee s Tn(xp)

Tn(y) [ and

de(Tnx, Tny)

(1=1, 2, o s P

is an e-chain joining Tn(x) end

< ale) 5 ax, 39 xi) , (since
- 1

) < e implies

x.)) = Ax; 3 x;) < Ae),

A(d(xi_l s i -

for i:l, 2, oo & ,P)




Now since i i i
c xo, X1y Xpy eoe s xp is an arbitrary e-chein, we

have
a_(Tx, Ty) < A(e)d (x, ¥) (n=1,2,...),

where Afe) < 1.

Thus Tn(n =1, 2, ...) are contraction mappings with respect to

de . (X, de) is a complete metric space. Then Tx = 1im T x for
n
Nyoo

every x€ X, is a contraction mapping with respect to 4 and with
€

2(c) as Lipschitz constant so that T has e wnique fixed point u (say)

and lim u = by Theorem 3.1.1.
me

Hence the theorem.

3.2. We now investigate few interesting results as & solution to the

problem posed in the beginning of this chapter for the mappings of the

type:
£:x »X s.b. d(e(x), £(¥) < afalx, £(x) + aly, £(y)))

for all x, y € X, vhere @ is a non-negative real number.

Let us call o tobea mapping constent for f.

Theorem 3.2.1. Let (X, d) be a metric space and let '].‘n be a mapping

of X into itself with at least one fixed point w for each

s & non-negative real number o such

n=1, 2, ... . Suppose there i

that,

(a) (T x, Tny) < ofd(x, Tnx) + aly, Tny)} sor all x, YEX

(n=1,2, ++: ).

If the sequence {Tn} rges pointwise to & mapping

conve
n=1
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T : X+ X, with a fixed point u, then u is a unique fixed point of

> <]
T and the sequence {un} converges to u.
. n=1
- -]
Proof': {T_} converges pointwise to T, therefore for € 2 0 e.d
n=1
for ue X, there is a positive integer N such that n > N implies,

€
< . . o
a(Tu, Tnu) IOk wvhere o is the same as in condition (a).

Now we have for any 1 ,
a(u, un) = 4(Tu, Tnun)

< d(Tu, Tnu) +a(T v, Tnun)
< d(Tu, Tnu) + a{d(u, Tnu) + d(un, Tnun)}

i.e. d(u, un) <(1+ a)d( u, T u ) , Since u and u are fixed~

points of T eand Tn respectively.

€ =
Therefore for n > N, d(u, u) < {1+ o TFao  ©

[--4
f.e. ful converges to u.
n
n=1

To show that u 1is & unique fixed point of T, let v be

-]

Then in the similar vay {un} converges

another fixed point of T. 1
n=

to v which implies u=1YV .

Hence the theorem.

A simple corollary to this theorem assuring the existence of

fixed points of the mappings T together, the convergence of the

sequence of the fixed points to the sixed point of the 1imiting function

may be given as follows:




]

Corollary 3.2.2: Let (X, d) be a complete metric space and (T }
n

n=s1
be a sequence of mappings of X into itself satisfying condition (4)

-]

of the above theorem with 0 < a < %-. Ir {Tn} converges pointwise
n=1

to a mapping T : X *+ X with a fixed point u, then (i) the fixed point

u is unique, (ii) each T, has a unique fixed point for n =1, 2, ...

and (iii) the sequence of fixed points of T =~ converges to u.

Proof: The conclusion (ii) is implied directly by a result of Kannan

[o0) end (i) and (iii) follow from the theorem.

The condition (A) in the preceeding theorem can be relaxed by

allowing the mapping constant o to change with Tn in the following
way generalizing thereby the gbove theorem.

Theorem 3.2.3. Let (X, d) bea metric space and let T be a

end with

mapping of X into jtself with at least one fixed point u,

mapping constant @ for each n =1, 2, «ov such that,

d(Tnx, Tny) j_an{d(x, Tnx) + daly, Tny)} , for all X, ¥ e X,

where @ ‘{s a non-negative reel number.

= o > 0 and the sequence {Tn}~ converges

Suppose lim a_ =

. n>* n n=1 ]
pointwise to a mepping T : X 7 X, with a fixed point u. Then Uu is
of fixed

£ T and. the sequence {un}

the unique fixed point © 1
n=

points converges to u.
- -]
Proof: '{Tn} conver

n=1 _ .
u € X, there is a positive integer N such that n 2N implies,

ges pointwise to T, therefore for € >0 and




£ .
a(Tu, Tnu) <7 where n is a positive real number

defined as,

ne=max (1 +a)l
n>N n

Now, we have for any 1, exactly in the same way as in previous

theorem,
a(u, un) <(1+ an)d('l‘u, Tnu)
Therefore for n 2 N,

a(u, un) <(1+ a) %

n
_<_ma.x{(1+a)} Ean = =c¢.
>N n n no
A w
Thus {un} converges to u.
n=1

The uniqueness of u as @ fixed point of T follows as in

previous theorem.
Hence the theorem.

Next we give the following interesting result under the uniform

convergence of the sequence of meppings.

Theorem 3.2.4%. Let (x, d) be a mnetric space and let T, be a mapping

of X into itself with at least one fixed point u, for each n =1, 2,

ves o Let T X + X be a mepping with a fixed point u such that,

(B) a(rx, Ty) < afa(x, Tx) + d(y, Ty)} for all X,V € X, where

If the sequence TTn} converges

@ is a non-negative real number.
n=1

of fixed points converges

©
uniformly to T, then the sequence {un}
n=1

to u.




"Proof: The condition (B) implies that the given fixed point u of T

is unique for let v be another fixed point of T, then
alu, v) = a(Tu, Tv)
< o{d(u, Tu) + dlv, Tv)} = 0,

which gives that u = v.
[« -]
Since {Tn} converges uniformly to T, given ¢ > 0 there
n=1l

js a positive integer N such that n > N implies,

where a is the same as in condition (B).

€
a(T v, Tu) <755 o
Now for any n,
d(u, un) = d(Tu, Tnun)
< d(Pu, Tun) + d(Tun, Tnun)
< afd(u, Tu) + d(un, Tun)} + d(Tun, Tnun)

=g+ 0+ ad(Tnun, Tun) + d(Tun, Tnun)’

since u and u gre fixed points of T and Tn respectively.
oo d(u, un) <(1+ a)d(Tnun, Tun)
£
. = £ .
Thus for n >N % a(u, un) <(1+a) T+ o)
Hence {uﬁ} converges to U.

n=1

This completes the proof.




Remark 3.2.5: Singh [37] has proved the sbove theorem under a

R 1 X X R
restriction 0 <a < 5 on 'y! which in fact is not necessary, as

is seen in the proof.

We present an example also which justifies this remark.

Example 3.2.6: Let T : [0, 2] » [0, 2] be defined as

x for a1l x € [0, 2] .

S
= B,

1

w
+

(n=1,2, . )¢

Clearly the fixed point of Tn is given by,

_Sn+1 =
un—§-£2—+—1 for each n=1,2, «.. ¢
Also Tx = lim'l‘nx=%x for all x € [0, 2] ,

n—P@

end thus u = 0 is the fixed point of T.

It is easily seen by taking x =1 end y = 0 in condition (B)

l .
that T fails to satisfy this condition for a <3 - But for any real

o _>_% the condition is satisfied for all the points in [0, 2] .

n+ 1 =
= 3 = 0 = .
Also lim w i.lm ——2———2n + 1 u

n—)@




1.

Bailey,DeFos

2.Banach,S.

3.

Belluce,L.P. &
Kirk,W.A.

Belluce,L.P. &

Kirk,W.A.

Bonsall,F.F.:

Boyd,D.W. &
Wong,J.S.W. 3

BIBLIOGRAPHY

nSome Theorems on Contractive Mappinzs”

Jour. London Math.Soc.41(1966)101-1C¢.

wSurles Operations dans les Ensembles
Abstraits et leur application aux
Equations Integrals" Fund. Math.

3(1922) 133-181.

wFixed Point Theorems for certain
Classes of Nonexpansive Mappings"

Proc. Amer. Math.Soc. 20(1969) 1&1-1-

wSome Fixed Point Theorems in Metric

and Banach Spaces” (Submitted for

publication).

#J,ectures oh Some Fixed Point Theor=".

of Functional Analysis* Tata Insti~

of Fundamental Research,Bombay.,

India (1962).

»On Non-linear Contractions”

Proc.Amer.Math.Soc.20(1969) L4586~




-T3-

7 Browder,F.E.t "On the Convergence of Successive
Approximations for Non-linear Functional

Equations” Ir.dag.Math. 30,1(1968)27-35-

8, Browder,F.E.: wConvergence of Approximantsrto Fixed

Points of Nonexpansive Nonlinear
Mappings in Banach Spaces"” Archive

Rat. Mech., and Anal. 24(1967) 82-90.

9, Browder,F.E.? “Nonexpansive Nonlinear Operators in

a Banach Space." Proc.Nat. Acad. Sci.

U.S.A. 54 (1965) 10411044,

10, Browder,F.E.& wphe Solutions DY Tteration of
Pétryshyn,W.V.z Nonlinear Functional Equations in

Banach Spaces.“Bull.Amer.Math.Soc.

22(1966) 571-575:

wproximity Maps for Convex Sets".

11. Cheney,W. &
Math.Soc.10(1959)571-575.

Goldstein.A.A.: Proc.Amere

np Fixed Point Theorem for 'In the

12, Chu,S.C. &
Large' Applications of the Contraction

g Principle".Atti dell
rino 99(196u-65)351-63.

Diaz,JeBe?
a Accademia

Mappin
delle Sci.di To




13.

1k,

15,

16‘

17.

18.

19.

~Th-

Chu,S.C, & "Remarks on a Generalization of

Diaz,J.B.1 Banach's Principle of Contraction
Mappings".Jour.Math.Anal.Appl.
11(1965) LL0o-Lub,

Edelstein,M. : "An Extension of Banach's .Contraction

Principle". Proc.Amer.Math.Soc.12-

(1961) 7-10.

Edelstein, M. vOn Fixed and Periodic Points under
Contractive Mappings" Jour. London

Math. Soc. 37 (1962) 74-79.

Edelstein, M. "On Nonexpansive Mappings".FProc. Amer.,

Math. Soc. 15 (1964) 689-695.

Edelstein, M, "On Nonexpansi?e Mappings of Banach

Spaces ".Proc. Camb. Phil.Soc.60(1964)

439-L47,

Eilenberg,S.& wFixed Point Theorems for Multi-valued

Montgomery,D. Transformations".Amer.Jour.Math. 68

(1946) 214-222.

wA generalization of Brouwer's Fixed

Kakutani,S.:
8(1941)

Point Theorem".Duke Math.Jour.

L57-L459.




20,

21.

22.

23,

24,

25.

26.

27.

~75-

Kannan,R. !¢ "Some Results on Fixed Points".,Bull.

Calcutta Math.Soc., 60(1968) 71-76,

Kannan,R.: "Some Results on Fixed Points-II".

Amer.Math.Monthly 76(1969)405-408,

Kelley,JsL.t vGeneral Topology". D.Van Nostrand

Co.,Inc. Prinéeton.New Jersey ,1959.

Kirk,W.A.1 "On Mappings with Diminishing Orbital

Diameters" .Jour.London Math. Soc.

L4 (1969) 107-111.

Kirk,W.A.: np Fixed Point Theorem for Mappings

which do not increase distances".

Amer. Math.Monthly 72(1965)1004-1006.

Kuratowski,C.: nTopologie", Warsaw (1952) ,Vol.1l,p.318.

Maia,M.G. "Un osservazione sulle Contrazioni

Metriche". Rend.Mat.Univ.Padova.

40(1968) 139-143.

ractions and Fixed

(1968)71-76.

Nadler,S.B.! "Sequences of Cont

Points".Pacif.Jour.Math.Z?

N




~T6-

2 .
8. Nadler,S.B.: “Multi-valued Contraction Mappinge”
Pacif. Jour.Math. 30(1969) L75-LE:

29, Ng-Kai-Wang.: wGeneralizations of Some Fixed
Point Theorems in Metric Spaces"

Master's Thesis submitted to the

University of Alberta,E(1968).

30. Plunkett,R.L.¢ vp Fixed Point Theorem for Contir:

Multi-valued Transformations".

Proc.Amer.Math.Soc.?(l956)160-67.

31, Rakotch,E.: "A note on Contractive Mappings”

Proc.Amer.Math.Soc.13(1962)459-65.

32, Rudin,W.s wpprinciples of Mathematical Analys!

McGraw-Hill Co. New York.(1964).

33, Russell,W.C.: wFixed Point Theorems in Uniform

Spaces" .Master's thesis submittec

to the Memorial University of

Newfoundland. (1970).

34, Sehgal,V. M.t wp Fixed Point Theorem for Mappin&s

with a Contractive Iterate".Proc.

Amer.Math.Soc.




I S ’’EEEEEEEEEEEEEEHEEEEEEEHEEEEEEEEEHEEEHEHEEEEEEEEHEEEHHHGHZHEGEEHHHES

-T7-
35. Singh,K.L.: "Some Fixed Point Theorems in
Analysis" . Master's thesis

submitted to the Memorial University

of Newfoundland.(1969).

36. Singh,S.P.t wSequences of Mappings and Fixed

Points " Annal. Soc.Scie,Bruxelles

783(1969) 197-201.

37. Singh,S.P.: nSome Results on Fixed Point

Theorems " Yokohama Matn.Jour.

17,2 (1969) 61-64.

38, Singh,S.P. & wA note on a Sequence of Contraction

Russell,W.C. ! Mappings
12,n0.4 (1969) 513-516.

v Canadian Math.Bulletin

39. Singh,SePes n"Some Theorems on Fixed Points."

Yokohama Math.Jour. 18(1970).

40, Singh,S.P.1 "On Sequence of Contraction Mappings" .
Riv. Mat. Univ. Parma, ( To appear)

"On an Open Question concerning

L1, Strother,W.L. !

Fixed Points »w, Proc. Amer. Math.

Soc. 4(1953) 988-993.




R i
B O s

IR T2y

IR

o

iR v o

RS e e —
RO A e T T

BERE LR o e Lo

b2,

L3,

Szufla,A.t

Ward ’ L,E.s

-78-

"On the Existence of Solutions

of an Ordinary Differential
Equation in the case of Banach

Space". Bull.Acad.Pol.Sci. 16,
4(1968) 311-316.

" Characterization of the Fixed
Point Property for a class of
Set Valued Mappings". Fund.
Math. 50 (1961) 159-164.,















